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Key Points:8

• Inertial effects cannot be neglected in the range of typical average capillary num-9

bers (Caav) associated with multiphase flow in permeable media (Caav ≤ 10−3).10

• Even as the average capillary (Caav) and Reynolds (Reav) numbers decrease away11

from the injection point, inertial effects become important during abrupt jump events12

(Haines jumps).13

• The local Cal and Rel during jump events is orders of magnitude higher than the14

average flow dimensionless numbers.15

• The maximum local Reynolds number Rel during jumps is of the order 101.16

• The Ohnesorge number, which reflects the thermophysical properties of the sys-17

tem under investigation, links the capillary and Reynolds numbers and should be18

used to restrict the parameter selection process.19

• A Navier-Stokes solver should be used to investigate pore scale displacement pro-20

cesses.21
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Abstract22

We investigate the immiscible displacement (drainage) of a wetting fluid in a porous medium23

by a non-wetting fluid using multi-GPU lattice Boltzmann simulations with the aim of24

better understanding the pore scale processes involved in the geological sequestration25

of CO2. Correctly resolving the dynamics involved in multiphase flow in permeable me-26

dia is of paramount importance for any numerical scheme. Generally the average fluid27

flow is assumed to be at low Reynolds numbers Reav. Hence, by neglecting inertial ef-28

fects, this immiscible displacement should be characterised by just two dimensionless num-29

bers, namely the capillary number Caav and the viscosity ratio, which quantify the ra-30

tio of the relevant forces, i.e. the viscous and capillary forces. Our investigation reveals31

that inertial effects cannot be neglected in the range of typical capillary numbers asso-32

ciated with multiphase flow in permeable media. Even as the average Caav and Reav33

decrease away from the injection point, inertial effects remain important over a transient34

amount of time during abrupt Haines jumps, when the non-wetting phase passes from35

a narrow restriction to a wider pore space. The local Rel at the jump sites is orders of36

magnitude higher than the average Reav, with the local dynamics being decoupled from37

the externally imposed flow rate. Therefore, a full Navier-Stokes solver should be used38

for investigating pore scale displacement processes. Using the Ohnesorge number to re-39

strict the parameter selection process is essential, as this dimensionless number links Caav40

and Reav and reflects the thermophysical properties of a given system under investiga-41

tion.42

1 Introduction43

The immiscible displacement of a fluid in a porous medium is of extreme impor-44

tance in a plethora of applications, including hydrocarbon recovery, geological seques-45

tration of CO2 in saline aquifers etc. This has prompted experimental and numerical in-46

vestigations of these phenomena, as understanding the factors affecting the displacement47

patterns becomes of paramount importance. Lenormand et al. (1988) investigated nu-48

merically and experimentally the immiscible displacement of a wetting (w) fluid in a micro-49

model by a non-wetting (nw) fluid. Completely neglecting inertial effects and consider-50

ing only viscous and capillary forces, the drainage displacement process is governed by51

the ratio of these forces. Hence, Lenormand et al. (1988) argue that this can be char-52

acterized by: a) the ratio of viscous forces in both fluids, quantified by the ratio of the53
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Figure 1. Lenormand’s phase diagram for drainage and the domains of validity for the three

displacement patterns: (1) stable displacement, (2) capillary and (3) viscous fingering. The gray

zones denote the domains indicated by the simulations of Lenormand et al. (1988), while the

boundaries given by the dashed dotted lines are from the experimental work of Zhang et al.

(2011). These boundaries are shown here just for qualitative purposes, as they are strongly de-

pendent upon the geometry type. The three configurations shown for illustration purposes of

the three typical displacement patterns are from drainage simulations in Ketton limestone (see

Fig. 2). The injected non-wetting phase is shown in blue, while rock grains and wetting phase are

transparent. The two points correspond to the test cases examined in section 3.1.
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dynamical viscosities ηi (i = w,nw), M = ηnw/ηw, and b) the ratio of viscous forces54

which act in the injected fluid over capillary forces. This is given by the average capil-55

lary number Caav = ηnwū/γ, where ū and γ are the average velocity of the injected fluid56

and interfacial tension respectively. Of course the fluids’ affinity to the porous media (i.e.57

wettability) should have a profound influence on the displacement patterns (Zhao et al.,58

2016; Singh et al., 2017; Rabbani et al., 2017). Depending on the dimensionless num-59

bers above, either viscous or capillary forces dominate and the displacement pattern takes60

one of the basic forms: (a) viscous fingering, (b) capillary fingering or (c) stable displace-61

ment. The domains of validity of the different basic mechanisms can be mapped onto62

the (Caav,M) phase plane, which has been called the “phase-diagram” for immiscible63

displacements (Lenormand et al., 1988), see Fig. 1.64
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At high values of the capillary number and viscosity ratios the stable displacement74

regime is observed, where the principal force is due to the viscous forces in the injected75

fluid. Capillary effects and pressure drop in the displaced fluid are negligible. At values76

of the viscosity ratio below 1, i.e. when the injected fluid has lower viscosity than the77

viscosity of the wetting fluid, and at high values of the capillary number, then the vis-78

cous fingering instability dictates the displacement pattern. Here the principal force is79

due to the viscous forces in the displaced fluid, with capillary effects and pressure drop80

in the displacing fluid being negligible. Viscous fingers formed grow towards the mean81

direction of the flow. Finally the third regime, observed at low values of the capillary82

number, is called the capillary fingering regime. Viscous forces are negligible and the prin-83

cipal force is due to capillary forces. The fingering process is distinctively different to84

the one observed in the viscous fingering regime as now fingers form loops and grow in85

all directions. The boundaries between the different displacement pattern regimes de-86

pend on the details of the geometry used and the degree of fluid wettability on solid sur-87

faces.88

Yortsos et al. (1997) also provide a phase diagram of fully developed drainage in89

porous media with axes the viscosity ratio and capillary number and postulate a descrip-90

tion in terms of invasion percolation in a gradient. They recognize the existence of two91

different global patterns, depending on whether invasion is in a stabilizing gradient or92

a destabilizing gradient, respectively, and propose that the various properties of the flow93

regimes can be deternined by the spatial variation of the percolation probability and the94

sign of its gradient.95

The important question to be addressed is whether we should indeed neglect com-96

pletely inertial effects, when it comes to modeling two phase flow at the pore scale, for97

example for CO2 geological sequestration or hydrocarbon recovery. Furthermore, what98

conditions, flow regimes, or systems of fluids would justify this choice and render Caav99

and M sufficient to fully capture the physics of fluid displacement. Lenormand’s phase100

diagram (Lenormand et al., 1988) provides a qualitative picture about the overall drainage101

displacement patterns. However, when it comes to quantifying important aspects of two-102

phase flow, for example: a. the fluids’ spatial distribution/connectedness, b. the displace-103

ment efficiency (limiting value for the injected phase saturation) in the different flow regimes104

or c. the flow regimes’ domain boundaries, we need to question whether the above treat-105

ment is sufficient. In terms of direct numerical modeling this is of paramount importance,106
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as it affects the setup of the simulations and the parameter selection process; this con-107

sequently determines the reliability of the numerical results and their predictive capa-108

bilities.109

When considering processes like hydrocarbon recovery (brine displacing oil) or CO2110

geological sequestration (CO2 displacing brine), generally, the average fluid flow at the111

pore scale is assumed to be at low Reynolds numbers; especially, as the distance from112

the injection point in the well bore increases. However, considerable work in the liter-113

ature demonstrates the relevance of inertial effects in multiphase flow during both im-114

bibition (Ferrari & Lunati, 2014; Zacharoudiou et al., 2017) and drainage (Moebius &115

Or, 2014; Kazemifar et al., 2016; Li et al., 2017). During imbibition, interfacial oscilla-116

tions and inertia can affect the displacement sequence/pathways (Ferrari & Lunati, 2014)117

and hence the displacement efficiency. Capillary filling dynamics is also not fully cap-118

tured by just the capillary number, as the choice of parameters affects the dissipation119

of energy in the system, leading to different dynamics, e.g. wetting film propagation (Zacharoudiou120

et al., 2017).121

In a drainage situation, inertial effects can be also important over a transient amount122

of time, during Haines jump events (Berg et al., 2013; Armstrong & Berg, 2013; Arm-123

strong et al., 2015; Zacharoudiou et al., 2018). During these sharp interfacial jumps, cap-124

illary forces accelerate the fluid interface, as it passes from a narrow restriction to a wider125

pore body, while initially inertial and viscous forces oppose the motion. This leads lo-126

cally to fluid velocities that can be orders of magnitude higher than the average fluid ve-127

locity. Kazemifar et al. (2016) and Li et al. (2017) report maximum local Reynolds num-128

bers in the range of 102 and 101 in supercritical CO2 - water experiments in 2D homo-129

geneous and heterogeneous porous micromodels respectively, exceeding the range of va-130

lidity of Darcy’s law. At a second stage, as the interface decelerates, inertial and cap-131

illary forces become the driving forces, opposed by viscous forces; the time scales of this132

stage constitute the majority of the pore draining times (Zacharoudiou & Boek, 2016).133

As inertia becomes a driving force, it can affect the invasion of subsequent throats. The134

numerical work of Moebius and Or (2014) on drainage in a 2D pore-throat network, re-135

vealed the role of inertia in shifting the distribution of invaded throats by including smaller136

invaded throats compared to invasion patterns without inertia. This confirmed previ-137

ous observations (Moebius & Or, 2012) that inertia affects local displacement patterns.138

139
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Another important feature of these abrupt events is the extensive fluid rearrange-140

ment taking place in the region of the jump, which contributes significantly to the drain-141

ing of the pore body (Berg et al., 2013; Zacharoudiou et al., 2018). Experimentally, it142

has been observed that the draining of pore bodies occurs at time scales smaller than143

the time scales expected considering the externally imposed injection flow rate, indicat-144

ing that cooperative filling dynamics takes place (Berg et al., 2013). We have confirmed145

this observation numerically using free energy lattice Boltzmann simulations on Ketton146

limestone (Zacharoudiou et al., 2018). Hence, we expect that completely neglecting in-147

ertial effects, which is a key element of the jumps, will not enable capturing the fluid flow148

dynamics and the associated features of these abrupt events, e.g. pressure drop, fluid re-149

arrangement etc.150

Therefore, it would be reasonable to question whether the description in terms of151

just the average capillary number Caav and the viscosity ratio M is sufficient to describe152

pore-scale two-phase flow behaviour correctly. In particular we question the usual ap-153

proach in numerical simulations of keeping both Caav and Reav low. The questions that154

need to be addressed, mainly from the modeling point of view, are the following:155

• How small is the average flow Reynolds number Reav = ρūLs/ηnw (Ls being the156

characteristic length scale of the system)?157

• When does the transition from smooth flow to burst flow (Haines jumps) take place?158

• What is the local Reynolds number Rel due to interfacial instabilities, e.g. Haines159

jumps?160

Although a significant amount of research deals with the numerical modeling of two161

phase flow at the pore scale (Raeini et al., 2014; Tsuji et al., 2016; Yamabe et al., 2015),162

a discussion on the parameter selection process is in most cases lacking. In our previ-163

ous work in micromodels (Zacharoudiou & Boek, 2016; Zacharoudiou et al., 2017) we high-164

lighted the need to numerically match not only the capillary number and the viscosity165

ratio, but also the Ohnesorge number for a given experimental system. Y. Chen et al.166

(2018) follow our approach for the parameter selection process in their lattice Boltzmann167

simulations in 2D heterogeneous micromodels and present a rigorous discussion on the168

matter. Here we extend our previous investigations to three dimensional permeable me-169

dia. The paper is organized as follows. In the next section we provide the details of the170

numerical scheme we shall use. We present and discuss our results in section 3. We fo-171
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cus on demonstrating that Caav, M are not sufficient to fully describe two phase flow172

at the pore scale by examining simulations at fixed Caav, M and wettability conditions.173

We examine two cases at intermediate and low Caav (indicated in Fig. 1), with the lat-174

ter being characterised by Haines jumps. The flow regimes examined (intermediate Caav ∼175

3 × 10−4, low Caav ∼ 4 × 10−5) can be considered sufficient for the purposes of the176

current investigation, given that we encounter the transition to the capillary fingering177

regime characterised by Haines jumps, expected at the low Caav flow. Typical values178

for the ratio of viscous to capillary forces at the pore scale, i.e. Caav, are in the range179

of 10−10−10−3, depending on the distance from the injection point in the well bore (Blunt180

& Scher, 1995). Then we examine individual jump events at varying Caav, demonstrat-181

ing that the local Cal, Rel are orders of magnitude higher than the corresponding av-182

erage values. The local dynamics become decoupled from the externally imposed flow183

rate, as energy stored in the system during slow drainage as surface energy is released,184

driving these abrupt events and the corresponding fluid redistribution. Finally conclu-185

sions drawn from this work are discussed in section 4.186

2 Numerical Model187

In this section we describe the numerical method we shall use, starting with the188

thermodynamics in section 2.1, the dynamical equations of motion in section 2.2 and the189

lattice Boltzmann implementation in section 2.3.190

2.1 Thermodynamics of the fluid191

We consider a binary fluid mixture containing two types of molecules, A and B.192

The equilibrium properties of the binary fluid can be described by a Landau free energy193

functional (Briant & Yeomans, 2004), in terms of an order parameter φ,194

F =

∫
V

(
fb +

κφ
2

(∂αφ)2
)
dV +

∫
S

fs dS . (1)

The order parameter is a scalar field, which describes the local molecular composition195

of the binary fluid mixture, defined as φ = (nA − nB)/(nA + nB). nA,B denotes the196

number density of the A, B molecules locally. For temperatures below a critical temper-197

ature Tc (T < Tc), the mixture undergoes phase separation into A-rich and B-rich do-198

mains, with the equilibrium values for the order parameter being φeq = ±1. The first199

–7–



manuscript submitted to Water Resources Research

term in the integrand is the bulk free energy density given by200

fb =
a

2
φ2 +

b

2
φ4 +

c2

3
ρ ln ρ , (2)

where ρ is the fluid mass density and c is a lattice velocity parameter. This choice of fb201

allows binary phase separation into two phases, if a < 0 and b > 0, with bulk equilib-202

rium solutions φeq = ±(−a/b)1/2. Making the choice a = −b, leads to φeq = ±1 for203

the bulk of the two phases. The position of the fluid-fluid interface is chosen to be the204

locus φ = 0. The term in ρ does not affect the phase behavior and controls the com-205

pressibility of the fluid (Kendon et al., 2001).206

The energetic cost of fluid-fluid interfaces is accounted for by the gradient term (κφ/2)(∂αφ)2,207

which penalises spatial variations of the order parameter φ by a factor κφ, for example208

across the fluid-fluid interface. Taking the functional derivative of the free energy with209

respect to φ gives the exchange chemical potential210

µ ≡ δF
δφ

= aφ+ bφ3 − κφ∂γγφ , (3)

which is constant at equilibrium (set µ = 0), otherwise it would give rise to a thermo-211

dynamic force density −φ∂αµ. Assuming for simplicity that the fluid-fluid interface is212

flat and located at x = 0, eq. 3 alows an interface solution of the form φ(x) = tanh(x/(
√

2ξ)),213

with ξ =
√
−κφ/a being the interface width (Briant & Yeomans, 2004). Throughout214

this work we fix ξ = 0.81; this was previously shown to give accurate results for the vari-215

ation of φ across the fluid-fluid interface (Kendon et al., 2001) and allows a smooth tran-216

sition between the two phases over a length scale of ∼ 5ξ. The corresponding interfa-217

cial tension (excess free energy per unit area) is given by γ =
√
−8κφa3/(9b2) (Briant218

& Yeomans, 2004).219

The choice of free energy functional leads to a pressure tensor (Anderson et al., 1998)220

Pαβ =
[
φ
δF
δφ

+ ρ
δF
δρ
−F

]
δαβ + (∂αφ)

δF
δ(∂βφ)

=
[
pb − κφφ∂γγφ− κφ

2 (∂γφ)2
]
δαβ + κφ(∂αφ)(∂βφ)

=Pisoδαβ + P chemαβ , (4)

where pb = c2

3 ρ+ 1
2aφ

2+ 3
4bφ

4 is the bulk pressure. Pαβ consists of two terms: an isotropic221

contribution P iso = c23ρ to ensure constant density and a ‘chemical’ pressure tensor222

contribution P chemαβ (Kendon et al., 2001). The thermodynamics of the fluid is contained223
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in the later. It reflects the fact that in the presence of chemical potential gradients, a224

force density proportional to this will drive the system to equilibrium. This thermody-225

namic force density, −φ(∂αµ), can be expressed as the divergence of a ‘chemical’ pres-226

sure tensor φ(∂αµ) = ∂βP
chem
αβ .227

The final term in the free energy functional, eq. 1, describes the interactions be-228

tween the fluid and the solid surface. Following (Cahn, 1977), the surface energy den-229

sity is taken to be of the form fs = −hφs, where φs is the value of the order parame-230

ter at the surface. Minimisation of the free energy gives an equilibrium wetting bound-231

ary condition (Briant & Yeomans, 2004)232

κφ ∂⊥φ =
dfs
dφs

= −h . (5)

The value of the parameter h (the surface excess chemical potential) is related to the equi-233

librium contact angle θeq via (Briant & Yeomans, 2004)234

h =
√

2κφb sign
[π

2
− θeq

]√
cos
(α

3

){
1− cos

(α
3

)}
, (6)

where α = arccos
(
sin2 θeq

)
and the function sign returns the sign of its argument.235

2.2 Equations of motion236

The hydrodynamic equations for the system are the continuity, eq. 7, and the Navier-237

Stokes, eq. 8, equations for a nonideal fluid238

∂tρ+ ∂α(ρuα) = 0 , (7)
239

∂t(ρuα) + ∂β(ρuαuβ) = −∂βPαβ + ∂β [η (∂βuα + ∂αuβ)] , (8)

where u, P, η are the fluid velocity, pressure tensor and dynamic viscosity respectively.240

For a binary fluid the equations of motion are coupled with a convection-diffusion equa-241

tion,242

∂tφ+ ∂α(φuα) = Mφ∇2µ , (9)

that describes the dynamics of the order parameter φ. Mφ is a mobility coefficient (see243

Appendix A, eq. Appendix A).244

2.3 Lattice Boltzmann method245

The numerical algorithm we use to solve the equations of motion is based on the246

lattice Boltzmann method (Doolen, 1990; Benzi et al., 1992; S. Chen et al., 1992; Succi,247
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2001). In particular, we use an extension of the method, the free energy LB method, first248

introduced by Swift et al. (Swift et al., 1995, 1996), to simulate two-phase flow. This249

algorithm belongs to a class of hydrodynamic models, called diffuse interface models (Jacqmin,250

2000; Pierre & Seppecher, 1996; Briant et al., 2004; Briant & Yeomans, 2004), where the251

fluid-fluid interface has a finite size. Far away from a contact line, the method solves the252

hydrodynamic equations of motion of the fluid, i.e. the Navier-Stokes equations and the253

continuity equation. In the vicinity of the contact line, however, due to the finite size254

of the interface, the method introduces a diffusive mechanism, which regularizes the vis-255

cous dissipation singularity (de Gennes, 1985) and allows the contact line to slip on a256

solid substrate.257

The above equations are solved using a Multiple Relaxation Time (MRT) lattice258

Boltzmann algorithm (D’Humières et al., 2002). Details of the implementation of the259

lattice Boltzmann algorithm are given in Appendix A. We note here that the numeri-260

cal code implementation is performed in CUDA C++ to take advantage of accelerated261

computing on multiple general-purpose graphics processing units (GPGPUs).262

3 Results263

3.1 Drainage simulations at fixed Caav and M264

We examine here whether the classical treatment of characterizing two-phase flow265

(drainage) at the pore scale in terms of just the capillary number Caav = ηnwū/γ, vis-266

cosity ratio M = ηnw/ηw and wetting boundary conditions (θeq) (Lenormand et al., 1988)267

is sufficient to describe two phase flow. To this end we directly solve the hydrodynamic268

equations of motion in a three dimensional geometry reconstructed from micro-CT im-269

ages of Ketton limestone (Shah et al., 2016) and consider fluid flows at fixed average cap-270

illary number Caav and viscosity ratio (logM = 0). We note here that ū is the aver-271

age nw phase velocity, obtained from the simulations and not the one obtained from the272

injection flow rate. The simulation system size is 7003 lattice units (l.u) at a resolution273

of 4.52 µm per l.u. (physical system size (3.16 mm)3). The fluid flow is driven by ap-274

plying a constant injection flow rate, which is achieved by applying velocity boundary275

conditions at the inlet/outlet of the simulation domain (Hecht & Harting, 2010). Small276

reservoirs are placed at the inlet/outlet of the simulation domain. The equilibrium con-277
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Figure 2. The pore and throat size distribution (Dong & Blunt, 2009) of the geometry

used in the simulations (see inset). Inset: Ketton rock sample reconstructed from micro-CT

images(Shah et al., 2017). The simulation system size is 7003 lattice units (l.u) at a resolution of

4.52 µm per l.u, which corresponds to a physical system size of (3.16 mm)3 with porosity 0.159.

A small reservoir (16 l.u) is added at the inlet/outlet of the simulation domain.

281

282

283

284

285

tact angle is set to θeq = 40◦, consistent with contact angle measurements in Ketton278

at reservoir conditions for a supercritical CO2 - brine system (Andrew et al., 2014).279

3.1.1 Intermediate Caav280

For the case of intermediate capillary number (indicated in Fig. 1 with the green286

circle), we consider three simulations with different volumetric injection flow rates, Qinj =287 ∫
A

uinj · dA, and fluid viscosities, while maintaining the same average capillary num-288

ber (Caav = 3.3×10−4) and viscosity ratio (logM = 0). A is the cross sectional area289

at the inlet/outlet. Fixing Caav is achieved by keeping the product Qinjηnw and all other290

parameters (θeq, γ) constant. Simulation parameters (in lattice units - l.u) are listed in291

Table 1. The above choice essentially varies the Reynolds number (Re
(1)
av = 1.0×100,292

Re
(2)
av = 1.0 × 10−2, Re

(3)
av = 1.7 × 10−3). Here we use the average invaded throat di-293

ameter as the characteristic length scale Ls in the definition of Reav = ρūLs/ηnw, as294

this controls the pressure at which pores drain, Ls ∼ 10 l.u (45µm). A useful dimen-295

sionless number that relates the capillary to Reynolds numbers is the Ohnesorge num-296

ber297

Oh2 = Caav/Reav = η2
nw/ργLs , (10)
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Table 1. Simulation parameters in lattice units - Intermediate Caav test case∗301

Run ηnw uinj

1 1.67× 10−1 (τ
(1)
f,nw = 1.0) 2× 10−6

2 6.67× 10−2 (τ
(2)
f,nw = 0.7) 5× 10−6

3 6.67× 10−3 (τ
(3)
f,nw = 0.52) 5× 10−5

∗Simulations with fixed interfacial tension γ = 1.17× 10−2 (κφ = 10−2, a = −1.54× 10−2) and θeq = 40◦.

which describes the relative importance of viscous forces to inertial and interfacial ten-298

sion forces. As we will show by the end of this section, Oh will prove useful in restrict-299

ing the parameter selection process in terms of numerical modeling.300

We start by examining how the injected non-wetting fluid saturates/fills the porous312

rock. Fig. 3(a) shows the non-wetting phase saturation Snw as a function of the frontal313

position, which is defined as the distance of the most deeply penetrated non-wetting phase314

from the inlet, see Fig. 3(c). Although there is a significant degree of overlap, it is clear315

that results are not completely the same. More importantly, different non-wetting phase316

saturation is obtained at breakthrough S
(br)
nw (frontal position l = 700). Given the over-317

lap of the results, we further examine configurations with the same Snw and frontal po-318

sition, aiming at inspecting the fluids’ topology in the pore space. Fig. 3(b) shows the319

non-wetting phase saturation at planes perpendicular to the mean direction of the flow320

Syznw as a function of the injection depth (distance of the yz-plane from the inlet), when321

the total saturation Snw = 0.3975 and the frontal position is l = 612 (indicated with322

the red arrow in Fig. 3(a)). This clearly reveals that the above simulations actually ex-323

hibit a different spatial distribution of the fluids, which means that the displacement path-324

ways/sequence might be different. A comparison of the fluids’ spatial distribution for325

the simulations with the smallest Reav = 1.7× 10−3, 1.0× 10−2 is shown in Fig. 3(d);326

regions in light blue and red denote the regions occupied by the non-wetting phase only327

for the case Reav = 1.0 × 10−2 and Reav = 1.7 × 10−3 respectively, while regions in328

yellow are the overlapping regions in both simulations.329

Fig. 4 provides a more comprehensive picture of the fluids’ distribution as it demon-338

strates the spatiotemporal plot of the non-wetting phase saturation at planes perpen-339

dicular to the mean direction of the flow Syznw for (a) Reav = 1.7×10−3 and (b) Reav =340

–12–



manuscript submitted to Water Resources Research

Figure 3. Drainage simulation results at fixed Caav = 3.3 × 10−4 (logM = 0) and varying

Reav, Oh: (a) The non-wetting phase saturation Snw as a function of the frontal position of the

non-wetting phase. (b) The non-wetting phase saturation Syz
nw at planes perpendicular to the

mean direction of the flow for situations with the same total saturation Snw = 0.3975 and frontal

position l = 612 (indicated with the red arrow in (a)). (c) Definition of the frontal position.

Non-wetting phase shown in blue, while rock grains and wetting phase are transparent. (d) Com-

parison of the fluids’ configuration for the simulations with Reav = 1.7 × 10−3 and 1.0 × 10−2.

Regions in yellow are occupied by the non-wetting phase in both simulations; regions in light blue

are occupied by the non-wetting phase only for the case Reav = 1.0 × 10−2 and regions in red are

occupied by the non-wetting phase only for Reav = 1.7 × 10−3.

302

303

304

305

306

307

308

309

310

311
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Figure 4. Spatiotemporal plot of the non-wetting phase saturation Syz
nw for drainage sim-

ulations at Caav ∼ 3 × 10−4 (logM = 0) and varying Reav and Oh: (a) Oh = 4.5 × 10−1,

Reav = 1.7 × 10−3, (b) Oh = 1.8 × 10−1, Reav = 1.0 × 10−2. The injection depth refers to the

distance of each yz-plane, at which Syz
nw is measured, from the inlet reservoir. The dashed line

denotes the frontal position as a function of time, while the dash-dotted line corresponds to the

data for Syz
nw in Fig. 3(b). (c) The difference between (a) and (b) with red/blue denoting regions

with higher Syz
nw in (a)/(b). Time is scaled by the time it takes the non-wetting phase to reach

the outlet, tbr.
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1.0×10−2. Although at a first glance these look similar, the differences between the two341

cases are shown in Fig. 4(c), where red (blue) denotes the regions with higher Syznw for342

the case Reav = 1.7 × 10−3(a) (Reav = 1.0 × 10−2(b)). This suggests that the dis-343

placement sequence is different. The step-like structure that starts to emerge here for344

the frontal position (dashed line), as well as in Fig. 3(a) for Snw as a function of time,345

is a characteristic feature of the capillary fingering regime (Tsuji et al., 2016).346

A reasonable question is then “Which one of these simulations is the one that best347

describes a given drainage situation?”. In terms of numerical modeling the question should348

be rephrased as “What are the relevant dimensionless numbers for the process and the349

flow regime under investigation?”. Matching these dimensionless numbers is essential in350

capturing the fluid flow behavior. In addressing these questions, it is useful to consider351

that the ratio of Caav to Reav is given by the Ohnesorge number, Oh2 = Caav/Reav =352

η2
nw/(ργLs). Oh is a dimensionless number that quantifies the ratio of viscous forces to353

inertia and interfacial tension. Of particular importance and usefulness in terms of nu-354

merical modeling is the fact that the Ohnesorge number is independent of the flow rate355

(and the externally imposed way to drive the fluid flow). It reflects purely the thermo-356

physical properties of the fluids and the geometry/rock type (McKinley & Renardy, 2011).357

Therefore, experiments with given fluids and given geometry correspond to constant val-358

ues of Oh. For example considering the process of geological sequestration of CO2 (sys-359

tem of CO2 - brine), Oh varies in the range of 10−3 − 10−2, depending on the choice360

of the characteristic length-scale Ls of the system. This can be for example the mean361

radius of the pore throats in a drainage displacement, as the pore throats control the pres-362

sure at which pores drain.363

Focusing on the case of geological sequestration of CO2, the important consequence364

of the above, with regards to numerical modeling, is that inertial effects cannot be ne-365

glected for two phase flow at the pore scale as the average Reav is 4 to 6 orders of mag-366

nitude higher than the capillary number Caav (Oh = sqrt(Caav/Reav) ∼ 10−3−10−2).367

This is particularly important if we consider flow regimes with Caav in the range 10−7−368

10−3 and/or flow regimes characterized by sharp interfacial jumps (e.g. Haines jumps),369

when inertial effects become more profound. Here, for the simulations reported at in-370

termediate Caav ∼ 3 × 10−4, the simulation that would best describe a CO2 - brine371

system is the one with Oh = 1.8× 10−2 (Reav = 1.0× 100).372
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3.1.2 Low Caav - Haines jumps regime373

Extending our investigation to the low Caav regime, we encounter a transition to374

a flow regime characterized by Haines jumps. This is evident from the flow field and the375

inlet-outlet pressure difference, shown in Fig. 5, where we compare simulations at Oh =376

1.8×10−2 and varying Caav (intermediate versus low Caav). On the left panel we plot377

the average components of the velocity, while on the right panel the average magnitude378

of the velocity and the inlet-outlet pressure difference, ∆P = Pinlet−Poutlet, is shown.379

A distinct change in both the flow field and the pressure difference is clearly seen: sharp380

interfacial jumps, indicative of Haines jumps, lead to significant increase of the non-wetting381

phase velocity and abrupt pressure drops, which coincide with the jumps. The transi-382

tion to the capillary fingering regime with Haines jumps is also profound by examining383

the saturation of the injected phase, Snw, as a function of the frontal position, see Fig. 3(a)384

versus Fig. 6(a). At Caav = 3.9 × 10−5 the step-like structure of Snw versus frontal385

position is a consequence of consecutive forward and backward Haines jump events (Tsuji386

et al., 2016).387

For the low Caav case (fixed average Caav = 3.9× 10−5) we examine two situa-405

tions with Oh(1) = 1.8× 10−2 (Re
(1)
av = 1.6× 10−1) and Oh(2) = 1.0× 10−2 (Re

(2)
av =406

3.7×10−1) by varying the interfacial tension and the injection flow rate, while the flu-407

ids’ viscosity remains fixed (ηnw = 6.67×10−3). Simulation parameters are as follows:408

(1) γ(1) = 1.17× 10−2 (κφ = 1× 10−2, a = −1.54× 10−2), u
(1)
inj = 5× 10−6, (2) γ(2) =409

3.51×10−2 (κφ = 3×10−2, a = −4.62×10−2) and u
(2)
inj = 1.5×10−5. Numerically it410

was not possible to examine situations with a much higher variation in Oh, like the in-411

termediate Caav case (section 3.1.1) by varying the fluids’ viscosity, as this would be com-412

putationally very expensive. Given that there is not a significant change in the Ohne-413

sorge number (it could be argued that this corresponds to similar sets of experiments),414

it would be reasonable to expect that the results reported in Fig. 6 should look similar.415

The similarity observed in the flow field (Fig. 6(b)) is also an indication that the displace-416

ment pathways and the sequence of Haines jumps are the same in both cases. Compar-417

ing the fluids’ configurations at breakthrough, see Fig. 6(c),(d), reveals that indeed the418

drainage displacement process is almost similar in both situations, except for mainly a419

disconnected ganglion (indicated with a red arrow), observed in the case Oh(2) = 1.0×420

10−2 (Re
(2)
av = 3.7×10−1). Interestingly, despite the small difference in Oh, this is the421

result of distal (non-local) snap-off, that actually persists throughout the simulation time422
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Figure 5. Results from simulations with Oh = 1.8 × 10−2 and: (a) Caav = 3.3 × 10−4,

(b) Caav = 3.9 × 10−5. Left panel: Average value for the components of the velocity for the

wetting/non-wetting phases (dashed/solid lines). Right panel: The corresponding average magni-

tude of the velocity and inlet-outlet pressure difference. The abrupt pressure drop and the inter-

facial jumps are indicative of Haines jumps. The occurrence of Haines jumps, as Caav decreases,

is reflected in the distribution of the velocities observed (higher ratio of standard deviation σ to

mean velocity ūnw).
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Figure 6. Results from simulations at fixed Caav = 3.9 × 10−5 and varying Reav, Oh. (a) The

non-wetting phase saturation Snw as a function of the frontal position of the non-wetting phase.

(b) The average magnitude of the velocity versus time in scaled units t∗ = t/tbr. Solid/dashed

lines correspond to the average velocity of the non-wetting/wetting phase. (c) The distribution of

the non-wetting phase per injection depth, quantified by Syz
nw, at t = tbr. (d) Visualization of the

non-wetting phase configurations at t = tbr. Regions in yellow are occupied by the non-wetting

phase in both simulations; regions in light blue are occupied by the non-wetting phase only for

the case Reav = 1.6 × 10−1 (Oh = 1.8 × 10−2) and regions in red are occupied by the non-wetting

phase only for Reav = 3.7 × 10−1 (Oh = 1.0 × 10−2). The red arrows indicate the time of distal

snap-off (b) and the corresponding disconnected non-wetting phase.
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Figure 7. Results from simulations at Caav = 3.9 × 10−5 and Oh = 1.0 × 10−2. (a) The av-

erage magnitude of the velocity versus time and the inlet/outlet pressure difference. Right panel:

Zoom in at the times for a jump event that develops distal snap-off. (b) Visualizations of the

non-wetting phase displacement that develops distal snap-off event (indicated with the red arrow

in (b4)). The non-wetting phase is colored by the bulk pressure to demonstrate the pressure drop

during Haines jump events.

427

428

429

430

431

432

and produces a long-lasting fluid configuration (as it remains disconnected) in agreement423

with the experimental observations of Andrew et al. (2015). Contrarily, local snap-off424

events generate disconnected fluid configurations that rapidly reconnect with the con-425

nected non-wetting phase region (Andrew et al., 2015).426

Fig. 7 shows that the distal snap-off event is caused by the transient low dynamic433

capillary pressure during the abrupt interface movement (high local Rel), which is then434

preserved in the capillary pressure of the disconnected ganglion. For the case of Oh(2) =435

–19–



manuscript submitted to Water Resources Research

1.0× 10−2 (Re
(2)
av = 3.7× 10−1), the higher interfacial tension affects the dynamics of436

the Haines jump events, as the higher driving capillary forces result in larger interfacial437

velocities and pressure drop during the events. Consequently, the bigger reduction in cap-438

illary pressure observed, even in throats significantly away from the jump event, can cause439

the disconnection of the non-wetting phase (distal snap-off). Hence, Caav and M can-440

not fully describe a drainage displacement process, even in the low Caav regime (lower441

Reav), since the choice of parameters can affect the dynamics of Haines jumps, in which442

case inertial effects become locally more profound. This results in not capturing the dy-443

namics of Haines jumps and the associated fluids’ redistribution (Zacharoudiou et al.,444

2018). Especially in the case of jumps accompanied with distal snap-off, which can af-445

fect the drainage displacement process and the fluids’ configuration, since distal snap-446

off has a persistent impact on the wetting phase flow field and the sequence of subsequent447

drainage events (Andrew et al., 2015). Moreover, distal snap-off can potentially have448

a negative impact on the displacement efficiency, which is an extremely significant fea-449

ture for CO2 storage and hydrocarbon recovery, as it blocks the access to regions of the450

pore space that were accessible to the non-wetting phase prior the Haines jump event451

(Zacharoudiou et al., 2018).452

460

3.2 Local dynamics - Energy conversion during drainage in the low Caav461

regime462

There is often the argument that two phase flow at the pore scale is at low Reynolds463

numbers and therefore inertial effects are not important. How small is the average flow464

Reav has been addressed in the previous section by considering the system’s Oh, which465

links Caav and Reav. Another question to be addressed is what is the actual local Reynolds466

number Rel, especially during jump events and as the average Caav (Reav) decreases467

even further, e.g. far away from the injection point. Here we examine the local dynam-468

ics and the associated dimensionless numbers (Rel, Cal), during low Caav flow. To this469

end we consider simulations with logM = 0, Oh = 1.3 × 10−2 and varying Caav, see470

Fig. 8. This is achieved by keeping all parameters fixed (ηi = 6.67× 10−3 (i=w, nw),471

γ = 2.34× 10−2 (κφ = 2× 10−2, a = −3.08× 10−2), θeq = 40◦) and varying the injec-472

tion flow rate Qinj (u
(a)
inj = 10−4, u

(b)
inj = 10−5, u

(c)
inj = 2×10−6, u

(d)
inj = 2×10−7). The473

sharp increase in non-wetting fluid velocity and the decrease in pressure signal observed474
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Figure 8. The average magnitude of the velocity for the wetting/non-wetting phase

(dashed/solid red lines) and the inlet/outlet pressure difference for simulations with logM = 0,

Oh = 1.3 × 10−2 and varying Caav: (a) Caav = 3.1 × 10−4 (u
(a)
inj = 10−4), (b) Caav = 3.8 × 10−5

(u
(b)
inj = 10−5), (c) Caav = 1.0×10−5 (u

(c)
inj = 2×10−6) and (d) Caav = 1.0×10−6 (u

(d)
inj = 2×10−7).

The yellow shaded regions indicate the time scales of a jump event analysed in Fig.9. Simulation

(d) results were obtained from restarting simulation (c) at time t(c) = 20.08 × 106 and decreasing

the injection flow rate from u
(c)
inj = 2 × 10−6 to u

(d)
inj = 2 × 10−7.
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for Caav smaller than ∼ 10−5, Fig. 8(b)-(d), indicates flow regime with Haines jumps.475

476

Figure 9. (a) Pore drainage event over multiple geometrically defined pore spaces. The non-

wetting invading fluid is shown in yellow. The rock and wetting phase are shown transparent

and semi-transparent respectively for effective visualization. (b) The distance traveled by the

fluid-fluid interface in the pore space versus time for the simulations reported in Fig. 8(a)-(c).

The pore filling time (tfill) can be approximated by the time the interface reached the distance

plotted with the horizontal dashed line. (c) The corresponding local dimensionless numbers Cal

and Rel using the interfacial velocity obtained from the data in (b). Time t = 0 denotes the start

of the event.

477

478

479

480

481

482

483

484

We focus on a particular drainage event, see Fig. 8(a)-(c) for the time frames con-485

sidered and Fig. 9 for the draining site. Results presented in Fig. 9(b)-(c) reveal that the486

jump dynamics (interfacial velocity, pore filling time) in the capillary fingering regime487

(Caav ∼ 10−5) are similar despite a decrease by a factor of 5 in the externally imposed488

injection flow rate (uinj = 10−5−Caav = 3.8× 10−5, uinj = 2× 10−6−Caav = 1.0×489

10−5), in agreement with previous observations (Armstrong & Berg, 2013; Zacharoudiou490

& Boek, 2016; Li et al., 2019). Moreover, the local maximum Cal ∼ 10−3 and Rel ∼491

1.5×101 are independent of and orders of magnitude higher than the corresponding av-492

erage flow values. This holds in general for the jump events (not shown here). Decreas-493
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ing Caav to 10−6, see simulation reported in Fig. 8(d), reveals local maximum Reynolds494

number of the order Rel ∼ 101. The above indicate that a further decrease in Caav will495

not affect the local dynamics (Cal, Rel) significantly, but rather this becomes decoupled496

from the externally imposed flow rate. More importantly, the local value of Rel indicates497

that inertial effects are important and the numerical scheme used should solve the full498

Navier-Stokes equations, honoring momentum balance, and all relevant forces, i.e., cap-499

illary, viscous, and inertial forces acting simultaneously in order to capture the dynam-500

ics and the fluid rearrangement during these abrupt events.501

The decoupling of local dynamics from the externally imposed flow rate can be un-502

derstood by considering the energy conversion during drainage. The externally performed503

work of pressure, Wp =
∫

∆PQinjdt, drives the fluid flow, hence converted to kinetic504

energy Ek, and stores energy in the system as surface energy Fsurf . The energy balance505

states (Ferrari & Lunati, 2014)506

dWp

dt
− Φ =

dEk
dt

+
dFsurf
dt

, (11)

where the energy loses are accounted for by the viscous dissipation rate Φ. The change507

in surface energy is given by dFsurf = γdAint+γwsdAws+γnsdAns , where dAint , dAws508

and dAns are the increments of the areas of the fluid-fluid, solid-wetting fluid and solid509

- non wetting fluid interfaces respectively and γ, γws, γns the corresponding surface ten-510

sions. Since dAns = −dAws and the total solid surface area Astot = Ans + Aws is con-511

stant, the change in surface energy can be expressed as dFsurf = γ(dAint−cos θeqdAws).512

In a drainage situation dAws < 0 and dAint > 0; hence, Fsurf is expected to increase513

monotonically, except during Haines jumps. In this case, the energetic cost of newly cre-514

ated interfaces (dAint > 0) can be balanced due to fluid rearrangement and the released515

energy due to wetting at the imbibition sites (dAws > 0), leading to a decrease in the516

overall Fsurf , see Fig. 10.517

Fig. 10 presents results for the time evolution of the interfacial areas and the cor-526

responding change in surface energy for the simulations reported in Fig. 8(a)-(c). The527

transition to the capillary fingering regime with Haines jumps (Caav ∼ 10−5), as the528

externally imposed flow rate decreases, becomes evident as results demonstrate a higher529

overlapping degree, but also by examining the monotonicity of the Aws curve in Fig. 10(a).530

High Caav flow (smooth flow) leads to a monotonic decrease of Aws (increase of Fsurf );531

non-monotonicity emerges with the onset of Haines jumps (burst flow). During the jump532
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Figure 10. (a) The time evolution of interfacial areas (wetting phase - solid, Aws, fluid-fluid,

Aint) for simulations with logM = 0, Oh = 1.3 × 10−2 and varying Caav. Time is normalised

by the breakthrough time, t∗ = t/tbr. The occurence of Haines jumps is marked with a sharp

increase in Aws (imbibition in surrounding pore throats) and Aint. Results for Aint (green lines):

Caav = 3.1 × 10−4 (dashed line), Caav = 3.8 × 10−5 (solid line), Caav = 1.0 × 10−5 (dashed-

dotted line). (b) The corresponding surface energy Fsurf − F0, where F0 = γwsA
s
tot is constant.

Inset: (lower right) Surface energy released during Haines jumps; (upper left) surface energy data

collapse versus non-wetting phase saturation.
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events, the wetting phase-solid interfacial area Aws increases, releasing energy, previously533

stored in the system, (dF rel
surf = γ cos θeqdAws > 0) necessary for accelerating the flu-534

ids, see sharp peaks in Fig. 8(b)-(c) , and creating new interfaces (dF int
surf = γdAint >535

0). The overlap of the results Fsurf (t∗) for Caav ∼ 10−5 indicates that the distribu-536

tion of fluids and the displacement sequence is similar despite the decrease in Caav from537

3.8 × 10−5 to 1.0 × 10−5. The change in injection flow rate affects the rate at which538

menisci are “charged”, but the “discharging” (Haines jumps) is controlled by the amount539

of energy available (dF rel
surf ), the viscous dissipation rate, the connectedness of the flu-540

ids and the structure of the porous rock. As the externally imposed flow rate decreases,541

the rate at which energy is provided to the system decreases (dWp/dt) and, therefore,542

during the time scales of jump events, the energy balance (eq. 3.1.2) essentially becomes543

−dFsurfdt − Φ = dEk
dt . Given that most of the nw phase needed for the draining of the544

pore body comes from fluid redistribution (Berg et al., 2013; Zacharoudiou et al., 2018),545

it explains why the local dynamics during jump events, at the same site, becomes de-546

coupled from the externally imposed flow rate, as Caav decreases beyond a certain limit.547

See also Fig. 11, where results for the time evolution of the interfacial areas and the sur-548
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Figure 11. (a) The time evolution of interfacial areas (wetting phase - solid Aws, fluid-fluid

Aint) during the event shown in Fig. 9(a) and simulations with logM = 0, Oh = 1.3 × 10−2

and varying Caav. A0,ws and A0,int denote the interfacial areas at the start of the event. Re-

sults for Aint (green lines): Caav = 3.1 × 10−4 (dashed line), Caav = 3.8 × 10−5 (solid line),

Caav = 1.0 × 10−5 (dashed-dotted line). (b) The corresponding surface energy Fsurf − F0, where

F0 is the reference surface energy at the start of the event.
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face energy, during the event in Fig. 9(a), start to converge as Caav decreases from Caav =549

3.1×10−4 to 1.0×10−5. Further decrease of the injection flow rate will make the above550

more profound. Here examining flow regimes with Caav smaller than 10−6 was not pos-551

sible, as this would have been computationally very costly, given the resources available552

for this research (8 NVIDIA Tesla P100 GPUs). We must note though, that, to the best553

of our knowledge, the capillary number flow regimes examined numerically in this manuscript554

are the lowest reported so far in the literature employing a direct numerical simulation555

approach.556

4 Conclusions563

We examine here whether the description of two-phase flow (drainage) in terms of564

just the capillary number and the viscosity ratio and neglecting inertial effects, based565

on the pioneering work of Lenormand et al. (1988) and its extension to fully developed566

drainage by Yortsos et al. (1997), is sufficient to describe the flow at the pore scale cor-567

rectly. This investigation has obvious implications for large scale numerical modeling of568

CO2 geological sequestration and enhanced oil recovery. Especially, considering the fact569

that the acceleration of numerical algorithms using GPGPUs can enable the study of two570

phase flow at the pore-scale at smaller capillary numbers Caav than what was possible571
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so far. We essentially examine whether direct numerical simulation approaches need to572

solve the full Navier Stokes equations and consider all relevant forces, i.e. capillary, vis-573

cous and inertial forces, acting simultaneously, in order to capture the physics of fluid-574

fluid displacement and interfacial phenomena at the pore scale.575

Given the range of the relevant dimensionless numbers in porous media flows, and576

especially the ratio of viscous to capillary forces, 10−10 < Caav < 10−3, depending577

on the distance from the injection point in the well bore (Blunt & Scher, 1995), we ex-578

amined two test cases at intermediate (Caav ∼ 10−4) and low capillary numbers (Caav ∼579

10−5). A distinct change in the flow regime is observed between the above two situations,580

as the later is characterised by abrupt jumps in the location of the fluid-fluid interface581

(Haines jumps), expected for low Caav flow. Our investigation clearly shows that iner-582

tial effects cannot be neglected in neither of the two flow regimes, i.e. we cannot exam-583

ine the fluid flow as being in the limit of zero Reynolds number. Generally two-phase584

flow at the pore scale is assumed to be at low Reav. How small, though, is Reav, can be585

answered by examining the Ohnesorge number (Oh2 = Caav/Reav). This dimension-586

less number is fixed for a given system and reflects the thermophysical properties of the587

specific system under investigation, i.e. the fluids’ properties and the length scale depen-588

dencies originating from the porous medium geometry. Considering that Oh is typically589

in the range of 10−3-10−2 for a system of brine-CO2 at the pore scale, i.e. Reav is 4 to590

6 orders of magnitude higher than Caav, it becomes clear that the usual approach in nu-591

merical simulations of keeping both Caav and Reav low, without respecting the ratio of592

the two, is fundamentally wrong, especially for the intermediate Caav flow regime.593

As Caav and Reav decrease further, inertial effects are still important over a tran-594

sient amount of time during abrupt jump events (Haines jumps), when the non-wetting595

phase passes from a narrow restriction to a wider pore body. Our results demonstrate596

that local jump dynamics become decoupled from the externally imposed flow rate, and597

locally Cal and Rel are orders of magnitude higher than the average corresponding val-598

ues. Moreover, the displacement sequence as well as the fluids’ distribution in the porous599

rock can be affected significantly by the choice of the simulation parameters. Therefore,600

matching the system’s Oh, as well as using a Navier-Stokes solver are essential in resolv-601

ing the fluid dynamics during these abrupt events and capturing the fluids’ spatial dis-602

tribution/connectedness, given that significant fluid rearrangement takes place. Other-603

wise the predicting capabilities of the numerical scheme should be questioned. In terms604
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of numerical modeling, fixing Oh based on fluid properties and characteristic length scales,605

provides a convenient way of restricting the parameter selection process.606

Finally, it would be interesting to examine how the consideration of: (a) Haines jumps607

and inertial effects occurring on a single and/or multiple pore levels and (b) snap-off events,608

both distally and locally, alter in a macroscopic sense the invasion percolation aspects609

of a drainage process, e.g. sign and gradient of percolation probability, or the transition610

between the macrosscopically observed flow regimes, as captured by the Lenormand phase611

diagram (Lenormand et al., 1988) and in its extension to fully-developed drainage by Yortsos612

et al. (1997). This remains a challenge left for future studies.613

Appendix A Lattice Boltzmann Method614

Here we provide details on the implementation of the free energy lattice Boltzmann

(Swift et al., 1995, 1996; Briant & Yeomans, 2004; Krüger et al., 2017) algorithm we use

to solve the hydrodynamic equations of motion, the continuity and Navier Stokes equa-

tions coupled to an advection diffusion equation for the order parameter (composition).

The dynamics are introduced by discretised Boltzmann equations for two sets of distri-

bution functions, fi(r, t), gi(r, t), which are related to the local fluid density
∑
i fi(r, t) =

ρ and order parameter
∑
i gi(r, t) = φ Collision step: f′i(r, t) = fi(r, t)+Ωf,i(r, t) ,

g′i(r, t) = gi(r, t) + Ωg,i(r, t) ,

Propagation step: fi(r + ei∆t, t+ ∆t) = f ′i(r, t) ,

gi(r + ei∆t, t + ∆t) = g′i(r, t) , The distribution functions are discrete in615

time and space, with the time step ∆t and lattice spacing ∆x being set to unity. The616

subscript i refers to the discrete set of velocity directions {ei}. Here we use a three di-617

mensional model with 19 discrete velocity vectors (D3Q19). Eq. Appendix A states that618

the time evolution of the distribution functions proceeds as follows: a) a collision step619

described by the collision operator Ωf/g,i and b) a propagation step with velocity ei to620

the neighbouring lattice point r+ei∆t at the next time step t+∆t. In a concise form,621

the lattice Boltzmann equation, for fi for example, becomes fi(r+ei∆t, t+∆t) = fi(r, t)+622

Ωf,i(r, t).623

The collision operators Ωf,i = −M−1SM [fi(r, t)− feqi (r, t)] ,

Ωg,i = −∆t
τg

[gi(r, t)− geqi (r, t)] , relax the distribution functions to their equilib-

rium values (feqi , geqi ) with relaxation time scales τf,j (j = w, nw) and τg. These re-
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laxation times are related to the transport coefficients, dynamic viscosity ηj (j = w, nw)

and mobility Mφ in the hydrodynamic equations via ηj = ρc2∆t
(
τf,j − 1/2

)
/3 ,

Mφ = ∆tΓ
(
τg − 1/2

)
, where c = ∆x/∆t and Γ is a tunable parameter in the624

equilibrium distribution functions geqi , see eq. A4. By expanding the chemical potential625

µ in powers of φ− φeq, for small deviations from equilibrium,626

µ = (a+ 3bφ2
eq)(φ− φeq) + O((φ− φeq)2) , (A1)

the diffusive term Mφ∇2µ in the convection-diffusion eq. 9 can be written as D∇2φ with627

D = Mφ(a + 3bφ2
eq) the diffusion coefficient. We note here that it is also possible to628

define the mobility coefficient Mφ to be a function of the order parameter φ in such a629

way that is restricting diffusion to the vicinity of fluid-fluid interfaces (F. O. Alpak et630

al., 2019).631

In order to improve accuracy and stability, we adopt a Multiple Relaxation Time632

(MRT) (D’Humières et al., 2002) approach for the evolution of the distribution functions633

f ′is, associated with the fluid density ρ, meaning that different relaxation rates are adopted634

for different linear combinations of the distribution functions (moments of f ′is). The ma-635

trix M performs a transformation, so that collisions are performed in moment space. First636

the f ′is are mapped to moment space, then the moments are relaxed towards equilibrium,637

and finally the relaxed moments are mapped back to population space. The information638

for the relaxation rates, ω = 1/τ , for the different linear combinations of the distribu-639

tion functions (moments of f ′is) is contained in the relaxation matrix S. Following (C. Poo-640

ley et al., 2009), the relaxation times responsible for generating the viscous terms in the641

Navier-Stokes equation are set to τf , those related to conserved quantities to infinity and642

all the others, which correspond to non-hydrodynamic modes, to unity. On the other hand,643

a single relaxation time approximation is sufficient for the g′is, given that the mobility644

coefficient Mφ in Eq. eq:advectiondiffusioneqcanbetunedbytheindependentparameterΓ645

through eq. eq:Mobility. This allows us to fix the relaxation time τg = 1. As shown by646

C. Pooley et al. (2009), this approach suppresses spurious currents at the contact line,647

while improving significantly the numerical stability of the algorithm as well (Lallemand648

& Luo, 2000). Throughout this work we choose a relative small value for Γ = 1.0 and649

refer the reader to the work by Ledesma-Aguilar et al. (2007) on how this (Γ and con-650

sequently the diffusion coefficient D) affects the contact line motion. Given the low Caav651

flow examined in this work, any wetting films adhered to the side walls are very small652

in size (less than 1% of the channel width) (Ledesma-Aguilar et al., 2007). Hence, in-653
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vaded pore spaces are fully occupied by the injected non-wetting phase and the value654

for Γ is not affecting the results.655

The moments of the distribution functions are related to the physical quantities,656

mass density ρ, momentum density ρu and composition657

18∑
i=0

fi = ρ,

18∑
i=0

fieiα = ρuα ,

18∑
i=0

gi = φ . (A2)

658

The equilibrium distributions functions are defined as a power series in the veloc-659

ity (C. M. Pooley & Furtado, 2008)660

feqi = wic
2

(
pb − κφ∇2φ+ eiαρuα + 32c2

[
eiαeiβ − c23δαβ

]
ρuαuβ

)
+ κφc

2
(
wxxi ∂xφ∂xφ+ wyyi ∂yφ∂yφ+ wzzi ∂zφ∂zφ

+ wxyi ∂xφ∂yφ+ wxzi ∂xφ∂zφ+ wyzi ∂yφ∂zφ
)
, (A3)

661

geqi = wic
2

(
Γµ+ eiαφuα + 32c2

[
eiαeiβ − c23δαβ

]
φuαuβ

)
, (A4)

with the coefficients (C. M. Pooley & Furtado, 2008) w1−6 = 16, w7−18 = 112,

wxx1,2 = wyy3,4 = wzz5,6 = 512,

wxx3−6 = wyy1,2,5,6 = wzz1−4 = −13,

wxx7−10 = wxx15−18 = wyy7−14 = wzz11−18 = −124,

wxx11−14 = wyy15−18 = wzz7−10 = 112,

wxy1−6 = wyz1−6 = wxz1−6 = 0,

wxy7,10 = wyz11,14 = wxz15,18 = 14,

wxy8,9 = wyz12,13 = wxz16,17 = −14,

wxy11−18 = wyz7−10 = wyz15−18 = wxz7−14 = 0. The values for i = 0 are chosen to

conserve the local mass and composition feq0 = ρ−
∑
i 6=0 fi ,

geq0 = φ−
∑
i 6=0 gi , The above choice for the coefficients in eqs. eq:fequildistr−662

eq : defeqdistrgisnotunique; itwasshownthoughtoreducetheunphysicalcurrents, calledspuriousvelocities, thatappearclosetocurvedinterfacesinlatticeBoltzmannsimulations(C. M. Pooley &Furtado,2008).Furthermore, tothisend,wefollowC. M. Pooley andFurtado(2008)incalculatingnumericallybothderivatives(∂αφ)663

and the Laplacian (∇2φ) that appear in the equilibrium distribution functions and the664

chemical potential, using stencils (discrete operators).665

The hydrodynamic equations of motion, continuity eq:continuity, Navier-Stokes eq:Navier-

Stokes and convection diffusion equation eq:advectiondiffusioneq, canbeobtainedbyperformingaChapman−
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Enskogexpansion(Luo,2000)onthediscretisedBoltzmannequations(eq. eq : evolutiondistrfunct), whilethefollowingrestrictionshavetobeimposedonthedistributionfunctions

18∑
i=0

feqi =

ρ ,

18∑
i=0

feqi eiα = ρuα,

18∑
i=0

feqi eiαeiβ = Pαβ + ρuαuβ ,

18∑
i=0

feqi eiαeiβeiγ =
ρc2

3

(
uαδβγ + uβδαγ + uγδαβ

)
,

18∑
i=0

geqi = φ,

18∑
i=0

geqi eiα = φuα,

18∑
i=0

geqi eiαeiβ = Γµδαβ + φuαuβ .666

Finally we would like to point out that the free energy lattice Boltzmann method667

is capable of handling high viscosity ratios up to 103. For validation of the numerical method668

we refer the reader to the work reported in (Zacharoudiou & Boek, 2016; Zacharoudiou669

et al., 2017; F. O. Alpak et al., 2019). This covers the dynamics of capillary filling, demon-670

strating that the method can capture the correct dynamics of imbibition in the limits671

of short and long time scales (different regimes for the imbibition length Vs time), as well672

as for varying viscosity ratio (we considered viscosity ratios M = ηnw/ηw in the range673

10−3 ≤ M ≤ 1) (Zacharoudiou & Boek, 2016). The scaling of the dynamic contact674

angle with the interface velocity (capillary number) was found to be in excellent agree-675

ment with Cox theoretical prediction (Cox, 1986) for both 2D simulations (Zacharoudiou676

& Boek, 2016) and 3D channels with a rectangular cross-section (Zacharoudiou et al.,677

2017). The method was also shown to correctly predict fluid connectivity in imbibition678

in Gildehauser sandstone and simulate relative permeability data in close agreement with679

results from Darcy-scale core flooding experiments (F. Alpak et al., 2018). Further val-680

idation of the method investigating snap-off in constricted capillary tubes, Haines jumps681

and capillary desaturation on real-rock systems is reported in (F. O. Alpak et al., 2019).682

683

684

A1 Boundary Conditions685

In the lattice Boltzmann method we encounter three types of boundary conditions:686

a) the no-slip boundary condition on the velocity field b) the wetting boundary condi-687

tion, eq. 5, on the composition and c) the boundary conditions at the inlet-outlet of the688

simulation domain that is related to how the fluid flow is driven.689

The no-slip boundary condition, referring to the condition at solid boundaries where690

the fluid has zero velocity relative to the boundary, is implemented using the midlink691
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bounce-back method proposed by Ladd and Verberg (2001). Incoming populations are692

reflected back towards the lattice nodes they came from, resulting in recovering the wall693

location (zero velocity) half-way between the fluid and solid node.694

Regarding the implementation of the wetting boundary condition, eq. eq:wetbcdefinesthevalueofthenormalderivativeofthecomposition,∂⊥φ,

at the substrate in equilibrium. Using this condition and the values for the composition

φ at the fluid nodes neighbouring the boundary we assign the appropriate values for φ

at the solid boundary nodes following Niu et al. (2007). The main advantage of this method

is that the terms ∂αφ and ∇2φ, needed for the evaluation of feqi and geqi in eqs. eq:fequildistr, eq : defeqdistrg, canbecalculatedinexactlythesamewayasforthefluidnodesinthebulk.

Finally, we choose to drive the fluid flow by applying a constant injection flow rate,695

i.e. applying velocity boundary conditions at the inlet/outlet of the simulation domain.696

In particular we adopt the approach proposed by Hecht and Harting (2010) to two-phase697

flow to estimate the missing populations (fi, gi) at the inlet/outlet domain boundaries.698

The above choice of driving the fluid flow enables the study of the low Caav flow regime699

characterised by Haines jumps, which wouldn’t be possible in an alternative scenario of700

using a body force (pressure gradient) to drive the fluid flow (Zacharoudiou et al., 2018).701
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