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2	

Abstract	
	

Differential	 outcomes	 for	 CD19	CAR	 T	 cells	 between	 chronic	 lymphocytic	 leukaemia,	

lymphoma	 and	 acute	 lymphoblastic	 leukaemia	 illustrate	 unique	 challenges	 to	

overcome	 in	different	patient	populations.	CD19	positive	and	negative	 relapses	have	

been	 described	 for	 which	 different	 mechanisms	 of	 resistance	 have	 been	 proposed.	

CD19+	 relapses	 could	 be	 related	 to	 the	 host	 microenvironment	 or	 T	 cell	 fitness.	

Therefore,	there	is	a	need	for	pre-clinical	modelling	using	immunocompetent	mice	to	

explore	 CAR	 plus	 immunotherapy	 combinations	 to	 enhance	 efficacy.	 CLL	 is	 an	 ideal	

disease	 model	 to	 explore	 as	 it	 is	 associated	 with	 a	 tumour	 supportive	

microenvironment	 and	 T	 cells	 exhibit	 functional	 defects,	 closely	 recapitulated	 in	 Eµ-

TCL1	(TCL1)	mice,	and	induced	in	healthy	mice	by	adoptive	transfer	(AT)	of	murine	CLL	

splenocytes.		

Syngeneic	 donor	 CAR	 T	 cells	 were	 generated	 after	 rapid	 expansion	 in	 culture	 using	

CD3/CD28	beads	and	murine	IL2.	T	cells	were	obtained	from	the	spleens	of	wild-type	

mice,	 mice	 with	 CLL	 or	 mice	 with	 CLL	 pre-treated	 with	 ibrutinib	 or	 acalabrutinib.	

Enriched	 T	 cells	 were	 transduced	 with	 retroviral	 supernatant	 from	 MSGV-1D3-28Z-

1.3mut	 (CD19-CD28)	 and	 expanded	 before	 being	 injected	 into	 mice	 with	 CLL.	 Mice	

recieved	lymphodepletion	with	cyclophosphamide	and	in	some	experiments	received	a	

PD-L1	antibody.		

Compared	to	wild	type	CAR	T	cells,	CLL	derived	CAR	T	cells	proliferate	less	in	culture,	

skew	 towards	CD8	with	 lower	 transduction	 efficiencies	 in	 CD8	 cells	 and	have	higher	

expression	of	PD-1.	All	mice	treated	with	CAR	T	cells	can	clear	their	CLL	and	normal	B	

cells	by	D+7	which	can	reverse	their	exhausted	T	cell	phenotype.	Mice	treated	with	CLL	

derived	CAR	T	cells	were	liable	to	relapse	with	CD19+	disease,	and	the	addition	of	PD-

L1	antibody	did	not	improve	this.	Pre-treatment	of	mice	with	BTK	inhibitors	resulted	in	

improved	T	cell	ex	vivo	expansion	and	a	more	favourable	CAR	T	cell	phenotype,	with	a	

long-term	efficacy	study	in	progress.		
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1.	 Background	

	

1.1		 Chronic	Lymphocytic	Leukaemia	

	

1.1.1	 Definition,	staging	and	prognosis	

	

B	cell	chronic	lymphocytic	leukaemia	(CLL)	is	a	clonal	disorder	of	mature	B	lymphocytes	

(B	cells),	with	a	unique	morphology	and	immunophenotype.	It	is	characterized	by	the	

progressive	 accumulation	 of	 monoclonal	 B	 cells	 in	 the	 peripheral	 blood	 (PB),	 bone	

marrow	 (BM)	 and	 secondary	 lymphoid	 organs	 leading	 to	 lymphadenopathy,	

lymphocytosis	and	organomegaly.	Diagnostic	criteria	for	CLL	as	per	WHO	Classification	

of	 Tumours	 and	 Haematopoietic	 and	 Lymphoid	 Tissues	 include	 the	 sustained,	

persistent	monoclonal	lymphocytosis	of	greater	than	5	x	109/L	with	a	CLL	phenotype	in	

the	 PB	 (1).	 The	 phenotype	 of	 the	 circulating	 B	 cells	 should	 be	 confirmed	 by	 flow	

cytometry.	The	 leukaemia	cells	 found	 in	 the	blood	smear	are	characteristically	small,	

mature	lymphocytes,	with	a	narrow	border	of	cytoplasm	and	a	dense	nucleus	lacking	

nucleoli	 and	have	partially	 aggregated	 chromatin	 (2).	 	 CLL	 cells	 co-express	 the	 T	 cell	

antigen	 CD5	 and	 B	 cell	 antigens	 CD19,	 CD20	 and	 CD23.	 The	 levels	 of	 surface	

immunoglobulin,	 CD20	 and	 CD79b	 are	 characteristically	 low	 compared	 to	 normal	 B	

cells	(3).		

	

CLL	 is	the	most	common	leukaemia	 in	adults	with	around	3500	cases	per	year	 in	the	

UK	with	59%	of	patients	being	diagnosed	in	people	aged	70	or	over	(4).	There	are	two	

widely	accepted	staging	methods	for	use	in	both	patient	care	and	clinical	trials,	the	Rai	

(5)	 and	 the	 Binet	 (6)	 systems.	 Both	 systems	 describe	 three	 subgroups	with	 discrete	

clinical	outcomes.	They	rely	on	standard	 laboratory	tests	and	clinical	examination,	so	

are	 both	 simple	 and	 inexpensive	 and	 do	 not	 require	 imaging	 (Table	 1)	 and	 describe	

patients	with	a	median	survival	ranging	from	<2	years	to	17	years.		
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Rai	Staging	 Clinical		

Features	

Binet		

Staging	

Clinical		

Features	

0	 Low	risk	 Lymphocytosis	PB/BM	 A	 <3	LN	areas,		

no	anaemia	

or	thrombocytopenia	

1	 Intermediate	

risk	

Lymphocytosis	plus	

lymphadenopathy	

B	 ≥3	LN	areas	

no	anaemia	

or	thrombocytopenia	2	 Lymphocytosis	plus	

hepatosplenomegaly	

3	 High	risk	 Lymphocytosis	plus	

anaemia	

C	 Haemoglobin	<100g/L	

±	platelets	<100	

±	lymphadenopathy	

or	organomegaly	

4	 Lymphocytosis	plus	

thrombocytopenia	

Table	1.1:	 Rai	and	Binet	CLL	staging	systems	

	

CLL	 can	 be	 divided	 into	 two	 groups	 based	 on	 the	 mutational	 status	 of	 the	

immunoglobulin	gene.	The	level	of	somatic	mutation	within	the	variable	region	of	the	

immunoglobulin	heavy	chain	 (IGHV)	 is	 important	 to	define	prognosis	 in	CLL;	patients	

with	>98%	of	identity	to	the	germline	are	considered	as	IGHV	unmutated	(U-CLL),	and	

have	 an	 inferior	 prognosis	 than	 those	 with	 more	 than	 2%	 of	 mutations,	 who	 are	

designated	IGHV	mutated	(M-CLL)	and	can	often	survive	decades	without	intervention	

(7,	8).		

	

In	the	1990s	it	was	shown	that	by	chromosomal	banding	that	patients	with	a	normal	

karyotype	 had	 a	 better	 prognosis	 than	 those	 with	 single	 of	 multiple	 karyotype	

abnormalities	(9).	This	technology	by	using	mitogen	activated	CLL	cells	allows	only	50%	

of	 chromosomal	 changes	 to	 be	 detected	 because	 the	 harvest	 of	 the	metaphases	 is	

poor.	This	has	been	overcome	by	 fluorescence	 in	situ	hybridization	 (FISH),	which	has	

determined	 the	 most	 significant	 cytogenetic	 abnormality,	 is	 deletion	 of	 the	

chromosome	region	17p13.1	(del17p)	which	defines	a	group	which	progresses	rapidly	
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and	 tends	 to	 have	 a	 poor	 response	 to	 standard	 chemo-immunotherapy	 (CIT)	 (10).	

Cytogenetic	abnormalities	commonly	observed	in	CLL	other	than	17p	include	deletion	

of	11q	 (del11q),	 trisomy	of	chromosome	12	and	deletion	of	13q	 (del13q)	as	 the	sole	

abnormality	as	determined	by	FISH	(10).	Median	survival	times	for	these	groups	were	

32,	 79,	 114	 and	 133	 months	 respectively.	 However,	 patients	 with	 combinations	 of	

abnormalities	 also	 have	 very	 poor	 outcomes	 as	 a	 complex	 karyotype	 independent	

from	17p	and	 IGHV	also	defines	a	group	with	unfavourable	 survival	after	CIT	 (11)	as	

well	 as	 novel	 agents	 ibrutinib	 (12)	 and	 venetoclax	 (13).	 There	 is	 also	 some	evidence	

that	younger	people	with	CLL	(<55	years)	have	slightly	different	biology	with	adverse	

features	 appearing	more	 commonly	 and	 can	 have	 a	more	 aggressive	 clinical	 course	

than	in	older	patients	(14).		

	

Within	 these	recurring	cytogenetic	abnormalities	critical	genes	are	affected	 including	

DLEU/mir15a/miR15-1	(15)	for	del13q,	NOTCH1	for	trisomy	12	(16)	and	RDX	and	ATM	

for	del11q	(17).	Common	genetic	mutations	in	CLL	can	be	clonal	or	subclonal	and	are	

often	 heterogeneous	 among	 different	 patients.	 Different	 groups	 have	 identified	 a	

panel	 of	 genes	 found	 to	 be	 recurrently	mutated	 in	 CLL	 by	whole	 exome	 sequencing	

(most	 genes	 at	 frequencies	 <10%),	with	 SF3B1,	 TP53	 and	NOTCH1	 being	 among	 the	

predominantly	mutated	genes	 (18,	19).	The	understanding	of	 these	data	was	 limited	

by	 the	 variable	 timing	 that	 these	 samples	were	 collected	 in	 the	disease	 course.	 This	

challenge	was	resolved	by	the	direct	comparison	between	matched	pre-treatment	and	

relapse	 biopsies	 in	 the	 phase	 III	 German	 CLL	 Study	 Group	 CLL8	 study	 	 (20)	

demonstrating	 highly	 frequent	 clonal	 evolution	 (21).	 However,	 shorter	 progression	

free	survival	 (PFS)	was	only	associated	with	mutations	 in	TP53	 and	SF3B1	 and	 in	 the	

context	 of	 first	 line	 fludarabine	 based	 chemotherapy,	 the	 future	 evolutionary	

trajectory	could	be	anticipated	in	the	pretreatment	sample	in	one	third	of	cases.	Clonal	

shifts	 also	 occur	 after	 treatment	with	 ibrutinib	 such	 as	mutations	 in	 BTK	 and	PLCG2	

(22).	
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1.1.2 First-line	treatment	

	

It	 has	 been	 known	 for	 some	 time	 that	 early	 treatment	 of	 indolent	 CLL	 with	

chlorambucil	does	not	 improve	survival	 (23),	a	 finding	which	has	more	recently	been	

confirmed	with	fludarabine	(24).	The	new	guidelines	from	the	International	Workshop	

on	CLL	(iwCLL)	remain	in	agreement	with	previous	guidelines	that	early	stage	disease	

should	not	be	 treated	until	 their	disease	has	progressed	or	become	symptomatic	 (2,	

25).	Although	CLL	 is	 considered	 incurable	by	 standard	 treatment	options,	 impressive	

responses	have	been	obtained	by	the	addition	of	the	type	1	humanized	CD20	antibody	

rituximab	 to	 fludarabine	 and	 cyclophosphamide	which	 prolongs	 overall	 survival	 (20,	

26).	Prior	to	treatment	it	is	important	to	assess	comorbidities	by	a	geriatric	assessment	

such	 as	 the	 Cumulative	 Illness	 Rating	 Scale	 (CIRS)	 which	 can	 help	 define	 groups	 of	

patients	 that	 can	 tolerate	 CIT	 “go-go”	 patients	 and	 those	 who	 may	 tolerate	 dose	

reduced	monotherapy	“slow-go”	patients	(27,	28).	Following	these	studies	and	others	

CIT	with	fludarabine,	cyclophosphamide	and	rituximab	(FCR)	has	become	the	standard	

therapy	 for	 physically	 fit	 “go-go”	 patients	 who	 are	 treatment-naïve	 and	 without	

del(17p).	 However,	 the	 regimen	 is	 associated	 with	 substantial	 toxicity,	 including	

prolonged	 neutropenia,	 severe	 infections	 and	 an	 elevated	 risk	 of	 secondary	

malignancy	(29).		

	

The	 German	 CLL	 study	 group	 performed	 the	 CLL10	 study,	 an	 international	 phase	 3,	

open	label	study	to	investigate	the	use	of	FCR	versus	the	combination	of	the	alkylating	

drug	 bendamustine	 and	 rituximab	 in	 first	 line	 CLL	 patients	 without	 del(17p)	 and	

confirmed	the	benefit	in	progression	free	survival	(PFS)	of	FCR,	but	noted	the	reduced	

frequency	of	severe	neutropenia	and	infections	with	bendamustine	and	rituximab	(30).	

Treatment	 is	 only	 indicated	 if	 active	 disease	 criteria	 are	 met	 (25),	 and	 the	 routine	

upfront	 treatment	 is	 a	 combination	 of	 anti-CD20	 antibody	 (rituximab	 or	

obinotuzumab)	 and	 chemotherapy	 (fludarabine/cyclophosphamide,	 bendamustine	or	

chlorambucil),	with	the	choice	being	determined	by	the	physical	fitness	of	the	patient.	

	

Although	 there	 is	 no	 cure	 for	CLL	with	 chemotherapy	 alone,	 it	 is	 susceptible	 to	 cell-

mediated	 immune	 control	 associated	 with	 allogeneic	 stem	 cell	 transplantation	 (31)	
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(HSCT).	 However,	 it	 is	 expected	 that	 most	 patients	 that	 have	 CIT	 will	 ultimately	

relapse.	Although	novel	 treatments	are	 increasingly	available,	 it	will	 be	 important	 to	

identify	subgroups	of	patients	who	will	 likely	achieve	 long	PFS	with	CIT.	At	a	median	

follow-up	of	12.8	years,	the	PFS	of	M-CLL	was	54%,	and	8.7%	for	U-CLL.	Of	the	50%	of	

M-CLL	patients	that	achieved	MRD	negative	complete	responses	(CR)	after	treatment,	

their	PFS	was	80%	at	12.8	years	with	plateau	of	the	curves	(32).	Similar	findings	were	

found	by	the	German	CLL	study	group	(11),	indicating	a	subgroup	of	patients	with	long	

term	survival	 following	only	one	 treatment.	This	 subgroup	can	be	 further	defined	by	

additional	mutations,	and	 in	particular	M-CLL	patients	with	del11q,	del13q	and	+12q	

have	PFS>90%	at	8	years	(11)	which	will	be	important	to	consider	in	the	era	of	novel	

therapies.	Other	novel	factors	can	predict	the	response	to	FCR	for	example	telomere	

length,	which	could	be	used	to	 inform	the	design	of	 future	risk-adapted	clinical	trials	

(33).		

	

1.1.3	 Relapsed/refractory	and	unfit	patients	

	

Unfit	 and	older	patients	do	not	 tolerate	 chemotherapy	well.	When	comparing	 single	

agent	 fludarabine	 and	 chlorambucil,	 whilst	 fludarabine	 is	 a	 more	 active	 drug	 and	

results	in	more	complete	responses	(CR),	it	does	not	improve	PFS	(34).	Overall	survival	

in	this	study	was	actually	improved	in	the	chlorambucil	alone	arm.	Obinutuzumab	is	a	

glycoengineered,	type	2	anti-CD20	monoclonal	humanized	antibody	with	single	agent	

activity	 (35)	 or	 in	 combination	 with	 standard	 first	 line	 chemotherapy	 options	

fludarabine/cyclophosphamide	 or	 bendamustine	 (36).	 It	 was	 initially	 investigated	 in	

combination	 with	 chlorambucil	 in	 untreated	 CLL	 patients	 with	 coexisting	 medical	

conditions,	 compared	 to	 chlorambucil	 with	 rituximab,	 and	 the	 novel	 combination	

demonstrated	significantly	longer	progression	free	survival	(PFS)	and	higher	rates	of	CR	

although	with	more	infusion	related	reactions	and	neutropenia	(37).	This	combination	

of	obinutuzumab	and	chlorambucil	until	recently	represents	the	CIT	standard	of	care	in	

this	patient	group.	Interestingly,	results	from	the	open-label	phase	3	study	comparing	

fixed	duration	venetoclax	and	obinutuzumab	 to	chlorambucil	with	obinutuzumab	 for	

patients	with	 comorbidities	was	 presented	 at	 the	 European	Hematology	 Association	

(EHA)	 Congress	 in	 Amsterdam,	 June	 2019	 and	 then	 published	 in	 the	 New	 England	
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Journal	 of	 Medicine	 (NEJM)	 (38).	 This	 study	 demonstrates	 venetoclax	 and	

obinutuzumab	 is	 safe	 in	 this	 patient	 population	 and	 provides	 superior	 PFS,	 ORR,	 CR	

and	MRD-	 responses	which	 importantly	 include	 IGHV	 unmutated	 and	 TP53	mutated	

patients.	It	remains	too	early	to	judge	a	survival	benefit.		

	

The	 options	 in	 relapsed	 CLL	 have	 increased	 hugely	 in	 recent	 years,	 with	 the	

introduction	 of	 drugs	 that	 inhibit	 intracellular	 B	 cell	 receptor	 signaling.	 The	 best	

combinations	and	sequences	of	these	drugs	are	under	intensive	investigation.	Ibrutinib	

is	a	first	in	class,	oral	covalent	inhibitor	of	Bruton’s	tyrosine	kinase	(BTK),	an	essential	

enzyme	in	B	cell	receptor	(BCR)	signaling,	homing	and	adhesion.	Significant	homology	

between	 BTK	 and	 interleukin-2-inducuble	 kinase	 (ITK)	 support	 ibrutinib	 as	 an	

immunomodulatory	 inhibitor	 of	 both	 BTK	 and	 ITK	 and	 that	 ibrutinib	 can	 irreversibly	

bind	 ITK	and	 inhibits	activation	of	Th2	cells	after	T	 cell	 receptor	 (TCR)	 signaling	 (39).	

CD4+	T	 cell	 populations	 isolated	 from	CLL	patients	on	 ibrutinib	 are	 skewed	 to	 a	 Th1	

profile	 after	 exposure	 to	 ibrutinib	 (39).	 The	 pivotal	 phase	 2	 trial	 confirmed	 durable	

remissions	with	PFS	 and	OS	of	 75%	and	83%	at	 2	 years	 in	 patients	with	 relapsed	or	

refractory	CLL	(40).	Since	then,	it	has	been	compared	head	to	head	with	Ofatumumab	

(41)	 in	 relapsed	patients	 in	 the	RESONATE	 trial,	 and	also	with	 chlorambucil	 as	 initial	

therapy	 (42)	 in	 the	RESONATE	2	 trial.	Both	 trials	 show	 ibrutinib	 to	be	a	highly	active	

and	effective	drug	and	 led	to	approval	of	 this	agent	 in	relapsed	and	treatment	naïve	

patient	 populations.	 The	 long	 term	 follow-up	 of	 RESONATE	 was	 recently	 published,	

confirming	the	OS	and	PFS	benefit	despite	this	being	a	crossover	study	(43).	Ibrutinib	

alone	compared	to	ibrutinib	or	bendamustine	plus	rituximab	was	recently	reported	in	

older	 patients	with	 untreated	 CLL	 demonstrating	 ibrutinib	 to	 be	 superior	 to	 the	 CIT	

combination	 in	 terms	 of	 PFS.	 The	 addition	 of	 rituximab	 to	 ibrutinib	 was	 not	

significantly	different	(44).	This	study	confirms	the	findings	of	RESONATE	2	as	ibrutinib	

to	be	the	standard	of	care	in	unfit	previously	untreated	patients.		

	

Idelalisib,	 is	 a	potent	oral	 small	molecule	 inhibitor	which	 selectively	 inhibits	 the	 lipid	

kinase	 PI3Kδ	 targeting	 the	 B	 cell	 receptor	 signaling	 pathway.	 PI3Kδ	 inhibition	 in	 CLL	

induces	apoptosis	and	suppresses	AKT	phosphylation	in	addition	to	interrupting	CXCR4	

and	CXCR5	signaling	and	subsequently	CLL	homing	(45).	This	can	lead	to	redistribution	
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of	 CLL	 cells	 from	 the	 lymph	 node	 microenvironment’s	 pro-survival	 signals	 and	

sensitization	to	apoptosis	(45).	It	has	activity	in	relapsed/refractory	patients	with	high-

risk	 features	 including	 del17p	 (46).	 Other	 inhibitors	 of	 the	 PI3Kδ	 pathway	 exist	

including	 umbralisib	 and	 a	 dual	 PI3Kγ/δ	 duvelisib.	 These	 drugs	 have	 strong	

immunomodulatory	 effects	 on	 several	 cell	 types	 in	 the	 microenvironment,	 most	

importantly	 T	 cells,	 where	 PI3Kδ	 is	 a	 key	 component	 of	 T	 cell	 receptor	 and	 CD28	

signaling	(47).		

	

Proteins	in	the	B	cell	CLL/lymphoma	2	(BCL2)	family	are	key	regulators	of	the	apoptotic	

process.	This	family	comprises	proapoptotic	and	prosurvival	proteins,	allowing	cancers	

to	 evade	 apoptosis.	 Constitutively	 elevated	 expression	 of	 BCL2	 renders	 CLL	 cells	

resistant	to	apoptosis.	BH-3	mimetic	drugs	are	a	new	class	of	anti-cancer	drug	that	are	

physiological	 antagonists	 of	 BCL2	 and	 trigger	 apoptosis.	 ABT-199	 or	 venetoclax	 is	 a	

potent	and	selective	BCL-2	 inhibitor	 (48).	 It	 induces	apoptosis	of	CLL	cells	via	a	TP53	

independent	mechanism	 (49).	 Venetoclax	 has	 demonstrated	 a	 high	 overall	 response	

rate	in	patients	with	relapsed	CLL	of	79%,	which	included	patients	with	del(17p),	U-CLL	

and	who	were	fludarabine	refractory	(50).	Tumour	lysis	was	a	concern	initially,	but	this	

complication	can	largely	be	avoided	by	dose	escalation	and	a	risk	adjusted	treatment	

approach.	This	pivotal	phase	1	validated	BCL2	as	a	 therapeutic	 target	 in	cancer.	This	

activity	 has	 subsequently	 been	 confirmed	 in	 patients	 with	 del17p	 (51)	 although	

fludarabine	refractoriness	and	complex	karyotype	are	associated	with	progression	on	

venetoclax	 (52).	 Such	 impressive	 responses	have	been	demonstrated	 in	UK	patients,	

with	 an	 88%	 overall	 response,	 85%	 of	 which	 had	 previously	 been	 exposed	 to	 BTK	

inhibitors	 in	 recent	 real	 world	 data	 from	 prior	 to	 NHS	 commissioning	 (53),	 in	 this	

cohort	48%	had	TP53	abnormalities.	Whilst	high	rates	of	venetoclax	responses	 (72%)	

post	B	cell	 receptor	antagonists	have	been	confirmed	 from	real	world	data	 from	the	

USA,	 after	 a	 median	 follow-up	 of	 7	 months,	 29%	 of	 patients	 had	 discontinued	

venetoclax	 (54).	 Many	 patients	 may	 have	 difficulty	 tolerating	 repeated	 rounds	 of	

treatment,	particularly	in	terms	of	cytopenias.		

	

Combining	venetoclax	with	rituximab	results	 in	high	response	rates	 including	51%	CR	

and	 57%	 MRD	 negative	 rates	 including	 heavily	 pretreated	 patients	 with	 adverse	
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features	 such	 as	 U-CLL,	 del17p	 and	 TP53	mutations	 (55,	 56).	 There	was	 preliminary	

evidence	presented	at	 the	American	Society	of	Hematology	 (ASH)	annual	meeting	 in	

2018	 (ASH	 2018)	 that	 venetoclax	 in	 combination	 with	 the	 anti-CD20	 monoclonal	

antibody	obinutuzumab	 can	 restore	 the	 T	 and	NK	 cell	 compartment	 in	 lymph	nodes	

and	PB,	as	well	as	achieving	high	rates	of	MRD	undetectable	disease	in	the	PB	in	first	

line	unfit	patients,	albeit	with	small	patient	numbers	reported	(10/11)	(57).		However,	

despite	continuous	treatment	it	is	expected	patients	will	relapse,	likely	due	to	acquired	

resistance	mechanisms.	One	such	mechanism,	was	identified	by	comparing	paired	pre-

treatment	 and	 progression	 samples.	 The	 novel	 Gly101Val	 mutation	 in	 BCL2	 was	

identified	 and	 this	 reduces	 the	 affinity	 of	 BCL2	 for	 venetoclax	 (58).	 An	 alternative	

strategy	may	 be	 to	 use	 targeted	 therapies	 upfront,	 even	 in	 combination	 to	 aim	 for	

deep	MRD-	remissions.	The	use	of	venetoclax	and	ibrutinib	together	has	recently	been	

reported,	 is	 safe	and	after	12	cycles	 resulted	 in	88%	of	patients	having	a	CR,	61%	of	

whom	were	MRD-	(59).	The	significance	of	this	combination	in	the	longer	term	for	PFS	

and	OS	is	unknown.		

	

For	many	patients	on	 long	 term	 ibrutinib	 there	 is	 eventual	emergence	of	 resistance,	

particularly	in	the	most	high-risk	populations,	including	those	with	del17p	and	complex	

karyotype	(60),	or	in	those	that	develop	BTK	or	PLCG2	mutations	(22).	The	outcome	for	

patients	with	disease	progression	on	 ibrutinib	 is	 very	poor.	One	study	demonstrated	

the	 majority	 of	 such	 patients	 have	 very	 high-risk	 features	 including	 U-CLL	 (94%),	

del(17p)	by	FISH	(58%)	and	a	complex	karyotype	(54%)	and	after	discontinuation	had	a	

median	 overall	 survival	 (OS)	 of	 3.1	 months	 (61).	 Because	 this	 represents	 a	 small	

number	 of	 patients	 a	 clinical	 trial	 is	 appropriate	 but	 at	 this	 point	 CIT	 is	 unlikely	 to	

provide	disease	control.	In	patients	who	have	del(17p)	venetoclax	is	good	option,	and	

for	those	without	TP53	abnormalities,	venetoclax	plus	rituximab	or	idelalisib	could	be	

considered	 (60).	 Beyond	 this,	 both	 cellular	 therapies	 and	 novel	 agents	 could	 be	

considered.		

	

HSCT	 remains	 the	 established	 cellular	 therapy	 option	 in	 younger	 fitter	 patients	who	

are	 felt	 can	 tolerate	 the	 associated	 toxicities.	 HSCT	 takes	 advantage	 of	 the	 graft-

versus-leukaemia	 (GvL)	 effect	 mediated	 by	 differentiated	 transplanted	 immune	
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effector	 cells	 (IEC),	 which	 are	 able	 to	mount	 an	 anti-tumour	 immune	 response	 and	

induce	long	lasting	clinical	remission	(62).	Patients	who	relapse	post	HSCT	respond	to	

donor	 lymphocyte	 infusions	 (DLI)	 further	 demonstrating	 GvL	 in	 CLL	 (63).	 Long-term	

survival	after	HSCT	in	the	largest	data	series	of	2589	patients	has	been	reported	by	the	

European	Society	of	Bone	Marrow	Transplantation	(EBMT)	(64).	Event-free	survival,	OS	

and	non-relapse	mortality	at	10	years	was	28%,	35%	and	40%	respectively.	Of	course,	

this	 comes	 with	 a	 significant	 risk	 of	 graft	 versus	 host	 disease	 (GVHD)	 and	 other	

transplant	complications	and	the	patient	must	have	an	appropriate	donor.		

	

The	 use	 of	 HSCT	 in	 CLL	 is	 evolving	 with	 the	 increased	 usage	 of	 the	 novel	 agents	

discussed	above.	Previous	guidelines	had	defined	patients	at	sufficient	risk	to	have	an	

HSCT	as	those	with	del17p	or	TP53	mutations	or	those	who	were	refractory	to	purine	

analogue	 combination	 treatment	 (or	 relapsed	 within	 two	 years	 of	 it)	 (65).	 In	 the	

current	era	of	novel	agents	HSCT	 is	not	usually	now	recommended	 in	 first	 remission	

for	 patients	with	 del17p	 (66).	However,	 in	 patients	with	 poor	 prognostic	 features	 in	

subsequent	relapses	it	could	be	considered	by	a	transplant	centre	with	an	interest	 in	

this	approach	after	careful	assessment	of	suitability	and	donor	availability	(66).	This	is	

supported	 by	 recent	 practice	 guidelines	 (67).	 It	 is	 at	 this	 point	 that	 a	 novel	 cellular	

therapy	approach	such	as	CAR	T	cells	could	be	considered	as	an	alternative	but	this	will	

depend	on	the	nature	of	the	poor	prognostic	features,	patient	fitness	and	preference	

and	of	course	the	availability	of	this	approach	versus	other	novel	therapies.	Whilst	this	

is	 currently	 an	 option	 for	 a	 small	 number	 of	 patients	 it	 could	 be	 expected	 that	 this	

population	will	grow	as	more	patients	develop	ibrutinib	and	venetoclax	resistance.		

	

Acalabrutinib	(ACP-196)	is	a	second	generation,	selective,	irreversible	inhibitor	of	BTK	

that	has	improved	pharmacological	features,	including	rapid	oral	absorption,	short	half	

life,	and	the	absence	of	irreversible	targeting	to	alternative	kinases,	such	as	EGFR,	TEC	

and	 ITK	 (68).	 Some	of	 these	 alternative	 kinases	 (e.g.	 EGFR,	 TEC	 and	 ITK)	 of	 ibrutinib	

may	 account	 for	 its	 adverse	 effects	 such	 as	 diarrhoea,	 rash,	 atrial	 fibrillation	 and	

bruising	(69).	When	the	binding	interaction	of	a	comprehensive	panel	of	kinases	with	

both	 ibrutinib	 and	 acalabrutinib	 was	 determined	 acalabrutinib	 demonstrated	 a	 high	

degree	of	selectivity	for	BTK	without	significant	inhibition	of	ITK,	which	is	known	to	be	
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inhibited	 by	 ibrutinib	 at	 therapeutic	 doses	 (70).	 Further,	 acalabrutinib	 demonstrates	

significant	 and	 sustained	 inhibition	 of	 BCR	 signalling	 in	 the	 Eµ-TCL1	 (TCL1)	 adoptive	

transfer	model	and	improved	survival	of	these	mice	when	they	are	treated	continually	

via	 their	 drinking	water	 (70).	Acalabrutinib	has	been	used	 in	 ibrutinib	naïve	patients	

with	relapsed	CLL	safely	and	 is	effective	 in	patients	 including	those	with	del17p,	 in	a	

phase	1-2	study	demonstrating	a	95%	response	rate	at	14	months	(68).	Headache	was	

noted	 to	 be	 more	 common	 but	 there	 were	 no	 cases	 of	 atrial	 fibrillation	 reported.	

However,	its	role	in	patients	who	are	refractory	or	intolerant	to	ibrutinib	has	not	been	

determined	 and	 a	 phase	 3	 study	 comparing	 ibrutinib	 with	 acalabrutinib	 in	 high	 risk	

patients	with	relapsed	CLL	is	underway.		

	

T-cells	from	patients	with	CLL	express	higher	levels	of	checkpoint	inhibitory	molecules,	

such	as	PD-1	compared	to	normal	T	cells	 (71).	Furthermore,	CLL	cells	express	 ligands	

for	 PD-1	 such	 as	 PD-L1	 and	 PD-L2.	 Two	 studies	 combining	 nivolumab	 (anti-PD-1	

monoclonal	 antibody)	 with	 ibrutinib	 in	 relapsed	 refractory	 CLL	 and	 Richter	

transformation	 (RT)	 demonstrated	 significant	 activity	 in	 these	 patients	 (72,	 73).	 An	

alternative	PD-1	antibody	pembrolizumab	also	showed	activity	in	RT	patients	who	had	

previously	 had	 ibrutinib	 but	 not	 in	 patients	 who	 had	 relapsed	 CLL	 (74).	 However,	 a	

single	centre	published	 its	combined	experience	of	pembrolizumab	and	nivolumab	in	

10	patients	with	RT,	and	found	90%	had	treatment	failure	with	median	time	treatment	

failure	being	1.2	months	and	median	OS	after	RT	diagnosis	being	4.2	months	(75).	Only	

one	 patient	 had	 a	 sustained	 response	 which	 they	 rapidly	 consolidated	 with	 an	

allogeneic	transplant.		
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1.2	 Microenvironment	
	

1.2.1	 BCR	signalling	and	the	microenvironment	

	

There	is	a	large	body	of	evidence	that	suggests	the	interactions	between	CLL	cells	and	

non-malignant	 cells	 in	 the	 tumour	 microenvironment	 play	 a	 key	 role	 in	 the	 patho-

physiology	 of	 the	 disease.	 When	 removed	 from	 the	 microenvironment	 CLL	 cells	

undergo	spontaneous	apoptosis	under	conditions	that	support	the	growth	of	human	B	

cell	lines	in	vivo	(76),	but	they	can	be	rescued	by	co-culture	with	bone	marrow	stromal	

cells	 (BMSC)	 or	 nurse	 like	 cells	 (NLC)	 (77).	 NLC	 can	 be	 generated	 in	 vitro	 from	 the	

monocyte	fraction	of	CLL	peripheral	mononuclear	cells.	One	mechanism	by	which	CLL	

cells	create	their	favourable	microenvironment	is	through	the	secretion	of	the	nuclear	

protein	high	mobility	group	box	1	(HMGB1),	which	can	stimulate	NLC	differentiation	in	

vitro	by	activating	the	receptor	 for	advanced	glycation	end	products	 (RAGE)-Toll	Like	

receptor	9	(TLR9)	pathway	(78).		

	

Mesenchymal	 stromal	 cells,	 such	 as	 BMSC	 contribute	 to	 normal	 bone	 marrow	

architecture.	 Such	 stromal	 cells	 are	 commonly	 found	 in	 the	 secondary	 lymphoid	

organs.	 CLL	 cells	 are	 protected	 from	 spontaneous	 and	 drug-induced	 apoptosis	 by	

BMSC	 (79),	 and	 BMSCs	 have	 been	 shown	 to	 down-regulate	 CD20	 expression	 of	 CLL	

cells	(80).	Stromal	cells	secrete	chemokines,	which	organize	CLL	cell	trafficking	and	cell	

homing,	such	as	CXCL12,	which	is	secreted	by	both	BMSC	and	NLC,	and	CXCL13	by	NLC	

that	bind	to	CXR4	and	CXR5	respectively	on	the	CLL	cell	(81,	82).		

	

CLL	is	associated	with	a	tumour	supportive	microenvironment	and	profound	defects	in	

T	 cell	 function.	To	engraft	human	CLL	 into	 immunodeficient	mice,	 autologous	T	 cells	

are	 required	 for	CLL	 cells	 to	 survive	and	proliferate	 (83).	 Interactions	between	CD40	

expressing	B	cells	and	CD154	(CD40L)	on	activated	CD4	T	cells	are	critical	 for	normal	

antigen	 presentation	 and	 induction	 of	 normal	 B	 cell	 responses.	 Activated	 CD4	 cells	

contribute	 to	 CLL	 proliferation	 via	 CD40	 and	 IL-21	 (84).	 In	 CLL,	 there	 is	 an	 absolute	

increase	 in	 T	 cell	 numbers	 primarily	 due	 to	 increased	 CD8+	 cytotoxic	 T	 cells	 with	

inversion	 of	 the	 normal	 CD4:	 CD8	 ratio.	 However,	 there	 is	 an	 accumulation	 of	
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terminally	 differentiated	 effector	 memory	 T	 cells,	 with	 a	 relative	 decrease	 in	 naïve	

precursors	 (85),	which	 is	associated	with	advanced	disease	stage	 (86).	Both	CD4	and	

CD8	 compartments	 demonstrate	 altered	 gene	 expression	 compared	 to	 healthy	 aged	

matched	 controls,	 with	 differentially	 expressed	 genes	 and	 functional	 defects	 in	

cytoskeleton	 formation,	 vesicle	 trafficking	 and	 cytotoxicity	 in	 these	 cells	 (87).	 In	 co-

culture	experiments	using	CLL	cells	and	healthy	T	cells	similar	defects	can	be	induced	in	

both	CD4	and	CD8	cells	(87).	T	cells	fail	to	form	functional	 immune	synapses	(71,	88)	

due	 to	 impaired	 actin	 polymerization.	 Direct	 contact	 with	 CLL	 cells	 induces	 these	

defects	 in	previously	healthy	T	cells	 in	vitro	and	 in	vivo.	Taken	together,	CLL	 leads	to	

significant	 impairment	 of	 T	 cell	 function	 that	 has	 been	 recapitulated	 in	 the	 TCL1	

transgenic	mouse	model	(89).			

	

T	cell	exhaustion	is	an	acquired	state	of	dysfunction	initially	described	in	chronic	viral	

infections	(90).	It	is	believed	that	T	cell	dysfunction	in	tumours	is	largely	attributed	to	

persistent	 antigenic	 stimulation	 of	 T	 cells,	 leading	 to	 a	 number	 of	 progressive	

phenotypic	 and	 functional	 changes.	 Exhausted	 T	 cells	 have	 low	 proliferative	 and	

cytokine	 producing	 capabilities	 and	 express	 inhibitory	 surface	 markers	 such	 as	

programme	death-1	 (PD-1	 or	 CD279)	 (91,	 92).	 PD-1	 and	 its	 ligands	 PD-L1	 and	 PD-L2	

represent	an	important	immune	checkpoint	axis	in	maintaining	an	immunosuppressive	

microenvironment	 (93).	 In	 CLL,	 CD8	 cells	 exhibit	 defects	 in	 proliferation,	 cytotoxicity	

and	have	increased	expression	of	PD-1	but	not	of	other	inhibitory	receptors	including	

CD152	(CTLA4),	CD366	(TIM3)	and	CD223	(LAG3)	and	thus	exhibit	some	of	the	features	

of	exhaustion	(94).	However,	there	are	other	features	that	differ	 including,	 increased	

production	 of	 IFNγ	 and	 TNFα	 and	 normal	 IL2	 (94).	 The	 authors	 term	 this	 ‘psuedo-

exhaustion’	 and	 hypothesized	 that	 this	 state	 may	 be	 due	 to	 chronic	 stimulation	 by	

autonomously	active	signalling	of	 the	B	cell	 receptor	 (BCR)	characteristic	of	CLL	 (95).	

CLL	 cells	 express	 higher	 levels	 of	 PD-L1	 compared	 to	 B	 lymphocytes	 from	 normal	

donors	 (86).	 Interference	 with	 the	 PD-1/PD-L1	 axis	 by	 PD-L1	 blocking	 antibodies	

prevents	 CLL	 development	 and	 restores	 immune	 effector	 functions,	 in	 the	 TCL1	

adoptive	transfer	model	of	CLL	(96).		
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Regulatory	 T	 cells	 (Tregs)	 are	 a	 subpopulation	 of	 CD4+	 T	 cells	 with	 potent	

immunosuppressive	 activity	 and	 play	 a	 role	 in	 immune	homeostasis,	 and	 preventing	

autoimmune	and	chronic	inflammatory	diseases.	Tregs	often	impair	activation,	survival	

and	 expansion	 of	 antitumour	 T	 cells	 through	 the	 production	 of	 immunosuppressive	

cytokines	and	metabolic	changes	(97).	Thus,	Tregs	are	of	interest	in	immunotherapy.	In	

CLL,	 there	 is	an	 increase	 in	absolute	numbers	of	CD4+CD25+CD127-	Tregs,	and	higher	

numbers	correlate	with	a	shorter	 time	to	 first	 treatment	 in	 treatment	naïve	patients	

(98,	99).		

	

Myeloid	derived	suppressor	cells	 (MDSC)	 represent	a	heterogeneous	population	 that	

shares	 characteristics	 including	 an	 aberrant	 myeloid	 phenotype	 and	 the	 ability	 to	

suppress	 T	 cells.	 In	 vitro	 they	 suppress	 T	 cell	 activation	 and	 induce	 suppressive	

regulatory	T	cells	and	a	population	derived	from	monocytes	are	expanded	in	patients	

with	 untreated	 CLL	 (100).	 Both	 tumour	 associated	 macrophages	 and	 MDSC	 share	

common	 mechanisms	 of	 anti-tumour	 activity,	 for	 example	 overexpression	 of	 T	 cell	

inhibitory	ligands	such	as	PD-L1	on	MDSC	(100).	This	is	also	seen	in	the	TCL1	adoptive	

transfer	 model,	 with	 CLL	 development	 leading	 to	 upregulated	 PD-L1	 and	 PD-L2	

expression	which	might	contribute	to	T	cell	exhaustion	in	CLL	(101).		

	

The	 importance	 of	 the	 microenvironment	 in	 CLL	 has	 led	 to	 the	 design	 of	

immunotherapeutic	 strategies	 that	 either	 interfere	 with	 the	 survival	 signals	 coming	

from	 it	as	well	as	BCR	signalling.	Several	 small	molecule	BCR	signalling	 inhibitors,	 for	

example	 targeting	 BTK	 and	 PI3K	 have	 excellent	 clinical	 activity.	 The	 BTK	 inhibitor	

ibrutinib	 is	 capable	 of	 overcoming	 pro-survival	 signals	 from	 the	 immunosuppressive	

CLL	microenvironment	for	example	through	STAT3-mediated	suppression	of	regulatory	

B	cell	function	and	inhibition	of	the	PD-1/PD-L1	pathway.	It	selectively	down-regulates	

the	expression	of	PD-1	on	both	CD4	and	CD8	T	cells	as	well	as	PD-L1	on	CLL	cells	(102).	

In	T	cells,	 three	Tec	kinases	are	expressed,	 ITK,	RIK/TXK	and	TEC.	 ITK	 is	expressed	at	

highest	 amounts	 and	 plays	 a	 major	 role	 in	 regulating	 signalling	 from	 the	 T	 cell	

receptor.	 Ibrutinib	 is	 an	 irreversible	 inhibitor	 of	 ITK	 and	 skews	 T	 cells	 from	 a	 Th2-

dominant	to	a	Th1	CD8	population	(39).	Further,	elevated	T	cell	numbers	and	cytokine	

levels	 normalize,	 and	 the	 T	 cell	 repertoire	 diversity	 increases	 significantly	 (103).	
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Cytokine	production	by	T	cells	is	mediated	by	PI3K	signalling,	idelalisib	does	not	show	

any	direct	cytotoxic	effect	on	T	cells,	but	it	can	inhibit	several	inflammatory	cytokines	

such	as	IL6,	IL10,	TNFa	and	CD40L	(104).	It	also	reduces	chemotaxis	toward	CXCL12	and	

CXCL13	and	migration	beneath	stromal	cells	(45).	

	

The	BCR	signalling	pathway	is	central	to	CLL	activation	and	is	likely	to	be	triggered	by	

antigens	 in	 the	microenvironment.	 However,	 the	microenvironment	 provides	 potent	

pro-survival	 signals	 that	 are	 also	 disrupted	 by	 the	 new	 small	 molecule	 inhibitors	

representing	new	therapeutic	strategies	in	the	management	of	CLL.			

	

1.2.2	 Modelling	CLL	

	

1.2.2.1		 Cell	lines	

	

Leukaemic	cell	lines	are	important	tools	for	the	study	of	disease	that	can	be	expanded	

in	 vitro.	However,	 studies	 of	 CLL	 are	 impeded	 by	 the	 lack	 of	 continuous	 human	 cell	

lines.	In	vivo,	CLL	cells	display	characteristics	consistent	with	defects	in	apoptosis	and	

prolonged	 survival.	 Despite	 their	 longevity	 in	 vivo,	 primary	 CLL	 cells	 undergo	

spontaneous	apoptosis	 in	 conditions	 that	would	keep	human	B	 cells	 alive	 (105).	 The	

survival	and	proliferation	of	primary	cells	depends	on	the	microenvironment	(106)	so	

there	is	a	lack	of	representative	CLL	cell	lines	that	can	proliferate	alone.	Systems	that	

use	 multiple	 cell	 layers	 are	 inadequate	 to	 reflect	 the	 dimensions	 of	 the	

microenvironment.	The	few	existing	cell	lines	represent	high-risk,	IGHV	U-CLL	but	lack	

primary	features	associated	with	clinical	CLL	(107).	The	expression	of	CD5	is	obligatory	

but	the	most	well	characterized,	MEC1,	has	mutated	TP53	and	a	complex	karyotype,	

but	 is	 negative	 for	 CD5	 and	 is	 derived	 from	 a	 patient	 with	 prolymphocytoid	

transformation	(108).	Because	of	the	importance	of	the	tumour	microenvironment	and	

the	need	to	study	the	host	immune	response	an	animal	model	is	required.	
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1.2.2.2		 Animal	models	
	

It	 is	 already	 known	 that	 CLL	 is	 a	 two	 compartment	 disease	 in	 which	 CLL	 cells	 are	

trafficked	between	peripheral	vasculature,	bone	marrow	and	 lymphoid	 tissues.	Gene	

expression	 profiling	 studies	 of	 CLL	 in	 different	 compartments	 identified	 the	 lymph	

nodes	as	the	predominant	site	of	CLL	activation	and	proliferation	(109).	Such	pathways	

include	 up-regulation	 of	 B	 cell	 receptor	 and	 nuclear	 factor-κB	 activation.	 Further,	

lymph	node	derived	CLL	cells	possess	a	distinct	phenotype,	and	exhibit	an	enhanced	

capacity	for	T	cell	activation	and	superior	immune	synapse	formation	when	compared	

with	paired	peripheral	blood	samples	(110).	Such	findings	further	confirm	the	need	for	

an	 in	 vivo	 model	 since	 in	 vitro	 systems	 are	 not	 able	 to	 replicate	 the	 interaction	

between	CLL	and	the	microenvironment	in	secondary	lymphoid	organs	and	the	blood.		

	

T	 cell	 leukaemia	 1	 (TCL1)	 is	 an	 oncogene	 activated	 by	 recurrent	 reciprocal	

translocations	at	chromosome	segment	14q32.1	in	the	most	common	of	the	mature	T	

cell	malignancies,	T-cell	prolymphocytic	leukaemia.	The	Eμ-TCL1	(TCL1)	mouse	model,	

is	a	transgenic	mouse	in	which	the	TCL1	gene	was	placed	under	the	control	of	the	IGHV	

promoter	so	that	the	TCL1	protein	is	expressed	in	immature	and	mature	B	cells	(111).	

These	mice	 develop	 a	 polyclonal	 proliferation	 of	 CD5+	 B	 cells	 starting	 at	 6	 months,	

most	 evident	 in	 the	 spleen	 and	 peripheral	 blood	 but	 also	 lymph	 nodes	 and	 bone	

marrow.	 After	 11-18	 months,	 100%	 of	 transgenic	 mice	 become	 visibly	 ill	 with	

hepatosplenomegaly,	lymphadenopathy	and	high	white	blood	cell	(WBC)	counts,	all	of	

which	 are	 typical	 of	 human	 CLL.	 TCL1	 is	 highly	 expressed	 in	 U-CLL	 and	 this	 model	

resembles	 an	 aggressive	 form	 of	 human	 U-CLL	 which	 has	 wild	 type	 p53	 (112).	 This	

model	has	been	used	to	investigate	the	autonomous	signalling	of	the	BCR	in	CLL	(95)	

but	 is	particularly	useful	 to	model	a	more	aggressive	form	of	CLL	and	the	 interaction	

between	 novel	 immunotherapeutic	 approaches	 and	 the	 microenvironment	 (113).	

Several	 transgenic	 and	 knockout	 mouse	 models	 have	 been	 crossed	 with	 TCL1	 to	

elucidate	the	functional	role	of	specific	molecules	in	the	onset	and	progression	of	CLL	

in	vivo	(figure	1)	(114).	For	example,	by	crossing	transgenic	ROR1	and	TCL1	mice	their	

offspring	rapidly	develop	a	CLL	like	leukaemia	at	a	significantly	younger	age	than	with	

either	transgene	alone	(115).	Further,	by	crossing	TCL1	mice	with	p53	knockout	mice	
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they	 also	 develop	 leukaemia	 at	 a	 younger	 age	 with	 a	 more	 aggressive	 and	 drug	

resistant	phenotype	(116).		

	

	
Figure	 1.1:	 Summarised	 study	 of	 novel	 pathogenic	 mechanisms	 of	 CLL	 in	 the	 TCL1	

mouse	model	by	the	crossing	of	the	above	models	with	TCL1	(114).	

	

Previous	studies	 in	TCL1	mice	demonstrate	T	cell	defects	and	subset	changes	can	be	

modelled	 in	 leukaemic	 mice	 (89,	 117)	 and	 closely	 resemble	 the	 changes	 seen	 to	

represent	human	CLL.	One	limitation	of	the	model	is	the	delayed	disease	development,	

with	variable	latency	from	9-14	months,	albeit	with	100%	penetrance.	Our	group	was	

the	first	to	demonstrate	that	murine	murine	CLL	is	transplantable	to	healthy	syngeneic	

mice	by	adoptive	transfer	of	CLL	by	intravenous	injection	(hereafter	referred	to	as	AT)	

(89).	 This	 allows	 elimination	 of	 the	 confounding	 variable	 of	 aging	 and	 can	 shorten	

disease	latency.	Previous	work	from	our	group	has	demonstrated	AT	of	TCL1	into	WT	

mice	can	replicate	T	cell	dysfunction	seen	in	aged	TCL1	leukaemia	and	indeed	human	

CLL,	 and	 lead	 to	 rapid	 development	 of	 CLL	 after	 a	 median	 of	 7	 weeks	 with	 very	

homogenous	 disease	 among	 individual	 mice	 (118).	 Therefore,	 demonstrating	 the	
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suitability	 of	 this	 strategy	 to	 replicate	 T	 cell	 changes	 in	 CLL	 but	 rapid	 enough	 to	

conveniently	investigate	therapeutic	interventions.		

	

AT	of	TCL1	into	wild	type	mice	has	been	used	by	other	groups	to	explore	T	cell	function	

and	 the	 microenvironment.	 The	 AT	 of	 TCL1	 into	 Rag2-/-	 deficient	 mice	 which	

completely	lack	B	and	T	cells	have	significantly	shorter	survival	compared	to	WT	mice	

indicating	 immune	cells	play	a	 role	 in	CLL	progression	 (119).	When	CD4+	and	CD8+	T	

cells	are	depleted	from	WT	mice	using	antibodies,	followed	by	AT	of	TCL1	only	the	loss	

of	CD8+	T	cells	had	a	significant	effect	on	CLL	in	terms	of	increasing	WCC	in	the	PB	and	

spleen	weight.	Together	this	indicates	CD8+	T	cells	are	the	main	anti-tumoural	T	cell	in	

CLL	 (119).	 Their	 anti-tumoural	 effects	 are	 lost	 by	 T	 cell	 exhaustion,	which	 is	 further	

antagonized	by	interaction	with	anti-tumoural	ligands	such	as	PD-L1	overexpressed	on	

CLL	 cells.	 In	 AT	 TCL1	 a	 larger	 proportion	 of	 effector	 cells	 in	 the	 spleen	 express	

exhaustion	markers	such	as	PD-1,	CD244	and	Lag3	compared	to	the	PB	(119).	PD-L1	is	

characteristic	of	murine	CLL	cells	and	its	detection	is	highest	in	the	spleen	(118).	PD-L1	

is	also	highly	expressed	on	splenic	monocytes,	and	skew	towards	a	Ly6Clow	patrolling	or	

non-classical	 phenotype	 (101).	 Further,	 blockade	 of	 the	 PD-1/PD-L1	 immune	

checkpoint	 in	 this	 model	 prevents	 engraftment	 of	 AT	 CLL	 and	 restores	 immune	

effector	 functions	 (96).	 Taken	 together	 these	 data	 suggest	 that	 T	 cell	 activation	 and	

exhaustion	is	induced	in	secondary	lymphoid	organs	and	not	the	PB.	Therefore,	results	

obtained	from	PB	derived	CD8	T	cells	should	be	interpreted	with	caution.		

	

Work	from	our	group	presented	at	ASH	2018	used	the	AT	CLL	model	to	investigate	the	

effect	of	ibrutinib	and	acalabrutinib	on	T	cell	function	characterized	by	mass	cytometry	

(CyTOF).	 Ibrutinib	 treatment	 of	 these	 mice	 resulted	 in	 an	 alteration	 of	 cytokine	

secretion	 in	 keeping	 with	 a	 switch	 from	 Th2	 towards	 Th1	 polarity	 and	 increased	

cytotoxic	 T	 cell	 function	 (120).	 T	 cells	 in	 CLL	 have	 increased	 IFN-γ	 (94),	 and	

acalabrutinib	 caused	 its	 decrease	 in	 keeping	 with	 normalization.	 Also,	 CD8+	 T	 cell	

cytotoxicity	 and	 immune	 synapse	 formation	 was	 improved	 (121).	 Given	 that	

acalabrutinib	 does	 not	 have	 an	 inhibitory	 effect	 on	 ITK,	 this	 suggests	 this	 BTKi	

modulates	its	T	cell	mediated	immune	response	indirectly	via	their	effects	in	the	CLL	B	

cell	compartment	or	perhaps	other	immunosuppressive	cells	such	as	MDSC.	As	a	note	
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a	caution,	mice	from	the	same	model	have	been	treated	with	acalabrutinib,	anti-PD-1	

antibody	 and	 the	 combination	 of	 both	 (122).	 Acalabrutinib	 was	 the	 most	 effective	

therapy	 in	 reducing	 CD5+CD19+	 disease	 in	 PB	 and	 spleen,	 but	 the	 combination	 of	

acalabrutinib	plus	PD-1	inhibitor	actually	reduced	mouse	survival,	and	histopathology	

revealed	 an	 increase	 in	 lymph	 node	 involvement	 with	 a	 higher	 mitotic	 rate.	 Such	

insights,	 are	 important	 to	 establish	 in	 preclinical	 testing.	 However,	 contradictory	

messages	have	been	demonstrated	 in	vitro	and	ex	vivo	functional	assays	of	human	T	

cells.	 They	 did	 not	 find	 Th1	 skewing	 in	 ibrutinib	 treated	 patients	with	 no	 change	 in	

cytokines.	 Ibrutinib	also	 impaired	T	cell	proliferation	whilst	other	more	selective	BTKi	

zanubrutinib	and	acalabrutinib	did	not	(123).		

	

AT	 of	 TCL1	 results	 in	 substantial	 increases	 in	 FoxP3+	 CD25+	 Tregs,	 with	 percentages	

again	much	higher	in	spleen	and	BM	compared	to	PB	(124).	However,	the	depletion	of	

Tregs	using	CD25	antibodies	 in	 this	model	 after	AT	had	no	 significant	 impact	on	CLL	

load	in	the	spleen,	BM,	lymph	nodes	or	spleen	size.			

	

More	recently,	the	entire	tumour	microenvironment	has	been	studied	together	in	the	

AT	TCL1	model	using	mass	cytometry	(CyTOF).	This	has	confirmed	some	of	the	findings	

described	 above	 including	 the	 increased	 PD-L1	 expression	 on	 splenic	 CLL	 cells	 and	

exhaustion	markers	 such	 as	 PD-1	 and	 LAG3	 in	CD8+	 T	 cells,	 Tregs,	macrophages	 and	

natural	killer	 (NK)	cells	 (125).	Based	on	their	 findings	 they	 treated	mice	using	 the	AT	

TCL1	model	single	anti-PD1,	anti-LAG3,	anti-KLRG1	and	dual	anti-PD1/KLRG	or	anti-PD-

1/LAG3	 antibodies.	 Interestingly,	 the	 dual	 anti-PD1/LAG3	 was	 the	 most	 efficient	 in	

terms	 of	 lowering	 CLL	 load	 in	 the	 spleen	 and	 PB	 and	 the	 only	 combination	 that	

resulted	in	disease	free	mice	(125).	Their	microenvironment	was	also	studied	by	mass	

cytometry	 confirming	 dual	 therapy	 corrected	 the	 imbalance	 generated	 by	 CLL	 and	

restored	an	 immunocompetent	environment	with	 fewer	Tregs	and	myeloid	cells	and	

more	T	cells	(125).			

	

The	TCL1	model	has	also	been	used	to	gain	insights	into	the	clonal	evolution	of	CLL.	By	

performing	 whole	 exome	 sequencing	 of	 TCL1	 leukaemia	 and	 leukaemia	 serially	

transplanted	 into	WT	 recipients,	 the	 authors	 showed	 that	 similarly	 to	 CLL	 patients,	
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mutations	in	mice	are	subclonal	and	heterogeneous	among	different	mice	(126).	This	

molecular	heterogeneity	mirrors	heterogeneous	disease	characteristics	such	as	organ	

infiltration	 or	 T	 cell	 skewing	 and	 is	 a	 further	 strength	 of	 this	 model	 in	 the	 future	

research	of	CLL.		
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1.3	 Cellular	Immunotherapy	

	

1.3.1	 Chimeric	antigen	receptor	T	cells	

	

Whilst	CLL	patients	now	experience	excellent	responses	from	CIT	and	an	exciting	array	

of	 novel	 drugs	 as	 previously	 discussed,	 this	 disease	 remains	 incurable	 out	 with	 the	

context	of	HSCT.	CLL	is	predominantly	a	disease	of	the	elderly,	many	of	whom	would	

not	 be	 fit	 enough	 for	HSCT	 and	 there	 is	 no	 standard	 of	 care	 for	 refractory	 patients,	

particularly	in	ibrutinib	or	venetoclax	refractory	CLL.	For	all	these	reasons	there	is	still	a	

need	 for	 new	 treatments,	 and	 given	 the	 outstanding	 success	 of	 immunotherapy	 in	

other	CD19	malignancies	to	provide	genuine	long-term	remissions	and	perhaps	a	hope	

for	a	cure	this	as	an	active	area	of	investigation	in	CLL.		

	

CAR	 T	 cells	 are	 genetically	 engineered	 T	 cells	 containing	 CAR	 receptors,	which	 are	 a	

class	 of	 synthetic	 receptors	 that	 reprogramme	 lymphocyte	 specificity	 and	 function.	

They	 are	 derived	 from	 a	 CAR	 construct	 which	 consists	 of	 an	 extracellular	 tumour	

antigen	 targeting	 binding	 domain	 (ectodomain),	 a	 hinge	 region,	 a	 trans-membrane	

domain	 that	 anchors	 the	 CAR	 to	 the	 cell	 membrane,	 and	 an	 intracellular	 domain	

(endodomain)	 which	 leads	 to	 cell	 signalling	 (figure	 1.2).	 The	 extracellular	 tumour	

antigen	target	 is	 typically	derived	from	the	 light	and	heavy	chain	portions	of	a	single	

chain	 variable	 fragment	 (scFv),	 which	 are	 commonly	 derived	 from	 monoclonal	

antibodies,	 which	 are	 often	 murine	 (127).	 This	 enables	 the	 T	 cell	 to	 recognize	 the	

target	in	a	non	MHC	restricted	way.	The	main	disadvantages	being	the	tumour	antigen	

needs	 to	 be	 extracellular	 and	 since	 the	 scFv	 are	 often	murine	 derived	 they	may	 be	

more	immunogenic.		

	

From	a	clinical	perspective,	autologous	cells	are	used,	so	first	the	patients	peripheral	

blood	 mononuclear	 cells	 must	 be	 collected	 by	 a	 leukapheresis	 procedure.	 This	 is	

generally	 well	 tolerated,	 with	 the	 main	 concerns	 being	 intravenous	 access	 and	

reactions	to	the	citrate	anticoagulant	used.	Following	collection	of	lymphocytes,	in	the	

commercial	 setting	 the	 cells	 are	 then	 sent	 to	 an	 appropriate	 clinical	 good	

manufacturing	 practice	 (GMP)	 cell	 manufacturing	 facility,	 where	 the	 cells	 are	
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genetically	modified	 and	expanded	ex	 vivo.	 	 Processed	 and	harvested	 T	 cells	 can	be	

used	either	used	directly	or	cryopreserved	for	future	use.	There	are	pros	and	cons	of	

both	approaches	but	the	licensed	autologous	CD19	products	are	cryopreserved	at	the	

manufacturing	facility.	The	overall	process	is	summarized	in	figure	3.	Automated	GMP	

compliant	platforms	now	exist	which	can	generate	genetically	modified	T	cells	like	CAR	

T	 cells	 on	 a	 smaller	 scale,	 which	 can	 feasibly	 be	 done	 in	 cellular	 therapy	 centres	

currently	 in	 the	 context	 of	 clinical	 trials.	 Instruments	 such	 as	 CliniMACS	 Plus	 and	

Prodigy	systems	allow	the	enrichment	of	specific	subsets	of	T	cells,	such	as	CD4+,	CD8+	

or	 CD62L+.	 Multiple	 centres	 presented	 early	 phase	 1	 data	 at	 ASH	 2018	 of	 their	

experience	 using	 such	 automated	 platforms,	 predominantly	 testing	 novel	 CAR	 with	

dual	targets,	which	will	be	discussed	in	more	detail	later.		

	

	

	
Figure	1.2:	 	Structure	of	a	second	generation	CAR	(128).	
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Figure	1.3:	 Clinical	process	of	CAR	production	-	Tran	et	al	NEJM	2017	(129)	

	

First	 generation	 CAR	 linked	 the	 engagement	 of	 the	 CAR	 signal	 to	 the	 intracellular	

machinery,	 typically	 via	 CD3ζ.	 The	 incorporation	 of	 co-stimulatory	 domains	 such	 as	

CD28	and	CD137	 (41BB)	can	augment	 this	 signalling	and	enhance	T	cell	proliferation	

and	persistence	(130,	131).	CAR	constructs	with	one	additional	co-stimulatory	domain	

are	referred	to	as	second	generation,	which	are	to	be	the	focus	of	my	PhD	thesis,	but	

third	generation	constructs	exist	with	additional	co-stimulatory	domains.	The	optimal	

design	of	a	CAR	is	the	subject	of	active	clinical	investigation,	and	there	is	evidence	that	

the	41BB	co-stimulatory	domains	are	better	at	preventing	T	cell	exhaustion	than	those	

based	on	CD28	(132).	Third	generation	CARs	have	been	used	in	limited	phase	I	studies	

targeting	CD20,	HER-2	and	CD19.	For	the	third	generation	CD19	CAR	combining	a	CD28	

and	41BB	co-stimulatory	domain	a	comparable	response	to	second	generation	CAR	T	

cells	was	seen	with	modest	toxicity	but	the	overall	survival	data	was	poor	(133).	The	

structural	differences	between	the	generations	of	CAR	T	cells	 is	summarized	in	figure	

1.4.	
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Figure	1.4:		 Three	generations	of	CARs	(134)	

	

Gammaretroviral	and	lentiviral	vectors	have	been	commonly	used	to	integrate	the	CAR	

construct	 in	 the	T	 cell	 and	provide	 stable	CD19	expression	 (135).	However,	non-viral	

approaches	 such	 as	 the	 transposon/transposase	 Sleeping	 Beauty	 system	 have	 also	

been	used	(136),	but	not	widely	in	the	CARs	currently	being	used	in	clinical	practice	or	

trials.	 Different	 centres	 employ	 variable	 expansion	 protocols	 and	 it	 remains	 unclear	

how	differences	in	manufacturing	processes	between	units	will	affect	outcomes.	CAR	T	

cells	 generated	 from	 CD3+	 population	 are	 widely	 used	 in	 clinical	 trials.	 T	 cells	 of	 a	

specific	 phenotype	 or	 subset	 could	 be	 selected	 prior	 to	 starting	 the	 manufacturing	

process	 rather	 them	 simply	 enriching	 for	 CD3+.	 Studies	 from	 different	 laboratories	

have	demonstrated	that	naïve	(TN)	(137),	central	memory	(TCM)	(138)	or	memory	T	cells	

TM	(139)	have	functional	advantages,	but	the	effect	this	has	on	CAR	efficacy	is	an	active	

subject	of	both	preclinical	and	clinical	investigation.		

	

1.3.2		 Preclinical	modelling	of	CAR	T	cells	

	

Whilst	 some	 CAR	 constructs	 are	 based	 on	 existing	 monoclonal	 antibodies,	 it	 is	

important	to	recognize	that	the	safety	of	an	antibody	may	underestimate	the	toxicity	

of	CAR	T	cells,	as	their	sometimes	dramatic	in-vivo	expansion	can	amplify	their	activity.	

Therefore,	 studies	 of	 potential	 antigen	 expression	 on	 normal	 tissues	 must	 be	

performed,	 and	 constructs	 tested	 in	 clinically	 relevant	models	 (140).	 The	 efficacy	 of	
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CD19	CAR	T	cells	was	originally	investigated	in	vitro	by	the	cytotoxicity	of	CLL	cells	and	

cell	 lines	with	 transduced	 autologous	 or	 allogeneic	 human	 T	 cells.	 Following	 this,	 in	

vivo	models	used	immunodeficient	mice	injected	with	CD19+	cell	lines	and	treated	with	

xenografted	 transduced	 human	 T	 cells	 (135,	 141,	 142).	Whilst	 the	 use	 of	 such	mice	

that	lack	their	own	B,	T	cells	and	NK	cells	ensures	any	therapeutic	effect	is	due	to	the	

CAR	T	cells,	they	do	not	have	their	own	immune	system	the	response	of	which	can	be	

studied.	Humanized	CD19	 specific	 scFv	 is	 superior	 to	 the	most	 commonly	CD19	 scFv	

used	 FMC63	 which	 is	 murine	 derived	 in	 treating	 human	 lymphoma	 xenografts	 in	

immunodeficient	mice	 (143).	 It	 is	 also	 unclear	 from	 the	 evidence	 in	 clinical	 trials	 in	

humans	 if	 retrovirally	 or	 lentivirally	 transduced	 T	 cells	 are	 more	 effective,	 it	 is	

challenging	 to	 transduce	 mouse	 T-cells	 using	 lentiviral	 infection	 systems	 (144),	

therefore	a	retroviral	system	in	a	mouse	model	better	allows	for	the	rapid	testing	of	

multiple	biological	parameters.		

	

An	 alternative	 physiological	 pre-clinical	 model	 to	 test	 CAR	 T	 cells	 is	 in	

immunocompetent	 mice,	 using	 validated	 in	 vivo	 models	 of	 CLL	 such	 as	 TCL1.	 This	

concept	has	been	applied	to	other	lymphoid	disorders	both	using	syngeneic	CAR	T	cell	

models.	Sadelain	et	al.	adoptively	transferred	Eμ-myc	B-ALL	into	WT	mice	to	produce	a	

phenotype	 that	 resembles	 B-ALL.	 Normal	 syngeneic	 T	 cells	 were	 then	 retrovirally	

transduced	with	a	CD19-CD28	CAR	and	used	to	treat	these	WT	mice	with	ALL,	 in	this	

way	 not	 only	 survival,	 but	 also	 the	 host	 immune	 response	 can	 be	 studied	 (145).	

Further,	an	alternative	CD19-CD28	CAR	used	retrovirally	transduced	normal	syngeneic	

T	cells	to	treat	WT	mice	injected	with	38c13	lymphoma	of	murine	origin	from	the	same	

strain	of	mice.	However,	they	were	first	conditioned	with	total	body	irradiation	(5	Gy)	

and	 given	 subcutaneous	 IL2	 after	 CAR	 T	 cell	 injections	 to	 promote	 engraftment	 and	

expansion.	Of	note	 the	efficacy	of	 this	CAR	was	dependent	on	 the	 irradiation	of	 the	

mice	first	but	they	demonstrated	significant	antilymphoma	activity	and	profound	B	cell	

aplasia	 (146).	 	No	such	 immunocompetent	models	have	been	reported	 in	CLL	and	of	

note	 both	 models	 used	 normal	 syngeneic	 T	 cells	 to	 produce	 their	 CAR	 T	 cells.	 As	

previously	 discussed,	 the	 T	 cell	 dysfunction	 characteristic	 of	 CLL	 could	 impact	 CAR	

function	and	this	has	not	been	explored	in	an	immunocompetent	model	of	CLL.	Given	

the	significantly	reduced	response	rates	in	CLL	compared	to	ALL	this	represents	a	good	
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opportunity	 to	understand	 the	 reasons	 for	 loss	 of	 CAR	persistence	 through	 the	host	

immune	system	in	more	detail.	

	

1.3.3		 CAR	T	cells	in	lymphoid	malignancies	
	

There	has	been	outstanding	success	using	CD19	directed	CAR	T	cells	 in	 relapsed	and	

refractory	B	cell	malignancies,	in	patients	who	essentially	had	palliative	diagnoses	and	

therefore	limited	life	expectancies.	Such	malignancies	are	particularly	amenable,		due	

to	 the	 conservation	 of	 the	 CD19	 antigen	 on	 B	 cell	 malignancies	 from	 the	 most	

immature	B-ALL	to	the	most	mature	lymphomas	(147).		

	

In	 2010,	 Kochenderfer	 et	 al.	 at	 the	 National	 Cancer	 Institute	 (NCI),	 Bethesda,	 MD	

published	 a	 pivotal	 report	 in	 Blood	 demonstrating	 engraftment	 of	 their	 CD19-CD28	

retrovirally	transduced	CAR,	B	cell	aplasia	and	a	dramatic	regression	of	lymphoma	in	a	

patient	with	advanced	follicular	 lymphoma	(148).	Design	and	the	construction	of	this	

CAR	 had	 been	 recently	 described	 (149).	 This	 was	 one	 of	 the	 first	 descriptions	 of	

successful	CD19	CAR	engraftment	and	efficacy	in	a	lymphoid	disease.		

	

Following	 this,	 the	 first	 successful	 use	 of	 CD19	 CARs	 in	 B	 cell	 leukaemias	 were	

reported.	 In	 2011,	 the	 group	 from	 the	 University	 of	 Pennsylvania	 published	 their	

pivotal	 paper	 in	 the	NEJM	 demonstrating	 CAR	 T	 cell	 expansion	 of	 a	 lentiviral	 CD19-

41BB	 CAR	 in	 a	 patient	 with	 refractory	 TP53	 deleted	 CLL	 resulting	 in	 tumour	 lysis	

syndrome	and	a	CR	(150),	and	then	in	two	further	patients	(151).	This	was	followed	by	

the	 use	 of	 the	 same	 CAR	 in	 two	 children	 with	 relapsed	 B-acute	 lymphoblastic	

leukaemia	 (ALL)	 resulting	 in	 a	CR	 (152)	having	 initially	been	announced	on	 the	 front	

cover	of	the	New	York	Times	in	December	2012.	At	the	same	time	Brentjens	et	al.	from	

Memorial	Sloan	Kettering	Cancer	Center	(MSKCC)	published	their	series	of	10	patients	

with	ALL	and	CLL	treated	with	a	retrovirally	transduced	CD19-CD28	CAR,	albeit	without	

such	a	marked	clinical	response	(153).	In	2010	in	a	letter	Brentjens	had	described	some	

of	the	patients	from	this	series,	providing	one	of	the	earliest	descriptions	of	cytokine	

release	syndrome	(154).	Since	then	CD19	CAR	T	cells	have	been	shown	to	be	active	in	

CLL,	but	particularly	in	NHL	and	ALL.	In	the	early	years,	the	majority	of	the	CAR	T	cells	
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that	had	made	it	to	human	studies	were	manufactured	and	infused	in	the	USA.	Three	

pharmaceutical	 companies	 have	 second	 generation	 autologous	 CD19	 CAR	 T	 cell	

products	in	advanced	development,	each	of	which	has	collaborated	with	an	academic	

centre	 due	 to	 the	massive	 investment	 and	 expertise	 required	 to	 produce	 a	 cellular	

product	that	complies	with	GMP.	These	leading	partnerships	include	Kite	Pharma	with	

the	NCI,	Novartis	with	the	University	of	Pennsylvania	and	Juno	with	MSKCC	and	Fred	

Hutchinson	Cancer	Research	Center	(FHCRC).	

		

	

Table	1.2:	Characteristics	of	three	autologous	second-generation	CAR	T	cell	products.	

	

Table	1.3	highlights	 significant	 results	 for	 the	early	clinical	 trials	of	CD19	CAR	T	cells.	

The	updates	of	the	JULIET	study	from	Novartis	and	ZUMA-1	from	the	Kite	CAR	at	ASH	

2016	 represented	 the	 first	 reported	 multi-centre	 studies	 with	 centralized	

manufacturing	 of	 cryopreserved	 leukapheresis	 collections	 with	 national	 or	

international	supply	chains.	This	represented	a	significant	advance	in	the	technology	to	

produce	economies	of	scale	to	make	it	more	feasible	and	affordable.		
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Early	 clinical	 trials	 of	 CD19	CAR	T	 cells	 quickly	 revealed	 greater	 toxicities	 than	 those	

seen	 in	 other	 cellular	 therapies.	 Recent	 consensus	 guidelines	 from	 the	 American	

Society	for	Transplantation	and	Cellular	Therapy	(ASTCT)	brings	together	the	definition	

and	 grading	of	 the	main	 complications	of	 CAR	T	 cell	 therapy	 (155).	 Cytokine	 release	

syndrome	 (CRS)	 is	 defined	 as	 a	 supraphysiologic	 response	 following	 any	 immune	

therapy	that	results	in	the	activation	or	engagement	of	endogenous	or	infused	T	cells.	

Symptoms	 can	 be	 progressive,	 must	 include	 fever	 at	 the	 onset,	 and	 may	 include	

hypotension,	capillary	leak	(hypoxia)	and	end	organ	dysfunction.	It	is	characterized	by	

elevated	serum	concentration	of	various	cytokines	but	particularly	IFNγ,	TNFα	and	IL6	

(151).	 The	 anti-IL6	 receptor	 monoclonal	 antibody	 tocilizumab	 is	 approved	 for	 the	

treatment	 of	 CRS	 and	 indeed	 to	 access	 CAR	 T	 cell	 therapy	 in	 the	 National	 Health	

Service	 (NHS)	 tocilizumab	 must	 be	 kept	 on	 site	 with	 24-hour	 availability.	

Haemophagocytic	 lymphohistiocytosis	 (HLH)	 is	 a	 rare	 complication	 of	 CAR	 T	 cell	

therapy	which	 overlaps	with	 CRS	 but	 is	 considered	 distinct.	Many	 patients	with	 CRS	

have	 laboratory	 results	 that	 fulfil	 HLH	 criteria	 without	 hepatosplenomegaly,	

lymphadenopathy	or	overt	haemophagocytosis.		

	

Neurotoxicity	 is	 considered	 a	 separate	 entity	 to	 CRS	 due	 to	 its	 distinct	 timing	 and	

response	to	intervention.	It	is	now	referred	to	as	the	Immune	Effector	Cell	Associated	

Neurotoxicity	Syndrome	(ICANS)	and	is	defined	as	a	pathological	process	of	the	central	

nervous	system	following	IEC.	Symptoms	or	signs	can	be	progressive	and	may	include	

aphasia,	 altered	 level	 of	 consciousness,	 impairment	 of	 cognitive	 skills,	 motor	

weakness,	 seizures	and	cerebral	oedema.	Headache	 is	not	 included	 in	 this	definition	

although	 it	 is	 common.	 Preliminary	 clinical	 experience	 suggests	 tocilizumab	 fails	 to	

prevent	 delayed	 ICANS	 when	 given	 for	 CRS	 (156),	 presumably	 because	 it	 does	 not	

generate	 significant	 levels	 of	 drug	 in	 the	 cerebrospinal	 fluid	 (CSF),	 as	 is	 the	 case	 in	

rhesus	monkeys	 (157).	 Further,	 tocilizumab	when	 given	 as	 prophylaxis	 prevents	 CRS	

but	not	ICANS	(158).	Some	early	CAR	trials	were	stopped	because	of	cerebral	oedema,	

and	 this	 remains	 one	 of	 the	most	 alarming	 potential	 complications	 of	 this	 therapy.	

Neurotoxicity	 is	 more	 common	 in	 patients	 with	 ALL	 and	 proinflammatory	 cytokines	
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were	enriched	in	the	CSF	during	severe	neurotoxicity	with	high	levels	of	IL6,	IL8,	MCP1	

and	IP10	(159).		

	

Still	 one	of	 the	 largest	 and	most	 important	CLL	CAR	 specific	 studies	 remains	 that	by	

Porter	et	al.	at	the	University	of	Pennsylvania	(160).	Their	mature	data,	 including	the	

initial	 three	 patients	 that	 comprised	 their	 pivotal	 early	 publication	 reported	 14	

patients.	The	overall	 response	rate	 (ORR)	 in	these	heavily	pre-treated	patients	was	8	

out	of	 14	 (57%),	with	4	CR	and	4	PR	 (both	29%).	No	patient	 that	obtained	a	CR	has	

relapsed	 and	 all	 responding	 patients	 developed	 CRS	 and	 B	 cell	 aplasia.	 In	 vivo	

expansion	 correlated	with	 clinical	 response	 and	 long	 term	 persistent	 and	 functional	

CAR	 T	 cells	 have	 been	 found	 four	 years	 after	 infusion.	 Turtle	 presented	 impressive	

results	in	CLL	at	ASH	in	2016	and	subsequently	published	his	series	of	an	exceptionally	

high-risk	CLL	cohort	(161).	They	reported	on	24	patients	with	a	median	of	5	previous	

therapies,	3	post	HSCT,	23	patients	had	del17p	or	a	complex	karyotype	and	most	had	

already	 received	 ibrutinib	 and	 some	 also	 venetoclax.	 The	ORR	 four	weeks	 post	 CAR	

infusion	 was	 71%,	 with	 83%	 developing	 CRS	 and	 33%	 neurotoxicity	 with	 one	 fatal	

outcome.	Of	the	24	patients	who	received	the	preferred	Flu/Cy	conditioning	and	<2	x	

106	CAR	T-cells,	19	patients	were	restaged	at	 four	weeks	with	a	CR	rate	21%	and	PR	

53%.	 Interestingly,	 15/17	 patients	 (88%)	 with	 marrow	 disease	 had	 no	 detectable	

disease	post	CAR	T	cells.	Note	the	comparable	relatively	 low	overall	CR	rate	 in	 these	

studies.		

	

Superior	 results	 have	been	presented	 in	 abstract	 form.	At	ASH	2018,	 data	 using	 the	

CD19-41BB	CAR	from	Juno/Celgene	lisocabtogene	maraleucel	(liso-cel)	was	presented	

(162).	Of	note	this	product	has	a	defined	composition	of	CD8:	CD4	CAR+	cells	which	are	

transduced	 separately.	 The	 patients	 presented	were	 equally	 high	 risk	with	 either	 at	

least	 three	previous	 treatments	or	 two	treatments	and	high-risk	genetic	 features.	Of	

the	10	patients	 studied	9	had	 received	 ibrutinib	 and	6	 venetoclax.	Of	 the	8	patients	

evaluable	 at	 30	 days	 6	 of	 the	 8	 had	 responded	 with	 4	 CR	 (50%).	 Of	 the	 patients	

evaluable	for	MRD	6	of	the	7	were	MRD	negative.	8	out	of	10	patients	experience	CRS	

but	all	were	mild	(grade	1	or	2).		
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The	ability	of	T	cells	to	proliferate	in	response	to	stimulation,	differs	between	diseases	

as	T	cells	 from	CLL	patients	are	often	difficult	 to	expand	and	demonstrate	 functional	

deficits	when	compared	to	patients	with	ALL	and	healthy	donors	(163).	Figure	5	shows	

the	 inferior	 proliferative	 burst	 of	 CLL	 T	 cells	when	 stimulated	with	 CD3/CD28	 beads	

compared	to	age	matched	patients	with	relapsed/refractory	myeloma	or	ALL.	This	also	

results	in	a	significantly	lower	yield	of	T	cells	from	patients	with	CLL	at	the	end	of	the	

expansion.		

	

	
Figure	1.5:	 Ex	 vivo	 expansion	 of	 T	 cells	 post	 stimulation	 with	 CD3/CD28	 beads	

(163).		

	

T	cells	 in	CLL	patients	have	been	shown	to	be	pseudo-exhausted	due	to	exposure	 to	

high	 antigen	 loads	 and	 immunosuppressive	 cytokines	 (94)	 as	 previously	 discussed.		

Table	3	demonstrates	response	rates	in	ALL	are	clearly	better	than	in	CLL	(~80-90%	vs	

~25-30%),	particularly	in	relapsed/refractory	(R/R)	paediatric	ALL,	is	this	because	of	the	

impaired	 T	 cell	 function	 in	 CLL?	 Responses	 in	 relapsed	 DLBCL	 appear	 to	 be	 mixed,	

albeit	in	small	subgroups	it	does	appear	transformed	FL	and	PMBCL	respond	well.	The	

difficulty	 in	comparing	these	studies,	and	 in	 indeed	optimizing	this	technology,	 is	the	

huge	array	of	variables	 in	terms	of	method	of	gene	transfer	(lentivirus	vs	retrovirus),	

the	scFv	affinity,	co-stimulatory	domains,	manufacturing	conditions,	the	starting	T	cell	

population	and	cell	dose	used	and	chemotherapy	conditioning	that	could	be	applied.	
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Table	1.3:		 Selected	early	studies	looking	at	autologous	CD19	CAR	T	cells	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Abbreviations:	ALL:	Acute	 lymphoblastic	 leukaemia.	CLL:	Chronic	 lymphocytic	 leukaemia.	CR:	
Complete	 remission.	CRS:	Cytokine	 release	 syndrome.	DLBCL:	Diffuse	 large	B	cell	 lymphoma.	
FL:	 Follicular	 lymphoma.	 iNHL:	 Indolent	 non	Hodgkin	 lymphoma.	 LV:	 Lentiviral.	MCL:	Mantle	
cell	 lymphoma.	 PMBCL:	 Primary	 mediastinal	 B	 cell	 lymphoma.	 PR:	 Partial	 response.	 R/R:	
Relapsed	 or	 refractory.	 RV:	 Retroviral.	 SMZL:	 Splenic	 marginal	 zone	 lymphoma.	 tFL:	
Transformed	follicular	lymphoma.	
	 	

Ref	

	

Patients	 Disease	&	Status	 Ages	 LV/	

RV	

Co-

stim	

Response	&	notes	

University	of	Pennsylvania	(Porter	2011)	
(151)	 3	 R/R	CLL	 64-77	 LV	 41BB	 2	CR,	1	PR	
MSKCC	(Brentjens	2011)	
(153)	 10	 R/R	CLL	(8),	ALL	(2)	 48-73	 RV	 CD28	 1	PR	
NCI	(Kochenderfer	2012)	
(164)	 8	 R/R	FL	(3),	CLL	(4),	SMZL	 47-63	 RV	 CD28	 1	CR,	5	PR	
University	of	Pennsylvania	(Maude	2014)	
(165)	 30	 R/R	ALL	 5-60	 LV	 41BB	 CR	90%,	all	had	CRS	
MSKCC	(Davila	2014)	
(166)	 16	 R/R	ALL	 23-74	 RV	 CD28	 CR	88%	
NCI	(Kochenderfer	2015)	
(167)	 15	 R/R	DLBCL	(5),	CLL	(4),	

iNHL	(2),	PMBCL	(4)	
30-68	 RV	 CD28	 8	CR,	4	PR	(CR	in	3	CLL,	2	

PMBCL,	1	DLBCL)	
NCI	(Lee	2015)	
(168)	 21	 R/R	ALL,	DLBCL	 1-30	 RV	 CD28	 CR	70%	
University	of	Pennsylvania	(Porter	2015)	
(160)	 14	 R/R	CLL	 51-78	 LV	 41BB	 4	CR	(29%)	
CTL019	-	ELIANA,	Novartis	(Grupp	2016)	
(169)	 50	 R/R	ALL	 <25	 LV	 41BB	 41	CR	(82%)	
CTL019	–	JULIET,	Novartis	(Schuster	2016)	
(170)	 15	 R/R	DLBCL	 25-77	 LV	 41BB	 6	CR	(40%),	1	PR	
ZUMA-1	(cohort	1),	Kite	Pharma	(Neelapu	2016)	
(171)	 101	 R/R	DLBCL	 25-76	 RV	 CD28	 47%	CR,	29%	PR	
ZUMA-1	(cohort	2),	Kite	Pharma	(Locke	2016)	
(172)	 6	 R/R	PMBCL,	tFL	 28-60	 RV	 CD28	 100%	CR	
FHCRC	&	Juno	(Turtle	2016)	
(173)	 18	 R/R	CLL	 40-73	 LV	 41BB	 5	CR	(27%),	8	PR	
FHCRC	&	Juno	(Turtle	2016)	
(174)	 29	 R/R	ALL	 20-73	 LV	 41BB	 93%	CR	
FHCRC	&	Juno	(Turtle	2016)	
(175)	 32	 R/R	DLBCL	(11),	tFL	(10)	

FL	(5),	MCL	(4)	
22-70	 LV	 41BB	 DLBCL	18%	CR,		

tFL	60%	CR,	FL	40%	CR,	
MCL	0%	CR		
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Second	generation	CAR	T	cells	require	a	CD28	or	41BB	co-stimulatory	signalling	domain	

(176),	which	influences	the	metabolic	characteristics	of	CAR	T	cells,	which	may	explain	

the	 differences	 seen	 in	 their	 persistence	 in	 humans	 (177).	 Second	 generation	 CAR	 T	

cells	 based	 on	 CD28	 and	 41BB	 co-stimulation,	 are	 associated	 with	 approximately	 3	

logs-folds	 expansion	 and	 persistence	 for	 months	 to	 years.	 In	 some	 patients,	 B	 cell	

aplasia	continues	well	beyond	the	 last	point	CD19	CAR	T	cells	were	detected	by	flow	

while	 the	 transgene	 is	 still	 detectable	 by	 PCR,	 suggesting	 B	 cell	 aplasia	 is	 a	 suitable	

surrogate	for	CD19	CAR	T	cell	persistence	(165).	In	CLL,	the	efficacy	of	CAR	T-cells	with	

41BB	 co-stimulatory	 domains	 (160)	 appears	 superior	 to	 that	 of	 CD28	 domains	 (153)	

with	 sustained	 expression	 and	 effector	 functions	 of	 41BB	 CAR	 T-cells	 has	 been	

reported	to	exceed	4-5	years	(178,	179).	

	

At	 ASH	 2017,	 data	 using	 the	 two	 main	 autologous	 CD19	 CAR	 in	 commercial	

development	were	first	presented	in	larger	patient	numbers	in	high	grade	lymphoma.	

This	led	to	back	to	back	papers	in	the	NEJM	papers	updating	the	results	for	these	two	

pivotal	 CAR	 products	 in	 lymphoma.	 The	 use	 of	 CTL019	 (CD19-41BB)	 in	 28	 patients	

resulted	 in	 CR	 in	 6/14	 (43%)	 patients	 with	 DLBCL	 and	 10/14	 (71%)	 in	 FL.	 CTL019	

proliferated	 and	was	 present	 in	 the	 PB	 and	BM	 in	 patients	who	 and	 did	 not	 have	 a	

response.	 In	 the	majority	of	patients	 that	had	 responded	 it	was	 sustained	and	 there	

was	one	death	due	to	neurotoxicity.	Severe	CRS	occurred	in	18%	and	in	a	proportion	of	

patients	 there	 was	 improvement	 in	 immunoglobulins	 after	 6-18	 months	 (180).	 The	

now	phase	2	ZUMA-1	 study	was	updated	with	101	patients	 infused	who	had	DLBCL,	

PMBCL	 or	 tFL.	 It	 demonstrated	 an	 ORR	 of	 82%	 and	 CR	 rate	 of	 54%,	 the	 OS	 at	 18	

months	was	52%	(181).	Whilst	CRS	occurred	in	93%	of	patients,	severe	CRS	occurred	in	

13%	with	2	deaths,	one	due	to	HLH	and	the	other	due	to	a	cardiac	arrest.	Neurologic	

toxicity	 occurred	 in	 64%	 of	 patients	 and	 in	 28%	 it	 was	 severe	 with	 two	 associated	

deaths.	 Rates	 of	 CRS	 and	 neurotoxicity	 decreased	 over	 the	 study	 and	 the	 use	 of	

tocilizumab	and	steroids	did	not	affect	apparent	response	rates.	This	latter	study	led	to	

Yescarta®	 or	 axicabtagene	 ciloleucel	 (axi-cel)	 to	 be	 the	 first	 US	 Food	 and	 Drug	

Administration	 (FDA)	 and	 European	 Medicines	 Agency	 (EMA)	 approved	 CAR	 in	

lymphoma	in	2017	and	2018	respectively.	Their	long	term	data	of	108	infused	patients	

was	updated	at	ASH	2018	which	represents	the	longest	follow-up	of	any	CD19	CAR	T	
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cell	 study	 	 (182).	The	median	duration	of	 response	was	11.1	months	and	median	OS	

not	reached,	figure	6	demonstrating	the	Kaplan-Meier	estimate	of	OS	with	levelling	of	

the	curve.	This	finding	represents	a	major	improvement	in	clinical	outcomes	for	these	

patients,	 for	 whom	 the	 expected	 median	 OS	 with	 conventional	 therapies	 is	

approximately	 6	months,	 with	 a	 two	 year	 OS	 of	 around	 20%	 (183).	 No	 new	 deaths	

were	reported	related	to	the	CAR	T	cells	and	there	were	only	6	additional	deaths	due	

to	 progressive	 disease	 since	 the	 last	 report.	 This	 emphasizes	 the	 risks	 from	 both	

toxicity	 and	 progressive	 disease	 remain	 immediately	 after	 CAR	 T	 cell	 treatment.	

Despite	B	cell	aplasia	significant	long-term	problems	with	infections	have	not	occurred	

and	75%	of	patients	with	an	ongoing	response	show	evidence	of	B	cell	recovery	by	24	

months	 which	 in	 some	 patients	 initiated	 at	 9	 months.	 This	 suggests	 that	 durable	

responses	 in	 patients	 with	 lymphoma	 do	 not	 require	 long	 term	 persistence	 of	

functional	CAR	T	cells,	which	 is	perhaps	contrary	 to	what	has	been	seen	 in	ALL.	 Less	

than	20%	of	patients	had	ongoing	grade	3	cytopenias,	the	pathophysiology	of	which	is	

unclear.			

	

	

Figure	1.6:	 Kaplan-Meier	 estimate	of	overall	 survival	 of	 108	patients	 infused	with	

CD19-CD28	CAR	Axi-Cel	on	the	pivotal	Zuma-1	study	(182).	

	

The	results	of	the	pivotal	paediatric	ELIANA	study	were	updated	in	2018	for	ALL,	using	

tisagenlecleucel	(formerly	CTL019)	in	a	25	centre	international	study	with	75	patients	

with	relapsed/refractory	ALL	infused	demonstrating	an	overall	remission	rate	of	81%	at	

3	months	(184).		All	patients	found	to	have	responded	were	also	found	to	be	MRD-	by	

flow	cytometry.	OS	was	90	and	76%	at	6	and	12	months	respectively.	77%	of	patients	

experienced	CRS	and	40%	neurotoxicity.	Up	to	50%	of	patients	received	some	care	on	
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intensive	care	and	25%	received	high	dose	vasopressors.	Earlier	 reports	of	 this	study	

had	led	to	FDA	and	EMA	approvals	for	the	use	of	tisagenlecleucel	or	Kymriah®	 in	r/r	

ALL	 in	children	and	young	adults	up	to	the	age	of	25.	Many	patients	have	received	a	

stem	cell	allograft	after	CD19	CAR	T	cells	for	ALL,	so	the	morbidity	associated	with	long	

term	survival	is	more	complicated	then	that	data	presented	in	lymphoma.		

	

Tisagenlecleucel/Kymriah	has	also	approved	for	DLBCL	in	2018	based	on	data	from	the	

JULIET	study	which	has	 recently	been	updated	 (185).	They	 reported	a	best	ORR	52%	

(40%	 CR	 and	 12%	 PR)	 in	 111	 infused	 patients.	 Grade	 3	 or	 4	 CRS	 was	 22%	 and	

neurotoxicity	 12%	 with	 no	 deaths	 attributable	 to	 tisagenlecleucel,	 CRS	 or	 cerebral	

oedema.	 One	 important	 difference	 between	 JULIET	 and	 ZUMA-1	 was	 bridging	

chemotherapy	 was	 allowed	 after	 leukapheresis	 in	 JULIET	 and	 92%	 of	 patients	 did	

receive	 combinations	 of	 rituximab	 (54%),	 gemcitabine	 (40%),	 etoposide	 (26%),	

dexamethasone	(25%),	cisplatin	(19%)	and	cytarabine	(19%),	as	well	as	newer	agents	

such	as	ibrutinib	(9%)	and	lenalidomide	(7%).		

	

Both	tisagenlecleucel	and	axi-cel	are	approved	by	the	National	Institute	for	Health	and	

Care	Excellence	(NICE)	and	are	available	via	the	Cancer	Drugs	Fund	in	a	limited	number	

of	specified	CAR	centres	in	the	UK,	for	the	indications	discussed	above	in	relapsed	ALL	

(<26	years),	DLBCL,	tFL	and	PML.	There	is	currently	no	licensed	product	by	either	the	

FDA	or	EMA	for	use	 in	CLL.	 In	 lymphoma,	 for	 these	 licensed	products	 the	scFv	 is	 the	

same,	but	with	clear	differences	in	the	CAR	co-stimulatory	domain	and	method	of	gene	

transfer.	Also,	the	dosing	of	both	products	and	its	lymphodepletion	is	slightly	different.	

Axi-cel	 requires	 lymphodepletion	with	 fludarabine	 (30mg/m2)	and	cyclophosphamide	

(500mg/m2)	on	D-5,	 -4	 and	 -3	before	 infusion	at	 a	 target	 cell	 dose	of	 2	 x	 106	CAR	T	

cells/kg	 of	 bodyweight	 (target	 1-2	 x	 106).	 Tisagenlecleucel	 requires	 the	 same	

lymphodepletion	 schedule	 but	 with	 different	 doses	 of	 fludarabine	 (25mg/m2)	 and	

cyclophosphamide	(250mg/m2),	with	a	target	cell	dose	0.6-6	x	108	(non-weight	based	

dosing).	The	significance	of	these	differences	is	as	yet	unclear.		
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The	 author	 is	 now	 delivering	 the	 lymphoma	 CD19	 CAR	 T	 cells	 in	 the	 NHS	 at	 King’s	

College	Hospital,	which	was	the	first	UK	centre	to	infuse	lymphoma	patients	with	both	

licensed	products.	

	

1.3.4	 Novel	concepts	in	CAR	T	cell	therapy	

	

1.3.4.1		 Relapse	post	CAR	T	cells	

	

Despite	robust	expansion	and	subsequent	achievement	of	CR,	relapses	do	frequently	

occur.	When	relapse	is	with	disease	that	still	expresses	CD19+,	 it	 is	suggestive	of	CAR	

failure,	 perhaps	 due	 to	 lack	 of	 persistence	 due	 to	 the	 hostile	 immune	

microenvironment	 or	 specifically	 in	 CLL	 due	 to	 impaired	 or	 exhausted	 CAR	 T	 cell	

function.	 Significant	differences	between	 the	CD19-CD28	and	CD19-41BB	 trials	make	

direct	comparison	difficult,	but	certainly	persistence	of	the	CD19-41BB	CAR	has	been	

demonstrated	 for	many	years	 in	ALL	 and	CLL	 (160,	 184).	However,	 in	 ZUMA-1	many	

patients	 with	 NHL	 with	 durable	 long-term	 responses	 showed	 evidence	 of	 B	 cell	

recovery	without	relapse,	so	further	study	of	the	importance	of	long	term	persistence	

in	 different	 diseases	 is	warranted	 (182).	 Specifically,	 at	 2	 years	 66%	 of	 patients	 had	

detectable	 CAR	 T	 cells	 by	 PCR,	 and	 75%	 of	 patients	 with	 an	 ongoing	 response	 had	

detectable	CAR	T	cells	by	flow	(186).		

	

Many	 relapses	 are	 associated	 with	 loss	 of	 the	 CD19	 antigen,	 for	 which	 different	

mechanisms	 leading	 to	 antigen	escape	have	been	 reported.	 In	 the	 largest	paediatric	

ALL	study	reported,	in	the	characterization	of	CD19	status	at	the	time	of	relapse	only	

one	 patient	 had	 a	 CD19+	 recurrence	 and	 15	 patients	 had	 CD19-	 disease	 (3	 with	

concomitant	 CD19+	 blasts)	 (184).	 In	 patients	 with	 persistent	 CAR	 T	 cells,	 in	 B-ALL	 a	

mechanism	for	this	has	been	found	to	be	due	to	splice	mutations	in	CD19	(187).	Other	

mechanisms	may	be	 important,	 for	example,	a	case	report	of	a	patient	with	CLL	and	

Richter	transformation	treated	with	a	CD19	CAR	relapsed	with	a	clonally	related	CD19-	

plasmablastic	 lymphoma	 highlights	 the	 ability	 of	 mature	 lymphomas	 to	 evade	

immunotherapy	by	differentiating	along	pathways	comparable	to	counterparts	 (188).	

In	 lymphoma,	 preliminary	 abstract	 data	 from	 the	 ZUMA-1	 study	 indicated	 of	 those	
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patients	which	had	relapse	biopsies	67%	were	CD19+	and	33%	CD19-	(189,	190).	The	

high	 occurrence	 of	 CD19+	 relapses	 could	 be	 related	 to	 T	 cell	 fitness	 or	 perhaps	 a	

reflection	of	 the	hostile	 immune	microenvironment	 the	CAR	 faces.	Also,	 in	 the	same	

abstract	data	was	presented	indicating	the	high	expression	of	PD-L1	in	both	CD19-	and	

CD19+	progression	biopsies.	

	

In	adult	ALL,	in	an	analysis	of	22	patients	who	had	initially	responded	to	a	CD19-41BB	

CAR,	14/22	had	a	CD19+	relapse	although	in	5	of	these	patients	the	leukaemic	blasts	

had	diminished	CD19	expression.	6/22	had	a	CD19-	relapse	including	one	patient	with	

an	MLL-rearranged	 B-ALL	who	 relapsed	with	 AML.	 This	 patient	 along	with	 a	 second	

from	another	series	were	reported	as	having	an	AML	relapse	which	was	demonstrated	

to	 be	 clonally	 related	 to	 their	 ALL,	 indicating	 a	 novel	 mechanism	 of	 CD19-	 antigen	

escape	(191).	In	this	series	CD19+	relapse	was	associated	with	loss	of	CAR	persistence	

and	CD19-	relapse	despite	persistent	cells	and	B	cell	aplasia	(192).	Finally,	a	fascinating	

case	 report	 details	 how	 one	 patient	 with	 ALL	 who	 relapsed	 9	 months	 after	

tisagenlecleucel,	 was	 due	 to	 the	 CAR	 gene	 being	 unintentionally	 transduced	 into	 a	

single	leukaemic	B	cell	during	T	cell	manufacturing,	and	its	product	binding	to	the	CD19	

epitope	 on	 the	 surface	 of	 leukaemic	 blasts,	 masking	 it	 from	 recognition	 by	 and	

conferring	resistance	to	tisagenlecleucel	(193).	

	

1.3.4.2		 Novel	antigens	and	dual	targeting	

	

An	obvious	strategy	to	prevent	antigen	negative	relapses	is	the	targeting	of	alternative	

or	 additional	 B	 cell	 specific	 antigens.	 CD22	 is	 highly	 expressed	 on	mature	 lymphoid	

malignancies	 and	 as	 such	 was	 one	 of	 the	 first	 alternative	 CAR	 to	 be	 developed	 to	

overcome	the	selection	of	antigen	loss	variants	(194).	Initially,	the	CD22	CAR	was	used	

after	the	CD19	CAR,	with	demonstrated	efficacy	 leading	to	MRD-	CR	 in	CD22+	ALL	 in	

4/9	children	and	young	adults	after	using	a	 lentiviral	CD22-41BB	CAR	(195).	A	rapidly	

evolving	area	of	CAR	 research	 is	 the	use	of	bispecific	CAR	T	 cells,	 typically	using	 the	

combination	of	CD19	and	CD22	CAR	T	cells.	Multiple	groups	presented	early	phase	1	

data	 at	 ASH	 2018	 of	 dual	 antigen	 CAR	 targeting	 in	 relapsed	 B	 cell	 malignancies.	 Of	

interest,	 is	 the	 methods	 by	 which	 you	 get	 to	 dual	 targeting.	 Tandem	 transduction	
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starts	 with	 one	 selected	 T	 cell	 population	 which	 can	 be	 transduced	 twice	 with	 two	

completely	 different	 CAR	 constructs,	 for	 example	 the	 FHCRC	 group	 using	 CD19	 and	

CD22	CARs	 leading	to	83%	CR	 in	R/R	paediatric	ALL	 in	7	patients	 (196).	Alternatively,	

the	 Stanford	 group	 used	 a	 bivalent	 CAR,	 in	 which	 one	 CAR	 incorporates	 both	 the	

FMC63	 CD19	 scFv	 with	 M971	 CD22	 scFv	 and	 a	 41BB	 co-stimulatory	 domain.	 4/4	

paediatric	 ALL	 patients	 infused	 achieved	 a	 CR,	 3	 of	 which	 were	 MRD-	 by	 flow	

cytometry	 (197).	The	group	at	Great	Ormond	Street	 lead	a	study	using	a	CD19/CD22	

CAR	 with	 novel	 CD19	 and	 CD22	 components,	 which	 was	 bicistronic	 i.e.	 two	

independent	 CAR	 were	 transduced	 within	 one	 retroviral	 vector.	 9/10	 patients	

evaluable	 in	 this	 study	 achieved	 a	 flow	 MRD-	 CR	 with	 4	 patients	 having	 ongoing	

responses	 at	 the	 data	 cut	 off	 with	 MRD-	 remissions	 (198).	 In	 R/R	 NHL	 a	 dual	

CD19/CD20	CAR	was	 reported	 in	6	patients	with	2/6	achieving	CR	and	2/6	PR	 (199).	

The	latter	two	groups	used	the	automated	platform	CliniMACS	Prodigy	system	which	

allows	for	close	to	point	of	care	manufacturing	complying	with	GMP	practices.	

	

There	are	alternative	and	novel	 targets	 in	B	 cell	malignancies.	Combining	CD19	with	

CD123	 CAR	 T	 cells	 prevented	 antigen	 negative	 relapses	 in	 xenograft	 models	 of	 ALL	

(200).	In	CLL,	CD23	CAR	T	cells	show	activity	against	CLL	cell	lines,	primary	CLL	cells	and	

in	a	xenograft	mouse	model,	and	could	preserve	normal	B	cell	function	(141).	ROR1	is	

detected	on	malignant	B	cells	in	CLL	and	MCL	(201),	and	at	lower	levels	in	adipose	cells	

and	some	B	cell	precursors	and	so	targeting	of	this	antigen	could	spare	normal	B	cells	

(202).	 In	 a	 retrospective	 review	 of	 1500	 patients,	 ROR1	 expression	was	 divided	 into	

ROR1	low	and	high	expression,	those	patients	with	higher	expression	had	significantly	

shorter	 treatment	 free	 survival	 and	 overall	 survival	 (203).	 The	MD	Anderson	 Cancer	

Center	 has	 a	 ROR1	 CAR	 currently	 being	 tested	 in	 phase	 1	 in	 CLL	 patients	 (204),	 but	

there	 is	 also	 broader	 interest	 as	 ROR1	 is	 expressed	 on	 a	 number	 of	 solid	 tumours	

including	 non	 small	 cell	 lung,	 pancreatic	 and	 triple	 negative	 breast	 cancers.	 CD37	 is	

expressed	in	NHL	and	CLL,	and	in	some	cases	of	peripheral	T	cell	lymphoma.	CD37	CAR	

T	cells	show	antigen	driven	activity,	cytokine	production	and	cytotoxicity	 in	 in	vitro	B	

and	T	 cell	 lymphoma	models,	 including	patient	derived	 xenografts	 (205).	 CAR	T	 cells	

targeting	 such	 novel	 antigens	 remain	 an	 area	 of	 active	 investigation	 in	 lymphoid	

malignancies.		
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Despite	 the	outstanding	 success	of	CD19	CAR	T	 cells	 the	main	 licensed	products	 are	

obtained	 from	 murine	 antibodies.	 T	 cell	 mediated	 immune	 responses	 specific	 for	

peptides	from	the	murine	FMC63	scFv	could	result	in	premature	elimination	of	CAR	T	

cells	and	relapse.	Groups	have	created	a	humanised	scFV	equivalent	to	FMC63	(143).	

CARs	 with	 several	 scFvs	 were	 used	 to	 transduce	 human	 T	 cells	 and	 eliminated	

lymphoma	 xenograft	 models	 in	 immunodeficient	 mice.	 Imaging	 of	 cell	 surface	

distribution	 of	 human	 CARs	 revealed	 no	 clustering	 without	 T	 cell	 engagement.	 The	

same	group	also	altered	the	fusion	sites	between	different	CAR	components	to	reduce	

immunogenicity	 (143).	Many	groups	now	use	humanized	CD19	 scFv	which	are	being	

used	in	larger	scale	clinical	trials.		

	

1.3.4.3		 Predictors	of	response	

	

Little	 is	 known	 about	 predictive	 indictors	 of	 response	 to	 CAR	 T	 cell	 therapy.		

Particularly	 in	CLL,	where	 responses	 rates	do	not	match	 those	seen	 in	ALL,	 this	 is	an	

important	 area	 of	 research.	 In	 an	 analysis	 of	 41	 patients	who	 received	 a	 lentivirally	

transduced	CD19-41BB	CAR,	in	vivo	expansion	was	required	to	be	effective	but	also	ex	

vivo	expansion	during	manufacture	was	a	simple	predictor	of	response	and	correlated	

with	proliferation	 in	vivo.	They	carried	out	a	thorough	evaluation	of	the	apheresed	T	

cells	and	CAR	T	cell	product	 from	non-responding	 (NR)	and	 responding	 (CR)	patients	

and	 found	 the	 transciptomic	profile	 from	NR	were	enriched	with	genes	belonging	 to	

terminal	 differentiation	 and	 exhaustion	 and	 CAR	 T	 cells	 from	 CR	 patients	 were	

enriched	 in	 memory	 related	 genes	 (206).	 Flow	 cytometry	 also	 demonstrated	

significantly	lower	percentages	of	CAR	T	cells	with	the	CD8+PD-1+	phenotype	from	CR	

patients	and	elevated	levels	of	other	exhaustion	markers	such	as	LAG-3	and	TIM-3	co-

expressing	 PD-1	 predicting	 a	 negative	 response	 to	 treatment	 whilst	 a	 sustained	

remission	 was	 associated	 with	 elevated	 CD27+CD45RO-	 CD8+	 T	 cells	 at	 the	 time	 of	

leucopheresis	which	are	memory-like	characteristics	(206).	They	then	used	CAR	T	cells	

from	NR	and	CR	patients	 in	 an	 immunodeficient	murine	 xenograft	model	 (NSG	mice	

engrafted	 with	 the	 CD19+	 NALM-cell	 line).	 This	 led	 to	 prolonged	 survival	 of	 mice	

compared	to	those	mice	treated	with	CR	derived	CAR	T	cells.	In	this	model,	CAR	T	cells	
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derived	from	healthy	donors	were	used	as	a	control	and	performed	the	best	in	terms	

of	mouse	survival	and	tumour	regression	(206).	They	also	treated	these	mice	with	CR	

patient	T	cells	that	were	enriched	or	depleted	of	CD27+PD-1-CD8+	T	cells.	Removal	of	

this	population	 resulted	 in	 loss	of	 tumour	 control.	 Taken	 together,	 this	 indicates	 the	

intrinsic	T	cell	fitness	dictates	both	response	and	resistance	to	these	CAR	T	cell.	Drugs	

with	 the	 potential	 to	 reverse	 the	 exhausted	 phenotype	 represent	 an	 opportunity	 to	

modulate	CAR	 function	or	 the	 subsets	used	 to	manufacture	CAR	T	 cells	may	also	be	

important.	However,	efficacy	was	not	related	to	patient	age,	prior	therapy,	peripheral	

tumour	burden	or	p53	status.	

	

In	 lymphoma,	 a	 recent	 clinical	 paper	 looked	 at	 factors	 associated	 with	 a	 durable	

remission	 after	 CD19	 CAR	 T	 cells.	 Multivariate	 analysis	 of	 clinical	 and	 treatment	

characteristics,	serum	biomarkers,	manufacturing	and	pharmacokinetic	data	show	that	

lower	pre-lymphodepletion	 serum	LDH	and	 a	 favourable	 cytokine	profile,	 defined	 as	

serum	monocyte	chemoattractant	protein-1	(MCP-1)	and	peak	IL-7	above	the	median,	

were	 associated	 with	 better	 PFS	 (207).	 Even	 in	 high-risk	 patients	 with	 pre-

lymphodepletion	 serum	LDH	 levels	above	normal,	a	 favourable	cytokine	profile	after	

lymphodepletion	 was	 associated	 with	 a	 low	 risk	 of	 a	 PFS	 event.	 They	 conclude	

strategies	 to	 augment	 the	 cytokine	 response	 to	 lymphodepletion	 could	 be	 used	 to	

alter	outcome.		

	

1.3.4.4		 Subsets	

	

The	 absolute	 number	 of	 CD4+/CD8+	 T	 cells,	 their	 phenotypes	 (naïve	 (TN),	 central	

memory	 (TCM),	 or	 effector	 (TEM/EMRA)),	 the	 detrimental	 effects	 of	 previous	 treatment	

regimens	 and	 the	 intrinsic	 functional	 capabilities	 of	 T	 cells	 varies	 between	 patients	

which	 are	 in	 turn	 is	 influenced	 by	 their	 diseases,	 significantly	 affect	 the	 ability	 to	

produce	effective	CAR	T	cells.	There	is	not	the	same	body	of	evidence	in	lymphoma	to	

suggest	T	cell	dysfunction	as	there	is	in	CLL.	In	most	reported	trials,	including	the	large	

registration	 studies	 of	 the	 two	 licensed	 CD19	 autologous	 CAR	 T	 cells,	 patients	 have	

received	 products	 containing	 random	 compositions	 of	 CD4+	 and	 CD8+	 naïve	 and	

memory	T	cells.	This	could	explain	some	of	the	differences	seen	in	efficacy	and	toxicity	
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in	 clinical	 trials.	 There	 is	preclinical	 evidence	 that	CAR	T	 cells	 enriched	 for	naïve	and	

memory	 phenotypes	 as	 starting	 material	 and	 using	 defined	 CD4+/CD8+	 subset	

compositions	have	a	better	performance	in	mice	xenograft	models	(208).	On	this	basis	

of	this	preclinical	evidence	the	same	group	performed	trials	of	autologous	CD19-41BB	

CAR	 T	 cells	with	 defined	 subset	 compositions	 in	 ALL	 (174),	NHL	 (175)	 and	 CLL	 (161)	

with	 impressive	 outcomes	 and	 led	 to	 the	 ongoing	 TRANSCEND	 clinical	 trials	 in	

lymphoma	and	CLL.	Of	course,	this	may	be	limited	in	some	patients	who	have	skewed	

starting	material.	Single	cell	analysis	of	the	preinfusion	CD19	CAR	product	 in	patients	

with	NHL	demonstrate	that	these	CAR	products	contain	polyfunctional	T	cell	subsets.	

When	 using	 a	 prespecified	 T	 cell	 polyfunctional	 strength	 index	 applied	 to	 the	

preinfusion	 product,	 associations	 with	 clinical	 outcomes	 were	 greater	 with	

polyfunctional	CD4+	compared	to	CD8+	T	cells	 (209).	 It	has	been	shown	that	antigen	

experienced	subsets	promote	the	differentiation	of	TN	into	TEM	via	a	non-apoptotic	Fas	

signal	(210).	Altering	the	culture	conditions	may	enable	specific	T	cell	populations	from	

which	 to	 manufacture	 CAR	 T	 cells.	 Alternative	 methods	 of	 using	 combinations	 of	

interleukin-7	 (IL-7)	 and	 interleukin	 15	 (IL-15)	 in	 culture	 after	 preselecting	 naïve	

precursors	 may	 allow	 to	 generate	 CAR	 T	 cells	 with	 a	 T	 stem	 cell	 memory	 (TSCM)	

phenotype	(211).	

	

1.3.4.5		 BTK	inhibitors	and	immunotherapy	

	

Whilst	 there	has	been	extensive	 investigation	of	 the	effect	of	 ibrutinib	on	 the	B	 cell	

receptor,	there	 is	growing	evidence	to	suggest	 it	may	have	a	positive	effect	on	T	cell	

function	including	absolute	numbers,	repertoire	and	immune	reconstitution	(39,	103).	

In	a	phase	 II	 study	 ibrutinib	 reduced	expression	of	activation	markers	and	PD-1	on	T	

cells	 (212).	Further,	 it	 is	an	 inhibitor	of	 ITK,	an	essential	enzyme	 in	Th2	T	cells	which	

can	enhance	antitumour	responses	 (39).	Combining	 ibrutinib	with	PD-1	blockade	can	

improve	 T	 cell	 responses	 against	 solid	 tumours	 that	 do	 not	 express	 BTK	 (213).	 In	 a	

small	 cohort	 of	 patients	 with	 CLL	 treated	 with	 CAR	 T	 cells	 and	 ibrutinib,	 3	 patients	

treated	with	ibrutinib	for	>1	year	at	the	time	of	apheresis	had	improved	T	cell	ex	vivo	

and	in	vivo	expansion	and	subsequent	clinical	response	(163).	They	also	demonstrated	

that	 patients	 who	 had	 received	 more	 than	 5	 cycles	 of	 ibrutinib,	 produced	 more	
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interferon-γ	 after	 stimulation	 with	 CD3/CD28	 beads	 or	 phorbol	 myrisate	 acetate	

(PMA)/ionomycin	 and	 their	 CAR	 T	 cells	 had	 better	 ex	 vivo	 expansion.	 Interestingly,	

patients	 with	 CLL	 who	 were	 ibrutinib	 naïve	 had	 poorer	 ex	 vivo	 expansion.	 They	

propose	 that	ex	vivo	proliferation	appears	 to	be	consistent	with	 the	ability	of	CAR	T	

cells	 to	expand	when	 infused.	 In	 this	 study	 ibrutinib	was	not	 continued	concurrently	

after	CAR	T	cells,	but	they	did	evaluate	the	effect	of	this	in	a	xenograft	mouse	model.	

Ex	vivo	exposure	of	 ibrutinib	to	CAR	T	cells	does	not	alter	their	function.	NOD-SCID-γ	

(NSG)	mice	were	engrafted	with	Nalm-6	(human	ALL	cell	line)	or	OSU-CLL	(human	CLL	

cell	 line).	 CAR	 T	 cells	 were	 derived	 from	 healthy	 donors	 and	 injected	 7	 days	 after	

tumour	 engraftment.	 In	 both	 the	 Nalm-6	 model,	 which	 would	 be	 expected	 to	 be	

ibrutinib	resistant,	and	in	OSU-CLL	injected	mice,	ibrutinib	improved	engraftment	and	

expansion	of	CAR	T	cells	and	the	overall	survival	of	the	mice.	Although	this	effect	could	

be	because	of	ibrutinib	mediated	changes	in	lymphocyte	chemotaxis	and	adhesion,	the	

improvement	in	mouse	survival	argues	for	an	increase	in	CAR	T	cell	function	(163).		

	

Preliminary	evidence	of	the	success	of	this	synergy	was	presented	at	ASH	2018.	In	an	

ongoing	prospective	trial	of	a	humanized	CD19-41BB	CAR	ibrutinib	was	used	both	pre	

and	 as	 a	 concurrent	 treatment	 in	 patients	who	were	not	 in	 CR	despite	 6	months	 of	

ibrutinib	 (214).	 Lymphodepletion	was	with	 the	 standard	 Flu/Cy	 and	 this	was	 a	 dose	

escalation	study.	This	was	again	a	high-risk	population	as	11	of	the	19	patients	infused	

had	del17p	or	p53.	18/19	patients	had	CRS	which	was	mostly	grade	1-2	and	5	patients	

had	 neurotoxicity.	 One	 patient	 died	 of	 a	 cardiac	 arrhythmia	 during	 severe	

neurotoxicity	after	resolution	of	CRS.	Median	follow-up	for	18	surviving	patients	is	18.5	

months.	The	3-month	bone	marrow	demonstrates	morphological	remission	in	17	and	

15	by	flow	cytometry	MRD.	By	iwCLL	criteria	at	3	months	for	14	patients	evaluable	6	

were	CR	(43%),	4	in	PR.	6	patients	discontinued	ibrutinib	at	a	median	of	8	months	and	

overall	at	last	follow-up	16/18	remain	in	morphologic	remission.	A	second	group	also	

reported	a	cohort	treated	with	a	CD19-41BB,	with	a	higher	ORR	but	their	CR	rates	by	

iwCLL	 criteria	 alone	 were	 not	 presented	 (215).	 They	 did	 have	 one	 death	 due	 to	

arrhythmia	in	the	context	of	CRS,	but	overall	they	saw	much	less	severe	CRS	in	the	CAR	

plus	ibrutinib	group.	Of	note	ibrutinib	was	was	only	administered	from	2	weeks	prior	

to	leucopheresis	until	3	months	after	CAR	infusion.		
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The	 concept	 that	 ibrutinib	 can	 optimise	 T	 cell	 function	 has	 been	 explored	 in	 other	

types	 of	 immunotherapy.	 In	 a	 small	 study	 of	 ibrutinib	 given	 to	 27	 patients	 with	

relapsed	CLL	post	ASCT,	87%	of	patients	had	a	response,	with	no	GVHD	and	multiple	

patients	 with	 CLL	 relapse	 associated	 mixed	 chimerism	 converting	 to	 full	 donor	

chimerism	post	instigation	of	ibrutinib,	they	concluded	ibrutinib	enhances	graft	versus	

leukaemia	 through	 a	 T	 cell	 mediated	 effect	 (216).	 CD19/CD3	 bispecific	 antibodies	

(BiTE)	recruit	T	cells	to	form	cytolytic	synapses	with	CD19+	tumour	cells.	Blinatumomab	

is	 licensed	and	improves	survival	 in	R/R	B-ALL	(217)	and	has	demonstrated	activity	 in	

R/R	DLBCL	(218).	In	CLL	there	is	demonstrated	activity	in	vitro	and	only	recently	activity	

has	been	demonstrated	 in	patient	derived	xenograft	models	using	a	novel	CD19/CD3	

BiTE	(219).	Interestingly,	in	these	xenograft	models	their	novel	CD19/CD3	BiTE	induced	

more	 rapid	 killing	 of	 CLL	 cells	 from	 ibrutinib	 treated	 patients	 than	 those	 from	

treatment	naïve	patients.	However,	potent	activity	was	also	demonstrated	against	CLL	

cells	 from	 patients	 with	 acquired	 ibrutinib	 resistance.	 It	 is	 not	 clear	 if	 the	 effect	 of	

ibrutinib	was	on	T	cells	or	simply	a	 reflection	of	 taking	samples	 from	patients	with	a	

lower	CLL	burden	(220),	but	it	still	supports	the	concept.			

	

1.3.4.6		 CAR	T	cells	in	other	haematological	diseases	

	

1.3.4.6.1	 Multiple	Myeloma	(MM)	

	

There	 are	 case	 reports	 of	 the	 use	 and	 efficacy	 of	 the	 autologous	 CD19-41BB	 in	

myeloma	leading	to	a	CR	for	12	months	(221).	In	this	case	the	CAR	was	used	following	

a	second	high	dose	melphalan	autologous	stem	cell	transplant.	Four	years	earlier	the	

patient	had	eceived	the	same	treatment	without	CAR	and	only	had	a	transient	PR.	MM	

is	 a	 B	 cell	 malignancy	 which	 is	 usually	 CD19-,	 and	 in	 the	 case	 of	 this	 patient	 the	

myeloma	 cells	 were	 CD19-	 in	 99.9%	 of	 the	 patients’	 neoplastic	 cells.	 It	 has	 been	

suggested	 a	 minor	 component	 of	 the	 MM	 clone	 with	 drug-resistant,	 disease	

propogating	 properties	 has	 a	 B	 cell	 phenotype	 i.e.	 CD19+	 (222)	which	would	 explain	

this	activity.	None	the	less	novel	myeloma	specific	CAR	T	cells	are	in	development.		B-

cell	 maturation	 antigen	 (BCMA)	 is	 a	 cell	 surface	 receptor	 expressed	 primarily	 and	
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during	plasma	cell	differentiation	and	 is	expressed	consistently	on	MM	cell	 lines	and	

primary	 patient	 samples	 (223).	 A	 phase	 1	 study	 using	 a	 BCMA-41BB	 autologous	

lentivirally	transduced	CAR	T	cell	in	myeloma	has	recently	been	published	(224).	There	

was	an	ORR	of	12/25	although	CRS	was	seen	in	22	patients	and	a	range	of	responses	

including	2	CR	of	25	patients	 in	a	dose	escalation	 study.	Three	patients	had	ongoing	

responses	 and	 responses	 as	well	 as	 in-vivo	expansion	were	 associated	with	 a	higher	

CD4:	 CD8	 ratio	 and	 higher	 frequency	 of	 CD45RO-CD27+CD8+	 T	 cells	 in	 the	

premanufacturing	 product.	 This	 phenotype	 primarily	 identifies	 naïve	 but	 also	 TSCM	

populations.	CAR	T	cells	in	myeloma	is	a	very	promising	therapeutic	approach	and	the	

subject	of	many	ongoing	clinical	trials.	 Interestingly,	they	looked	at	the	differences	in	

these	populations	when	comparing	 leucopheresis	samples	obtained	at	completion	of	

induction	 therapy	 and	 those	 in	 relapse/refractory	 status.	 They	 found	 this	 early	

memory	phenotype	significantly	higher	in	patients	collected	after	induction	therapy,	as	

was	CD4:	CD8	ratio	and	the	measured	ex	vivo	expansion.	They	suggested	that	 timed	

and	 earlier	 lymphocyte	 collection	 before	 exposure	 to	multiple	 lines	 of	 therapy	may	

yield	 better	 clinical	 responses	 (224).	 At	 ASH	 2018,	 initial	 results	 from	 the	 phase	 I/II	

EVOLVE	 study	 using	 a	 fully	 humanized	 lentivirally	 transduced	 BCMA-41BB	 CAR,	 for	

patients	who	have	 received	3	or	more	 therapies	were	presented.	Of	 the	13	patients	

treated,	eight	were	evaluable	for	safety	who	had	all	been	heavily	pretreated.	Grade	3	

or	above	CRS	did	not	occur,	and	there	was	one	self	limited	transient	episode	of	grade	3	

neurotoxicity,	suggesting	an	acceptable	safety	profile	for	this	type	of	CAR	(225).	

	

1.3.4.6.2	 Hodgkin	lymphoma	

	

Immunotherapy	 has	 already	 been	 shown	 to	 be	 effective	 for	 relapsed	 Hodgkin	

lymphoma	(HL)	 in	the	form	of	checkpoint	 inhibition	(226).	Preliminary	data	has	been	

published	on	the	use	of	the	CD30-CD28	CAR	in	9	patients	with	CD30+	malignancies	HL	

but	 also	 anaplastic	 large	 cell	 lymphoma	 (ALCL).	 It	 demonstrated	 a	 CAR	 T	 cell	 that	

expanded	 and	 persisted,	 which	 was	 safe	 with	 no	 unexpected	 on	 target	 off	 tumour	

toxicity.	Of	the	7	patients	with	relapsed	HL	two	had	a	CR	for	over	two	years	(227).	A	

Chinese	group	has	also	published	a	series	of	18	patients	with	relapsed	HL	but	the	best	

response	was	a	PR	in	7	patients.	Again,	they	could	demonstrate	CAR	T	cell	expansion	
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and	 no	 new	 safety	 signal	 was	 found	 (228).	 Both	 groups	 updated	 their	 data	 at	 ASH	

2018,	with	the	former	group	presenting	data	this	time	using	lymphodepletion	prior	to	

their	CD30-CD28	CAR.	6/8	patients	assessed	6	weeks	after	 infusion	were	 in	CR	which	

lasted	from	6	weeks	to	6	months	(229).	The	Chinese	group	this	time	presenting	4	HL	

and	2	ALCL	patients,	5	patients	obtaining	a	CR	and	for	3	of	these	patients	lasted	over	a	

year.	 However,	 one	 patient	 died	 of	 CRS	 and	 pulmonary	 haemorrhage	 20	 days	 after	

CAR	T	cells	(230).	Finally,	a	group	from	North	Caroline	presented	their	CD30-CD28	CAR	

in	14	patients	using	bendamustine	and	fludarabine	conditioning	resulting	in	6	CR	and	1	

PR,	2	of	which	patients	remain	in	CR	at	1	year	(231).				

	

1.3.4.6.3	 Acute	Myeloid	Leukaemia	(AML)	

	

The	great	 success	of	CAR	T	cells	 in	ALL	obviously	makes	 their	use	 in	AML	an	area	of	

active	 investigation,	especially	 in	poor	 risk	cytogenetic	AML	or	 indeed	relapsed	AML.	

However,	the	biggest	challenge	in	comparison	to	lymphoid	disorders	 is	 identifying	an	

appropriate	surface	antigen	target,	as	those	known	to	be	present	on	AML	cells	are	also	

present	on	healthy	haematopoietic	 stem	cells	 (HSC)	predicting	 for	BM	aplasia.	 CD33	

has	heterogeneous	expression	on	leukaemia	blasts	but	there	are	many	splice	variants	

that	impact	protein	structure,	which	may	not	be	recognized	by	current	CD33	directed	

therapeutics	(232).	Also,	CD33	is	present	on	healthy	myeloid	cells	 in	the	BM	but	also	

macrophages	 in	 the	 liver.	 Therefore,	 on	 target,	 off-tumour	 toxicity	 is	 anticipated.	

Preclinical	 testing	 of	 a	 humanized	 CD33	 based	 on	 the	 scFv	 used	 in	 gemtuzumab		

demonstrated	eradication	of	 leukaemia	and	prolonged	 survival	 in	AML	xenografts.	 It	

also	resulted	in	significant	cytopenias	and	loss	of	myeloid	progenitors	in	xenografts	of	

haematopoietic	 toxicity.	 Unlike	 CD33,	 which	 is	 expressed	 at	 high	 levels	 on	 both	

leukaemic	and	normal	HSC,	CD123	expression	on	HSC	 is	 low	 to	negligible	 (233).	Pre-

clinical	testing	of	a	CD123-CD28	CAR	demonstrates	anti-leukaemic	activity	in	vitro	and	

in	vivo	 in	a	xenograft	mouse	model	of	AML.	Further,	when	expressed	 in	T	cells	 from	

AML	patients,	these	CD123	CARs	could	redirect	patient	derived	T	cell	cytolytic	activity	

against	 their	 autologous	 leukemic	 blasts	 (234).	 However,	 work	 from	 Gill	 et	 al.	 have	

raised	safety	concerns	of	targeting	CD123	for	AML	patients.	Testing	a	CD123-41BB	CAR	

they	 reported	 rapid	elimination	of	AML	 in	a	 xenograft	model	but	also	eradication	of	
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normal	myelopoiesis	(140).	They	suggest	CD123	CAR	T	cells	are	a	viable	AML	therapy	

but	raise	concerns	for	its	use	without	the	option	of	HSCT	rescue	(140).	Separately,	the	

FDA	has	approved	the	clinical	trial	use	of	the	allogeneic	CD123	CAR	in	AML	in	January	

2017.	

	

Other	more	novel	AML	antigens	 include	human	C-type	 lectin-like	molecule-1	 (CLL-1),	

which	is	restricted	in	myeloid	cells	as	well	as	the	majority	of	AML	blasts.	Importantly,	it	

is	also	present	on	leukaemic	stem	cells	but	not	HSC	cells	(235).	CLL-1	CAR	T	cells	 lyse	

CLL-1+	 cell	 lines	 and	 primary	 AML	 patient	 samples	 in	 vitro.	Myeloid	 progenitor	 and	

mature	 myeloid	 cells	 are	 eliminated,	 but	 not	 normal	 HSC	 cells	 (236).	 Preliminary	

clinical	data	was	presented	by	a	Chinese	group	using	a	CLL1-CD33	CAR	at	ASH	2018.	

They	reported	a	single	paediatric	patient	with	complex	karyotype	post	multiple	lines	of	

therapy	 experiencing	 ablation	 of	 myeloid	 cells	 by	 D+19	 post	 the	 CAR	 and	

lymphodepletion,	to	MRD-	which	they	consolidated	with	an	ASCT	(237).	Finally,	CAR	T	

cells	have	the	ability	to	recognize	non-protein	antigens,	an	example	being	the	Lewis	Y	

antigen	 (LeY),	 an	 oligosaccharide	 structurally	 related	 to	 the	 Lewis	 blood	 group	

antigens.	Is	is	found	on	tumour	associated	antigens	on	multiple	cancers	including	AML.	

A	retrovirally	transduced	LeY-CD28	CAR	was	given	to	4	patients	after	lymphodepletion,	

1	 patient	 had	 a	 cytogenetic	 remission	 and	 another	 a	 reduction	 in	 PB	 blasts.	 They	

demonstrated	 persistence	 by	 PCR	 and	 flow	 but	 all	 patients	 progressed	 with	 LeY+	

disease.		

	

1.3.4.6.4	 T	cell	lymphoma	

	

There	are	currently	 limited	options	for	targeting	T	cell	malignancies	with	CAR	T	cells.	

There	is	shared	expression	of	most	targetable	surface	antigens	between	malignant	and	

normal	 T	 cells,	 potentially	 leading	 to	 profound	 immunodeficiency	 or	 CAR	 T	 cells	

targeting	 themselves.	 CD5	 is	 present	 on	 approximately	 80%	 of	 T-cell	 acute	

lymphoblastic	 leukaemia	 (T-ALL)	 (238)	 and	 T	 cell	 lymphoma	 and	 it	 is	 sometimes	

expressed	 on	 B	 cell	 lymphoma.	When	 T	 cells	 are	 transduced	 with	 a	 CD5	 CAR,	 they	

undergo	only	limited	self	targeting	and	expand	ex	vivo.	They	can	eliminate	T-ALL	and	T	

cell	lymphoma	cell	lines	and	inhibit	disease	progression	in	xenograft	models	(239).	NK	
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cells	are	both	CD3-	and	CD5-	and	are	an	important	part	of	the	innate	immune	system.	

NK	cells	have	a	short	lifespan	in	comparison	to	T	cells	but	the	lack	of	shared	antigens	

would	 preclude	 self-targeting.	 Exploratory	 work	 has	 been	 performed	 transducing	 a	

CD5	 CAR	 into	 a	 human	 NK	 cell	 line	 with	 stable	 expansion.	 The	 NK	 CD5	 CAR	 had	

significant	activity	against	T-ALL	and	T	cell	lymphoma	cell	lines	and	control	of	T-ALL	in	

xenograft	mouse	models	(240).		

	

A	novel	approach	has	been	recently	reported.	The	αβ	TCR	is	a	pan-T	cell	antigen	that	is	

expressed	 on	 normal	 T	 cells	 and	 highly	 expressed	 on	 mature	 peripheral	 T	 cell	

lymphomas	(PTCL)	>95%	and	most	angioimmunoblastic	T	cell	 lymphoma	(AITL)	(241).	

These	mature	T	cell	 lymphomas	are	aggressive	and	their	 treatment	 is	a	clear	area	of	

need	 given	 their	 outcomes	 and	 much	 worse	 than	 B	 cell	 lymphomas.	 TCR	 α	 and	 β	

chains	comprise	N-terminal	variable	and	C-terminal	constant	regions	and	both	must	be	

present	 for	 it	 to	be	expressed.	TCR	diversity	 is	 generated	by	 somatic	 recombination,	

when	each	TCR	chain	 selects	a	variable	 (V),	diversity	 (D),	 joining	 (J)	 and	constant	 (C)	

region.	In	a	clonal	T	cell	population	they	all	possess	the	same	unique	TCR.	A	single	gene	

codes	 for	 the	 α	 chain	 of	 the	 TCR,	 whilst	 a	 feature	 of	 TCR	 β-chain	 (TCRBC)	

recombination	is	the	presence	of	only	two	genes	associated	with	the	β-chain	constant	

region,	 either	 TCRBC1	 or	 TCRBC2	 (242).	 University	 College	 London	 have	 confirmed	

TCRBC	 monoclonality	 in	 many	 types	 of	 T	 cell	 malignancies	 and	 demonstrated	 the	

efficiency	of	targeting	TRBC1	in	cell	lines	and	a	disseminated	model	of	T-ALL	(243).	This	

represents	the	first	T	cell	malignancy	targeted	treatment	with	the	potential	to	eradiate	

the	T	cell	clone	while	preserving	sufficient	normal	T	cells	to	maintain	cellular	immunity.		
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1.3.4.7		 Allogeneic	CAR	T	cells	

	

In	heavily	pre-treated	patients,	it	is	not	always	possible	to	manufacture	a	therapeutic	

product	(152),	often	because	of	a	failure	to	mobilise	sufficient	T	cells	or	for	failure	of	

the	expansion	process	fails.	In	CLL,	as	previously	discussed	the	disease	itself	impairs	T	

cell	 function	 and	 ex	 vivo	 expansion.	 Further,	 as	 currently	 licensed	 CD19	 CAR	 T	 cell	

products	are	autologous	and	bespoke,	there	 is	a	significant	delay	after	apheresis	and	

some	patients	may	not	 receive	 the	product	due	 to	disease	progression.	The	point	at	

which	enrolment	occurs	into	the	two	major	studies	ZUMA-1	and	JULIET	were	different,	

so	the	drop-out	rates	shouldn’t	be	compared	directly	before	the	cells	are	available	for	

infusion,	 but	 the	 JULIET	 study	 gives	 more	 detail	 on	 the	 patients	 enrolled	 but	 not	

infused.	Of	the	50/165	patients	enrolled	but	not	infused,	12	had	manufacturing	failure	

(7%)	and	38	(23%)	had	reasons	that	related	to	disease	progression	including	death	in	

16	 and	 the	 primary	 physician	 deciding	 against	 further	 participation	 in	 16	 patients	

(185).	 Since	 the	 NHS	 England/Cancer	 Drugs	 Fund	 process	 started	 in	 late	 2018	 for	

tisagenlecleucel	 and	axi-cel	 there	have	been	 limited	numbers	of	manufacturing	 slots	

available	 to	 CAR	 T	 cell	 centres	 in	 the	 UK,	 as	 well	 as	 local	 limits	 due	 to	 access	 to	

apheresis	slots	in	the	NHS.	Whilst	tisagenlecleucel	 is	made	in	Europe,	to	make	axi-cel	

the	 cells	 are	 still	 shipped	 via	 the	manufacturers	 production	 facility	 in	Amsterdam	 to	

Los	Angeles,	USA.	This	leads	to	much	longer	delays	in	production	time	and	acquisition	

of	cells	than	those	reported	in	ZUMA-1,	the	authors	clinical	experience	determining	for	

axi-cel	 this	 to	 be	 26	 days.	 Taken	 together,	 whilst	 there	 are	 solutions	 to	 these	

challenges	as	CAR	services	expand	in	the	UK	(and	Kite/Gilead	starts	to	produce	axi-cel	

in	 their	manufacturing	 facility	 in	Amsterdam),	 there	 is	 still	 a	 clinical	need	 for	off	 the	

shelf,	immediately	available	CAR	T	cells,	for	patients	who	are	rapidly	progressing	using	

donor	or	allogeneic	T	cells.		

	

The	production	of	universal	CD19	CAR	T	cells	from	non	HLA	matched	donor	cells	uses	

transcription	activator-like	effector	nuclease	 (TALEN)	mediated	gene	editing	of	 the	T	

cell	 receptor	and	CD52	gene	 loci	 (244).	The	first	reported	successful	use	of	the	of	an	

allogeneic	 CAR	 T	 cell	 was	 in	 an	 infant	with	 refractory	 B-ALL	who	 had	 relapsed	 post	

unrelated	donor	ASCT	and	progressed	post	blinatumumab,	along	with	a	second	infant	
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(245).	The	first	TALEN	was	used	to	disrupt	the	CD52	gene,	the	target	of	alemtuzumab,	

in	T	cells	transduced	to	express	a	CD19	CAR.	This	was	designed	to	enhance	survival	in	

the	presence	of	the	anti-CD52	lymphodepleting	antibody.	At	the	same	time	a	second	

TALEN	was	used	 to	 target	 the	constant	 region	of	 the	T	 cell	 receptor	α	 chain	 (TRAC),	

thereby	 disrupting	 cell	 surface	 expression	 of	 the	 TCR	 αβ.	 Manipulations	 were	

performed	by	electroporation	of	TALENs	 into	 lentiviral	 transduced	CD19	CAR	T	 cells.	

Residual	 TCR	αβ	 T	 cells	 were	 removed	 by	 magnetic	 beads	 although	 small	 numbers	

theoretically	 could	 remain	 which	 could	 cause	 GVHD.	 A	 suicide	 gene	 was	 also	

incorporated.	 Two	 clinical	 trials	 are	 currently	 evaluating	 this	 allogeneic	 CD19	 CAR	

UCART19	 in	 adult	 B-ALL	 (CALM,	 NCT02746952)	 and	 paediatric	 B-ALL	 (PALL,	

NCT02808442).	Pooled	data	from	these	studies	was	presented	at	ASH	2018	(246).	20	

patients	have	been	infused,	with	13	CALM	and	7	PALL	patients.	At	D28,	of	16	patients	

evaluable	(1	death,	2	not	having	reached	D28,	1	data	not	collected)	14/16	achieved	CR	

or	Cri	and	12/14	were	MRD-	by	flow	or	PCR.	2/16	patients	showed	no	CAR	expansion	

and	 refractory	 disease.	 CSR	was	 reported	 in	 17/18	 patients	 which	was	mostly	mild,	

although	 one	 patient	 had	 severe	 CRS	 and	 died	 of	 neutropenic	 sepsis.	 Mild	

neurotoxicity	 was	 less	 common	 with	 6/18	 patients	 and	 two	 patients	 had	 mild	 skin	

GVHD	which	 resolved	with	 steroids.	 These	 cells	 are	 not	 expected	 to	 persist	 for	 long	

periods,	but	of	the	5	patients	in	which	no	expansion	was	detected,	3	of	these	had	not	

received	alemtuzumab	indicating	that	it	is	necessary	to	use	the	anti-CD52	antibody	to	

promote	CAR	expansion.	These	trials	are	ongoing.		

	

Gene	 editing	 allogeneic	 cells	 is	 a	 fast-moving	 field,	 and	more	 precise	 techniques	 of	

encoding	 the	 CAR	 construct	 are	 being	 developed.	 Using	 a	 viral	 vector,	 the	 genes	

encoding	the	construct	are	integrated	in	a	semi	random	fashion.	Techniques	which	link	

the	CAR	with	the	TRAC	may	be	more	precise	and	allow	TRAC	disruption	to	occur	only	in	

cells	 successfully	 transduced	 with	 the	 CAR.	 These	 cells	 show	 superior	 anti-tumour	

efficacy	 in	 a	murine	 xenograft	model	 compared	 to	unedited	CAR	 cells	 and	 less	 PD-1	

expression	(247).		

	

An	 alternative	 type	 of	 allogeneic	 CAR,	 is	 the	 manipulation	 of	 donor	 lymphocyte	

infusions	 post	 ASCT	 in	 B	 cell	 malignancies	 (248).	 The	 ability	 to	 harvest	 cells	 for	
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manufacture	directly	from	the	donor	in	patients	who	have	relapsed	post	ASCT	would	

probably	 yield	 cells	 with	 less	 exposure	 to	 cytotoxic	 substances	 and	 an	 abnormal	

tumour	 microenvironment.	 It	 also	 reduces	 the	 need	 for	 TCR	 knockout	 and	 GVHD.	

Using	this	strategy,	the	NCI	demonstrated	feasibility	as	4/5	patients	with	ALL	and	1/5	

patients	 with	 CLL	 achieved	 CR	 despite	 no	 lymphodepletion,	 and	 importantly	 no	

evidence	of	GVHD.	However,	this	approach	can	only	be	used	after	an	ASCT,	and	given	

this	treatment	strategy	is	rare	in	the	management	of	NHL	and	CLL	it	 is	not	a	practice	

approach	in	lymphoid	disorders	except	ALL.		

	

There	is	preliminary	data	suggesting	the	benefit	of	a	radically	different	approach.	The	

Rezvani	laboratory	at	the	MD	Anderson	are	investigating	the	use	of	CD19	CAR	NK	cells.	

The	source	of	NK	cells	 is	from	their	 large	umbilical	cord	blood	bank	in	Houston,	USA.	

Whilst	 no	 data	 has	 yet	 been	 published,	 preliminary	 data	 from	 their	 phase	 1	 dose	

escalation	cohort	has	been	presented	in	small	meetings.	In	eight	patients	(5/8	had	CLL	

or	RIchters)	discussed,	there	was	no	CRS	like	toxicity,	and	6	patients	had	a	CR	(Rezvani,	

personal	communication).		

	

1.3.4.8		 Checkpoint	inhibition	combined	with	CAR	T	cells	

	

The	 evidence	 for	 exhausted	 T	 cells	 in	 CLL	 which	 could	 be	 predictive	 of	 CAR	 T	 cell	

efficacy,	the	use	of	such	checkpoint	inhibitors	to	improve	CAR	T	cell	function	is	alluring.	

There	is	very	preliminary	clinical	evidence	of	the	feasibility	of	this,	in	a	case	report	of	a	

patient	 with	 relapsed	 DLBCL	 which	 describes	 the	 use	 of	 pembrolizumab	 (anti-PD1	

monoclonal	 antibody),	 26	 days	 after	 receiving	 CAR	 T	 cells,	 he	 showed	 significant	

clinical	 improvement	ultimately	with	an	increase	in	CD4	and	CD8+	CAR	T	cells	and	an	

initial	 IL6	 response	 (249).	 This	 indicates	 the	 powerful	 potential	 of	 combining	

immunotherapy	 agents	 but	 the	difficulty	 in	 the	 very	 small	 number	of	 patients	 being	

treated	so	far.		

	

As	previously	discussed	abstract	data	from	ZUMA-1	had	indicated	the	high	prevalence	

and	upregulation	of	PD-L1	 in	progression	biopsies	 in	both	CD19+	and	CD19-	 relapses	

(190).	It	is	likely	that	CAR	T	cells,	like	regular	T	cells,	are	inhibited	by	PD-L1	expression,	
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and	 that	 administration	 of	 PD-1	 blockade	 may	 interrupt	 this	 interaction	 leading	 to	

increased	CAR	T	cytotoxicity	 (250).	Based	on	 the	ZUMA-1	subgroup	analysis	ZUMA-6	

was	launched,	the	phase	1	data	of	which	was	reported	at	ASH	2018.	This	analysis	looks	

at	 the	 safety	 and	 preliminary	 efficacy	 of	 axi-cel	 in	 combination	 with	 the	 anti-PD-L1	

antibody	 atezolizumab	 for	 four	 doses	 post	 CAR	 infusion	 in	 patients	 with	 refractory	

DLBCL.	 No	 new	 safety	 signal	 was	 identified	 and	 there	 were	 no	 deaths.	 Of	 the	 12	

patients	 who	were	 evaluable	 10	 had	 received	 all	 4	 doses	 of	 atezolizumab,	 the	 best	

overall	 response	 was	 7/12	 CR	 (58%),	 4/12	 PR	 (33%)	 and	 1	 PD.	 2	 patients	 that	 had	

initially	 had	 a	 PR	 converted	 to	CR	 at	 6	 and	9	months	 (251).	 There	 are	 other	 studies	

open	but	with	no	reported	results	of	combinations	including	the	Juno	CD19-41BB	CAR	

with	durvalumab	(NCT02706405)	in	Seattle,	the	CD19-41BB	CAR	with	pembrolizumab	

in	patients	with	DLBCL,	FL	and	MCL	(NCT02650999)	at	the	University	of	Pennsylvania	

and	 finally	 the	 CD19/CD22	 CAR	 in	 combination	 with	 pembrolizumab	 at	 University	

College	Hospital.	There	are	no	studies	of	such	combinations	in	CLL.	In	myeloma,	some	

patients	enrolled	on	a	BCMA	CAR	study	who	had	at	best	a	PR	from	this	therapy,	have	

been	 given	 pembrolizumab	 in	 combination	with	 other	 novel	 agents	 afterwards.	 The	

University	 of	 Pennsylvania	 immunotherapy	 group	 have	 described	 one	 patient	 who	

received	pembrolizumab	in	a	combination	the	patient	had	previously	been	refractory	

to,	resulting	in	transient	CAR	T	cell	expansion	and	temporary	response,	indicating	the	

promise	of	this	approach	across	disease	areas	(252).		

	

Rather	 than	 relying	 on	 antibody	 blockade	 it	 is	 perfectly	 feasible	 to	 disrupt	 the	 PD-

1/PD-L1	using	the	CAR	construct.	This	is	feasible	in	the	testing	of	allogeneic	CD19	CAR	

T	cells	 in	xenograft	mouse	models	with	CRISPR	mediated	gene	editing	of	PD-1	 in	the	

CAR	T	cells	to	render	them	nonresponse	to	PD-1	signalling	(253).	

	

1.4	 Conclusion	
	

CLL	 remains	 incurable	 with	 conventional	 CIT	 but	 improved	 molecular	 and	 genetic	

characterization	of	the	disease	has	identified	a	subpopulation	with	long	term	survival	

following	 standard	 of	 care	 FCR.	 There	 have	 been	 exciting	 developments	 in	 targeted	

therapies	which	 are	 better	 tolerated	 oral	medications	 suitable	 for	 patients	 unfit	 for	
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intensive	therapy.	CLL	is	amenable	to	cellular	therapies	as	indicated	by	the	long-term	

survival	seen	in	a	cohort	of	younger	fit	patients	with	CLL	who	have	had	HSCT.	Patients	

who	progress	on	 the	new	 targeted	 therapies	 should	be	considered	 for	novel	 cellular	

therapy	 approach	 such	 as	 CAR	 T	 cells.	 Whilst	 this	 is	 currently	 a	 small	 number	 of	

patients	it	could	be	expected	that	this	population	will	grow	as	more	patients	develop	

ibrutinib	and	venetoclax	resistance.	

	

The	first	two	autologous	CD19	CAR	T	cells	targeting	CD19	have	now	been	approved	for	

the	treatment	of	ALL	and	refractory	lymphomas.	Despite	impressive	responses	in	these	

diseases,	results	remain	consistent	in	CLL.	It	is	unknown	if	this	reflects	the	CAR	design	

or	an	effect	of	the	underlying	function	of	CLL	T	cells.	These	second-generation	CAR	T	

cells	require	CD28	or	41BB	co-stimulatory	signalling	domains,	but	they	have	not	been	

compared	directly	 in	humans	 in	CLL.	Pre-clinical	models	afford	the	opportunity	to	do	

so.	 However,	modelling	 of	 CAR	 T	 cells	 has	mostly	 been	 performed	 in	 vitro	 or	 using	

immunodeficient	 mice,	 which	 limits	 the	 ability	 to	 study	 more	 complex	 immune	

biology.	 CLL	 is	 associated	 with	 a	 tumour	 supportive	 microenvironment	 and	 T	 cells	

exhibit	multiple	defects	 including	decreased	proliferation,	aberrant	subsets,	 impaired	

effector	 function	and	 irregular	expression	of	exhaustion	 like	surface	markers	 such	as	

PD-1.	 These	 T	 cell	 defects	 in	 CLL	 are	 recapitulated	 in	 TCL1	 (TCL1)	 mice,	 and	 such	

defects	can	be	 induced	in	healthy	mice	by	adoptive	transfer	(AT)	of	murine	CLL	cells.	

We	aimed	 to	demonstrate	 the	effect	of	CLL	T	 cell	dysfunction	on	CAR	T	 cell	 efficacy	

and	compare	CD28	and	41BB	directly.		
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2.		 Hypothesis	and	Aims	

	

2.1	 Hypothesis	

	

The	 inefficiency	 of	 CAR	 T	 cells	 in	 CLL	 are	 contributed	 to	 by	 the	 defects	 in	 T	 cell	

function.	 Using	 the	 AT	mouse	model	 for	 CLL	 I	 will	 investigate	 and	 repair	 the	 T	 cell	

defect	to	improve	CAR	efficacy.	

	

2.2	 Aims	

	

1) To	 investigate	T	cell	 function	 in	vitro	 following	transduction	of	CD19	CAR	 into	

normal	WT	T	cells	versus	CLL	T	cells.	

2) Establish	the	AT	TCL1	mouse	model	as	an	in	vivo	model	of	CAR	T	cell	function	in	

an	 immunocompetent	 murine	 host	 following	 ex	 vivo	 transduction	 and	

expansion	of	T	cells	from	a	syngeneic	donor.	

3) To	model	 CAR	 function	using	 the	 TCL1	mouse	 comparing	different	CD19	CAR	

plasmids	transduced	into	both	normal	and	CLL	T	cells.	Compare	CAR	and	T	cell	

phenotype	before	and	following	CAR	infusion.		

4) Combining	CAR	T	cells	with	checkpoint	inhibitors	to	enhance	T	cell	function	by	

reversing	T	cell	exhaustion.		

5) Investigate	 the	 pretreatment	 of	 mice	 post	 AT	 TCL1	 with	 ibrutinib	 and	

acalabrutinib	to	optimize	CAR	phenotype	and	improve	efficacy.		
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3.		 Materials	and	Methods	

	

3.1	 TCL1	Mouse	Model	and	procedures	

	

3.1.1	 Background	

	

All	 animal	 work	 was	 carried	 out	 under	 Project	 Licence	 PPL	 70/7530	 and	 later	

P68650650,	which	has	been	updated	to	 include	all	 the	procedures	being	used	 in	this	

PhD.	 The	 original	 TCL1	 colony	 was	 established	 by	 Dr	 Fabienne	 McClanahan	 from	

breeding	pairs	provided	to	Professor	John	Gribben	by	Dr	Carlo	Croce	at	The	Ohio	State	

University,	Columbus,	Ohio,	USA.	My	personal	license	was	awarded	in	June	2015	and	I	

was	primarily	 responsible	 for	 the	colony	kept	 in	 the	Biological	Services	Unit	 (BSU)	at	

Charterhouse	Square	at	Barts	Cancer	Institute	(BCI)	from	July	2015-	March	2019.	The	

principles	 of	 the	 Three	 Rs,	 replacement,	 reduction	 and	 refinement	 were	 applied	

throughout	 the	 performed	 work.	 Because	 to	 study	 the	 interaction	 of	 a	 novel	

immunotherapeutic	strategy	such	as	CAR	T	cells	 in	the	treatment	of	CLL	requires	the	

interaction	of	both	CLL	and	the	microenvironment	no	suitable	cell	 line	would	replace	

this	 animal	 work.	 Reduction	 of	 animal	 usage	 is	 a	 constant	 consideration	 as	 the	

minimum	numbers	of	animals	were	used	for	in	experiments.	Refinement	refers	to	the	

vigorous	 procedures	 in	 place	 to	 ensure	mice	 are	 culled	 at	 defined	 endpoints	 below	

which	minimize	suffering	of	the	animals.		

	

The	 founder	 TCL1	mice	were	 backcrossed	 into	 the	wild	 type	mice	 C57BL/6	 and	 the	

colony	 is	maintained	 by	 breeding	 cages	with	 one	 heterozygote	 transgenic	male	 in	 a	

harem	with	 two	wild	 type	 (WT)	 females.	Male	 transgenic	breeders	are	paired	at	6-8	

weeks	 of	 age	with	WT	 females	 purchased	 from	Charles	 River	 laboratories,	UK.	Mice	

born	from	these	harems	can	be	WT	or	heterozygote	for	TCL1.	Litters	in	breeding	cages	

are	weaned	at	3-4	weeks,	ear-marked	and	genotyped	with	wild	type	mice	either	culled	

or	 used	 for	 optimization	 experiments.	 Depending	 on	 the	 need	 for	 aged	 mice,	

heterozygote	mice	(TCL1	mice)	were	aged	routinely	till	11	months	to	maintain	a	supply	

of	leukaemia	for	adoptive	transfer	and	in	vitro	experiments.	As	per	the	project	license,	
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beyond	11	months	 the	mice	need	 to	be	weighed	 regularly	with	weight	 loss	of	>15%	

deemed	as	ill	health	and	these	mice	were	euthanized.	However,	there	is	often	weight	

gain	in	these	animals	due	to	hepatosplenomegaly	and	the	mice	are	observed	regularly	

for	signs	of	ill	health	or	stress	such	as	hunched	posture,	ruffled	fur	or	lack	of	activity.	

Disease	 status	 was	 assessed	 primarily	 by	 immunophenotyping	 of	 PB	 but	 also	 by	

physical	examination	of	splenomegaly.	Mice	were	euthanized	as	stated	if	they	showed	

signs	of	 ill	health	or	 if	>70-80%	 lymphocytes	CD19+CD5+	CLL	cells.	Endpoints	 in	some	

experiments	varied	as	time	specific	or	disease	progression.		

	

3.1.2	 Processing	organs	

	

When	mice	were	culled,	I	harvested	organs	in	the	BSU	immediately	after	death	of	the	

mouse	 by	 cervical	 dislocation.	 Splenectomy	 was	 performed	 first	 and	 afterwards	 a	

femor	was	removed,	both	being	kept	on	ice	in	PBS	with	10-20%	FCS.	Cell	suspensions	

of	spleens	were	prepared	using	an	automated	tissue	dissociator	(Miltneyi	Biotec,	UK),	

erythrocytes	were	 lysed	using	 lysis	 buffer	 containing	 154.9	nM	NH4Cl,	 10mM	KHCO3	

and	 0.1mM	 ethylenedi-aminetetraacetic	 acid	 (EDTA)	 at	 pH	 7.2.	 The	 suspension	 was	

filtered	through	a	70μm	strainer	twice.	After	the	spleens	had	been	processed,	the	fat	

and	tissue	was	removed	from	the	femor	and	ends	of	the	bones	removed	leaving	only	

the	 femoral	 long	 bone	 and	 bone	 marrow.	 Bones	 were	 crushed	 with	 a	 mortar	 and	

pestle	 and	 then	 filtered	 through	 a	 70μm	 strainer.	 Bone	 marrow	 erythrocytes	 were	

then	lysed.	All	centrifugation	steps	for	mouse	organs	were	performed	at	1200rpm	for	

5-7	 minutes	 at	 4°C.	 Cells	 were	 used	 fresh	 or	 cryopreservation	 was	 performed	 by	

concentrating	cells	to	a	maximum	density	of	200	x106cells/ml	in	media	plus	10%	DMSO	

and	freezing	in	1ml	ampules	in	a	Mr	Frosty	container	at	-80°C	and	subsequent	transfer	

into	liquid	nitrogen.	Cell	counting	was	determined	by	an	automated	dual	fluorescence	

(acridine	 orange/propidium	 iodide	 stain)	 or	 brightfield	 haemocytometer	 (Logos	

Biosystems,	South	Korea).	

	

As	transgenic	mice	age	and	after	AT	experiments	the	primary	determinant	of	disease	

status	monitoring	 is	 the	 CD5+CD19+%	 in	 their	 PB	which	 correlates	most	 closely	with	

splenomegaly	and	general	assessment	of	health.	 It	also	allows	for	early	 identification	
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of	 the	 small	 but	 significant	 percentage	 of	 TCL1	 transgenic	 mice	 which	 develop	 non	

CD5+CD19+	causes	of	splenomegaly	so	they	can	be	culled.	To	obtain	PB	mice	were	pre-

warmed	in	a	heating	chamber	in	LG08	procedure	room	in	BSU.	A	technician	from	the	

Animal	Tech	Service	(ATS)	assisted	with	all	procedures.	After	warming	the	mice	were	

removed	 from	 the	 chamber	 and	 placed	 in	 a	 restrainer.	 Their	 tail	 vein	 is	 punctured	

using	a	25G	needle	and	the	other	assistant	uses	a	200µl	pipette	set	to	50µl	to	transfer	

blood	 to	 a	 1.5ml	 Eppendorf	 containing	 5µl	 of	 EDTA.	 A	 second	 venepuncture	 was	

permitted	 if	 insufficient	blood	was	obtained	after	 the	 first	 attempt.	 The	 sample	was	

placed	 on	 ice	 and	 transferred	 to	 the	 lab	 for	 processing.	 For	 a	 limited	 number	 of	

experiments	 20µl	 was	 taken	 off	 at	 this	 point	 and	 placed	 in	 a	 second	 Eppendorf	 for	

centrifugation	 to	obtain	plasma.	Red	 cell	 lysis	was	 then	added	at	 room	 temperature	

and	 left	 for	 5-10	 minutes.	 This	 was	 then	 transferred	 to	 5ml	 polypropylene	 round	

bottom	tubes	(flow	tubes),	cells	were	washed	with	PBS	to	stop	the	reaction	then	red	

cell	 lysis	was	 repeated.	 At	 this	 point	 the	 PB	 single	 cell	 suspension	was	 analysed	 for	

CD5+CD19+	or	for	more	detailed	T	cell	and	CAR	phenotyping	panels.		

	

3.1.3	 Negative	selection	of	CLL	and	T	cells	

	

Negative	 selection	 of	 both	 CLL/B	 cells	 and	 T	 cells	 were	 required	 for	 AT	 of	 CLL	 and	

production	of	CAR	T	cells.	Such	cells	must	be	enriched	and	not	left	with	antibodies	or	

beads	attached	as	 they	are	 injected	 into	mice.	For	T	 cells	 the	eBioscience	Magnisort	

negative	 selection	 kit	 was	 used	 as	 per	 the	 manufacturers	 instructions.	 Briefly,	 cell	

suspensions	were	 resuspended	 in	 PBS	 at	 10x106	 cells/100µl	 in	 5ml	 flow	 tubes.	 First	

20µl/100µl	cells	of	antibody	cocktail	was	added,	the	cells	were	vortexed	5	times	and	

incubated	 at	 RT	 for	 10	 minutes.	 Cells	 were	 washed	 and	 resuspended	 in	 the	 same	

volume	 of	 PBS,	 after	 which	 20µl/100µl	 negative	 selection	 beads	 were	 added	 and	

incubated	for	5	minutes.	The	volume	was	brought	up	to	2.5ml	and	resuspended	and	

the	tube	placed	in	a	MPC-50	magnet.	After	5	minutes,	the	supernatant	from	the	tube	

was	poured	into	a	new	5ml	tube	to	leave	negatively	selected	cells.		
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For	 CLL/B	 cells	 the	 Miltenyi	 mouse	 Pan-B	 cell	 isolation	 kit	 was	 used	 as	 per	 the	

manufacturers	 instructions.	Briefly,	 cell	number	was	determined	and	 resuspended	 in	

40µl	MACS	buffer	per	107	cells.	First	10µl	of	biotin-antibody	cocktail	was	added	per	107	

cells.	After	incubation	for	5	minutes	30µl	buffer	per	107	cells	was	added.	Then	20µl	of	

anti-biotin	beads	were	added,	mixed	and	incubated	for	10	minutes	at	5°C.	LS	columns	

with	 a	 maximum	 capacity	 of	 2x109	 cell	 were	 placed	 in	 a	 magnetic	 field	 in	 a	 MACS	

separator.	The	column	was	first	washed	with	buffer,	then	the	labelled	cell	suspension	

was	applied	to	the	column	and	collected	into	a	15ml	falcon	tube.	As	much	as	possible	

cell	suspensions	and	reagents	were	kept	on	ice.	The	kit	used	selects	for	CD19+	so	does	

not	 distinguish	 between	 normal	 B	 cells	 and	 malignant	 CLL	 cells	 and	 so	 both	

populations	would	be	enriched.		

	

3.1.4	 Adoptive	Transfer	(AT)	of	TCL1	cells	

	

To	establish	TCL1	leukaemic	mice	by	AT	young	WT	litter	mates	from	the	TCL1	colony	or	

C57BL/6	 mice	 (males	 and	 females)	 aged	 10-12	 weeks	 were	 obtained	 from	 Charles	

River.	 They	 received	 10-40x106	 frozen	 and	 thawed	 syngeneic	 splenocytes	 by	

intravenous	 tail	 vein	 injection	 from	 pooled	 leukaemic	 TCL1	 donors	 to	 ensure	 an	

identical	composition	of	donor	cells.	Mice	were	injected	after	pre-warming	in	a	heating	

chamber	 in	 LG08	 in	 BSU	 using	 U-100	 insulin	 needles	 (BD	 Micro-Fine).	 Mice	 were	

typically	injected	with	125µl	of	cell	suspension	(5ml/kg).	Prior	to	AT	splenocytes	were	

purified	using	a	Pan-B	cell	Isolation	Kit	(Miltenyi)	to	ensure	CD19+	cells	are	>95%.	Mice	

were	 given	 lymphocyte	 depleting	 chemotherapy	 conditioning	 for	 CAR	 T	 cells	 with	

intraperitoneal	 cyclophosphamide	 one	 day	 before	 intravenous	 tail	 vein	 injection	 of	

CAR	T	cells.	Conditioning	was	commenced	2-3	weeks	after	AT	of	TCL1	after	confirmed	

engraftment	of	CLL	in	the	PB.	After	AT	mice	were	monitored	for	signs	of	ill	health,	with	

tail	 vein	 bleeds	 every	 1-2	 weeks	 (or	 longer	 if	 disease	 was	 in	 a	 steady	 state	 of	

remission).	Again,	they	were	culled	if	they	showed	signs	of	illness	or	distress,	or	their	

PB	CD5+CD19+	was	rapidly	rising	>70-80%.		
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3.1.4	 Additional	experimental	drugs	

	

Additional	 drugs	 were	 given	 to	 experimental	 mice	 by	 intraperitoneal	 injection,	 the	

maximum	volume	is	as	per	defined	in	the	project	license	at	10mg/kg	and	usually	200µl.	

Drugs	were	made	in	batches	by	dissolving	in	sterile	PBS	so	all	mice	received	the	same	

batch	 of	 a	 drug	 within	 the	 same	 experiment	 date.	 Cyclophosphamide	 was	 given	 at	

100mg/kg	as	a	 stat	dose	D-1	prior	 to	CAR	T	 cells	 in	all	mice	 receiving	CAR	T	 cells	or	

untransduced	control	T	cells.	PD-L1	blocking	antibody	(αPD-L1),	the	murine	equivalent	

to	durvalumab	 (AstroZeneca)	was	obtained	directly	 from	the	drug	company	and	was	

given	at	10mg/kg	by	intraperitoneal	injection	every	72	hours	starting	D-1	prior	to	CAR	

T	cells	 in	the	mice	given	this	combination.	Two	oral	BTKi	were	given	continuously	via	

drinking	water	with	the	drug	dissolved	using	a	vehicle,	2-hydroxypropyl-β-cyclodextrin	

(HPBD)	with	both	ibrutinib	and	acalabrutinib	(Acerta)	given	at	the	same	concentration	

(0.15mg/l).	

	

3.2	 CAR	plasmids	

	

3.2.1	 MD	Anderson	Cancer	Center	(MDACC)	

	

The	retroviral	murine	pRV2011G	CD19	1D3-28Z	1-3	plasmid	(MDA)	with	the	first	and	

third	 immunoreceptor	 tyrosine-based	 activation	motifs	 (ITAM)	of	 the	CD3ζ	molecule	

inactivated,	and	the	gp75	control	plasmid	were	designed	and	constructed	by	Professor	

Laurence	Cooper	from	the	University	of	Texas	MD	Anderson	Cancer	Center	and	were	a	

kind	 gift	 to	 our	 centre.	 The	 CD19	 antibody	 sequence	 is	 derived	 from	 the	 1D3	

hybridoma	 from	 American	 Type	 Culture	 Collection	 (ATCC)	 that	 secretes	 a	 rat	 anti-

mouse	 CD19	 antibody	 that	 specifically	 recognizes	 murine	 CD19	 and	 the	 construct	

contains	the	CD28	co-stimulatory	domain.	The	original	plasmids	were	received	in	June	

2013	as	the	MDACC	has	an	ongoing	Materials	Transfer	Agreement	(MTA)	with	BCI.	The	

TA99	CAR	plasmid	is	targeted	at	TYRP-1	(gp75),	a	melanoma-associated-antigen	that	is	

physiologically	 associated	 with	 processes	 in	 melanocytes	 such	 as	 melanin	 synthesis	

and	melanosomal	maturation	(254).	This	CAR	was	intended	to	be	used	as	an	inactive	

CAR	control	in	in	vitro	and	in	vivo	experiments.	Plasmid	maps	are	shown	in	Appendix	1.	
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To	facilitate	easy	identification	of	gene	transfer	and	downstream	experiments	both	the	

original	 MDA	 plasmids	 CD19-CD28	 and	 TA99	 had	 the	 fluorescent	 protein	 mCherry	

inserted	 at	 an	 appropriate	 point	 in	 their	 sequence	 (herein	 called	 the	 mCherry	

plasmids).	The	original	unmodified	FASTA	sequences	were	obtained	from	the	MDA	and	

restriction	enzymes	identified.	After	consultation	with	Dr	Tanya	Klymenko	we	decided	

to	 insert	 the	 red	 fluorescent	 protein	 (RFP)	mCherry	with	 a	CMV	promoter	 into	both	

plasmids.	mCherry	is	photostable	and	much	smaller	in	terms	of	molecular	weight	then	

the	 alternate	 RFP	 (255).	 For	 the	 MDA-CD19	 plasmid	 mCherry	 was	 inserted	 at	 SapI	

(position	5597),	and	into	both	MDA-CD19	(position	7777)	and	TA99	(position	8636)	at	

Nde1.	As	mCherry+CMV	contains	Nde1	already	we	altered	 the	mCherry	 sequence	 to	

contain	a	degenerate	Nde1	changing	CAêTATG	to	GAêTATG.	This	work	was	sent	 to	

Genscript	 (New	 Jersey,	USA)	 and	 I	 received	 them	on	15th	 September	 2016	 (mCherry	

plasmids),	

	

3.2.2	 Memorial	Sloan	Kettering	Cancer	Center	(MSKCC)	

	

The	 retroviral	 murine	 plasmids	 SFG-m19BBmZ-GFP	 (41BB-GFP),	 SFG-m1928z-GFP	

(CD28-GFP)	and	SFG-137L-2A-m1928z	(CD137L-GFP)	were	received	as	a	kind	gift	from	

Dr	Michel	Sadelain’s	laboratory	at	the	Memorial	Sloan	Kettering	Cancer	Center	on	30th	

October	2016.	The	FASTA	sequences	were	also	received	by	email.	The	m1928z	plasmid	

is	 the	 CD19-CD28	 CAR	 used	 in	 an	 immunocompetent	mouse	model	 of	 B-ALL	 by	 the	

same	 laboratory	 (145),	 along	 with	 two	 variants	 of	 the	 co-stimulatory	 domains	

combined	with	CD19.	 The	CD8	 transmembrane	 region,	 CD28	 co-stimulatory	domain,	

and	mouse	CD3ζ	were	 cloned	 from	C57BL/6	mouse	 splenocytes.	 These	plasmids	use	

the	 high-titre,	 Moloney	 murine	 leukaemia	 virus-derived	 SFG,	 a	 variant	 of	 the	 MFG	

gamma-retroviral	 vector	 and	 CD19	 component	 is	 derived	 from	 the	 1D3	 hybridoma.	

Each	 of	 the	 plasmids	 contain	 green	 fluorescent	 protein	 (GFP)	 to	 simplify	 the	

assessment	of	gene	transfer	and	in	downstream	experiments	(Appendix	2).	
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3.2.3	 National	Cancer	Institute	(NCI)	

	

The	 retroviral	 murine	 plasmid	 MSGV-1D3-28Z-1.3mut	 was	 designed	 by	 Dr	 James	

Korchenderfer	 at	 the	NCI,	 Bethesda	 and	 the	CD19	antibody	 is	 also	derived	 from	 the	

1D3	hybridoma.	 Its	construction	and	design	was	 first	described	 in	2009	 (149).	 It	also	

contains	 the	 CD28	 co-stimulatory	 domain	 and	 the	 cytoplasmic	 region	 of	 CD3ζ	 both	

from	mouse.	The	1D3-28Z	sequence	was	inserted	into	the	mouse	stem	cell	virus-based	

splice	–gag	vector	(MSGV)	retroviral	backbone.	The	current	construct,	1D3-28Z-1.3mut	

has	 the	 first	 and	 third	 ITAM	 of	 the	 CD3ζ	 inactivated,	 which	 has	 been	 shown	 to	

decrease	 the	apoptosis	of	 T	 cells	 (256).	 It	 doesn’t	 contain	 a	 fluorescent	marker.	 The	

plasmid	was	received	from	CALIBR	(San	Diego,	USA)	on	27th	February	2017	after	a	MTA	

was	kindly	signed	by	Dr	Kochenderfer	at	the	NCI.	This	plasmid	has	been	reported	in	a	

murine	model	of	CD19+	lymphoma	(146).	Plasmid	map	is	shown	in	appendix	3.	

	

3.2.4	 Transformation	and	amplification	

	

GFP,	mCherry	and	NCI	plasmids	were	received	at	room	temperature	and	centrifuged	at	

5000g	 for	 1	 minute	 at	 4°C.	 The	 vial	 was	 then	 opened	 and	 20μl	 of	 sterilized	 water	

added.	 The	 lid	was	 closed	 and	 the	 vial	 vortexed,	 followed	by	 15	minutes	 at	 50°C	 to	

dissolve	 the	 DNA.	 Subcloning	 efficiency	 DH5α	 e-coli	 or	 STbl3	 competent	 cells	 were	

taken	 out	 of	 -80°C	 (previously	 aliquoted	 50μL	 into	 eppendorfs)	 and	 thawed	 on	 ice.	

Plasmid	DNA	(200ng)	was	mixed	into	50μl	aliquot	of	E-coli	for	10	minutes.	Heat	shock	

transformation	by	placing	the	lower	1-2	thirds	of	the	tube	into	a	42°C	water	bath	for	

30-60	seconds	followed	by	3	minutes	on	ice.	Add	in	500μl	of	warmed	lysogeny	broth	

(LB)	 and	 grow	 in	 37°C	 shaking	 incubator	 for	 45	 minutes.	 All	 plasmids	 carry	 the	

ampicillin	antibiotic	resistance	gene.	Single	colonies	were	selected	and	inoculated	into	

LB	broth	containing	ampicillin	in	an	Erlenmyer	flask	(100μg	ampicillin/ml	medium)	and	

left	 overnight	 at	 37°C	 in	 a	 shaking	 incubator.	 After	 confirming	 visually	 bacteria	 has	

grown	and	repeatedly	pour	cell	suspension	into	a	50ml	falcon	tube	and	centrifuge	at	

2500rpm	for	30	minutes	per	tube	to	pellet	cells.	To	recover	plasmid	DNA	the	Plasmid	

Midi	 Kit	 (Qiagen,	 UK)	was	 used	 following	 the	manufacturers	 instructions.	 The	 pellet	

was	 resuspended	 in	 buffer	 and	 LyseBlue	 reagent	 applied,	 after	 added	 precipitation	
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buffer	the	lysate	was	transferred	to	the	QIAfilter	cartridge	which	was	filtered	into	the	

HiSpeed	 Tip.	 DNA	 was	 eluted	 and	 precipitated	 with	 isopropanol	 and	 the	

QIAprecipitator.	The	eluate	was	concentrated	using	the	SpeedVac	set	on	low	heat.	The	

concentration	 and	 purity	 of	 the	 plasmids	 was	 measured	 on	 the	 NanoDropTM	

spectrophotometer	(Thermo	Scientific).		

	

Confirmatory	restriction	enzyme	digestion	was	performed	on	MDA	and	GFP	plasmids	

to	 verify	 the	purified	plasmids.	NdeI	 and	SalI	were	used	 to	 cleave	 the	MD	Anderson	

plasmid	DNA	prior	to	insertion	of	mCherry	and	SapI	was	used	to	confirm	it	as	a	cutting	

site	for	mCherry.	EcoRI,	NotI,	StuI	and	PmlI	were	used	to	cleave	the	plasmid	DNA	of	the	

GFP	plasmids	and	confirm	their	 identity	(all	enzymes	from	New	England	Biolabs,	UK).	

For	a	total	of	11μl,	1μl	of	plasmid	DNA,	1μl	enzyme,	8μl	of	nuclease	free	water	and	1μl	

of	 buffer	 were	 mixed	 in	 PCR	 tubes	 and	 left	 in	 the	 thermocycler	 overnight	 at	 the	

appropriate	temperature	and	time	for	each	enzyme	(generally	37°C	for	12	hours	then	

4°C).	DNA	was	separated	by	gel	electrophoresis	and	samples	were	ran	on	agarose	gel	

with	a	1kB	ladder.	

	

3.3	 Cell	culture	and	retroviral	methods	

	

3.3.1	 Transfection	of	phoenix/platinum-eco	cells	

	

Transfection	 experiments	were	 originally	 carried	 out	with	 Phoenix-amphotropic	 cells	

(gift	 from	 Dr	 Sergey	 Krysov,	 February	 2016)	 having	 obtained	 these	 cells	 from	

Southampton	University.	 Platinum-ecotropic	 cells	were	 received	on	16th	March	2017	

(Generon,	UK).	Phoenix	or	platinum-eco	cell	lines	are	packaging	cells	used	to	produce	a	

retroviral	 supernatant	 after	 transient	 transfection	 by	 plasmids	 encoding	

gammaretroviral	vectors.	These	lines	are	derived	from	293T	cells	(a	human	embryonic	

kidney	line	transformed	with	adenovirus).	Retroviral	packaging	systems	offer	the	main	

advantage	that	 their	 integration	 into	 the	host	genome	allows	 for	stable	 transmission	

through	 cell	 division.	 This	 ensures	 the	 retroviral	 construct	 will	 remain	 resident	 and	

continue	to	express.		

	



	

78	

The	original	transfection/transduction	protocol	is	derived	from	the	Sadelain	laboratory	

(MSKCC)	used	in	an	immunocompetent	mouse	model	of	ALL	(145)	but	also	published	

in	full	here	(257),	which	I	have	optimized.	Phoenix/platinum	cells	were	plated	in	10cm	

tissue	culture	plates	or	75cm2	cell	culture	flasks,	after	previously	coating	with	poly-L-

lysine.	 The	 day	 before	 transfection,	 I	 seeded	 2-5	 x	 106	 cells.	 After	 16-24	 hours,	

transfection	was	started	when	the	cultures	became	70-80%	confluent.	I	aspirated	the	

culture	medium	 and	 rinsed	with	 PBS,	 then	 added	 back	 7ml	 of	 culture	medium.	 In	 a	

500μl	 eppendorf,	 dilute	 10-40μg	 of	 plasmid	 DNA	 into	 jetPRIME	 buffer,	 mix	 by	

vortexing.	Add	20-40μl	jetPRIME,	vortex	and	incubate	at	room	temperature	(RT)	for	10	

minutes.	 Add	 the	 transfection	 mix	 drop	 wise	 onto	 the	 cells.	 If	 needed,	 replace	

transfection	medium	after	4-8	hours	with	fresh	medium.	Plates/flasks	are	cultured	in	

DMEM,	 10%	 FCS,	 and	 100U/ml	 penicillin	 and	 100μg/ml	 streptomycin	 and	 are	

incubated	at	37°C	in	5%	CO2.	At	48,	72	and	96	hours,	viral	supernatant	was	collected,	

either	filtered	through	a	0.45μm	filter	or	centrifuged	at	300g	for	5	minutes	and	either	

used	 fresh	supernatant	 for	 transduction	or	 snap	 freeze	at	 -80°C	 in	cryovials	 for	 later	

use.	 In	 later	experiments,	 retroviral	 supernatant	was	pooled	and	 concentrated	using	

Retro-X	(Clontech)	as	per	manufacturers	instructions	and	resuspended	in	enough	RPMI	

for	the	required	experiment	and	then	used	fresh.	

	

The	above	transfections	were	also	scaled	down	into	6	well	plates,	in	experiments	using	

plasmids	 with	 fluorescent	 markers,	 with	 visual	 fluorescence	 confirmed	 at	 48	 hours	

using	 a	 fluorescent	 microscope	 in	 those	 transfections	 using	 a	 fluorescent	 marked	

plasmid.		

	

3.3.2	 Transduction	of	mouse	T-cells	

	

Single	cell	 suspensions	of	mouse	splenocytes	were	prepared	as	previously	described.	

The	 T	 cell	 population	was	 negatively	 selected	 using	 a	magnetic	 antibody	 cocktail	 kit	

(eBioscience	Magnisort	Mouse	T	cell	enrichment	kit)	according	 to	 the	manufacturers	

instructions.	Enriched	mouse	T	cells	are	activated	for	24	hours	using	either	CD3/CD28	

Dynabeads	 (Invitrogen)	 or	 antibodies	 and	 recombinant	 human	 (hIL2)	 or	 mouse	 IL2	

(mIL2).	Prior	to	use	Dynabeads	were	washed	by	diluting	the	required	number	of	beads	
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(25µl/1x106	T	 cells	or	10x106	 cells)	 in	PBS	with	0.5%	FCS	 in	a	FACS	 tube,	placing	 the	

suspended	beads	in	a	MPC-50	magnet,	aspirating	the	PBS/FCS	solution	and	repeating	

for	three	washes.	Activated	mouse	T	cells	were	transduced	at	various	concentrations	

as	part	of	optimization	experiments,	using	fresh	or	thawed	viral	supernatant	in	6	or	24	

well	plates	coated	with	RetroNectin	(15µg/ml	in	PBS).	Typically,	T	cells	were	activated	

at	1	x	106	cells/ml	with	20	units	of	mIL2	for	24	hours,	and	then	resuspended	at	3	x	106	

cells/ml	with	80	units	of	mIL2	for	transduction.	In	6	well	plates	1ml	of	cell	suspension	

was	added	to	1ml	fresh	or	thawed	viral	supernatant	and	spun	at	2000g	for	1	hour	at	

30°C.	After	24	hours	at	37°C,	1ml	of	medium	was	aspirated,	 replaced	with	1ml	 viral	

supernatant	and	again	spinoculated	under	the	same	conditions.	From	day	3	cells	were	

maintained	at	a	concentration	of	1-2	x	106	cells/ml	for	expansion	and	on	alternate	days	

fresh	 RPMI	 with	 20	 units	 of	 mIL2	 was	 supplemented.	 Transduction	 efficiency	 was	

analyzed	from	day	3-5	onwards	depending	on	the	experiment.		

	

	

	
	

Figure	3.1:	 Transfection	 of	 packaging	 cells	 with	 CAR	 plasmid	 to	 make	 retroviral	

supernatant	used	to	transduce	enriched	and	activated	mouse	T	cells.		
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Following	 the	 original	 Sadelain	 protocol	 recommended	 the	 use	 of	mIL2	 from	Roche.	

However,	 there	 is	 no	WHO	 standard	unit	 for	mIL2	 (unlike	hIL2),	 and	 I	 experimented	

with	different	mIL2	from	R&D	Systems	(Minneapolis,	USA)	when	trying	to	optimize	my	

T	cell	rapid	expansion	protocol	which	required	titration.		

	

3.3.3	 Transduction	of	HEK/3T3	fibroblasts	

	

To	 attempt	 to	 determine	 the	 multiplicity	 of	 infection	 (MOI),	 supernatant	 from	 the	

plasmid	transfections	were	harvested	and	serial	dilutions	used	to	culture	293T	human	

embryonic	 kidney	 (HEK)	 cells	 seeded	 in	6	well	 plates	18	hours	previously.	 Polybrene	

was	also	added	at	8-16μg/ml	to	 increased	transduction	efficiency.	After	48	hours	the	

supernatant	was	removed,	cells	were	trypsinised	from	the	plates	and	resuspended	in	

Fluorescence	Analyser	and	Cells	Sorter	 (FACS)	buffer	and	the	proportion	of	cells	 that	

were	 GFP	 or	 mCherry	 positive	 were	 assessed	 by	 flow	 cytometry	 (see	 section	 3.4).		

Because	 of	 low	 transduction	 efficiencies	 HEK	 as	 well	 as	 and	 mouse	 3T3	 fibroblasts	

(3T3)	 and	 pancreatic	 adenocarcinoma	 (PDAC)	 cells	 were	 used	 to	 test	 various	 viral	

supernatants	as	these	cells	are	easier	to	transduce	than	mouse	T	cells.		

	

3.4	 Flow	cytometry	

	

3.4.1	 Surface	staining	

	

Immunophenotyping	 was	 performed	 by	 multicolour	 flow	 cytometry	 with	 surface	

staining	using	anti-CD5,	CD19,	CD3,	CD4,	CD8,	CD44,	CD62L,	PD-L1	and	PD-1	antibodies	

available	 from	 eBioscience,	 BD	 Bioscience	 or	 BioLegend	 (all	 San	 Diego,	 USA).	 After	

modification	the	MDA	plasmid	contains	mCherry,	and	the	MSK	plasmid	came	with	GFP	

already,	which	is	an	important	feature	to	assess	gene	transfer	and	monitor	transduced	

T	 cells	 in	 downstream	 experiments	 as	 it	 allows	 direct	 detection	 by	 flow	 cytometry.	

Surface	 staining	was	 performed	 in	 FACS	 buffer	 (PBS/2%	 FCS)	 for	 30	minutes	 at	 4°C.	

After	washing	twice,	samples	were	analysed	on	a	four	laser	BD	LSR	Fortessa	Analyzer	

after	 resuspension	 in	 FACS	 buffer	 containing	 4’6-diamidino-2-phenylindole	 (DAPI)	 to	

allow	 live/dead	 cell	 discrimination.	 Cells	 transduced	with	 a	 GFP	 or	mCherry	 plasmid	
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required	 washing	 and	 then	 were	 resuspended	 in	 FACS	 buffer	 to	 determine	

transduction	efficiency.	DAPI-,	viable,	single	mononuclear	cells	were	used	for	analysis,	

and	fluorescence-min-one	(FMO)	and	untransduced	T	cell	negative	controls	were	used	

as	required.	Compensation	beads	coated	with	an	antibody	for	each	fluorochrome	used	

in	 a	 specific	 panel	 were	 used.	 The	 compensation	 matrix	 was	 then	 applied	 to	 all	

samples	 in	 that	 experiment.	 Specific	 populations	 were	 generally	 expressed	 as	 a	

percentage	of	a	defined	parent	population.	Stopping	gates	and	recorded	events	varied	

in	 different	 experiments	 but	 were	 usually	 determined	 on	 viable	 or	 T	 cell	 events	 if	

possible	recording	10,000	events	or	to	complete	aspiration	of	the	flow	tube.	Recorded	

data	was	exported	as	.FCS	files	and	analysed	with	FlowJo	software.	

	

	

Figure	3.2:	 Typical	 initial	 gating	 strategy	 adopted	 prior	 to	 selection	 of	 cells	 of	

interest.	If	possible,	10,000	viable	(DAPI-)	mononuclear	cells	of	interest	were	collected,	

usually	either	CD5+CD19+	CLL	cells	or	CD3+/CD4+/CD8+	cells,	alternatively	the	flow	tube	

was	run	until	near	completely	aspirated.	For	rare	T	cell	populations	particularly	CAR+	

cells	an	additional	CD19-	gate	was	used	prior	to	selection	of	T	cells.		

	

Protein	L	 is	a	bacterial	 surface	protein	 isolated	 from	Peptostrepococcus	magnus	 that	

selectively	 binds	 to	 variable	 light	 chains	 (kappa	 chain)	 of	 immunoglobulin	 without	

interfering	with	antigen	binding	properties	of	the	antibodies.	It	binds	to	light	chain	of	

all	 classes	of	 immunoglobulin	and	 it	also	binds	 single-chain	antibody	 fragments	 scFv.	

This	 has	 been	 validated	 in	 human	 and	 murine	 derived	 scFvs	 and	 in	 different	 CARs	

(258).	 Other	 groups	 have	 used	 anti-rat-F(ab)2	 antibodies	 (herein	 fab	 antibodies	 -	

Jackson	ImmunoResearch	Laboratories)	to	detect	the	1D3	scFv		(146).	The	fab	antibody	

is	 a	 biotin	 conjugated	 antibody	 so	 must	 be	 used	 with	 a	 secondary	 streptavidin	

flourochrome	such	as	phycoerythrin	(PE).	
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3.4.2	 Cytotoxicity	
	

Flow	 cytometry	 based	 assays	 will	 be	 used	 to	 determine	 CAR	 T	 cell	 cytotoxicity	 to	

primary	CLL	cells.	CellTrace	Yellow/Red	Cell	Proliferation	Kit	(Thermo	Fisher	Scientific)	

was	used	to	label	enriched	and	negatively	selected	CLL	cells,	taken	from	from	a	spleen	

single	 cell	 suspension	 from	 an	 aged	 TCL1	 mouse	 with	 confirmed	 high	 CD5+CD19+	

disease.	To	label	cells	up	to	5	x107	cells	were	resuspended	in	warmed	PBS	/5%	FCS	and	

transferred	 to	 a	 15ml	 Falcon	 tube	 wrapped	 in	 aluminium	 foil.	 CellTrace	 Yellow/Red	

staining	solution	was	added	(1:500	dilution)	and	the	falcon	tube	was	incubated	at	37°C	

for	 20	 minutes.	 Complete	 culture	 medium	 was	 added	 to	 end	 the	 reaction,	 cells	

pelleted	to	remove	the	supernatant	and	then	between	1	x105-106	cells	were	incubated	

in	 a	 96	well	 plate	 for	 up	 to	 72	 hours	with	 transduced	CAR	 T	 cells	 at	 different	 T	 cell	

effector:	target	cell	ratios;	5:1,	1:1,	0.3:1	and	0.1:1.	Samples	were	taken	at	24,	48	and	

72	hour	time	points	for	analysis	by	flow	cytometry	to	look	at	CD3,	CD4,	CD8	and	CAR+	

(Fab+	and	GFP+)	and	determine	loss	of	B	cells	and	T	cell	proliferation.	T	cells	were	also	

phenotyped	at	the	end	of	the	cytotoxicity	experiment	as	per	the	surface	staining	panel	

previously	described.	When	samples	were	being	prepared	to	flow	cytometry	samples	

were	 resuspended	 in	 FACS	 buffer	 with	 counting	 beads	 to	 ensure	 equal	 numbers	 of	

events	were	counted	for	each	condition.		

	

Intracellular	 cytokine	 staining	 assays	 on	 permeabilized	 cells	 staining	 for	 interferon-γ	

(IFNγ)	 and	 interleukin-2	 (IL2)	 after	 incubation	 with	 primary	 CLL	 cells	 for	 5	 hours	 to	

determine	 the	 percentages	 of	 transduced	 T	 cells	 that	 produce	 these	 cytokines	 in	 a	

CD19	specific	manner	will	be	calculated.	

	

3.5	 Cytokines	
	

For	 the	 final	 experiment,	 for	 each	 of	 the	 tail	 vein	 bleeds	 post	 CAR	 T	 cell	 injection	

plasma	was	obtained	first.	After	tail	vein	blood	was	obtained	as	described	previously,	

20µl	of	blood	anticoagulated	with	EDTA	was	spun	in	a	fresh	500µl	eppendforf	at	1200g	

for	10	minutes.	Carefully,	10µl	of	plasma	was	 transferred	 to	a	new	500µl	eppendforf	

and	 stored	 at	 -22°C	 for	 later	 analysis.	 The	Mouse	Th	Cytokine	Panel	 (BioLegend,	 San	
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Diego	CA)	 	 is	 a	bead-based	multiplex	assay	panel,	using	 flourescence-encoded	beads.	

The	panel	selected	detects	IFN-γ,	TNF-α,	IL2,	IL6	and	IL10.	The	assay	was	performed	as	

per	manufacturers	 instructions,	 but	 briefly	 standards	were	 set	 up	 using	 the	 cytokine	

standard	cocktail.	Plasma	samples	were	diluted	1:1	in	assay	buffer	and	suspended	with	

beads	and	detection	antibodies	in	a	96	well	plate,	covered	with	aluminium	foil	and	put	

on	 a	 plate	 shaker	 at	 600rpm	 for	 2	 hours	 at	 room	 temperature.	 The	 streptavidin-PE	

antibody	was	subsequently	added	and	then	placed	on	a	plate	shaker	again	at	600rpm	

for	 30	 minutes.	 After	 washing	 with	 wash	 buffer	 samples	 were	 read	 on	 a	 flow	

cytometer.	Data	(FCS	files)	were	analysed	using	the	LEGENDplex	Data	Analysis	Software	

as	provided	by	the	manufacturers.		

	

3.6	 Statistics	
	

Differences	between	the	phenotypes	by	flow	cytometry	of	CAR	T	cells	were	frequently	

only	described	as	there	was	no	biological	replicate	in	such	experiments	in	that	only	one	

batch	of	CAR	T	cell	product	of	each	type	was	produced	due	to	the	technical	challenges	

in	 producing	 these	 cells.	 Datasets	 were	 subjected	 to	 normality	 testing	 using	 the	

Shapiro-Wilk	and	D’Augostino	and	Pearson	normality	tests.	To	compare	the	phenotype	

of	 groups	 of	 mice	 if	 parametric	 I	 used	 one-way	 ANOVA	 (with	 Tukey’s	 multiple	

comparison)	 to	 compare	 all	 means	 of	 percentage	 expression	 against	 each	 other	

between	 experimental	 groups.	 For	 non-parametric	 data	 Kruskal-Wallis	 with	 Dunn’s	

multiple	 comparisons	 was	 performed.	 In	 all	 figures	 in	 this	 thesis	 and	 where	 stated,	

P<0.5	was	considered	statistically	significant,	with	different	significance	 levels	defined	

as	 follows	 (*P<0.05,	**P<0.01,	***P<0.001,	****P<0.0001).	Analyses	were	performed	

using	Prism	Version	8	for	Mac.	

	

	 	



	

84	

4.		 Breeding	and	maintenance	of	transgenic	TCL1	mice	and	AT	CLL	

	

4.1	 Introduction	

	

I	 took	over	 the	 responsibility	 for	 the	colony	 in	 July	2015,	which	 includes	maintaining	

the	 breeding	 strategy	 and	 keeping	 proper	 records	 after	 completion	 of	 appropriate	

training	 and	 the	 award	 of	 a	 personal	 Home	 Office	 license.	 Transgenic	 (Tg)	 mice	

develop	leukaemia	from	6	months	of	age,	but	initially	this	is	low	level	and	is	unlikely	to	

make	the	animals	sick.	The	project	license	specifies	that	they	must	be	most	intensively	

monitored	from	11	months	of	age	as	it	is	from	this	time	point	when	most	mice	develop	

significant	 levels	of	CLL	 in	the	PB.	We	were	the	first	group	to	demonstrate	that	TCL1	

CLL	is	transplantable	into	healthy	WT	mice	by	AT	(89),	which	is	a	convenient	model	to	

study	novel	immunotherapeutic	strategies	in	CLL,	which	has	been	confirmed	by	others	

(70,	 117).	 The	 biological	 course	 of	 CLL	 after	 AT	 into	 healthy	 mice	 has	 been	 fully	

characterized	and	published	by	our	group,	particularly	with	regard	to	PD-1	and	PD-L1	

expression	 (118).	 However,	 to	 perform	 large	 studies	 of	 mice	 using	 this	 platform,	 a	

constant	and	consistent	supply	of	CLL	from	aged	transgenic	mice	must	be	maintained.	

The	methods	by	which	this	is	done	were	discussed	in	Chapter	3,	but	an	important	part	

of	my	PhD	has	 been	 the	 ability	 to	 produce	CLL	 for	AT	which	 is	 fully	 traceable	 to	 an	

individual	mouse,	with	corresponding	breeding	records	to	ensure	appropriate	material	

has	been	transplanted	into	WT	mice	to	study	their	resulting	CLL.		

	

4.2	 Objectives	

	

My	first	objective	was	to	obtain	a	Home	Office	personal	license	and	take	responsibility	

for	 a	 large	 established	 TCL1	 colony.	 Beyond	 this	 the	main	 use	 of	 the	 colony	was	 to	

supply	 a	 consistent	 supply	 of	 TCL1	 CLL	 for	 use	 in	 AT	 experiments.	 To	 do	 this	 the	

following	objectives	were	set:	

• Maintain	 2-3	 breeding	 harems	 in	 the	 transgenic	 colony,	 identifying	 WT	 and	

heterozygous	 TCL1	mice	 using	 ear	 clip	 genotyping	with	 full	 traceable	 records	

kept	for	the	duration	of	my	PhD.		
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• WT	mice	identified	from	genotyping	can	be	used	for	optimization	experiments	

as	a	source	of	normal	T	cell	 splenocytes	 for	 transduction	to	make	CAR	T	cells	

and	as	AT	recipients	if	required,	reducing	the	total	number	of	animals	needed	

as	much	as	possible.	

• Tg	mice	were	aged	and	from	11	months	of	age	are	more	closely	monitored	so	

they	can	be	culled	when	they	become	fully	leukaemic.	Spleens	are	processed	as	

previously	 described	 and	 single	 cell	 suspensions	 stored	 in	 liquid	 nitrogen	 for	

use	in	AT	experiments.	Prior	to	storing	spleens	for	AT,	CLL	must	be	confirmed	

by	flow	and	full	records	kept.		

	

4.3	 Confirmation	of	TCL1	

	

All	 TCL1	 mice	 produced	 under	 this	 project	 license	 were	 genotyped	 to	 confirm	 the	

presence	 of	 the	 transgene.	 Genotyping	 of	mice	was	 done	 using	 ear	 punches,	which	

was	 also	 performed	 on	 WT	 mice	 who	 had	 received	 AT	 CLL	 as	 identification	 for	

experiments.	 DNA	 was	 extracted	 using	 alcohol	 precipitation	 after	 digestion	 at	 55°C	

overnight	 with	 buffer	 consisting	 of	 50mM	 TRIS	 pH	 8.0,	 25mM	 EDTA	 pH	 8.0	 (both	

Sigma),	 100mM	NaCl	 (Fisher	 Scientific),	 1%	 SDS	 and	 Proteinase	 K	 20mg/ml	 (Roche).	

DNA	 content	 was	 determined	 using	 NanoDrop.	 TCL1	 primer	 sequences	 are:	 (TCL1	

Forward)	 5’-GCCGAGTGCCCGACACTC-3’;	 (TCL1	 Reverse)	 5’-CATCTGGCAGCAGCTCGA-

3’.	The	endogenous	mouse	globin	gene	was	used	as	an	 internal	positive	control.	PCR	

conditions	for	TCL1	are	activation	at	95°C	(5	min),	then	denaturation	at	95°C	(30	sec),	

annealing	 at	 58°C	 (30	 sec)	 and	 extension	 at	 72°C	 (30	 sec)	 for	 35	 cycles,	 and	 final	

extension	 at	 72°C	 (5	 min).	 PCR	 products,	 controls	 and	 a	 100bp	 DNA	 ladder	 (Life	

Technologies)	were	separated	on	a	2%	agarose	gel	containing	20µl	GelRed	nucleic	acid	

gel	stain	and	visualized	in	a	Transilluminator	(Figure	4.1).	Agarose	gel	is	made	from	6g	

agarose	plus	200ml	TBE	buffer	heated	in	a	microwave	until	dissolved	and	clear.	After	

re-establishing	 the	procedure	 in	 the	 laboratory	 it	was	 largely	 performed	by	 the	BSU	

ATS	under	my	supervision	of	results.		
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Figure	4.1:	 Example	 of	 genotyping	 results	 of	 TCL1	 transgenic	 mice.	 DNA	 was	

extracted	 from	ear	clips	and	TCL1	primer	 sequences	are	as	described	 in	chapter	4.3.	

PCR	was	cycled	as	above	and	gels	ran.	Above	we	see	the	results	of	32	colony	mice	to	

determine	 their	 TCL1	 status	 from	 ear	 clips.	 As	 mice	 were	 bred	 in	 harems	 for	 a	

transgenic	male	with	two	WT	females,	the	results	above	are	expected	as	around	50%	

of	offspring	are	TCL1	heterozygotes.		

	

4.4	 Confirmation	of	CLL	

	

To	 ensure	 ageing	mice	were	 developing	 CLL	 as	 expected	 I	 have	 checked	 CD5+CD19+	

disease	(CLL	load)	on	mice	of	various	ages.	Here	we	see	CLL	in	a	mouse	of	9	months	vs	

12	months	with	expected	 levels	of	CLL	 (Figure	4.2).	Mice	were	routinely	culled	at	11	

months	or	more	 intensively	monitored	 if	>11	months	old	and	had	their	CLL	routinely	

checked	prior	to	cryopreservation.	

	

	 	
	 9	months	 	 	 	 12	months	

Figure	4.2:	 DAPI-,	 viable,	 single	 mononuclear	 splenocytes	 were	 gated	 for	

CD5+CD19+	 CLL	 from	 transgenic	 mice	 culled	 at	 9	 and	 12	 months	 demonstrating	

increase	in	load	of	disease	with	age.	10,000	events	were	recorded	as	per	chapter	3.4.1.	
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4.5	 Discussion	
	

The	TCL1	colony	and	its	standard	operating	procedures	(SOP)	were	set	up	prior	to	my	

starting	this	work,	but	I	took	responsibility	for	the	colony	throughout	my	PhD.	Whilst	

the	 transgenic	model	does	have	100%	penetrance	of	 a	 lymphoproliferative	disorder,	

there	was	a	small	but	significant	number	of	mice	that	developed	hepatosplenomegaly	

and	 became	 sick	 much	 earlier	 than	 the	 usual	 time	 frames	 described.	 These	 mice	

appeared	to	have	a	T	cell	proliferation	looking	at	their	basic	flow	phenotype	and	were	

pre-emptively	culled	if	identified	in	the	PB	prior	to	them	becoming	sick.	Typically,	such	

mice	 became	 sick	 from	 around	 6	 months	 of	 age	 and	 had	 unusually	 large	 palpable	

spleens,	which	is	atypical	for	mice	heterozygote	for	the	transgene.		

	

During	my	 PhD	 I	 always	 used	 a	 harem	 of	 one	 transgenic	male	 and	 two	WT	 female	

mice.	The	harem	was	used	to	increase	the	quantity	of	offspring,	and	the	combination	

of	using	Tg	and	WT	mice	 in	combination	results	 in	 two	outcomes,	50%	heterozygote	

TCL1	mice	and	50%	WT	mice.	This	setup	had	been	defined	by	SOP	from	the	Carlo	Croce	

laboratory	 and	 optimised	 in	 the	 Gribben	 laboratory,	 so	 further	 optimisation	 of	 this	

breeding	strategy	was	not	the	focus	of	my	PhD.	 It	 is	 felt	 that	mice	with	homozygous	

TCL1	 the	 CLL	 is	 too	 aggressive	 (Fabienne	 McClanahan,	 person	 communication)	 and	

alternative	breeding	strategies	were	not	explored.	Ensuring	this	breeding	strategy	was	

maintained,	supervising	animal	welfare,	documenting	all	offspring,	ear	clipping	and	at	

first	 performing	 and	 then	 supervising	 the	 PCR	 to	 check	 for	 the	 transgene	 were	 all	

essential	 work	 that	 I	 performed	 all	 the	 way	 through	 my	 PhD.	 Once	WT	mice	 were	

identified	by	PCR	they	may	have	been	culled,	but	many	were	kept	as	a	source	of	WT	T	

cells	 and	 by	 keeping	 mice	 from	 the	 same	 litter	 I	 had	 a	 convenient	 source	 of	 age	

matched	controlled	normal	T	cells	and	source	of	tissue	for	optimisation	experiments.	

Although	in	the	BSU	there	are	staff	responsible	for	feeding	mice	and	cleaning	cages,	a	

regular	part	of	my	work	was	checking	on	animal	welfare,	particularly	if	there	were	sick	

mice.	Indeed,	I	was	primarily	responsible	for	the	colony	so	any	health	alerts	would	be	

directed	to	me	to	immediately	check	on	animal	welfare	and	make	a	decision	on	how	to	

manage	sick	mice.	 In	 later	experiments	 in	chapters	6-9	 I	used	both	male	and	 female	

mice	equally	as	a	source	of	CLL	and	T	cells,	male	mice	from	this	background	are	liable	
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to	 fight	 and	 would	 need	 to	 be	 separated	 in	 this	 instance.	 As	 part	 of	 the	 breeding	

strategy	I	had	2-3	breeding	cages	producing	offspring	at	a	time,	so	the	requirement	for	

cells	for	AT	could	be	scaled	up	easily,	although	the	amount	of	work	required	to	do	so	

was	 very	 time	 consuming.	 Forward	 planning	 in	 terms	 of	 in	 vivo	 experiments	 was	

essential,	because	of	the	time	lag	of	at	least	9	months	after	setting	up	a	breeding	cage	

before	 regularly	 being	 able	 to	 harvest	 CLL	 splenocytes	 for	 AT.	 The	methods	 used	 to	

process	 mouse	 organs	 are	 described	 in	 chapter	 3.1.	 BSU	 staff	 would	 help	 wean	

offspring	 from	breeding	cages,	at	which	 time	we	would	 separate	offspring	 into	male	

and	 female	 cages	 and	 ear	 clip	 them	 so	 PCR	 could	 be	 performed	 for	 the	 transgene.	

Mice	remained	in	the	same	single	sex	same	litter	cages	for	the	rest	of	their	lives	unless	

further	 separated	 due	 to	 animal	 welfare	 reasons	 or	 to	 be	 separated	 into	 different	

experimental	 groups.	 Female	 mice	 particularly	 have	 a	 tendency	 to	 over	 groom	

sometimes	resulting	in	alopecia	and	need	to	be	separated	if	it	is	severe.		

	

The	transgenic	model	 is	reassuringly	heterogeneous	in	 its	clinical	phenotype	in	terms	

of	 its	 CLL.	 In	 a	 similar	 way	 to	 patients,	 some	 mice	 seem	 to	 tolerate	 massive	

splenomegaly	whilst	others	less	so,	and	lymphadenopathy	can	sometimes	be	obvious	

but	 other	 times	 difficult	 to	 find,	 although	 lymph	 nodes	 were	 not	 routinely	 kept.	

Previous	work	 from	my	 group	 has	 demonstrated	 T	 cell	 changes	 in	 this	model	 to	 be	

more	 consistent	 in	 the	 spleen	 (118),	which	 is	much	more	 technically	 easy	 to	obtain,	

compared	to	lymph	nodes	in	these	mice.	Also	in	terms	of	storing	the	required	number	

of	cells	for	the	AT	model,	only	the	spleen	can	produce	enough	CLL	cells	to	be	a	reliable	

source,	 as	 lymphadenopathy	 in	 mice	 although	 clinically	 evident	 is	 very	 low	 volume	

relative	 to	 splenomegaly.	 Of	 mice	 that	 have	 serial	 blood	 tests	 some	 mice	 rapidly	

progress	 after	 11	months	 whilst	 others	 do	 not,	 but	 generally	 most	 transgenic	 mice	

being	 kept	 to	 harvest	 cells	 were	 culled	 between	 11-13	 months	 of	 age.	 Part	 of	 the	

regular	 check	 of	 animal	 welfare	 in	 mice	 particularly	 aged	 over	 11	 months,	 was	

palpation	of	their	abdomen	to	assess	splenomegaly.	As	I	monitored	all	mice	aged	over	

11	months	more	regularly,	I	used	the	combination	of	monitoring	PB	CLL	load,	weighing	

mice	and	clinical	examination	for	splenomegaly	to	determine	the	optimum	time	to	call	

mice	so	 the	maximum	amount	of	CLL	splenocytes	would	be	able	 to	be	stored	 in	our	
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tissue	bank	 for	 further	AT	experiments,	whilst	of	 course	maintaining	humane	clinical	

endpoints	in	accordance	with	our	Home	Office	project	licence.			

	

Previous	 work	 from	 my	 group,	 had	 defined	 40	 x106	 enriched	 splenocytes	 as	 the	

optimum	dose	for	AT	experiments	(118).	Recent	studies	have	injected	less	cells	for	AT	

(70)	using	10	x106	splenocytes.	 In	my	experiments	described	 in	chapters	7-9,	varying	

this	 cell	 dose	 between	 10-30	 x106	 cells	 does	 vary	 the	 disease	 latency	 but	 not	 the	

penetrance,	 as	 this	 model	 does	 reliably	 induce	 CLL	 in	 100%	 of	 mice.	 This	 may	 be	

important	 for	 determining	 CAR	 engraftment,	 efficacy	 and	 persistence.	 Whilst	 the	

transgenic	form	of	CLL	is	heterogenous,	the	AT	form	of	CLL	is	relatively	homogenous	in	

its	clinical	behaviour.	In	all	experiments	after	AT	of	CLL,	mice	will	have	low	level	CLL	in	

the	PB	at	week	1,	with	typically	>10%	of	all	nucleated	cells	in	the	PB	being	CD5+CD19+	

by	week	2.	On	this	basis,	I	made	week	3	the	time	for	injection	of	CAR	T	cells,	because	I	

wanted	this	model	to	treat	confirmed	engrafted	CLL	in	all	mice,	as	this	model	is	meant	

to	reflect	treatment	of	florid	CLL	with	CAR	T	cells	not	MRD	levels	of	CLL.		

	

In	 chapters	 7-9	 I	 state	 for	 each	experiment	 the	number	of	 enriched	CLL	 splenocytes	

used	 for	 AT	 of	 CLL	 for	 the	 in	 vivo	 experiment.	 These	 large	 in	 vivo	 experiments	 are	

challenging	 to	 prepare	 for,	 to	 try	 and	 remove	 the	 confounding	 variable	 of	 different	

leukaemia	 phenotype,	mice	 in	 these	 experiments	were	 injected	with	 pooled	 CLL.	 In	

general,	 it	was	my	preference	 to	only	use	pooled	CLL	which	had	 come	directly	 from	

transgenic	mice,	as	this	produced	a	CLL	with	the	expected	latency	and	phenotype.	An	

alternative	method	is	to	do	AT	into	a	group	of	mice,	pool	this	CLL	and	then	use	it	for	a	

further	 AT.	Whilst	 this	method	 is	 very	 effective	 at	 rapidly	 increasing	 the	 number	 of	

splenocytes	available	for	the	next	pool	in	a	short	time	period,	it	results	in	a	tendency	

for	the	next	AT	to	exhibit	a	much	more	aggressive	phenotype.	Putting	the	same	pool	

through	mice	multiple	times	rapidly	increases	the	aggressiveness	of	the	CLL	(personal	

communication,	Arantxa	Romero-Toledo).	This	may	be	desirable	in	other	experiments,	

a	colleague	in	my	group	had	done	such	experiments	with	very	different	experimental	

goals,	 but	 on	 reflection	 this	 is	 not	 appropriate	 for	 experiments	 with	 the	 objectives	

described	in	this	thesis.	My	first	attempt	at	the	experimental	plan	described	in	chapter	

9,	 used	 a	 significant	 number	 of	 CLL	 pools	 from	 mice	 that	 had	 AT	 CLL	 rather	 than	
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primary	transgenic	CLL.	In	this	attempted	experiment	many	mice	needed	to	be	culled	

by	week	2	due	to	obvious	ill	health	and	very	high	PB	CLL	so	the	experiment	had	to	be	

aborted.	I	had	used	pools	of	AT	CLL	for	further	AT	in	this	experiment	really	only	due	to	

a	lack	of	available	CLL	in	the	tissue	bank	from	transgenic	mice.	In	subsequent	attempts	

at	 the	 two	part	experiments	described	 in	 chapter	9	 I	only	used	pools	of	CLL	derived	

from	transgenic	mice.	I	had	to	wait	for	further	pools	from	transgenic	mice	before	being	

able	to	proceed	with	this	experiment	so	I	had	enough	cells	for	AT.	I	make	this	point	to	

illustrate	that	a	critical	part	of	my	experimental	work	depended	on	the	maintenance	of	

a	colony,	with	a	strict	breeding	strategy	and	good	documentation	of	records,	to	ensure	

a	 large	 enough	 supply	 of	 CLL	 for	 AT	 experiments	 that	 could	 produce	 a	 consistent	

phenotype.	Without	such	an	attempt	to	produce	a	consistent	phenotype	of	AT	CLL,	it	is	

challenging	to	interpret	the	conclusions	in	the	subsequent	experiments.		

	

In	 conclusion,	 although	 the	 TCL	 CLL	 mouse	 model	 is	 well	 established	 in	 the	

investigation	of	the	CLL	microenvironment,	 its	use	as	a	source	of	syngeneic	T	cells	to	

model	CAR	T	cell	 function	is	novel.	The	prerequisite	to	establish	differences	between	

CAR	 T	 function	 derived	 from	 normal	 and	 CLL	 T	 cells	 requires	 a	 consistent	 mouse	

model,	 following	 established	 SOP	with	 good	 records	 to	 ensure	 traceability	 of	 stored	

pools	of	CLL	for	AT,	this	was	an	essential	part	of	the	work	towards	my	thesis.		
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5.		 CAR	T	cell	manufacturing,	detection	and	expansion	
	

5.1	 Introduction	

	

Retroviral	 gene	 transfer	 and	 subsequent	 expansion	 of	 primary	 murine	 T	 cells	 is	

challenging	 to	 achieve.	 I	 initially	 set	 out	 to	 use	 Phoenix-amphotropic	 cells	 for	

transfection	 but	 these	 were	 replaced	 with	 platinum-ecotropic	 packaging	 cells	 to	

produce	 retroviral	 supernatant	 after	 transient	 transfection	 by	 plasmids	 encoding	

gammaretroviral	 vectors.	 I	 describe	 the	 optimization	 of	 a	 protocol	 to	 transduce	

primary	 murine	 T	 cells	 activated	 with	 magnetic	 beads	 coated	 with	 CD3	 and	 CD28	

antibodies	 (Dynabeads).	 Activated	 enriched	 T	 cells	 are	 subsequently	 transduced	 by	

centrifugation	(spinoculation)	on	retronectin	(Takara)	coated	tissue	coated	plates	with	

retroviral	 supernatant.	 These	 cells	 were	 then	 expanded	 by	 culture	 with	 the	 same	

beads	and	using	interleukin-2	(IL2).		

	

5.2	 Objectives	

	

• Confirm	the	identity	of	the	CAR	plasmids	received	from	collaborators.		

• Transfect	 HEK	 cells	 using	 the	 selection	 of	 CD19	 plasmids	 received	 from	 our	

collaborators	 and	 establish	 an	 antibody	 that	 reliably	 detects	 the	 plasmid	 or	

confirm	fluorescence	if	the	plasmid	contains	a	fluorescent	marker.	

• Transduce	 HEK	 cells	 and	 murine	 cell	 lines	 3T3	 and	 PDAC	 using	 retroviral	

supernatant	from	CAR	plasmids	to	optimize	transduction	conditions.		

• Produce	 CD19-CD28	 and	 CD19-41BB-GFP	 CAR	 T	 cells	 from	 normal	 and	 CLL	 T	

cells	 from	WT	and	transgenic	TCL1	mice	and	demonstrate	stable	transduction	

using	the	same	antibody	or	by	detection	of	GFP.			

• Optimize	 the	 ex	 vivo	 expansion	 of	 normal	 T	 cell	 derived	 CAR	 T	 cells	 using	

CD3/CD28	beads	and	cytokines.		
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5.3	 Plasmid	identification	

	

On	receiving	the	various	plasmids	which	all	originated	in	the	USA,	their	identities	were	

confirmed	 using	 restriction	 enzyme	 digestion	 which	 was	 performed	 to	 verify	 the	

purified	plasmids	as	described	 in	 chapter	3.	Enzymes	were	 identified	after	 reviewing	

FASTA	sequences	sent	by	email	 from	the	original	 institutions.	DNA	was	separated	by	

gel	electrophoresis	and	samples	were	run	on	agarose	gel	with	a	1kB	ladder	(Figures	5.1	

and	5.2).	

	

Figure	5.1:	Confirmatory	restriction	enzyme	digestion	was	performed	on	MDA	CD19	to	

verify	 the	purified	plasmids.	Nde1	and	Sal1	were	used	 to	 cleave	plasmid	DNA.	 For	 a	

total	of	11µl,	1µl	of	plasmid	DNA,	1µl	of	enzume,	8µl	of	nuclease	free	water	and	1µl	of	

buffer	 were	 mixed	 in	 PCR	 tubes	 and	 left	 in	 the	 thermocycler	 overnight	 at	 the	

appopropriate	time	(generally	37°C	for	12	hours	then	4°C.	DNA	was	separated	by	gel	

electrophoresis	and	samples	were	 ran	on	agarose	gel	with	a	1kB	 ladder	 (far	 left	and	

right).	
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1kb				unres				EcoRI					NotI	

Figure	5.2:	Confirmatory	 restriction	enzyme	digestion	was	performed	on	MSK	CD19-

CD28,	CD137L	and	41BB	with	EcoRI	and	NotI	to	verify	the	purified	plasmids.	Enzymes	

were	 used	 to	 cleave	 plasmid	 DNA.	 For	 a	 total	 of	 11µl,	 1µl	 of	 plasmid	 DNA,	 1µl	 of	

enzume,	8µl	of	nuclease	free	water	and	1µl	of	buffer	were	mixed	in	PCR	tubes	and	left	

in	 the	 thermocycler	 overnight	 at	 the	 appropriate	 time	 (generally	 37°C	 for	 12	 hours	

then	4°C.	DNA	was	separated	by	gel	electrophoresis	and	samples	were	ran	on	agarose	

gel	with	a	1kB	ladder	marked	on	the	left.			

	

5.4	 Fab	and	protein	L	

	

When	I	first	started	to	optimize	my	transfection/transduction	protocols	I	only	had	the	

MDA	 plasmid	 before	 the	 insertion	 of	 the	 fluorescent	 protein	 mCherry.	 I	 therefore	

needed	an	indirect	antibody	to	detect	the	transfection	or	transduction	of	the	plasmid.	I	

therefore	 started	 by	 investigating	 the	 use	 of	 protein	 L	 and	 fab	 antibodies	 to	 detect	

expression	of	the	CAR.	Initially,	to	check	the	plasmid	I	performed	transient	transfection	

into	HEK	cells	using	the	transfection	reagent	jetPRIME	(Polyplus),	using	a	GFP	plasmid	

as	 a	 positive	 control	 and	detected	 the	CAR	on	 58%	 cells	with	 a	 fab	 antibody	 (figure	

5.3).	The	TA99	plasmid	could	not	be	detected	after	transfection	into	HEK	cells	but	the	

CD19	plasmid	transfected	well	confirming	my	transfection	conditions	work.	
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Figure	5.3:	 Fab+	(CD19	CAR+)	 	 	 GFP	

Transient	 transfection	 of	 CD19	 CAR	 and	 GFP	 into	 HEK	 cells	 as	 described	 in	 chapter	

3.3.1.	 DAPI-,	 viable,	 single	 mononuclear	 cells	 with	 fab-biotin	 PE	 or	 HEK	 cells	

transfected	with	GFP.	Gates	were	established	using	non-transfected	HEK	cells.	

	

Then	after	multiple	attempts	to	optimize	my	transduction	conditions	 I	demonstrated	

transduction	of	HEK	cells	using	viral	supernatant.	I	used	a	GFP	lentiviral	supernatant	as	

my	positive	control,	the	TA99	viral	supernatant	did	not	transduce,	presumably	because	

the	transfection	had	not	worked	so	the	supernatant	didn’t	contain	virus.	Alternatively,	

the	Fab	antibody	may	not	 recognize	 the	extracellular	 sequence	 for	 the	TA99	CAR.	 In	

figure	5.4,	we	see	Fab	antibodies	can	be	used	 to	detect	 the	CD19+	CAR	transduction	

into	HEK	cells,	with	a	transduction	efficiency	of	43.1%.		

	

	 	

Figure	5.4:	 Fab+	(CD19	CAR+)	 	 	 GFP	

Transduction	 of	 HEK	 using	 CD19	 CAR	 retroviral	 and	 GFP	 lentiviral	 supernatant	 as	

described	in	chapter	3.3.3.	DAPI-,	viable,	single	mononuclear	cells	with	fab-biotin	PE	or	

HEK	cells	transduced	with	GFP.	Gates	were	established	using	non-transduced	HEK	cells.	
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I	 then	 checked	 the	 baseline	 expression	 of	my	CAR	detection	 antibodies	 on	 enriched	

mouse	 T	 cells.	 I	 found	 protein	 L	 binds	 to	 negatively	 selected	mouse	 T	 cells	 prior	 to	

transduction	 so	 is	not	a	useful	antibody	 (figure	5.5).	Even	 though	other	groups	have	

used	these	antibodies	in	murine	cells	for	this	purpose	(258).	The	Fab	antibody	did	not	

bind	 to	 untransduced	 mouse	 cells	 (figure	 5.5),	 so	 I	 went	 on	 to	 use	 this	 for	 mouse	

transduction	experiments.		

	

	
	 	 Fab	 	 	 	 	 Protein	L	

Figure	5.5:	Baseline	expression	of	protein	L	and	Fab	antibodies	on	negatively	selected	

mouse	T	cells.	DAPI-,	 viable,	 single	mononuclear	 cells	were	gated,	and	negative	gate	

was	determined	using	FMO	controls.		

	

5.5	 mCherry	and	GFP	plasmids	
	

As	 previously	 stated	 mCherry	 was	 inserted	 into	 the	 MDA	 CD19-CD28	 and	 TA99	

plasmids.	To	confirm	their	 identity,	 I	amplified	them	as	previously	described	(chapter	

3.3)	and	transfected	them	into	Phoenix	cells	in	a	6	well	plate	to	confirm	fluorescence	

(figure	5.6	left).	Fluorescence	appearances	were	similar	for	both	MDA-CD19	and	TA99	

mCherry.	

	

Because	of	the	challenges	associated	with	achieving	transduction	of	mouse	T	cells	we	

sought	 a	 new	 collaboration	 with	 Dr	 Michel	 Sadelain’s	 labatory	 (Memorial	 Sloan	
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Kettering	Cancer	Center,	New	York,	USA)	who	have	expertise	 in	murine	CD19	CAR	T	

cell	models.	They	kindly	gifted	their	murine	second	generation	CD19	CAR	(MSK-CD19)	

with	various	co-stimulatory	domains	(41BB,	CD28	and	CD137)	which	importantly	also	

contains	 green	 fluorescent	 protein	 (GFP)	 (herein	 the	 GFP	 plasmids).	 These	 plasmids	

were	 amplified	 as	 previous	 described	 and	 transfected	 into	 Phoenix	 cells	 in	 a	 6	 well	

plate	to	confirm	fluorescence	 (figure	5.6	right).	Appearances	were	representative	 for	

both	the	MSK-CD19-41BB	and	MSK-CD19-CD28	plasmids.		

	

		

Figure	 5.6:	Visual	 appearance	 of	mCherry	 (left)	 and	GFP	 (right)	 after	 transfection	 of	

plasmids	containing	these	fluorescent	markers	into	Phoenix	cells	in	a	6	well	plate	using	

using	10-40g	of	plasmid	DNA	and	jetPRIME	buffer	with	visual	fluorescence	confirmed	

at	48	hours	using	a	fluorescent	microscope	(chapter	3.3.1).		

	

My	 first	 attempt	 at	 transducing	 activated	 mouse	 T	 cells	 with	 viral	 supernatant	

produced	using	the	mCherry	and	GFP	plasmids	failed,	and	therefore	again	I	attempted	

to	 optimize	 transduction	 conditions	 with	 HEK	 cells.	 After	 multiple	 attempts	 the	

mCherry	 plasmids	 did	 not	 transduce	 HEK	 cells	 and	 the	 best	 positive	 results	 for	 GFP	

plasmids	just	showed	low	level	transduction	of	only	the	MSK-CD19-41BB	plasmid.		

	

Despite	the	time	taken	to	insert	mCherry	into	the	MDA	plasmid,	after	a	long	series	of	

experiments	to	make	transfection	and	transduction	work,	I	moved	onto	other	plasmids	

which	had	more	positive	results.	Experiments	involving	the	mCherry	and	GFP	plasmids	

are	 summarized	 in	 table	 5.2	 which	 list	 the	 multiple	 optimizations	 of	 experimental	

conditions.	 In	 many	 of	 these	 experiments	 I	 first	 confirmed	 visual	 fluorescence	 in	

phoenix	cells	after	transfection	(HEK	1-5,	Table	5.2)	as	a	visual	check	of	transfection.	It	
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was	possible	to	demonstrate	low	level	transduction	of	the	GFP	plasmid	CD19-41BB	but	

not	CD19-CD28	with	some	titration	of	virus	but	this	was	insufficient	to	determine	MOI	

presumably	due	to	low	viral	titres.		

	

To	 explore	 why	 this	 system	 was	 not	 working,	 in	 HEK	 transduction	 (5)	 (table	 5.2),	 I	

transduced	 a	 HER2	 plasmid	 as	 my	 positive	 control	 as	 this	 had	 worked	 well	 for	

colleagues	 at	 BCI.	 This	 did	 not	 work	 using	 the	 same	 retroviral	 system	 indicating	 a	

problem	with	 virus	 production	 in	 the	 transfection	 step.	 I	 therefore	 investigated	my	

transfection	 step	 by	 comparing	 two	different	methods	 of	 plasmid	 transfection	 using	

jetPRIME	 and	 polyethylenimine	 (PEI)	 in	 HEK	 transduction	 (6),	 and	 then	 comparing	

fresh	 supernatant	 collected	 at	 48	 vs	 72	 hours.	 This	 again	 showed	 low	 level	

transduction	 in	 the	 CD19-41BB	 GFP	 plasmid,	 at	 best	 4.4%	 in	 with	 viral	 supernatant	

made	with	jetPRIME	collected	at	72	hours.		

	

I	 investigated	 transducing	 alternative	 murine	 cells	 that	 should	 be	 more	 easily	

transducible	 to	 try	and	determine	which	 transfection	conditions	would	 improve	viral	

titre.	 For	 this	 I	 transduced	 both	 murine	 3T3	 fibroblasts	 and	 pancreatic	 ductal	

adenocarcinoma	cells	 in	experiments	run	side	by	side	using	thawed	supernatants	but	

comparing	those	made	with	PEI	vs	jetPRIME,	and	collected	at	48	vs	72	hours.	Again,	I	

used	HER2	 as	 a	 positive	 control,	 the	 expression	 of	which	was	 not	 associated	with	 a	

fluorescent	protein	so	required	a	primary	and	secondary	antibody.	This	represented	a	

crucial	series	of	experiments	summarized	in	table	5.1.	
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Table	5.1:	Transduction	efficiency	of	various	plasmids	in	3T3	and	PDAC	cells	with	viral	
supernatant	collected	after	48	and	72	hours	post	transfection.	
	
Cell	 Supernatant	 Transfection	 48h	 72h	

PDAC	 Untransduced	 0.5%	

PDAC	 CD19-CD28-GFP	 jetPRIME	 3.0%	 5.7%	

PDAC	 CD19-CD28-GFP	 PEI	 4.4%	 8.7%	

PDAC	 CD19-41BB-GFP	 jetPRIME	 /	 11.6%	

PDAC	 CD19-41BB-GFP	 PEI	 2.7%	 10.7%	

PDAC	 Untransduced	HER2	 4.6%	

PDAC	 HER2	 PEI	fresh	 11.4%	 14.9%	

3T3	 Untransduced	 0.8%	

3T3	 CD19-CD28-GFP	 jetPRIME	 2.3%	 2.9%	

3T3	 CD19-41BB-GFP	 jetPRIME	 3.1%	 5.0%	

3T3	 Untransduced	HER2	 1.4%	

3T3	 HER2	 PEI	fresh	 4.9%	 2.2%	

	

This	time	I	saw	transduction	in	the	positive	control	HER2	did	work,	and	was	greater	in	

PDAC	than	3T3	cells	 indicating	 they	are	more	easily	 transducible	 (14.9	vs	5%)	 (figure	

5.7)	when	comparing	the	highest	transduction	achieved.		

	

	 	
Figure	5.7:	DAPI-,	viable,	single	mononuclear	PDAC	(left)	or	3T3	(right)	cells	transduced	

(see	 chapter	 3.3.3)	 with	 HER2,	 with	 highest	 transduction	 demonstrated.	 Gate	 was	

determined	compared	to	same	cell	type	untransduced	controls	(not	shown).		
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Further,	the	transduction	efficiency	of	HER2	in	3T3	and	PDAC	cells	could	be	replicated	

using	 the	 CD19-41BB-GFP	 plasmid,	 and	 in	 general	 72h	 viral	 supernatant	 was	 more	

effective	 than	 48h	 supernatant,	 and	 jetPRIME	 transfection	 reagent	 better	 than	 PEI	

(figure	5.8).		

	

	 	
	

Figure	 5.8:	DAPI-,	 viable,	 single	mononuclear	 PDAC	 cells	 transduced	 using	 retroviral	

supernatant	(see	chapter	3.3.3)	derived	from	CD19-41BB	plasmid	with	jetPRIME	(left)	

and	 CD19-CD28	 plasmid	 using	 PEI	 (right).	 Highest	 transduction	 efficiency	 in	 this	

experiment	 demonstrated	 with	 positive	 gate	 determined	 by	 comparison	 with	

untransduced	PDAC	control	cells	cultured	in	the	same	conditions	(not	shown).		

	

All	 together	 this	does	 indicate	 this	 system	 is	producing	virus,	but	 the	major	problem	

lies	with	either	viral	titre	or	the	viral	particles	that	are	produced	because	of	the	type	of	

packaging	cell	 line.	After	further	investigation,	I	discovered	I	had	been	using	Phoenix-

amphotropic	 cells,	 which	 produce	 viral	 particles	 which	 should	 infect	 all	 mammalian	

cells.	The	protocols	I	have	followed	recommend	ecotropic	packaging	cells	as	these	are	

specific	for	rat	and	mouse	cells.	Further,	the	phoenix	cells	I	had	been	using	were	now	

at	 a	 very	 high	 passage.	 I	 therefore	 employed	 multiple	 strategies	 to	 improve	 viral	

production	including	buying	new	packaging	cells,	changing	to	ecotropic	cells	which	are	

more	specific	to	transduce	murine	cells,	using	fresh	supernatant	and	concentrating	the	

viral	supernatant	e.g.	using	the	Retro-X	concentrator.	Having	received	a	new	plasmid	
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through	a	new	MTA	with	 the	NCI	 I	 have	 also	 started	 to	 investigate	 the	 feasibility	 of	

using	this	plasmid	in	this	model.		

	

Below	we	 see	 transduction	of	 3T3	 cells	 using	 fresh	 viral	 supernatant	 collected	 at	 72	

hours	 or	 48	 hour	 supernatant	 concentrated	 with	 Retro-X	 for	 the	 NCI	 CD19-CD28	

plasmid.	 The	 fresh	 72	 hour	 supernatant	 has	 a	 transduction	 efficiency	 of	 19.7%	 and	

concentrated	48	hour	supernatant	42.8%	(figure	5.9).	The	CD19-41BB-GFP	plasmid	had	

a	 very	 similar	 transduction	using	 the	 concentrated	 48	hour	 supernatant.	 This	 clearly	

demonstrates	 that	 concentrating	 the	 viral	 supernatant	 improves	 transduction	

efficiency.		

	

	 	

Figure	 5.9:	 DAPI-,	 viable,	 single	 mononuclear	 3T3	 cells	 transduced	 using	 retroviral	

supernatant	 from	NCI	 CD19-CD28	 plasmid	 (see	 chapter	 3.3.3)	 collected	 at	 48	 hours	

concentrated	with	Retro	X	(left)	or	collected	at	72	hours	(right)	and	used	fresh.	CAR+	

cells	 determined	 using	 fab	 antibody.	 Highest	 transduction	 efficiency	 this	 this	

experiment	 demonstrated	 with	 positive	 gate	 determined	 by	 comparison	 with	

untransduced	3T3	control	cells	cultured	in	the	same	conditions	(not	shown).		

	

Finally,	 table	 5.2	 shows	 the	 transduction	 efficiencies	 of	 3T3	 cells	 using	 concentrated	

virus.	 Having	 adopted	 various	 strategies	 for	 improving	 the	 viral	 particles	 and	

concentration	I	have	now	demonstrated	high	transduction	efficiency	using	murine	cell	

lines	using	both	my	NCI	CD19-CD28	plasmid	detected	using	a	 fab	antibody	and	MSK	

CD19-41BB-GFP	plasmid	detected	by	GFP	directly	by	flow	cytometry.		
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Table	5.2:		 Transduction	 efficiency	 of	 various	 primary	 cells	 and	 cell	 lines	 with	

experimental	optimizations	and	outcomes.	

	
Cell	 No.	 CAR	 Efficiency	 Notes	 Optimizations	

Mouse	 1	 GFP/mCherry	 	 Failed	 	
HEK	 1	 GFP/mCherry	 GFP-41BB	7%	 mCherry	failed	 Double	transduction	
HEK	 2	 GFP/mCherry	 GFP-41BB	3%	 mCherry	failed	 	

Mouse	 2	 GFP/mCherry	 	 Failed	 R+D	rmIL2	
HEK	 3	 GFP/mCherry	 	 Failed	viral	titre	 épolybrene	
HEK	 4	 GFP/mCherry	 GFP-41BB	7%	 Viral	titre	 Perform	side	by	side	with	

fresh	72h	supernatant	
Compare	T	cell	
concentration	1/3x106	

Mouse	 3	 GFP-41BB	
1.7%	

Remove	
CD3/CD28	
beads	at	D5	

Conclusion	–	Problem	with	virus	production.	3	better	than	1	x106	mouse	T	cells	in	6WP.	mCherry	

plasmid	transduction	repeatedly	fails.		

HEK	 5	 GFP/HER2	 GFP-41BB	6%	
HER2	Failed	

Viral	titre	
HER2	+ive	
control	failed	

Compare	48h	vs	72h	
thawed	supernatant	
	éplasmid	DNA	in	
transfection	

Conclusion	–	Demonstration	of	41BB	virus	titration	but	positive	control	failed	

HEK	 6	 GFP/HER2	 GFP	41BB	72h	jetPRIME	4.4%,		
PEI	1.5%	

PEI	vs	jetPRIME	
48h	vs	72h	supernatant	

Conclusion	–	GFP	seen	at	transfection,	therefore	problem	with	virus	production	

PDAC	 1	 GFP/HER2	 GFP-41BB	
11.6%	

HER2	14.9%	

Side	by	side	 Frozen	supernatant	
PEI	vs	jetPRIME	
72h	better	than	48h	

3T3	 1	 GFP/HER2	 41BB	5%	
HER2	4.9%	

Conclusion	–	Virus	present	but	must	be	low	titre.	72h	better	than	48h,	jetPRIME	and	PEI	similar	

3T3	 2	 GFP/NCI	 41BB	40.1%	
NCI	42.8%	

Retro-X	
concentrated	
48h	vs		
fresh	72h	

Platinum-Eco	passage	1	
cells	for	transfection	
Fresh	viral	supernatant	
Retro-X	48h	supernatant	

Conclusion	–	Concentrated	48h	supernatant	better	then	fresh	72	hour	supernatant	

Good	transduction	efficiency,	change	of	cells	and	concentrating	improves	viral	titre	
3T3	 3	 GFP/NCI	 41BB	21.2%	

NCI	42.8%	
Retro-X	
concentrated	
48h	vs	72h	

Platinum-eco	transfection	
Retro-X	supernatant	

Conclusion	–	Using	Retro-X	concentrated	viral	supernatant	produces	the	highest	transduction	

efficiency	of	murine	3T3	cells.	
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5.6	 Transduction	of	normal	and	transgenic	mouse	T	cells	

	

Having	 optimized	 transfection	 and	 transduction	 conditions	 using	 human	 and	murine	

cell	lines	I	then	performed	a	series	of	experiments	to	optimize	transduction	of	normal	

(WT)	 and	 transgenic	 (Tg)	 mouse	 T	 cells.	 Table	 5.3	 summarizes	 some	 of	 the	 key	

experiments	and	notes	important	learning	points.		

	

Table	5.3:	Transduction	and	optimization	of	normal	and	transgenic	mouse	T	cells.	

Cell	 Exp	No.	 CAR	 Highest	Efficiency	 Notes	

WT	 2	 NCI	CD19-CD28	

MSK	CD19-41BB-GFP	

20.5%	48h	Retro-X	

15.1%	48h	Retro-X	

Compare	 Retro-X	 48h	

vs	72h	supernatant	

Conclusion	–	Retro-X	concentrated	48h	supernatant	gives	highest	transduction	efficiency.		

WT	

Tg	

5	 NCI	CD19-CD28	

MSK	CD19-41BB-GFP	

WT	67.8%	Tg	41.1%	

WT	31.8%	Tg	21.9%	

Fresh	Tg	cells	used		

(CLL	load	62%)		

Conclusion	–	Better	transduction	using	fresh	Tg	cells	(rather	than	thawed).	

WT	

Tg	

6	 NCI	CD19-CD28	

MSK	CD19-41BB-GFP	

For	CD19-41BB:	

WT:	CD4	43%,	CD8	23%	

Tg:	CD4	21%,	CD8	8%	

Change	 in	 T	 cell	

phenotype	 through	

manufacturing	noted.	

Conclusion	–	Differential	transduction	efficiency	of	CD4	and	CD8	T	cells.	

Aged	WT	

Tg	

8	 NCI	CD19-CD28	

	

Aged	WT	24.3%	

Tg	5.9%	

Compare	 transducing	

Tg	and	aged	WT	T	cell	

Conclusion	–	Excludes	normal	aging	as	cause	of	lower	transduction	seen	in	Tg	T	cells.		

	

Following	mouse	WT	transduction	 (experiment	2)	 I	kept	 the	CAR	T	cells	 in	culture	to	

confirm	stable	transduction	after	six	days.	Figure	5.10	shows	a	transduction	efficiency	

of	 14.2%	 six	 days	 after	 the	 transduction	 efficiency	 of	 15.1%	 noted	 in	 Table	 5.3	 of	

mouse	 CD19-41BB-GFP	 CAR	 T	 cells	 kept	 in	 culture.	 	 Further	 experiments	 in	 table	 4	

confirm	 that	 concentrated	 retroviral	 supernatant	 produces	 highest	 transduction	

efficiency	 and	 the	 differential	 transduction	 of	 different	 T	 cell	 subsets.	 Finally,	

experiment	 8	 comparing	 transduction	 of	 aged	 WT	 mice	 versus	 age	 matched	 Tg	

controls	 demonstrates	 the	 lower	 transduction	 efficiency	 seen	 in	 Tg	mouse	 T	 cells	 is	

due	to	the	CLL	and	not	age	alone.		

	



	

103	

	
Figure	5.10:		 DAPI-,	 viable,	 single	 mononuclear	 WT	 mouse	 T	 cells	 transduced	 with	

donated	 lentiviral	 supernatant	 (gift	 from	 Dr	 Deepak	 Raj,	 Barts	 Cancer	 Institute)	

showing	 stable	 transduction	 after	 cells	 being	 kept	 in	 culture	 for	 6	 days.	 GFP+	 gate	

determined	by	comparison	to	untransduced	control	WT	T	cells	cultured	in	the	same	6	

well	plate	(not	shown).	

	

5.7	 Rapid	expansion	protocol	

	

As	 the	 Sadelain	 protocol	 enriches	 mouse	 single	 cell	 suspensions	 for	 a	 pure	 T	 cell	

population	to	improve	transduction,	I	first	ensured	that	the	enrichment	kit	worked	in	

these	 mouse	 T	 cells	 and	 then	 validated	 my	 detection	 antibodies	 in	 mouse	 T	 cells.	

Following	enrichment	95.3%	of	cells	were	CD3+	and	on	average	I	was	left	with	20%	of	

the	original	splenocyte	single	cell	suspension	cell	count	if	derived	from	WT	T	cells.		
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Figure	5.11:		 DAPI-,	 viable,	 single	 mononuclear	 murine	 CD3+	 cells	 after	 T	 cell	

enrichment	 using	 eBioscience	Magnisort	Mouse	 T	 cell	 enrichment	 kit	 demonstrating	

95.3%	purity	of	T	cells.	Gate	is	determined	compared	to	non-enriched	PBMC	following	

red	cell	lysis.	

	

Activated	mouse	T	cells	double	from	48	to	72	hours	after	24	hours	in	culture	using	my	

rapid	expansion	protocol	with	anti-CD3/CD28	beads	and	murine	 IL2	 (mIL2).	 Initially	 I	

had	trouble	proliferating	T	cells	using	Roche	IL2	but	I	think	this	may	have	been	due	to	

an	 issue	with	 reconstitution.	 In	a	 titration	experiment	 to	determine	the	best	dose	of	

mIL2	from	R&D	Systems	3000U/ml	medium	provided	the	best	cell	count	(figure	5.12)	

and	viability	although	the	cell	counts	obtained	were	similar.	However,	there	were	very	

minor	differences	in	T	cell	expansion	which	different	IL2	doses	in	this	experiment	(n=1)	

and	because	of	previous	issues	with	IL2	reconstitution	this	result	may	not	be	valid.	This	

is	 contrary	 to	what	would	be	 expected	 in	 terms	of	 increasing	 the	 IL2	 dose	on	 T	 cell	

proliferation.	Most	 importantly	for	future	experiments,	 it	demonstrated	that	after	72	

hours	the	T	cells	are	most	rapidly	multiplying,	which	 is	when	it	 is	best	to	harvest	the	

cells	so	proliferating	cells	can	be	injected	into	the	mice	for	best	effect.	
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Figure	 5.12:	 Mouse	 T	 cell	 concentration	 counted	 by	 an	 automated	 brightfield	

haemocytometer	 (Logos	Biosystems,	 South	Korea)	 after	proliferation	with	CD3/CD28	

beads	and	varying	concentrations	of	mIL2	(units)	(n=1)	at	various	time	point	in	culture	

(0-72	hours).		

	

5.8	 Discussion	

	

To	achieve	stable	transduction	of	murine	T	cells	is	challenging	and	the	initial	part	of	my	

PhD	was	 spent	 optimizing	 every	 step	 of	 this	 complex	method.	 Although	 this	was	 at	

times	frustrating,	troubleshooting	the	experiments	actually	allowed	me	to	identify	the	

optimal	 steps	 to	 take	 for	 the	 future	experiments.	Further,	because	of	 the	underlying	

characteristics	of	CLL	T	cells	from	the	TCL1	model,	transgenic	CLL	T	cells	do	not	rapidly	

proliferate	 in	 culture	which	made	 this	 process	 all	 the	more	 difficult.	 Some	 plasmids	

work	 better	 than	 others	 in	 this	 model,	 and	 the	 issue	 of	 CAR	 detection	 complicates	

matters.	 Whilst	 direct	 visualization	 with	 a	 fluorescent	 tag	 has	 huge	 advantages	 for	

downstream	 assays	 and	 indeed	 in	 vivo	 experiments,	 manipulation	 of	 the	 construct	

directly	 had	 an	 effect	 on	 transduction	 efficiency,	 therefore,	 the	 manipulated	 MD	

Anderson	 plasmid	with	mCherry	 never	made	 it	 past	 cell	 culture	 experiments.	 It	was	

both	the	MSK	CD19-41BB-GFP	and	NCI	CD19-CD28	plasmids	that	I	could	demonstrate	

stable	transduction	in	mouse	T	cells,	after	resolving	issues	with	packaging	cells	and	the	

crucial	 determination	 that	 low	 viral	 titre	 was	 the	 main	 cause	 of	 low	 transduction	

efficiencies.	In	my	experiments,	concentration	of	retroviral	supernatant	using	Retro-X	
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was	an	essential	step.	For	cell	culture	experiments	the	GFP	tagged	CD19-41BB	is	very	

useful	 to	 identify	 CAR	 transduced	 T	 cells,	 whilst	 for	 CD19-CD28	 I	 needed	 to	 use	 a	

primary/secondary	 Fab	 antibody	 for	 CAR	 detection.	 My	 preliminary	 optimization	

experiments	here	demonstrate	that	WT	T	cells	transduce	more	readily	than	CLL	T	cells,	

and	even	if	age	as	a	confounding	factor	is	removed,	as	aged	WT	T	cells	transduce	more	

readily	 than	 transgenic	 CLL	 T	 cells.	 In	 summary,	 I	 describe	 an	 optimized	method	 for	

making	retrovirally	transduced	murine	CAR	T	cells,	which	can	be	expanded	ex	vivo	for	

downstream	experiments.		
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6.	 CAR	T	cell	phenotype	and	cytotoxicity	in	vitro	

	

6.1	 Introduction	

	

Having	optimised	the	CAR	T	cell	manufacturing	process	as	described	in	Chapter	5,	I	had	

an	 established	 method	 for	 producing	 CAR	 T	 cells	 so	 the	 phenotype	 of	 CAR	 T	 cells	

derived	 from	 normal/WT	 and	 CLL	 mice	 (AT	 and	 transgenic)	 can	 be	 compared.	 Our	

group	has	previously	explored	the	differences	in	T	cell	function	between	Tg	TCL1	mice	

and	AT	 CLL	 in	 general	 (89),	 particularly	with	 reference	 to	 the	 exhaustion	 phenotype	

(118).	The	differences	between	CAR	T	cells	derived	from	normal	and	CLL	T	cells	has	not	

been	 described	 in	 the	 TCL1	model	 or	 AT	 CLL,	 but	 recently	 it	 has	 been	 in	 studies	 of	

untreated	 CLL	 patients	 compared	 to	 healthy	 donors	 (259).	 In	 a	 small	 number	 of	

patients	 (n=3),	 there	 was	 a	 greater	 expansion	 in	 naïve	 CAR	 T	 cells	 (CD45RA+CCR7+)	

from	healthy	donors	compared	to	untreated	CLL	patients,	who	had	greater	expansion	

in	 effector	 CAR	 T	 cells	 (CD45RA+CCR7-).	 PD-1	 expression	 was	 higher	 on	 naïve	 and	

central	memory	CAR	T	cells	from	untreated	CLL	patients	compared	to	healthy	donors	

(259).	 Similarly,	 differences	 in	 cytokine	 profiles	 have	 been	 demonstrated.	 The	

frequency	of	CAR	T	cells	producing	IFN-γ	 in-vitro	was	significantly	higher	in	CLL	CAR	T	

cells	compared	to	those	derived	from	healthy	donors	(260).		

	

Defining	the	optimum	phenotype	from	which	to	make	CAR	T	cells	may	be	an	important	

determinant	of	CAR	T	cell	 function,	and	the	prospective	determination	of	a	set	T	cell	

phenotype	 for	 manufacturing	 is	 not	 done	 for	 either	 of	 the	 two	 licenced	 CAR	 T	 cell	

products.	 CD19-41BB	 CAR	 T	 cells	 of	 defined	 CD4+:CD8+	 composition	 has	 been	 done	

using	 the	 investigational	 lisocaptogene	 maraleucel	 (liso-cel)	 but	 prior	 to	 its	

commercialisation	 Turtle	 et	 al.	 had	 reported	 its	 use	 in	ALL	 (174),	NHL	 (175)	 and	CLL	

(161).	Again,	the	CR	rate	reported	in	CLL	(21%)	for	the	same	product	was	much	lower	

than	that	reported	 in	ALL	(93%)	and	NHL	(50%).	At	ASH	2018	the	early	phase	1	dose	

escalation	 data	 from	 TRANSCEND	 CLL-04	 from	 the	 same	 group	 was	 updated	 (162),	

revealing	higher	response	rates	 in	patients	who	had	previously	received	ibrutinib	but	

still	with	small	numbers	of	patients	reported.	6/8	evaluable	responded	including	4	CR	
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at	day	30	so	this	study	needs	more	time	to	accrue	more	patients	to	fully	understand	

the	impact	of	set	CD4:	CD8	ratio	in	CLL.	The	rationale	for	this	approach	was	based	on	

pre-clinical	data,	which	demonstrated	synergistic	enhancement	of	anti-tumour	activity	

by	 administering	 defined	 ratios	 of	 human	 CD19	 CAR	 T	 cells	 subsets	 to	 treat	

immunodeficient	 mice	 (208)	 engrafted	 with	 Raji	 cells	 as	 compared	 to	 giving	 these	

subsets	 alone	 or	 from	 unselected	 T	 cells.	 Using	 this	 approach	 CD4+	 and	 CD8+	 T	 cell	

subsets	 must	 be	 separately	 enriched	 from	 apheresis	 products,	 transduced	 and	

proliferated	ex-vivo	separately	and	then	recombined.	

	

A	 comprehensive	 retrospective	 review	 of	 genomic,	 phenotypic	 and	 functional	

evaluations	to	 identify	determinants	of	response	 in	CLL	has	been	recently	performed	

(206).	 Transcriptomic	profiling	 revealed	 that	CAR	T	 cells	 from	patients	with	CLL	who	

achieved	complete	responses	were	enriched	in	memory	related	genes,	whereas	T	cells	

from	non-responders	upregulated	genes	involved	in	effector	differentiation,	glycolysis,	

exhaustion	 and	 apoptosis.	 Sustained	 remission	 was	 associated	 with	 an	 elevated	

frequency	 of	 CD27+CD45RO-CD8+	 T	 cells	 before	 CAR	 T	 cell	 generation,	 and	 these	

lymphocytes	 possessed	 memory	 like	 characteristics	 (206).	 Finally,	 a	 population	 of	

CD27+PD-1-CD8+	CAR	T	cells	expressing	high	levels	of	IL6	receptor	predicts	therapeutic	

response	 and	 is	 responsible	 for	 tumour	 control	 (206).	 	 These	 findings	 suggest	 the	

potential	 for	pretreatment	CAR	phenotype	as	a	biomarker	and	 the	manufacturing	of	

CAR	T	cells	from	specific	subsets	of	T	cells	to	improve	CAR	response.	Here	I	investigate	

the	difference	between	deriving	CAR	T	cells	from	normal	or	CLL	T	cells	and	its	effect	on	

CAR	T	cell	phenotype	and	cytoytoxicity	in	vitro.	

	

6.2	 Objectives	

	

• Produce	 CAR	 T	 cells	 using	 the	 same	 optimised	 protocol	 from	 pooled	 WT	

spleens,	or	make	CAR	T	cells	 from	mice	with	both	sources	of	CLL,	either	aged	

transgenic	mice	(Tg)	or	mice	with	AT	CLL.	

• Phenotype	each	set	of	CAR	T	cells,	before,	during	and	after	the	manufacturing	

process	 to	 understand	 the	 differences	 in	 CAR	 phenotype	 when	 using	 these	

different	cell	sources.		
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• Compare	the	in	vitro	cytotoxicity	of	CAR	T	cells	derived	from	each	cell	source.	

• Phenotype	 CAR	 T	 cells	 derived	 from	 each	 cell	 source	 after	 co-culture	

experiments	with	CLL	B	cells.		

	

6.3	 Materials	and	methods	

	

6.3.1	 T	cell	source	

	

In	this	chapter	I	used	the	transfection	and	transduction	protocol	to	make	murine	CAR	T	

cells	as	defined	in	Chapter	3	and	optimised	in	Chapter	6.5.	I	had	three	sources	of	cells	

to	compare,	normal	or	WT	T	cells	 from	pooled	WT	spleens	 from	the	TCL1	colony,	 in	

which	 there	 were	 two	 groups	 of	 CLL	 T	 cells;	 either	 aged	 transgenic	 mice	 with	

confirmed	 CD5+CD19+	 disease	 (Tg)	 or	 fully	 leukaemic	 WT	 mice	 who	 had	 previously	

received	AT	TCL1	CLL.	All	had	CD5+CD19+	cells	 confirmed	by	PB	 flow	 from	a	 tail	 vein	

bleed.	 	 These	AT	mice	were	 allowed	 to	 develop	 leukaemia	 and	were	 culled	 prior	 to	

reaching	humane	endpoints.	These	T	cell	sources	are	summarised	in	figure	6.1.		

	

	
Figure	6.1:	 CAR	T	cells	were	either	derived	from	transgenic	mice	(Tg),	normal	or	WT	

T	cells,	or	from	mice	that	had	AT	of	CLL	when	they	were	confirmed	to	be	leukaemic	by	

PB	flow	cytometry	looking	for	CD5+CD19+	CLL.		
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6.3.2	 Multicolour	flow	cytometry	
	

T	 cells	 are	 identified	 by	 CD3,	 with	 CD4	 and	 CD8	 being	 used	 to	 identify	 helper	 and	

cytotoxic	 T	 cells.	 CD62L	 (L-selectin)	 is	 a	peripheral	 lymph	node	homing	 receptor	and	

marker	 of	 T	 cell	 development,	 it	 is	 expressed	 on	 naïve	 and	 memory	 T	 cells,	 whilst	

effector	T	cells	downregulate	CD62L	(261,	262).	CD44	corresponds	to	human	CD45RO	

as	a	marker	of	antigen-experienced	T	cells,	and	are	highly	expressed	on	memory	and	

effector	 T	 cells	 (263).	 In	 these	 experiments,	 T	 cells	 were	 characterised	 based	 on	

surface	expression	of	CD3,	CD4,	CD8,	CD62L,	CD44	and	PD-1.	CLL	was	identified	using	

CD5	and	CD19.	The	antigens	and	 corresponding	 fluorochromes,	 clones	and	 suppliers	

are	listed	in	table	6.1.	

	

Mouse	Antigen	 Fluorochrome	 Clone	 Supplier	

CD3	 PerCP-eFluor710	 17A2	 eBioscience	

CD3	 APC-eFluor780	 17A2	 eBioscience	

CD4	 PE	Cyanine7	 GK1.5	 eBioscience	

CD8a	 BV605	 53-6.7	 BioLegend	

CD44	 PE	 IM7	 eBioscience	

CD62L	 FITC	 MEL-14	 eBioscience	

PD-1	 Allophycocyanin	(APC)	 J43	 eBioscience	

PD-1	 PerCP-eFluor710	 RMP1-30	 eBioscience	

CD19-41BB	

CAR	

GFP	 Transduced	T	cell	only	

CD19-CD28	

CAR	

Streptavidin	PE/FITC	 f(ab’)2	 eBioscience	

CD5	 APC	 53-7.3	 eBioscience	

CD19	 PE	 1D3	 eBioscience/BD	

Table	6.1:	 CLL	and	T	cell	antibodies	used	for	phenotyping.	
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6.4	 Results	

	

6.4.1	 Cytotoxicity	titration	

	

To	 initially	 demonstrate	 the	 cytotoxicity	 of	 CAR	 T	 cells	 in	 vitro,	 I	 performed	 an	

experiment	using	different	effector:	 target	ratio	of	WT	CAR	T	cells	 to	CLL	cells.	 I	also	

compared	 different	 sets	 of	 CAR	 T	 cells	 produced	 with	 the	 retroviral	 supernatant	

collected	after	both	48	and	72	hours	transfection	of	packaging	cells.	The	transduction	

efficiency	of	the	NCI	CD19-CD28	CAR	versus	MSK	CD19-41BB	CAR	is	as	per	table	5.3	in	

chapter	 5,	 the	 highest	 was	 20.5%	 and	 15.1%	 respectively	 using	 the	 concentrated	

supernatant	 collected	after	48	hours	of	 transfection.	 The	CAR	T	 cells	 and	CLL	B	 cells	

were	co-cultured	for	72	hours.		

	

	
Figure	6.2:	 Remaining	B	cell	events	 (CellTrace	Yellow)	after	72	hours	co-culture	of	

CAR	 T	 cells	 transduced	 with	 CD19-CD28	 (NCI)	 and	 CD19-41BB-GFP	 (41BB)	 using	

retroviral	 supernatant	 collected	at	48h	and	72h	with	primary	murine	enriched	CLL	B	

cells	 at	 different	 effector	 (total	 T	 cells	 including	CAR	T	 cells)	 to	 target	 (B	 cell)	 ratios.	

Samples	were	 re-suspended	 in	 FACS	 buffer	with	 counting	 beads	 to	 ensure	 an	 equal	

number	of	total	events	were	collected.		
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Following	 this,	 the	 same	 CAR	 T	 cells	 were	 using	 at	 lower	 effector:	 target	 ratios	 to	

determine	 the	 ratio	 required	 to	 demonstrate	 cytotoxicity	 in	 subsequent	 cytotoxicity	

experiments.	 Figure	 6.2	demonstrates	 that	 lower	 effector:	 target	 ratios	 than	1:1	 are	

less	effective	at	killing	B	cells.	The	data	together	suggests	improved	cell	killing	by	the	

NCI	CD19-CD28	CAR	then	the	MSK	CD19-41BB	in	vitro	in	CAR	T	cells	derived	from	WT	

cells	with	an	optimum	target:	effector	ratio	of	1:1	for	future	experiments.	

	

	

Figure	6.3:	 Remaining	B	cell	events	 (CellTrace	Yellow)	after	48	hours	co-culture	of	

CAR	 T	 cells	 transduced	 with	 CD19-CD28	 (NCI)	 and	 CD19-41BB-GFP	 (41BB)	 using	

retroviral	 supernatant	 collected	at	48h	and	72h	with	primary	murine	enriched	CLL	B	

cells	 at	 different	 effector	 (total	 T	 cells	 including	CAR	T	 cells)	 to	 target	 (B	 cell)	 ratios.	

Samples	were	 re-suspended	 in	 FACS	 buffer	with	 counting	 beads	 to	 ensure	 an	 equal	

number	of	total	events	were	collected.		

	

6.4.2	 T	cell	phenotype	progression	through	manufacturing	

	

During	 CAR	manufacturing,	 flow	was	 performed	 to	 phenotype	 the	 CAR	 T	 cells	 from	

each	 T	 cell	 source	 (and	 untransduced	 controls)	 at	 various	 points	 to	 compare	 the	

evolution	in	phenotype	through	the	manufacturing	process.	This	included,	after	T	cell	

enrichment	pre	manipulation,	immediately	following	transduction,	and	after	72	hours	

1:1	co-culture	with	CLL	cells	stained	with	CellTrace	yellow.	As	previously	described,	CLL	
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development	 in	Tg	and	AT	mice	results	 in	the	relative	expansion	of	CD3+CD8+	cells	 in	

the	spleen	and	within	this	population,	CD44-CD62L+	naïve	cells	are	lost	with	a	shift	to	

CD44+	antigen	experienced,	and	more	CD44+CD62L+	effector	cells	in	the	spleen	(118).	

This	 was	 reflected	 in	 my	 starting	 pre-manipulation	 T	 cell	 suspensions,	 and	 post	

transduction,	an	increase	in	CD8+	cells	with	a	reduction	in	naïve	CD8+	T	cells	in	WT	CAR	

T	cells	and	complete	disappearance	of	this	population	in	AT/Tg	CAR	T	cells	(figure	6.4	

and	6.5).			

	

	

	
Figure	6.4:		 	DAPI-,	 viable,	 single	mononuclear	murine	 T	 cells	 which	 are	 CD4+	 and	

CD8+	pre	and	post	 transduction	with	 the	CD19-CD28	CAR.	 T	 cells	were	derived	 from	

WT	 or	 Tg	 mice,	 or	 WT	 mice	 that	 had	 received	 AT	 of	 CLL.	 Gating	 strategy	 for	

determination	of	CD4+CD8+	is	above.		
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Figure	6.5:	Gating	strategy	of	DAPI-,	viable,	 single	mononuclear	murine	T	cells	which	

had	 naïve	 (CD44-CD62L+),	 effector	 (CD44+CD62L-),	 and	 memory	 (CD44+CD62L+)	

phenotypes	of	the	CD8+	cells	identified	in	figure	6.4.	T	cells	were	derived	from	WT	or	

Tg	mice,	or	WT	mice	that	had	received	AT	of	CLL,	phenotype	pre	and	post	transduction	

by	 source	of	T	 cells	 transduced	with	 retroviral	 supernatant	 from	 the	NCI	CD19-CD28	

CAR	plasmid.		

	

I	have	previously	seen	big	differences	in	transduction	efficiency	between	WT	and	Tg	T	

cells,	and	again	in	this	experiment	when	comparing	WT	to	AT	and	Tg	transduction,	it	is	

WT	cells	which	are	most	readily	transduced	using	identical	retroviral	supernatant	and	

culture	conditions	(figure	6.6).	
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Figure	6.6:		 Flow	plots	of	transduction	efficiency	(Fab)	by	FSC	determined	in	DAPI-,	

viable,	 single	 mononuclear	 T	 cells	 with	 fab-biotin	 with	 negative	 gate	 established	

comparing	transduced	to	untransduced	T	cells,	by	T	cell	source.		

	

In	previous	experiments	 I	have	 seen	 that	WT	CAR	T	cells	proliferate	 in	 culture	much	

more	readily	then	CLL	T	cells.	Figure	6.7	shows	the	proliferation	of	CAR	T	cells	during	

the	manufacturing	 process,	 which	 demonstrates	 that	 CAR	 T	 cells	 derived	 from	 Tg	 T	

cells	do	not	proliferate	as	well	as	WT	or	AT	T	cells.	

	

	
Figure	6.7:		 Total	T	cell	count	(x106	cells)	in	culture	from	activation	of	T	cells	on	D-2	

to	-1,	transduction	on	D1	and	D2	and	expansion	from	D3	onwards	determined	by	an	

automated	 dual	 fluorescence	 (acridine	 orange/propidium	 iodide	 stain)	

haemocytometer	(Logos	Biosystems,	South	Korea)	by	source	of	T	cells,	WT	or	Tg	mice	

or	WT	mice	after	AT	of	CLL.		
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On	 day	 4	 of	 CAR	 T	 cell	 culture,	 the	 cytotoxic	 CD19	 specific	 killing	was	 evaluated	 by	

setting	up	co-culture	with	CLL	cells	at	1:1	effector	 to	 target	 ratio.	The	effector	count	

was	taken	as	the	total	T	cell	count	and	not	selected	for	CAR+	cells	and	the	targets	were	

CD19	enriched	 (negative	 selection)	 splenocytes	 from	other	aged	TCL1	mice	 from	the	

colony.	 The	 CLL	 cells	 were	 labelled	 with	 CellTrace	 yellow.	 CAR+	 T	 cells	 were	 not	

selected	 as	 the	 optimal	 dose	 at	 this	 stage	 was	 not	 known	 and	 in	 planned	 murine	

experiments	I	was	not	going	to	enrich	for	CAR	T	cells.	Cytotoxicity	was	assessed	at	24,	

then	 48	 and	 72	 hours	 using	 counting	 beads.	 No	 significant	 cytotoxicity	 was	

demonstrated	after	24	hours.	

	

	

	

Figure	6.8:		 CLL	B	cell	(labelled	with	CellTrace	Cell	Proliferation	Kit)	and	T	cell	events	

(CD3/CD8)	following	48	hours	co-culture	of	non-enriched	T	cells	containing	CAR	T	cells	

derived	from	WT,	Tg	and	AT	T	cells	at	1:1	ratio	separated	by	the	NCI	CD19-CD28	CAR	

(left)	and	CD19-41BB	CAR	(right)	showing	T	cell	expansion,	or	with	untransduced	T	cell	

controls.	Samples	were	prepared	in	FACS	buffer	with	counting	beads	and	1000	events	

were	recorded	for	each	condition.			
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Figure	6.9:		 CLL	B	cell	(labelled	with	CellTrace	Cell	Proliferation	Kit)	and	T	cell	events	

(CD3/CD8)	following	72	hours	co-culture	of	non-enriched	T	cells	containing	CAR	T	cells	

derived	from	WT,	Tg	and	AT	T	cells	at	1:1	ratio	separated	by	the	NCI	CD19-CD28	CAR	

(and	CD19-41BB	CAR	showing	T	cell	expansion,	or	with	untransduced	T	cell	 controls.	

Samples	 were	 prepared	 in	 FACS	 buffer	 with	 counting	 beads	 and	 1000	 events	 were	

recorded	for	each	condition.	For	gating	strategy	see	figure	6.8.		

	

In	figures	6.8	and	6.9,	we	see	that	following	48-72h	of	co-culture	there	was	expansion	

of	T	cells	 in	 the	NCI	CD19-CD28	CAR	 in	WT/AT	and	Tg	groups.	 In	 the	CLL	with	CD19-

41BB	CAR	co-culture	experiment	 it	was	only	 the	CAR	derived	 from	WT	T	cells	where	

there	was	significant	T	cell	expansion	at	48	and	72	hours.	Following	the	cytotoxicity	co-

culture	the	remaining	T	cells	were	phenotyped	and	demonstrate	again	an	expansion	of	

CD8	T	cells,	markedly	 in	AT	and	Tg	T	cells.	Further	these	CD8+	T	cells	become	almost	

entirely	antigen	experienced	i.e.	CD44+,	and	mostly	effector	T	cells	in	AT	and	Tg	CAR	T	

cells	(figures	6.10	and	6.11).	There	is	a	complete	loss	of	naïve	T	cells	in	the	co-culture	

using	WT,	AT	or	 Tg	derived	CAR	T	 cells,	 but	 in	 the	WT	derived	CAR	T	 cell	 co-culture	

there	is	still	a	healthy	mixture	of	memory	and	effector	T	cells.		
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Figure	6.10:		 T	cell	subsets,	post	72h	co-culture	with	CellTrace	yellow	stained	CD19+	

enriched	CLL	mouse	splenocytes,	in	comparison	to	their	phenotype	pre-manipulation.	

For	gating	strategy	see	figure	6.8.	

	

	

	

Figure	6.11:		 Extended	 naïve/effector/memory	 phenotype	 of	 T	 cells,	 post	 72h	 co-

culture	with	CellTrace	yellow	stained	CD19+	enriched	CLL	mouse	splenocytes,	 in	CD8+	

cells	only	CD44/CD62L.	
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The	NCI	CAR	does	not	have	a	fluorescent	tag	so	it	is	more	challenging	to	monitor	the	

progression	of	the	expanding	CAR	T	cell	population	in	culture.	However,	for	the	41BB	

WT	CAR	this	population	can	easily	be	tracked	by	GFP.	Figure	6.10	demonstrates	that	

after	co-culture	the	expanded	T	cell	population	are	varying	mixtures	of	CD4+	and	CD8+,	

but	the	CAR+GFP+	cells	are	all	CD8+	and	these	CD8+GFP+	cells	are	almost	entirely	PD-1+	

(figure	6.12).	

	

	
	

Figure	6.12:		 Demonstration	 of	 GFP+	 cells	 in	 CD4+	 (left)	 and	 CD8+	 (centre)	 T	 cells	

following	72h	1:1	co-culture	with	CellTrace	yellow	stained	CD19+	enriched	CLL	mouse	

splenocytes	and	WT	CD19-41BB	CAR	T	cells.	PD-1	expression	in	CD8+GFP+	CAR	T	cells	in	

the	same	experiment	(right).	

	

6.5	 Discussion	
	

When	CAR	T	cells	are	made	from	WT	or	CLL	T	cells,	 the	CAR	T	cells	display	markedly	

different	 phenotypes	 at	 the	 end	 of	 applying	 an	 identical	 optimised	 manufacturing	

process.	Some	of	the	phenotypic	differences	are	evident	prior	to	transduction,	as	they	

reflect	 the	 well	 described	 phenotypic	 differences	 between	 normal	 and	 CLL	 T	 cells,	

illustrated	 in	 previous	 publications	 by	 our	 group	 (89,	 118).	 However,	 activation	 and	

transduction	 of	 T	 cells	 as	 required	 to	make	 CAR	 T	 cells,	 accentuates	 the	 phenotypic	

differences,	 but	 the	 effect	 is	 differential	 when	 considering	 WT	 and	 CLL	 T	 cells,	

summarised	in	table	6.2.	It	is	not	clear	the	reason	for	this	but	it	is	an	observation	that	I	

observed	 in	 subsequent	 experiments.	Activation	of	 T	 cells	 required	 for	 transduction,	

results	in	skew	to	CD8	in	both	WT	and	CLL	T	cells,	but	this	effect	is	heightened	for	both	

types	of	CLL	T	cells.	Further,	for	both	cell	types,	there	is	loss	of	naïve	CD8	T	cells	during	
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CAR	manufacture,	but	this	is	almost	entirely	complete	for	AT	and	Tg	T	cells.	For	AT	and	

Tg	T	cells,	after	both	manufacture	and	then	co-culture	with	CLL	cells,	there	are	mostly	

terminally	 differentiated	 effector	 T	 cells	 left,	 compared	 to	 a	 majority	 of	 memory	

balanced	with	some	effector	T	cells	for	WT	CAR	T	cells.	There	is	significant	preclinical	

evidence	in	xenograft	mouse	models	CAR	T	cells	enriched	in	naïve	and	memory	T	cells	

and	 using	 defined	 CD4:	 CD8	 ratios	 can	 improve	 CAR	 efficacy	 (208),	 although	 the	

disease	being	treated	is	CD19+	engrafted	Raji	cells.	Interestingly,	in	the	pivotal	CLL	CAR	

study	(160),	of	the	products	infused	the	median	CD4%	was	81%	with	a	median	of	20%	

CD8	T	cells.	There	is	no	detailed	analysis	of	extended	T	cell	phenotype	in	this	study	but	

it	does	state	phenotype	did	not	predict	response	(160).		

	

In	 these	 experiments	 there	 is	 not	 a	 comprehensive	 analysis	 of	 changes	 in	 PD-1	

expression	due	to	technical	 issues.	Following	the	co-culture	experiment,	 it	was	much	

easier	to	identify	CAR+	T	cells	of	CD19-41BB	due	to	the	GFP	in	that	plasmid,	so	only	in	

the	CD19-41BB	CAR	T	cell	co-culture	experiment	it	was	possible	to	establish	that	of	the	

CAR+	 T	 cells,	 the	 vast	majority	 (87%)	 are	 PD-1+,	which	 in	 this	 context	 can	 of	 course	

reflect	both	activation	and	exhaustion.		

	

WT/normal	CAR	T	cells	 CLL	(AT/Tg)	CAR	T	cells	

CD4+:CD8+	=	1	

manufacture	and	co-culture	

CD4+	ê,	CD8+	é	

manufacture	and	co-culture	

CD4+=CD8+	transduction	efficiency	 CD8+	transduction	ê	

CD4+	transduction	preserved	

PD-1+	low	 PD-1+	high	(41BB)	

CD44+	high	 CD44+	high	

CD3+	CD8+	memory	 CD3+	CD8+	effector	(loss	of	naïve)	

Table	6.2:	 Key	phenotypic	differences	between	CAR	T	cells	derived	 from	WT	and	

CLL	T	cells	(AT	and	Tg)	after	expansion	and	in	co-culture	experiments.		
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In	 vitro	 cytotoxicity	 experiments	 demonstrate	 that	murine	 CAR	 T	 cells	 derived	 from	

both	WT	and	CLL	T	cells	can	exhibit	cytotoxicity	of	CD19+	enriched	CLL	cells	after	48-72	

hours	in	co-culture.	When	comparing	of	the	efficacy	of	CD19	CAR	T	cells	with	different	

co-stimulatory	 domains	 in	 this	 model,	 the	 cytotoxicity	 of	 WT	 CD19	 CAR	 T	 cells	 is	

greater	 at	 all	 effector:	 target	 ratios	 using	 the	 CD19-CD28	 CAR.	 In	 these	 co-culture	

experiments,	 after	 48-72	 hours	 there	 is	 both	 loss	 of	 B	 cells	 but	 marked	 apparent	

expansion	of	T	cells,	for	the	CD19-CD28	regardless	of	the	T	cell	source	but	when	using	

CD19-41BB	CAR	T	cells	only	when	they	were	derived	from	WT	T	cells	was	a	significant	T	

cell	expansion	seen.	Interestingly,	of	the	co-culture	CAR	T	cell	in	vitro	expansion,	when	

the	T	cell	source	was	normal	T	cells	these	T	cells	are	1:1	CD4:	CD8,	but	 like	 in	the	ex	

vivo	expansion	phase	of	manufacturing,	when	the	T	cell	source	was	CLL	T	cells,	the	in	

vitro	expansion	is	predominantly	CD8+	T	cells.	This	was	true	for	both	AT	and	Tg	T	cells,	

although	the	skew	to	CD8	T	cell	expansion	in	co-culture	is	more	marked	for	Tg	CAR	T	

cells.		

	

In	summary	this	series	of	experiments	demonstrate	a	specific	phenotype	of	CAR	T	cells	

when	 an	 identical	 manufacturing	 process	 is	 applied	 to	 both	 groups	 of	 cells.	 The	

resulting	CAR	T	cells	demonstrate	in	vitro	cytotoxicity,	although	the	CD19-CD28	CAR	T	

cells	 to	a	greater	extend	and	 in	all	cell	 types.	Because	of	ongoing	 issues	with	ex	vivo	

expansion	of	Tg	T	cells	in	culture	and	poor	viability,	for	future	experiments	I	decided	to	

use	 AT	 CLL	 T	 cells	 as	 my	 main	 T	 cell	 source	 to	 model	 CLL	 T	 cells.	 Some	 of	 the	

phenotypic	changes	induced	by	CAR	manufacture	are	actually	due	to	the	method	of	T	

cell	activation,	and	as	control	WT	and	CLL	T	cells	not	transduced	but	activated	under	

identical	conditions	exhibited	the	same	phenotypic	changes.	 It	 is	worth	noting,	 there	

are	other	less	established	methods	for	activation	and	transduction	of	a	murine	T	cell,	

and	therefore	opportunities	to	optimise	CAR	T	phenotype	for	efficacy	by	manipulation	

of	these	methods.		
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7.		 CAR	T	cell	function	in	vivo	

	

7.1	 Introduction	

	

The	majority	 of	 published	 data	 regarding	 pre-clinical	 investigation	 of	 CAR	 T	 cells	 in	

murine	models	uses	human	CAR	T	cells	in	immunodeficient	mice	engrafted	with	either	

human	primary	 tissue	or	 human	derived	 cell	 lines.	 Such	models	 clearly	 indicate	CAR	

efficacy,	 but	 they	do	not	 allow	 for	more	 complex	 study	of	 the	 interactions	between	

CAR	T	cells	and	the	host	immune	response.	Whilst	the	transgenic	and	AT	TCL1	mouse	

models	were	 already	 setup	 in	 the	Gribben	 laboratory,	 no	CAR	work	was	 established	

prior	to	starting	my	PhD.	The	broad	schematic	for	the	in	vivo	experiments	was	taken	

from	the	development	of	a	syngeneic	and	 immunocompetent	mouse	model	of	B-ALL	

(145)	 from	 the	 Sadelain	 laboratory	 at	MSKCC.	 They	 isolated	malignant	 progenitor	 B	

cells	from	a	lymph	node	from	an	Eµ-myc	C57BL/6	transgenic	mouse	with	progressive	

disease.	 The	 isolated	 cells	 were	 cultured	 until	 transformation	 and	 have	 an	

immunophenotype	 and	 gene	 expression	 profile	 that	 resembles	 B-ALL.	 These	

transformed	cells	are	then	injected	intravenously	into	WT	C57BL/6	mice	and	they	die	

2-4	 weeks	 after	 AT	 of	 BM	 failure	 due	 to	 ALL	 infiltration.	 In	mice	 treated	with	 their	

CD19-CD28	 CAR,	 they	 received	 lymphodepleting	 conditioning	 chemotherapy	 with	 IP	

cyclophosphamide,	the	dose	of	which	they	modelled	as	they	also	did	for	the	cell	dose.	

The	 CD19-CD28	 CAR	 I	 obtained	 from	 the	 NCI	 has	 been	 tested	 on	 WT	

immunocompetent	 mice	 with	 lymphoma	 but	 these	 mice	 received	 an	

immunosuppressive	 5	 Gy	 of	 total	 body	 irradiation	 (TBI)	 prior	 to	 the	 injection	 of	

lymphoma.	 They	 then	 received	 retrovirally	 transduced	 syngeneic	 CD19-CD28	 CAR	 T	

cells	and	demonstrated	efficacy	that	was	dependent	on	the	TBI	for	CAR	T	cell	activity	

(146).	 There	 is	 no	 published	 data	 in	 CLL	 defining	 how	 to	 test	 CAR	 function	 using	 an	

immunocompetent	 mouse	 model	 such	 as	 TCL1	 in	 CLL.	 Therefore,	 in	 this	 chapter,	 I	

describe	 the	 setup	 of	 an	 in	 vivo	 model	 of	 syngeneic	 CD19	 CAR	 T	 cells	 in	 an	

immunocompetent	mouse	model	of	CLL.		
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7.2	 Objectives	

	

• To	establish	the	AT	TCL1	mouse	model	as	an	immunocompetent	mouse	model	

in	which	to	study	CAR	T	cell	function	in	CLL.		

• To	study	the	efficacy	of	CAR	T	cells	derived	from	WT	T	cells	in	a	limited	number	

of	mice,	comparing	the	NCI	CD19-CD28	and	MSK	CD19-41BB-GFP	CAR	plasmids	

to	optimize	experimental	conditions.	

• Confirm	 the	phenotype	of	CAR	T	cells	derived	 from	normal/WT	and	CLL/AT	T	

cells	prior	to	using	in	vivo.		

• Compare	 CD19-CD28	 and	 CD19-41BB	 CAR	 efficacy	 when	 those	 CARs	 are	

derived	from	WT	or	AT	T	cells	in	AT	TCL1	CLL.	

• Compare	the	CLL	load	and	T	cell	phenotype	of	the	PB,	spleen	and	BM	of	mice	

treated	with	CAR	T	cells	derived	from	WT	and	AT	T	cells,	 to	see	 if	CAR	T	cells	

can	reverse	the	expected	CLL	T	cell	phenotype	and	treat	CLL.	

	

7.3	 Materials	and	methods	

	

To	 establish	 the	 in	 vivo	 conditions	 an	 exploratory	 experiment	 was	 first	 carried	 out	

using	CAR	T	cells	derived	from	WT	T	cells	transduced	only	with	either	the	CD19-CD28	

and	CD19-41BB-GFP	CAR.	Initially,	nine	mice	received	13	x106	CLL	B	cells	by	AT	and	one	

aged	matched	male	control	from	the	same	litter	had	no	AT	so	as	to	be	able	to	compare	

phenotype	 of	 processed	 organs.	 By	 week	 2	 the	 mice	 had	 low	 level	 CD5+CD19+	

engraftment	 and	 were	 injected	 with	 CAR	 T	 cells	 at	 week	 3.	 I	 determined	 the	

cyclophosphamide	 and	 cell	 doses	 from	 the	 mid	 range	 as	 to	 that	 modelled	 by	 the	

Sadelain	 group	 in	 an	 immunocompetent	 model	 of	 ALL	 (145).	 All	 mice	 tolerated	

cyclophosphamide	 dosing	 without	 signs	 of	 ill	 health.	 Mice	 had	 regular	 bleeds	 until	

week	9	when	they	were	culled	and	their	PB,	spleen	and	BM	processed	and	analysed.	

The	 regular	 bleeds	 identified	CD5+CD19+	 CLL,	 normal	 B	 cells,	 T	 cell	 subsets	 and	post	

CAR	T	injection	looked	for	CAR+	T	cells.		
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Following	this	optimization	experiment,	it	was	then	repeated	with	CAR	T	cells	derived	

from	 both	 normal/WT	 and	 CLL/AT	 T	 cells	 in	 much	 larger	 numbers	 of	 mice.	 For	 the	

second	 experiment	 48	mice	were	 injected	with	 14	 x106	 CLL	 B	 cells	 by	 AT	 and	 again	

after	 confirming	 CLL	 engraftment	 at	 week	 2,	 CAR	 T	 cells	 were	 injected	 at	 week	 3.	

Cyclophosphamide	 dosing	 remained	 unchanged.	 Mice	 again	 had	 regular	 tail	 vein	

bleeds	 until	 week	 9	when	 they	were	 culled	 and	 PB,	 spleen	 and	 BM	 processed.	 The	

regular	bleeds	identified	CD5+CD19+	CLL,	normal	B	cells,	T	cell	subsets	and	post	CAR	T	

injection	looked	for	CAR+	T	cells.	Mice	were	weighed	throughout	the	experiment	and	

the	spleen	weight	was	measured	when	mice	were	culled.		

	

	
Figure	7.1:	 In	 vivo	 experimental	 plan	 to	 deliver	 CAR	 T	 cells	 from	 different	 T	 cell	

sources	 to	 the	 AT	 TCL1	 mouse	 model.	 PB	 bleeds	 prior	 to	 CAR	 T	 cell	 infusion	

determined	CD5+CD19+	load	but	PB	bleeds	afterwards	looked	for	CAR+	T	cells.	

	

7.4	 Results	–	In	vivo	optimization	

	

7.4.1	 CAR	T	cell	phenotype	

	

For	 the	 first	 optimization	 experiment,	 I	 prepared	 18	 x106	WT	 T	 cells	 as	 a	 single	 cell	

suspension	obtained	from	genotype	confirmed	WT	colony	mice.	These	were	activated	
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for	 24h	 prior	 to	 being	 transduced	 by	 spinoculation	 on	 two	 consecutive	 days	 as	

previously	 described.	 CAR	 T	 cells	 were	 cultured	 for	 four	 days	 then	 harvested	 and	

debeaded	 and	 mice	 which	 had	 received	 D-1	 IP	 cyclophosphamide	 were	 injected	

between	 4.7-5.1	 x106	 total	 T	 cell	 each.	 There	were	 three	 groups,	mice	 treated	with	

CD19-CD28,	CD19-41BB	both	derived	from	WT	T	cells	and	a	control	group	injected	with	

untransduced	T	cells.	Cell	dose	was	determined	as	a	total	T	cell	dose,	the	CAR+	T	cell	

dose	 corrected	 for	 transduction	efficiency	and	 subset	 is	 shown	 in	 table	1.	Basic	CAR	

phenotype	 demonstrated	 that	 CD19-CD28	 and	 CD19-41BB	 CAR	 T	 cells	 were	

approximately	1:1	CD4:	CD8	by	flow	immediately	before	being	injected.	CD4	and	CD8	

transduction	efficiency	was	determined	separately	as	per	Table	7.1.	

	

Subset	 CD19-41BB-GFP	 CD19-CD28	

GFP+%	 Cell	dose	

(x106)	

Fab+%	 Cell	dose	

(x106)	

CD4+	 40.3	 1.0	 47.1	 1.29	

CD8+	 29.7	 0.76	 41.7	 1.15	

Table	7.1:	 Cell	dose	by	T	cell	subset	corrected	by	transduction	efficiency.	

	

It	is	unclear	when	determining	cell	dose	if	it	is	best	to	give	an	equal	number	of	total	T	

cells	across	groups,	or	correct	for	transduction	efficiency	or	the	number	of	transduced	

T	 cells	 in	 a	 specific	 T	 cell	 subset.	 However,	 as	 this	 was	 an	 exploratory	 optimization	

experiment	I	gave	a	similar	total	T	cell	dose	and	looked	for	trends	in	the	other	factors.	

Of	note,	whilst	 these	cell	dose	numbers	are	similar	 to	described	 in	published	data	 in	

animal	models,	these	cell	doses	would	be	equivalent	to	at	least	40	x106	CAR+	T	cells/kg	

if	you	compare	 the	cell	dose	per	kilogram	used	 in	 the	ZUMA-1	study,	which	 is	much	

higher	than	those	doses	given	in	the	licensed	product.	For	example,	axi-cel	cell	dose	is	

1-2	x106	CAR+	T	cells/kg	for	lymphoma.	
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7.4.2	 AT	progress	

	

At	 the	 first	 tail	vein	bleed	post	CAR	T	cell	 injection	at	week	4.4	or	D+10	all	 the	mice	

treated	with	the	CD19-CD28	CAR	had	no	detectable	CLL	or	normal	B	cells	by	PB	flow	

cytometry.	For	the	mice	treated	with	CD19-41BB	1/3	had	no	B	cells	and	the	other	two	

had	low	level	detectable	disease.	Subsequently,	the	mice	were	bled	regularly	and	the	

progression	 of	 their	 PB	 CLL	 is	 shown	 in	 figure	 7.2.	 The	 CD19-CD28	 treated	mice	 all	

remained	in	remission	until	week	9	when	one	mouse	relapsed	which	was	also	evident	

in	 the	 spleen	 and	 bone	 marrow.	 The	 one	 initially	 responding	 mouse	 that	 received	

CD19-41BB	remained	in	remission	but	the	other	two	mice	rapidly	progressed	and	like	

the	control	mice	that	received	untransduced	T	cells	needed	to	be	pre-emptively	culled	

at	week	9.	All	mice	were	 therefore	culled	at	week	9	 for	phenotypic	comparison	of	T	

cells	and	assessment	of	CLL	load	in	all	organs.	

	

Figure	7.2:	 CD5+CD19+%	in	the	peripheral	blood	of	DAPI-,	viable	mononuclear	cells	

following	red	cell	lysis	obtained	by	tail	vein	bleed	by	week	after	each	mouse	received	

AT	of	13	x106	CLL	splenocytes	and	were	treated	with	~5	x106	T	cells	of	which	~2	x106	

were	different	CAR	T	cells	or	were	untransduced	T	cells.	Within	groups	mice	(x3	mice	

in	each	CAR	group,	x1	mouse	negative	control)	receiving	CD19-CD28	and	CD19-41BB-

GFP	were	injected	with	split	pooled	cell	doses	of	subsets	defined	in	table	7.1.	

	



	

127	

The	mice	were	weighed	regularly	and	observed	to	establish	signs	of	ill	health	post	AT	

or	CAR	T	cell	injection.	As	per	the	project	license	significant	weight	loss	would	require	

animals	to	be	pre-emptively	culled.	One	control	mouse	that	received	untransduced	T	

cells	was	culled	at	week	7	due	to	showing	signs	of	ill	heath	but	overall	all	the	mice	put	

on	 weight	 through	 the	 experiment.	 This	 mouse	 had	 a	 very	 large	 spleen	 and	

undoubtedly	was	sick	due	to	progressive	disease.	All	mice	that	received	active	CAR	T	

cells	were	 intensely	monitored	 for	 the	 first	week	post	 CAR	 T	 cell	 injection	but	 none	

showed	obvious	acute	signs	of	ill	health	immediately	after	CAR	T	cells	as	CRS	would	be	

theoretically	possible	 in	 this	model.	All	mice	who	progressed	or	 relapsed	did	so	with	

CD19+	disease.	Figure	7.3	shows	progression	of	weight	for	individual	mice	through	this	

experiment.	Mice	that	responded	all	demonstrated	loss	of	both	normal	and	malignant	

CD19+	 B	 cells	 (figure	 7.4)	 whilst	 mice	 treated	 with	 untransduced	 T	 cells	 have	

CD5+CD19+	disease.	

	

	
Figure	7.3:		 Individual	progression	of	mouse	weights	(grams)	after	first	AT	of	13	x106	

CLL	 splenocytes	 and	 then	 treatment	 with	 ~5	 x106	 T	 cells	 of	 which	 ~2	 x106	 were	

different	CAR	T	cells	or	were	untransduced	T	cells	(note	mixture	of	sexes	used).	
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Figure	7.4:	 Flow	 plots	 demonstrating	 loss	 of	 both	 normal	 (CD5-CD19+)	 and	

malignant	 B	 cells	 (CD5+CD19+)	 in	 mice	 responding	 to	 CD19-CD28	 CAR	 T	 cells	 and	

progressive	CD5+CD19+	with	normal	CD19+	B	cells	in	mice	treated	with	untransduced	T	

cells.	DAPI-,	viable,	mononuclear	cells	gated	with	10,000	events	recorded.		

	

At	week	9,	all	mice	were	culled	and	their	spleens	and	BM	harvested.	For	purposes	of	

analysis	 the	 CD19-41BB	 group	 was	 split	 into	 mice	 1-2	 which	 did	 not	 respond	 and	

mouse	 3	which	 did	 respond.	 Figure	 7.5-8	 demonstrates	 their	 CD5+CD19+	 disease	 by	

organ,	spleen	weight,	CD4:	CD8	ratio	and	PD-1+	expression	in	specific	organs	and	T	cell	

subsets	all	at	week	9.	It	shows	the	CD19-CD28	CAR	can	clear	detectable	disease	in	the	

PB,	 spleen	 and	 BM	 by	 W9	 (figure	 7.5),	 with	 equivalent	 spleen	 weights	 of	 mice	

responding	to	CAR	T	cells	to	age	matched	controls	(figure	7.6).	Further,	 in	the	spleen	

and	PB,	responding	mice	normalize	CD4:	CD8	ratios	(figure	7.7)	and	PD-1+	expression	

(figure	 7.8)	 compared	 to	 aged	 match	 controls.	 All	 relapsing	 mice	 relapsed	 with	

CD5+CD19+	disease	and	all	mice	with	an	ongoing	response	had	loss	of	normal	CD19+	B	

cells	in	all	organs.		
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Figure	7.5:		 CD5+CD19+%	of	DAPI-,	 viable	mononuclear	 cells	by	organ	at	week	9	 in	

10	mice	 treated	with	 different	 CAR	 T	 cells	 showing	 clearance	 of	 disease	with	 CD19-

CD28		(3	mice)	and	CD19-41BB	(mouse	1	or	3)	CAR	or	no	response	to	untransduced	T	

cells	(3	mice).	Negative	control	mouse	did	not	receive	AT	of	CLL	(1	mouse).	

	

	
Figure	7.6:		 Weights	 of	 spleen	 of	 10	mice	 culled	 at	week	 9	 treated	with	 different	

CAR	 T	 cells	with	 significant	 differences	 (*P<0.05,	 **P<0.01,	 ***P<0.001).	 CD19-41BB	

CAR	group	split	into	non-responding	(mouse	1-2)	and	responding	(mouse	3).		
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Figure	7.7:		 CD4:	CD8	ratio	of	all	T	cells	by	organ	in	10	mice	culled	at	week	9	treated	

with	different	CAR	T	cells.	CD19-41BB	CAR	group	split	into	non-responding	(mouse	1-2)	

and	responding	(mouse	3),	CD19-CD28	and	untransduced	T	cells	treated	3	mice	each.		

	

	

Figure	7.8:	 PD-1+%	expression	of	CD3+CD8+	T	cells	by	organ	when	culled	at	week	9	

after	 treatment	 with	 different	 CAR	 T	 cells.	 CD19-41BB	 CAR	 group	 split	 into	 non-

responding	 (mouse	 1-2)	 and	 responding	 (mouse	 3),	 CD19-CD28	 and	 untransduced	 T	

cells	treated	3	mice	each.	
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7.5	 Results	

	

7.5.1	 CAR	T	cell	phenotype	

	

My	first	optimization	 in	vivo	experiment	had	demonstrated	the	efficacy	of	the	CD19-

CD28	CAR	and	partial	efficacy	of	CD19-41BB	CAR	derived	from	WT/normal	T	cells,	so	

the	 same	experimental	 plan	 and	methods	were	 used	 to	 repeat	 this	 experiment	 in	 a	

larger	number	of	mice,	but	 this	 time	deriving	CAR	T	 cells	 from	both	WT/normal	and	

AT/CLL	T	cells.	The	groups	to	be	studied	in	this	experiment	are	as	below	(figure	7.9).		

	

	

	

Figure	7.9:	 Experimental	 groups	 for	 first	 in	 vivo	 comparison	 of	 CD19-CD28	 and	

CD19-41BB	CAR	derived	from	normal/WT	and	CLL/AT	T	cells.	

	

Prior	 to	 commencing	 the	main	 part	 of	 the	 experiment,	 I	 took	 transgenic	mouse	 CLL	

splenocytes	 from	our	 tissue	bank	and	 injected	 five	male	mice	with	40	 x106	enriched	

CLL/B	cells	by	AT.	These	mice	were	the	source	of	AT/CLL	T	cells,	and	were	monitored	as	
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previously	described	with	PB	CD5+CD19+	load.	They	were	culled	at	week	6,	when	they	

had	high	CLL	and	one	spleen	was	used	from	which	to	enrich	T	cells	to	make	CAR	T	cells.	

For	the	WT	T	cells	six	aged	matched	littermates	were	used	to	pool	their	spleens	to	get	

sufficient	T	cells.	The	last	PB	CLL	load	prior	to	these	mice	being	culled	to	compare	the	

extent	of	CLL	WT	and	AT	T	cells	were	exposed	to	is	shown	in	figure	7.10.	

	

	

	

Figure	7.10:		 CD5+CD19+	 or	 CLL	 load	 in	 PB	 (post	 red	 cell	 lysis)	 prior	 to	 mice	 being	

culled	 and	 the	 T	 cell	 enrichment	 of	 their	 spleens	 to	make	 CAR	 T	 cells.	 DAPI-,	 viable	

mononuclear,	10,000	events	recorded.		

	

For	 each	 experimental	 group	 18	 x106	 enriched	 T	 splenocytes	 were	 activated	 for	 24	

hours	 prior	 to	 being	 transduced	 with	 retroviral	 supernatant	 from	 either	

SFGm19BBmZGFP	 (CD19-41BB-GFP)	 or	 MSGV1D328Z1.3mut	 (CD19-CD28)	 by	

spinoculation	 on	 two	 consecutive	 days	 as	 previously	 described.	 CAR	 T	 cells	 were	

cultured	 for	 four	days	 in	 total	 then	harvested	and	debeaded.	Cell	counts	were	taken	

daily	except	on	day	2	as	 this	was	prior	 to	 the	second	transduction.	Proliferation	of	T	

cells	 by	 group	 is	 compared	 in	 figure	 7.11,	 showing	 that	WT	 T	 cells	 proliferate	 after	

transduction	more	readily	then	T	cells	derived	from	AT	mice.	There	seemed	to	be	no	

difference	in	this	proliferation	within	groups	when	comparing	T	cells	transduced	with	
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the	two	different	CARs.	As	per	previous	experiments	day	4	seemed	the	optimum	day	

to	harvest	T	cells	from	culture	to	prepare	for	in	vivo	experiments	and	mouse	injections.		

	

	
Figure	7.11:	 Total	 T	 cell	 count	 (x10^6	 cells)	 in	 culture	 from	activation	of	 T	 cells	 on	

day	0	using	CD3/CD28	beads	and	IL2,	transduction	on	day	1-2	and	expansion	from	day	

3	onwards	determined	by	an	automated	dual	fluorescence	(acridine	orange/propidium	

iodide	 stain)	 haemocytometer	 (Logos	 Biosystems,	 South	 Korea)	 by	 source	 of	 T	 cells	

splenocytes,	 WT	 or	 WT	 mice	 after	 AT	 of	 CLL	 transduced	 with	 either	 the	 retroviral	

supernatant	using	the	CD19-CD28	or	CD19-41BB	plasmid.		

	

After	 harvesting	 the	 CAR	 T	 cells	 from	 cell	 culture	 they	 were	 phenotyped	 prior	 to	

injecting	into	the	mice.	Cell	dose	was	broadly	matched	across	experimental	groups	in	

terms	of	total	T	cells,	with	6-8	x106/mouse	total	T	cells	(or	untransduced	T	cells)	being	

injected.	 However,	 this	 approach	 resulted	 in	 different	 cell	 doses	 of	 CAR+	 T	 cells	 in	

terms	 of	 different	 T	 cell	 subsets	 as	 the	 phenotype	 and	 transduction	 efficiency	 of	

normal	and	AT	T	cells	is	different.	Table	7.2	further	characterizes	the	CAR	T	cell	doses	

in	terms	of	subsets	corrected	for	transduction	efficiency.		
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CAR	 T	cell	dose	

x106	

/mouse	

Transduction		

efficiency	(%)		

CAR+	cell	dose/mouse	

x106	

CD4	 CD8	 CD4	 CD8	

WT	CD19-CD28	 8.9	 27%	 27.5%	 1.0	 1.3	

AT	CD19-CD28	 8.6	 52%	 5.4%	 0.2	 0.4	

WT	CD19-41BB	 8.3	 20.9%	 19.7%	 0.7	 0.9	

AT	CD19-41BB	 6.1	 46.8%	 6.4%	 0.9	 0.3	

Table	7.2:		 CAR	 cell	 dose	 by	 T	 cell	 subset	 at	 the	 end	 of	 the	 4	 day	 expansion	

correcting	total	T	cell	dose	given	to	each	group	by	transduction	efficiency	in	CD4+	and	

CD8+	subsets.	

	

CAR	T	 cells	 derived	 from	WT	and	AT	 T	 cells	 exhibit	 different	 phenotypes.	WT	CAR	T	

cells	proliferate	more	readily	in	culture	and	exhibit	higher	transduction	efficiencies	in	

the	 CD8	 subset	 although	 CD4	 transduction	 is	 preserved.	 Following	 activation	 and	

transduction	WT	 CAR	 T	 cells	 have	 a	 CD4:	 CD8	 ratio	 of	 1:1	whilst	 those	 from	AT	 are	

heavily	 skewed	 to	 CD8.	 In	 both	 groups	 >90%	 T	 cells	 are	 CD44+	 indicating	 antigen	

experience.	PD-1+	expression	in	both	CD4	and	CD8	subsets	is	significantly	higher	in	AT	

compared	 to	 WT	 CAR	 T	 cells.	 Figures	 7.12-7.14	 demonstrate	 the	 key	 phenotypic	

differences	on	the	fourth	day	of	cell	culture	comparing	CAR	T	cells	derived	from	WT	or	

AT	T	cells	using	both	the	CD19-CD28	and	CD19-41BB	plasmids.		
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Figure	7.12:	 CD4:	 CD8	 ratio	 as	 a	 proportion	 of	 DAPI-,	 viable	 single	 lymphocytes	

before	and	after	activation	and	transduction	of	T	cells	by	T	cell	source	and	using	the	

different	plasmids	CD19-CD28	and	CD19-41BB.		

	

	
Figure	7.13:		 Transduction	 efficiency	 (GFP+%	 or	 Fab+%)	 as	 a	 proportion	 of	 DAPI-,	

viable	 single	 lymphocytes	 in	 CD4+	 and	 CD8+	 T	 cells	 after	 four	 days	 of	 cell	 culture	

following	transduction	with	CD19-CD28	or	CD19-41BB	retroviral	supernatant.		
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Figure	7.14:	 PD-1+%	 expression	 of	 DAPI-,	 viable	 mononuclear	 CD3+CD4+	 or	 CD8+	 T	

cells	after	4	days	of	culture	 including	activation	and	transduction	with	CD19-CD28	or	

CD19-41BB	retroviral	supernatant.	

		

7.5.2	 AT	progress	

	

Forty-eight	immunocompetent	WT	mice	each	received	AT	of	pooled	14	x106	CLL	cells	

from	 fully	 leukemic	 TCL1	mice	 from	 the	 same	 background	 from	 our	 tissue	 bank.	 All	

treatment	groups	were	composed	of	half	male	and	half	female	mice.	CLL	engraftment	

was	confirmed	at	week	2	and	CAR	T	cells	injected	at	week	3.	At	the	first	tail	vein	bleed	

at	 week	 4	 post	 AT	 or	 D+7	 post	 CAR	 T	 cells	 mice	 treated	 with	 the	 CD19-41BB	 CAR	

derived	from	WT	and	AT	T	cells	or	untransduced	T	cells	did	not	respond.	There	was	no	

evidence	of	CAR	expansion	 i.e.	CD3+GFP+	expression	 in	 the	PB	of	 the	mice	given	 the	

CD19-41BB	CAR.	100%	of	mice	treated	with	CD19-CD28	CAR	derived	from	WT	T	cells	

had	a	complete	response	with	loss	of	CLL	and	normal	B	cells	compared	to	50%	of	mice	

treated	with	CD19-CD28	derived	from	AT	T	cells.	Mice	were	bled	weekly	to	every	two	

weeks	to	assess	CLL	load	and	T	cell	subsets	and	were	culled	when	they	appeared	sick	

or	peripheral	blood	(PB)	CLL>70%.	Progression	of	PB	CLL	from	weeks	0-9	 is	shown	 in	
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figure	7.15.	All	mice	 that	progressed	did	 so	with	CD19+	disease	and	all	mice	with	an	

ongoing	 CD5+CD19+	 response	 had	 no	 detectable	 normal	 CD19+	 B	 cells	 indicative	 of	

ongoing	CAR	activity.	Normal	B	cell	aplasia	 is	expected	as	a	 response	 to	a	persistent	

CAR	T	response	as	of	course	CD19	CAR	T	cells	do	not	distinguish	between	normal	and	

malignant	B	cells.		

	

	

Figure	7.15:	 Percentage	of	DAPI-,	viable	mononuclear	cells	in	PB	that	are	CD5+CD19+	

CLL	post	AT	of	CLL	at	week	0	and	injection	of	IP	cyclophosphamide	and	IV	CAR	T	cells	at	

week	3	separated	by	CAR	treatment	group.	

	

In	a	subgroup	analysis,	of	the	6	mice	given	the	AT	CD19-CD28	CAR,	the	3	male	mice	all	

had	an	ongoing	response	and	the	three	female	mice	relapsed	in	a	similar	fashion	to	the	

other	 non-responding	 groups	 (figure	 7.16).	 This	 observation	 was	 not	 consistent	 in	

previous	 and	 subsequent	 experiments	 so	 could	 just	 be	 chance,	 but	 it	 would	 be	 an	

interesting	observation	if	different	CAR	responses	could	be	demonstrated	according	to	

the	sex	of	mice.		
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Figure	7.16:	 Percentage	of	DAPI-,	viable	mononuclear	cells	in	PB	that	are	CD5+CD19+	

CLL	post	AT	of	CLL	at	week	0	and	injection	of	IP	cyclophosphamide	and	IV	CAR	T	cells	at	

week	3	by	treatment	group	separating	the	AT	CD19-CD28	treatment	group	by	sex.	

	

All	non-responding	mice	were	culled	at	week	9	due	to	progressive	leukaemia	as	were	

control	 mice	 treated	 with	 untransduced	 T	 cells.	 Half	 of	 the	 responding	 mice	 were	

culled	 for	phenotypic	comparison	at	week	9	and	the	other	half	observed	 for	survival	

analysis.	All	mice	with	an	established	response	had	a	continued	complete	response	for	

31	 weeks	 following	 CAR	 T	 cell	 injection	 when	 they	 were	 culled.	 Those	 mice	 that	

responded	and	culled	at	week	9	had	equivalent	spleen	size	(0.1g)	to	age	matched	WT	

mice	 controls	 whilst	 non-responding	 mice	 had	 significantly	 larger	 spleens	 (0.53-3g),	

shown	in	figure	7.17.		
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Figure	7.17:	 Spleen	weight	(grams)	when	mice	are	culled	at	week	9	after	AT	of	CLL	

and	 treatment	 with	 CAR	 T	 cells	 derived	 from	 different	 sources	 of	 T	 cells	 and	

transduced	with	CD19-CD28	or	CD19-41BB	retroviral	 supernatant	 showing	significant	

differences	(*P<0.05,	**P<0.01,	***P<0.001,	****P<0.0001).	

	

What	is	less	clearly	illustrated	by	simply	looking	at	the	median	or	mean	spleen	weight	

is	 in	 the	 mice	 treated	 with	 CD19-CD28	 CAR	 from	 AT	 T	 cells	 the	 response	 was	

dichotomous,	in	that	these	mice	had	either	a	complete	and	ongoing	response	or	their	

disease	accelerated	at	the	same	pace	as	for	mice	who	received	untransduced	T	cells.	

These	 explains	 the	 large	 error	 bars	 seen	 in	 this	 group	 in	 figure	 7.15.	 The	 subgroup	

analysis	 reveals	 that	 it	 is	 the	male	mice	 that	 have	 responded	 and	 the	 female	mice	

which	 relapse.	 This	 polar	 response	 is	 seen	more	 clearly	 in	 figure	 7.18,	 showing	 the	

level	of	CLL	in	the	spleen	at	week	9,	but	a	trend	clearly	demonstrated	in	PB	and	BM	as	

well.	 Importantly,	 there	 is	 no	 difference	 between	 CLL	 in	 the	 spleen	 comparing	mice	
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treated	 with	 CD19-CD28	 derived	 from	 WT	 T	 cells	 but	 very	 significant	 differences	

between	this	group	and	all	other	groups	which	all	had	very	high	levels	of	CLL.		

	

	
Figure	7.18:	 Percentage	 of	 DAPI-	 viable,	 mononuclear	 splenocytes	 that	 are	

CD5+CD19+	when	mice	are	culled	at	week	9	after	AT	of	CLL	and	treatment	with	CAR	T	

cells	 derived	 from	 different	 sources	 of	 T	 cells	 and	 transduced	 with	 CD19-CD28	 or	

CD19-41BB	 retroviral	 supernatant	 also	 compared	 to	 aged	matched	 controls	 showing	

significant	differences	(*P<0.05,	**P<0.01,	***P<0.001,	****P<0.0001).	

	

CAR	T	cells	were	only	detectable	in	significant	numbers	in	the	PB	at	D+7	post	injection.	

Interestingly,	 for	the	responding	mice	from	the	WT	and	AT	CD19-CD28	treated	mice,	

the	CAR+%	of	CD3+CD8+	T	cells	was	much	higher	for	those	mice	treated	with	an	AT	CAR	

(18.8-32.1%)	than	a	WT	CAR	(1.6-6.7%).	Of	the	mice	that	had	a	detectable	expansion	of	
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CAR+	T	cells	in	the	PB,	for	those	treated	with	AT	CD19-CD28	the	CAR+	cells	were	mostly	

CD8+	T	cells	(all	>67%),	but	the	mice	treated	with	WT	CD19-CD28	had	a	range	of	CAR+	

cell	 CD4:	 CD8	 ratios	 (0.08-2.1).	 This	 may	 purely	 be	 a	 reflection	 of	 the	 starting	

population	with	 skewing	of	CAR	T	 cells	derived	 from	CLL	T	 cells	 to	CD8+,	but	 it	does	

seem	that	from	the	above	results	CAR	T	cells	which	expand	from	CLL	T	cells	expand	in	

greater	numbers	with	a	skew	to	CD8+	CAR	T	cells	compared	to	WT	CAR	T	cells	in	vivo.	

In	 the	PB	 there	was	 restoration	of	CD4:	CD8	 ratios	 in	 responding	mice	 compared	 to	

leukaemic	mice	at	week	9	(figure	7.19),	but	not	in	the	spleen	or	BM.			

	

	
Figure	7.19:	 Ratio	of	DAPI-	viable,	mononuclear	splenocytes	that	are	CD4+	and	CD8+	

when	mice	are	culled	at	week	9	after	AT	of	CLL	and	treatment	with	CAR	T	cells	derived	

from	 different	 sources	 of	 T	 cells	 and	 transduced	 with	 CD19-CD28	 or	 CD19-41BB	

retroviral	 supernatant	 also	 compared	 to	 aged	 matched	 controls	 showing	 significant	

differences	(*P<0.05,	**P<0.01,	***P<0.001,	****P<0.0001).	
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PD-1	 expression	 in	 the	 spleen	 and	 BM	 in	 CD3+CD8+	 and	 CD4+	 T	 cells	 normalised	 in	

responding	 mice	 compared	 to	 non-responding	 mice	 but	 not	 in	 the	 PB.	 Figure	 7.20	

shows	PD-1+	expression	in	CD3+CD8+	T	cells	in	the	BM.	

	

	
Figure	7.20:	 PD-1+%	expression	of	DAPI-	viable,	mononuclear	CD3+CD8+	T	cells	in	the	

bone	marrow	when	mice	are	culled	at	week	9	after	AT	of	CLL	and	treatment	with	CAR	

T	 cells	 derived	 from	 different	 sources	 of	 T	 cells	 and	 transduced	with	 CD19-CD28	 or	

CD19-41BB	 retroviral	 supernatant	 also	 compared	 to	 aged	matched	 controls	 showing	

significant	differences	(*P<0.05,	**P<0.01,	***P<0.001,	****P<0.0001).	
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7.6	 Discussion	
	

These	 data	 demonstrate	 that	 the	 AT	 of	 TCL1	 CLL	 into	 immunocompetent	 mice	 is	 a	

viable	 model	 in	 which	 to	 study	 in	 vivo	 CAR	 T	 cell	 function	 and	 the	 host	 immune	

response.	 This	 is	 itself	 is	 a	 novel	 finding,	most	 published	 CAR	 preclinical	 data	 using	

xenograft	models	in	SCID	or	other	types	of	immunosuppressed	mice.	Syngeneic	CD19-

CD28	CAR	T	cells	engraft	in	this	model	when	derived	from	both	WT	and	AT	T	cells	with	

maximum	in	vivo	expansion	of	these	CAR	T	cells	occurring	one	week	post	their	tail	vein	

injection.	 There	 was	 no	 clinical	 evidence	 of	 CRS	 in	 these	 mice	 in	 this	 series	 of	

experiments.	I	did	not	measure	cytokine	levels	in	this	experiment	but	I	did	attempt	to	

do	so	in	subsequent	experiments.	CD19-CD28	CAR	T	cells	derived	from	WT	T	cells	lead	

to	a	complete	 response	 in	all	of	 the	mice	but	 this	 response	 is	markedly	 reduced	 if	T	

cells	exposed	to	CLL	are	used.	The	source	of	CLL	T	cells	is	a	separate	group	of	syngeneic	

mice	which	also	had	AT	CLL	 for	6	weeks	prior	 to	being	culled	with	high	 levels	of	CLL	

confirmed	in	the	PB.	It	is	interesting	that	T	cells	need	to	be	exposed	to	CLL	for	such	a	

short	 period	 before	 they	 establish	 functional	 differences	 which	 can	 lead	 to	marked	

differences	 in	 CAR	 efficacy.	 Although	 our	 group	 has	 been	 reported	 widely	 on	 the	

functional	defects	in	T	cells	in	both	humans	(88,	94)	and	mice	(89,	118)	with	CLL	this	is	

our	first	effort	to	extrapolate	the	effects	of	these	functional	defects	to	CAR	T	cells	 in	

terms	of	preclinical	investigation.	For	those	mice	that	did	respond	to	either	the	AT	or	

WT	 CAR	 T	 cells	 they	 achieved	 long	 term	 disease	 control	 in	 this	model	 for	 up	 to	 31	

weeks.	 In	mice	 that	 have	 an	 ongoing	 response	 I	 detected	 ongoing	 B	 cell	 aplasia,	 in	

terms	of	no	normal	CD19+	population	in	the	PB	so	in	this	model	an	ongoing	functional	

effect	of	CAR	T	cells	seems	to	be	important	to	maintain	remission.	However,	ongoing	B	

cell	aplasia	does	not	require	a	high	percentage	of	CAR+	in	the	PB.	After	maximum	CAR	

expansion	at	1	week	post	injection	of	CAR	T	cells	they	are	rapidly	lost	from	the	PB	by	

D+21.	This	is	whilst	acknowledging	that	the	primary	secondary	Fab+	antibody	used	to	

detect	the	CD19-CD28	CAR	I	would	not	consider	accurate	CAR+<1%	in	the	PB	because	

even	 when	 using	 the	 isotype	 control	 antibody	 I	 always	 found	 there	 is	 a	 degree	 of	

background	staining	<1%	of	DAPI-CD19-CD3+	cells.		
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In	the	first	optimisation	experiment	there	was	one	mouse	that	responded	to	the	CD19-

41BB	 CAR	 from	WT	 T	 cells,	 but	 in	 the	 larger	 experiment	 no	mice	 responded	 to	 this	

CAR,	and	I	postulate	that	failure	of	the	CD19	41BB	CAR	in	vivo	relates	to	rejection	of	

the	GFP	construct.	From	this	observation	I	do	not	imply	that	CD19-CD28	CAR	would	be	

better	than	CD19-41BB	in	humans,	as	there	was	clearly	an	 issue	with	the	CD19-41BB	

CAR	T	cell	engrafting	in	this	model.		

	

The	 central	 hypothesis	 of	my	 PhD	 is	 that	 the	 activity	 of	 CAR	 T	 cells	 in	 this	model	 is	

related	 to	 the	 underlying	 T	 cell	 function,	which	 is	 perhaps	 reflected	 in	 the	 differing	

phenotypes	when	deriving	CAR	T	 cells	 from	WT	or	AT	T	 cells.	When	you	 look	at	 the	

CAR+	adjusted	cell	doses	given	to	each	group	of	mice,	I	do	acknowledge	that	the	CAR+	

cell	dose	given	to	mice	if	derived	from	AT	T	cells	in	both	CD4	and	CD8+	subsets	in	much	

lower.	However,	 given	 I	 started	with	 the	 same	number	of	WT	or	AT	T	 cells	 to	make	

each	group	of	CAR	T	cells,	and	applied	the	same	optimised	manufacturing	process	to	

both	groups	of	cells	and	an	identical	amount	of	virus,	the	resulting	differing	cell	doses	

are	a	reflection	of	the	poor	proliferative	capacity	of	AT	T	cells	and	also	a	reflection	that	

they	are	much	harder	to	transduce	in	the	CD8+	subset.		

	

Experiments	described	in	chapter	6	also	showed	that	AT	CAR	T	cells	are	mostly	of	an	

effector	T	cell	phenotype	with	complete	loss	of	naïve	T	cells,	whilst	WT	CAR	T	cells	are	

mixture	of	memory	and	effector	 T	 cells,	which	may	be	a	 further	explanation	 for	 the	

differences	 in	performance.	These	results,	combined	with	further	experiments	 in	this	

chapter	demonstrate	the	key	phenotypic	characteristics	when	CAR	T	cells	are	derived	

from	normal	or	CLL	T	cells	in	table	7.3.	
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WT/normal	CAR	T	cells	 AT/CLL	CAR	T	cells	

Proliferation	in	culture	é	 Proliferation	in	culture	ê	

CD4+:CD8+	=	1	 CD4+	ê,	CD8+	é	

CD4+=CD8+	transduction	efficiency	 CD8+	transduction	ê	

CD4+	transduction	preserved	

PD-1+	low	 PD-1+	high	

CD44+	high	 CD44+	high	

CD3+	CD8+	memory	 CD3+	CD8+	effector	(loss	of	naïve)	

Table	7.3:	 CAR	characteristics	post	ex-vivo	expansion	by	T	cell	source.		

	

Beyond	clearing	CLL	from	all	organs	 in	this	model,	successful	CAR	treatment	restores	

normal	T	 cell	 subset	 ratios	 in	 the	PB	and	normalises	PD-1	expression	of	T	 cells	 in	all	

organs.	 Mouse	 models	 afford	 the	 opportunity	 to	 model	 interventions	 which	 could	

improve	CAR	efficacy	by	 altering	 the	phenotype	of	 cells	 to	which	 the	manufacturing	

process	 is	 applied.	 There	 are	 significant	 differences	 in	 PD-1	 expression	 between	WT	

and	AT	derived	CAR	T	cells,	which	suggest	strategies	 to	 repair	exhausted	T	cells	may	

improve	the	clinical	response	to	CAR	T	cells	in	CLL.	However,	to	do	so	will	require	the	

treatment	of	the	mouse	or	indeed	a	patient	after	infusion	of	the	CAR	T	cells	to	support	

the	 CAR	 T	 cell	 function.	 More	 simply,	 there	 are	 major	 differences	 in	 the	 basic	

phenotypes	of	CAR	T	cells	when	you	derive	them	from	different	sources	and	apply	the	

same	manufacturing	process	to	them.	After	the	total	cell	dose	has	been	corrected	for	

CD4:	 CD8	 ratio	 and	 transduction	 efficiency,	 it	 became	 clear	 it	 is	 difficult	 to	 expand	

CD8+CAR+	and	CD4+CAR+	when	the	cell	source	is	CLL	T	cells.	However,	when	CAR	T	cells	

derived	 from	CLL	T	cells	do	engraft,	 the	 initial	expansion	 is	mostly	CD8+CAR+	cells,	 in	

comparison	to	the	cell	source	being	normal	T	cells	when	the	initial	CAR+	expansion	is	

more	balanced	in	CD4/CD8+	T	cells.	Most	 importantly,	CLL	T	cells	expand	less	well	ex	

vivo,	 which	 has	 now	 been	 determined	 to	 be	 an	 important	 biomarker	 from	 in	 vivo	
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expansion	after	 infusion	 in	patients	 (206).	The	underlying	explanations	for	why	CLL	T	

cells	 are	 not	 as	 readily	 transduced	 and	 proliferate	 in	 culture,	 most	 likely	 are	 the	

answers	 to	 how	 CAR	 T	 cell	 function	 can	 be	 improved	 in	 this	 disease,	 but	 are	 not	

answered	 by	 this	 series	 of	 experiments.	 Prior	 to	 understanding	 this	 more,	 simply	

requiring	 that	 CAR	 T	 cells	 are	 manufactured	 from	 specific	 T	 cell	 subsets	 and	 the	

optimisation	of	what	combination	of	initial	components	produces	the	best	outcomes,	

would	be	a	worthwhile	use	of	further	preclinical	testing	using	this	model.		

	

The	observation	 that	 female	mice	do	not	 respond	 to	CD19-CD28	CAR	T	cells	derived	

from	CLL	T	cells	whilst	male	mice	do	respond	is	interesting.	Both	sexes	respond	to	CAR	

T	cells	from	WT	T	cells,	so	this	is	not	an	absolute	rule.	If	there	is	a	genuine	difference	

between	how	the	sexes	respond	to	CAR	T	cells	in	mice,	and	this	could	be	extrapolated	

to	humans,	it	certainly	contradicts	what	was	reported	in	the	largest	series	of	real	world	

data	 of	 lymphoma	 patients	 treated	 with	 the	 CD19-CD28	 CAR	 in	 humans	 (264).	 By	

univariate	analysis	females	respond	significantly	better	that	males	in	terms	of	response	

at	3	months.	However,	this	finding	warrants	further	investigation.		
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8.		 In	vivo	modelling	of	CAR	T	cells	with	checkpoint	blockade	

	

8.1	 Introduction	

	

Having	established	a	difference	in	efficacy	of	the	CD19-CD28	CAR	T	cells	when	they	are	

derived	from	normal/WT	versus	CLL/AT	T	cells,	and	confirmed	the	ability	of	CAR	T	cells	

to	 reverse	 an	 exhausted	 phenotype	 in	 the	 AT	 TCL1	 CLL	 model	 in	 a	 time	 limited	

experiment,	the	next	step	was	to	test	the	model	as	a	reflection	of	relapse	risk.	For	this	

a	much	greater	length	of	experiment	would	be	required.	A	major	objective	of	this	PhD	

was	to	identify	potential	routes	to	improve	CAR	T	cell	function	in	CLL,	given	the	lower	

response	rates	when	CD19	CARs	have	been	used	in	this	disease	in	comparison	to	other	

lymphoid	disorders.	The	use	of	combinations	of	CAR	T	cells	with	drug	therapy	is	very	

much	 a	 research	 question,	 given	 no	 additional	 chemotherapy	 or	 small	 molecule	

inhibitors	were	permitted	 following	CAR	 infusion	 in	 the	major	 reported	 clinical	 trials	

(182,	185).		

	

An	 immunocompetent	mouse	model	 is	 ideally	 placed	 to	 answer	 research	 questions	

about	 whether	 CAR	 T	 cell	 function	 can	 be	 improved	 in	 combination	 with	

immunomodulatory	drugs	as	well	as	looking	for	new	safety	or	toxicity	signals.	In	solid	

tumours	 where	 PD-L1	 is	 upregulated,	 PD-1+	 cells	 undergoing	 exhaustion	 which	 is	

characterized	by	 reduction	of	 functional	 capacity,	 proliferation	 and	 cytotoxic	 activity	

(265).	CAR	T	cells	are	also	subject	to	inhibition	of	their	cytotoxic	and	cytokine	secretion	

upon	 repeated	 antigen	 encounter	 in	 vivo,	 for	 example	 by	 PD-L1	 expression	 on	

tumour/leukaemia	cells	and	therefore	the	administration	of	antibodies	that	block	the	

PD-1/PD-L1	axis	may	lead	to	increased	CAR	T	cell	cytotoxicity	(266).	Preclinical	data	has	

supported	this	in	animal	models	of	other	malignancies,	for	example	a	murine	model	of	

mesothelioma	in	which	PD-1	blockade	restored	effector	function	of	CAR	T	cells	with	a	

CD28	co-stimulatory	domain	 (266).	 In	a	model	 testing	CAR	T	cells	directed	at	Her-2+	

tumours,	 the	addition	of	PD-1	antibodies	reduced	the	growth	of	 the	Her-2+	tumours	

which	correlated	with	an	increase	function	of	the	CAR	T	cells	(267).	 Interestingly,	the	

combination	 led	 to	 a	 significant	 decrease	 in	 the	 number	 of	 MDSC	 in	 the	
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microenvironment.	Myeloid	cells	that	overexpress	PD-L1	converted	TBET+	TH1	cells	into	

FOXP3+	Treg	 in	a	xenograft	model	of	GVHD	 (268),	 suggesting	another	mechanism	by	

which	this	axis	impairs	immune	responses.		

	

Formal	studies	of	combinations	of	checkpoint	inhibitors	are	underway	in	clinical	trials	

but	an	early	case	report	in	a	patient	was	promising.	A	letter	in	2017	described	the	use	

of	 the	 PD-1	 antibody	 pembrolizumab	 with	 the	 CD19-41BB	 CAR	 in	 a	 patient	 with	

refractory	 DLBCL	 and	 progressive	 lymphoma	 post	 CAR	 T	 cells	 (249).	 Following	

pembrolizumab	at	day	26	after	CAR	T	cell	 infusion	 the	patient	had	a	proliferation	of	

CAR+	cells,	with	corresponding	increase	in	cytokines	particularly	IL-6	and	a	reduction	in	

CAR+	cells	expressing	PD-1.	Most	importantly,	he	had	a	significant	and	ongoing	clinical	

response.	 Further,	 Fraietta	 et	 al.	 reported	 the	 varied	 frequencies	 of	 preinfusion	

CD8+CAR+	expressing	PD-1,	TIM-3	and	LAG-3.	Patients	who	subsequently	had	a	CR,	had	

a	 lower	 percentage	of	 CAR+	 cells	with	 a	 PD-1+	 phenotype,	 but	 this	 did	 not	 correlate	

with	 the	 percentages	 of	 CD8+	 T	 cells	 expressing	 inhibitory	 receptors	 at	 the	 time	 of	

apheresis.	To	investigate	further,	all	phenotypes	associated	with	PD-1	expression	were	

correlated	with	 clinical	 outcome,	 and	 the	 infusion	 of	 high	 doses	 of	 CD27+PD-1-CD8+	

was	significantly	associated	with	response,	suggesting	CAR	T	cells	should	be	enriched	

for	 this	 population	 (206).	 If	 enriching	 preinfusion	 CAR	 T	 cells	 for	 a	 PD-1	 negative	

population	 has	 a	 significant	 effect,	 then	 post	 infusion	manipulation	 of	 this	 axis	may	

also	be	important.		

	

Work	has	previously	been	presented	in	abstract	form	on	the	high	occurrence	of	PD-L1	

on	 progression/relapse	 post	 CAR	 biopsies	 in	 the	 ZUMA-1	 study	 in	 both	 CD19+	 and	

CD19-	 negative	 relapses	 (189)	 and	 the	 up-regulation	 of	 T	 cell	 activation,	 effector,	

chemokine	and	immune	checkpoint	genes	(190).	This	led	to	ZUMA-6	which	is	currently	

active	 and	 investigating	 the	 combination	 of	 CD19-CD28	 CAR	 T	 cells	 with	 the	 PD-L1	

inhibitor	 atezolizumab,	 preliminary	 safety	 results	 of	 which	 have	 been	 reported	 in	

abstract	form	at	ASH	2018	(251).	Such	an	approach	has	demonstrated	the	BCMA	CAR	

re-expansion	using	pembrolizumab	in	myeloma	(252).	Combinations	of	CAR	T	cells	and	

checkpoint	inhibition	have	not	been	reported	in	CLL,	nor	are	there	any	active	studies,	

so	would	represent	a	novel	approach.		
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There	 is	 now	 a	 large	 body	 of	 evidence	 for	 the	 efficacy	 of	 checkpoint	 inhibition	 in	

haematological	 malignancies.	 In	 classical	 Hodgkin	 lymphoma,	 alterations	 in	

chromosome	 9p24.1	 increase	 the	 abundance	 of	 PD-L1,	 and	 promote	 their	 induction	

through	Janus	kinase	(JAK)-signal	 transducer	and	activation	of	 transcription	signalling	

(269).	Epstein-Barr	virus	(EBV)	infection	also	increases	the	expression	of	PD-L1	in	EBV+	

HL	(270).	In	a	pivotal	study	Ansell	et	al.	demonstrated	an	ORR	87%	in	patients	with	R/R	

HL	 (226),	 updated	 results	 reveal	 these	 responses	 to	 be	 robust.	 Pembrolizumab,	 has	

now	also	been	used	 in	a	similar	patient	population	with	an	ORR	69%	and	acceptable	

safety	profile	(271)	and	recently	this	PD-1	antibody	has	been	used	to	 increase	PFS	as	

consolidation	 post	 autologous	 stem	 cell	 transplant	 (272).	 Post	HSCT	 both	 antibodies	

have	 been	 used,	 again	 with	 high	 ORR	 77%,	 but	 in	 a	 restrospective	 study	 of	 31	

lymphoma	patients	 17	 developed	GVHD,	 indicating	 both	 the	 efficacy	 and	 the	 risk	 of	

this	approach	(273).		

	

The	expression	of	PD-1	on	 infiltrating	T	cells	and	PD-L1	on	 lymphoma	cells	has	been	

demonstrated	in	DLBCL	(274)	but	is	more	heterogeneous.	In	a	more	detailed	analysis,	

the	 prevalence	 of	 PD-L1	 on	 the	 lymphoma	 cell	 versus	 non-malignant	 cells	 in	 the	

microenvironment	(mPD-L1)	by	immunohistochemistry	was	performed	on	1253	DLBCL	

samples	 (275).	 Of	 the	 273	 patients	 for	whom	 clinical	 information	was	 available,	 the	

prevalence	of	PD-L1+	and	mPD-L1+	was	11%	and	15.3%	respectively.	Both	types	were	

associated	 with	 non-germinal	 centre	 B-cell	 (GCB)	 type.	 They	 demonstrated	 that	

patients	 with	 PD-L1+	 DLBCL	 has	 an	 inferior	 survival	 compared	 to	 PD-L1-	 DLBCL.	 A	

previous	study,	had	linked	PD-L1	expression	to	activated	B-cell	(ABC)/non-GCB	DLBCL,	

which	 has	 an	 inferior	 survival	 compared	 to	 the	GCB	 subtype,	 so	 it	 is	 possible	 PD-L1	

contributes	to	the	more	aggressive	behavior	of	ABC	DLBCL	(276).	Therefore,	there	is	a	

distinct	subgroup	of	DLBCL	that	may	benefit	from	checkpoint	blockade	single	therapy.	

	

The	 largest	 reported	 study	 of	 the	 use	 of	 checkpoint	 inhibitors	 in	 haematological	

malignancies	 including	NHL	 and	 T	 cell	 lymphomas	 is	 a	 phase	 1b	 study	 of	 nivolumab	

(277).	 81	patients	 in	 total,	 but	10	patients	with	 FL	and	11	with	DLBCL	were	 treated.	

ORR	were	40%,	30%	and	40%	in	FL,	DLBCL	and	PTCL	respectively.	In	a	phase	2	study	an	
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alternative	PD-1	antibody	pidilizumab,	was	given	as	consolidation	between	1-3	months	

post	autologous	stem	cell	transplant	to	patients	with	DLBCL,	demonstrated	an	overall	

response	rate	of	51%	(278)	and	a	significant	increase	in	CD4+	T	cells.		

	

From	the	early	stages	of	CLL,	disease	progression	in	patients	results	in	a	loss	of	naïve	

CD4	and	CD8	T	cells,	inversion	of	the	CD4:	CD8	ratio	and	the	emergence	of	a	CD8+PD-

1+	phenotype	which	is	associated	with	a	more	aggressive	disease	course	(85),	findings	

which	are	demonstrated	by	the	TCL1	mouse	model	both	aged	and	via	AT	(118).		Given	

the	demonstrated	difference	 in	 chapter	 7	 between	CAR	T	 cells	 derived	 from	normal	

and	CLL	 T	 cells	 in	 terms	of	 PD-1	 expression,	 this	 affords	 an	 excellent	 opportunity	 to	

trial	 novel	 combinations	 in	 preclinical	 testing.	 The	 safety	 and	 dosing	 of	 a	 PD-L1	

antibody	had	already	been	set	up	using	this	model	in	our	laboratory	and	has	reported	

that	 it	 can	 prevent	 the	 engraftment	 of	 CLL	 after	 AT	 into	 WT	 mice,	 indicating	 the	

importance	of	this	axis	in	CLL	development	in	this	model	(96).	The	use	of	this	antibody	

alone	as	a	treatment	for	AT	CLL	has	not	been	established.	I	therefore	describe	the	use	

of	the	same	antibody	with	and	without	CD19-CD28	CAR	T	cells	derived	from	CLL	T	cells	

as	a	therapy	to	restore	CAR	T	cell	function.		

	

8.2	 Objectives	
	

• Study	 the	 efficacy	 of	 CD19-CD28	 CAR	 T	 cells	 derived	 from	 normal	 and	 CLL	 T	

cells,	 the	 latter	 in	 combination	 with	 a	 PD-L1	 antibody	 (αPD-L1)	 prior	 to	 and	

after	the	injection	of	CAR	T	cells	to	enhance	its	function.	

• Use	the	αPD-L1	alone	post	engraftment	of	CLL	to	establish	its	individual	activity	

as	a	treatment	in	this	preclinical	model.	

• For	 treatment	 groups	with	 a	 response,	 to	 continue	 the	 experiment	 post	 CAR	

therapy	to	determine	the	rate	of	relapse	and	survival.		

• Investigate	if	ongoing	B	cell	aplasia	is	necessary	for	an	ongoing	CAR	response	to	

prevent	CD19+	relapse.		
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8.3	 Materials	and	methods	
	

Immunocompetent	 WT	 received	 AT	 of	 pooled	 32-33	 x106	 TCL1	 cells	 from	 fully	

leukaemic	TCL1	mice	 from	the	 same	background	 thawed	 from	our	 tissue	bank.	 Such	

cells	were	B	cell	enriched	and	CD19+>95%	was	confirmed	prior	to	injecting	into	mice.	

Syngeneic	 donor	 CAR	 T	 cells	 were	 derived	 from	 either	 pooled	 spleens	 from	 aged	

matched	WT	mice	or	WT	mice	given	AT	CLL	with	CLL	 load	>80%	(AT	CAR).	Single	cell	

suspensions	from	spleens	were	obtained	and	splenocytes	were	enriched	for	CD3+	with	

magnetic	beads	then	activated	with	CD3/CD28	Dynabeads	(Thermofisher)	and	mouse	

r-IL2	(Roche).	They	were	transduced	with	retroviral	supernatant	from	the	transfection	

of	 platinum-eco	 cells	 with	 the	 MSGV-1D3-28Z-1.3mut	 plasmid	 (CD19-CD28)	 and	

cultured	 and	 expanded	 for	 4	 days	 before	 injection.	 Two	 groups	 of	 mice	 received	

intraperitoneal	(IP)	αPD-L1	10mg/kg	from	the	day	before	CAR	injection	(D-1)	every	72	

hours	 (with	 and	 without	 AT	 CAR	 T	 cells)	 until	 week	 12.	 All	 groups	 (except	 αPD-L1	

alone)	 were	 given	 100mg/kg	 IP	 cyclophosphamide	 on	 D-1	 as	 lymphocyte	 depleting	

conditioning	 for	CAR	T	cells.	On	D0	the	CAR	groups	received	between	4-6x106	CAR	T	

cells	with	αPD-L1	continuing	until	W12.	Mice	were	bled	every	two	weeks	starting	D+7	

from	CAR	T	cells	to	assess	CLL	load,	CAR/T	cell	subsets	and	groups	were	culled	together	

when	they	got	sick	or	PB	CLL>70%	leading	to	two	overall	end	points,	week	6	(αPD-L1	

alone	and	untransduced	T	cells)	or	week	18	for	all	other	mice.	

	

8.4	 Results	

	

8.4.1	 CAR	production	and	phenotype	

	

CAR	T	cells	were	derived	from	pooled	spleens	from	five	aged	matched	WT	colony	mice	

or	WT	mice	which	had	received	AT	CLL	as	previously	described.	Prior	to	harvesting	the	

spleens	 to	make	 CAR	 T	 cells	 derived	 from	AT/CLL	 T	 cells,	 the	 AT	mice	were	 bled	 to	

confirm	 their	 PB	CLL	 load.	 The	 two	mice	whose	 spleens	were	used	 to	 enrich	 their	 T	

cells	from	had	PB	CLL	84.0	and	80.4%	prior	to	being	culled.	The	experimental	groups	in	

this	experiment	are	shown	below	in	figure	8.1,	with	one	group	using	WT	derived	CAR	T	

cells	and	two	groups	using	AT/CLL	derived	CAR	T	cells,	with	and	without	αPD-L1.		
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Figure	8.1:	 Treatment	groups	post	engraftment	of	AT	CLL.		

	

T	cells	were	activated	and	transduced	as	previously	described.	I	transduced	18	x106	cell	

WT	enriched	T	cells	and	two	6WP	of	18	x106	AT/CLL	enriched	T	cells	for	each	of	the	AT	

treatment	 groups.	 After	 harvesting	 CAR	 T	 cells	 from	 culture	 they	were	 counted	 and	

phenotyped.	 Again,	 WT	 CAR	 T	 cells	 proliferate	 more	 in	 culture	 and	 exhibit	 higher	

transduction	 efficiencies	 in	 the	 CD8	 subset	 although	 CD4	 transduction	 is	 preserved	

(figure	 8.2).	 As	 previously	 described,	 in	 the	 CLL/AT	 derived	 CAR	 T	 cells	 there	 was	

relative	expansion	of	CD8+	T	cells	with	lower	transduction	efficiency,	compared	to	CD4+	

CAR	T	cells.	Again	there	was	a	shift	in	CD3+CD8+	phenotypes	which	is	exaggerated	by	

the	 T	 cell	 activation.	 WT	 CAR	 T	 cells	 are	 predominantly	 of	 a	 memory	 phenotype	

CD44+CD62L+,	with	the	rest	a	mixture	of	naïve	and	effector	T	cells.	AT	CAR	T	cells	are	

shifted	to	an	effector	phenotype	and	memory,	but	with	complete	loss	of	CD8+	cells	of	

a	 naïve	 phenotype	 (figure	 8.3).	 Our	 group	 has	 described	 the	 shift	 to	 terminally	

differentiated	effector	T	cells	that	CLL	causes	in	both	humans	(94)	and	mice	(118),	and	

this	effect	 is	exaggerated	by	 the	CAR	production	process	using	anti-CD3/CD28	beads	

and	mIL2.		
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Figure	8.2:	 Transduction	 efficiency	 (Fab+%)	 as	 a	 proportion	of	DAPI-,	 viable	 single	

lymphocytes	 in	 CD4+	 and	 CD8+	 T	 cells	 after	 four	 days	 of	 cell	 culture	 following	

transduction	with	CD19-CD28	retroviral	supernatant.	

	

	
Figure	8.3:	 Pie	 charts	of	 the	naïve	 (CD44-CD62L+)/effector	 (CD44+CD62L-)/memory	

(CD44+CD62L+)	 phenotype	 as	 a	 proportion	 of	 DAPI-,	 viable	 single	 CD8+	 lymphocytes	

after	 four	days	of	cell	culture	following	activation	then	transduction	with	CD19-CD28	

retroviral	supernatant	prior	to	injection	of	CAR	T	cells.	
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In	 terms	of	 cell	dose	 injected	 the	 total	T	 cell	dose	was	differed	between	WT	and	AT	

CAR	groups	in	this	experiment	to	attempt	to	broadly	match	the	CAR+	T	cell	dose	whilst	

maintaining	 the	 same	mouse	 group	 sizes.	Mice	were	 injected	with	 between	 4.5-6.5	

x106	 T	 cells	 and	 table	 8.1	 shows	 the	 CAR+	 T	 cell	 dose	 by	 treatment	 group	 when	

corrected	for	transduction	efficiency	and	subset	ratio.	As	this	shows	the	CAR+	dose	was	

maintained	around	1	million	CAR+	cells	 in	each	subset	and	group	except	for	the	CD4+	

AT	CAR	T	cells.	This	group	 is	 low	 in	number	because	after	manufacturing	CAR	T	cells	

from	 CLL/AT	 T	 cells	 there	 are	 very	 few	 CD4+	 T	 cells	 left,	 although	 they	 are	 highly	

transduced.	This	is	mostly	a	reflection	of	the	skew	to	CD8+	cause	by	a	high	CLL	burden	

in	the	mouse,	which	is	well	described	in	this	model	and	in	humans.		

	

CAR	 T	cell	dose	

x106	

/mouse	

Transduction		

efficiency	(%)		

CAR+	cell	dose/mouse	

x106	

CD4	 CD8	 CD4	 CD8	

WT	CD19-CD28	 4.5	 65.9%	 59%	 1.45	 1.19	

AT	CD19-CD28	 6.5	 75.3%	 19.4%	 0.20	 0.92	

	

Table	8.1:		 CAR+	cell	dose	by	T	cell	subset	corrected	by	transduction	efficiency.	

	

PD-1+	expression	is	higher	in	both	Fab+	T	cells	and	T	cells	in	general	from	both	CD4	and	

CD8	subsets	 in	AT	compared	to	WT	CAR	T	cells	(figure	8.4).	This	 is	a	reflection	of	the	

acquisition	of	T	cell	PD-1+	expression	whilst	exposed	to	CLL	and	not	due	to	activation	

by	CD3/CD28	beads/IL2	activation	then	transduction.		
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Figure	8.4:	 PD-1	expression	as	a	proportion	of	DAPI-,	viable	single	 lymphocytes	 in	

CAR+	 (Fab+)	CD4+	 and	CD8+	T	 cells	 after	 four	days	of	 cell	 culture	 following	activation	

then	transduction	with	CD19-CD28	retroviral	supernatant.	

	

8.4.2		 Treatment	of	AT	CLL	with	CAR	T	cells	
	

Fifty	WT	mice	 each	 received	AT	 of	 pooled	 32-33	 x106	 CLL	 cells	 from	 fully	 leukaemic	

TCL1	mice	 from	 the	 same	 background	 from	 our	 tissue	 bank.	 Good	 CLL	 engraftment	

was	confirmed	at	week	2	(all	groups	over	50%	in	the	PB)	and	CAR	T	cells	were	injected	

at	week	3	as	previously	described	and	with	the	cell	doses	states	in	table	1.	At	week	4,	

or	CAR	D+7,	all	mice	treated	with	all	types	of	CAR	T	cells	cleared	their	CLL	and	normal	B	

cells,	and	those	mice	treated	with	WT	CAR	T	cells	all	remained	in	remission	until	week	

18.	Mice	treated	with	AT	CAR	T	cells,	after	initially	all	responding	at	D+7,	had	either	an	

ongoing	complete	response	or	slowly	relapsed	from	D+21	onwards	with	CD19+	CLL.	All	

CAR	 treated	mice	were	 culled	 at	 week	 18	 as	 some	mice	 in	 the	 AT	 CAR	 groups	 had	

reached	their	endpoint.	Mice	that	had	received	untransduced	T	cells	or	αPD-L1	alone	

were	all	culled	at	week	6	due	to	rapid	CLL	progression	as	these	were	both	essentially	

control	 groups.	 Figure	8.5	 shows	 the	progression	of	PB	CLL	 in	each	group	of	 treated	

mice	over	the	18	week	experiment.		
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In	 chapter	 7,	 I	 describe	 that	mice	 treated	with	 an	AT	CD19-CD28	CAR	have	 a	mixed	

response	over	a	9	week	experiment.	 In	that	cohort	all	of	 the	male	treated	mice	fully	

responded	and	all	 of	 the	 female	 treated	mice	did	not	 respond.	 To	 investigate	 if	 this	

important	 difference	 holds	 in	 this	 experiment,	 I	 again	 balanced	 the	 CAR	 treatment	

groups	with	equal	numbers	of	male	and	female	mice.	In	this	experiment	again	all	mice	

treated	with	a	WT	CD19-CD28	CAR	responded	for	the	duration	of	the	experiment	but	

again	in	comparison	there	was	a	very	different	relapse	rate	of	mice	treated	with	the	AT	

CD19-CD28	CAR,	with	or	without	αPD-L1.	Because	the	response	of	both	these	groups	

seemed	remarkably	similar	(figure	8.5),	in	another	subgroup	analysis	I	combined	both	

the	male	and	female	response	from	each	of	the	AT	CD19-CD28	CAR	±	αPD-L1	groups	

to	 see	 if	 this	 sex	 difference	 holds	 in	 this	 experiment.	 Figure	 8.6	 shows	 the	 similar	

progression	of	CLL	 in	all	AT	CAR	 treated	mice	 regardless	of	 sex	with	very	wide	error	

bars	indicative	of	the	polar	responses	obtained	with	AT	CARs.	

	
Figure	8.5:	 Progression	of	PB	CD5+CD19+	CLL	by	treatment	group	post	AT	at	week	0	

and	CAR	T	cell	injection	at	week	3	over	the	whole	18	week	experiment.		
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This	shows	this	time	the	response	of	male	versus	female	mice	to	an	AT	CD19-CD28	CAR	

does	not	differ.	Mice	with	an	ongoing	CAR	response	also	had	no	normal	CD5-CD19+	B	

cells.	When	mice	relapsed	with	CD19+	disease	they	also	had	recurrence	of	their	normal	

B	cells.	Mice	 tolerated	both	CAR	T	cell	and	αPD-L1	well	with	no	signs	of	 ill	health	or	

distress	after	commencing	these	therapies,	specifically	CRS	was	not	clinically	evidence	

after	CAR	injection.	There	were	no	significant	differences	between	the	weights	of	the	

mice	 between	 treatment	 groups	 or	 compared	 to	 aged	matched	 controls	when	 they	

were	 culled	 at	 their	 end	points	 at	week	6	or	week	18	 (figure	8.7),	 but	 as	previously	

described,	sick	mice	do	not	tend	to	lose	weight	in	this	model	due	to	their	pronounced	

hepatosplenomegaly.		

	

	
Figure	8.6:	 Progression	of	PB	CD5+CD19+	CLL	by	treatment	group	post	AT	at	week	0	

and	CAR	T	cell	injection	at	week	3	over	the	whole	18	week	experiment.	AT	CD19-CD28	

CAR	±	PD-L1	were	combined	and	separated	into	male	and	female	groups.	
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Figure	8.7:	 Weights	 of	 mice	 (grams)	 separated	 by	 treatment	 groups	 at	 their	

endpoints	at	week	6	or	18	following	AT	of	CLL	and	treatment	with	CAR	T	cells,	PD-L1	

antibody,	untransduced	T	cells	or	age	matched	controls.	No	significant	differences.		

	

Spleen	weights	 in	 the	 responding	WT	CAR	 treated	mice	were	 equal	 to	 age	matched	

controls	(0.1g)	whilst	AT	CAR	treated	again	showed	a	polar	response	again	with	mice	

either	 in	complete	 remission	or	with	significant	amounts	of	disease,	 i.e.	with	normal	

sized	 spleens	 or	 very	 large	 spleens	 (figure	 8.8).	 As	 expected,	 mice	 treated	 with	

untransduced	T	 cells	had	very	 large	 spleens,	 as	did	mice	 treated	with	αPD-L1	alone.	

Although	αPD-L1	 alone	 can	 prevent	 CLL	 engraftment	 in	 this	model	 when	 used	 as	 a	

treatment	it	appears	to	have	limited	activity	as	these	mice	also	needed	to	be	culled	at	

week	6	like	the	control	mice	treated	with	untransduced	T	cells.		
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Figure	8.8:	 Spleen	weight	(grams)	when	mice	are	culled	at	week	6	or	18	after	AT	of	

CLL	at	week	0	and	treatment	with	CAR	T	cells	at	week	3	derived	from	different	sources	

of	 T	 cells	 transduced	 with	 CD19-CD28	 retroviral	 supernatant	 showing	 significant	

differences	(*P<0.05,	**P<0.01,	***P<0.001,	****P<0.0001).	

	

To	 demonstrate	 the	 relapse	 rate	 of	 mice	 treated	 with	 different	 groups,	 figure	 8.9	

shows	the	percentage	of	mice	in	each	group,	that	have	significant	disease	in	the	PB	by	

week	after	AT	of	CLL	at	week	0	and	CAR	T	cell	 injection	at	week	3.	This	more	clearly	

demonstrates	 that	whilst	all	mice	who	received	a	CAR	 initially	completely	 responded	

as	 the	CARs	engraft	 at	week	4,	what	differs	 about	 the	mice	 that	 receive	CAR	T	 cells	

derived	from	AT	T	cells	is	that	up	to	50-60%	of	these	mice	slowly	relapse	with	CD19+	

disease.	 This	model	 very	much	 reflects	what	 is	 reported	 in	 the	CLL	CAR	 trials,	 albeit	

only	 very	 small	 numbers	 have	 been	 reported	 in	 those	 studies.	 Those	 studies	 also	

reflect	that	long	term	persistence	is	important	in	CLL	(160),	which	can	be	indicated	by	

B	cell	aplasia.	Likewise,	in	this	model	mice	with	long	term	responses	maintained	a	loss	

of	normal	B	cells.		
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Figure	8.9:	 Percentage	of	mice	in	each	treatment	group	with	detectable	CD5+CD19+	

disease	 in	 the	 PB	 (>5%)	measured	by	 flow	 cytometry	 after	AT	 of	 CLL	 in	week	 0	 and	

injection	 of	 CAR	 T	 cells	 or	 untransduced	 T	 cells	 at	 week	 3	 with	 or	 without	 PD-L1	

antibody	IP.		

	

At	week	18,	PB,	spleen	and	BM	were	harvested	and	CD5+CD19+	 in	each	organ	shows	

their	 disease	was	 cleared	by	 the	WT	CAR	 (P<0.0001	 compared	 to	αPD-L1	 alone	 and	

untransduced	T	cell	groups)	(figure	8.10),	although	two	mice	did	show	very	 low	level	

disease	suggesting	they	had	just	started	to	relapse.	This	again	demonstrates	the	very	

polar	 response	 in	 terms	 of	 the	 amount	 of	 disease	 found	 in	 mice	 treated	 with	 AT	

derived	CAR	(figures	8.10).		
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In	 this	 model	 estimates	 of	 CD5+CD19+	 disease	 by	 PB	 flow	 cytometry	 are	 a	 good	

reflection	 of	 what	 is	 found	 in	 the	 spleen	 and	 BM,	 although	 there	 are	 certainly	

phenotypic	 differences	 in	 T	 cells	 in	 the	 PB	 compared	 to	 the	 spleen	 and	 BM.	 For	

example,	at	the	same	end	points,	CD3+CD8+PD-1+	was	compared	in	all	organs	(figures	

8.11	and	8.12).	When	comparing	the	WT	CAR	and	age	matched	controls,	PD-1+	subset	

expression	 is	 normalized	 with	 significantly	 lower	 CD3+CD8+PD-1+	 expression	 as	

compared	to	all	other	groups	in	all	organs.		

	

The	AT	CAR	treated	mice	also	show	 less	significant	reversal	of	 their	PD-1	expression.	

However,	again	in	those	mice	treated	with	an	AT	CAR	±	αPD-L1,	polar	responses	were	

seen	 reflecting	half	 the	mice	have	an	ongoing	complete	 response	and	half	 relapsing.	

The	addition	of	αPD-L1	does	not	 impact	 this	and	 there	are	no	significant	differences	

between	 AT	 CAR	 with	 or	 without	 PD-L1	 antibodies	 in	 any	 organ	 at	 the	 end	 of	 this	

experiment.	 This	 reflects	 that	 αPD-L1	 does	 not	 reduce	 PD-1	 expression	 in	 T	 cells	

independent	to	its	lack	of	effect	on	clearing	CD5+CD19+	disease.	In	mice	with	disease	at	

the	end	of	the	experiment,	PD-1	expression	was	highest	in	BM	and	spleen,	and	much	

lower	 in	 the	 PB,	 consistent	 with	 the	 observation	 that	 CLL	 is	 a	 two	 compartment	

disease	and	therefore	T	cell	exhaustion	predominantly	occurs	in	spleen	and	BM.		

	

	
Figure	8.10:		 	Percentage	 of	 DAPI-	 viable,	 mononuclear	 cells	 from	 PB	 that	 are	

CD5+CD19+	after	AT	of	CLL	 in	week	0	and	 injection	of	CAR	T	 cells	or	untransduced	T	

cells	at	week	3	with	or	without	PD-L1	antibody	IP.	
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Figure	8.10:	 Percentage	of	DAPI-	viable,	mononuclear	cells	from	spleen	(top)	and	BM	

(bottom)	that	are	CD5+CD19+	after	AT	of	CLL	in	week	0	and	injection	of	CAR	T	cells	or	

untransduced	T	cells	at	week	3	with	or	without	PD-L1	antibody	IP.	
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Figure	 8.11/12:	PD-1+	 as	 a	 proportion	 of	 DAPI-,	 viable	mononuclear	 CD3+	 cells	 from	

spleens	 (figure	8.11/top)	and	BM	(figure	8.12/bottom)	after	AT	of	CLL	 in	week	0	and	

injection	 of	 CAR	 T	 cells	 or	 untransduced	 T	 cells	 at	 week	 3	 with	 or	 without	 PD-L1	

antibody	IP	with	significant	differences.	 	
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CAR	T	cell	expansion	 in	all	groups	was	greatest	at	D+7	and	the	majority	of	CAR+	cells	

were	 CD8+	 (figure	 8.13)	 and	 PD-1+	 again	 in	 all	 groups.	 At	 this	 point	 all	mice	 had	 no	

normal	or	CLL	B	cells	in	the	PB	but	did	have	detectable	Fab+	CAR	T	cells	by	flow	in	all	

CAR	treatment	groups.	At	this	apparent	point	of	maximum	expansion,	the	percentage	

of	fab+	cells	in	the	PB	was	highly	variable	between	mice,	but	there	was	again	a	trend	

that	mice	 treated	with	AT	derived	CAR	T	cells	had	higher	percentages	of	CAR	T	cells	

than	 mice	 treated	 with	 a	 WT	 CAR.	 However,	 this	 was	 not	 significantly	 different	 in	

CD3+Fab+	 or	 either	 CD4+	 or	 CD8+	 separately.	 Certainly,	 in	 all	 the	 different	 CAR	

treatment	groups,	the	majority	of	the	CD3+Fab+	expansion	was	CD8+.	At	the	same	time	

point	 PD-1+	 expression	 was	 significantly	 higher	 in	 AT	 compared	 to	 WT	 derived	

CD8+CAR/fab+	T	cells	(figure	8.14).		

	

	
Figure	8.13:	 CAR+	 T	 cells	 as	 a	 proportion	 of	 DAPI-,	 viable	 mononuclear	

CD3+/CD4+/CD8+	 gated	 T	 cells	 at	 day	 7	 following	 injection	 of	 CAR	 T	 cells	 in	 the	 PB	

separated	by	CAR	T	cell	treatment	group.	
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Figure	8.14:	 Percentage	 of	 cytotoxic	 CAR+	 T	 cells	 (CD3+CD8+Fab+)	 DAPI-,	 viable	

mononuclear	that	are	PD-1+	in	PB	at	day	7	following	injection	of	CAR	T	cells	separated	

by	CAR	T	treatment	group	showing	significant	differences.		

	

At	 the	 time	 of	 the	 next	 bleed	 at	 D+21,	 the	 presence	 of	 the	 CAR+	 cells	 were	 highly	

variable	between	groups.	Figure	8.15	shows	the	progression	of	CD3+CAR+	cells	 in	the	

PB	 for	 the	 12	 weeks	 in	 which	 one	 of	 the	 AT	 CD19-CD28	 CAR	 groups	 was	 also	

administered	 the	PD-L1	antibody.	At	both	D+7	and	D+21	 there	was	a	 trend	 for	mice	

treated	 with	 the	 WT	 CAR	 to	 have	 lower	 CAR+	 percentages	 in	 the	 PB.	 This	 is	 an	

interesting	 observation,	 suggestive	 of	 the	 greater	 functional	 capacity	 of	WT	 derived	

CAR	 T	 cells	 so	 with	 less	 need	 to	 proliferate	 rapidly	 (figure	 8.15)	 since	 these	 mice	

remain	in	remission	whilst	the	two	groups	treated	with	AT	derived	CAR	T	cells	start	to	

relapse.		
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Figure	8.15:	 Percentage	 of	 DAPI-,	 viable	 mononuclear	 CD3+	 T	 cells	 that	 are	 CAR+	

(Fab+)	 in	the	PB	days	after	CAR	T	cell	 injection	separated	by	CAR	treatment	group	or	

compared	to	untransduced	T	cells.	

	

The	dynamics	of	disease	and	CAR	response	are	interesting	to	describe	in	the	mice	from	

D+21	and	represent	the	some	of	the	challenges	of	treating	CLL.	In	all	mice	treated	with	

the	AT	CD19-CD28	CAR	±	αPD-L1,	in	the	mice	that	relapse	in	the	PB	the	blood	test	in	

which	 this	 is	 first	 identified,	 both	 a	 clonal	 B	 cell	 population	 and	 normal	 B	 cells	 are	

present.	Prior	to	this,	the	responding	mice	all	have	B	cell	aplasia	in	the	PB	i.e.	there	are	

no	CD19+	cells	in	the	PB	by	flow.	In	all	mice	but	one,	once	a	CD5+CD19+	population	>1%	

is	identified	in	the	PB,	disease	control	is	lost	and	they	relapse.	One	mouse	from	the	AT	

CAR	±	αPD-L1	group,	at	week	16	has	a	PB	CLL	population	of	2.3%	with	normal	B	cell	

population	of	0.5%,	which	goes	onto	clear	the	PB,	spleen	and	BM	by	week	18	at	the	

end	 of	 the	 experiment.	 In	 all	mice	 treated	with	 an	 AT	 CD19-CD28	 CAR,	 the	 disease	

status	in	the	PB	at	the	point	the	mouse	is	culled	matches	that	in	the	spleen	and	BM	i.e.	
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all	 mice	 with	 an	 ongoing	 PB	 CAR	 response	 at	 week	 18,	 meaning	 no	 malignant	 or	

normal	B	cells	also	have	the	same	response	in	the	spleen	and	BM.		

	

For	 the	mice	 treated	with	 a	WT	 CD19-CD28	 CAR	 there	 are	 some	 subtle	 differences.	

Until	 week	 16,	 all	 of	 the	 mice	 have	 an	 ongoing	 CAR	 response,	 with	 no	 normal	 or	

malignant	B	cells	in	the	PB	by	flow.	At	week	16	one	mouse	develops	normal	CD19+CD5-	

B	 cells	 but	 with	 no	 clonal	 B	 cell	 population.	 By	 week	 18	 this	 mouse	 develops	 both	

normal	 and	CLL	B	 cell	 PB	populations	with	 concordant	 populations	 in	 its	 spleen	 and	

BM.	A	second	mouse	in	this	group	also	has	low	level	PB	CLL	at	week	18	again	which	is	

also	 found	 in	 the	 spleen	and	BM	as	 it	was	 culled	at	week	18.	 Taken	 together,	 these	

results	say	that	in	this	model	ongoing	B	cell	aplasia	is	necessary	and	is	indeed	indicate	

of	an	ongoing	CAR	response,	since	the	only	mouse	that	had	recurrence	of	their	normal	

B	cells	first,	went	onto	relapse.	These	mice	are	only	bled	every	1-2	weeks	which	is	what	

is	feasible	in	this	experiment	in	terms	of	the	project	license.	Perhaps	if	they	were	bled	

more	often	perhaps	we	would	see	mice	first	get	recurrence	of	normal	B	cells	prior	to	

relapse	of	their	CLL.		

	

For	both	the	AT	and	WT	CAR	T	cells	these	data	also	demonstrate	what	is	detectable	in	

the	PB	by	flow,	in	terms	of	both	normal	and	CLL	B	cells,	is	matched	by	what	is	seen	in	

the	 spleen	 and	 BM.	 Whilst	 many	 human	 trials	 have	 access	 to	 paired	 BM	 and	 PB	

samples,	 these	 data	 simple	 isn’t	 available	 from	 splenic	 biopsies	 as	 it	 is	 not	 part	 of	

clinical	 practice	 to	monitor	 human	 patients	 in	 this	way.	 Given	 the	 previously	 stated	

two	 compartment	 disease	 that	 CLL	 is,	 it	 is	 interesting	 to	 correlate	 PB	 flow	 disease	

status	with	secondary	organs	since	PB	in	a	human	is	so	easy	to	obtain.	Clinically,	these	

are	 important	 findings,	 because	 it	 suggests	 from	 PB	 flow	 if	 there	 is	 ongoing	 B	 cell	

aplasia	 there	 is	ongoing	CAR	activity.	More	usefully,	 recurrence	of	PB	B	 cells	 implies	

loss	 of	 CAR	 activity	 and	 inevitable	 relapse,	 which	 could	 warrant	 a	 therapeutic	

intervention.	This	 is	 in	contrast	 to	what	was	recently	reported	using	the	same	CD19-

CD28	CAR	in	lymphoma	in	ZUMA-1	(182),	in	which	there	were	many	patients	that	lost	

their	 B	 cell	 aplasia	 which	 did	 not	 relapse.	 Perhaps	 though,	 the	 requirement	 for	 a	

persistent	CAR	is	fundamentally	different	in	CLL	and	ALL	compared	to	lymphoma.			
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8.5	 Cytokines	

	

At	the	time	points	shown	above	in	figure	8.15	plasma	was	obtained	from	the	mice	for	

cytokine	analysis.	The	Mouse	Th	Cytokine	Panel	(BioLegend,	San	Diego	CA)		is	a	bead-

based	multiplex	assay	panel,	using	flourescence-encoded	beads	selected	to	detect	IFN-

γ,	 TNF-α,	 IL2,	 IL6	 and	 IL10,	which	 are	 known	 to	 be	 important	 in	 CRS.	Until	 recently,	

there	has	been	no	reported	mouse	models	of	CRS,	as	this	toxicity	was	first	described	in	

detail	in	one	of	the	first	CAR	T	cell	series	reported	in	humans	(151).	Since	then,	Ruella	

et	 al.	 has	described	a	 SCID	model	 injected	with	human	MCL	 followed	by	CD19-41BB	

CAR	 T	 cells	 which	 become	 sick	with	 signs	 of	 distress	 (reduced	mobility,	 emaciation,	

hunched	bodies	and	withdrawal)	(279).	Blood	from	these	mice	at	D+4	show	elevated	

levels	of	human	cytokines	including	IL6,	IFN-γ,	TNF-α,	 IL2	and	GM-CSF.	An	alternative	

model	again	used	SCID	mice	but	 they	were	sub-lethally	 irradiated	 then	 injected	with	

human	cord	blood	CD34+	cells	 (280).	Mice	were	 injected	with	ALL	 followed	by	CAR	T	

cells	 5	 or	 7	 weeks	 later.	 These	 humanized	mice	 when	 treated	 with	 high	 leukaemia	

burden,	 developed	 high	 fevers	 and	 IL6.	 The	 syndrome	was	 prevented	 by	monocyte	

depletion	 or	 tocilizumab.	 Interestingly,	 tocilizumab	 didn’t	 protect	 against	 lethal	

neurotoxicity,	 characterized	 by	 meningeal	 inflammation,	 which	 was	 abolished	 using	

the	 IL1	 receptor	 antagonist	 anakinra.	 However,	 the	 author	 would	 argue	 an	

immunocompetent	 model	 of	 CRS	 or	 neurotoxicity	 would	 be	 much	 more	 clinically	

relevant	 as	 this	 model	 described	 cannot	 allow	 for	 the	 host	 immune	 response	 to	

modulate	the	T	cell	responses	leading	to	CRS.		

	

Unfortunately,	after	attempting	to	optimize	the	assay	using	samples	collected	later	in	

the	experiment,	when	testing	the	D+7	plasma,	I	was	unable	to	demonstrate	anything	

higher	then	negligible	plasma	cytokine	levels.	This	is	definitely	due	to	technical	issues,	

albeit	 a	 problem	 with	 bead	 capture	 or	 the	 quality/quantity	 of	 the	 samples.	 I	 have	

discussed	 in	 detail	 the	 differences	 between	 normal	 and	 CLL	 T	 cells,	 which	 have	 an	

exhausted	phenotype	but	pseudo-exhausted	cytokine	profile	(281).	The	comparison	of	

cytokine	results	from	WT	versus	AT	derived	CAR	T	cells	at	D+7,	I	believe	would	give	a	

fascinating	 insight	 into	 the	 functional	 cytokine	differences	between	a	normal	and	an	

exhausted	 T	 cell,	 and	 whether	 this	 theory	 of	 pseudo-exhaustion	 is	 reflected	
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functionally	 in	 an	 appropriate	 preclinical	 model.	 In	 future	 work	 I	 will	 endeavour	 to	

make	this	assay	work	because	I	think	it	answers	interesting	questions	about	CLL	T	cells,	

as	 well	 as	 being	 a	 potential	model	 to	 study	 interventions	 that	 treat	 these	 dramatic	

complications.		

	

8.6	 Discussion	

	

This	 experiment	 confirms	 the	 findings	 from	 previous	 experiments	 that	 CAR	 T	 cells	

derived	from	AT/CLL	T	cells	have	a	significantly	worse	performance	than	those	derived	

from	normal	T	cells	in	an	imnmunocompetent	syngeneic	mouse	model.	The	mice	from	

which	 the	CLL	T	 cells	were	obtained,	had	CLL	 for	6	weeks	before	 their	 spleens	were	

harvested	 and	 T	 cells	 enriched	 to	make	 CAR	 T	 cells,	 emphasizing	 how	profound	 the	

impact	 exposure	 to	 CLL	 is	 on	 T	 cell	 function.	 In	 this	 experiment,	 impairment	 of	 CAR	

function	 is	not	reflected	by	 initial	efficacy,	as	all	mice	treated	with	a	CAR	respond	at	

D+7	with	no	CLL	or	normal	B	cells,	but	the	progressive	relapse	risk,	which	continues	for	

the	 duration	 of	 the	 18	week	 experiment.	 This	 is	 a	 fascinating	 observation	 that	 very	

much	reflects	the	behaviour	of	CD19	CAR	T	cells	in	human	CLL	trials,	and	again	shows	

the	utility	of	the	TCL1	mouse	model	in	the	investigation	of	CLL	of	potential	therapeutic	

interventions	in	CLL.		

	

Our	group	has	previously	demonstrated	the	importance	of	the	PD-1/PD-L1	axis	in	the	

engraftment	of	CLL	in	this	model,	whilst	in	this	experiment	the	use	of	the	same	αPD-L1	

antibody	and	dosing	after	established	engraftment	of	CLL	had	little	disease	activity	as	a	

standalone	 agent.	 This	 is	 perhaps	 not	 surprising,	 as	 the	 disease	 kinetics	 of	 CLL	

engrafting	 by	 intravenous	 injection	 into	 an	 immunocompetent	 mouse	 have	 to	 be	

vastly	 different	 to	 the	 established	 and	 rapidly	 progressing	 disease	 as	 in	 this	

experiment.	Most	 importantly,	 the	 addition	 of	 the	 PD-L1	 antibody	 commenced	 one	

day	 before	 AT/CLL	 CAR	 T	 cell	 injection	 for	 12	 weeks,	 did	 not	 prevent	 these	 mice	

relapsing	after	 initially	responding	to	the	AT	CAR.	The	pattern	of	rate	of	relapse	post	

AT	 CAR	without	 or	without	αPD-L1	 antibody	was	 the	 same.	 This	 demonstrates	 very	

different	responses	to	a	αPD-L1	which	is	effective	in	terms	of	establishment	of	CLL,	but	

ineffective	in	treatment	of	established	disease.		
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CAR	expansion	dynamics	in	the	PB	did	not	seem	to	be	altered	by	the	addition	of	αPD-

L1,	 with	 peak	 CAR	 expansion	 in	 all	 groups	 was	 D+7	 as	 in	 all	 previous	 experiments.	

Comparing	the	phenotype	of	the	AT	CAR	T	cells	at	peak	expansion	at	D+7,	the	αPD-L1	

antibody	did	not	alter	PD-1	expression	of	CAR+	cells	 compared	 to	 the	group	 treated	

without	αPD-L1	antibody.	However,	PD-1+	expression	on	CD8+CAR+	T	cells	was	higher	

on	 AT	 CAR	 treated	 groups	 compared	 to	 WT	 CAR	 treated	 mice.	 Whilst	 the	 PD-1	

expression	of	T	cells	obtained	from	AT	mice	is	very	much	higher	than	WT	mice,	and	this	

is	again	reflected	at	the	end	of	the	manufacturing	process,	it	is	interesting	that	the	CAR	

T	cells	that	expand	in	the	mice	also	reflect	this	significant	difference.	Again,	there	was	

a	trend	for	a	higher	proportion	of	CD3+/CD4+/CD8+	CAR+	T	cells	in	the	PB	at	D+7	to	be	

CAR+	 in	 the	 AT	 CAR	 treated	 group	 compared	 to	 WT	 CAR,	 which	 may	 reflect	 the	

relatively	 impaired	CAR	T	cell	 function	if	derived	from	a	CLL	T	cell	source.	Ultimately,	

mice	treated	with	the	AT	CD19	CAR	relapse,	and	this	continues	for	the	duration	of	the	

experiment,	always	with	CD19+	disease.	Ongoing	CAR	activity	is	always	reflected	by	PB	

B	cell	 aplasia,	and	PB	 flow	always	 reflected	what	was	ultimately	 found	 in	 the	 spleen	

and	PB	in	terms	of	normal	and	CLL	B	cells.	Taken	together,	whilst	this	αPD-L1	antibody	

did	 not	 have	 activity,	 the	 model	 is	 demonstrably	 useful	 to	 study	 the	 impact	 of	

immunotherapeutic	 agents	 on	 CAR	 efficacy	 and	 dynamics.	 There	 is	 preliminary	

evidence	 for	 the	 safety	 of	 this	 combination	 when	 used	 in	 lymphoma	 patients.	

Durvalumab	 has	 been	 used	 in	 combination	with	 JCAR014	 (CD19-41BB	with	 1:1	 CD4:	

CD8	T	 cell	 product),	 and	phase	1	data	was	presented	at	ASH	 (282).	 In	 this	 study,	15	

patients	were	treated	and	12	were	evaluable	for	response,	with	an	ORR	of	50%.	There	

was	no	new	safety	signal	seen	and	CAR	T	cell	expansion	was	detected	in	all	patients.		

	

For	 this	 thesis	 the	 αPD-L1	 antibody	 was	 used	 first	 because	 it	 was	 available	 in	 the	

Gribben	laboratory	with	safe	dosing	established	in	this	model	and	has	been	shown	to	

be	 effective	 in	 preventing	 CLL	 in	 this	 mouse	 model,	 but,	 there	 are	 many	 other	

commercially	 available	 murine	 checkpoint	 inhibitors	 which	 could	 be	 applied	 to	 this	

model	 in	 the	 same	 way,	 of	 particular	 interest	 would	 be	 a	 PD-1	 inhibitor.	 There	 is	

increasing	 albeit	 preliminary	 evidence	 for	 this	 approach,	 at	 ASH	 2018	 the	

immunotherapy	 group	 at	 University	 of	 Pennsylvania	 presented	 their	 single	 centre	



	

171	

experience	 for	 their	paediatric	patients	with	ALL	 (283).	Patients	were	given	 the	PD-1	

inhibitor	pembrolizumab	no	sooner	than	14	days	after	infusion	for	patients	with	early	

CAR	T	cell	 loss	or	a	partial/no	 response	 in	 that	 time.	Of	 the	14	patients	 treated,	3/6	

treated	 for	 early	 B	 cell	 recovery	 re-established	 B	 cell	 aplasia	 for	 5-15	months,	 2	 of	

which	 are	 ongoing.	 4	 patients	 started	 pembrolizumab	 for	 bulky	 extra-medullary	

disease	with	2	CR	and	2	PR	seen.	In	one	patient,	significant	CAR	T	cell	proliferation	was	

measured	within	 days	 of	 starting	 pembrolizumab	 that	 correlated	with	 a	 radiological	

response.	In	4	other	patients	with	poor	initial	BM	response	to	CAR	T	cells	no	durable	

effect	was	seen.	CRS	symptoms	and	fever	were	seen	in	3/14	patients	within	2	days	of	

starting	pembrolizumab.	However,	there	remains	no	evidence	for	this	approach	in	CLL.	

	

There	 are	 limitations	 due	 to	 technical	 challenges.	 I	 attempted	 to	match	 CAR+	 dose	

rather	than	T	cell	dose	across	groups,	but	this	is	not	entirely	possible	since	WT	and	AT	

CAR	 T	 cells	 have	 characteristically	 different	 phenotypes	 and	 T	 cell	 subsets.	 It	 is	

particularly	difficult	to	match	CD4+CAR+	cell	doses,	as	 in	this	model	there	 is	a	strong	

skew	 to	CD8+CAR+	after	 activation	and	 transduction.	Perhaps	 this	 explains	 the	early	

response	at	D+7	in	all	CAR	treated	mice,	but	the	lack	of	CD4+CAR+	cells	in	the	AT	CAR	

groups	reduces	the	functional	memory	and	persistence	resulting	in	relapse.		

	

In	conclusion,	CD19+	relapse	post	CAR	T	cells	is	determined	by	T	cell	fitness	as	WT	CAR	

T	 cells	 can	 prevent	 relapse	 and	 can	 normalize	 PD-1+	 expression.	 CAR	 T	 cells	 derived	

from	CLL	T	cells	are	less	able	to	prevent	CD19+	relapse	and	this	is	not	improved	using	

concurrent	αPD-L1,	which	also	seems	to	have	limited	activity	in	treatment	alone	of	AT	

TCL1	CLL.	Further	studies	using	CAR	plus	immunotherapy	combinations	are	warranted	

to	attempt	to	improve	CAR	T	cell	fitness.	

	

	 	



	

172	

9.	 In	vivo	modelling	of	CAR	pre-treatment	with	BTK	inhibitors	

	

9.1	 Introduction	

	

The	 University	 of	 Pennsylvania	 Immunotherapy	 group	 were	 the	 first	 to	 report	 the	

impaired	ex	vivo	expansion	of	CLL	CAR	T	cells	which	was	improved	by	the	patients	pre-

treatment	with	 ibrutinib	 (163),	 albeit	 in	 a	 very	 small	 number	 of	 patients.	 Prolonged	

ibrutinib	 treatment	also	decreased	 immunosuppressive	 checkpoint	 inhibitors	 such	as	

PD-1,	but	did	not	alter	memory	phenotype.	Given	the	major	CAR	 lymphoma	and	ALL	

clinical	 trials	did	not	allow	concurrent	use	of	 chemotherapy	or	BCR	 inhibitors	during	

CAR	 infusion	 or	 afterwards,	 the	 combination	 of	 CAR	 T	 cells	 with	 BTKi	 remains	

experimental.		

	

Preclinical	 murine	 data	 supports	 the	 positive	 effect	 of	 concurrent	 ibrutinib	 on	 CAR	

function,	in	xenograft	mouse	models	of	mantle	cell	lymphoma	(284),	ALL	and	CLL	(163)	

the	 addition	 of	 ibrutinib	 to	 CD19-41BB	 CAR	 T	 cells	 improved	 disease	 control.	 Since	

then,	multiple	groups	have	reported	this	effect	in	CLL	patients,	albeit	in	abstract	form	

(214,	215).	At	ASH	2018,	the	Seattle	group	continued	ibrutinib	through	leukapheresis,	

lymphodepletion	and	for	a	median	of	21	days	post	JCAR14	(CD19-41BB	with	1:1	CD4:	

CD8	T	cell	product).	They	demonstrated	a	higher	ORR	of	88%	vs	56%	compared	to	the	

CAR	plus	no	 ibrutinib	group	(215).	Of	note,	although	they	noted	no	difference	 in	the	

occurrence	of	mild	CRS	post	CAR	T	cells,	they	saw	a	significantly	reduced	rate	of	severe	

CRS	in	the	ibrutinib	CAR	treated	group.	Median	follow-up	of	the	ibrutinib	CAR	group	is	

only	 98	 days	 so	 it	 is	 too	 soon	 for	 more	 detailed	 survival	 analysis.	 Also	 from	 the	

University	of	Pennsylvania	group,	Dr	Saar	Gill	presented	their	data	on	the	use	of	 the	

standard	CD19-41BB	CAR	with	ibrutinib	(214).	Lymphodepletion	was	with	the	standard	

Flu/Cy	conditioning	regimen	and	this	was	a	dose	escalation	study.	This	was	a	high-risk	

population	as	11	of	the	19	patients	infused	had	del17p	of	TP53.	18	of	the	19	patients	

had	CRS	which	was	mostly	grade	1-2	and	5	patients	had	some	degree	of	neurotoxicity.	

One	patient	died	of	a	cardiac	arrhythmia	during	severe	neurotoxicity	after	resolution	

of	 CRS.	 The	 median	 follow-up	 for	 the	 18	 surviving	 patients	 was	 18.5	 months.	
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Examination	 of	 the	 bone	 marrow	 at	 3	 months	 post	 CAR	 T	 cells	 demonstrated	

morphological	remission	in	17	of	these	patients	in	particular,	15	of	these	patients’	BM	

were	MRD	negative	by	flow	cytometry.	Both	abstracts	have	identified	a	potential	new	

safety	 concern,	 being	 cardiac	 death	 due	 to	 the	 addition	 of	 ibrutinib,	 which	 is	 well	

known	 to	 cause	 arrhythmias.	 Subsequently	 there	 have	 been	 recommendations	 that	

patients	 who	 have	 the	 combination	 of	 CAR	 T	 cells	 plus	 ibrutinib	 and	 have	 CRS	 or	

neurotoxicity,	should	have	cardiac	monitoring.		

	

Acalabrutinib	 is	 a	 second	 generation	 BTKi,	 known	 to	 be	 very	 active	 in	 CLL	 but	 is	

currently	only	 licensed	 in	Europe	 in	mantle	cell	 lymphoma.	This	highly	 selective	BTKi	

led	 to	 a	 95%	 ORR	 in	 61	 patients	 with	 R/R	 CLL,	 including	 in	 patients	 with	 del(17p)	

although	 CR	were	 limited	 (68).	 It	 is	 unclear	 if	 acalabrutinib	will	 be	 positioned	 as	 an	

alternative	to	ibrutinib	in	both	1st	line	and	relapsed	CLL	and	this	can	only	be	resolved	

by	the	ongoing	clinical	trials.	Despite	the	impressive	clinical	results	seen	with	ibrutinib,	

most	 patients	 do	 not	 experience	 a	 CR	 and	 a	 subset	 develop	 resistance.	 This	 most	

commonly	occurs	due	 to	mutations	 in	BTK	or	PLCγ2,	 emphasizing	 the	 importance	of	

the	 BCR	 pathway	 to	 the	 action	 of	 ibrutinib	 in	 CLL	 (285).	 Ibrutinib	 also	 targets	many	

other	 kinases,	 such	 as	 ITK	 and	 TEC	 that	may	 account	 for	 its	 side	 effect	 profile	 (69).	

Therefore,	the	more	selective	BTK	inhibition	of	acalabrutinib	may	be	more	potent	and	

result	 in	 less	 toxicity.	 No	 reports	 have	 been	 provided	 of	 head	 to	 head	 studies	 of	

ibrutinib	 versus	 acalabrutinib	 in	 patients,	 so	 this	 suggestion	 of	 increased	 tolerability	

remains	 speculative,	 although	 interestingly	 in	 a	 cohort	 of	 33	 patients	 who	 were	

ibrutinib	 intolerant,	 72%	 of	 the	 adverse	 events	 reported	 associated	 with	 ibrutinib	

intolerance	did	not	recur	with	acalabrutinib.	The	two	drugs	have	been	compared	using	

both	the	AT	TCL1	and	a	CLL	xenograft	models,	in	which	acalabrutinib	showed	increased	

BTK	selectivity	with	anti-tumour	efficacy	equivalent	to	ibrutinib	(70).	Both	drugs	have	

established	 dosing	 in	 mouse	 models,	 with	 the	 drugs	 given	 continuously	 in	 their	

drinking	water	and	have	been	used	by	our	group.	I	therefore	chose	to	investigate	the	

pre-treatment	of	CAR	T	cells	in	the	AT	TCL1	mouse	model	using	both	BTKi	ibrutinib	and	

acalabrutinib.	 The	 use	 of	 acalabrutinib	 for	 this	 purpose	 is	 not	 described	 in	 the	

literature.	 Given	 the	 established	 importance	 of	 T	 cell	 subsets	 and	 function	 for	 CAR	

efficacy,	 it	 is	 interesting	 to	 note	 that	 in	 patients	 on	 clinical	 trials	 of	 ibrutinib	 and	
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acalabrutinib,	 it	was	 ibrutinib	 that	 has	 a	more	prominent	 effect	 on	 effector/effector	

memory	 subsets	 which	 was	 not	 observed	 in	 acalabrutinib.	 Both	 drugs	 significantly	

reduced	PD-1	and	CTLA4	expression.	Further,	whilst	with	both	drugs	 the	numbers	of	

Tregs	were	unchanged,	 the	ratio	of	Tregs	 to	CD4	was	reduced	with	 ibrutinib	but	not	

acalabrutinib,	 indicating	 there	my	be	differences	 in	 the	way	 these	 two	drugs	 relieve	

their	immunosuppressive	microenvironment	in	CLL	(286).	Another	project	in	our	group	

has	 extensively	 examined	 the	 impact	 of	 ibrutinib	 versus	 acalabrutinib	 on	 T	 cell	

phenotype	and	function	(120,	121).		

	

9.2	 Objectives	

	

• Investigate	 the	 effect	 of	 treatment	 of	 AT	 TCL1	 CLL	 with	 ibrutinib	 and	

acalabrutinib.	Establish	AT	TCL1	in	a	litter	of	mice	aged	3	months,	 leaving	one	

group	without	AT	as	a	control	group.	Of	 the	mice	treated	with	AT	TCL1	 leave	

one	 group	 untreated	 and	 treat	 the	 other	 two	 groups	with	 either	 ibrutinib	 or	

acalabrutinib.		

• Compare	the	progression	of	CLL	 in	untreated	AT	TCL1	with	mice	 treated	with	

ibrutinib	or	acalabrutinib	comparing	the	effect	on	the	microenvironment	of	all	

groups,	including	WT	controls.		

• From	 these	 mice,	 apply	 the	 same	 optimized	 CD19-CD28	 CAR	 manufacturing	

process	 to	 T	 cells	 obtained	 from	 WT	 mice	 without	 AT	 (WT	 CAR),	 AT	 mice	

without	 treatment	 (CLL	 CAR)	 and	 AT	mice	 with	 CLL	 which	 had	 been	 treated	

with	 ibrutinib	 (ibrCAR)	 and	 acalabrutinib	 (acalaCAR),	 comparing	 the	 resulting	

CAR	phenotype	and	ex	vivo	expansion.		

• Compare	the	efficacy	of	WT	CAR,	CLL	CAR,	ibrCAR	and	acalaCAR	in	treating	AT	

CLL	in	a	second	group	of	mice.		

	

Not	all	the	experiments	planned	for	this	chapter	have	been	completed	by	the	time	of	

thesis	 submission	 at	 the	 end	 of	 my	 fellowship	 and	 thesis	 work	 forms	 the	 basis	 of	

planned	future	work.		
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9.3	 Methods	and	Materials	
	

This	experiment	has	a	complicated	two-part	format	requiring	two	large	sequential	AT	

experiments	running	in	parallel,	with	CAR	manufacture	on	fresh	T	cells	in	the	middle,	

summarized	 in	 figure	 9.1.	 In	 part	 1	 forty-eight	 WT	 mice	 of	 12	 weeks	 of	 age	 were	

separated	into	4	groups,	separated	by	sex	(numbers	of	males=females).	Three	groups,	

or	 thirty-six	 mice	 in	 total	 received	 AT	 of	 pooled	 B	 cell	 enriched	 (>95%)	 TCL1	

splenocytes	from	fully	leukaemic	TC1	mice	from	the	same	background.	The	TCL1	used	

was	pooled	from	thawed	CLL	vials	our	tissue	bank	and	some	fully	leukaemic	aged	mice	

from	 our	 colony	 were	 used.	 All	 mice	 received	 the	 same	 pooled	 29	 x106	 TCL1	

splenocytes	by	tail	vein	injection	except	the	twelve	mice	in	the	WT	group,	which	are	a	

source	of	normal	T	cells	and	control	group	and	therefore	had	no	intervention	and	did	

not	 have	 CLL.	 All	 mice	 were	 then	 bled	 weekly	 and	 at	 week	 2,	 when	 PB	 CLL	 was	

confirmed	>10%	in	all	mice,	two	groups	were	randomized	to	be	treated	with	ibrutinib	

or	acalabrutinib.	This	is	given	continuously	via	drinking	water	with	the	drug	dissolved	

using	 a	 vehicle,	 2-hydroxypropyl-β-cyclodextrin	 (HPBD)	 with	 both	 ibrutinib	 and	

acalabrutinib	(Acerta)	given	at	the	same	concentration	(0.15mg/l).	At	week	5	all	mice	

were	culled	for	the	second	part	of	the	experiment.	Week	5	was	chosen	because	prior	

AT	experiments	have	 shown	 that	 typically	mice	may	need	 to	be	 culled	 from	week	6	

due	to	progressive	CLL	due	to	humane	previously	defined	endpoints.		

	

This	 experiment	 was	 performed	 with	 Arantxa	 Romero-Toledo,	 a	 PhD	 student	 also	

working	on	the	microenvironment	in	CLL	in	the	Gribben	laboratory.	For	both	weekly	PB	

bleeds	and	PB,	spleen	and	BM	assessment	at	the	end	of	this	part,	samples	and	analysis	

were	 shared	 as	 she	 was	 undertaking	 different	 experimental	 questions	 with	 this	

material.		
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Figure	9.1:	 Two-part	 sequential	 AT	 experimental	 plan	 to	 investigate	 the	 effect	 of	

ibrutinib	 and	 acalabrutinib	 pre-treatment	 on	 CAR	 T	 cell	 function,	 with	 outcome	

measures	on	the	right.		

	

The	AT	for	part	2	of	this	experiment	was	started	at	week	3	of	part	1,	so	the	CLL	had	

time	to	engraft	and	mice	become	 leukaemic	before	treatment	with	CAR	T	cells.	Fifty	

WT	mice	aged	13	weeks	were	 separated	 into	5	 groups,	with	equal	male	and	 female	

mice.	 One	 group	 of	 10	 mice	 were	 bled	 prior	 to	 AT	 for	 baseline	 microenvironment	

assessment.	Again,	TCL1	pools	were	obtained	from	our	tissue	bank	and	fully	leukaemic	

donors	in	our	colony,	the	CLL	was	B	cell	enriched	(>95%)	and	pooled	and	all	fifty	mice	

were	injected	with	the	same	23	x106	TCL1	splenocytes.	They	were	then	bled	at	weeks	1	

and	 2	 to	 confirm	 CLL	 engraftment,	 with	 lymphodepleting	 IP	 cyclophosphamide	

(100mg/kg)	 given	 one	 day	 before	 week	 3	 (D-1)	 as	 in	 previous	 CAR	 experiments.	 At	

week	 3,	which	becomes	CAR	D0,	mice	were	 treated	with	WT	CAR,	 CLL	 CAR,	 ibrCAR,	

acalaCAR	 or	 untransduced	 T	 cells,	 with	 equal	 cell	 doses	 within	 groups,	 but	 not	

between	groups.	They	were	then	bled	weekly,	with	the	planned	experiment	end	point	

when	the	majority	of	mice	treated	with	ibrCAR	and	acalaCAR	need	to	be	culled	due	to	

progressive	disease,	but	 if	possible	not	until	week	18	as	that	was	the	duration	of	the	

experiment	described	in	Chapter	8.	Mice	treated	with	untransduced	T	cells	would	be	
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culled	as	a	group	when	the	first	mouse	appeared	sick	with	progressive	CLL	separately	

from	the	other	groups.		

	

9.4	 Results	

	

9.4.1	 Ibrutinib	and	acalabrutinib	treatment	of	AT	CLL	

	

In	 part	 1	 48	mice	 were	 bled	 weekly	 examine	 CLL	 load,	 T	 cell	 phenotype	 and	 other	

aspects	of	the	microenvironment	including	MDSC,	macrophages	and	Tregs	(287).	Week	

0	of	this	part	was	AT	of	CLL	and	ibrutinib	and	acalabrutinib	was	commenced	at	week	2	

with	 all	 mice	 culled	 at	 week	 5.	 Figure	 9.2	 shows	 progression	 of	 PB	 CLL	 during	 this	

experiment,	showing	that	whilst	 the	CLL	certainly	responds	to	treatment,	 these	mice	

still	 have	 very	 evident	 leukaemia	 at	 the	 end	 of	 this	 part	 in	 the	 PB.	 In	 AT	 TCL1	

experiments	 of	 acalabrutinib	 vs.	 vehicle	 alone,	 acalabrutinib	 significant	 improves	

mouse	survival	(70),	but	for	this	experiment	I	deliberately	chose	the	period	of	plateau	

of	CLL	response	to	cull	the	mice,	hypothesizing	this	would	be	the	time	of	maximum	T	

cell	 effect.	 There	 was	 no	 significant	 difference	 between	 CLL	 load	 in	 the	 PB	 of	

acalabrutinib	and	ibrutinib	treated	mice.		

	

	
Figure	9.2:	 Percentage	of	DAPI-,	viable	mononuclear	cells	in	PB	that	are	CD5+CD19+	

in	weekly	blood	tests	after	commencing	BTKi	at	week	2	in	48	mice.		
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Figure	9.3:	 Differences	in	the	spleen	weight	when	culled	at	week	5	after	AT	of	CLL	

at	week	0	separated	by	BTKi	treatment	group	in	48	mice.		

	

	
Figure	9.4:	 Differences	 in	 the	 total	 viable	 cell	 count	 of	 spleens	 of	 mice	 culled	 at	

week	 5	 after	 AT	 of	 CLL	 in	 each	 treatment	 group	 determined	 by	 an	 automated	 dual	

fluorescence	 (acridine	 orange/propidium	 iodide	 stain)	 haemocytometer	 (Logos	

Biosystems,	South	Korea)	in	48	mice.		
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Figure	9.5:	 Percentage	 of	 DAPI-,	 viable	 mononuclear	 cells	 that	 are	 CD5+CD19+	 in	

spleens	when	culled	at	week	5	after	AT	of	CLL	in	each	treatment	group	with	significant	

differences	in	48	mice.		

	

As	in	previous	experiments,	spleen	weight	when	culled	reflects	disease	bulk	of	CLL	at	

that	 time	point	 (figure	9.3),	as	does	 total	viable	cell	 count	of	 the	spleen	 (figure	9.4).	

Acalabrutinib	 and	 ibrutinib	 significantly	 reduce	 spleen	 weight	 and	 total	 viable	 cell	

count	 compared	 to	 mice	 with	 untreated	 cell,	 but	 with	 no	 significant	 differences	

between	the	two	BTKi	performance	by	these	measures.	However,	the	CD5+CD19+%	in	

the	spleen	of	the	BTKi	treated	mice	remains	very	high,	again	not	significantly	different	

between	 ibrutinib	 and	 acalabrutinib,	 but	 both	 treatment	 groups	 were	 significantly	

lower	than	in	a	CLL	spleen	(figure	9.5).	So	whilst	BTK	inhibition	results	in	much	smaller	

spleens	in	these	mice,	they	do	contain	considerable	CLL	load.	However,	in	the	PB	there	

are	significant	differences	between	the	two	BTKi	in	terms	of	PD-1	expression,	which	is	

significantly	reduced	after	treatment	with	acalabrutinib,	but	not	ibrutinib	(figure	9.6).	
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Figure	9.6:	 Percentage	of	cytotoxic	T	cells	(CD3+CD8+)	of	DAPI-,	viable	mononuclear	

cells	 that	 have	 PD-1	 expression	 in	 the	 PB	 at	week	 5,	 separated	 by	 treatment	 group	

showing	significant	differences	(**P<0.01,	***P<0.001,	****P<0.0001)	in	48	mice.		

	

9.4.2	 CAR	production	and	phenotype	
	

CAR	T	 cells	were	made	 for	part	2,	using	pooled	enriched	T	 cells	 from	 the	 spleens	of	

mice	 culled	 in	 part	 1,	 separated	 by	 treatment	 group.	 The	 identical	 manufacturing	

process	 as	 previously	 described	 and	 optimized	 was	 applied	 to	 all	 T	 cells,	 and	 the	

retroviral	supernatant	used	for	transduction	was	pooled	and	split	equally,	so	all	groups	

of	T	cells	were	transduced	with	the	same	pooled	and	concentrated	quantity	of	virus.	

Retroviral	 supernatant	 from	 the	 transfection	 of	 platinum-eco	 cells	 with	MSGV-1D3-

28Z-1.3mut	 (CD19-CD28)	 was	 made,	 concentrated	 with	 Retro-X	 and	 used	 fresh	

immediately	prior	to	transduction.		
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Whilst	the	effect	of	CLL	on	T	cell	subsets	has	been	described	in	previous	chapters	and	

in	 the	 literature,	 less	 is	 known	 about	 the	 effect	 of	 treatment	 with	 ibrutinib	 and	

acalabrutinib	 on	 T	 cell	 phenotype	 in	 this	 model.	 As	 there	 is	 evidence	 that	 subset	

selection	for	manufacture	may	impact	on	CAR	efficacy	 it	 is	 important	to	describe	the	

effect	 of	 ibrutinib	 and	 acalabrutinib	 pre-treatment	 on	 T	 cell	 subsets	 used	 for	 CAR	

manufacture.	Table	9.1	shows	the	CD4/CD8%	pre	activation	and	post	transduction	 in	

each	of	the	pre-treatment	groups.	In	this	experiment,	transduction	seems	to	have	the	

greatest	 effect	 on	 acalabrutinib	 and	 ibrutinib	 pre-treated	 CAR	 T	 cells,	 as	 there	 is	

reversal	of	their	CD4/CD8	ratio	not	already	established	prior	to	transduction.		

	

Treatment	

Group	

Pre-activation	(D0)	 Post	transduction	(D4)	

CD4	(%)	 CD8	(%)	 CD4	(%)	 CD8	(%)	

WT	 44.8	 58.4	 47.4	 48.5	

CLL	 24.8	 72.3	 10	 62.7	

Acalabrutinib	 65.7	 30.4	 30.8	 55.4	

Ibrutinib	 64.8	 31.9	 35.9	 50.9	

Table	9.1:	 Percentages	of	DAPI-,	 viable	mononuclear	 splenocytes	 that	were	CD4+	

and	CD8+	subsets	before	(day	0)	and	after	T	cell	activation	and	transduction	(day	4)	i.e.	

after	CAR	T	manufacture	separated	by	treatment	group.		

	

Overall,	 in	 this	 experiment	 the	 CD3+	 T	 cells	 transduction	 efficiency	 was	 high	 in	 all	

groups.	 In	the	three	groups	of	CAR	T	cells	which	had	been	exposed	to	CLL,	there	are	

again	large	differences	in	transduction	efficiency	noted	between	CD4	and	CD8	subsets,	

which	is	not	evident	in	WT	mouse	derived	CAR	T	cells	(figure	9.7).	This	appears	to	be	

partially	reversed	by	both	BTKi,	but	not	fully.			
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Figure	9.7:	 Percentage	of	 cells	 in	 culture	 that	 are	CAR+	 (fab+)	 after	 activation	and	

transduction	 i.e.	 transduction	 efficiency	 determined	 by	 cells	 that	 are	 DAPI-,	 viable,	

mononuclear	and	fab+	in	CD3+/CD4+/CD8+	T	cells	separated	by	treatment	group.		

	

Again,	 there	 is	 a	 shift	 in	 CD3+CD8+	 phenotypes	 which	 is	 exaggerated	 by	 the	 CAR	

manufacturing	process,	which	can	be	partially	reversed	by	ibrutinib	and	acalabrutinib	

pre-treatment.	 Table	 9.2	 shows	 CD3+CD8+	 phenotype,	 pre-activation	 and	 post	

transduction,	which	again	 shows	 that	CLL	T	cells	disproportionately	 loose	 their	naïve	

phenotype	and	shift	to	an	effector	phenotype	post	transduction	and	activation,	whilst	

this	 effect	 is	 less	marked	with	 BTKi	 pre-treatment	 (table	 9.2),	 which	maintain	more	

memory	CD8+	T	cells.	After	preparing	single	cell	suspensions	from	the	spleens	of	mice	

from	part	1	for	each	pre-treatment	group,	around	20-30	x106	T	cells	were	enriched	and	

then	plated	for	24	hours	activation	to	be	followed	by	CAR	transduction.	 	
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	 CD44-CD62L+	 CD44+CD62L+	 CD44+CD62L-	

Naïve	(%)	 Memory	(%)	 Effector	(%)	

WT	pre	 66.5	 21.7	 9.7	

WT	post	 12.8	 66.5	 19.2	

CLL	pre	 20.2	 46.8	 12.7	

CLL	post	 0.095	 49	 50.7	

Acalabrutinib	pre	 47.3	 22.5	 13.8	

Acalabrutinib	post	 5.1	 62.1	 30.6	

Ibrutinib	pre	 37.9	 47.2	 9.1	

Ibrutinib	post	 4.7	 59	 33.0	

Table	9.2:	 Percentages	 of	 DAPI-,	 viable	 mononuclear	 CD3+CD8+	 splenocytes	 that	

naïve	(CD44-CD62L+),	memory	(CD44+CD62L+)	and	effector	 (CD44+CD62L-)	subsets	pre	

(day	0)	and	post	T	cell	activation	and	transduction	(day	4)	i.e.	after	CAR	T	manufacture	

separated	by	treatment	group.		

	

Remaining	spleen	and	the	bone	marrow	cell	suspensions	were	prepared	for	freezing	in	

cryovials	 as	 previously	 described	 for	 future	 work.	 Mice	 were	 each	 injected	 with	

between	5.5-6	x106	CAR	T	cells,	attempting	to	match	the	cell	dose	 for	each	group	 in	

terms	of	viable	CAR+	T	cells,	although	this	is	not	possible	exactly	because	there	are	four	

groups	 with	 different	 transduction	 efficiencies.	 Table	 9.3	 shows	 the	 CAR+	 cell	 dose	

given	of	between	1.3-2.3	x106/mouse,	which	seemed	optimum	and	feasible	based	on	

my	previous	experiments.	However,	matching	for	CD3+CAR+	cell	dose	leads	to	marked	

variability	 in	CD4+/CD8+CAR+	cell	doses.	Of	note,	the	only	way	to	match	the	CAR+	cell	

dose	for	the	CLL	CAR	mice,	was	to	reduce	the	group	size	from	10	to	6,	because	of	the	

significantly	reduced	ex	vivo	expansion	of	T	cells	in	this	group.	This	can	be	seen	in	table	

9.3	by	the	total	number	of	T	cells	post	expansion	and	is	significant,	in	that	ibrutinib	and	

acalabrutinib	treated	mice	did	not	demonstrate	impaired	ex	vivo	expansion	of	their	T	

cells	when	activated	and	transduced,	as	I	have	seen	repeatedly	in	both	Tg	and	AT	CLL	T	

cells,	which	is	a	bio-marker	of	CAR	efficacy	in	patients	(206).	Again,	as	seen	previously	

it	is	particularly	challenging	to	match	CD4+CAR+	cell	dose	because	of	markedly	reduced	
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ex	 vivo	 expansion,	 but	 both	 ibrutinib	 and	 acalabrutinib	 reversed	 this	 effect.	Overall,	

the	 expansion	 and	 resulting	 T	 cell	 subsets	 of	 CAR	 T	 cells	 with	 acalabrutinib	 and	

ibrutinib	pre-treatment	were	very	similar.			

	

	 T	cells	(x106)	 CAR+	T	cells	(x106)	

Total	

produced	

T	cells/	

mouse	

CD3+CAR+	 CD4+CAR+	 CD8+CAR+	

WT	CAR	 67.2	 5.9	 1.51	 0.7	 0.74	

CLL	CAR	 32.7	 5.5	 1.32	 0.19	 0.47	

Acalabrutinib	

CAR	

59.5	 5.95	 2.34	 1.22	 0.99	

Ibrutinib	CAR	 58.6	 5.86	 2.2	 0.97	 0.78	

Table	9.3:	 Total	 number	 of	 T	 cells	 in	 culture	 determined	 by	 an	 automated	 dual	

fluorescence	 (acridine	 orange/propidium	 iodide	 stain)	 haemocytometer	 (Logos	

Biosystems,	 South	 Korea)	 by	 treatment	 group.	 	 Total	 number	 of	 T	 cells	 injected	 per	

mouse	in	each	treatment	group	corrected	by	the	percentage	of	CAR+	shown	in	figure	

9.7	 to	 give	 the	 number	 of	 CAR+	 cells	 injected	 in	 each	 group	 by	 CD3+/CD4+/CD8+	

subsets.		

	

	
Figure	9.8:	 Percentage	of	 cytotoxic	 CAR+	 T	 splenocytes	 (CD3+CAR+CD8+)	 that	 have	

PD-1+	 expression	 post	 activation	 and	 transduction	 under	 identical	 culture	 conditions	

separated	by	pre-treatment	group.	For	each	treatment	group	n=1	as	CAR	T	cells	were	

pooled	and	then	split	equally	between	the	number	of	mice	in	that	group.		



	

185	

PD-1+	expression	is	high	on	CLL	T	cells	and	CAR	production	increases	PD-1+	in	all	groups	

as	PD-1+	 is	also	a	marker	of	cell	activation.	 It	 is	difficult	 to	 interpret	PD-1	expression	

immediately	after	completion	of	activation	and	transduction	and	compare	this	in	if	the	

CAR	 T	 cells	 came	 from	mice	with	 BTKi	 pre-treament.	 It	 appears	 BTKi	 pre-treatment	

seem	to	reduce	PD-1+	expression	on	the	end	CAR	product	(figure	9.8).	However,	when	

the	T	cells	were	taken	out	of	culture	they	were	pooled	by	group,	so	flow	phenotyping	

was	 run	 once	 on	 each	 group	 before	 injecting	 into	 the	mice.	 Figure	 9.8	 is	 therefore	

descriptive.	

	

9.4.3	 	 Efficacy	of	CAR	T	cells	after	pre-treatment	with	BTKi	

	

In	the	second	part	of	this	experiment,	a	second	large	AT	experiment	required	50	mice	

to	 receive	 the	 same	 pooled	 CLL	 cells	 as	 previously	 described,	 with	 CLL	 engraftment	

being	 confirmed	 at	 weeks	 1	 and	 2	 in	 all	 mice.	 CAR	 T	 cells	 were	 injected	 after	

cyclophosphamide	 lymphodepletion	 one	 day	 before	 week	 3	 (D-1),	 after	 which	mice	

had	their	 first	disease	assessment	at	week	4	 (D+7).	All	mice,	except	3	mice	 from	the	

ibrCAR	 group,	 had	 a	 complete	 response	 at	 D+7,	 with	 no	 normal	 or	 CLL	 B	 cells.	 The	

three	ibrCAR	treated	mice	lacking	a	complete	response,	had	very	low	level	CLL	in	the	

PB	(<6%)	with	small	but	detectable	normal	CD19+	B	cells	(all	<1%).	This	implies	a	failure	

of	engraftment	of	 the	CAR	T	cells	 in	 these	 three	mice,	as	opposed	 to	early	 response	

and	 then	 disease	 progression.	 In	 these	 mice	 the	 drop	 in	 CLL	 is	 likely	 due	 to	 the	

preconditioning	cyclophosphamide,	which	as	I	have	seen	in	previous	experiments	does	

significantly	reduce	PB	CLL	after	one	week.		

	

At	week	 4,	 early	 in	 the	morning	 of	 CAR	D+7,	when	 the	mice	were	 checked	 prior	 to	

being	 transferred	 to	 the	hot	box	 to	be	warmed	 for	pre-planned	PB	bleeds,	all	of	 the	

WT	CAR	 treated	mice	 looked	 sick	and	distressed,	having	been	well	 the	night	before.	

There	was	no	evidence	of	clinical	distress	in	any	of	the	other	CAR	treatment	groups	or	

the	controls.	The	decision	was	therefore	made	to	cull	8	of	the	10	mice,	as	per	our	pre-

defined	end	points	in	the	project	license.	Two	WT	CAR	mice	in	better	condition	were	

kept	with	mushed	food	to	allow	rapid	rehydration	and	were	clinically	improved	by	the	

end	 of	 the	 day.	 Spleen,	 BM	 and	 PB	 were	 obtained	 for	 all	 culled	 mice,	 with	
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anticoagulated	blood	spun	down	and	plasma	frozen	 in	 -80°C	for	 later	analysis.	Given	

previous	 experiments	have	 clearly	demonstrated	peak	CAR	expansion	at	D+7,	 it	was	

highly	likely	that	the	mice	had	some	form	of	CRS	or	neurotoxicity.	Perhaps	CRS	is	more	

likely	given	the	two	surviving	mice	improved	rapidly	with	rehydration.	Unfortunately,	

planned	 cytokine	 analysis	 of	 the	 plasma	 has	 not	 yet	 been	 performed,	 but	 flow	was	

performed	on	all	D+7	PB	samples	to	look	for	CAR	expansion	(figure	9.9).	There	are	no	

significant	differences	between	the	percentage	of	CAR	T	cells	in	the	PB	in	either	CD4+	

or	 CD8+	 subsets	 considered	 separately,	 although	 there	 is	 a	 trend	 as	 I	 have	 shown	

before	for	CLL	CD8+	CAR+	cells	to	represent	a	higher	percentage	of	that	subset	at	peak	

expansion.	Whether	 this	has	any	clinical	meaning	 is	unclear,	as	 in	all	 groups	 there	 is	

significant	CAR+	T	cell	expansion	at	D+7.		

	

	

Figure	9.9:	 Percentage	 of	 DAPI-,	 viable	mononuclear	 CD4+	 or	 CD8+	 that	 are	 CAR+	

(fab+)	 in	the	PB	at	day	7	post	CAR	T	injection	separated	by	CAR	pre-treatment	group.	

No	significant	differences	were	seen	on	analysis	by	ANOVA.		

	

Up	 till	 week	 8,	 the	 mice	 were	 bled	 weekly	 and	 PB	 analysed	 for	 CAR	 T	 cells,	 T	 cell	

subsets,	 MDSC	 and	 macrophages.	 By	 week	 8,	 some	 mice	 treated	 with	

cyclophosphamide	and	untransduced	T	 cells	 appeared	 sick	 so	 all	mice	 in	 the	 control	

group	were	culled	separately.	Since	then	all	remaining	mice	have	been	bled	every	two	

weeks.	However,	as	discussed	above,	the	projected	completion	of	this	experiment	will	
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end	 after	 the	 submission	 deadline	 for	 this	 thesis,	 so	 the	 complete	 analysis	 of	 this	

experiment	 is	 not	 possible	 at	 this	 point.	 Two	 ibrCAR	 treated	 mice	 that	 had	 not	

responded	at	D+7	demonstrated	very	slow	progression,	with	a	corresponding	increase	

in	the	PB	normal	B	cell	population.	They	were	pre-emptively	culled	at	week	16	due	to	

high	 PB	 CLL.	 All	 other	 mice	 currently	 seem	 to	 be	 in	 remission	 and	 look	 well	 with	

ongoing	loss	of	normal	and	CLL	B	cells.	Figure	9.10	shows	the	PB	CLL	results	over	the	

20	weeks	of	 follow-up	to	date.	From	weeks	8-10	there	was	a	suggestion	of	 low-level	

relapse	 amongst	 some	 mice	 treated	 with	 the	 CLL	 CAR,	 interestingly	 this	 reversed,	

which	is	perhaps	a	demonstration	of	the	dynamic	and	ongoing	tumour	immunity	CAR	T	

cells	have	given	the	host.		
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9.5	 Discussion	
	

	

Both	ibrutinib	and	acalabrutinib	have	activity	in	the	AT	TCL1	model	over	a	time	limited	

experiment,	as	would	be	expected	and	has	been	previously	demonstrated	(70).	At	the	

point	 at	which	 the	 effect	 of	 these	 BTKi	 in	 the	 PB	 had	 plateaued,	mice	 treated	with	

ibrutinib	and	acalabrutinib	were	culled	and	their	T	cells	enriched	from	their	spleens	to	

make	CAR	T	cells.	Treatment	with	ibrutinib	and	acalabrutinib	significantly	reduces	the	

spleen	weight	and	total	cell	count	of	these	spleens,	although	the	cells	that	left	remain	

highly	 infiltrated	 with	 CD5+CD19+	 splenocytes.	 The	 same	 CAR	 T	 cell	 manufacturing	

process	was	 then	 applied	 to	 these	 enriched	 T	 cells,	 as	well	 as	 normal	WT	 and	 fully	

leukaemic	mice	 given	 the	 same	 CLL	 by	 AT,	 in	 age	matched	mice.	 There	 is	 resulting	

partial	 reversal	 of	 the	 CLL	 phenotype	 of	 BTKi	 pre-treated	 CAR	 T	 cells,	 despite	 there	

being	high	levels	of	CD5+CD19+	CLL	evident	in	the	spleens	of	these	mice.	This	implies	a	

direct	T	cell	effect,	that	can	partially	correct	measures	such	as	ex	vivo	expansion,	CD4:	

CD8	 ratio,	 reduced	 disparity	 between	 CD4	 and	 CD8	 transduction	 efficiency,	 loss	 of	

naïve	CD8+	T	cells	and	an	improved	balance	of	memory	to	effector	T	cells	reflected	in	

the	 end	 CAR	 T	 cell	 phenotype.	 Certainly,	 acalabrutinib	 is	 a	 more	 specific	 BTKi	 than	

ibrutinib,	with	less	off-target	kinase	effect	(70).	This	experiment	comprises	two	distinct	

but	 overlapping	 parts,	 with	 the	 second	 part	 meant	 to	 be	 a	 long-term	 survival	

experiment	to	model	relapse	risk	after	ibrutinib	and	acalabrutinib	pre-treatment.	The	

predefined	endpoint	of	part	2	is	the	progression	of	disease	in	the	majority	of	ibrutinib	

and	acalabrutinib	CAR	pre-treated	mice	which	has	not	yet	been	 reached,	 therefore	 I	

cannot	 yet	 answer	 whether	 these	 resulting	 CAR	 T	 cell	 phenotypic	 changes	 are	

important	 for	 CAR	 T	 cell	 efficacy	 or	 perform	 a	 detailed	 comparison	 of	 the	

microenvironment	in	this	model.	However,	preclinical	studies	have	demonstrated	that	

fixed	 combinations	 of	 CD4+	 and	 CD8+	 CAR	 T	 cells	 of	 varying	 naïve	 and	 memory	

phenotypes	are	more	effective	in	xenograft	ALL	mouse	models	(208).		

	

The	ongoing	second	part	of	this	experiment	will	address	the	issue	of	pre-treatment	of	

CLL	T	cells	in	vivo	with	BTKi	to	improve	CAR	T	cell	efficacy	by	reversal	of	the	CLL	T	cell	

phenotype.	 It	 will	 not	 address	 whether	 the	 addition	 of	 ibrutinib	 or	 acalabrutinib	
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alongside	CAR	T	cells	improve	efficacy,	although	this	model	could	be	used	to	examine	

this	question.	In	this	model	BTKi	were	only	given	in	part	1,	not	in	the	second	part	with	

CAR	T	 cells	 concurrently.	 Trials	are	underway	 in	CLL	which	address	whether	a	CD19-

41BB	 CAR	 of	 fixed	 CD4:	 CD8	 ratio	 (liso-cel)	 is	 effective	 in	 CLL,	 as	 well	 as	 studies	

investigating	 concurrent	 ibrutinib	 treatment,	 which	 have	 only	 been	 presented	 in	

abstract	 form	 for	 example	 at	 the	 recent	 International	 Conference	 on	 Malignant	

Lymphoma	 (ICML)	 in	 Lugano	 2019	 (288).	 In	 that	 study	 of	 18	 evaluable	 heavily	 pre-

treated	patients,	15	responded	(Cri	or	PR)	by	iwCLL	criteria	(83%)	including	11	patients	

(61%)	who	were	MRD	negative	by	IGHV	sequencing,	all	of	whom	were	alive	at	1	year.	

Ibrutinib	was	scheduled	 from	2	weeks	before	 leukapheresis	 to	3	months	after	CAR	T	

cell	 infusion.	 From	 the	 work	 of	 these	 groups,	 two	 new	 toxicity	 signals	 have	 been	

identified.	 One	 patient	 died	 from	 a	 presumed	 ibrutinib	 induced	 arrhythmia	 during	

grade	 2	 CRS.	 However,	 although	 14	 patients	 developed	 CRS,	 all	 were	 grade	 1-2.	

Despite	the	arrhythmia	the	author	suggests	that	 ibrutinib	could	perhaps	make	CAR	T	

cells	 safer,	 due	 to	 a	 favourable	 cytokine	 response.	 This	 has	 been	 supported	 by	

preclinical	data,	Ruella	et	al.	established	a	xenograft	model	of	mantle	cell	 lymphoma	

that	 can	 simulate	 CRS,	 demonstrating	 elevated	 serum	 levels	 of	 several	 human	

cytokines	 including	 IL6,	 IFNγ,	 TNFα,	 IL2	 and	 GM-CSF.	 Mice	 xenografted	 the	 same	

mantle	cell	 lymphoma	and	then	treated	with	the	same	CAR	with	concurrent	ibrutinib	

experienced	 longer	 overall	 survival,	 as	 well	 as	 significantly	 reduced	 cytokine	 levels	

(279).	The	use	of	acalabrutinib	for	this	purpose	remains	novel,	and	would	represent	a	

logical	 step	 as	 most	 patients	 on	 CLL	 CAR	 studies	 have	 already	 been	 exposed	 to	

ibrutinib.		

	

The	unexpected	finding	at	D+7	of	 the	CAR	experiment,	was	of	 the	mice	treated	with	

the	WT	CAR	becoming	acutely	unwell.	I	have	not	previously	seen	CRS	in	this	model,	but	

it	 is	 of	 course	 theoretically	 possible	 given	 these	mice	 are	 immunocompetent.	 Other	

possibilities	would	include	GVHD	as	the	CAR	T	cells	are	syngeneic	or	perhaps	infection.	

GVHD	doesn’t	present	acutely	and	resolve	within	24	hours	in	mice,	as	it	did	in	the	two	

mice	which	were	preserved	from	this	group.	Infection	is	always	possible,	but	it	seems	

unlikely	an	infection	would	only	affect	these	two	specific	cages	out	of	the	many	cages	I	

was	responsible	for	including	for	this	experiment	and	my	general	colony	mice.	Again,	
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this	 experiment	 is	 ongoing	 and	 although	 I	 have	 samples	 frozen	 from	 D+7	 to	 run	

cytokine	analysis,	I	do	not	yet	have	these	data	to	support	my	theory	that	AT	transfer	of	

TCL1	CLL	can	be	used	to	model	both	CAR	function	and	also	demonstrate	CRS,	and	that	

both	 ibrutinib	 and	 acalabrutinib	 pre-treatment	 reduce	 cytokines	 to	 safer	 levels.	 This	

would	be	an	important	and	novel	finding.		

	

There	 are	 evident	 limitations	 to	 the	 interpretation	 of	 the	 efficacy	 part	 of	 this	

experiment,	when	compared	to	previous	experiments.	The	TCL1	model	and	AT	of	TCL1	

splenocytes	 are	 known	 to	 result	 in	 a	 heterogeneous	 phenotype	 of	 CLL.	 From	 my	

experience	 of	 having	 carried	 out	 AT	 of	 TCL1	 many	 times,	 typically	 after	 AT	 of	 a	

reasonable	 cell	 dose,	 e.g.	 20-30	 x106	 splenocytes,	 most	 mice	 in	 control	 groups,	 or	

treated	with	untransduced	T	cells	would	get	sick	and	need	to	be	culled	before	week	8.	

In	 part	 2,	 the	mice	were	 injected	with	 23	 x106	 pooled	 splenocytes	 each,	 even	 after	

becoming	fully	leukaemic	at	week	6,	the	control	mice	treated	with	cyclophosphamide	

and	untransduced	T	cells	did	not	 immediately	show	signs	of	 ill	health.	This	 implies	to	

me	that	the	mice	 in	part	2	have	received	a	relatively	 indolent	CLL	pool,	which	 is	 less	

useful	in	this	situation	as	the	purpose	of	part	2	is	to	model	the	progression	or	relapse	

risk	 post	 treatment	with	 pre-treated	CAR	 T	 cells.	 I	 have	 extensively	 investigated	WT	

and	 CLL	 derived	 CAR	 T	 cells	 in	 previous	 chapters	 so	 they	 provide	 the	 positive	 and	

negative	 controls	 to	 this	 experiment	 to	 the	 groups	of	 interest	which	 are	 ibrCAR	and	

acalaCAR.	 In	 Chapter	 7,	 we	 saw	 by	 week	 6	 multiple	 mice	 treated	 with	 a	 CLL	 CAR	

relapsing,	which	has	not	been	the	case	in	this	experiment.	All	of	the	CLL	CAR	treated	

mice	 in	 part	 of	 this	 experiment	 remain	 in	 remission,	 although	 late	 relapses	 are	

perfectly	 possible.	 For	 these	 reasons,	 the	 remaining	mice	 are	 being	monitored	 in	 a	

long-term	survival	experiment,	so	the	detailed	analysis	of	this	experiment	cannot	yet	

be	 performed.	 There	was	 certainly	 an	 engraftment	 issue	 of	 CAR	 T	 cells	with	 3	mice	

treated	 with	 the	 ibrCAR,	 which	 on	 reflection	 may	 simply	 represent	 technical	 issues	

with	 tail	 vein	 injections	 for	 those	mice.	 This	 explains	 the	 appearance	 of	 the	 ibrCAR	

curve	 figure	 9.9,	 which	 is	 due	 to	 CLL	 progression	 of	 the	 3	 mice	 which	 did	 not	

demonstrate	 CAR	 expansion	 at	 D+7,	 and	 at	 that	 point	 had	 both	 low	 level	 CLL	 and	

normal	B	cells.		
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10.		 Overall	Discussion	

	

Differential	 outcomes	 for	 CD19	 CAR	 T	 cells	 between	 CLL	 and	 ALL	 illustrate	 unique	

challenges	 to	 overcome	 in	 different	 patient	 populations	 treated	 with	 the	 same	

investigational	and	licensed	products.	In	ALL,	initial	remission	rates	are	very	high,	but	

many	patients	will	ultimately	relapse	(184).	Conversely,	CR	rates	 in	CLL	are	are	much	

lower,	 but	 can	 be	 remarkably	 durable	 (150,	 151).	 Reasons	 for	 these	 differential	

outcomes	 receiving	 the	 same	 agents	 are	 both	 complex	 and	 poorly	 understand,	 and	

some	of	the	strategies	discussed	may	overcome	these	challenges.		

	

The	central	hypothesis	to	then	explore	with	this	model,	is	that	impaired	T	cell	function	

explains	 the	 lower	 response	 rates	 seen	 in	 fully	 reported	human	 clinical	 trials	 in	 CLL.	

The	majority	of	pre-clinical	 testing	of	CAR	T	cells	 in	general	has	been	 reported	using	

xenograft	 models	 of	 human	 disease	 or	 cell	 lines	 into	 immunodeficient	 mice	 (208).	

Whilst	this	gives	a	good	indicator	of	efficacy,	it	does	not	allow	for	complex	modelling	

of	 the	 host	 immune	 response.	 In	 contrast	 to	 human	 T	 cells,	 which	 are	 readily	

transduced	and	expandable	 in	the	ex	vivo	setting,	retroviral	 transduction	of	mouse	T	

cells	 is	 compromised	 by	 poor	 gene	 transfer	 and	 inadequate	 subsequent	 T	 cell	

expansion	and	survival.	My	methods	are	derived	from	collaborations	with	the	Sadelain	

laboratory	 at	 MSKCC,	 and	 I	 have	 optimized	 their	 methods	 to	 demonstrate	 rapid	

expansion	 of	 mouse	 T	 cells	 in	 culture	 using	 CD3/CD28	 beads	 and	 mIL2	 (145).	

Troubleshooting	experiments	particularly	identified	efficient	transduction	depends	on	

concentrated	viral	 supernatant	produced	using	appropriate	ecotropic	packaging	 cells	

of	 low	 passage.	 In	 vitro	 experiments	 in	 Chapter	 6	 demonstrate	 the	 reduced	

cytotoxicity	of	the	CD19-41BB	compared	to	CD19-CD28	CAR	T	cells.	When	using	these	

CAR	T	cells	in	an	in	vivo	model	in	Chapter	7,	CD19-41BB	CAR	T	cells	do	not	engraft	and	

expand	 in	the	PB,	or	show	efficacy	 like	CD19-CD28	CAR	T	cells.	A	major	difference	 in	

the	 construction	 between	 the	 two	 plasmids	 used	 is	 that	 CD19-41BB	 also	 has	 GFP,	

which	CD19-CD28	does	not,	which	may	have	relevance	for	the	rejection	of	these	CAR	T	

cells.	 Certainly,	 this	 does	 not	 extrapolate	 to	 clinical	 practice	 in	 patients,	 where	 the	

most	 significant	 reported	 studies	 in	CLL	use	CD19-41BB	based	CAR	T	 cells	 (160,	161,	
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289).	Recently	there	has	been	more	limited	evidence	for	efficacy	of	CD19-CD28	CAR	T	

cell	in	CLL,	although	again	low	CR	rates	of	25%	were	demonstrated,	but	those	patients	

achieving	 a	 CR	 had	 durable	 responses	 (290).	 Other	 reports	 have	 suggested	 the	

persistence	of	CD19-CD28	CAR	T	cells	to	be	around	30	days	(168,	291),	 in	contrast	to	

the	 sustained	 detection	 of	 CD19-41BB	 CAR	 T	 cells	 over	 4	 years	 after	 infusion	 (160).	

CD28	 results	 in	 a	more	 rapid	expansion	of	CAR	T	 cells	 and	potentially	 faster	 tumour	

elimination	in	preclinical	modelling	(292).	There	is	evidence	CD19-41BB	in	certain	CAR	

T	 cells	 ameliorates	 exhaustion	 (132),	 which	 presumably	 in	 CLL	 would	 be	 beneficial.	

Whether	 the	 limited	 engraftment	 of	 CD19-41BB	 I	 have	 seen	 is	 a	 species	 effect	 is	

unclear.	Different	co-stimulatory	domains	regulate	specific	metabolism	pathways	and	

impacts	 memory	 development	 in	 CAR	 T	 cells	 in	 vitro,	 with	 CD19-41BB	 leading	 to	

increased	 memory	 differentiation	 of	 CD8+	 T	 cells	 and	 inducing	 mitochondrial	

biogenesis	 (177).	 CLL	 CD8+	 T	 cells	 have	 reduced	 intracellular	 glucose	 transporter	 1	

(GLUT1)	 reserves,	 and	 have	 an	 altered	 mitochondrial	 metabolic	 profile	 resulting	 in	

impaired	mitochondrial	biogenesis	upon	stimulation	(293).	In	a	recent	analysis	of	CD8+	

CD19	CAR	T	cells	prior	to	infusion	in	CLL	patients,	it	was	found	that	in	patients	with	a	

subsequent	CR,	the	infused	CAR	T	cells	have	increased	mitochondrial	mass,	compared	

to	non-responders,	which	positively	correlated	with	expansion	and	persistence	of	CAR	

T	 cells	 (294).	 Further,	 those	 patients	 with	 high	 mitochondrial	 mass	 correlated	 with	

CD27+	 T	 cells	 that	 were	 negative	 for	 PD-1,	 TIM3	 and	 LAG3	 (294).	 Boosting	

mitochondrial	 biogenesis	 may	 therefore	 improve	 the	 efficacy	 of	 CAR	 T	 cells	 in	 CLL.	

Because	production	of	CAR	T	cells	requires	both	transduction	of	a	CAR	construct	and	

ex	vivo	expansion,	strategies	could	be	designed	as	part	of	these	processes	to	optimize	

metabolics	to	enhance	CAR	response.		

	

Relatively,	there	remains	a	very	small	number	of	patients	treated	with	these	therapies	

and	the	reversal	of	the	underlying	T	cell	defects	remains	a	promising	strategy	to	help	

CAR	 T	 cells	 fulfil	 their	 potential	 in	 CLL.	 In	 Chapter	 8,	 we	 see	 in	 a	 large	 in-vivo	

experiment	where	 the	key	 variable	 is	 the	T	 cell	 source;	mice	given	 the	 same	pooled	

leukaemia	both	initially	fully	respond	to	normal	and	CLL	T	cell	derived	CAR	T	cells,	but	

mice	treated	with	CLL	T	cell	derived	CAR	T	cells	slowly	relapse	whereas	mice	treated	

with	WT	T	cell	derived	CAR	T	cells	do	not.	This	is	an	exciting	observation,	as	it	focuses	
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the	need	for	future	research	into	optimizing	T	cell	function	prior	to	leukapheresis	and	

researching	 strategies	 which	 can	 improve	 T	 cell	 function.	 This	 could	 be	 done	 in	 a	

number	of	ways.	CLL	clearly	impacts	T	cell	subsets	in	both	humans	and	mouse	models	

and	 progressive	 disease	 results	 in	 increased	 expression	 of	 exhaustion	markers	 on	 T	

cells	 and	 a	 shift	 to	 a	more	 terminally	 differentiated	 effector	 phenotype	with	 loss	 of	

naïve	T	cells	(94,	118).	This	may	be	significant	when	deriving	CAR	T	cells	from	such	an	

autologous	T	cell	source.	Since	the	source	of	CLL	T	cells	in	this	model	is	CLL	by	adoptive	

transfer,	 it	 demonstrates	 that	 normal	 T	 cells	 only	 need	 exposure	 to	 CLL	 for	 a	 short	

period	 of	 time	 in	 vivo,	 in	 this	 case	 around	 6	 weeks,	 to	 significantly	 impair	 T	 cells	

enough	 to	 result	 in	 impaired	CAR	T	 cell	 function.	This	 is	 fascinating,	 and	emphasizes	

that	 it	 is	 the	effect	of	the	CLL	on	the	T	cells	 itself	 that	 is	 important,	and	perhaps	not	

previous	 lymphocyte	 targeted	chemotherapy	such	as	 the	use	of	 fludarabine	which	 is	

often	sited	as	an	iatrogenic	reason	for	impaired	T	cell	function	in	CLL.	The	experiment	

also	removes	the	confounding	factor	of	age,	as	both	normal	T	cells	and	CLL	T	cells	are	

derived	from	the	same	aged	matched	litters,	with	the	T	cells	of	leukaemic	mice	being	

harvested	around	6	weeks	after	AT.		

	

In	Chapter	8	the	addition	of	the	PD-L1	antibody	did	not	impact	on	the	relapse	rate	for	

mice	 receiving	 CAR	 T	 cells	 derived	 from	 CLL	 T	 cells.	 Further,	 as	 a	 treatment	 alone	

following	engraftment	of	CLL	it	did	not	have	activity,	which	at	first	appearance	seems	

in	conflict	 to	previous	reports	 from	our	group	(96).	However,	 this	study	showed	that	

the	same	PD-L1	antibody	prevents	engraftment	of	CLL	by	AT	in	this	model,	so	it	should	

not	 be	 surprising	 that	 the	 kinetics	 of	 the	 disease	 preventing	 engraftment	 and	 its	

susceptibility	to	checkpoint	inhibition	differs	from	established	and	rapidly	progressing	

disease.	This	model	 is	 ideal	 to	study	CAR	plus	novel	 immunotherapeutic	approaches,	

and	further	work	would	combine	CLL	T	cell	derived	CD19	CAR	T	cells	with	alternative	or	

perhaps	 combinations	 of	 drugs	 including	 checkpoint	 inhibition.	 There	 are	 many	

alternative	commercially	available	murine	PD-1	 inhibitors	which	could	be	tried	either	

concurrently	or	as	pre-treatment	to	optimize	leukapheresis	product	by	helping	reverse	

the	exhausted	T	cell	phenotype.		
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An	 alternative	 strategy	 to	 improve	 CAR	 T	 cell	 function	 is	 to	 use	 the	 off-target	 T	 cell	

effects	of	BTK	inhibitors	to	optimize	T	cell	function	or	subsets,	even	in	the	context	of	a	

patient	 that	has	disease	progression	on	 ibrutinib.	Given	most	patients	with	CLL	have	

failed	ibrutinib	this	also	may	be	an	exciting	new	indication	for	acalabrutinib.	In	Chapter	

9	I	describe	a	complex	two-part	experiment	where	mice	are	treated	with	ibrutinib	and	

acalabrutinib	 as	 pre-treatment	 to	 optimize	 T	 cell	 phenotype	 and	 perhaps	 T	 cell	

function	as	a	source	of	cells	for	CAR	T	cell	manufacture.	As	the	second	part	has	been	

designed	as	a	long-term	relapse	study	it	is	not	yet	complete	and	the	full	efficacy	data	is	

not	 yet	 available.	 Future	 work	 will	 include	 detailed	 assessment	 of	 the	

microenvironment	 in	mice	treated	with	CAR	T	cells	derived	from	mice	with	BTKi	pre-

treatment.	 In	xenograft	models	of	ALL,	 identifying	subsets	of	T	cells	 for	manufacture	

confers	superior	efficacy,	and	it	seems	clear	that	both	CD4+	and	CD8+	CAR	T	cells	are	

required	(208).	In	the	AT	TCL1	model	increasing	CLL	leads	to	a	relative	increase	in	CD8+	

T	 cells	 (96),	 which	 is	 exaggerated	 when	 these	 T	 cells	 are	 enriched,	 activated	 and	

transduced	 to	 become	 CAR	 T	 cells.	 I	 have	 repeatedly	 demonstrated	 that	 when	 an	

optimized	CAR	manufacturing	process	 is	 applied	 to	both	CLL	 and	normal	 T	 cells,	 CLL	

CAR	 T	 cells	 skew	 to	 CD8	 with	 lower	 transduction	 efficiencies	 and	 less	 ex	 vivo	

expansion.	The	proliferative	capacity	of	T	cells	correlate	with	the	anti-tumour	activity	

of	CAR	T	cells	in	CLL	(206),	and	in	this	this	experiment	both	ibrutinib	and	acalabrutinib	

pre-treatment	 restores	 ex	 vivo	 expansion	 compared	 to	 WT	 T	 cells.	 This	 may	 be	

important	because	CAR	manufacture	of	CLL	T	cells	 is	 leading	to	a	subset	ratio	that	 is	

less	 favourable	 for	CAR	T	 cell	 efficacy.	 This	 illustrates	 the	 importance	of	 taking	even	

established	 therapies	 back	 to	 preclinical	 modelling.	 Future	 work	 with	 this	 model	

should	include	a	CAR	T	cell	subset	titration	experiment,	where	different	proportions	of	

CD4	and	CD8	CAR	T	cells	are	combined	to	treat	AT	TCL1	to	see	if	increased	efficacy	can	

be	demonstrated	in	a	particular	combination	or	ratio.	To	a	degree	this	is	already	been	

explored	with	the	clinical	use	of	Liso-cel	in	the	TRANSCEND	studies,	which	use	a	CD19-

41BB	CAR	in	a	1:1	ratio	of	CD4:	CD8	CAR	T	cells,	with	good	preliminary	efficacy	results	

demonstrated	in	CLL	(289).		
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In	Chapters	7-9,	when	looking	at	the	dynamics	of	CAR	expansion,	peak	CAR+	T	cells	in	

the	 PB	 were	 always	 seen	 at	 D+7.	 Progressions	 were	 always	 CD19+,	 and	 mice	 with	

ongoing	responses	maintained	their	loss	of	normal	CD19+	B	cells.	Going	forwards,	the	

type	 of	 progression	 in	 terms	 of	 CD19	 detection	 is	 important	 for	 researching	 the	

implications	of	that	progression.	Mechanistic	studies	of	relapsed	tumours	negative	for	

CD19	after	CAR	T	cells	describe	alternatively	spliced	isoforms	lacking	exons	critical	for	

CAR	binding,	 including	loss	of	epitopes	recognized	by	the	CAR	or	proteins	 involved	in	

surface	 expression	 (295).	 In	 the	 pivotal	 CD19-41BB	 ELIANA	 study,	 15	 of	 16	 patients	

who	 progressed	 had	 ALL	 that	 lacked	 CD19	 (184).	 Efforts	 in	 paediatric	 ALL	 have	

therefore	been	focused	particularly	on	CAR	design,	for	example	bispecific	CAR	T	cells,	

combining	either	CD22	or	CD20	recognizing	antibodies	to	the	scFv	of	established	CAR	T	

cells.	Many	more	adult	patients	with	NHL	have	now	been	treated	with	licensed	CD19	

CAR	T	cells	due	 to	how	much	more	common	this	disease	 is	and	preliminary	abstract	

data	from	the	ZUMA-1	study	indicated	of	those	patients	which	had	relapsed	biopsies	

67%	 were	 CD19+	 and	 33%	 CD19-	 (189,	 190).	 In	 my	 current	 role	 at	 King’s	 College	

Hospital	our	own	cohort	of	32	lymphoma	patients	treated	with	CD19	CAR	T	cells,	5	out	

of	6	patients	with	progression	have	been	proven	 to	be	CD19+.	This	 implies	 failure	of	

CAR	 T	 cells	 to	 overcome	 the	 immunosuppressive	 microenvironment	 and	 future	

research	should	focus	on	how	to	overcome	this.	Phase	1	clinical	trials	combining	CAR	T	

cells	with	checkpoint	 inhibitors	are	already	underway	 in	 the	USA.	Future	exploratory	

work	 to	 study	 the	 phosphoproteomics	 of	 both	 enriched	 T	 cells	 collected	 at	

leukapheresis	prior	to	transduction	and	CAR	T	cells	themselves	could	identify	relevant	

tyrosine	 kinases	 that	 may	 represent	 potential	 drug	 targets	 to	 enhance	 CAR	 T	 cell	

function.		

	

There	 are	 of	 course	 limitations	 to	 these	 findings.	 The	 TCL1	 mouse	 model	 is	 well	

established	in	the	field	of	CLL	research,	particularly	to	model	the	T	cell	defects,	on	both	

a	 genetic	 and	 functional	 level	 (89).	 Given	 the	 long	 disease	 latency	 of	 the	 transgenic	

model,	and	that	our	group	has	fully	characterized	AT	of	TCL1	leukaemia	into	WT	mice	

(118),	AT	TCL1	represents	an	extremely	flexible	and	useful	model	 in	the	investigation	

of	potential	therapeutic	 interventions	in	CLL.	However,	 it	may	not	fully	represent	the	

genetic	complexity	of	CLL.	TCL1	is	highly	expressed	in	U-CLL	and	this	model	resembles	



	

197	

an	aggressive	form	of	human	U-CLL	which	has	wild	type	p53	(112).	Therefore,	this	may	

mean	 the	 TCL1	 model	 cannot	 be	 used	 to	 investigate	 p53	 resistance.	 Clearly,	 TP53	

mutations	are	clinically	significant	and	are	likely	to	be	over-represented	in	CLL	patients	

who	need	CAR	T	cells,	for	example	in	the	phase	I/II	TRANSCEND	of	Liso-cel	in	relapsed	

refractory	CLL,	60.9%	of	patients	have	a	TP53	mutation	(289).	

	

Further,	it	 is	already	known	that	CLL	is	a	two-compartment	disease	in	which	CLL	cells	

are	trafficked	between	peripheral	vasculature	and	lymphoid	tissues.	Gene	expression	

profiling	 studies	of	CLL	 in	different	 compartments	 identified	 the	 lymph	nodes	as	 the	

predominant	site	of	CLL	activation	and	proliferation	(109).	In	this	model,	all	CAR	T	cells	

are	derived	from	enriched	spleen	single	cell	suspensions,	not	the	peripheral	blood	as	

would	be	the	case	in	patients.	There	are	known	phenotypic	and	functional	differences	

between	 T	 cells	 in	 these	 different	 compartments	 (110)	 and	 this	may	 be	 reflected	 in	

CAR	T	cell	 function.	Also,	 the	cell	dose	given	 to	 the	mice	 is	 relatively	very	 large.	The	

licensed	cell	dose	of	axi-cel	 is	1-2	x106/kg	CAR+	 cells.	 Since	a	mouse	 typically	weighs	

around	25g,	and	the	mice	in	these	experiments	have	typically	been	given	1-2	x106	CAR+	

cells,	 this	would	be	equivalent	to	40x106	CAR+	T	cells.	The	significance	of	cell	dose	 in	

clinical	practice	is	not	yet	clear	although	it	does	seem	that	in	the	CLL	CAR	T	cell	studies	

much	 higher	 cell	 doses	 are	 required	 than	 in	 lymphoma.	 This	 could	 also	 be	 further	

investigated	using	this	model.		

	

Whilst	the	acquired	T	cell	dysfunction	that	progresses	with	CLL	 is	well	described,	 it	 is	

unknown	 if	 the	 same	 T	 cell	 defects	 lead	 to	 the	 reduced	 efficacy	 seen	 in	 autologous	

CD19	 CAR	 T	 cells	 in	 CLL.	 Specific	 T	 cell	 abnormalities	 include	 the	 impaired	

immunological	 synapse	 (88)	 and	 pseudo-exhausted	 T	 cell	 phenotype	 with	 impaired	

proliferation	and	cytotoxicity	 in	CD8+	CLL	T	cells	 (94).	Genetic	and	 functional	defects	

can	be	acquired	by	co-culture	of	previously	healthy	T	cells	with	CLL	cells,	implicating	a	

directly	 immunosuppressive	effect	by	 leukaemic	B	cells	 (87,	88).	This	 is	supported	by	

these	in	vivo	experiments,	as	the	‘co-culture’	of	healthy	T	cells	within	WT	mice	become	

functionally	impaired	after	the	AT	of	TCL1	after	as	little	as	6	weeks	in	terms	of	CAR	T	

cell	 efficacy.	 In	 the	 future,	 a	 solution	 for	 avoiding	 the	 T	 cell	 dysfunction	 inherent	 in	

using	autologous	T	cells	from	CLL	patients	could	come	from	using	alternative	effector	
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cell	 sources.	Allogeneic	CD19	CAR	T	cell	 studies	are	 in	 their	 infancy,	one	of	 the	most	

significant	 having	 reported	 at	 ASH	 in	 2018	 (246).	 Such	 cells	 require	 two	 genetic	

manipulations,	firstly	a	lentiviral	transduction	of	CD19-41BB	into	healthy	donor	T	cells	

followed	 by	 TALEN	 disruption	 of	 TRAC	 and	 CD52.	Whilst	 such	 cells	 show	 efficacy	 in	

relapsed	 adult	 ALL,	 they	 are	 also	 very	 myelosuppresive	 and	 require	 the	 use	 of	

alemtuzumab	 for	 engraftment,	 which	 brings	 other	 clinical	 challenges	 such	 as	 viral	

reactivations	and	 the	need	 for	 rescue	HSCT	 in	 some	patients.	An	exciting	alternative	

which	avoids	the	use	of	alemtuzumab	is	the	development	of	CAR	NK	cells	derived	from	

lentivirally	transduced	cord	blood	NK	cells.	The	MDACC	has	open	a	phase	1	study	for	

patients	with	relapsed	or	 refractory	CD19+	 lymphoid	malignancies,	demonstrating	CR	

in	 6	 out	 of	 9	 patients,	 5	 of	 whom	 had	 CLL	 or	 Richter’s	 transformation	 (Rezvani,	

Personal	Communication).		

	

With	 two	 licensed	CD19	CAR	T	cells	 covering	DLBCL,	 tFL,	PMBCL	and	ALL,	with	more	

indications	 likely	 to	be	approved	 soon	 such	as	 for	mantle	 cell	 lymphoma,	 the	use	of	

this	 form	 of	 cellular	 therapy	 is	 now	 fully	 embedded	 in	 the	 repertoire	 of	 treatments	

available	for	 lymphoid	malignancies.	 In	 lymphoma,	CAR	T	cells	have	been	used	safely	

as	part	of	consolidation	D+2-3	post	BEAM	autologous	stem	cell	 transplant	 (296).	The	

CD19	 CAR	 most	 likely	 to	 be	 approved	 first	 for	 CLL	 is	 Liso-cel,	 which	 targets	 CD19	

FMC63	as	per	the	other	two	licensed	products	but	uses	a	specific	1:1	CD4:	CD8	ratio	of	

CAR+	T	cells.	Combining	CD19	CAR	T	cells	with	ibrutinib	for	either	pre-treatment	prior	

to	 leukapheresis	 or	 concurrently	 post	 infusion	 improves	 clinical	 responses,	 albeit	 in	

small	 numbers	 of	 patients	 treated	 (288,	 289).	 The	 field	 is	moving	 incredibly	 quickly,	

with	 advances	 in	 CAR	 design	 such	 as	 novel	 antigens,	 bispecific	 targeting	 and	

augmentation	of	the	 immune	activating	potential	using	CAR	designs	that	combat	the	

immunosuppressive	 microenvironment	 by	 secretion	 of	 cytokines	 or	 checkpoint	

blocking	moieties.	 Alternative	methods	 for	 gene	 editing	 such	 as	 CRISPR/Cas9	 allows	

the	CAR	transgene	to	be	targeted	at	a	specific	genetic	locus,	potentially	could	increase	

efficacy	 and	 reduce	 the	 risk	 of	mutagenesis	 (297).	 This	 technology	 could	 also	 allow	

unwanted	 genes	 to	 be	 removed,	 such	 as	 inhibitory	 signals.	 Safety	 remains	 a	 key	

concern,	 as	 most	 CAR	 studies	 demonstrate	 significant	 CRS	 and	 ICANS	 with	 deaths	

reported	 from	CAR	 related	 complications	 such	 as	HLH	and	 cerebral	 oedema.	 Suicide	
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switches	have	been	incorporated	into	some	novel	CAR	designs.	Recently,	the	tyrosine	

kinase	dasatinib	has	been	shown	to	switch	off	phosphorylation	in	vitro	and	activity	in	

xenografts	using	both	CD19-CD28	and	41BB	(298).	They	also	demonstrated	it	could	be	

used	as	an	emergency	drug	to	reduce	mortality	from	CRS	in	a	xenograft	model	of	CRS,	

reducing	mice	mortality	and	cytokines	typical	of	CRS	such	as	IL6,	IFNγ,	IL2,	GM-CSF	and	

TNFα.	This	is	an	important	finding	because	the	use	of	safety	switches	in	CAR	design	is	

likely	 permanent,	 whereas	 the	 effect	 of	 dasatinib	was	 temporary	 and	 reversible,	 so	

could	 be	 used	 as	 a	 bridge	 during	 serious	 neurotoxicity	 for	 example	 without	

compromising	the	long	term	efficacy.		

	

In	 CLL	 there	 is	 now	 certainly	 financial	 toxicity.	 Novel	 agents	 such	 as	 ibrutinib	 and	

venetoclax	 induce	high	response	rates	and	are	generally	well	tolerated,	but	their	use	

as	monotherapeutic	agents	are	not	curative.	As	a	consequence,	continuous	therapy	is	

required,	 leading	 to	 long-term	 remissions,	 but	 also	 high	 cost,	 toxicity,	 long-term	

compliance	 issues	and	increased	risk	of	resistance.	 Indeed,	for	both	drugs,	resistance	

mechanisms	have	been	described	that	lead	to	the	bypass	of	the	actions	of	these	drugs	

(58,	 285).	 Therefore,	 there	 is	 still	 scope	 for	 the	 use	 of	 CAR	 T	 cells	 in	 CLL,	 and	 the	

financial	 toxicity	of	the	 long-term	treatment	with	expensive	drugs,	could	be	replaced	

by	the	use	of	a	once	only	therapy	like	CAR	T	cells	earlier	in	treatment	algorithms.	This	

would	also	potentially	have	 the	advantage	of	using	autologous	T	cells	which	are	 less	

impaired.	 Further,	 an	 alternative	 strategy	 would	 be	 to	 offer	 patients	 with	 high	 risk	

genetic	disease	collection	of	their	PBMC	after	responding	to	ibrutinib,	at	a	time	point	

when	they	are	not	heavily	pre-treated	and	also	likely	to	have	optimized	quality	of	T	cell	

function.		

	

There	 remain	 many	 areas	 of	 need.	 For	 example,	 in	 lymphoma	 there	 are	 now	 two	

licensed	products	that	are	being	used	in	the	NHS,	broadly	 in	 line	with	the	major	trial	

criteria,	but	many	potentially	suitable	patients	fall	out	with	the	eligibility	criteria	due	to	

the	 specific	 nature	 of	 the	 way	 these	 licensing	 studies	 were	 designed.	 One	 group	 is	

patients	with	primary	and	secondary	CNS	lymphoma,	an	area	of	huge	clinical	need	but	

who	 were	 ineligible	 for	 prior	 studies	 due	 to	 concerns	 about	 potentially	 fatal	

neurotoxicity.	Until	 recently,	only	one	case	report	has	been	published	demonstrating	
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the	efficacy	of	CD19	CAR	T	 cell	 directed	 therapy	 in	a	patient	with	 simultaneous	CNS	

and	 systemic	 involvement	 (299).	 This	 year,	 a	 case	 series	 of	 8	 patients	was	 reported	

with	 early	 response	 assessments	 demonstrating	 activity	 within	 the	 CNS	 (300).	 The	

kinetics	 of	 responses	 were	 similar	 to	 those	 of	 systemic	 disease	 and	 high	 rates	 of	

neurotoxicity	 were	 not	 seen,	 suggesting	 CNS	 disease	 is	 not	 a	 risk	 factor	 for	

neurotoxicity.	 This	 is	 in	 line	 with	 recent	 reports	 suggesting	 CAR	 T	 cell	 mediated	

neurotoxicity	is	a	CNS	manifestation	of	an	otherwise	systemic	inflammatory	response	

involving	blood	brain	barrier	breakdown,	endothelial	and	macrophage	activation	(280,	

301).	 To	 reduce	 the	 anxiety	 of	 using	 cellular	 therapy	 for	 CNS	 disease	 has	 important	

implications	for	CAR	T	cells	across	oncology,	because	clearly	many	cancers	invade	the	

CNS,	particularly	in	their	end	stage	when	patients	are	most	in	need	of	clinical	trials.	HIV	

is	 often	 an	 exclusion	 criterion	 for	 cellular	 therapy	 studies,	 but	 particularly	 with	

lymphoma	given	the	increased	incidence	in	this	patient	group,	there	is	a	real	need	for	

expansion	of	this	treatment	modality	to	this	group	of	patients.		

	

This	type	of	cellular	therapy	as	a	platform	in	oncology	has	now	arrived	and	is	rapidly	

expanding.	The	momentum	that	has	been	generated	behind	CD19	CAR	T	cells	is	likely	

to	 accelerate	 to	 the	 translation	 of	 engineered	 cell	 therapies	 for	 not	 only	 blood	 and	

lymph	 node	 cancers	 but	 across	 solid	 tumour	 oncology	 and	 indeed	 in	 many	 other	

conditions	of	inflammatory,	autoimmune	and	infective	causes.	The	microenvironment	

is	 a	 challenge	 for	 the	 application	 of	 CAR	 T	 cells	 in	 solid	 tumours,	 which	 could	 be	

overcome	 using	 amphiphile	 ligands,	 when	 injected	 they	 traffic	 to	 lymph	 nodes	 and	

decorate	 the	 surface	 of	 antigen	 presenting	 cells,	 priming	 CAR	 T	 cells	 in	 the	 native	

lymph	node	microenvironment	(302).	Once	these	challenges	of	the	microenvironment	

are	overcome	the	opportunities	for	this	cellular	therapy	in	CLL	are	very	broad.		
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10.2	 Summary	

	

The	central	hypothesis	investigated	in	this	thesis	states	the	inefficiencies	of	CAR	T	cells	

in	CLL	are	due	to	defects	 in	T	cell	 function.	Whilst	the	TCL1	CLL	mouse	model	 is	well	

established	 in	 the	 investigation	 of	 the	 CLL	microenvironment,	 its	 use	 as	 a	 source	 of	

syngeneic	T	cells	to	model	CAR	T	cell	function	is	novel.	I	have	described	an	optimized	

method	for	making	retrovirally	transduced	murine	CD19	CAR	T	cells	from	both	normal	

and	CLL	T	 cells,	which	 can	be	expanded	ex	vivo	 for	downstream	experiments.	When	

applying	 this	 identical	manufacturing	 process	 to	 both	WT	 and	 CLL	 T	 cells,	 the	 latter	

exhibit	reduced	transduction	efficiency	and	poorer	ex	vivo	expansion.	The	CAR	T	cells	

that	 are	 made	 from	 CLL	 or	 normal	 T	 cells,	 exhibit	 markedly	 different	 phenotypes.	

Activation	during	ex	vivo	expansion	skews	most	transduced	T	cells	 to	CD8,	but	much	

more	markedly	so	for	CLL	T	cells,	with	a	more	marked	loss	of	naive	T	cells.	CLL	T	cells	

can	be	either	primary	transgenic	TCL1	CLL	T	cells,	or	CLL	T	cell	after	AT	of	CLL,	the	latter	

demonstrating	improved	ex	vivo	expansion	and	viability	making	them	a	more	feasible	

cell	 source	 for	 in	 vivo	 experiments.	 I	 have	 demonstrated	 AT	 of	 TCL1	 CLL	 into	

immunocompetent	mice	is	a	viable	model	in	which	to	study	in	vivo	CAR	T	function	and	

the	host	 immune	response.	Syngeneic	CD19-CD28	CAR	T	cells	engraft	 in	B6	WT	mice	

when	derived	from	both	CLL	and	normal	T	cells,	inducing	both	CAR+	T	cell	expansion	in	

the	PB	of	mice	and	also	B	cell	aplasia.	However,	mice	treated	with	CLL	derived	CAR	T	

cells	were	 liable	to	relapse	with	CD19+	disease,	and	the	addition	of	a	PD-L1	antibody	

did	 not	 improve	 this.	 Ongoing	 B	 cell	 aplasia	 seems	 necessary	 for	 an	 ongoing	 CAR	

response,	 although	 CAR	 T	 cells	 in	 the	 PB	 are	 generally	 undetectable	 after	 only	 two	

weeks	 even	 with	 an	 ongoing	 response.	 Low	 level	 MRD	 relapse	 detected	 by	 flow	

cytometry	 always	 resulted	 in	 florid	 relapse,	 which	 are	 useful	 observations	 in	 the	

clinical	management	of	patients	with	CLL	post	CAR	T	cells.		

	

There	are	limitations	to	the	interpretations	of	these	data.	The	CD19-41BB	CAR	showed	

some	activity	 in	vitro	but	no	real	activity	 in	vivo,	whilst	the	CD19-CD28	showed	good	

efficacy.	This	 is	contrary	to	the	clinical	experience	using	CD19	CAR	T	cells	 in	patients,	

where	most	 trials	 opt	 for	 the	 persistent	 CD19-41BB	 CAR.	Whilst	 both	 CAR	 plasmids	

have	the	same	single	chain	variable	 fragment,	 the	difference	 in	performance	 is	 likely	
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related	to	the	promoter	and	therefore	the	difference	in	in	vivo	activity	demonstrated	

in	this	model	between	CD19-CD28	and	CD19-41BB	is	not	clinically	relevant.		

	

Whilst	 I	 made	 every	 effort	 to	 remove	 confounding	 variables	 from	 the	 in	 vivo	

experiments	they	still	exist.	For	example,	between	groups	I	matched	cell	dose	for	the	

number	of	CAR+	T	cells,	but	the	differences	I	have	described	in	transduction	efficiency	

and	subsets	after	ex	vivo	expansion	means	this	inevitably	results	in	differences	in	CAR+	

phenotype	 between	 groups	 within	 the	 same	 experiment.	 Lower	 transduction	

efficiency	in	CAR	T	cells	derived	from	CLL	T	cells	means	more	CAR-	T	cells	are	injected,	

the	 effect	 of	 which	 is	 unknown.	 Differences	 in	 PD-1	 expression	 determined	 by	 flow	

cytometry,	must	be	taken	 in	a	wider	context	using	other	 techniques,	 to	determine	 if	

they	represent	activation	or	exhaustion.	Increased	cytokine	testing	of	PB	samples	after	

CAR	 T	 cell	 injection	 to	 characterise	 exhaustion	 would	 be	 particularly	 useful	 in	 this	

regard.		

	

Future	work	 can	be	multifaceted,	my	main	 focus	would	be	 to	maintain	 the	broad	 in	

vivo	experimental	design,	but	many	other	variables	could	be	explored.	Optimisation	of	

ex	vivo	expansion,	using	novel	methods	of	activating	and	expanding	T	 cells	 could	be	

investigated,	for	example	using	other	cytokines	or	target	cells	which	may	lead	to	less	T	

cell	exhaustion.	There	are	non	viral	methods	for	gene	transfer	such	as	electroporation	

and	more	novel	methods	of	gene	editing	such	as	CRISPR	and	base	editing	which	could	

be	investigated.	Rather	than	activating,	transducing	and	expanding	only	CD3+	enriched	

T	 cells,	 it	 would	 be	 possible	 to	 make	 CAR	 T	 cells	 of	 defined	 subset	 ratios,	 be	 that	

CD4/CD8	or	more	complex	subgroups	of	naïve,	effector	and	memory	T	cells.	This	could	

be	done	using	magnetic	kit	enrichment	or	cell	sorting	with	flow	cytometry.	Rather	than	

injecting	a	mixture	of	CAR+	and	CAR-	T	cells	which	is	the	same	as	what	is	done	using	the	

licensed	CD19	CAR	products,	CAR+	T	cells	could	be	enriched	at	the	end	of	manufacture	

and	 purified,	 to	 remove	 the	 unknown	 effect	 of	 CAR-	 T	 cells.	 Further	 work	 could	 be	

done	with	this	design	titrating	the	cell	dose	to	the	minimum	numbers	of	cells	required	

to	induce	remission.	This	would	be	a	useful	step	prior	to	another	aim	of	future	work,	

which	 would	 be	 to	 try	 alternative	 CAR	 and	 drug	 combinations.	 In	 subsequent	

experiments	 following	 completion	 of	 this	 thesis	 measuring	 plasma	 cytokines	 using	
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electrochemiluminescent	 sandwich	 immunoassay	have	been	 successful,	 and	 it	would	

be	 important	 to	 measure	 changes	 in	 cytokines	 and	 correlate	 with	 the	 exhausted	

phenotype	of	CAR	T	cells	 in	 the	PB	after	CAR	T	cell	 injection.	Whilst	CAR	T	cells	plus	

cytotoxic	 chemotherapy	 options	 are	 not	 a	 likely	way	 forward,	 there	 are	many	 small	

molecule	 or	 kinase	 inhibitors	 which	 could	 be	 investigated.	 Some	 drugs	 of	 interest	

include	 the	 concurrent	 administration	 of	 CAR	 T	 cells	 plus	 the	 BTKi	 rather	 than	 pre-

treatment	 using	 these	 drugs.	 Finally,	 drugs	 which	 have	 the	 potential	 to	 modify	 the	

cytokine	 profile	 post	 CAR	 T	 cell	 injection	 such	 as	 GM-CSF	 antibodies	 have	

demonstrated	 efficacy	 in	 an	 immunodeficient	 model	 of	 ALL	 (303)	 but	 would	 be	 of	

interest	in	this	immunocompetent	model.		

	

In	conclusion,	in	this	thesis	I	have	demonstrated	that	the	underlying	T	cell	dysfunction	

seen	in	CLL	is	important	for	CAR	T	cell	function	in	both	in	vitro	and	immunocompetent	

in	 vivo	 modelling.	 AT	 of	 TCL1	 CLL	 is	 an	 ideal	 model	 to	 study	 novel	 CAR	 plus	

immunotherapeutic	 strategies	 to	 improve	 CAR	 T	 cell	 function,	 which	 has	 broad	

relevance	to	improve	this	exciting	new	platform	of	immunotherapy.		

	

	

	 	



	

204	

11.		 Appendix	

	

Appendix	1	

	
MDA	CD19-1D3-28Z-mCherry	
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Appendix	2	

	
MSK	CD19-1D3-41BBmZ-GFP		

		
MSK	CD19-1D3-28z-GFP	
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Appendix	3	

	

	
NCI	MSGV-1D3-28Z-1.3mut		
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