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Abstract 

 

Extinction and reinstatement of morphine-induced conditioned place preference were 

studied in glutamate AMPA-receptor GluA1 subunit-deficient mice (global GluA1 KO mice). 

In line with previous findings, both acquisition and expression of conditioned place 

preference to morphine (20 mg/kg. s.c.) were fully functional in GluA1 KO mice as 

compared to wildtype littermate controls (GluA1 WT), therefore, enabling the study of 

extinction. With a 10-session extinction paradigm, the GluA1 KO mice exhibited complete 

extinction similar to that of the GluA1 WT mice. Morphine-induced reinstatement (10 mg/kg 

s.c.) was detected in both mouse lines. GluA1 KO mice moved more during all the phases 

of the experiment, including the place conditioning trials, extinction sessions, and place 

preference tests. The results suggest that GluA1 subunit may be dispensable or prone to 

compensation at the neural circuitries delineating extinction and reinstatement. The GluA1 

KO mice display altered long-term between-session habituation, which extends longer 

than previously anticipated. 
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Introduction 

Abused drugs promote adaptive neuroplastic changes in the brain, which are thought to 

account for their addictive properties such as withdrawal and relapse after extinction 

(Volkow and Morales, 2015). The reinstatement of drug use after a period of abstinence 

(relapse) is one of the core symptoms of addictive disorders, but its mechanisms remain 

incompletely understood. The drug-induced changes can resemble learning-like 

mechanisms, possibly bridging the initial drug responses over the abstinence period to 

finally become recruited when the drug is available again (Kelley, 2004).  

These kinds of long term adaptations may be mediated by the glutamatergic receptor 

system, which has been shown to be important in both learning and drug addiction (Kauer 

and Malenka, 2007). As the amino acid glutamate is the main excitatory neurotransmitter 

in the brain, especially the AMPA-type glutamate receptors readily undergo adaptive 

changes such as altered subunit composition of membrane-targeted receptors that 

promote an increase in synaptic strength (Korpi et al., 2015). 

GluA1 subunit of the AMPA receptors is one candidate substrate in mediating 

neuroplasticity (Henley and Wilkinson, 2016). Functionally, the expression levels of GluA1 

subunit can change in response to learning or administration of abused drugs, and this has 

been shown to relate to an increase in synaptic strength (Kopec et al., 2007; Kourrich et al. 

2015; Lee et al., 2003; Ungless et al., 2001). The GluA1 subunit-containing receptors are 

trafficked in postsynaptic membrane during long-term potentiation, a process in which 

phosphorylation of GluA1 subunit facilitates the adaptive changes (Hayashi et al., 2000; 

Lee et al., 2003; Terashima et al. 2017). 

Drug addiction-related neuroadaptation in reward processing is localized e.g. to the ventral 

tegmental area, in which morphine and cocaine exposure increases GluA1 subunit 

expression in dopamine (DA) neurons (Fitzgerald et al., 1996). Viral vector-mediated 

overexpression of GluA1 subunit in the VTA increases drug-induced locomotor 

sensitization and conditioned place preference (CPP), suggesting that the upregulation of 

GluA1 subunit may mediate the drug-induced synaptic strengthening in VTA DA neurons 

(Carlezon et al., 1997). In the central amygdala, a brain region important for establishment 

of conditioned effects, downregulation of GluA1 subunit decreases morphine-induced CPP 

(Cai et al., 2013). 

However, to extinquish and to reinstate associative learning provoked by a drug reward, 

brain areas other than VTA may play significant roles. This is of importance as synaptic 

strength enhancing neuroplastic processes of the VTA DA neurons are transient with a 

time period of few days (Argilli et al., 2008; Heikkinen et al., 2009), and thus cannot 

explain the mechanisms of relapses in drug use. As the expression spectrum of GluA1 

subunit covers many addiction-relevant areas such as the striatum, hippocampus, cerebral 

cortex and amygdala (Keinanen et al., 1990; Petralia and Wenthold, 1992), the study of 

the role of GluA1 is warranted in behaving animals. Therefore, we chose to use a mouse 

line globally lacking the GluA1 subunit (Zamanillo et al., 1999) to study morphine’s 

neuroadaptive responses. Specifically, the mice were tested for morphine-induced 
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locomotor sensitization, conditioned place preference (CPP), its extinction and morphine-

induced reinstatement.  
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Materials and Methods 

Ethics 

All experimental procedures were carried out with the approved permissions (ESAVI-

0010026/041003/2010 and ESAVI-2010-05600/Ym-23) and had ethical approval from the 

State Provincial Government of Southern Finland. All efforts were made to minimise the 

number and suffering of animals. 

Animals 

The gene gria1 encoding for glutamate AMPA-type receptor subunit GluA1 was inactivated 

to generate gria1−/− mouse line (KO) (Zamanillo et al., 1999). KO mouse line was 

backcrossed to C57BL/6J mouse line (Harlan BV., Horst, The Netherlands) at least for 10 

times prior to breeding of the animals for the experiments by heterozygous breeding. The 

KO and the gria1+/+ wildtype littermate controls (WT) were produced, and both sexes 

were used. They were genotyped using PCR from ear-tip biopsy samples as described 

(Zamanillo et al., 1999). The experimental animals were housed 2–6 animals to a cage 

from weaning until used at the age of 2.5 to 4 months. All animals were naïve to 

pharmacological and handling manipulations until the start of the experiments. The animal 

facility had lights on from 6 a.m. until 6 p.m., temperature set at 20±1°C and relative 

humidity at 50±1%. Water and standard rodent food pellets (Harlan) were available ad 

libitum. All experiments were performed during the light phase between 8 a.m. and 3 p.m., 

when the animals exhibited similar spontaneous locomotor activities (Procaccini et al. 

2011). 

 

Morphine injections 

Morphine hydrochloride (Yliopiston apteekki, Helsinki, Finland) was daily dissolved in 0.9% 

NaCl solution (saline) and injected subcutaneously in a volume of 10 ml/kg, unless 

otherwise stated. Control animals were injected with equal volume of saline. 

 

Conditioned place preference (CPP) paradigm 

Conditioning and place preference testing was performed in eight polycarbonate cages 

(45×22.5×15 cm; Tecniplast, Buguggiate, Italy) covered with transparent lids with 

ventilation holes. The cage floors were covered with either one of the two floor materials, 

which acted as conditioning stimuli: plastic floor consisting of 1.2-cm-wide flat bars 

separated by 0.5 cm from each other and metal floor of stainless steel wire mesh with 1-

mm holes. These materials were selected from several different materials in 15-min pre-

conditioning preference tests using a separate batch of naïve KO and WT mice, with the 

above-described floor materials inducing no preference for either of them in neither mouse 

line (data not shown). Locomotor activity (distance traveled in meters) and location of each 
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mouse in place preference test (time spent in the morphine-associated side) was 

determined by Ethovision 3.0 video tracking system (Noldus Information Technology BV., 

Wageningen, The Netherlands), based on video image analysis of the center-point of the 

mouse. Between the trials, all cages and floors were thoroughly washed with water and 

dried to remove the odors. 

In the conditioning phase, one 30-min trial was performed per day for a total of eight days, 

separated by a two-day break after the first 4 trials. Each day, a saline injection was paired 

with either plastic or metal floor for one group of the animals (CS− trial, conditioning 

stimulus with saline) and a 20-mg/kg morphine injection was paired with the plastic or 

metal floor for the other group of the animals (CS+ trial, conditioning stimulus with 

morphine). The next day, the animals that started with a CS- trial now underwent a CS+ 

trial, and vice versa. This procedure was continued until the eight conditioning trials were 

performed thus resulting in four CS+ and four CS- trials for every animal, half of the 

animals receiving morphine paired with plastic and the other half with metal. Immediately 

after the injections, the mice were placed into the cages for 30 min. 

The first place preference test was performed 24 h after the last conditioning trial. The 

cage floor was covered with both plastic and metal materials, thereby bisecting it into two 

distinct equally sized zones without any vertical borders in between them. Thus, during 

both the place preference test trial and conditioning trials the area of the arena was 

identical, i.e. the animals had access to the whole apparatus during all phases of the 

experiment. Spatial orientation of the materials was balanced for the test groups. The 

animals were injected with saline and placed in the center of the cage. Locomotor activity 

and location of the mouse were observed for 15 min. The results were presented as time 

spent in the metal floor zone, which indicated place preference if there was a significant 

positive difference between the times for mice paired with morphine and metal or plastic 

floors. 

The extinction phase followed the conditioning phase, so that one 30-min trial was 

performed each day and the different floor materials (CS+ or CS- trial) were used every 

other day. However, now both CS+ and CS- floor materials were paired with saline 

injections without any morphine injections. The extinction phase contained first five trials 

on consecutive days, followed by two days of rest in the home cages, five more 

consecutive days of extinction, two days of rest, two more extinction trials on consecutive 

days and then finally the day after the second place preference test (performed identically 

to the one after the conditioning phase). 

The reinstatement place preference test was performed one day after the extinction place 

preference test. The protocol remained the same except for the animals receiving a 

subcutaneous injection with 10 mg/kg morphine. 

 

Statistics 
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Data were analyzed with either two- or three-way ANOVA with repeated measures when 

applicable, followed by either post hoc Bonferroni test (more than two groups) or by 

independent samples unpaired t-test (two groups). Statistical analyses were performed by 

using the statistical software packages SPSS 20.0 for Windows (SPSS, Chicago, IL, USA) 

and the Prism 6.0 program (GraphPad Software). Statistical significance was set at 

p<0.05. Data are expressed as means ± standard errors of the mean (SEM). No significant 

sex effects or interactions were found in any of the statistical analyses, and thus the sexes 

were pooled for data shown in the figures. 

 

Results 

 

Locomotor activity during the conditioning trials 

Locomotor activity during the conditioning trials is depicted in Fig. 1A. Morphine produced 

an increase in locomotor activity in both WT and KO mice (drug effect, F1,80 = 128.88, p < 

0.001), and this effect increased over the conditioning trials in both genotypes suggesting 

that morphine-induced sensitization occurred (drug × trial interaction, F3,240 = 82.10, p < 

0.001). Separate analysis for saline trials revealed that throughout the CS- conditioning 

trials the KO mice moved more than WT mice (genotype effect, F1,40 = 34.83, p < 0.001), 

and that their habituation was stronger than that of WT mice (genotype × trial interaction, 

F3,120 = 2.95, p < 0.05). Due to differing locomotor activity in the saline trials between the 

genotypes, difference scores between each CS+ and corresponding CS- trials were 

calculated (Fig. 1B). Although KO mice displayed less morphine-induced activation 

compared to WT mice in the beginning of the conditioning phase (genotype × trial 

interaction, F3,120 = 3.42, p < 0.05), their locomotor activity was at equal level with the 

WT mice during the last two conditioning trials (Fig. 1B; WT vs. KO, p > 0.05, t-test). This 

suggests that morphine-induced psychomotor sensitization developed to the same degree 

in WT and KO mice. 

 

Place preference test 

After the conditioning trials, the place preference test was conducted (Fig. 2). Both 

genotypes displayed significant place preference (Fig. 2A; conditioning subgroup effect, 

F1,36 = 18.55, p < 0.001) equally (genotype × conditioning subgroup interaction, F1,36 = 

0.32, p > 0.05). The expression of place preference was evident throughout the 15-min 

place preference test trial as evidenced by a non-significant timebin × conditioning 

subgroup interaction (F2,72 = 0.06, p > 0.05) in an analysis of 5-min time-bins, also 

equally in both genotypes (timebin × conditioning subgroup × genotype interaction, F2,72 

= 1.10, p > 0.05). During the place preference test trial, the KO mice moved more than WT 

mice (Fig. 2B; genotype effect, F1,40 = 37.69, p < 0.001). 
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Extinction 

After the place preference test, ten consecutive extinction trials were performed. During 

these trials the locomotor activity of the KO mice was consistently above that of WT mice 

(Fig. 3; genotype effect, F1,40 = 22.73, p < 0.001). Extinction of the place preference was 

evidenced by the non-significant conditioning subgroup effect (Fig. 4A; F1,36 = 0.02, p > 

0.05) equally in both genotypes (genotype x conditioning subgroup interaction, F1,36 = 

1.05, p > 0.05). The mice showed extinquished place preference over the 15-min 

extinction test trial in an analysis of 5-min timebins (timebin × conditioning subgroup 

interaction, F2,72 = 0.31, p > 0.05; timebin × conditioning subgroup × genotype interaction, 

F2,72 = 0.73, p > 0.05). Locomotor activity during the extinction test trial was higher in the 

KO than WT mice (Fig. 4B; genotype effect, F1,40 = 14.00, p < 0.01). 

 

Drug-induced reinstatement 

After successful extinction, morphine-induced reinstatement was provoked in WT and KO 

mice by injecting 10 mg/kg morphine. Significant place preference was evident (Fig. 5A; 

conditioning subgroup effect, F1,36 = 10.19, p < 0.01) in both genotypes (genotype × 

conditioning subgroup interaction, F1,36 = 0.33, p > 0.05). Reinstated place preference 

was evident throughout the test trial (timebin × conditioning subgroup interaction F2,72 = 

0.24, p > 0.05) equally in both genotypes (timebin × conditioning subgroup x genotype 

interaction, F2,72 = 0.19, p > 0.05). During the reinstatement test trial, locomotor activity 

was equal between genotypes (Fig. 5B; genotype effect, F1,36 = 0.07, p > 0.05). 
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Discussion 

In the present study, we found that extinction from morphine-induced CPP as well as 

morphine-induced reinstatement were unchanged in the mouse line lacking the glutamate 

AMPA-type receptor subunit GluA1. As the used mouse model represents a global 

knockout, our study involved all brain areas relevant to extinction and reinstatement of 

opioid-induced CPP. Many of these areas contain high or moderate levels of GluA1 

subunits. Importantly, both WT and KO mice developed an equally strong morphine-

induced CPP in line with previous findings (Aitta-aho et al., 2012; Mead et al., 2005), thus 

enabling to study extinction and reinstatement and justifying direct comparisons.  

For the extinction of drug responding, our results contrast those with GluA1 deficiency 

directed in brain region-specific or cell type-specific manner, or those with detection of 

hippocampal GluA1 phosphorylation. First, rendering all DA neurons deficient of GluA1 

subunits by genetic targeting prevented extinction of cocaine-induced CPP (Engblom et 

al., 2008). Second, shRNA-mediated downregulation of GluA1 expression in the central 

amygdala slowed down extinction of morphine-induced CPP (Cai et al., 2013). These mice 

also developed CPP to a lesser extent as compared to the control mice, while normal CPP 

was found in the global KO mice (this study). Third, in the hippocampus, a brain region 

combining both the importance for the extinction processing as well as GluA1 subunit 

expression at the highest level, an increase in phosphorylation of GluA1 subunit during the 

extinction phase of CPP was detected (Billa et al., 2009). In our study with the global KO 

mice we observed normal extinction of morphine CPP despite the absence of hippocampal 

GluA1. In summary, comparison of these results with the current data suggests an 

existence of brain regions and neural circuitries in which endogenous GluA1 expression 

inhibits the extinction process. Previous data point toward this assumption, as an increase 

in GluA1 functioning has been linked to delayed extinction with the opioid antagonist 

naltrexone (Kibaly et al., 2016). More generally, some forms of learning are promoted 

despite the absence of GluA1 in the KO mice (Sanderson et al., 2009). 

To successfully achieve a comprehensive extinction of morphine-induced CPP we utilised 

an extended extinction phase in the current experiment. Our results raise an interesting 

question of possible different rates of the extinction development between the WT and KO 

mice. With a shorter extinction phase, it could be clarified whether the initial development 

of extinction is GluA1-dependent. 

There are no previous reports on reinstatement of drug-induced CPP in GluA1-deficient 

mice. Here a morphine-induced reinstatement of the CPP was evident in both WT and KO 

mice, showing no obligatory requirement for GluA1 subunit function in post-extinction 

relapse behavior. Normally occurring extinction in the KO mice facilitated the study on 

reinstatement of extinguished morphine CPP. Other data point toward the attenuation of 

cocaine seeking when GluA1 functionality in the nucleus accumbens is suppressed by 

limiting either its transcription (Ping et al., 2008), trafficking into the synapses (Anderson et 

al., 2008), action by an antagonist (White et al., 2016), or gating by inactive ‘pore-dead’ 

GluA1 subunits (White et al., 2016). Also oscillations at the neuronal circuitries may lead to 
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detrimental consequences on extinguished drug use. In support to that, reinstatement of 

cocaine seeking can be provoked by hippocampal theta oscillations (Vorel et al., 2001), a 

type of bursting activity driving plasticity that has been shown to be intact in GluA1-

deficient mice (Hoffman et al., 2002; Romberg et al., 2009). In the neurobiology of 

reinstatement, in addition to the AMPA receptor-related glutamatergic factors, there may 

also be other factors that are of importance (Bossert et al., 2013). There is evidence for 

AMPA/kainate-dependent glutamatergic function in prefrontal-amygdaloid and prefrontal-

accumbal circuitries (LaLumiere and Kalivas, 2008; Peters et al., 2008). Opioid-evoked 

reinstatement is dependent on the action of nucleus accumbens GluN2B subunit-

containing NMDA receptors (Ge et al., 2017) and in cocaine-evoked reinstatement, the 

importance of GluA2 (Schmidt et al., 2014; Wiggins et al., 2011) and metabotropic 

glutamate receptors mGluR2/3, mGluR5 and mGluR7 (Kupchik et al., 2012; Li et al., 2010; 

Mahler et al., 2014) have been indicated. 

As known for its pivotal role in conditioned drug responses, the amygdala also contains 

GluA1 subunits at a relatively high level (Keinanen et al., 1990; Petralia and Wenthold, 

1992). Because the GluA1-KO mouse model reproduces to some extent the appetitive 

learning deficits of the animals with basolateral amygdala lesions (Mead and Stephens, 

2003), it is interesting to note that the basolateral amygdala lesions lead to diminished 

drug seeking (Yun and Fields, 2003) while the GluA1-KO mice respond normally (this 

study). Another brain region with GluA1 subunit-containing receptors implicated in 

progression of drug addiction is the habenula (Petralia and Wenthold, 1992). In the 

habenula, cocaine administration increases cell membrane trafficking of GluA1 subunits 

equally to the well-studied mesolimbic circuitries, but with the behavioural consequence of 

provoking depressive symptoms as screened with forced swim and tail suspension tests 

(Meye et al., 2015). When these results are compared either with those detecting 

increased VTA GluA1 levels in response to abused drugs (Fitzgerald et al. 1996) or with 

those in which upregulation of VTA GluA1 levels sensitize mice to morphine (Carlezon et 

al. 1997), it can be noted that an increase in the GluA1 levels is not always linked to 

addiction-promoting effects. Although no conditioned place avoidance was detected in the 

study of Meye et al. (2015), these data raise a possibility that there are brain circuitries in 

which downregulation of GluA1 may promote the development of addictive cascades such 

as drug conditioning, inhibition of extinction, and blockade of reinstatement.  

The KO mice exhibited an absence of habituation of their exploratory activity in the non-

home-cage environment during all the phases of the current behavioral protocol including 

acquisition, expression, extinction, and reinstatement of the CPP. These findings extend 

the previously reported acute novelty-induced hyperlocomotion of the KO mice (Aitta-aho 

et al., 2012; Bannerman et al., 2004; Cowen et al., 2003; Maksimovic et al., 2014; 

Vekovischeva et al., 2004; Wiedholz et al., 2008). This contrasts the normal home cage 

activity of the KO mice (Procaccini et al., 2011; Wiedholz et al., 2008) suggesting a non-

compensating between-session habituation deficit. 

Together, the acquisition, expression, extinction and reinstatement of morphine-induced 

CPP are evident and of equal strength in mice deficient in the GluA1 subunit in 
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comparison to the littermate WT control mice. Thus, the global deficiency does not 

reproduce the behavioural effects in conditioned responses as seen by other cell-type or 

brain-region selective methods. When absent, the role of GluA1 function can be fully 

compensated by other, still to be identified, processes in relation to morphine-induced 

behaviors. One interesting neuroplasticity-related deficit in the GluA1-KO mice is the 

absence of persistently increased AMPA/NMDA receptor-mediated current ratios in the 

VTA dopamine neurons 24 h after a single dose of morphine (Aitta-aho et al., 2012), which 

should have affected the effects of morphine in the present study. However, missing 

neuroplasticity was largely due to already high AMPA/NMDA ratios in drug-naïve GluA1-

KO mice, suggesting compensation by other AMPA receptor subunits or by reduced 

NMDA currents. 

Here, we have studied extinction and reinstatement of morphine-induced CPP in AMPA 

receptor GluA1-subunit deficient mouse line. In addition to the widely studied drug reward 

pathways the use of this mouse line enables a global study of various drug memory-

relevant brain circuitries and brain regions harboring GluA1, such as the amygdala and 

hippocampus. Although GluA1-KO mice show extinguished morphine CPP followed by 

unmodified reinstatement, the current results provide novel GluA1-specific data on these 

behavioral phenomena.  
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Figure legends 

 

 

Fig. 1. Locomotor activity in conditioning trials in GluA1-WT (WT) and GluA1-KO 
(KO) mice. (A) Locomotor activity is depicted during each of the 30-min CS- (saline, Sal) 
and CS+ (morphine, Mor, 20 mg kg-1, s.c.) conditioning trials. Both WT and KO mice 
display morphine-induced sensitization. KO mice are hyperactive as shown in Sal-trials. 
Data are means ± SEM (n = 22). ***p < 0.001 Sal vs. Mor within the same genotype; ###p < 
0.001 WT vs. KO within saline trials; !!!p < 0.001 Sal vs. Mor in WT mice. (B) Difference in 
distance moved between CS- and corresponding CS+ trials [(CS+) - (CS-)]. These scores 
were derived from the data shown in Fig. 1A. Data are means ± SEM (n = 22 for each 
genotype). ***p < 0.001 1st vs. 4th trial for both genotypes; #p < 0.05, ###p < 0.001 WT vs. 
KO. 
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Fig. 2. The expression of morphine-conditioned place preference in GluA1-WT (WT) 
and GluA1-KO (KO) mice. (A) Time spent on the metal floor during the 15-min place 
preference test trial 24-h after the last conditioning trial. Mice were injected with saline just 
prior to place preference test trial. Grey bars indicate the conditioning subgroup that 
received morphine (20 mg kg-1, s.c.) paired with the metal floor (conditioning subgroup: 
metal+) during the conditioning trials. White bars indicate the conditioning subgroup that 
received morphine paired with the plastic floor (conditioning subgroup: metal-) during the 
conditioning trials. Data are means ± SEM (n = 11 per genotype in conditioning subgroup). 
**p < 0.01 metal+ subgroup vs. metal- subgroup. (B) Locomotor activity during the 15-min 
place preference test trial. Data are means ± SEM (n = 22 for each genotype). ###p < 0.001 
WT vs. KO. 
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Fig. 3. Locomotor activity during the extinction trials in GluA1-WT (WT) and GluA1-
KO (KO) mice. Extinction was performed by pairing saline (10 ml kg-1, s.c.) with each of 
the floor material types (CS) during 10 consecutive days (one exposure to each CS per 
day). Data are means ± SEM (n = 22 for each genotype). ##p < 0.01, ###p < 0.001 WT vs. 
KO. 
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Fig. 4. Extinquished conditioned place preference in GluA1-WT (WT) and GluA1-KO 
(KO) mice. (A) Time spent on the metal floor during the 15-min place preference test trial 
24-h after the last extinction trial. Mice were injected with saline just prior to place 
preference test trial. Data are means ± SEM (n = 11). (B) Locomotor activity during the 15-
min place preference test trial. Data are means ± SEM (n = 22 for each genotype). ##p < 
0.01 WT vs. KO. 
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Fig. 5. Reinstatement of conditioning place preference in GluA1-WT (WT) and 
GluA1-KO (KO) mice. (A) Time spent on the metal floor during the 15-min place 
preference test trial 24-h after the extinction test. Mice were injected with morphine (10 mg 
kg-1, s.c.) just prior to place preference test trial. Data are means ± SEM (n = 11 per 
genotype in conditioning subgroup). *p < 0.05, **p < 0.01 metal+ subgroup vs. metal- 
subgroup. (B) Locomotor activity during the 15-min place preference test trial. Data are 
means ± SEM (n = 22 for each genotype). 
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