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22 Abstract

23 The coexistence of multiple eco-phenotypes in independently assembled communities makes 

24 island adaptive radiations the ideal framework to test convergence and parallelism in 

25 evolution. In the radiation of the spider genus Dysdera in the Canary Islands, species 

26 diversification occurs concomitant with repeated events of trophic specialization. These 

27 dietary shifts, to feed primarily on woodlice, are accompanied by modifications in 

28 morphology (mostly in the mouthparts), behaviour and nutritional physiology. To gain 

29 insight into the molecular basis of this adaptive radiation, we performed a comprehensive 

30 comparative transcriptome analysis of five Canary Island Dysdera endemics representing two 

31 evolutionary and geographically independent events of dietary specialization. After 

32 controlling for the potential confounding effects of hemiplasy, our differential gene 

33 expression and selective constraint analyses identified a number of genetic changes that could 

34 be associated with the repeated adaptations to specialized diet of woodlice, including some 

35 related to heavy metal detoxification and homeostasis, the metabolism of some important 

36 nutrients and venom toxins. Our results shed light on the genomic basis of an extraordinary 

37 case of dietary shift convergence associated with species diversification. We uncovered 

38 putative molecular substrates of convergent evolutionary changes at different hierarchical 

39 levels, including specific genes, genes with equivalent functions, and even particular amino 

40 acid positions. This study improves our knowledge of rapid adaptive radiations and provides 

41 new insights into the predictability of evolution.

42

43 Keywords: Oceanic islands, Spiders, Diet specialization, Comparative transcriptomics, 

44 Differential gene expression, Positive selection, Heavy metals, Toxins

45
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46 Introduction

47 The current limited knowledge of the evolutionary mechanisms underlying diversification 

48 compromises our ability to manage and conserve biodiversity (Mergeay & Santamaria, 

49 2012). Evolutionary biology provides a unifying conceptual framework to successfully 

50 identify key diversification drivers through the study of molecular variation. As many other 

51 fields, evolutionary biology has fully entered the genomics era, which opens up the 

52 possibility of tackling longstanding questions regarding biodiversity in a more fruitful way 

53 and at a lower cost (Losos et al., 2013). Although often seen as a gradual process that requires 

54 the action of different evolutionary forces acting steadily over long periods of time (Coyne & 

55 Orr, 2004), speciation can be very rapid under unstable environmental and ecological 

56 conditions. In fact, one of the most promising approaches to disclose the relative impact of 

57 these driving forces is the study of species radiations in nature, i.e., the rapid appearance of a 

58 high number of species from a single common ancestor (Schluter, 2000). In adaptive 

59 radiations, such as the classic examples of Darwin’s finches (Almén et al., 2016) and the 

60 cichlids in the great lakes of Eastern Africa (Henning & Meyer, 2014), significant 

61 morphological differences appear over short periods of time despite the low levels of genetic 

62 divergence accumulated at the genomic level. Nevertheless, the relative role of natural 

63 selection and of other non-adaptive forces in such relevant evolutionary processes is a matter 

64 of scientific debate (Muschick, Indermaur, & Salzburger, 2012).

65

66 Oceanic islands are considered natural laboratories for studying evolution. The entire biota of 

67 these islands is derived from a few initial colonization events followed by local 

68 diversification, which generates high levels of endemism and ecomorphological 

69 differentiation (MacArthur & Wilson, 1967; Mayr, 1942; Whittaker & Fernández-Palacios, 

70 2007). Thus, the biota of oceanic islands can be interpreted as the result of successful 
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71 independent evolutionary experiments starting with a single or multiple colonization events 

72 from the continent (Emerson, 2002). The comparative analysis of such independent events 

73 and the subsequent island radiation (both within and between islands) in different 

74 archipelagos provides new insights into the general evolutionary process generating 

75 biological diversity (Gillespie & Roderick, 2002; Losos & Ricklefs, 2009). Such 

76 approximation has been successfully applied in a number of studies on oceanic islands 

77 (Losos, Jackman, Larson, Queiroz, & Rodriguez-Schettino, 1998; Stroud & Losos, 2016), 

78 such as Hawaii (Gillespie, 2004), the Galapagos (Grant & Grant, 2008) and the Canary 

79 Islands and Madeira archipelagos (Juan, Emerson, Oromı́, & Hewitt, 2000; Machado, 

80 Rodríguez-Expósito, López, & Hernández, 2017), where explicit hypotheses on the 

81 evolutionary processes underlying radiations have been tested.

82

83 The radiation of the genus Dysdera Latreille, 1804 (Araneae: Dysderidae) in the Canary 

84 Islands is one of the most spectacular examples of island species diversification within 

85 spiders (Arnedo, 2001; Arnedo, Oromí, Múrria, Macías-Hernández, & Ribera, 2007). As 

86 many as 47 endemic species of this species-rich Mediterranean genus (approximately 250 

87 species) have been reported in the Canary Islands (Macías-Hernández, López, Roca-Cusachs, 

88 Oromí, & Arnedo, 2016; World Spider Catalog, 2019). The spiders of the genus Dysdera are 

89 active nocturnal hunters that spend the daytime in silk retreats and are usually found under 

90 stones, dead logs or leaf litter or even living in caves (Arnedo et al., 2007). This genus stands 

91 out among spiders in having evolved trophic specialization; i.e., several species have been 

92 shown to feed preferably (facultatively or even obligatorily) on terrestrial woodlice 

93 (Crustacea: Isopoda) (Řezáč & Pekár, 2007; Řezáč, Pekár, & Lubin, 2008), a prey rejected by 

94 most generalist predators (Pekár, Líznarová, & Řezáč, 2016). Available evidence suggests 

95 that prey specialization (i.e., stenophagy) has appeared several times, both on the continent 
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96 and on the islands. Interestingly, the morphology of mouth parts predicts both dietary 

97 preferences and capture strategy (chelicerae used as pincers, forks or keys) and the frequency 

98 of captures among the specialists (Řezáč et al., 2008). All cheliceral types observed in 

99 continental species have also evolved repeatedly in the Canary Islands, suggesting that prey 

100 segregation is a major driving force of the spectacular diversification of the genus on the 

101 islands (Arnedo et al., 2007). Woodlice are a difficult prey for other arthropods because of 

102 their morphological, chemical and behavioural defences (Gorvett, 1956; Sutton, 1980). These 

103 defences comprise dorsally protective armour, gland secretions producing repulsive odours, 

104 indigestibility to many predators, and behavioural patterns such as nocturnal activity, rolling 

105 into a ball or adhering to surfaces when threatened (Schmalfuss, 1984; Sutton, 1980). In 

106 addition, these organisms accumulate high concentrations of heavy metals from the soil, 

107 making them even more toxic to predators (Drobne, 1997). Consequently, woodlice are rarely 

108 eaten by generalist predators. Within arthropods, only spiders and ants have developed 

109 specialized strategies to feed on this prey (Dejean, 1997; Pekár et al., 2016). Nevertheless, 

110 despite all this morphological and experimental evidence, the genetic basis of this remarkable 

111 adaptation is completely unknown.

112

113 Moreover, the study of the molecular basis of such an extraordinary phenotypic convergence 

114 offers an opportunity to address the question of predictability and repeatability of the 

115 evolutionary process. Given that it is not possible to rerun the tape of evolution, the study of 

116 parallel evolutionary outcomes in different scenarios provides a fairly good framework to 

117 ascertain both to what extent similar molecular solutions has been exploited repeatedly, and 

118 which aspects are predictable at different hierarchical levels (i.e., at the nucleotide, gene, 

119 pathway or function level). Among Dysdera spiders, the specialized woodlice eaters (i.e., 

120 oniscophagous species) possess, in addition to the morphological modifications of chelicera, 
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121 important behavioural and nutritional adaptations to feed on isopods (Hopkin & Martin, 

122 1985; Řezáč & Pekár, 2007; Toft & Macías-Hernández, 2017). With the aim of 

123 understanding the genetic basis of these specific adaptations and to shed some light on the 

124 longstanding debate of how predictable is molecular evolution, we designed a case study that 

125 included adult individuals from two pairs of recently diverged endemic specialist-generalist 

126 species from the Canary Islands, likely representing two phylogenetically and geographically 

127 independent dietary shifts from a generalist ancestor. Our survey included the GV pair: 

128 Dysdera gomerensis Strand, 1911 (El Hierro) and. D. verneaui Simon, 1883 (Tenerife), the 

129 TB pair: D. tilosensis Wunderlich, 1992 and. D. bandamae Schmidt, 1973 (Gran Canaria), 

130 and a third generalist endemic species external to both pairs: D. silvatica (La Gomera) 

131 (Arnedo pers. Comm; Macías-Hernández, Oromí, & Arnedo, 2008; Vizueta et al., 2017), 

132 which was used as an outgroup (Figure 1). We compared the transcriptome profiles and the 

133 selective constraint patterns between specialists and generalists to identify the genomic 

134 regions responsible for the rapid dietary adaptation of Dysdera species in the Canary Islands. 

135 We studied transcriptomic data from adult individuals, we were able to detect putative 

136 adaptive changes associated with food detection and assimilation, including its digestive and 

137 metabolic aspects. True homoplasy can arise by evolving the same (or similar) trait from 

138 either a non-shared common ancestor (convergent evolution) or a shared ancestor but through 

139 evolutionarily independent events (parallel evolution). Here, we will refer to both cases with 

140 the general term of “convergence”. We aimed to detect those evolutionary changes required 

141 to explain a repeated character state in the two specialist lineages, either a gene expression 

142 profile or a selective constraint pattern, matching phenotypic convergence. Nevertheless, both 

143 incomplete lineage sorting of (ILS; Maddison, 1997) and species hybridization can produce 

144 fundamental discordances between gene trees and the species tree, a phenomenon commonly 

145 referred to as “hemiplasy” (Avise & Robinson, 2008), giving rise to the illusion of homoplasy 
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146 and the erroneous inference of convergence (Mendes, Hahn, & Hahn, 2016; Wu, Kostyun, 

147 Hahn, & Moyle, 2018). 

148

149 Here, and after controlling for the potential confounding effects of hemiplasy, we identified 

150 clear signals of homoplasy at different hierarchical levels likely attributable to adaptive 

151 convergence in specialist species. Noticeably, we even find signals of this adaptive process at 

152 the amino acid level. The repeated changes matching phenotypic convergence found in this 

153 study mostly affected genes and gene functions associated with the strategy of detoxifying 

154 heavy metals (and perhaps other toxic substances) accumulated by woodlice, to the enhanced 

155 assimilation of some nutrients and, to a lesser extent, to venom composition.

156

Page 7 of 58 Molecular Ecology



For Review Only

157 Material and Methods

158 Study design and sample materials

159 Our study design included two pairs of phylogenetically related Dysdera species endemic 

160 from the Canary Islands. Each pair of close relatives was composed of a generalist and a 

161 specialist (stenophagous) species regarding their diet and shared a generalist ancestor, which 

162 implies that at least two specialization events occurred independently during the divergence 

163 of these four species, one on each species pair (Figure 1). Both, the phylogenomic analysis 

164 performed here and recent multi-locus based phylogenies including other endemic species of 

165 this genus (Arnedo et al. unpublished results) indicate that D. gomerensis and D. verneaui are 

166 true sister taxa, while D. tilosensis and D. bandamae are very closely related, although is 

167 difficult to know if they are each other closest relatives. Similarly, the ancestral state 

168 reconstruction supports that the ancestor of the complete Canarian radiation was a generalist, 

169 while D. tilosensis is a derived specialist from a generalist ancestor. For the case of D. 

170 gomerensis this is much more difficult to establish because of the phylogenetic uncertainty, 

171 probably due to a very rapid radiation of these species group. In any case, this rapid radiation 

172 however makes that most candidate changes in the D. gomerensis lineage (see below), would 

173 be adaptations to stenophagy, independently of whether the ancestor was a complete 

174 generalist, or just a facultative intermediate. 

175

176 The two specialists species of our study show modifications in their mouthparts that have 

177 been associated with a preference for using isopods as a prey (Řezáč et al., 2008; Macías-

178 Hernández et al, in prep) (see Figure 1). We collected 16 individuals of Dysdera tilosensis 

179 (10 males and 6 females) and 14 individuals of D. bandamae (5 males and 9 females) in Gran 

180 Canaria, and 12 males of D. verneaui in Tenerife and 15 females of D. gomerensis in El 

181 Hierro (Table S1). We also included in the analysis a fifth Canary Island endemic Dysdera 
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182 species, the generalist D. silvatica, as an outgroup and to polarize the evolutionary changes in 

183 internal branches (Vizueta et al., 2017) (Figure 1).

184

185 Transcriptomic analysis 

186 For each species, we sequenced the transcripts from the palps (PALP), the first pair of legs 

187 (LEG#1), all other legs (LEG#234), and the rest of the body (REST), separately in four 

188 different RNAseq experiments. We applied this strategy to maximize the detection of low 

189 expressed genes, especially chemosensory gene family members in spider appendices (see 

190 Vizueta et al., 2017 and Frías-López et al., 2015; Supplementary Methods). Specimens were 

191 starved for two weeks at the laboratory and posteriorly fixed in liquid nitrogen and stored at 

192 −80 °C until further processing. From the total RNA, we sequenced the transcriptomes in the 

193 Illumina HiSeq 4000 platform using pair-end libraries (100-bp reads; Table S1). A detailed 

194 description of raw data pre-processing, transcriptome assembly and functional annotation of 

195 the transcripts from the four species is available in Supplementary Methods. 

196

197 Species-tree, gene-tree discordance, and risk of hemiplasy

198 We identified all groups of homologous genes that share at least one member in the ancestor 

199 of the five Dysdera species (i.e., orthology groups) using OrthoMCL with default parameters 

200 (Li, Stoeckert, & Roos, 2003). We further separated single-copy orthologs from multigene 

201 families. Since at the moment of starting this work, all published phylogenetic analyses 

202 including the studied species were based on few genes (Arnedo, 2001; Arnedo et al., 2007), 

203 we performed a more comprehensive phylogenomic analysis using all single copy orthologs 

204 across the five Canarian Dysdera species plus D. crocata Koch, 1839 (the phylogenetically 

205 closest continental species of this genus with available transcriptome data; Fernández, 

206 Hormiga, & Giribet, 2014) (Figure 2). Only complete or nearly complete transcripts free of 
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207 premature stop codons were included in the analysis. The multiple sequence alignments 

208 (MSA) of the CDS of each orthology group were generated with the program T-Coffee 

209 (Notredame, Higgins, & Heringa, 2000) and further concatenated in a single MSA using in 

210 house Perl scripts. We set the GTRGAMMA substitution model in a partitioned scheme to 

211 obtain the maximum likelihood (ML) tree in the software RAxML (Stamatakis, 2014). Model 

212 parameters were estimated independently for each single-copy ortholog and node support was 

213 obtained after 500 bootstrap replicates.

214

215 We approximated the divergence times between the five Canarian Dysdera species by fitting 

216 the data from single copy orthologs to the unrooted tree topology of the ML tree after 

217 excluding D. crocata. We set the same substitution model and partition scheme than in the 

218 previous RAxML analysis. We used the penalized likelihood method of Sanderson (2002), 

219 implemented in the program r8s v1.80, to generate the ultrametric tree and to estimate node 

220 ages (Sanderson, 2003). We set a calibration point in the node representing the split of the D. 

221 silvatica lineage from the rest of lineages (3.4-7.8 Mya range; Macías-Hernández, Bidegaray-

222 Batista, Emerson, Oromí, & Arnedo, 2013). 

223

224 We also inferred a species tree that incorporates gene-tree uncertainty using ASTRAL 

225 (Zhang, Rabiee, Sayyari, & Mirarab, 2018). For that, we first estimated the ML tree of each 

226 individual MSA (i.e., a gene tree for each single-copy ortholog) with RAxML (setting the 

227 GTRGAMMA substitution model and calculating node support with 1000 bootstrap 

228 replicates). Moreover, we estimated the Hemiplasy Risk Factor (HRF) along the phylogeny 

229 using the PePo package (Guerrero & Hahn, 2018). For the analysis, we used the species tree 

230 inferred with ASTRAL (with branch lengths in 2Ne generation units), a very approximate 

231 estimate of the population scaled mutation rate in D. silvatica (θ = 0.011; estimate obtained 
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232 from a short read alignment to the first genome draft of this species; unpublished results), a 

233 generation time of 1.5 years, and six different effective population sizes, Ne (103, 5 x 103, 104, 

234 5 x 104, 105 and 106). Finally, all candidate genes exhibiting resolved discordant topologies 

235 (i.e., with bootstrap support  75% in at least one node producing discordance with the 

236 species tree) were excluded for the downstream functional prediction analyses and their 

237 interpretation. Finally, we used the DFOIL statistic (Pease & Hahn, 2015) to test for 

238 introgression between the specialist lineages in presence of ILS, using both D. silvatica or D. 

239 crocata as outgoups.

240

241 Differential expression analyses

242 Differential expression (DE) analyses were performed separately in each generalist-specialist 

243 pair (GV and TB pairs; see Figure 1; Supplementary Methods). Raw reads of the RNAseq 

244 from each species and body part were mapped back to their own reference CDS and to the 

245 CDS of the other species in the pair by using BOWTIE2 version 2.2.3 (Langmead & 

246 Salzberg, 2012). Read counts and TMM-normalized FPKMs (i.e., trimmed mean of log-

247 expression ratios-normalized fragments per kb of exon per million reads mapped) were 

248 estimated for single-copy genes and multigene families using RSEM 1.2.19 software (Li & 

249 Dewey, 2011). To test for genes showing DE between specialists and generalist species, we 

250 calculated the negative binomial dispersion of read counts across species pairs of a set of 

251 housekeeping (HK) genes with EdgeR version 3.18.1 (Robinson, McCarthy, & Smyth, 2010). 

252 We used this dispersion to conduct the DE analysis between specialist and generalist species. 

253 We merged all body parts (within a species) to homogenize the differences in the number of 

254 REST samples between species pairs. To avoid type I and II errors associated to this merging, 

255 especially when gene expression is higher in REST relative to legs (both LEG#1 and 

256 LEG#234) and PALP, we used total read counts from all samples normalized for each library 
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257 size to perform differential expression analyses. The P-values of these analyses (one per 

258 gene) were corrected for the false discovery rate (Benjamini & Hochberg, 1995) (FDR). We 

259 considered that a gene is differentially expressed between two species when expression levels 

260 are significantly different with a FDR < 0.05. 

261

262 Selective constraints analyses

263 We used the adaptive Branch-Site Random Effects Likelihood (aBSREL) model 

264 implemented in the HyPhy package (Pond, Frost, & Muse, 2005; Smith et al., 2015) to test if 

265 positive selection has occurred repeatedly in the same gene in specialist lineages. This 

266 method is based on the parameter ⍵ (the ratio of nonsynonymous (dN) to synonymous (dS) 

267 substitution rates, ⍵ = dN/dS) and allows fitting an optimal number of ⍵ classes to codon 

268 sequence alignments of single-copy orthologs in each branch of the phylogeny (Figure 2; 

269 Supplementary Methods). Positive selection is inferred when a gene shows codons fitting a 

270 class with ⍵ > 1 in a particular lineage. We also tested for relaxation or intensification of the 

271 strength of natural selection in these single copy orthologues in specialist lineages using the 

272 RELAX framework in HyPhy (Wertheim, Murrell, Smith, Kosakovsky Pond, & Scheffler, 

273 2015). Besides, we applied the Mixed Effects Model of Evolution (MEME) implemented in 

274 the HyPhy package (Murrell et al., 2012) to identify individual sites evolving under episodic 

275 positive selection (in one or more lineages) in the set of candidates from PCOC analysis (see 

276 below). Both methods are based on the same principle of aBSREL of fitting different 

277 probabilistic models of the ⍵ parameter distribution, and also inferred positive selection 

278 when ⍵ > 1. Finally, we applied the aBSREL model to test for episodic positive selection 

279 acting on gene families in specialist lineages. In this case, we used the same workflow as for 

280 the single copy orthologs but applying the FastTree program (Price, Dehal, & Arkin, 2010) to 

281 approximate a ML tree of each family.
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282

283 Convergent amino acid evolution

284 To detect convergent amino acid evolution in specialist lineages, we aligned the amino acid 

285 sequences of the PS candidates using the software PRANK and applied the method PCOC 

286 (Rey, Guéguen, Sémon, & Boussau, 2018) (Profile Change with One Change), a recently 

287 developed approach to identify convergent shifts in the amino acid substitution rate across a 

288 phylogeny, to each individual MSA. Moreover, we used computer simulations to test the 

289 performance of PCOC method with our empirical data. We applied the same species tree, 

290 average sequence length and model parameters set in the PCOC analysis of the observed data 

291 to simulate sequences both with convergent (2% of sites undergoing convergent amino acid 

292 substitutions) and without convergent changes (Rey et al., 2018). Using these simulated 

293 sequences, we estimated the false discovery rate (FDR; using simulations without 

294 convergence) and true positive rate (TPR; using simulations with convergent amino acid 

295 substitutions) associated with this analysis.  

296

297 GO enrichment

298 We used R and GOstats (Falcon & Gentleman, 2007) to carry out the gene ontology (GO) 

299 enrichment analysis and REVIGO (Supek, Bošnjak, Škunca, & Šmuc, 2011) to generate a 

300 graphical representation of the results. We also used Blast2GO suite (Conesa et al., 2005) to 

301 identify KEGG pathways enriched in the list of candidates (Kanehisa & Goto, 2000). 

302 Hypergeometric tests were performed with dhyper function of the R package STATS. 

303
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304 Results
305
306 We constructed 16 RNA-seq datasets (four different body parts in four species) to obtain four 

307 new complete Dysdera transcriptomes (Table S1). As expected, both the number of species-

308 specific transcripts (from 170,846 to 347,878) and the number of functionally annotated 

309 genes differed between species (Table 1), but the transcriptome completeness, measured as 

310 the number and integrity of CEG genes, was quite similar (Table S2). Only 30% of the 

311 transcripts encoded protein-coding genes; the rest corresponded to either non-coding 

312 transcripts or assembly artefacts (Table 1). Furthermore, ~35% of the predicted proteins 

313 showed no significant sequence similarity or conserved profiles with known arthropod genes 

314 (i.e., putative orphan genes of the Dysdera lineage). Among the annotated proteins, most 

315 were chelicerate specific, and ~66% of the top BLAST hits matched spider sequences (Figure 

316 S1).

317

318 We identified a total of 13,947 orthologous groups across the five Canarian Dysdera species, 

319 of which 7,958 were free of premature stop codons, and 4,539 showed complete sequences in 

320 all species (Figure 2). The number of single-copy orthologues across the five species was 

321 9,473, a number that increased to 19,497 in the GV pair and 24,212 in the TB pair (Table S3). 

322 The maximum likelihood (ML) tree that included D. crocata (2,472 genes; 2,926,723 bases) 

323 confirmed the expected phylogenetic relationships (Figure 1), i.e., that D. silvatica is sister to 

324 the two generalist/specialist sister lineages (GV and TB). We estimated that D. gomerensis 

325 and D. verneaui diverged approximately ∿4.1 Mya, whereas the split between D. tilosensis 

326 and D. bandamae occurred ∿3.1 Mya; the age of the common ancestor of these four lineages 

327 dates to ∿4.5 Mya (analysis based on 4,539 genes; Figure 1). These estimates are similar to 

328 those obtained in Macías-Hernández et al., (2013).

329
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330 These very recent divergence times, especially the short internal branch lengths, indicated 

331 that hemiplasy might represent an important confounding factor in our inferences of 

332 convergent evolution. Indeed, although the species tree estimated with ASTRAL had the 

333 same fully supported topology (the local posterior support for each branch was 1) than as the 

334 ML tree based on the concatenated MSA, the final normalized quartet score of this species 

335 tree (0.65) uncover a high gene tree conflict in our data set. The risk of hemiplasy (HRF) 

336 estimated along the species tree obtained with ASTRAL, varied according to the effective 

337 population sizes and the examined branch (Figure 3), being small for Ne  104, high in 

338 branches A and C for Ne  105, and extremely high in all branches for Ne  106. Given the 

339 high fraction of discordant gene trees observed in our data (5,275 out of 7,784 gene trees; 

340 3,666 with high bootstrap support  0.75 in at least one discordant node) together with HRF 

341 estimates, the surveyed species (and their ancestors) would have intermediate to high 

342 effective population sizes, in a range of 104 < Ne   106. Although only a small fraction of 

343 these inconsistencies might really affect our inferences of homoplasy (see discussion), we 

344 specifically considered this confounding factor in our study. In contrast, we did not detect the 

345 characteristic hallmark of gene flow between extant specialist lineages in the DFOIL analysis 

346 of transcripts, neither by analyzing all transcripts separately nor concatenating them in 

347 different gene groups (i.e., all transcripts, all candidates, only gene expression, or only 

348 positive selection candidates; results not shown; see below for the precise definition of each 

349 type of candidate).

350

351 Gene expression changes matching phenotypic convergence: individual gene level

352 Despite the sex-ratio bias of the studied samples (Table S1), the PCA analysis of the eight 

353 REST samples of the specialist D. tilosensis sequenced separately (four males and four 

354 females), showed no evidence of sex-specific expression (Figure S2), which is in agreement 
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355 with the absence of morphological dimorphism between sexes reported for the Eastern 

356 Canarian clade of this genus (Macías-Hernández et al., 2008). We found 774 (out of 19,497) 

357 and 1,044 (out of 24,212) genes showing differential expression between specialists and 

358 generalist species in the GV and TB pairs, respectively (Figure S3; Table S4). Remarkably, 

359 147 genes (out of 193) had patterns of gene expression matching phenotypic convergence, 

360 i.e., the expression profiles had the same trend in both species’ pairs with the two specialists 

361 significantly under- or overexpressed (hereafter referred to as Matching Gene Expression 

362 “MGE” candidates); however, in three cases the tree showed discordant genealogies 

363 supported by the entire transcript sequence. The final number of MGE candidates (144 genes) 

364 is much higher than that expected by a neutral model of gene expression evolution, both 

365 when considering all differentially expressed genes (hypergeometric test; P = 1.3x10-67) and 

366 separating genes over- or underexpressed in specialist lineages (P = 2.3x10-14 and P = 4.2x10-

367 121, respectively; hypergeometric test). The proportion of genes significantly underexpressed 

368 in specialists was higher both in the two species pairs considered separately (68% in GV and 

369 61% in TB) and, to a much greater extent, across the 144 shared DE candidate genes (114 

370 genes; 79%) (Figure 4; Table S4). All MGE candidates except two functionally 

371 uncharacterized proteins (OG9619 and OG15050 in PALP) and one phosphatase (OG1641 in 

372 LEGS), were predominantly expressed in REST, (Figure 4; Figure S3), and none of them 

373 show DE between males and females of D. tilosensis in this body part (results not shown). 

374 All these findings indicate that DE analyses are reflecting real differences between specialist 

375 and generalist species, and not sex or body part-specific features. Yet, we cannot completely 

376 rule out that some of the uncovered candidates was a false positive, so they should be 

377 considered as promising candidates to be further validated.

378
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379 Within the biological processes significantly overrepresented (Figure 5a) among MGE 

380 candidates, we identified genes involved in the homeostasis of metal ions; catabolism of 

381 amino acids, sugars and chitin and activities of enzymes such as phosphatase and hydrolase. 

382 The separate analysis according to the direction of gene expression change showed that the 

383 114 MGE candidates downregulated in specialists are significantly enriched in assembly and 

384 organization of chromatin, cytoskeleton and other cellular structures (such as the organelles), 

385 potential regulation of developmental processes through the smoothened pathway, cell 

386 morphogenesis and growth processes, and catabolism of sugars and amino acids. In contrast, 

387 the 30 MGE candidates upregulated in specialists are significantly enriched in GO terms 

388 associated to the metabolism of steroids, lipids and dicarboxylic acid, the activities of 

389 phosphatases and hydrolase, the membrane transport of different substances, and responses to 

390 various external stimuli including cellular response to oxidative stress. Other interesting but 

391 not GO-enriched functions of the MGE candidates include iron ion binding (a predicted 

392 cytochrome P450 protein overexpressed in specialist spiders) and zinc ion binding (mostly 

393 represented by various putative zinc finger-containing proteins; Table S4). Furthermore, we 

394 also found two putative venom toxins among the 144 MGE candidates, one of which encodes 

395 a protein similar to the α-latrocrustatoxin (underexpressed in specialists), while the other is an 

396 U32-aranetoxin-Av1a overexpressed in specialists (see Figure S4 and Table S4 for a more 

397 detailed functional description of the MGE candidates, including significantly enriched 

398 molecular functions).

399

400 Our analysis also detected 21 genes specifically expressed in specialists (i.e., with no 

401 detectable expression in generalists; referred to as Matching Specialist-specific Expression 

402 “MSE” candidates) (Figure 2). Fifteen of these MSE candidates encode proteins with no 

403 significant sequence similarity with any entry in the searched databases; the other six cases, 
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404 which were not enriched in any GO term, encode catalytic activities, such as hydrolases and 

405 peptidases, or are associated with zinc ion-binding proteins, likely involved in the regulation 

406 of gene expression (Table S4).

407

408 The highly fragmented nature of the transcripts encoding members of the chemosensory gene 

409 families prevented the credible assignation of many orthogroups and, therefore, a reliable DE 

410 analysis comparing specialists and generalists. Besides, for the few orthogroups that could be 

411 assigned, we did not find any concordant DE pattern in specialists. The same negative results 

412 were obtained for the other orthogroups that showed DE in the chemosensory appendages 

413 (PALP and LEG#1 and LEG#234) in the study of Vizueta et al., (2017).

414

415 Gene expression changes matching phenotypic convergence: gene function level

416 Apart from the 144 MGE candidates, the group of genes with DE only in one species pair, 

417 627 in GV pair and 897 in TB pair, respectively, also shared a significant number of enriched 

418 GO terms (70 terms; hypergeometric test, P= 4.7x10-11 for all DE genes; P = 2.2x10-23 and P 

419 = 1.3x10-2 for under- and overexpressed genes, respectively). Remarkably, some of these GO 

420 terms are the same as those overrepresented among the MGE candidates. For the genes 

421 underexpressed in specialists, these included chromatin assembly, the organization of cellular 

422 components, such as the cytoskeleton or organelles, and cell growth. Other additional 

423 functions, such as phosphate metabolism regulation and the apoptotic process involved in 

424 morphogenesis, are also shared among these genes. For the genes overexpressed in 

425 specialists, the enriched functions shared between species pairs include lipid catabolism, 

426 oxidation-reduction process and response to antibiotics (Figure S4 and Table S4). 

427
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428 Among the orthogroups with DE only in one species pair but with equivalent functions, we 

429 found genes involved in detoxification processes and genes encoding various members of the 

430 cytochrome P450 family (most of them overexpressed in specialists, seven and nine different 

431 copies in the GV and TB pairs, respectively) or proteins with esterase activity (seven and six 

432 of these enzymes in the GV and TB pairs, respectively). Additionally, we found 29 putative 

433 venom toxin-encoding genes in the GV pair (eight overexpressed in G) and 34 in the TB pair 

434 (26 overexpressed in T). Interestingly, although the encoding genes differed between the two 

435 specialists, they had very similar predicted functions, such as astacin-like metalloprotease 

436 toxin precursors or aranetoxin-Av1a and latrotoxins, among others (Table S4).

437

438 Positive selection matching phenotypic convergence: individual gene level

439 We applied the aBSREL model to estimate the distribution of ⍵ values of all single-copy 

440 orthologues with complete sequences and without premature stop codons (7,784 genes; 

441 Figure 2; Table S3). This genome-wide analysis uncovered opposite trends between GV and 

442 TB pairs; while the overall selective constraints appear to have been relaxed in the D. 

443 tilosensis lineage, they intensified in the D. gomerensis branch (Figure S5). Nevertheless, the 

444 analysis of individual genes identified nine genes with significant differences in the selective 

445 constraint values shared between the two specialists (or the two generalists) (RELAX 

446 framework analysis, FDR of 0.2; Table S5; referred as Matching Functional Constraint 

447 “MFC” candidates). Six of these candidates showed the relaxation hallmark in specialists, 

448 while the other three showed a significant increase in the selective constraint. We found some 

449 overrepresented biological functions among MFC candidates, such as carbohydrate 

450 metabolism and homeostasis, neuropeptide signaling, tRNA modification and pyridine 

451 metabolism (Figure S4). When we considered not enriched GO terms, the genes with 

452 increased functional constrains in specialists encode proteins similar to the membrane 
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453 glycoprotein LIG-1, a neuropeptide receptor-like protein, and zinc finger proteins while the 

454 genes that have relaxed most in specialist’s species encode two zinc finger-like proteins and a 

455 hexokinase.

456

457 We identified 297 genes with significant evidence of positive selection in specialist lineages, 

458 169 in D. gomerensis, 150 in D. tilosensis and, remarkably, 22 cases in which positive 

459 selection was inferred in both dietary specialists (Figure 2; Table S6; referred to as Matching 

460 Positive Selections “MPS“ candidates). After excluding five coding regions with discordant 

461 genealogies supported by the entire transcript sequence, the number of MPS candidates (17) 

462 is clearly greater than that expected by chance (across the 297 genes showing positive 

463 selection in specialists; hypergeometric test; P = 1.5x10-8). These genes are enriched in 

464 biological processes such as germ cell migration and cell death, cell junction assembly and 

465 organization, regulation of the immune response or iron ion homeostasis (Figure 5; Figure 

466 S4). Interestingly, one of these genes with endopeptidase inhibitor activity encodes a protein 

467 with sequence similarity to U24-ctenitoxin-Pn1a, a possible venom toxin related to cysteine 

468 proteinase inhibitors.

469

470 The PCOC method (Rey et al., 2018) identified convergent shifts in amino acid preferences 

471 in 14 out of the 17 MPS candidates (FDR = 0.03%; TPR = 99.7%; Figure 6; Table S6; Figure 

472 S6). Furthermore, in five cases, the subsequent MEME analysis indicated that some of the 

473 amino acid sites involved in these convergent shifts have also evolved by positive selection (8 

474 amino acid sites; Figure 6). The target genes include i) the U24-ctenitoxin-Pn1a candidate 

475 toxin (OG6752 orthogroup; 6 amino acid changes); ii) OG7181, a transcript encoding a 

476 protein similar to tectonin (10 amino acid changes, 3 of them  under); iii) OG9641, a 

477 transcript encoding a protein involved in response to oxidative stress (3 amino acid changes, 
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478 one of them  also detected with MEME); iv) OG11255, a gene that encodes a product similar 

479 to a mannose receptor (5 amino acid changes, 2 of them also detected with MEME); v) 

480 OG13286, a protein likely encoding a sodium channel (1 amino acid change, also detected 

481 with MEME); and vi) OG16682, a hydrolase involved in nitrogen compound metabolism (4 

482 amino acid changes, one of them detected with MEME). The analysis also inferred some 

483 amino acid substitutions responsible of a convergent shift of preferences in specialists but 

484 without evidence of positive selection in OG9529, a putative dehydrogenase and 

485 oxidoreductase (4 amino acids) (Figure S6).

486

487 Positive selection matching phenotypic convergence: gene function level

488 Although the group of genes under positive selection in only one of the two specialists (147 

489 in GV pair and 138 in TB pair, respectively) did not share more significantly enriched GO 

490 terms than expected by change (only three shared GO were enriched in both pairs; 

491 hypergeometric test; P = 0.19), the number of total GO terms shared by these two groups is 

492 greater than expected (P = 5.3 x 10-75 based on the hypergeometric distribution). Among 

493 shared GO terms, we found processes and functions such as chitin metabolism (including 

494 proteolysis activity), lipid metabolism, metal ion binding (zinc in both pairs, copper in D. 

495 gomerensis and iron in D. tilosensis), and hydrolase and oxidoreductase activities (Figure 

496 S4). In addition, we also detected the signature of positive selection in six genes encoding 

497 putative venom toxins: four in D. gomerensis and two in D. tilosensis (Table S6).

498

499 The gene family analysis also uncovered the hallmark of positive selection in five gene 

500 families affecting both specialist lineages (Figure 2; Table S6). One family (the OG3133 

501 orthologous group), which included sequences without any functional annotation, also 

502 showed copy number variation in the two specialists (2 and 3 copies in D. gomerensis and D. 
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503 tilosensis, respectively, compared to one in the generalist species). The other four gene 

504 families encoded proteins with possible functions in chitin metabolism and sequences similar 

505 to carbohydrate and zinc ion-binding proteins, hydrolases and other enzymes with catalytic 

506 activity. Again, we found a gene family encoding putative venom components (in this case, 

507 with no characterized target) among positively selected gene families.

508
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509 Discussion

510 The evolution of stenophagy, dietary specialization from a generalist ancestor, most likely 

511 involves gene regulatory changes, amino acid replacements in proteins, and/or even copy 

512 number variation in gene families. Here, we focused our analysis on the first two issues since 

513 comparative transcriptomics based on de novo assemblies prevents accurate estimation of 

514 changes in gene expression and gains and losses in gene family members. Our approach 

515 allows detecting genetic changes in the genes expressed in adults (either in the same gene or 

516 in equivalent gene functions) matching the phenotypic convergence observed in dietary 

517 specialist Dysdera. Nevertheless, it is largely known that hemiplasy can also produce such 

518 matching patterns, inducing false evidence of convergent evolution (Mendes et al., 2016; Wu 

519 et al., 2018). Indeed, the high level of gene tree discordance caused by ancestral 

520 polymorphisms could potentially explain some of the repeated changes identified in D. 

521 gomerensis and D. tilosensis. Nonetheless, some lines of evidence support that most of the 

522 candidates reported in this study accumulated convergent changes in specialist lineages. First, 

523 for realistic effective population sizes (i.e., 104 < Ne  105; these spiders are island endemic 

524 predators with likely low census sizes), the probability of observing discordant trees 

525 matching the phenotypic convergence is very low (Figure 3). The estimates of the HRF 

526 values in branch B under realistic effective population sizes ranged from 0.001 to 0.134 

527 (Figure 3b and 3c). Therefore, the probability of occurrence of ILS on this branch, 

528 accompanied by a mutation in the branch A or in an older lineage creating a false pattern of 

529 homoplasy, is much lower than that of true homoplasy (Guerrero &, Hahn, 2018). Second, 

530 among the total set of discordant gene trees with high bootstrap support, only the 1.69% (62 

531 out of 3,666) yielded resolved topologies that match exactly the one expected from 

532 convergence in specialists, which agrees with hemiplasy risk predictions for intermediate 

533 effective population sizes. Even so, and to be conservative, we excluded from the 
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534 downstream functional prediction analysis all candidates with gene trees included in this 

535 1.69%. This approach, however, may not be suitable for detecting convergent changes in 

536 gene expression in specialists. Actually, the assumption that the regulatory regions 

537 responsible of the concordant changes in gene expression of candidate genes are completely 

538 linked to the transcribed sequence (i.e., both share the same gene tree) may not be correct. 

539 Estimates of the recombination rate in these genomes are not available and, more 

540 importantly, some of these mutations could be far away from the coding region, even acting 

541 in trans. In these cases, however, we would expect that gene-tree discordance will be 

542 randomly distributed across the genome. We found, by contrast, a clear bias in our candidates 

543 towards genes and functions biologically relevant for dietary specialists. Bearing all this in 

544 mind, the fixation of convergent genetic changes remains as the most likely explanation for 

545 most of the discordant patterns matching phenotypic convergence, even for MGE candidates. 

546 Consequently, we demonstrated that our study design, with two evolutionary replicates of the 

547 same dietary specialization event, was able to identify potential candidate genes and groups 

548 of functionally equivalent genes responsible in part to these remarkable ecological shifts.

549

550 A priori, we would expect that the biological functions targeted by selection are related to 

551 prey capture and food assimilation, both in digestive and metabolic aspects. Since genetic 

552 changes underlying morphological modifications of the specialists’ mouthparts likely involve 

553 changes in gene expression patterns during development, they were undetectable in our 

554 comparative analysis of adult transcriptomes. However, other aspects related to the detection, 

555 attack, consumption and digestion of a prey with remarkable behavioural and chemical 

556 defences definitely played a crucial role in specialization. Several studies have revealed 

557 significant differences in the growth and nutrient extraction efficiencies in specialist Dysdera 

558 fed on woodlouse, which suggests the existence of metabolic adaptations (Řezáč & Pekár, 
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559 2007; Toft & Macías-Hernández, 2017; Macías-Hernández et al., in prep.). Toxicity is the 

560 most relevant nutritional aspect that makes isopods a prey commonly rejected by most 

561 generalist spiders (Hopkin & Martin, 1985). Indeed, isopods accumulate toxic substances, 

562 including high concentrations of heavy metals from the soil, especially copper but also zinc, 

563 lead and cadmium, in vesicles such as lysosomes (Paoletti & Hassall, 1999). The toxic effects 

564 as well as some of the underlying genetic response mechanisms of heavy metals on terrestrial 

565 invertebrates have been known for a long time (Janssens, Roelofs, & van Straalen, 2009; 

566 Merritt & Bewick, 2017; Migula, Wilczek, & Babczyńska, 2013). Remarkably, our results 

567 are in full agreement with the few comparative transcriptomics studies conducted on these 

568 types of animals under different metal-stress conditions (e.g. Gomes, Scott-Fordsmand, & 

569 Amorim, 2014; Roelofs et al., 2009; Zapata, Tanguy, David, Moraga, & Riquelme, 2009), 

570 including in spiders (Li et al., 2016). These studies demonstrate that arthropods exposed to 

571 heavy metals show important gene expression changes relative to controls; remarkably, some 

572 of the reported gene targets also appear among our MGE candidates or correspond with some 

573 of the molecular functions enriched in our list. Some examples include ABC transporters, 

574 amiloride-sensitive sodium channels, ATPases, MAP kinases, ubiquitin ligases, histones, 

575 members of the cytochrome P450 family and ribosomal proteins (Table S4). These consistent 

576 results across different studies on phylogenetically distant species, support the idea of a 

577 relatively well-conserved common mechanism for the tolerance of heavy metal toxicity 

578 across animals. The old origin of such an evolutionary mechanism validates our approach for 

579 identifying the genetic determinants of stenophagy in Dysdera.

580

581 Genetic changes matching phenotypic convergence: metal-induced damage or adaptive 

582 response to metal stress?
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583 We found that most MGE candidates were specifically downregulated in specialists and 

584 encoded molecular functions involved in cell response, vesicular transport, organization of 

585 organelles and cytoskeleton, cilia assembly, or cell adhesion (Table S4). Noticeably, these are 

586 the most frequent cell modifications observed in intestinal tissue damage by heavy metals 

587 from the diet (e.g., Bednarska et al., 2016; Köhler & Alberti, 1992; Zhang et al., 2001). 

588 Indeed, in soil arthropods subjected to heavy-metal stress, midgut cells show evident 

589 histological modifications indicative of metal deposition in intracellular granules and gut 

590 epithelial degeneration. Although the downregulation pattern observed in specialist Dysdera 

591 could be the result of a direct stress-induced perturbation of gene expression caused by the 

592 high concentration of heavy metals supplied in a woodlouse-rich diet, they might actually be 

593 part of an adaptive biological response to excrete metals or other toxic substances more 

594 efficiently, thus avoiding their assimilation (Van Straalen & Roelofs, 2005). Consistent with 

595 this hypothesis, we observed concordant DE patterns in some MAP kinase pathway members, 

596 which participate in an important stress-activated/immune response cascade (Chmielowska-

597 Bąk & Deckert, 2012), and in some ubiquitin ligases, which, among other functions, are 

598 involved in the inhibition of cell growth and cycle arrest in response to DNA damage (Cao & 

599 Yan, 2012). The adaptive response in specialists would consist of downregulating a set of 

600 genes to keep gut epithelial cells in a semi-degenerated functional and structural state that 

601 allows enhanced accumulation of heavy metals in granules and very fast and effective 

602 intestinal exfoliation and regeneration.

603

604 Our analysis also uncovered a number of upregulated MGE and MPS candidates associated 

605 with iron, copper and zinc binding and homeostasis, which can also be part of an adaptive 

606 mechanism of detoxification in specialist Dysdera. Among these candidates, we found 

607 amiloride-sensitive sodium channels, membrane ATPases and ABC and dicarboxylate 
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608 transporters. These proteins are either antiporters for metal cations or are involved in cellular 

609 mechanisms for heavy metal vacuolar sequestration (Ahearn, Sterling, Mandal, & 

610 Roggenbeck, 2010) or in cellular metal homeostasis and detoxification (e.g., Sooksa-Nguan 

611 et al., 2009; Lee et al., 2014). Another set of interesting candidates are the proteins annotated 

612 as syntaxin-5-like proteins with a SNARE domain, which are involved in vesicle tethering 

613 and fusion associated with copper ion homeostasis (Norgate et al., 2010) and, in addition to 

614 being significantly overexpressed in both specialists, also show signals of positive selection 

615 in D. tilosensis.

616

617 It is well known that heavy metal-associated toxicity is largely due to damage to the oxidative 

618 tissue caused by the accumulation of reactive oxygen species in the cell (Schieber & Chandel, 

619 2014). Noticeably, among the upregulated MGE candidates (and those regulated in only one 

620 of the specialists), we found members of family 3 of the P450 cytochromes, a group of 

621 monooxygenases that constitute the largest and most functionally diverse class of insect 

622 detoxification enzymes and that have been implicated in the oxidative detoxification of 

623 furanocoumarins, alkaloids, plant secondary metabolites and synthetic insecticides (Nelson & 

624 Nebert, 2011). Additionally, we identified among the candidates several esterases, a group of 

625 proteins with a role in heavy metal and pesticide detoxification that have been used as 

626 biomarkers of metal exposure in many organisms, including spiders (Wilczek, Babczyńska, 

627 Migula, & Wencelis, 2003). We identified esterases significantly overexpressed in both 

628 specialists, although in this case, the orthogroups of D. gomerensis and D. tilosensis were 

629 different, suggesting possible convergence at the functional level rather than at the gene level. 

630 Remarkably, two of these esterases also showed a positive selection signal in D. gomerensis.

631
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632 We also detected other MGE candidates associated with the metabolism of some essential 

633 nutrients, such as proteins with chitin-binding and chitinase activity, and enzymes involved in 

634 the metabolism of amino acids, sugars and lipids. Given that most of these candidates were 

635 downregulated in specialists, the adaptive advantage could be associated with a reduction in 

636 biosynthetic processes to save energy, presumably to dedicate the energy to detoxification 

637 processes. However, the presence of some upregulated and positively selected genes among 

638 these metabolic candidates indicates that specialists might also have developed an adaptive 

639 mechanism to enhance the assimilation and metabolization of some other nutrients present in 

640 woodlice but less accessible to other preys.

641

642 Finally, it is worth noting that MPS candidates are also significantly enriched in genes related 

643 with the immune system. It has been reported that high concentrations of heavy metals 

644 negatively affect important processes, such as phagocytosis and chemotaxis, during the 

645 generation of the immune response (Boyd, 2010). The footprint of positive selection detected 

646 in specialist Dysdera, matching phenotypic divergence, might reflect an adaptive mechanism 

647 to alleviate the negative immunomodulation effects of heavy metals. In fact, there is evidence 

648 that positive selection promoted local adaptation of herbivore insects to heavy metal polluted 

649 environments by enhancing immune functions (van Ooik & Rantala, 2010) suggesting the 

650 important adaptive character of this system under metal-stress conditions.

651

652 A possible role of venom toxins in the convergent dietary shift

653 Stenophagous spiders (e.g., myrmecophagous, termitophagous and araneophagous spiders) 

654 show increased venom toxicity to the preferred prey, while related generalists show similar 

655 toxicities to all preys (Pekár, Líznarová, Bočánek, & Zdráhal, 2018). The analysis of venom 

656 components in stenophagous species indicates that this difference in efficacy is caused by the 
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657 presence of prey-specific toxins, suggesting evolutionary adaptations for more effective 

658 exploitation of focal prey. Notably, we identified a number of transcripts encoding venom 

659 toxins among the MGE candidates, most of which were upregulated in specialists, an 

660 opposite pattern to that obtained for the rest of the MGE candidates. Among others, we found 

661 candidates encoding astacin-like metalloproteases. Astacins share common features with 

662 serralysins, matrix metallo-endopeptidases, and snake venom proteases and might be 

663 involved in the proteolytic processing of other venom toxins or even play a role in extra-oral 

664 digestion of prey, which could be important in the specialization of Canarian Dysdera to 

665 woodlice. Interestingly, the MGE candidates encoding astacin-like metalloproteases belonged 

666 to different orthogroups in each specialist species, which suggests an additional example of 

667 functional convergence through different genes. Our analysis also uncovered other candidates 

668 that encode some lesser-known toxins, such as products with sequence similarity to U24-

669 ctenitoxin-Pn1a (presumably a protease inhibitor), pisautoxin-Dm1a (a toxin from the venom 

670 of the spider Dolomedes mizhoanus with an unknown target), alpha-latrotoxins (which induce 

671 massive neurotransmitter release) and aranetoxins (also with an unknown target). 

672 Remarkably, we found that among the alpha-latrotoxins, a transcript with similarity to a 

673 crustacean-selective component of spider venom (the alpha-latrocrustatoxin; Grishin, 1998), 

674 also showed the signature of positive selection, making it a promising candidate for 

675 stenophagy. Further research including venom gland-specific transcriptomes and the study of 

676 venom toxicity to different preys would be required to shed light on the role of venom in the 

677 convergent dietary specialization of Dysdera.

678

679 Repeated adaptation to stenophagy in Canarian endemic Dysdera: collateral or parallel 

680 evolution?
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681 Here, we uncovered several pieces of evidence supporting the adaptive divergence hypothesis 

682 in stenophagous Dysdera inhabiting Western Canary Islands. First, the functional annotation 

683 of the majority of genes with concordant changes in gene expression between generalist and 

684 specialist spiders clearly points towards an active role of these genes in the dietary shift. 

685 Second, we detected repeated episodes of positive selection in the same genes (or 

686 functionally related group of genes) in the two specialists’ lineages. Furthermore, a 

687 significant number of MPS candidates showed convergent amino acid preference shifts in the 

688 two focal branches, some of which were also inferred to be under positive selection. 

689 Altogether, these results provide new significant evidence that species can find the same 

690 molecular solutions to adapt predictably to similar ecological niches more often than 

691 previously thought (see Marques et al., 2017; Nosil et al., 2018, for other recent examples).

692

693 Specialist Dysdera may have repeatedly adapted to stenophagy through parallel or collateral 

694 evolution. In the first case, convergence would result from the accumulation of the same or 

695 similar mutations in evolutionary independent lineages, whereas in the second, selection on 

696 either shared ancestral or introgressed variations, would be the responsible of the convergent 

697 patterns (Stern, 2013). In recent years, increasing evidence has emerged suggesting the 

698 important role of shared genetic variation as a substrate for driving repeated evolution of 

699 ecotypes in nature (e.g. Jones et al., 2012; Marques, Meier, & Seehausen, 2019; Schluter & 

700 Conte, 2009; Van Belleghem et al., 2018). Our genome-wide HRF and DFOIL analyses point 

701 to that most of our candidates originated from parallel independent evolution (i.e., relatively 

702 low risk of random ILS and non-significant DFOIL results). On the other hand, in the five 

703 positive selection candidates where the individual gene trees were incongruent, the apparent 

704 homoplasy could be the result of collateral evolution. Unfortunately, in these cases, current 

705 data would not allow to disentangle collateral evolution from random ILS at the individual 
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706 gene level. Accordingly, and to avoid reporting candidates with false patterns of homoplasy, 

707 we excluded these five genes with discordant topologies, restricting the analysis on the 

708 parallel fixation of de novo mutations. Further research including polymorphism from whole 

709 genome data would be needed to unequivocally establish the relative role of collateral 

710 evolution in the convergence observed in these island endemic spiders.

711

712 Altogether, our findings suggest that the ecological opportunity provided by the colonization 

713 of the Canary Islands facilitated the exploration of multiple adaptive landscapes by Dysdera 

714 and its diversification on similar peaks (Mahler, Ingram, Revell, & Losos, 2013), providing 

715 an exceptional example of repeatability in evolution and shedding light on the genetic 

716 determinants of phenotypic convergence (Stroud & Losos, 2016). Besides, our results support 

717 the idea that convergence can involve repeated changes at different hierarchical levels 

718 (Rosenblum, Parent, & Brandt, 2014). We found convergent changes at the amino acid, gene 

719 and gene function levels that would be mostly associated to the excretion and detoxification 

720 of heavy metals accumulated in the preferred prey, and some venom components likely 

721 related with prey capture. We also demonstrated that natural selection promoted the fixation 

722 of some of these changes, confirming the view that adaptive forces are a primary determinant 

723 of phenotypic convergence (Storz, 2016). Moreover, our report uncovering repeated genetic 

724 changes in pairs of phylogenetically-close taxa, supports the ongoing debate that the 

725 probability of shared molecular changes for convergent phenotypes correlates with node age 

726 (Conte, Arnegard, Peichel, & Schluter, 2012). Hence, this study not only provide new 

727 evidence on the genomic basis of an extraordinary example of a convergent ecological shift 

728 in a non-model organism but also offer new insights into the longstanding debate about 

729 predictability in evolution.

730
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1043 Figures

1044

1045 Figure 1. a. Map of the Canary Islands showing the geographic location of capture localities. 

1046 b. Phylogenetic relationships and divergence times (scale bar) among surveyed Dysdera 

1047 species. The continental species D. crocata was used to root the tree. c. Dissecting scope 

1048 images of the left chelicera: A-B: Dysdera silvatica female, La Gomera, A, ventral view; B, 

1049 lateral view; C-D: D. verneaui female, Tenerife, C, ventral view, D, lateral view; E-F: D. 

1050 bandamae female, Gran Canaria, E, ventral view, F, lateral view; G-H: D. gomerensis 

1051 female, La Gomera, G, ventral view, H, lateral view; I-J: D. tilosensis male, Gran Canaria, I, 

1052 lateral view, J, lateral view. Bars indicate the relative lengths of the different parts of the 

1053 chelicerae to highlight differences between the standard (generalists) and elongated or 

1054 slightly elongated (specialists) chelicerae. White bar: total length of the basal segment (b), 

1055 dotted part: length of the cheliceral groove (g). Black bar: length of the cheliceral fang (f). In 

1056 standard chelicerae, g is approximately 1/3 of b, and f is similar to the distance between the 

1057 base of the segment and the end of the internal keel (k), while in elongated chelicerae, g is 

1058 longer than 2/5 of f, and f is longer than k. Scale bar in mm. d. Live images of the target 

1059 Dysdera species; photo credit: P. Oromí.

1060

1061 Figure 2. Core analyses workflow applied in this study, including a summary of the most 

1062 relevant results. DE, differential expression; DFC, differential functional constraints; PS, 

1063 positive selection; *, patterns matching the observed phenotypic convergence.

1064

1065 Figure 3. Species tree inferred with Astral showing the risk of hemiplasy along the 

1066 phylogeny. Hemiplasy risk factor values (HRF) were estimated for all internal branches of 

1067 the tree. The relative probabilities of hemiplasy and homoplasy were inferred under different 
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1068 effective population sizes (Ne; panels a to d) and assuming a fixed mutation rate  per 2Ne 

1069 generations (2Ne = 5.5 x 10-3). HRF values estimated for all internal branches (in brackets) 

1070 represent the proportion of discordant traits associated with a branch due to hemiplasy. 

1071

1072 Figure 4. Heat map with body part-specific gene expression profiles of the 144 MGE 

1073 candidates. 

1074

1075 Figure 5. Bar charts with the most relevant results of the GO enrichment analyses (see Figure 

1076 S3 for more detailed versions). a. Orthogroups with differential expression profiles matching 

1077 phenotypic convergence (144 MGE candidates) b. Orthogroups under positive selection in 

1078 the two specialists (17 MPS candidates) c. Most representative candidates encoding venom 

1079 toxins in stenophagous Dysdera. Dark and light tones represent the proportion of genes with 

1080 a given associated GO in the candidate and the population (whole transcriptome) set, 

1081 respectively.

1082

1083 Figure 6. Relevant orthogroups showing evidence of convergent amino acid substitutions. (a) 

1084 orthogroup encoding the venom toxin OG6752. (b-f) orthogroups with positions evolving 

1085 under positive selection. Amino acid positions are shaded with different tones according to 

1086 their profiles, and only positions with a PP equal to or greater than 0.99 according to the 

1087 PCOC, PC or OC model are shown (Rey et al., 2018). Stars highlight the sites identified as 

1088 being positively selected in MEME.

1089

1090

1091 Tables
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1092 Table 1. Summary of dietary habits, sampling localities, RNA-seq data and assembly 

1093 statistics for each surveyed Dysdera species.

1094

1095

1096 Supplementary material

1097

1098 Supplementary figures

1099

1100 Figure S1. Distribution of blastx hits across species. Distribution of the top 5 hits from the 

1101 blastx searches with the transcripts of each Dysdera species against the ArthropodDB 

1102 database.

1103

1104 Figure S2. Principal component analysis (PCA) of gene expression profiles of individual 

1105 REST samples from D. tilosensis. 

1106

1107 Figure S3. Venn diagrams showing (a) the number of shared genes between species pairs. 

1108 Differential expressed (DE) genes are showed in brackets; (b) the number of DE genes 

1109 between species pairs and groups of tissues (LEGS-PALP refers to the LEG#1, LEG#234 and 

1110 PALP); (c) number of MGE candidates across tissues.

1111

1112 Figure S4. Tree maps with detailed GO enrichment results generated with REVIGO.

1113

1114 Figure S5. Box plots showing the distribution of ⍵ values for all single-copy orthogroups in 

1115 specialist (orange) and generalist (blue) species.

1116
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1117 Figure S6. Orthogroups with evidence of convergent amino acid evolution. Amino acid 

1118 positions are coloured according to their profiles, and only positions with a PP equal to or 

1119 greater than 0.99 according to the PCOC, PC or OC model are shown. Yellow stars highlight 

1120 the sites identified as positively selected in MEME.

1121

1122

1123 Supplementary tables

1124 Table S1. RNA-seq statistics.

1125

1126 Table S2. Distribution of the percentage of CEG length covered by blastx hits.

1127

1128 Table S3. Orthogroups classification.

1129

1130 Table S4. List of genes with concordant differential expression profiles between generalist 

1131 and specialists species. 

1132

1133 Table S5. List of genes with concordant differential functional constraint profiles between 

1134 generalist and specialist species.

1135

1136 Table S6. List of genes with concordant signals of positive selection in specialist species.

1137

1138 Supplementary methods

1139 Supplementary Information of transcriptome, differential gene expression and selective 

1140 constraint analyses.

1141
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Table 1. Summary of dietary habits, sampling localities, RNA-seq data and assembly statistics for each surveyed Dysdera  species
D. silvatica D. verneaui D. gomerensis D. bandamae D. tilosensis

Diet Generalist Generalist Specialist Generalist Specialist
Locality (in Canary Island) La Gomera Tenerife El Hierro Gran Canaria Gran Canaria
Total raw reads 441,835,864 527,299,202 430,522,240 765,653,462 678,150,384
Total qualified reads 418,205,054 495,937,054 400,095,710 746,925,920 664,654,842
Transcripts 236,283 441,604 213,984 296,544 316,498
Genes (clustered isoforms) 170,846 347,878 177,363 221,801 229,762
Gene average length (in bp) 702 525 622 658 649
Gene maximum length (in bp) 26,709 27,235 27,386 27,369 25,342
HK genes 1,136 1,194 1,232 1,153 1,159
CEG genes 807 (457) 1,180 (457) 1,111 (457) 1,033 (457) 1,143 (457)
GO annotated genes 29,879 38,361 28,158 35,116 37,246
Genes with InterPro domain 30,886 40,771 29,930 37,413 39,480
Functional annotated genes

a
31,091 41,019 30,106 37,620 39,704

Annotated genes
b

41,046 51,864 37,087 47,059 50,150

Predicted coding sequences (CDS) 58,966 84,114 55,914 72,352 77,756
% not coding genes 34.51% 24.18% 31.53% 32.62% 33.84%
% not annotated CDS 69.61% 61.66% 66.33% 65.04% 64.50%
1to1 orthologs in all species 9,473 9,473 9,473 9,473 9,473

1to1 orthologs per species pair ‐ 19,497 19,497 24,212 24,212

a GO or Interpro hits.
b GO, Interpro or blast hits.
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