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In the past two decades, adaptive dynamics has become a widely used framework to understand

evolution as driven by ecological interactions (Geritz et al. 1998). This is a theory of evolution rooted

firmly in ecology, born at a time when, despite efforts in game theory and life history optimisation,

evolution was generally considered to be on the turf of population genetics. Facing the traditional

divide between these fields, one could learn to appreciate that Theoretical Population Biology (TPB)

houses population genetics and population ecology under one roof! In this commentary, I

congratulate TPB on its 50th anniversary by highlighting a few personal favourites from the journal's

history with adaptive dynamics.

Adaptive dynamics derives natural selection from population dynamics, via explicitly modelling the

growth of different strains or alleles. To investigate the long-term evolution of quantitative traits, it

assumes that mutations are sufficiently rare so that the population equilibrates before the next

mutation appears. Evolution can then be seen as a sequence of mutations that invade and either

replace the former strain or allele or coexist with it, as governed by the joint population dynamics of

the initial resident and the invading mutant (note however that the results are robust with respect

to the frequency of mutations, see Meszéna et al. 2005). Assuming also that each mutation has only

a small effect on the trait value, the dynamics of trait values becomes smooth and deterministic, and

exhibits phenomena such as diversification by evolutionary branching (Geritz et al. 1998; see Box 1

for key definitions).
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Forerunners

Astronomers are familiar with what they call pre-discovery sightings, celestial bodies recorded on

photographs before it is realized that these dots are the same object. In a somewhat similar vein,

results in specific models prefigured the general theory of adaptive dynamics. Two papers by

Christiansen and Loeschcke (1980; 1987), published in TPB, stand out in particular1. Their model

investigated the evolution of a resource utilisation trait, assuming alleles with similar phenotypic

effects. In the first paper, they showed that the allele closest to the resource optimum (i.e., to the

trait that today would be called singular) goes to fixation if the optimum is outside the range of the

standing genetic variation; if it is inside, then two alleles remain, and these are the outermost two

alleles if the resource spectrum is broad. It is easy to see convergence stability in the first result and

disruptive selection at an evolutionary branching point in the second. Moreover, Figures 1 and 2 of

Christiansen and Loeschcke (1980) are essentially pairwise invasibility plots (PIPs; Figure 1). PIPs

have become iconic figures of adaptive dynamics, but they were in sporadic use also before, as

invasibility analysis gained momentum. Motro (1982), writing on evolutionarily stable dispersal

strategies, showed another early example of PIPs in TPB.

Christiansen and Loeschcke (1987) went beyond all forerunners in extending their model to

multivariate (vector-valued) traits, to find that the maximum level of polymorphism near the

resource optimum increases with the dimensionality of the trait space. One usually pictures

diversification as an ancestral line splitting into two lineages. Might the polymorphism result of

Christiansen and Loeschcke (1987) indicate evolutionary branching into three or more diverging

lineages, instead of the usual two? It took nearly 30 years to learn that the answer is no (Geritz et al.

2016).

Different types of stability

From the 1980's, there was growing awareness that evolutionary stability is different from stability

in the usual dynamical sense. In other words, whether a strategy is uninvadable (called an

evolutionarily stable strategy, ESS) has little to do with whether the evolving trait values are

attracted to it (now called convergence stability; see also Van Cleve in this issue). Eshel and

colleagues were keen on finding "continuously stable strategies", which possess both kinds of

stability (Eshel and Motro 1981 in TPB; see also Eshel 1983; Eshel et al. 1997). Could the two stability

1 A third paper in the same series, Loeschcke and Christiansen (1984), links their work to multilocus population
genetics and is discussed by Bürger (in this issue).
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properties combine freely? Two quotes from TPB illustrate the struggle with this question. One

opinion dismissed non-attracting ESSs, restricting the analysis to attractors: "provided that an ESS

exists, we should be able to find it using strategy dynamics" (Vincent et al. 1993).  And the opposite:

"[it is] easy to provide mathematical examples of functions with equilibrium points which are m-

stable but not δ-stable [i.e., convergence stable but not evolutionarily stable], but I have yet to see a

biologically plausible example of this" – Taylor (1989) was unfortunate to miss the evolutionary

branching points!

Taylor's (1989) paper nevertheless stands out for connecting convergence stability to kin selection

theory (reviewed by Van Cleve in this issue). Vincent et al. (1993), together with Brown and Vincent

(1987) also in TPB, belong to the start of an alternative framework of adaptive dynamics, now less in

use, with its own concept of evolutionary stability. Whereas the framework of Geritz et al. (1998)

requires only local stability thus making use of convenient analytical tools based on local expansions,

Vincent and co-workers took the "safer" definition that an ESS must be globally stable against the

invasion of any mutant trait, not only against mutations of small effect.

Polymorphisms and bifurcations

Adaptive dynamics is particularly well suited to studying the evolution of diversity via evolutionary

branching (Geritz et al. 1998). An early paper on evolutionary branching in TPB is Geritz et al. (1999),

who investigated seed size evolution driven by competition for living sites. Many other analyses stop

at detecting the first branching point, i.e., at demonstrating that an initially monomorphic

population evolves to become dimorphic. In contrast, Geritz et al. (1999) put much emphasis on how

the dimorphic population branches further and how the population evolves at higher levels of

polymorphism. This example also highlights that evolutionary branching is neither a necessary nor a

sufficient condition for long-term polymorphism; new branches of the evolutionary tree may

subsequently go extinct, and polymorphic ESSs may exist but be unreachable via the gradual process

of evolutionary branching.

Further, Geritz et al. (1999) laid out the basics of bifurcation theory for adaptive dynamics. Similarly

to attractors in dynamical systems, evolutionary branching points can undergo fold bifurcations.

More interestingly, a convergence stable ESS can lose its evolutionary stability without losing its

convergence stability, whereby it becomes an evolutionary branching point; this bifurcation has no

analogue in classic dynamical systems. Once the ESS has become a branching point, the population
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will become dimorphic, but how far will the two branches separate? A continuity argument might

suggest that close to the bifurcation, evolutionary branching stops with a slight separation. Geritz et

al. (1999) showed that this is not so. The ESS-branching point bifurcation implies an abrupt

("catastrophic") change, so that the two branches typically evolve out of the neighbourhood of the

branching point however close the system is to the bifurcation. The reason is that a dimorphic ESS

typically exists already before the monomorphic ESS would bifurcate, so that upon the bifurcation,

the population can evolve to this pre-existing attractor. The birth of the dimorphic attractor is

connected to the loss of global, not local, evolutionary stability. Populations thus often have multiple

ESSs with different numbers of coexisting strains, and there is an intimate link between the

evolutionary dynamics at different levels of polymorphism.

Both convergence stability and evolutionary stability depend on the trade-offs that link the

demographic parameters with the evolving trait. Changing the shape of a trade-off function readily

generates bifurcations; roughly speaking, a trade-off strongly favouring a generalist results in an ESS,

whereas a trade-off strongly favouring the extreme phenotypes produces a repellor. For

evolutionary branching, the trade-off must pass in between. How broad is the range of evolutionary

branching, and is there such a range to start with? Simple models may give explicit conditions for

evolutionary branching, but this is the exception; in more complex models, one must fall back on

numerical analysis. The traditional approach is then to specify the trade-off as some parameterised

function and perform the bifurcation analysis in terms of its parameters (e.g. Geritz et al. 1999).

However, the choice of the trade-off functions is usually ad hoc, because experimental data do not

constrain the trade-offs with sufficient precision, and because models deriving the trade-offs are

lacking. Here critical function analysis offers a way out (de Mazancourt and Dieckmann 2004; Kisdi

2006, 2015). This method constructs the most extreme trade-off functions in between which the

model yields a certain prediction, capitalizing on the fact that evolutionary branching points and

other evolutionary singularities depend only on local properties of the trade-off function, which can

be parameterised without choosing the shape of the function globally. In TPB, Geritz et al. (2007)

used this technique for the first time, in a model where previous analysis with a specific trade-off

function found no evolutionary branching. The model is not accessible for mathematical analysis

because the population dynamic attractor is a limit cycle, which cannot be obtained explicitly; yet

Geritz et al. (2007) proved that evolutionary branching is possible and characterised the trade-off

functions that lead to evolutionary branching.
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The dark side: Evolutionary suicide

In stark contrast to diversification, adaptive dynamics also predicts that species can evolve to their

own extinction. Evolutionary suicide occurs when the evolving trait passes through a catastrophic

bifurcation of population dynamics, whereby the population crashes to extinction (Gyllenberg and

Parvinen 2001; reviewed in TPB by Dieckmann and Metz 2006). Note the difference between suicide

and murder: In polymorphic populations, the evolution of one strain can push another to extinction

(as in Geritz et al. 1999 discussed above), but in evolutionary suicide, natural selection in the focal

strain leads to its own demise.

The first example of evolutionary suicide I am aware of was published in TPB, by Matsuda and

Abrams (1994). Though they did not use the name, they described the phenomenon in a simple,

transparent model of a prey exploited by a fixed number of predators. If all prey individuals are

active and thus accessible for the predators, then the predator functional response is saturated and

the per capita risk of being killed is low (to put it simply, I am safe because the predators are busy

eating others). Low per capita mortality coupled with the high fecundity of active foragers ensures

that the prey population equilibrates at a high density, maintaining predator saturation. However,

natural selection can still favour prey with a less active lifestyle, hiding from the predator instead of

foraging. For an active individual, the risk of attack increases when the others are hiding, because

then the predators are less saturated; and for the population, the equilibrium density decreases. In

turn, the higher predation risk further selects the prey to hide rather than forage. A vicious circle

thus starts as more and more predators are free to search for fewer and fewer active prey, ever

increasing the selection pressure towards hiding. Eventually, the prey population becomes too

inactive for reproduction to balance mortality. As population size falls, the risk of predation further

increases, leading to extinction through a fold bifurcation of prey density.

A probabilist's view

Evolution ultimately depends on the appearance of random mutations. In a finite world, the

ecological dynamics are also stochastic. By taking appropriate limits of large population size and

infrequent small mutations (Metz et al. 1996), however, adaptive dynamics retains only one

significant source of randomness, the demographic stochasticity of new mutants. New mutations are

initially present in a single copy, and their invasion probabilities influence evolution as described by

the canonical equation of adaptive dynamics (Dieckmann and Law 1996; Durinx et al. 2008; see Box
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1). Different limits of the demographic rates and of the size and frequency of mutations, however,

yield very different evolutionary models, including deterministic and stochastic integro-differential

equations and diffusion processes. Champagnat et al. (2006) gave an excellent summary of these in

TPB, reviewing also the authors' previous work on the probabilistic foundation of adaptive dynamics.

Finite population size is an obvious obstacle to diversification, as genetic drift tends to eliminate

variation. Under disruptive selection, however, diversification can increase population size, which

makes further diversification more likely; and conversely, low diversity implies small population size,

hindering diversification. Debarre and Otto (2016) showed in TPB a regime of bistability, with

stochastic oscillations between states of high and low variance, which separates populations too

small to undergo evolutionary branching from those large enough to branch as predicted by the

deterministic theory of adaptive dynamics.

Coexistence

The question of diversification is intimately connected with the question of coexistence. In

particular, the theory of limiting similarity appears to be in conflict with evolutionary branching. The

theory of limiting similarity posits that coexisting strains or species must have sufficiently

differentiated traits, so that they use different resources or fill different niches, to escape

competitive exclusion. If similar strains cannot coexist, how can diversity evolve through initially

small differences? The answer is in a landmark paper in TPB, where Meszéna et al. (2006, see also

Barabás et al. 2014) showed that limiting similarity is a problem of robustness rather than of

existence. They showed that a coexistence equilibrium exists for any strains, however similar; but

only for a narrow set of ecological parameters. The ecological parameters include the evolving traits

themselves. In agreement with limiting similarity, a given pair of similar strains will not coexist unless

the environment is fine-tuned for coexistence (which is unlikely to happen in nature). However, in

any given environment, the adaptive dynamics of the traits can lead to those specific values, i.e., to

the evolutionary singularities, where coexistence and evolutionary branching are possible.

In the parallel world of population genetics, limiting similarity went under disguise. Classic models of

multiple niche polymorphism predicted that genetic variability can be maintained if different alleles

are favoured in different niches such as different subpopulations, but the same models found lack of

robustness under weak selection (e.g. Hoekstra et al. 1985; see also Bürger in this issue). Since

selection is necessarily weak if the alleles have similar effects, this result directly corresponds to
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limiting similarity sensu Meszéna et al. (2006). Evolutionary branching can nevertheless produce

multiple niche polymorphisms robustly, by first evolving the allelic effects to the point where the

conditions for polymorphism are just right (Kisdi and Geritz 1999).

For half a century, ecologists and population geneticists used models related to multiple niche

polymorphism to study how spatial and temporal variability can maintain diversity. Using adaptive

dynamics, this work has recently been synthesized and vastly expanded to allow for arbitrary

patterns of spatiotemporal variation by Svardal et al. (2015), the first winner of TPB's Feldman Prize

(announced in Rosenberg 2018).

Beyond invasion

Adaptive dynamics has invaded the scientific landscape as a powerful tool to study evolution by

natural selection (see https://www.mv.helsinki.fi/home/kisdi/addyn.htm for a wider selection of

adaptive dynamics papers, including many more in TPB). Where does this invasion lead to? Adaptive

dynamics will not obey one of its own theorems, usually paraphrased as invasion implies fixation

(Geritz 2005), because it is not a small mutation away from other conceptual frameworks used to

model evolution. On the one hand, adaptive dynamics simplifies ruthlessly by assuming clonal

inheritance instead of taking on the intricacies of multilocus population genetics (see Bürger in this

issue), and while it investigates diversification, it usually ignores the question of reproductive

isolation leading to speciation. On the other hand, adaptive dynamics takes ecology seriously, and

derives natural selection directly from differential population growth in possibly complex ecological

systems. Doing so has led us to realize that selection is frequency dependent as a rule. This implies

rich dynamics and explains how ecological interactions promote the evolution of diversity, including

diversity that may be conducive to speciation.

While adaptive dynamics offers a handy toolkit to analyse concrete models of interest, much is still

to be done especially for multidimensional and function-valued traits. For evolutionary branching in

higher-dimensional trait spaces, only sufficient (but not necessary) conditions are known (Geritz et

al. 2016). For function-valued traits, the canonical equation has been derived (Metz et al. 2016), but

strong convergence stability (see Box 1) and evolutionary branching are open problems.



8

Acknowledgements. I am grateful for the editorial comments of Noah Rosenberg and I acknowledge

financial support from the Academy of Finland through the Centre of Excellence in Analysis and

Dynamics Research.

References

Barabás Gy., G. Meszéna & A. Ostling. 2014. Fixed point sensitivity analysis of interacting structured
populations. Theor. Pop. Biol. 92: 97-106.

Brown J.S. & T. L. Vincent. 1987. A theory for the evolutionary game. Theor. Pop. Biol. 31: 140-166.

Bürger R. 2020. Multilocus population-genetic theory. Theor. Pop. Biol., this issue.

Champagnat N., R. Ferriere & S. Méléard. 2006. Unifying evolutionary dynamics: From individual
stochastic processes to macroscopic models. Theor. Pop. Biol. 69: 297-321.

Christiansen F. B. & V. Loeschcke. 1980. Evolution and intraspecific exploitative competition. I. One
locus theory for small additive gene effects. Theor. Pop. Biol. 18: 297-313.

Christiansen F. B., V. Loeschcke. 1987. Evolution and intraspecific competition III. One-locus theory
for small additive gene effects and multidimensional resource qualities. Theor. Pop. Biol. 31: 33-46.

Debarre F. & S. P. Otto. 2016. Evolutionary dynamics of a quantitative trait in a finite asexual
population. Theor. Pop. Biol. 108: 75-88.

Dieckmann U. & R. Law. 1996. The dynamical theory of coevolution: A derivation from stochastic
ecological processes. J. Math. Biol. 34: 579-612.

Dieckmann U. & J. A. J. Metz. 2006. Surprising evolutionary predictions from enhanced ecological
realism. Theor. Pop. Biol. 69: 263-281.

Durinx M., J. A. J. Metz & G. Meszéna. 2008. Adaptive dynamics for physiologically structured
population models. J. Math. Biol. 56: 673-742.

Eshel I. 1983. Evolutionary and continuous stability. J. theor. Biol. 103: 99-111.

Eshel I. & U. Motro. 1981. Kin selection and strong evolutionary stability of mutual help. Theor. Pop.
Biol. 19: 420-433.

Eshel I., U. Motro & E. Sansone. 1997. Continuous stability and evolutionary convergence. J. theor.
Biol. 185: 333-343.

Geritz S. A. H. Resident-invader dynamics and the coexistence of similar strategies. J. Math. Biol. 50:
67-82.

Geritz S. A. H., E. Kisdi, G. Meszéna & J. A. J. Metz. 1998. Evolutionarily singular strategies and the
adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35-57.



9

Geritz S. A. H., E. Kisdi & P. Yan. 2007. Evolutionary branching and long-term coexistence of cycling
predators: Critical function analysis. Theor. Pop. Biol. 71: 424-435.

Geritz S. A. H., E. van der Meijden & J. A. J. Metz. 1999. Evolutionary dynamics of seed size and
seedling competitive ability. Theor. Pop. Biol. 55: 324-343.

Geritz S. A. H., J. A. J. Metz & C. Rueffler. 2016. Mutual invadability near evolutionarily singular
strategies for multivariate traits, with special reference to the strongly convergence stable case. J.
Math. Biol. 72: 1081-1099.

Gyllenberg M. & K. Parvinen. 2001. Necessary and sufficient conditions for evolutionary suicide. Bull.
Math. Biol. 63: 981-993.

Hoekstra R. F., R. Bijlsma & J. Dolman. 1985. Polymorphism from environmental heterogeneity:
Models are only robust if the heterozygote is close in fitness to the favoured homozygote in each
environment. Genet. Res. Camb. 45: 299-314.

Kisdi E. 2006. Trade-off geometries and the adaptive dynamics of two co-evolving species. Evol. Ecol.
Res. 8: 959-973.

Kisdi É. 2015. Construction of multiple trade-offs to obtain arbitrary singularities of adaptive
dynamics. J. Math. Biol. 70: 1093-1117.

Kisdi E. & S. A. H. Geritz. 1999. Adaptive dynamics in allele space: Evolution of genetic polymorphism
by small mutations in a heterogeneous environment. Evolution 53: 993-1008.

Loeschcke V. & F. B. Christiansen. 1984. Evolution and intraspecific exploitative competition. II. A
two-locus model for additive gene effects. Theor. Pop. Biol. 26: 228-264.

de Mazancourt C. & U. Dieckmann. 2004. Trade-off geometries and frequency-dependent selection.
Am. Nat. 164: 765-778.

Matsuda H. & P. A. Abrams. 1994. Timid consumers: Self-extinction due to adaptive change in
foraging and anti-predator effort. Theor. Pop. Biol. 45: 76-91.

Meszéna G., M. Gyllenberg, F. J. Jacobs & J. A. J. Metz. 2006. Link between population dynamics and
dynamics of Darwinian evolution. Phys. Rev. Letters 95: 078105.

Meszéna G., M. Gyllenberg, L. Pásztor & J. A. J. Metz. 2006. Competitive exclusion and limiting
similarity: A unified theory. Theor. Pop. Biol. 69: 68-87.

Metz, J. A. J., S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, and J. S. van Heerwaarden. 1996. Adaptive
dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: S. J. van
Strien, and S. M. Verduyn Lunel (eds.): Stochastic and spatial structures of dynamical systems. North
Holland, Amsterdam, The Netherlands, pp. 183-231.

Motro U. 1982. Optimal rates of dispersal. I. Haploid populations. Theor. Pop. Biol. 21: 394-411.

Rosenberg N. 2018. Editorial: The 2018 Marcus W. Feldman Prize in Theoretical Population Biology.
Theor. Pop. Biol. 119: 1-2.



10

Svardal H., C. Rueffler & J. Hermisson. 2015. A general condition for adaptive genetic polymorphism
in temporally and spatially heterogeneous environments. Theor. Pop. Biol. 99: 76-97.

Taylor P. D. 1989. Evolutionary stability in one-parameter models under weak selection. Theor. Pop.
Biol. 36: 125-143.

Van Cleve J. 2020. Synthesis in evolutionary game theory, kin selection, and population genetics.
Theor. Pop. Biol., this issue

Vincent T. L., Y. Cohen & J. S. Brown. 1993. Evolution via strategy dynamics. Theor. Pop. Biol. 44:
149-176.



11

Box 1. Key definitions in adaptive dynamics

Invasion fitness: ( )x muts x is the long-term, time-averaged exponential growth rate of a mutant strain

with trait value mutx in the resident population of strain x. The trait value may be a scalar or a vector.

Since the resident strain has zero long-term growth, ( ) 0xs x = .

Pairwise invasibility plot (PIP): sign plot of ( )x muts x  for scalar-valued traits (see Figure 1).

Figure 1. Examples of key graphics in adaptive dynamics. (a) Pairwise
invasibility plot (PIP). In the dark-shaded areas marked with "+", the invasion
fitness is positive and therefore the mutant can invade; in the unshaded
areas marked with "-", the mutant dies out. The white arrows indicate
evolution by invasion and substitution of mutants, and the filled circle marks
the singularity. In this figure, the singularity is convergence stable (arrows)
but not evolutionarily stable ("+" above and below the singularity shows that
it can be invaded), i.e., it is an evolutionary branching point. This figure is a
schematic illustration. (b) Evolutionary branching as seen in a simulation
(based on the haploid version of the Levene model in Kisdi and Geritz 1999).

Selection gradient: [ ]( ) / mut xmut xD x s x
=

= ¶ ¶ . To first order, invasion fitness is given by

( )2( ) ( )( ) ( )x mut mut muts x D x x x O x x= - + -  so that, for scalar traits, a mutant with trait value higher

(lower) than the resident can invade if the selection gradient is positive (negative).

Singularity: a trait value x* is singular if ( *) 0D x = .
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Invasion implies fixation theorem: Away from singularities and assuming mutations of small effect,

invasion implies that the mutant spreads to fixation and thus substitutes the former resident (Geritz

2005). By repeated mutations and substitutions, scalar traits evolve in the direction of the selection

gradient.

Convergence stability for scalar traits: a singularity x* is convergence stable if a sequence of

invasion-substitution events starting from its neighbourhood leads closer to x*; this is the case if

'( *) 0D x < .

Evolutionary stability: a singularity x* is evolutionarily stable (ESS) if no mutation of small effect can

invade a resident population with trait x*; this is the case if 2 2

*
/ 0mut xmut x x

s x
= =

é ù¶ ¶ <ë û  (scalar traits) or

if the Hessian matrix is negative definite (vector-valued traits).

Evolutionary branching point for scalar traits: a singularity that is convergence stable but not

evolutionarily stable (Geritz et al. 1998; see Figure 1).

Canonical equation of adaptive dynamics: trait dynamics in the limit of infinitesimally small

mutations, given by ( ) ( )x K x D x=&  (Dieckmann and Law 1996; Durinx et al. 2008). The positive

speed constant K(x) depends on the rate and size of mutations and on the demography of the resident

population; to first order in mutation effect size, the probability that an advantageous mutation

invades in the face of demographic stochasticity is proportional to D(x). For vector-valued traits, the

selection gradient is a vector and K(x) is a positive definite matrix, which depends on the covariances

between the effects of a mutation on the elements of the trait vector.

Strong convergence stability for vector-valued traits: the singularity x* is an asymptotically stable

fixed point of the canonical equation irrespective of the choice of the positive definite matrix K(x*),

i.e., irrespective of the (usually poorly known) mutational covariances.


