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ABSTRACT 

Maternal depression and anxiety during pregnancy may present risks for 

the developing fetus and offspring lifelong physical and mental health. 

Exposure to postnatal early life stress (ELS) has also been extensively 

associated with health problems decades later. According to the 

Developmental Origins of Health and Disease (DOHaD) hypothesis, 

environmental factors during pregnancy and early childhood may 

compromise the development of tissue, organs and systems, such as 

hypothalamic-pituitary-adrenal (HPA) axis. While the underlying biological 

mechanisms are not fully understood, epigenetic alterations and genetic 

vulnerability are the promising biomarkers, which have been suggested to 

mediate the association of antenatal and early adversity with physical and 

mental health later in life. 

The aim of this work was to examine whether exposure to maternal 

antenatal depression and anxiety was associated with polyepigenetic 

modifications in their children reflected by the polyepigenetic biomarkers of 

child’s epigenetic gestational age (GA) and glucocorticoid (GC) exposure score. 

Additionally, it explored whether these modifications were associated with 

and mediated the effects of antenatal exposures on child mental health 

outcomes and whether the associations were moderated by child’s sex. As 

epigenetic processes undergo age-related changes, the next aim was to study 

whether epigenetic modifications reflected by the polyepigenetic biomarker of 

epigenetic clock were associated with physical growth, neuroendocrine 

functioning, cognition and mental health in adolescents. Finally, this thesis 

also examined whether genetic variants in FKBP5, the gene that plays a role in 

the HPA-axis regulation, interacted with exposure to ELS in prediction of type 

2 diabetes (T2D), cardiovascular disease (CVD), and quantitative glycemic 

traits in older adults.  

The participants for the studies come from three prospective cohorts.  

Studies I and II capitalize on the Prediction and Prevention of Preeclampsia 

and Intrauterine Growth Restriction (PREDO) birth cohort. We had full 

information on genome-wide methylation and genotype from 817 fetal 

umbilical cord blood samples. In Study I, 694 mothers provided information 

on their history of depression diagnosed before pregnancy, 581 completed the 

Center for Epidemiological Studies Depression Scale (CES-D) throughout 

pregnancy, and 407 completed the Child Behavior Checklist (CBCL) at child’s 

mean age 3.7 years. DNA methylation (DNAm) GA of fetal cord blood DNA 

was based on the methylation profile of 148 selected CpG sites. Polyepigenetic 

biomarker of child’s epigenetic GA was calculated as the arithmetic difference 

between DNAm GA and chronological GA and adjusted for chronological GA. 

In Study II, we had information on child diagnoses of mental and behavioral 

disorders and the number of days the child had been receiving in- or 
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outpatient treatment for these disorders as the primary diagnosis from birth 

to age 7.1-10.7 years (n=814). Mothers (n=583) reported depressive and 

anxiety symptoms during pregnancy, using CES-D and State Anxiety 

Inventory (STAI), respectively. A weighted cross-tissue polyepigenetic GC 

exposure score was calculated based on the methylation profile of 24 CpGs.  

Study III was based on the Glycyrrhizin in Licorice (Glaku) cohort. We had 

information available on DNA samples, physical growth and pubertal 

development, cognitive abilities, psychiatric problems assessed by mothers 

with CBCL questionnaire, and saliva samples to estimate cortisol levels for a 

subsample adolescents at the mean age of 12.3 (n=239). DNAm age was 

estimated using the Horvath age estimation algorithm. The polyepigenetic 

biomarker of epigenetic clock was calculated as the unstandardized residual 

from a linear regression of DNAm age on chronological age and six cell count 

types. 

For Study IV, a total of 1,728 Helsinki Birth Cohort Study (HBCS) 

participants born from 1934 to 1944 were genotyped for FKBP5 SNPs 

(rs1360780, rs9394309, rs9470080) and were administered a 2-hour (75 g) 

oral glucose tolerance test (OGTT) and a questionnaire on physician-

diagnosed and medication use for chronic diseases at a mean age of 61.5 years. 

Of them, 273 were exposed to ELS defined as separation from biological 

parents at a mean age of 4.7 years due to evacuations during World War II.  

In Study I we found that lower child’s epigenetic GA at birth was 

significantly associated with maternal history of depression diagnosed before 

pregnancy and higher antenatal depressive symptoms. It also prospectively 

predicted child’s total and internalizing problems in early childhood, partially 

mediating the association of maternal antenatal depression with child 

internalizing problems, although only in boys. It may signal about their 

developmental vulnerability to maternal depression during pregnancy (Study 

I). In Study II we show that while polyepigenetic GC exposure score at birth 

was not predictive of higher risk for any mental and behavioral disorder in 

childhood, lower score was associated with more days spent in in- or 

outpatient treatment for any mental and behavioral disorder as the primary 

diagnosis. This finding may contribute to better understanding and 

identification of children at risk for more severe mental and behavioral 

disorders already at birth (Study II). Next, we demonstrate that adolescents 

with epigenetic clock age acceleration (AA) displayed more advanced physical 

growth and development, had higher salivary cortisol upon awakening and 

higher odds for displaying borderline clinically significant internalizing 

problems, which may index risk of earlier aging and age-related diseases 

(Study III). Finally, Study IV revealed that three selected FKBP5 

polymorphisms moderated the association of ELS on insulin and glucose 

values at fasting state and/or during an OGTT in late adulthood, supporting 

the role of gene-environment interaction and HPA axis dysregulation in the 

development of metabolic disorders. 
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These study findings provide valuable insights on how the polyepigenetic 

biomarkers of antenatal adverse exposures and aging and biomarkers of 

genetic vulnerability in combination with the information about ELS might 

contribute to early identification of individuals at risk for complex mental and 

physical disorders enabling timely targeted preventive and therapeutic 

interventions. 
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TIIVISTELMÄ 

 

Developmental Origins of Health and Disease (DOHaD)-hypoteesin 

mukaan raskaudenaikaiset ja varhaislapsuuden ympäristötekijät voivat 

vaikuttaa kudosten, elinten ja elimistön säätelyjärjestelmien, kuten 

hypotalamus-aivolisäke-lisämunuainen -akseli (HPAA) toimintaan 

pitkälläkin aikajänteellä. Esimerkiksi raskaudenaikainen masennus ja 

ahdistus voivat haitata sikiön kehittymistä ja lisätä terveysongelmien riskiä 

syntymän jälkeen. Myös varhaislapsuuden stressi voi lisätä terveysongelmien 

riskiä. Epigeneettiset muutokset ja geneettinen vaihtelu ovat lupaavia 

biomarkkereita, joiden on ehdotettu välittävän ja muokkaavan sikiöaikaisten 

ja varhaislapsuuden ympäristövaikutusten yhteyksiä fyysiseen ja henkiseen 

terveyteen myöhemmässä elämässä.  

Tämän työn tarkoituksena oli tutkia, liittyykö altistuminen 

raskaudenaikaiselle masennukselle ja ahdistukselle kahteen lapsen 

epigeneettiseen biomarkkeriin: epigeneettiseen gestaatioikään ja 

glukokortikoidialtistuksesta kertovaan epigeneettiseen indikaattoriin. Lisäksi 

työssä selvitettiin, välittyikö raskaudenaikaisten altisteiden vaikutus lasten 

mielenterveyteen näiden biomarkkereiden kautta. Seuraavana tavoitteena oli 

tutkia kolmannen epigeneettisen biomarkkerin, epigeneettisen kellon, 

yhteyksiä fyysiseen kasvuun, neuroendokriinisiin vasteisiin, kognitiivisiin 

kykyihin ja mielenterveyteen murrosikäisillä. Lopuksi tässä opinnäytetyössä 

tutkittiin myös HPAA säätelyssä olennaisen FKBP5 geenin varianttien ja 

varhaisen stressin yhteisvaikutusta insuliini- ja glukoositasoihin sekä tyypin 2 

diabetekseen ja sydän- ja verisuonitauteihin myöhäisessä aikuisuudessa. 

Tutkimuksiin osallistujat tulevat kolmesta prospektiivisesta kohortista. 

Osatutkimukset I ja II hyödynsivät PREDO syntymäkohortin aineistoa. Tähän 

kuuluu genominlaajuinen metylaatio- ja genomiaineisto 817:sta 

napaverinäytteestä. Osatutkimuksessa I, 694:ltä äidiltä oli lisäksi tieto 

masennusdiagnoosista ennen raskautta, 581 täytti CES-D 

masennusoirekyselyn raskauden aikana ja 407 täytti CBCL-kyselyn lapsen 

käyttäytymis- ja tunneongelmista kun lapset olivat keskimäärin 3.7 -vuotiaita. 

Epigeneettinen gestaatioikä eli määriteltiin 148 napaveren DNA:n 

metylaatiokohdan (CpG) perusteella. Tutkimuksessa II aineistona oli lasten 

mielenterveys- ja käyttäytymishäiriöiden diagnoosit sekä niiden päivien 

lukumäärästä, jolloin lapsi oli ollut näiden sairauksien takia avo- tai 

sairaalahoidossa syntymästä 7.1 - 10.7 vuoden ikään saakka (n = 814). Äidit 

raportoivat myös raskaudenaikaisen masennusoireensa CES-D kyselyllä 

ahdistuksensa STAI kyselyllä (n = 583). Glukokortikoidialtistuksesta kertova 

epigeneettinen biomarkkeri laskettiin 24 CpG:n metylaatioprofiilin 

perusteella. 
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Tutkimus III perustui Glaku -kohortin aineistoon. Aineistona oli DNA-

näytteet, fyysinen kasvu ja murrosiän kehitys, kognitiiviset kyvyt, CBCL-

kyselylomakkeella raportoidut käyttäytymis- ja tunneongelmat ja 

sylkinäytteistä määritetty kortisolipitoisuus keskimäärin 12.3 -vuoden iässä (n 

= 239). Epigeneettinen ikä arvioitiin Horvathin algoritmilla.  

Tutkimuksessa IV määritettiin FKBP5 geenin variantit (rs1360780, 

rs9394309, rs9470080) n=1728 HBCS -tutkimukseen osallistuneelta vuosina 

1934–1944 syntyneeltä. Heille tehtiin myös 2-tunnin (75 g) sokerirasitustesti 

ja he raportoivat lääkärin diagnosoimista kroonisista sairauksista ja 

lääkkeidenkäytöstä keskimäärin 61.5 vuoden iässä. Tutkittavista 273 oli 

altistunut varhaiselle stressille, joka märiteltiin eroksi biologisista 

vanhemmista 2. maailmansodan aikana tapahtuneen evakuoinnin (sotalapsi) 

vuoksi keskimäärin 4.7 vuoden iässä. 

Tutkimuksessa I havaitsimme, että matalampi lapsen epigeneettinen 

gestaatioikä, suhteessa kronologiseen gestaatioikään syntymähetkellä liittyi 

ennen raskautta diagnosoituun äidin masennukseen ja raskausaikaisiin 

masennusoireisiin. Se ennusti myös lapsen käyttäytymis- ja tunneongelmia 

varhaislapsuudessa sekä välitti osittain äidin masennuksen yhteyttä lapsen 

tunneongelmiin, erityisesti pojilla. Tutkimuksessa II osoitimme, että 

glukokortikoidialtistuksesta kertovan epigeneettisen indikaattorin matalmpi 

taso liittyi lapsen mielenterveyden ja käyttäytymishäiriön vuoksi sairaalassa 

tai avohoidossa vietetyn hoitojakson pituuteen. Tutkimuksessa III osoitimme, 

että korkeampi epigeneettinen ikä suhteessa kronologiseen ikään, oli 

yhteydessä fyysiseen kasvuun ja kehitykseen, korkeampiin syljen 

kortisolitasoihin heräämisen jälkeen ja lievien internalisoivien ongelmien 

korkeampaan riskiin. Lopulta Tutkimuksessa IV osoitimme, että kolme 

FKBP5-varianttia muokkasi varhaislapsuuden stressikokemuksen yhteyttä 

korkeampiin paaston- ja/tai sokerirasituksen jälkeisiin insuliini- ja 

glukoosiarvoihin myöhäisessä aikuisiässä. 

Nämä tutkimustulokset antavat arvokasta tietoa siitä, kuinka raskauden- 

tai lapsuuden aikaisten altistusten tai ikääntymisen epigeneettiset 

biomarkkerit ja geneettiset biomarkkerit yhdessä varhaista stressiä kuvaavan 

tiedon kanssa voivat auttaa tunnistamaan ajoissa ne henkilöt, joilla on 

kohonnut riski mielenterveyden ongelmille tai fyysisille sairauksille. 

Tunnistaminen mahdollistaa ennaltaehkäisevien toimenpiteiden 

kohdentamisen oikea-aikaisesti jopa vuosikymmeniä ennen oireiden 

ilmaantumista.  
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ABBREVIATIONS 

11β-HSD2  11 β Hydroxysteroid Dehydrogenase Type 2 Enzyme 

AA  Age Acceleration 

ACTH  Adrenocorticotropic Hormone 

ADHD  Attention Deficit/Hyperactivity Disorder 

AUC  Area Under the Curve 

AVP  Arginine Vasopressin 

β  Standardised Beta Coefficient 

B  Unstandardised Beta Coefficient 

BDI-II  Beck Depression Inventory–II 

BMI  Body Mass Index  

BMIQ  Beta-Mixture Quantile 

CBCL  Child Behavior Checklist 

CES-D  Center for Epidemiological Studies Depression Scale 

CI  Confidence Interval 

CNS  Central Nervous System 

CpG  Cytosine Linked to Guanine by Phosphate 

CRH  Corticotropin-Releasing Hormone 

CRHBP  Corticotrophin Releasing Hormone Binding Protein 

CRHR1  Corticotrophin Releasing Hormone Receptor 1 

CRHR2  Corticotrophin Releasing Hormone Receptor 2 

CVD  Cardiovascular Disease 

DEX  Dexamethasone 

DNA  Deoxyribonucleic Acid 

DNAm  Deoxyribonucleic Acid Methylation 

DOHaD  Developmental Origins of Health and Disease 

DSM-IV Diagnostic and Statistical Manual of Mental 

Disorders (4th edition) 

ELS  Early Life Stress 

FKBP5  FK506 binding protein 51  

GxE  Gene – Environment Interaction  

GA  Gestational Age 

GC  Glucocorticoid 

GLAKU  Glycyrrhizin in Licorice Cohort 

GLM  Generalized Linear Models 

GR  Glucocorticoid Receptor 

GRE  Glucocorticoid Response Element 

HbA1c   Hemoglobin A1c Protein 

HBCS  Helsinki Birth Cohort Study 

HOMA-IR  Homeostasis Model Assessment Method 

HPA axis  Hypothalamic-Pituitary-Adrenal Axis 

IFG  Impaired Fasting Glucose 
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IGT  Impaired Glucose Tolerance 

IQ  Intelligence Quotient 

ISI  Insulin Sensitivity Index 

IUGR  Intrauterine Growth Restriction 

LD  Linkage Disequilibrium 

LDL  Low-Density Lipoproteins 

M  Mean 

MAF  Minor Allele Frequency 

MD  Mean Difference 

MDD  Major Depressive Disorder 

MDS  Multi-Dimensional Scaling 

MPIP  Max Planck Institute of Psychiatry Cohort 

MR  Mineralocorticoid Receptor 

NR3C1 Nuclear Receptor Subfamily 3 Group C Member 1 

Gene 

NR3C2 Nuclear Receptor Subfamily 3 Group C Member 2 

Gene 

OGTT  Oral Glucose Tolerance Test 

p  Probability 

PC  Principal Component 

PDS  Pubertal Development Scale 

PREDO Prediction and Prevention of Preeclampsia and 

Intrauterine Growth Restriction Study 

PTSD  Posttraumatic Stress Disorder 

PVN  Paraventricular Nucleus 

SD  Standard Deviation 

SES  Socioeconomic Status 

SNP  Single-Nucleotide Polymorphism  

STAI  State Anxiety Inventory 

T2D  Type 2 Diabetes Mellitus 

WHO  World Health Organization 

WWII  World War II 

ZINB  Zero-Inflated Negative Binomial Regression 
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1 INTRODUCTION 

Fetal exposure to prenatal stress, including maternal depression and 

anxiety, is highly prevalent. It has been estimated that 1 in 10 women has a 

major depressive disorder diagnosis, 1 in 5 reports clinically relevant 

depressive symptoms and 1 in 4 reports clinically relevant anxiety symptoms 

during pregnancy (1–3). Mounting evidence indicates that these maternal 

mental health problems not only complicate her well-being and health during 

pregnancy, but they may also present harm for the offspring physical and 

mental health (4–7). 

These findings are compatible with the Developmental Origins of Health 

and Disease (DOHaD) framework. According to this framework, fetal 

exposure to environmental adversities may alter the fetal developmental 

milieu in ways that may harm rapidly developing organs and physiological 

feedback systems and thereby increase risk for physical and mental health 

problems in later life (8).  

While the biological mechanisms that mediate these associations still 

remain unclear, it has been suggested that they may become embedded in fetal 

epigenetic modifications, such as modifications in fetal DNA methylation 

(DNAm) (9–11). Studies that would have tested prenatal stress exposure and 

modifications in DNAm or that would have tested associations between these 

modifications with child mental health are, however, scanty and most of the 

existing studies are limited to examining DNAm of a few candidate genes. 

Large-scale epigenome-wide association studies have been emerging. 

However, they require large sample sizes, with pooling and harmonizing data 

from various cohorts. An alternative approach is to identify and study 

polyepigenetic scores of biomarkers of risk. However, only a few studies have 

exploited this approach in this context (12–14).  

In this thesis, I focused on two such novel polyepigenetic risk scores based 

on fetal cord blood DNAm, namely the child epigenetic gestational age (GA) 

(15) and the polyepigenetic glucocorticoid (GC) exposure score (13). In Study 

I, I explored whether maternal depression during pregnancy was associated 

with child epigenetic GA at birth. I also examined whether it was associated 

with and mediated the associations of maternal depression during pregnancy 

with child psychiatric problems and whether the associations were moderated 

by child’s sex. In Study II, I examined whether the polyepigenetic GC exposure 

score at birth was associated with any mental and behavioral disorder 

diagnosis in childhood and its severity and whether this polyepigenetic 

biomarker mediated the associations of maternal depressive and anxiety 

symptoms during pregnancy and the child mental health outcomes.  

As DNAm undergoes age-related changes (16), which are now recognized 

as a hallmark of the aging process, in Study III I also explored if another 

polyepigenetic biomarker, namely the epigenetic clock of aging (17) measured 
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from peripheral blood DNAm, was associated with physical growth, 

neuroendocrine functioning, cognition and mental health in adolescents. 

Apart from prenatal stress, exposure to early life stress (ELS), such as 

abuse, neglect, maltreatment, and separation from parents, constitutes a 

major public health and social welfare problem. More than 25% of adults 

worldwide report being physically abused as a children (18), up to 30% of girls 

and 15% of boys are exposed to sexual abuse in high-income countries (19). 

Millions of children get separated from their parents or primary caregivers due 

to conflict, population displacement and other emergencies worldwide (20).  

In a series of studies exposure to ELS has been associated with mental 

health outcomes (21,22) and this association has been shown to be moderated 

by genetic variants in the FKBP5 gene associated with hypothalamic-pituitary-

adrenal (HPA) axis functioning (23–25). However, it remains uncertain 

whether ELS is also associated with physical health outcomes and whether this 

association may be moderated by variants in the FKBP5 gene. Hence, in Study 

IV of this thesis I also explored if ELS, defined here as temporary separation 

from both biological parents due to child evacuations during World War II 

(WWII), interacted with three selected common FKBP5 polymorphisms in 

predicting cardiovascular disease (CVD), type 2 diabetes (T2D), and 

quantitative glycemic traits in older adults. As candidate gene – environment 

interaction (GxE) studies were demonstrated to have significant limitations 

(26), guidelines of the editorial policy for candidate gene studies (27,28) were 

followed in this study.  
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2 REVIEW OF THE LITERATURE 

2.1 PRENATAL ADVERSITY AND SUBSEQUENT 
HEALTH 

Experiences during prenatal period and early childhood have a profound 

lifelong influence on physical and mental health. Deeper understanding of this 

phenomenon started over 50 years ago, when the British scientists E.M. 

Widdowson and R.A. McCance discovered that rat pups, who were 

undernourished for three weeks after birth, gained weight slower than the 

pups from the control group throughout their lifespan (29). Lack of nutrition 

for three weeks at a later stage of development, contrarily, had no long-term 

effect (29). These experiments shed light both on the lifelong effects of early 

environments and the existence of critical periods of development (30). While 

decades of animal studies were confirming and expanding the early life 

programing theory, it was found essential to understand, to which extent these 

principles could apply to human health and development.  

2.1.1 DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE 

(DOHAD) FRAMEWORK 

In the late 1980s, while studying the geographical differences of coronary 

heart disease mortality rates between England and Wales, Barker and Osmond 

found that these differences were associated with previous differences in 

infant and adult mortality (31). It was the first of the three landmark papers 

published in The Lancet between 1986 and 1993 (31–33), which gave rise to 

fetal origins hypothesis, also known as “Barker’s hypothesis” (8). Following 

the original findings, Barker and colleagues showed that higher risk of death 

from coronary heart disease was associated with lower weight at birth and at 

one year of age (32). The authors suggested that lower birth weight may reflect 

poorer fetal and infant growth environment, which may lead to poorer adult 

environment with higher risk for coronary heart disease (32). The authors 

continued investigating the effects of adverse prenatal environments and 

further suggested that undernutrition in utero may permanently alter glucose 

and insulin metabolism leading to changes in the body’s structure and 

function, predisposing individuals to higher risk for coronary heart disease in 

later life (33).  

These findings stimulated interest in epidemiological studies of prenatal 

adversities in relation to health outcomes across the lifespan. Since reliable 

measurement of the fetal nutrition and environment is technically 

complicated in humans, birth weight, intrauterine growth restriction (IUGR), 

and preterm birth have been extensively used as proxy markers of an adverse 

prenatal environment. Researchers found intriguing associations of birth 
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weight and prematurity with physical health problems decades later, such as 

cardiovascular disease (CVD) (34–37), hypertension (35,37–39), insulin 

resistance and type 2 diabetes (T2D) (37,40), and asthma (41). 

In 2003 at the World Congress on Fetal Origins of Adult Disease in 

Brighton, United Kingdom, Barker’s hypothesis was transformed into 

Developmental Origins of Health and Disease (DOHaD) framework (8). 

Although initially, DOHaD framework focused on prenatal nutrition and 

overlooked other adverse exposures, currently it recognizes a broad scope of 

developmental cues from in utero environment to infancy and beyond with 

long-term health consequences (8). The early life environmental cues may 

include stressful life experiences, namely early life stress (ELS). 

While initial research within DOHaD framework focused on physical 

aging-related and chronic illnesses, individual differences in 

neurodevelopmental, cognitive and mental health outcomes have also been 

linked with birth weight, IUGR and preterm birth  (5,22,42–45).  

It is important to note that along with DOHaD, there are several other 

frameworks suggesting how exposure to stress at different stages of 

development might affect the individual’s health. Lupien et al., for instance, 

proposed the Life cycle model of stress (46), postulating that the effects of 

chronic or repeated exposure to stress (or a single exposure to severe stress) 

at different stages of life depend on the brain areas, which are developing or 

declining most rapidly at the time of the exposure. Another approach is the 

Three-hit model (47), providing an alternate avenue to gain insight into the 

prenatal and ELS pathways to disease. In this model, it is proposed that 

genetic variability (hit 1) in interaction with priming prenatal and/or early life 

adversity (hit 2) influences the response of brain and body following 

significant stress later in life (hit 3). The Three-hit model, hence, emphasizes 

the importance of both genetic and environmental factors in understanding 

the vulnerability to stress-induced physical and mental health problems (48). 

Life History Theory, on the other hand, emphasizes evolutionary perspective 

of socialization and individual reproductive strategy differences (49). It 

postulates that experiences in early life can program an individual’s 

developmental trajectory in order to respond most effectively to the 

environmental demands they are likely to encounter later in life (49,50).  

Notably, all these models are not mutually exclusive, and together may give 

a deeper understanding of the origins of various disorders. However, it is 

important to acknowledge that both strength and limitation of the Life cycle 

model of stress, the Three-hit model and the Life History Theory approaches 

lie in their focus on specific mechanisms and a set of outcomes they address. 

Contrarily, DOHaD framework is more general and may be applied when 

studying a wide range of exposures, biological mechanisms and physical and 

mental health outcomes. Therefore, we selected DOHaD as the principal 

contextual model for the studies included in this thesis, as they address 

adverse exposures during pregnancy and in early childhood, mental and 

physical disorders as outcomes and explore a number of biological 



Review of the literature 

22 

mechanisms that may mediate the associations between those exposures and 

outcomes. 

 

2.1.2 MATERNAL STRESS DURING PREGNANCY AND OFFSPRING 

DEVELOPMENT 

Maternal stress, including mental health problems, during pregnancy are 

among the most common adverse environmental intrauterine exposures. The 

impact of antenatal maternal stress on neurodevelopmental outcomes is well 

established in animal studies (51). Animal models offer the possibility to 

manipulate both prenatal and postnatal environments. Therefore, they allow 

separating the influence of maternal stress during pregnancy on the offspring 

development from genetic and postnatal environmental factors. Cross-

fostering studies, when pups from prenatally stressed dams were placed in 

non-stressed dams’ care, for example, have confirmed the long-term effects of 

prenatal stress on the offspring health and behavior (52).   

The idea that maternal stress during pregnancy might affect the fetus and 

her subsequent physical and emotional development in humans was 

introduced in late 1950s-early 1960s (53). Now we have a significant amount 

of evidence confirming and expanding this idea, despite the challenges of 

drawing causality conclusions in epidemiological settings (51,54). Multiple 

studies have linked maternal antenatal stress with offspring poorer cognitive 

functioning (55), risk for attention deficit/hyperactivity disorder (ADHD) and 

for anxiety and depression (51,56,57). 

Many prospective studies have focused on maternal depression and anxiety 

as antenatal stress exposures, due to high prevalence of these mental health 

problems during pregnancy. Prevalence of clinically significant symptoms of 

depression and anxiety during pregnancy is estimated to vary between 7% to 

20% (2,3). Mounting evidence indicates that these maternal mental health 

problems not only complicate her quality of life and health during pregnancy, 

but they are associated with increased risk of preterm birth, lower birth weight 

and neurodevelopmental adversities of the offspring later in life (4–7,46). 

Infants of mothers with antenatal symptoms of anxiety or depression show 

more difficult/reactive temperament and a higher incidence of sleeping and 

feeding problems (58,59), independent of postnatal maternal mental health 

(60,61).  

In line with these findings, a recent meta-analysis shows that for mothers 

experiencing prenatal depression and anxiety, the odds of having children with 

behavioral difficulties were almost 1.5 to 2 times greater than for those not 

experiencing prenatal distress (7). Children born to mothers reporting higher 

levels of depression and anxiety during pregnancy are at risk for ADHD 

(62,63), internalizing problems (64,65), and sleep disorders (66), with these 

effects continuing into adolescence (67,68) and adulthood (69). In addition, 

neuroimaging studies have shown that maternal depressive and anxiety 
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symptoms during pregnancy are associated with alterations in offspring 

structural and functional brain connectivity across various brain regions and 

networks (9,70).  

Interestingly, the effects of maternal stress exposure during pregnancy, 

and particularly antenatal depression, on offspring developmental outcomes 

have shown sex specificity (71–73). Rodent studies consistently demonstrate 

that maternal stress during pregnancy was associated with long-lasting 

morphological changes in brain structure (74,75) and depression- and anxiety-

like behavioral phenotype (73,75) in male but not in female offspring. 

Evidence in humans, however, indicates that maternal antenatal depression 

was associated with a higher risk of offspring depression at 18 years of age in 

girls only (71). 

In Studies I-II we contribute to this body of literature by exploring the 

association between maternal history of depression before pregnancy and 

antenatal depressive and anxiety symptoms and child psychiatric problems 

and possible role of child’s sex in moderation of these associations. 

2.2 EARLY LIFE STRESS (ELS) AND SUBSEQUENT 
HEALTH  

According to DOHaD hypothesis, the roots of adult disease may also lie 

among disruptions of early stages of development after birth (8,76). The term 

ELS has been used to describe a broad spectrum of adverse exposures during 

prenatal and neonatal life, early and late childhood, and continuing into 

adolescence.  

The most common adversities during childhood and adolescence include 

child physical and sexual abuse, neglect, maltreatment, separation from 

parents, parental loss, and starvation. Experience of such disrupting early life 

adversities constitute a major public health and social welfare problem in the 

general population: according to the World Health Organization (WHO), more 

than 25% of adults worldwide report being physically abused as a children 

(18). During childhood, between 15% and 30% of girls and up to 15% of boys 

are exposed to some type of sexual abuse in high-income countries (19).The 

prevalence for child neglect was estimated at 163/1,000 for physical neglect 

and 184/1,000 for emotional neglect, with no clear gender differences (77). 

Over 700,000 children are reported to be victims of childhood maltreatment 

nationally each year in the United States (78), while in China the pooled 

prevalence of childhood maltreatment was estimated at 64.7% among Chinese 

college students (79).  

ELS may also take the form of separation from one or both parents in 

childhood. In animal studies it is described by maternal separation paradigm, 

which entails early separation of the pups from dams for a long period during 

the first two or three weeks (80). Long-term maternally separated rodents 

consistently show anxiety- and depression-like behaviors, drug-seeking 
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behaviors and neuroendocrine stress-induced responses (81). In humans, 

separation from parents due to war, immigration, natural disasters and other 

life obstacles has been linked with long-term health consequences (82).  

ELS during critical phases of brain development is associated with higher 

levels of imbalance and reduced adaptability to stress in adult life, leading to 

enhanced vulnerability to diseases (83). Mounting evidence indicates a higher 

risk of depression (84,85), posttraumatic stress disorder (PTSD) (86,87), 

personality disorder (88), and overall psychopathology (21,22) in adults 

exposed to ELS in childhood in retrospective and prospective studies (83). 

Furthermore, emerging data suggest that ELS is also associated with chronic 

physical health consequences in adulthood (89,90). Early adversity has been 

linked with increased risk of cardiometabolic illnesses, such as obesity, CVD 

and T2D (91–94).  

We expand this emerging evidence by exploring the association between 

ELS defined as temporary separation from biological parents due to 

evacuation during World War II (WWII) and CVD, T2D, and quantitative 

glycemic traits in Study IV. 

2.3 BIOLOGICAL MECHANISMS MEDIATING PRENATAL 
AND EARLY LIFE ENVIRONMENTAL ADVERSITIES 
ON PHYSICAL AND MENTAL HEALTH OUTCOMES 

The biological mechanisms underlying the associations of adverse fetal and 

early life environment with health and development later in life are not fully 

understood.  

During early stages of development, there are critical periods when tissues 

and organs go through rapid cell division (95). These sensitive periods are also 

characterized by developmental plasticity, where the developing organism is 

susceptible to environmental effects, which may result in phenotypic 

differences between individuals (96). However, the sensitive periods occur 

within a critical developmental stage and are followed by a reduction of 

plasticity, which then results in fixed altered anatomy and/or functioning (34). 

While some changes may be beneficial for the individual to adapt to their 

environment and survive until reproductive age, they may also lead to harmful 

and maladaptive long-term consequences for both mental and physical health, 

especially when the actual environment does not match the predicted 

environment of what the individual has adapted to during early life stages 

(97,98). 

2.3.1 HYPOTHALAMIC-PITUITARY-ADRENAL (HPA) AXIS AS A 

MEDIATOR 

Studies in animals and humans have shown that brain is highly sensitive to 

stress across the lifespan, with particular susceptibility to adverse 
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environmental factors during prenatal and early life (46). It remains uncertain 

how prenatal or early life stress exerts its impact on the developing brain; 

however, it is widely shown that stress triggers the activation of the hormonal 

system known as hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis 

plays a key role in the regulation of cardiovascular, metabolic, reproductive, 

systems as well as emotions and behavior (11). It is one of the main stress 

response pathways and has been studied extensively in relation to physical and 

mental health (43,46,51,83,86,99).  

In order to understand how early life adversity may exert its effect on the 

offspring health via altering HPA axis functioning, it is important to 

understand the HPA axis organization (11,46).  

When the brain detects a threat, a coordinated physiological response is 

activated (Figure 1). 

 

 

Figure 1 Hypothalamic-pituitary-adrenal axis reaction to stress 

The hypothalamic paraventricular nucleus (PVN) initiates an endocrine 

cascade with the release of corticotropin-releasing hormone (CRH) and 

arginine vasopressin (AVP). They trigger the secretion of adrenocorticotropic 

hormone (ACTH), which is released from the anterior pituitary gland into the 

peripheral circulation. When ACTH reaches the adrenal cortex, it responds 

with the release of glucocorticoids (GCs). GCs are the class of steroid 

hormones, which are represented by cortisol in humans. When released, GCs 

act on glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) at 

various levels within the axis. If the perceived stressor recedes, GR and MR 

trigger the feedback loops in the hippocampus in order to inhibit the HPA axis 

activity and return to homeostasis. By contrast, if the GCs activate the 
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receptors of the amygdala, the brain structure involved in fear processing 

(100), the HPA axis response is enhanced in order to deal with the perceived 

stress.  

The stress response orchestrated by the HPA axis is a well-choreographed 

multi-system reaction, involving behavioral, physiological, and metabolic 

responses, with tightly regulated components that need to become activated 

and deactivated in the certain circumstances (101). Thus, it is not surprising 

that disruptions in the biological response to stress can lead to dysregulation 

of neuronal function, behavior, metabolism, cardiovascular and immune 

systems (102). Abnormal functioning of the HPA axis is implicated in a wide 

range of psychiatric illnesses such as depression (23,103), PTSD (104), 

neurodegenerative diseases (105), and anxiety (106). It is further associated 

with inflammation (101), skin disorders (107), cardiometabolic disorders 

(CVD, stroke, hypertension, T2D, and obesity) (108–110), and other chronic 

illnesses (111). 

2.3.1.1 Glucocorticoid (GC) overexposure in utero 

Prenatal programming of the offspring’s HPA axis functioning has been 

extensively investigated. Mounting evidence indicates increased fetal 

exposure to GCs as one of the most plausible underpinning mechanisms 

mediating the negative effects of prenatal stress and altered HPA axis 

functioning (11,46,112,113).  

GCs play a vital role during normal fetal development. During pregnancy 

there is a physiological rise of 2- to 4-fold in maternal GCs that is important 

for proper fetal growth and maturation, particularly for lung function and 

brain development (13,114). However, fetal exposure to excess levels of 

maternal endogenous GCs, namely cortisol, have been associated with 

suboptimal offspring neurodevelopment (43).  

Since GCs have such a potent effect on the developing tissues, fetal 

exposure to GCs is tightly regulated by a number of mechanisms, primarily by 

high expression of a GC barrier enzyme, 11 β hydroxysteroid dehydrogenase 

type 2 (11β-HSD2), in placental and fetal tissues (114). Normally, it converts 

80–90% of active maternal cortisol to its inactive form cortisone (115), which 

is translated in up to 10 times lower cortisol levels in fetus as compared to her 

mother. However, it has been shown that excess maternal GCs due to stress, 

depression and anxiety during pregnancy may downregulate placental 11β-

HSD2, which leads to subsequent fetal overexposure to maternal GCs (Figure 

2) (11,116,117). 
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Figure 2 Maternal-to-fetal transfer of glucocorticoids 

Exposure of the fetus to high levels of GCs, in turn, can permanently alter 

the HPA axis functioning, which is clearly observed in animal studies, with 

similar effects, although less pronounced, described in humans (43,112,117). 

For instance, inhibition or deficiency of placental 11β-HSD2 has been shown 

to reduce hippocampal GR expression (118) but, conversely, increases 

amygdala GR mRNA levels (119). Increased GR expression in the amygdala 

was associated with anxiety-like behavior in rodents, while a reduction in 

hippocampal GR may disrupt the GC negative feedback loop and lead to an 

overactive HPA axis, with both pathways enhancing susceptibility to somatic 

diseases and mental health problems (5,117,119).  

While likely not the sole mechanism explaining the long-term health 

problems following exposure to prenatal maternal stress and 

psychopathology, excessive exposure to GCs above the required physiological 

levels may contribute to the observed  adverse physical and mental health 

outcomes (13). In Studies I and II we explore this question by examining the 

association between maternal depression and anxiety before and during 

pregnancy and child psychiatric problems in their offspring. 

2.3.2 EPIGENETIC ALTERATIONS: DNA METHYLATION 

At the molecular level, epigenetic mechanisms have been suggested to play 

a key role in explaining how prenatal and early life adversity may exert their 

effect on physical and mental health across the lifespan (9–11).  

The term ‘epigenetics’ refers to heritable changes in gene expression 

(activation or silencing) that occur without alterations to the DNA sequence. 
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Epigenetic mechanisms include DNA methylation (DNAm), histone 

modification, and the presence of noncoding RNA; currently, most studies 

have focused on DNAm.  

DNAm refers to the transfer of a methyl (CH3) group from S-adenosyl 

methionine (SAM) to the fifth position of cytosine nucleotides, forming 5-

methylcytosine (5mC) (120). In mammals, most 5mC occurs at nucleic 

sequences in the context of cytosine-phosphate-guanine (CpG) dinucleotides. 

Up to 80% of CpG sites are methylated in human somatic cells, with most 

unmethylated CpG sites clustered in the CpG island located on the promoter 

region of the genes (120). DNAm can change the functional state of regulatory 

gene regions, but it does not change the DNA sequence, thus, presenting the 

classic ‘epigenetic mark’ (121). Accumulating evidence has shown that DNAm 

is functionally involved in many forms of stable epigenetic repression, such as 

imprinting, X chromosome inactivation and silencing of repetitive DNA 

(120,121). 

There is now extensive evidence in humans that methylation levels 

genome-wide in peripheral blood, cord blood as well as in placenta and 

offspring candidate genes involved in GC action are altered by the early life 

environment (112).  

Placental mildly increased DNAm of GC-related genes, such as 11β-HSD2, 

FK506 binding protein 51 gene (FKBP5), and Nuclear Receptor Subfamily 3 

Group C Member 1 gene (NR3C1), has been associated with higher perceived 

maternal prenatal stress (Figure 2); increased DNAm of 11β-HSD2 

and FKBP5, in turn, was associated with reductions in a key fetal coupling, 

indicative of delayed neurobehavioral development  (122). Maternal 

depression has been associated with greater placental DNAm of GR-coding 

NR3C1 and 11β-HSD2 and predicted poorer self-regulation, lower muscle 

tone, and more lethargy in neonates (123).  

Prenatal stress was significantly associated with offspring methylation in 

the NR3C1 exon 1F CpG site 36 methylation in a meta-analysis across 7 studies 

(124). Other stress-related genes which have been investigated in the context 

of prenatal distress and child DNAm include FKBP5, gene for CRH binding 

protein (CRHBP), CRH receptors 1 and 2 (CRHR1 and CRHR2), and the MR-

coding Nuclear Receptor Subfamily 3 Group C Member 2  (NR3C2) (125). 

Overall, however, recent systematic reviews on the effects of maternal prenatal 

depression and anxiety on the offspring methylation status of candidate genes 

indicate that the findings are inconsistent (5,6,124,125).  

Epigenome-wide studies of maternal prenatal stress and psychopathology 

and the offspring DNAm have also yielded mixed findings. While some studies 

identified CpG sites with significantly different DNAm levels in neonates 

exposed to maternal non-medicated depression or anxiety (126) and 

antidepressants in pregnancy (127), others revealed no significant genome-

wide association between maternal depressive symptoms and infant DNAm 

(128). 
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After birth, epigenetic modifications also play a crucial role in the 

interaction of ELS with specific genotypes, as they regulate functional 

expression of genes by decreasing, silencing, or increasing gene expression 

(129). For example, childhood adversity has been shown to interact with 

FKBP5 rs1360780 single nucleotide polymorphism (SNP) and induce its 

demethylation and moderate the risk for PTSD (24,130).  

Epigenome-wide DNAm studies in peripheral tissues following ELS 

exposure have also been conducted. More than 800 differentially methylated 

genes implicated in cellular signaling, immune responses and brain function 

were detected in blood samples from children exposed to institutional 

placement, compared to children raised by their biological parents (131). 

In animals, alterations in DNAm in candidate genes and genome-wide have 

been found in the hypothalamus and hippocampus of the offspring exposed to 

prenatal stress or to synthetic GCs, and in primary neuronal cell line in 

response to synthetic GCs (132,133). While alterations in offspring DNAm in 

candidate genes and genome-wide have been studied also in humans in 

response to maternal prenatal depressive and anxiety symptoms, the pattern 

of findings is highly inconsistent (5,6,125,134). The conflicting findings may 

reflect small sample sizes and studying DNAm in tissues with uncertain 

relevance for offspring neurodevelopment, namely cord or peripheral blood, 

placenta, buccal smear or saliva.  

Therefore, both the candidate gene methylation and large-scale 

epigenome-wide DNAm approaches have their limitations: the former one 

may not reflect the complexity of the prenatal adversity exposure effects on the 

developing epigenome, while the latter requires pooling and harmonizing data 

from multiple cohorts across varying tissue types, exposure and outcome 

measurements. Furthermore, these findings are usually based on the 

retrospective data in populations with established physical and mental health 

problems, limiting the options for prevention and early intervention. 

However, novel DNAm-based polyepigenetic biomarkers calculated at early 

stages of development might address these limitations. 

2.3.2.1 Polyepigenetic fetal GC exposure score 

A recent study identified 496 CpG sites with significant changes in DNAm 

following in utero synthetic GC exposure overlapping between peripheral 

whole blood and hippocampal progenitor cells in the Max Planck Institute of 

Psychiatry (MPIP) cohort (13). Based on these CpGs a cross-tissue weighted 

polyepigenetic GC exposure score was generated, identifying 24 CpG sites in 

fetal cord blood in the Prediction and Prevention of Pre-eclampsia and 

Intrauterine Growth Restriction (PREDO) cohort. Maternal depressive and 

anxiety symptoms during pregnancy were associated with lower 

polyepigenetic GC exposure score of the fetus suggesting that these fetuses 

might be vulnerable for neurodevelopmental adversities later in life (13). 

However, whether the polyepigenetic GC exposure score at birth could predict 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/signal-transduction
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the child neurodevelopmental risk or could be the biomarker, mediating the 

effect of maternal prenatal depression and anxiety on the offspring 

development, remains unknown and we address this knowledge gap in Study 

II. 

2.3.2.2 Polyepigenetic biomarkers of aging: Epigenetic Gestational 

Age (GA) and Epigenetic clock 

DNAm can also be used to generate aggregate markers of aging, such as the 

Hannum (135), the Horvath (17) and the Levine (136) epigenetic age 

predictors. The Hannum age predictor is based on DNAm of 71 CpG sites in 

whole blood of 19- to 101-year-old individuals, demonstrating a median 

absolute difference between DNAm age and actual chronological age of up to 

4.9 years (135). The Horvath age predictor is based on DNAm of 353 CpG sites 

of multiple tissues of 0- to 100-year-old individuals with a median absolute 

difference between DNAm and chronological age of up to 3.5 years (17). Both 

predictors are highly correlated with an individual’s chronological age (r > 

0.91). The Levine age predictor, also known as ‘PhenoAge’, is a newer 

biomarker of aging and is based on the 513 CpG sites in whole blood regressed 

against chronological age and nine markers of phenotypic 

aging: albumin, creatinine, glucose, C-reactive protein, lymphocyte 

percentage, mean cell volume, red blood cell distribution width, alkaline 

phosphatase and white blood cell count (136). In this way, by tapping into 

physiological dysregulation, the Levine clock yielded improved predictions 

for all-cause mortality and age-related diseases compared to the Hannum and 

the Horvath clocks (136). 

The difference between DNAm age and chronological age is called 

‘epigenetic age acceleration’ (AA), which reflects the rate of biological aging, 

with a positive value suggesting older biological age in comparison to 

chronological age. AA, based on these molecular aging biomarkers, has been 

shown to predict disease trajectories and mortality more accurately than 

chronological age (137). A recent systemic review and meta-analysis of studies 

in middle-aged and elderly individuals revealed that the Horvath and the 

Hannum-based measures of AA were associated with an increased risk of 

cancer incidence, CVD (including stroke and coronary heart disease), and all-

cause mortality (138). The meta-analysis also indicated that each 5-year 

increase in DNAm age was associated with an 8 to 15% increased risk of 

mortality (138). Furthermore, AA was associated with higher body-mass index 

(139), menopause (140), chronic inflammation (136,141,142), lower physical 

and cognitive fitness (143), increased risk for Alzheimer’s disease (144) and 

PTSD (145), and lower longevity (146). 

Studies in middle-aged to elderly populations are, however, confounded by 

the often decade-long processes of aging-related disease and aging in itself. 

Therefore, studies of aging should focus on younger groups, when inter-

individual differences in aging trajectories start to emerge, but before most 

https://www.sciencedirect.com/topics/medicine-and-dentistry/albumin
https://www.sciencedirect.com/topics/medicine-and-dentistry/creatinine
https://www.sciencedirect.com/topics/medicine-and-dentistry/alkaline-phosphatase
https://www.sciencedirect.com/topics/medicine-and-dentistry/alkaline-phosphatase
https://www.sciencedirect.com/topics/medicine-and-dentistry/leukocyte
https://www.sciencedirect.com/topics/medicine-and-dentistry/all-cause-mortality
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age-related diseases become manifest (147). Such studies focusing on AA early 

in life are scarce. In one study, which tested associations between the Horvath 

epigenetic age predictor at birth, 7 and 17 years and physical growth and 

development among 400-1000 UK children, found that higher AA at birth 

predicted higher fat mass in childhood and adolescence, faster growth in 

weight and body mass index (BMI), slower growth in fat mass, and higher odds 

of increasing Tanner stage of testes development between childhood and 

adolescence (148). The same study also found that AA at age 7 was associated 

with increased height in childhood and adolescence, but slower growth in 

height between childhood and adolescence (148), suggesting earlier 

physiological maturation. The study of pubertal development in 94 Chilean 

adolescent girls revealed that a five-year average increase in Horvath clock-

based AA was associated with a significant decrease in time to menarche and 

5% greater percentage of fibro-glandular volume, and revealed an overall 

stronger inverse association of AA with pubertal tempo (149). In a study of 46 

US adolescent girls also using the Horvath epigenetic age predictor, AA at age 

13 years was associated with higher salivary cortisol (150). There is, however, 

an absence of literature of other early life phenotypes well-known to be related 

to aging-related diseases and/or premature mortality, namely, psychiatric 

problems and cognitive functioning (151,152). We address this critical 

knowledge gap in Study III. 

Furthermore, it is probable that departure of DNAm age from 

chronological age starts as early as in utero. A recent study demonstrated that 

a higher epigenetic gestational age (GA) (higher DNAm GA than chronological 

GA), based on the Horvath and the Hannum epigenetic age predictors of cord 

blood methylation data, was associated with maternal smoking during 

pregnancy and delivery by cesarean section (14). These predictors are, 

however, not well suited for epigenetic age estimation at birth, because their 

correlation with chronological GA is nearly 0 (14).  

To address this problem, two epigenetic clocks were developed to estimate 

GA of neonates. Knight’s clock  is based on fetal umbilical cord blood or 

newborn blood spots and calculates the DNAm GA using 148 CpG sites (15). 

Bohlin’s clock estimates the DNAm GA using 96 CpG sites from the cord blood 

(153). Both Knight’s and Bohlin’s DNAm GAs showed a high correlation with 

ultrasound-based GA in their testing datasets (r > 0.81) (15,153). Unlike the 

wide applications of the Horvath’s and Hannum’s epigenetic clocks in adults, 

studies of epigenetic GA are limited. In the Knight’s et al. study lower 

epigenetic GA (lower DNAm GA than chronological GA) at birth was 

associated with maternal socioeconomic disadvantage and low birth weight 

(15). In 814 Finnish mother-neonate pairs, Girchenko et al. have extended 

these analyses by showing that lower epigenetic GA was associated with 

maternal insulin-treated gestational diabetes mellitus in a previous pregnancy 

and Sjögren syndrome, and higher epigenetic GA with maternal age over 40 

years at delivery, neonate’s lower 1-minute Apgar score, and female sex (12). 

In the study which examined both Knight’s and Bohlin’s epigenetic GAs, 
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maternal vitamin D3 supplementation was associated with lower Knight’s and 

Bohlin’s epigenetic GAs, but only in African American subgroup (154). In the 

same study both epigenetic GAs were positively associated with birth weight 

and head circumference and, additionally, Bohlin’s higher epigenetic GA was 

associated with maternal BMI and birth weight (154).  

However, it remains unclear whether maternal depression and anxiety may 

affect the epigenetic GA and whether it may be the biological mechanism 

mediating the effects of maternal adversity during pregnancy on the offspring 

development later in life. We address these questions in Study I. 

2.3.3 GENETIC VULNERABILITY 

While overexposure to GC due to maternal adversity during pregnancy may 

have effect on the fetal GR, possibly via epigenetic modifications, and, thus, 

affect its sensitivity to stress and cortisol exposure later in life, postnatal and 

childhood stress act on child’s HPA axis directly, posing long-term effects on 

GR sensitivity (83). However, not all individuals, who are exposed to either 

prenatal or early life adversity, or both, develop stress-related diseases later in 

life (47,155).  In the three-hit model, resilience or vulnerability to develop 

stress-related disorders across the lifespan has been explained in terms of the 

interaction between the genetic variation with priming early life adversity, 

which influences the brain and body response to significant stress later in life. 

The genetic variant that potentially provides an unfavorable genetic make-up 

is, therefore, the primary component in this framework (48). 

The classic view of how GCs may permanently alter transcription of 

proteins, hormones and neurotransmitters involved in brain development and 

function is via genetic activation. The GCs activate intracellular GR and MR 

which translocate to the nucleus, bind to specific DNA sequences and 

modulate the messenger RNA (mRNA) regulation (48). While MR is mainly 

restricted to limbic parts of the brain, GRs are the ones that primarily bind 

cortisol throughout the body and brain, thus presenting the main focus in the 

genetic studies (48). The hypersensitivity of the cortisol feedback is at least 

partly due to SNPs in the NR3C1, CRHR1,  and FKBP5 (156). These genes are 

integral to the reactivity and regulation of the HPA axis and therefore cortisol 

function.  

SNPs refer to genetic variation in a single nucleotide at specific DNA loci 

(alleles) and give rise to different forms of the gene. There are major alleles – 

the alleles that are encountered in higher proportion of the population, and 

minor alleles.  

A number of specific NR3C1 SNPs have been found to contribute to asthma 

(157), elevated stress response (158), and depression (159,160). SNPs in 

CRHR1 have been implicated in depression and anxiety (161) and addictive 

behavior (162). Polymorphisms in FKBP5 have been extensively associated 

with elevated recovery cortisol both in adults following Trier Social Stress Test 

(163) and infants in response to Strange Situation Procedure (164), as well as 
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with depression, anxiety and PTSD (165–167). FKBP5 has also been identified 

as a promising therapeutic target for obesity and related metabolic outcomes, 

such as adipogenesis, regulation of glucose metabolism, and T2D (168).  

Although the candidate gene approach has demonstrated certain results, 

they are usually hard to replicate. Moreover, the assumption that genes cause 

diseases and the expectation that direct paths would be found from gene to 

disease has not proven fruitful for complex psychiatric and somatic disorders 

(169). Recognizing the shortcomings of candidate gene approach, the focus of 

studies of complex traits has largely shifted to genome-wide association 

studies (GWAS) (170) and generation of polygenic risk scores (171). While 

GWAS studies proved to be reproducible and revealed valuable insights in the 

genetic makeup of complex phenotypes (170), similarly to large-scale 

epigenome-wide DNAm approaches, they require pooling and harmonizing 

data from multiple cohorts across varying exposure and outcome 

measurements, thus, available for a rather small number of traits. To date, no 

GWAS has identified genetic variants implicated in stress reactivity, and 

polygenic risk scores only include a handful of SNPs based on the only 

genome-wide association meta-analyses of morning plasma cortisol levels 

published thus far (172,173). Therefore, despite the advantages of GWAS and 

polygenic risk score studies, it remains inevitable to rely on old-fashioned 

methodology for studies of genetic vulnerability for stress-related outcomes. 

2.3.3.1 Gene x Environment interaction and FKBP5 

Seminal paper by Caspi et.al on the serotonin transporter gene (5-HTT) has 

demonstrated that individuals with one or two copies of the short allele in 5-

HTT promoter polymorphisms exhibited more depressive symptoms and 

suicidality only if they also experienced stressful life events, compared to no 

such effects in the long allele carriers (174). While later research found no 

support for any candidate gene polymorphism or any polymorphism by 

environment associations with depression phenotypes (175,176), this 

historical study opened the avenue for the gene by environment (GxE) 

interaction studies.  

Among GxE interaction studies, one of the most consistent results come 

from the examination of FKBP5 polymorphisms in relation to early life stress 

(23–25).  

FKBP5 codes for the FK506 binding protein 51, a heat shock protein 90 co-

chaperone (167). It participates in inhibition of the GR activity, whereas GR 

activation induces FKBP5 transcription via steroid hormone response 

elements (177). FKBP5 forms an intracellular negative feedback loop that 

regulates the GR sensitivity and, thus, is responsive to stressful exposures, 

making it a promising candidate for GxE interaction studies (25).  

The best investigated SNPs belong to functional haplotype, a set of SNPs 

that tend to be inherited together, spanning the whole FKBP5 gene (from the 

promoter area to the 3′ UTR in Caucasians) that is tagged by rs3800373, 



Review of the literature 

34 

rs9296158, or rs1360780 and contains up to 18 polymorphisms, which are in 

strong linkage disequilibrium (LD) with the tagging SNP (25). 

The effects of GxE interaction with these polymorphisms are found across 

the lifespan. In infants, newborns who went through neonatal intensive care 

unit (NICU) care procedures, and had a minor allele in one of the genotyped 

FKBP5 SNPs (rs3800373 (C),  rs1360780 (T), rs9470080 (T)) had higher risk 

for poorer neurobehavioral outcomes compared to protective allele carriers 

(178). In children, those who experienced an acute medical injury and had at 

least one minor allele in rs3800373 (C) or rs1360780 (T) showed higher 

peritraumatic dissociation (179), a well-established risk factor for the 

development of PTSD (180) in comparison to major allele carriers. The case-

control study among adolescents demonstrated that the odds for being in the 

major depression (MD) group increased to a greater extent among carriers of 

at least one copy of the FKBP5 CATT haplotype consisting of minor alleles of 

rs3800373, rs9296158, rs1360780 and rs9470080 SNPs or at least one minor 

allele of these SNPs depending on the number of sociodemographic, moderate 

and total number of stressors  (181). A series of studies in adults have 

demonstrated that individuals who were exposed to ELS and had one or two 

copies of minor allele in rs1360780 (T), rs9296158 (A), rs9470080 (T), 

rs9394309 (G), had elevated risk of MD and subclinical depressive symptoms 

(182–184) and PTSD (130,185). Neuroimaging studies show that among MD 

patients with ELS experience, the minor rs1360780 T allele carriers  displayed 

lower volumes within the hippocampus-amygdala-transition-area compared 

to those homozygous for the major C allele (186).  

However, to date only a handful of studies has examined whether FKBP5 

SNPs interact with ELS on physical health outcomes. Individuals with 

increased peritraumatic distress and at least one copy of the 

FKBP5 rs3800373 minor allele (G) reported more severe chronic pain relative 

to individuals with less peritraumatic distress or those with two copies of 

major T allele (187). Another study of chronic pain showed that in participants, 

who survived motor vehicle collision (MVC), presence of one minor allele in 6 

FKBP5 SNPs (rs3800373, rs7753746, rs9380526, rs9394314, rs2817032, 

rs2817040) predicted neck pain severity and overall pain six weeks after the 

traumatic event (188). The authors also replicated the results among sexual 

assault survivors: of the six SNPs associated with pain outcomes in the MVC 

discovery cohort, four (rs3800373, rs9394314, rs2817032, rs2817040) were 

associated with overall pain severity and three (rs3800373, rs9380526, 

rs2817032) were associated with neck pain severity six weeks after sexual 

assault (188). In another national community-based study, carriers of one or 

two minor T-alleles of rs1360780 were found to be at increased risk for self-

reported physician-diagnosed physical problems if they retrospectively 

reported exposure to physical, emotional, or sexual abuse in childhood, but 

not if they were homozygous major C-allele carriers (189). However, the extent 

to which FKBP5 polymorphisms interact with ELS in predicting CVD, T2D, 
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and quantitative glycemic traits remains unknown. We address this knowledge 

gap in Study IV. 
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3 AIMS OF THE STUDY 

To address these critical knowledge gaps in the literature, the overall aim 

of this work was to explore polyepigenetic biomarkers and markers of genetic 

vulnerability in association with prenatal and early life adverse exposures and 

mental and physical health problems in children, adolescents and older 

adults.The more specific objectives of each study include: 

I. The aim of Study I was to examine whether maternal history of 

depression diagnosed before pregnancy and depressive symptoms 

during pregnancy, were associated with a polyepigenetic biomarker, 

namely the child’s epigenetic GA at birth based on fetal cord blood 

DNAm data. Next, Study I explored whether this polyepigenetic 

biomarker at birth was associated with and mediated the 

associations of maternal depression with child psychiatric problems 

in the PREDO cohort in childhood. Additionally, Study I examined 

whether these associations were moderated by child’s sex.  

II. The aim of Study II was to examine whether a polyepigenetic 

biomarker, namely child polyepigenetic GC exposure score at birth, 

which correlated with maternal depressive and anxiety symptoms 

during pregnancy in the PREDO cohort, was associated with  any 

child mental and behavioral disorder and its severity measured as 

the number of days in in- or outpatient treatment in medical care. 

Additionally, Study II explored whether this polyepigenetic 

biomarker mediated the associations of maternal prenatal 

depressive and anxiety symptoms and the child mental health 

outcomes in the PREDO cohort in childhood.  

III. As epigenetic processes undergo age-related changes, the aim of 

Study III was to examine whether a polyepigenetic biomarker, 

namely the epigenetic clock of aging based on the Horvath’s 

epigenetic DNAm age predictor, was associated with physical 

growth, HPA axis functioning, psychiatric problems and cognition 

in the Glycyrrhizin in Licorice (GLAKU) cohort in adolescence.  

IV. The aim of Study IV was to examine whether three selected common 

SNPs (rs1360780, rs9394309, rs9470080) in FKBP5, the gene that 

plays a role in the HPA-axis regulation, interacted with ELS defined 

here as temporary separation from both biological parents due to 

child evacuations during World War II (WWII), in prediction of 

CVD, T2D, and quantitative glycemic traits in the Helsinki Birth 

Cohort Study (HBCS) cohort in late adulthood. 
  



 

37 

4 METHODS 

4.1 OUTLINE OF THE STUDY COHORTS 

This thesis is based on three prospective cohorts: the Prediction and 

Prevention of Pre-eclampsia and Intrauterine Growth Restriction (PREDO) 

cohort, the Glycyrrhizin in Licorice (Glaku) cohort, and the Helsinki Birth 

Cohort Study (HBCS). The methods are described by the Study numbers 

(Study I – IV).  

The outline of the study cohorts and their representativeness are described 

in Table 1. 
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4.2  STUDY I 

4.2.1 PARTICIPANTS 

The participants of Study I come from the PREDO study, 

which comprises altogether 4,777 mothers who gave birth 

to a singleton live-born offspring in Finland between 2006 

and 2010 (Table 1) (190).  

The women were recruited in consecutive order when 

they attended their first ultrasound screening at 12 to 13 

weeks of gestation at one of the ten study hospitals in 

Southern and Eastern Finland.  

To enrich the number of women with pre-eclampsia and 

IUGR in the PREDO sample, 1,079 pregnant women with 

known risk-factor status were recruited. Among them 969 

had one or more risk factors for preeclampsia and IUGR, 

and 110 had no known risk factors (190). Additional 10 

participants come from the epidemiological hand of the 

study, who also provided placental samples. 

In total, we had 817 (75.4% of the sample) fetal umbilical 

cord blood samples with full information on genome-wide 

methylation and genotype passing through quality control. 

Of those, additional 3 samples were excluded for Study I 

(Figure 3), thus, forming our analytic sample (n=814). 

Figure 3 presents the participant flow chart for Studies I 

and II and Table 1 describes the representativeness of the 

analytic sample.  

The Ethics Committees of the Helsinki and Uusimaa 

Hospital District and the participating hospitals approved 

the study protocol. Written informed consents were 

obtained from all participating women. 

4.2.2 MEASURES 

4.2.2.1 Prenatal exposure: Maternal 

antenatal depression 

Maternal antenatal depressive symptoms were estimated with the 20-item 

Center for Epidemiological Studies Depression Scale (CES-D) (191) biweekly 

up to 14 times throughout pregnancy starting from 12+0-13+6 until 38+0-

39+6 weeks+days gestation or delivery. The CES‐D comprises 20 questions, 

rated from none (0) to all of the time (3) on depressive symptoms during the 

past week, and a sumscore ranges from 0 to 60. For Study I trimester-specific 
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means of the CES-D raw sum-scores were calculated to represent the level of 

depressive symptoms at each pregnancy trimester and the mean of these three 

trimester-specific values to represent the overall level of antenatal depressive 

symptoms. 

Additionally, between 12+0–13+6 weeks+days of gestation participants 

answered the question “Have you ever been diagnosed by a physician with 

depression?” followed by a question on timing of the diagnosis. 76 women 

reported the diagnosis before pregnancy and 12 of them indicated using 

antidepressant medication during the past year.  

4.2.2.2 Polyepigenetic biomarker at birth: Child epigenetic GA 

Fetal cord blood samples were collected according to standard procedures. 

DNA was extracted at the National Institute for Health and Welfare, Helsinki, 

Finland, and the Institute for Molecular Medicine Finland, University of 

Helsinki, Finland. Methylation analyses were performed at the Max Planck 

Institute of Psychiatry (MPIP) in Munich, Germany. DNA was bisulphite 

converted using the EZ-96 DNA Methylation kit (Zymo Research, Irvine, CA). 

Genome-wide methylation status of over 485,000 CpG sites was measured 

using the Infinium Human Methylation 450 BeadChip (Illumina Inc., San 

Diego, CA) according to the manufacturer’s protocol. The arrays were scanned 

using the iScan System (Illumina Inc., San Diego, CA). The quality control 

pipeline was set up using the R-package minfi (192). Samples with maternal 

blood contamination were excluded (n = 9) (193). The final dataset contained 

428,619 CpG sites.  

DNAm GA was calculated following the Knight et al. method and is based 

on the methylation profile of 148 selected CpG sites (15). Chronological GA 

was based on ultrasound scans performed at 12+0-13+6 weeks+days of 

gestation. We calculated epigenetic GA as the arithmetic difference between 

DNAm GA and chronological GA and adjusted for chronological GA. 

Adjustment for chronological GA was necessary to remove the effect of 

chronological GA entirely (Pearson correlation between DNAm GA-GA 

arithmetic difference and GA r = –0.27, p < 0.01). 

To control for the potential effects of cell type heterogeneity in fetal 

umbilical cord blood, cord blood cell composition was estimated for seven cell 

types (nucleated red blood cells, granulocytes, monocytes, natural killer cells, 

B cells, CD4(+)T cells, and CD8(+)T cells ) following the Bakulski et al. method 

(194) using the R-package minfi (192). 

To control for the potential effects of population structure, genotyping was 

performed on Illumina Human Omni Express Exome Arrays (Illumina Inc., 

San Diego, CA). Only markers with a call rate of at least 98%, minor allele 

frequency of 1% and a p value for deviation from Hardy–Weinberg equilibrium 

> × 10–06 were kept in the analysis. We performed multidimensional scaling 

(MDS) analysis on the identity by state matrix of quality-controlled genotypes 

(195). The first 2 MDS components depicted the population structure. 
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4.2.2.3 Child outcomes: Internalizing and externalizing problems 

The mothers rated their child’s psychiatric problems at the child’s age of 
2.3 to 5.8 years using the Child Behavior Checklist (CBCL 1/ 1

2
 - 5) comprising 

99 problem items rated on a scale of “not true” (0) to “very or often true” (2) 

(196). Based on the 99 problem items we calculated the t scores for the total 

problems and its two subscales, internalizing and externalizing problems. 

 

4.2.3 COVARIATES 

All analyses were adjusted for child’s chronological GA, cord blood cell type 

composition and the first two MDS components in order to remove the effect 

of chronological GA and to control for the potential effects of cell type 

heterogeneity and the population structure discussed above.  

Based on our previous findings in the Study I cohort (12), we thereafter 

made adjustments for maternal age at delivery (≥40 years/<40 years), insulin-

treated gestational diabetes mellitus in a previous pregnancy (yes/no), Sjögren 

syndrome (yes/no), neonate’s 1-minute Apgar score (≤6/>6), and sex (girl/ 

boy). In the analyses of child psychiatric problems, we made further 

adjustments for child’s age at follow-up (years) and maternal Beck Depression 

Inventory–II scores (BDI-II <14/BDI-II ≥14) (197) reported at the child 

follow-up in order to control for concurrent depressive symptoms. 

4.3 STUDY II 

4.3.1 PARTICIPANTS 

 

Figure 3 Flow chart of the PREDO study 
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The participants of Study II come from the same representative cohort as 

Study I. The analytic sample for this study consisted of 814 participants. For 

more details on the sample attrition and its representativeness, see the 

respective section for Study I, Table 1 and Figure 3. 

4.3.2 MEASURES 

4.3.2.1 Prenatal exposure: Maternal antenatal depressive and anxiety 

symptoms 

Depressive symptoms were measured using the CES‐D questionnaire 

described above (191). For Study II the mean of all 14 raw sum-scores was used 

to reflect the level of depressive symptoms throughout pregnancy. 

Anxiety symptoms were measured using the State Anxiety Inventory 

(STAI) (198). The STAI comprises 20 items rated from not at all (1) to very 

much (4), and a sumscore ranges from 20 to 80. We calculated the mean of all 

14 raw sum-scores representing the overall level of antenatal anxiety 

symptoms. 

4.3.2.2 Polyepigenetic biomarker at birth: Polyepigenetic GC exposure 

score 

DNAm and genotyping are described in the respective section of Study I 

description.  

Weighted polyepigenetic GC exposure score was calculated from the 

selected 24 CpG sites as described previously (13). The methylation level of 

each site was multiplied by the weight and summed to get the score for each 

sample. The weights represent the coefficients from the elastic-net regression 

using dexamethasone (DEX) associated changes in DNA methylation of the 

CpG sites in peripheral blood in the MPIP cohort (13).  

4.3.2.3 Child outcomes: Any mental and behavioral disorder and its 

severity 

We identified any mental and behavioral disorder diagnosis in children 

from the Care Register for Health Care (HILMO) between the child’s birth in 

11/07/2006-07/24/2010 and 12/31/2016, when the children were 7.06–10.66 

years old. The HILMO includes primary and subsidiary diagnoses of all 

inpatient treatments and of outpatient treatments in public specialized 

medical care settings in Finland. We included diagnoses coded F00-F99 

according to International Statistical Classification of Diseases and Related 

Health Problems, Tenth Revision (ICD-10) in the mental and behavioral 
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disorder category. Validation studies have indicated that HILMO has high 

validity for psychiatric diagnoses (199).  

To study severity of any mental and behavioral disorder diagnosis, we 

summed up the number of days the child had been receiving in- or outpatient 

treatment for mental or behavioral disorder as the primary diagnosis. Table 2 

shows the number of broad category diagnoses according to the number of 

days in in- or outpatient hospital treatment dichotomized at the median. 
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4.3.3 COVARIATES 

All analyses were adjusted for cord blood cell type composition, the first 

two genetic MDS components, child’s sex, gestational age at birth, maternal 

age at delivery (years) and maternal smoking during pregnancy (yes/no) 

following the previous study of polyepigenetic GC exposure score in this cohort 

(13). All analyses were further adjusted for child’s birth year and variables 

related to maternal physical and mental risk factors: maternal education 

(primary or secondary/tertiary), having at least one of the known maternal 

metabolic risk factors during pregnancy (hypertensive disorder, gestational 

diabetes mellitus, type 1 diabetes, pre-pregnancy body-mass index (BMI) 

≥25), and maternal lifetime diagnosis of any mental disorder. Maternal 

lifetime diagnoses of any mental disorder were derived from HILMO in- and 

outpatient visits (any/no; ICD-9: 290-319, ICD-10: F00-F99 diagnosis codes 

with inpatient data available between 1987 and 2016 and outpatient data 

available between 1998 and 2016). 

In the analysis of the severity of the mental and behavioral disorders, we 

made additional adjustments for follow-up time. 

4.4 STUDY III 

4.4.1 PARTICIPANTS 

The participants for Study III come from Glaku, an urban community-

based cohort comprising 1,049 infants born between March and November 

1998 in Helsinki, Finland (200). Between 2009 and 2011, 920 were invited 

and 451(49% participation rate) participated in the follow-up at the mean age 

[standard deviation (SD)] of 12.3 [0.5] years. Of the participating adolescents, 

243 provided blood samples, of which 239 DNA samples remained for genetic 

analyses after quality control procedures. These participants formed the 

analytic sample for Study III. Its representativeness is described in Table 1. 

Ethics Committees of the City of Helsinki and the Uusimaa Hospital 

District approved the study protocol. Written informed consent was obtained 

from the mother at birth and from parent/guardian and adolescent at the 

follow-up. 

4.4.2 MEASURES 

4.4.2.1 Polyepigenetic biomarker in adolescence: Epigenetic clock 

based on Horvath’s epigenetic age predictor 

Blood samples were collected, and DNA was extracted according to 

standard procedures. 
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Methylation analyses were performed at the MPIP in Munich, Germany. 

DNA was bisulphite-converted using the EZ-96 DNA Methylation kit (Zymo 

Research, Irvine, CA). Genome-wide methylation status of over 850,000 CpG 

sites was measured using the Illumina Infinium MethylationEPIC arrays 

(Illumina Inc., San Diego, CA) according to the manufacturer’s protocol. The 

arrays were scanned using the iScan System (Illumina Inc., San Diego, CA). 

The final dataset contained 812,943 CpGs. 

We calculated DNAm age using the Horvath age estimation algorithm (17) 

with a freely available online tool   

(http://labs.genetics.ucla.edu/horvath/dnamage/). This calculator also 

incorporates information on blood cell counts for six cell types (granulocytes, 

monocytes, natural killer cells, B cells, CD4+ T cells, and CD8+ T cells) based 

on the Houseman method (201). We calculated epigenetic age as the 

unstandardized residual from a linear regression of DNAm age on 

chronological age and six cell count types. 

To control for the potential effects of population structure, genotyping was 

performed on Illumina Human OmniExpress Exome 1.2 bead chip (Illumina 

Inc., San Diego, CA) at the Tartu University, Estonia according to the standard 

protocols. After performing MDS analysis on the identity by state matrix of 

quality-controlled genotypes, we identified the first three components, which 

depicted the origin admixture and were included as covariates in the statistical 

analyses (195). This information was available for 221 participants (92.5%) of 

the analytic sample. 

4.4.2.2 Adolescence outcomes: Pubertal, neuroendocrine, psychiatric, 

and cognitive 

To estimate physical growth and pubertal development we used the 

following measures:  

(a) The difference between the child’s height-for-age SD score based on 

Finnish growth charts (202) and midparental target height in SD 

units (203). This score reflects the remaining growth potential and 

the timing of the pubertal growth spurt.  

(b) Weight in light clothing without shoes, values were transformed into 

weight-for-age SD scores based on Finnish growth charts. 

(c) BMI (weight (kg)/height (m2)), values were transformed into BMI-

for-age SD scores based on Finnish growth charts. 

(d) The Tanner Staging Questionnaire (204) administered by a research 

nurse.  

(e) The Pubertal Development Scale (PDS) (205), a self-report 

questionnaire on secondary sex characteristics. 

To estimate cortisol measurements, saliva samples were collected on two 

consecutive days using cotton swabs. On the first day, samples were collected 

upon awakening and 15, 30, 45, and 60 min thereafter, at 12:00 midday, at 
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5:00 p.m., and at bedtime. A low dose of DEX (3 μg/kg of total body weight) 

was administered after the bedtime saliva sample, and a sample was collected 

upon awakening the next day. Salivary cortisol concentrations were 

determined by solid-phase, time-resolved fluorescence immunoassay with 

fluorometric end-point detection (DELFIA; Wallac, Turku, Finland).  

Of the diurnal measures, we used the following scores:  

(a) Cortisol at awakening; 

(b) Cortisol awakening response (peak value after awakening minus 

value upon awakening); 

(c) Nadir (minimum of diurnal values);  

(d) Response to DEX suppression test (value upon awakening on day 

two minus value upon awakening on day one). 

To estimate psychiatric problems, mothers rated their child’s psychiatric 

problems using the Child Behavior Checklist (CBCL/6-18) comprising 99 

problem items rated on a scale of “not true” (0) to “very or often true” (2) 

(206). The CBCL yields hierarchically structured scales, presented in Figure 4. 

 

 

Figure 4 Hierarchical structure of CBCL scales  

Following the CBCL manual, we used the 82nd percentile as the cutoff to 

identify adolescents with borderline clinically significant problems (206). 

To measure cognitive abilities, adolescents were administered the short 

form of the Wechsler-Intelligence-Scale-for-Children-III (207), which 

included vocabulary, similarities, block design, and picture arrangement 

subtests. We used age-standardized scores to estimate age-standardized total 

intelligence, verbal and performance intelligence quotients (IQs) (208).  

4.4.3 COVARIATES 
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All analyses were adjusted for child’s sex and the first three MDS 

components to control for population structure (model 1).  

We made further adjustments for covariates previously associated with 

physical growth and development, salivary cortisol, psychiatric problems, and 

cognition in this cohort (209): the highest educational level of either parent 

(secondary or less/vocational/university), maternal age (years), and BMI 

(kg/m2) at delivery, maternal smoking (no/yes), weekly alcohol (no/yes) and 

glycyrrhizin in licorice (0–249 mg/week, 250–499 mg/week, ≥ 500 mg/week) 

consumption during pregnancy, delivery mode (vaginal/cesarean), parity 

(primiparous/multiparous), gestational age (weeks), and birth weight (grams) 

of the adolescent (model 2).  

In addition, we conducted analyses of pubertal maturation adjusting for 

maternal self-reported age at menarche (years) as a proxy of the genetic 

component of pubertal development.  

Analyses of HPA axis activity were additionally adjusted for time at 

awakening and time at DEX intake as well as for child’s BMI-for-age SD score. 

4.5 STUDY IV 

4.5.1 PARTICIPANTS 

The participants for Study IV come from the HBCS, which includes 13,345 

men and women, who were born in Helsinki, Finland, between 1934 and 1944, 

and were alive and living in Finland in 1971 when a unique personal 

identification number was allocated to all Finnish residents (210,211). 

Between 2001 and 2004, a random sample of 2,902 HBCS participants was 

invited and 2,003 of them participated (69% participation rate) in a clinical 

examination at mean age [SD] = 61.5 [2.9] years. Blood samples for DNA 

extraction were obtained at the time of this visit. Genotype data were available 

for 1728 of those participants and they comprised the analytic sample of Study 

I. The representativeness of the analytic sample is described in Table 1. 

The HBCS study protocol was approved by the Ethics Committee of the 

National Public Health Institute and it was carried out in accordance with the 

Declaration of Helsinki. All participants have signed a written informed 

consent form. 

4.5.2 MEASURES 

4.5.2.1 Childhood exposure: Early life stress 

During WWII nearly 80,000 Finnish children were separated from their 

biological parents due to evacuation from the strains of war to Sweden or 
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Denmark (212). Information on the separation was gathered from the Finnish 

National Archives' registry, which was kept by the Ministry of Social Affairs 

and Health between 1939 and 1946 and which includes detailed data on 

separations of 48,628 children. We identified 215 participants (12.4% of the 

analytic sample) from our study cohort who were separated temporarily from 

their parents in childhood.  

In addition, it is estimated that over 20,000 more children were evacuated 

without their parents either abroad or within homeland through personal ties 

(212). Therefore, questions relating to wartime separation from both parents 

were embedded in the psychological survey at mean age 61.5 years when the 

participants attended the clinical examination, where additional 58 

participants (3.4% of the analytic sample) self-reported being separated from 

both parents during WWII. 

4.5.2.2 Genetic vulnerability: FKBP5 polymorphisms 

Genotypes of intronal SNPs rs1360780, rs9394309, and rs9470080 were 

taken from the modified Illumina 610k array (Illumina, San Diego, California). 

We chose these SNPs using three criteria: (a) their location in FKBP5 gene 

within functional haplotype (25); (b) they have been previously reported to 

have significant G x E associations with risk of depression (182–184) and 

PTSD (130) in adulthood after ELS, and altered HPA axis reactivity (163,164); 

and (c) minor allele frequency > 5% in this sample. Genotyping was conducted 

at the Wellcome Trust Sanger Institute, Cambridge, UK, according to standard 

protocols. 

Genotyping success rate was >99 % in all three SNPs. Observed genotype 

frequencies did not deviate from the Hardy-Weinberg equilibrium (p > .39). 

Minor allele frequencies were 21.6 % (C > T) for rs1360780, 24.3 % (A > G) 

rs9394309, and 25.6 % (C > T) for rs9470080. SNPs were in high LD (r2 = 

0.72–0.94) and, according to the solid spine algorithm with default values, 

belonged to the same haploblock. 

4.5.2.3 Adulthood outcomes: Type 2 Diabetes, Cardiovascular 

Disease, and Quantitative Glycemic Traits 

After a 12-hour overnight fasting period participants were administered a 

75-g oral glucose tolerance test (OGTT). Venous samples for plasma glucose 

and serum insulin were collected at fasting and further at 30 and 120 minutes 

after the glucose load. Plasma glucose was measured with a glucose 

dehydrogenase method (HemoCue, Ängelholm, Sweden) and serum insulin 

with a fluoroimmunoassay (Delphia; PerkinElmer Finland, Turku, Finland). 

The participants filled in a questionnaire regarding the physician-diagnosed 

chronic diseases and use of medication for these diseases during the same 

visit. 
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We defined the participants as having diabetes if: (a) they reported a 

physician-diagnosed diabetes; (b) they reported use of antidiabetic 

medication; (c) if they met the World Health Organization (WHO) (213) 

criteria for diabetes based on the OGTT (fasting plasma glucose ≥7.0 mM or 

120-minutes plasma glucose ≥11.1 mM).  

We defined the participants as having CVD if they reported physician-

diagnosed coronary heart disease and/or stroke.  

We defined the participants as having impaired fasting glucose (IFG) and 

impaired glucose tolerance (IGT) if they met the WHO criteria (213) (IFG: 

fasting plasma glucose 6.1–6.9 mM and 120-minutes plasma glucose <7.8 

mM; IGT: fasting plasma glucose <7.0 mM and 120-minutes plasma glucose 

≥7.8 and <11.1 mM during the OGTT).  

In order to estimate insulin sensitivity and insulin secretion we use the 

homeostasis model assessment method (HOMA-IR) (214), Insulin Sensitivity 

Index (ISI) (215), incremental insulin (216), and Area Under the Curve (AUC) 

(216) indices. The formulas of these indices calculated based on the OGTT are 

listed in Figure 5. 

 

 
 

Figure 5 OGTT-based quantitative glycemic traits 

4.5.3 COVARIATES 

All analyses were adjusted for age at the time of clinical examination 

(years),  sex, body mass index (BMI), and father's occupational status (lower, 

middle, upper) as a proxy of socioeconomic status (SES) in childhood 

following previous findings in relation to physical health outcomes in this 

cohort (217,218), and the first three MDS components derived from 
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multidimensional scaling analyses performed with Plink to control for 

population stratification (model 1). We further made adjustments for own 

maximum attained level of education in adulthood (basic/primary or less, 

lower secondary, upper secondary, or tertiary) as a proxy of SES at the time of 

testing (model 2). We also made adjustments for depressive symptoms 

measured with the Beck Depression Inventory (BDI) (219) and stressful life 

events during the past 12 months measured with the Stressful Life Event Scale 

(SLE) (220) (model 3) as they have been previously associated with the three 

selected SNPs in this cohort (183). In the analyses of glycemic traits, we also 

used self-reported physician-diagnosed diabetes and use of antidiabetic 

medication as covariates. 

4.6 STATISTICAL ANALYSES 

4.6.1 STUDY I 

We used linear regression analysis to explore the associations of maternal 

history of depression diagnosed before pregnancy and trimester-weighted 

mean of antenatal depressive symptoms with child epigenetic GA. We tested 

whether these effects were additive by adding maternal depression diagnosis 

× antenatal depressive symptoms interaction term into regression equation 

following main effects of these variables. Generalized additive mixed model 

analyses were used to test if there were gestation stage–specific effects of 

maternal depressive symptoms levels across the 14 biweekly measurements on 

child’s epigenetic GA. For all analyses, depressive symptoms scores were 

square root–transformed to attain normality; the symptom scores were 

further standardized to a mean of 0 and an SD of 1 to facilitate interpretation. 

We used linear regression analyses to test associations between child 

epigenetic GA and psychiatric problems. Problem scores were log-transformed 

to attain normality and standardized to facilitate interpretation. In order to 

account for multiple testing we also report Bonferroni corrected CIs assuming 

two multiple tests, as the internalizing and externalizing CBCL subscales were 

highly intercorrelated (Pearson r = 0.62, p < 0.001), and together explained 

95.3% of the variance in total problems. 

When testing whether the associations varied by sex, we entered sex × 

history of depression before pregnancy/antenatal depressive symptoms 

interaction term into the regression equation with child epigenetic GA at birth 

as the outcome, and sex × child epigenetic GA interaction into the regression 

equation with child psychiatric problems as the outcome. 

Finally, we tested whether child epigenetic GA at birth mediated the 

association between maternal antenatal depression and child psychiatric 

problems by using the PROCESS macro for SPSS (version 24.0). 
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We applied the bootstrapping method in all analyses, using unrestricted 

random sampling method to generate 1,000 samples, and 95% bootstrap CI 

using the normal distribution theory. 

We used IBM SPSS 24.0 and SAS 9.4 to perform statistical analyses. 

4.6.2 STUDY II 

With Cox Proportional Hazards models, we estimated the associations 

between the polyepigenetic GC exposure score and any mental and behavioral 

disorder in children. Time dependency analysis confirmed that the 

proportional hazards assumption was met (p-value for the time variable 

=0.87). 

We studied the association between the polyepigenetic GC exposure score 

and severity of the mental and behavioral disorders in children using Zero-

Inflated Negative Binomial (ZINB) regression analysis (221) to account for the 

excessive number of zeros in the outcome count variable.  

We pursued to test whether polyepigenetic GC exposure score mediated the 

association between maternal depressive and anxiety symptoms during 

pregnancy and any mental and behavioral disorder and its severity in children 

using Sobel test. Mediation tests were conducted pending that the criteria for 

mediation were met, i.e., that the predictor, mediator and the outcome 

variables were significantly interrelated. 

Statistical analyses were performed with SAS 9.4 and IBM SPSS Statistics 

25.0.  

4.6.3 STUDY III 

We used generalized linear models (GLM) to explore associations between 

epigenetic age and outcomes, specifying Gaussian reference distribution for 

continuous (growth anthropometry, salivary cortisol, cognition), ordinal 

logistic for categorical (Tanner stages and PDS), and binary logistic reference 

distribution for dichotomous outcomes (psychiatric problems). 

All analyses were adjusted for covariates and confounders as described in 

Covariates section for Study IV. We further tested if the associations between 

epigenetic age and outcomes varied by sex, therefore including sex × 

epigenetic age interaction term into the GLMs following main effects of these 

variables as adolescent boys and girls may differ in epigenetic age, pubertal 

maturation, and the prevalence and etiology of psychiatric problems. In order 

to account for multiple testing within each developmental domain, we also 

report Bonferroni-corrected p-values. 

We used IBM SPSS version 24.0 software to perform statistical analyses. 
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4.6.4 STUDY IV 

We used multiple linear regression analysis to test if the three selected 

SNPs in FKBP5 gene, separation status, and their interaction were associated 

with the continuous outcomes (fasting, 30-minute, 2-hour, and AUC insulin 

and glucose; incremental insulin; ISI; and HOMA-IR) and logistic regression 

for the binary outcomes (IFG, IGT, T2D, and CVD). Each SNP was tested in a 

separate model assuming both additive and dominant genetic effects.  

We further performed haplotype analysis, where rs1360780, rs9394309, 

and rs9470080 were analyzed within one haploblock in one model.  

All continuous variables were log-transformed to attain normality.  

We made additional adjustments for SNP by covariate and separation 

status by covariate interactions as suggested by Keller (222). 

In order to account for multiple testing we also present Bonferroni 

corrected p-values assuming two multiple tests, as indicated by principal 

component analysis with two factors explaining 82.2% of the total variance.  

We used IBM SPSS version 24.0, Plink, and R 3.2.2 software for the 

analyses. Linkage disequilibrium between the SNPs and haploblock structure 

was evaluated with Haploview 4.2 (223). We performed haplotype analyses 

using the Haplo.stats package 1.6.11 of the R statistical software (224). 
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5 RESULTS 

5.1 EPIGENETIC GA, MATERNAL ANTENATAL 
DEPRESSION AND CHILD PSYCHIATRIC 
PROBLEMS AT THE AGE OF 3 TO 5 YEARS (STUDY 
I) 

Figure 6 shows that maternal history of depression diagnosed before 

pregnancy (β = –0.25, 95% CI = –0.46 to –0.03; Panel A) and greater 

antenatal depressive symptoms (β = –0.08, 95% CI = –0.16 to –0.004; Panel 

B) were associated with lower epigenetic GA after adjusting for model 1 

covariates. When adjusted further for the model 2 covariates, the association 

with history of depression before pregnancy remained significant (β = –0.24, 

95% CI = –0.45 to –0.02), while the association with antenatal depressive 

symptoms became attenuated (β = –0.07, 95% CI = –0.15 to 0.004). 
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Figure 6 Maternal Antenatal Depression and Child’s Epigenetic GA at Birth. Panel A: Means 
and 95% CIs of child’s epigenetic GA in groups divided according to maternal history 
of depression diagnosed before pregnancy. Panel B: Scatterplot with a regression 
line displaying the unstandardized regression coefficient (β) and 95% CIs showing 
associations between maternal trimester–weighted mean antenatal depressive 
symptoms and child’s epigenetic GA 

There were neither gestation stage–specific effects of antenatal depressive 

symptoms on child’s epigenetic GA (Figure 7), nor sex × maternal depression 

diagnosis (95% CI = –0.41 to 0.46 for interaction term) or sex × maternal 

depressive symptoms (95% CI = –0.07 to 0.22 for interaction term) 

interactions on child’s epigenetic GA. 

 

Figure 7 Associations between maternal antenatal depressive symptoms at different stages of 
pregnancy and child’s epigenetic gestational age 

 

Table 3 shows that there were no significant associations between child’s 

epigenetic GA and psychiatric problems in the total sample. However, sex × 

epigenetic GA interactions were significant for total and internalizing 

problems in model 1 and for all three main domains in model 2. The 

interaction between sex and epigenetic GA on internalizing problems 

remained significant after Bonferroni correction (Bonferroni-corrected 

(across 2 multiple tests) 95% CI = 0.02–0.48 and 0.01–0.46 in models 1 and 

2, respectively), but not on externalizing problems in model 2 (Bonferroni-

corrected (across 2 multiple tests) 95% CI = –0.02 to 0.43). 
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Table 3 also shows that lower epigenetic GA at birth was significantly 

associated with greater total (models 1 and 2) and internalizing problems 

(model 2) only in boys, while there were no significant associations for 

externalizing problems in either boys or girls. 

When we examined the sex differences further, we found that on average, 

boys had significantly lower epigenetic GA at birth than girls (mean epigenetic 

GA (SD) = -1.5 (2.0) vs -0.9 (1.7), respectively, p=0.003). They also showed 

higher scores in total (46.6 (9.6) vs 44.4 (7.9), p=0.010) and externalizing 

problems (48.4 (9.5) vs 45.3 (7.8), p<0.001) in comparison to girls. There were 

no other sex-specific differences in sample characteristics (p>0.07; data not 

shown).  

The mediation analyses were conducted in boys, as epigenetic GA was not 

associated with psychiatric problems in girls; and only on total and 

internalizing problems, as they were predicted by child’s epigenetic GA (Table 

3) and by maternal antenatal depression in boys (p<0.002; data not shown). 

Figure 8 shows that, in boys, epigenetic GA partially mediated the association 

between antenatal depression and internalizing problems. Mediation was not 

significant on total problems (95% CI = –0.001 to 0.14 for indirect effect). 

 

 

Figure 8 Maternal Antenatal Depression Acts Partly via Child’s Epigenetic Gestational Age at 
Birth on Child’s Psychiatric Problems Among Boys 

5.2 POLYEPIGENETIC GC EXPOSURE SCORE AT 
BIRTH, CHILD MENTAL AND BEHAVIORAL 
DISORDERS AT THE AGE OF 7 TO 11 YEARS, AND 
MATERNAL ANTENATAL DEPRESSIVE AND 
ANXIETY SYMPTOMS (STUDY II) 

There were 99 (12.2%) children diagnosed with any mental or behavioral 

disorder during the follow-up. Compared to children with no mental 

disorders, those with diagnosis were more often boys, their mothers had lower 

education, higher early pregnancy BMI, higher anxiety symptoms during 

pregnancy, and more often had lifetime diagnosis of any mental disorder  (p-

values < 0.05); there were no significant differences in other characteristics. 

In the 99 children with any mental and behavioral disorder diagnosis, the 
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median number of days spent in in- or outpatient treatment for any mental 

and behavioral disorder as the primary diagnosis was 7.00 (Interquartile 

Range = 16.00) days. Table 2 further shows that those children who had spent 

7.00 days or more in the in- or outpatient treatment more often had more than 

one broad category diagnosis (F2 – F9) (p-values < 0.05).  

Polyepigenetic GC exposure score was not significantly associated with the 

hazard of being diagnosed with any mental and behavioral disorder in children 

(HR = 0.38, 95% CI 0.05; 2.90, p=0.35). However, lower polyepigenetic score 

was significantly associated with more days spent in in- or outpatient 

treatment for any mental and behavioral disorder as the primary diagnosis 

(hurdle model estimate =-1.08 natural logarithm units per each standard 

deviation increase in polyepigenetic score; 95% CI -1.70; -0.46, p=0.001). This 

translated into 2.94 (95% CI 1.59, 5.45, p=0.001) more days spent in in- or 

outpatient treatment per each SD unit decrease in the polyepigenetic score 

according to contrast estimate results (Figure 9).  

 

 

Figure 9 The number of days the child has spent in any inpatient treatment or in outpatient 
treatment in public specialized medical care with the any mental and behavioral 
disorder as the primary diagnosis (N=99) according to the polyepigenetic 
glucocorticoid exposure score at birth categorized into tertiles.  Horizontal lines refer 
to the medians and interquartile ranges and cross marks to the mean values 

Before proceeding to mediation analyses, we tested if the criteria for 

mediation were met. We have previously shown that higher maternal anxiety 

and depressive symptoms during pregnancy were associated with a lower 

polyepigenetic score in the offspring (13), and the above analyses showed that 

the score was also associated with a higher number of days spent in in- or 

outpatient treatment. However, in the subsample of 583 women who reported 

depressive and anxiety symptoms during pregnancy, these symptoms were not 

significantly associated with the number of days the child had spent in the in- 
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or outpatient treatment (p>0.58).  Hence, we did not pursue mediation.  

However, in post hoc analyses in the entire PREDO cohort with data 

available on maternal  depressive (n=3,404) and anxiety symptoms (n=3,405) 

during pregnancy, higher maternal   depressive and anxiety symptoms were 

associated with 1.31 (95% CI 1.07; 1.61; (hurdle model estimate =0.27, 95% CI 

0.06; 0.48, p=0.011) and 1.32 (95% CI 1.08; 1.62;  hurdle model estimate 

=0.28, 95% CI 0.08; 0.48, p=0.007) more days spent in in- or outpatient 

treatment, respectively, per each SD unit increase in the symptomatology. This 

is suggestive of possible mediation in a cohort with greater statistical power. 

5.3 EPIGENETIC CLOCK, PHYSICAL AND 
NEUROCOGNITIVE DEVELOPMENT IN 
ADOLESCENTS (STUDY III) 

 

Table 4. Associations between epigenetic clock, physical and neurocognitive 

development in 11.0 – 13.2-year-old adolescents  

Outcome 

Epigenetic age acceleration (years) calculated as unstandardized 

residual regressing DNA methylation on chronological age and 

blood cell types 

 

 Model 1 Model 2 

 B / OR 95% CI p B / OR 95% CI p 

Anthropometry       

     Weight-for-age (SD) 0.06 0.01; 0.11 0.02 0.05 0.00; 

0.10 

0.051 

     Height-for-age (SD) 0.08 0.03; 0.13 0.003 0.07 0.02; 0.12 0.01 

     Body-mass-index-for-age 

(SD) 

-0.04 -0.01; 

0.09 

0.15 0.02 -0.02; 

0.07 

0.31 

Tanner Staging 

Questionnaire 

      

     Pubic hair development 

(I–IV)  

1.09 0.98; 1.21 0.12 1.15 0.99; 1.25 0.07 

     Breast/Genitals 

development (I–IV) 

1.13 1.02; 1.25 0.018 1.15 1.03; 1.29 0.014 

Pubertal development scale       

     Stage I – III  1.16 1.02; 1.32 0.015 1.19 1.05; 1.34 0.008 

Child Behavior Checklist       

Total problems 1.18 0.98; 1.41 0.089 1.15 0.95; 1.39 0.14 

Internalizing problems 

domain 

1.29 1.11; 1.51 <0.001 1.34 1.13; 1.60 <0.001 

Anxious/depressed 1.29 1.07; 1.56 0.008 1.39 1.08; 1.78 0.011 
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Withdrawn 1.34 1.15; 1.56 <0.001 1.37 1.17; 1.61 <0.001 

Somatic complaints 1.11 0.97; 1.28 0.13 1.12 0.96; 1.29 0.14 

 Externalizing 

problems domain 

1.02 0.76; 1.36 0.92 0.99 0.74; 1.32 0.96 

Rule-breaking behavior 1.10 0.82; 1.47 0.52 1.05 0.79; 1.40 0.72 

Aggressive behavior 1.05 0.78; 1.41 0.74 1.07 0.81; 1.42 0.64 

 Other 

problems domain 

      

Social problems 1.14 0.96; 1.36 0.14 1.13 0.96; 1.34 0.14 

Thought problems 1.18 1.01; 1.37 0.035 1.20 1.01; 1.43 0.034 

Attention problems 0.98 0.82; 1.17 0.85 0.95 0.79; 1.15 0.61 

 DSM-IV-

oriented scales 

      

Affective problems 1.27 1.08; 1.48 0.003 1.29 1.08; 1.54 0.004 

Anxiety problems 1.25 1.01; 1.57 0.045 1.29 0.98; 1.68 0.07 

Somatic problems 1.05 0.91; 1.20 0.50 1.03 0.89; 1.19 0.73 

Attention deficit 

hyperactivity problems 

1.05 0.81; 1.36 0.71 0.99 0.81; 1.23 0.98 

Conduct problems 1.11 0.85; 1.45 0.44 1.14 0.89; 1.46 0.32 

Oppositional-defiant 

problems 

1.07 0.83; 1.38 0.60 1.14 0.87; 1.48 0.34 

Note: B refers to unstandardized regression coefficient from generalized model with Gaussian 

reference distribution; OR refers to odds ratio from generalized linear model with ordinal 

logistic reference distribution; 95% CI refers to 95% confidence interval. 

 

 

Table 4 shows that after adjustment for covariates of model 1, increase in 

AA was associated with higher weight-for-age, taller height-for-age, and less 

missed units from the target adult height (p values < 0.02; Bonferroni-

corrected (across seven tests)  p< 0.036). Each year increase in AA was further 

associated with a more advanced Tanner stage of breast/genitals development 

and a more advanced pubertal stage on the PDS (p values < 0.018; Bonferroni-

corrected (across seven tests) p > 0.05). When adjusted for model 2 covariates 

the results remained virtually identical, except for weight-for-age SD score, 

which became attenuated (p = 0.051). Adjustments for maternal self-reported 

age at menarche did not affect the significant associations (all p-values < 

0.042; data not shown).  

Table 4 also shows that after model 1 covariate adjustments, each year 

increase in AA was associated with 29% higher odds for internalizing 

problems, and 29% and 34% higher odds for anxious/depressed and 

withdrawn problems on the internalizing problems domain, respectively (p-

values< 0.008). Each year increase in AA was further associated with 27 % and 
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25% higher odds for DSM-IV oriented affective and anxiety problems (p-

values< 0.045). Each year increase in AA was also associated with 18% higher 

odds for thought problems within the domain of other problems (p = 0.035). 

When adjusted further for the model 2 covariates, the association of AA with 

anxiety problems became non-significant (p =0.07), while the other significant 

associations remained unaffected (p-values < 0.034) (Table 4). When 

corrected for multiple testing (tests across four internalizing, six DSM-IV, and 

three other problems domains), the associations with internalizing, 

anxious/depressed, withdrawn, and affective problems remained significant 

(Bonferroni-corrected p-value < 0.018). There were no other significant 

associations with child psychiatric problems (p-values> 0.09). 

There were no significant associations between AA and assessed cognitive 

abilities (p > 0.27; data not shown). 

Figure 10 shows that in models adjusting for model 1 covariates and time 

at awakening, for each year increase in AA, salivary cortisol at awakening 

increased by 4.2% (p = 0.021). This association survived adjustment for model 

2 covariates as well as for the adolescents BMI-for-age SD score (p-values < 

0.02), but not correction for multiple testing (across four tests; Bonferroni-

corrected p = 0.08).  

 

 

Figure 10 A scatterplot with a regression line and 95% confidence intervals showing 
associations between epigenetic age acceleration and salivary cortisol upon 
awakening in 11.0–13.2-year-old adolescents 
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5.4 GXE INTERACTION OF ELS AND FKBP5 
POLYMORPHISMS IN ASSOCIATION WITH 
QUANTITATIVE GLYCEMIC TRAITS IN LATE 
ADULTHOOD (STUDY IV) 

Figure 11 shows that after adjustment for model 1 covariates and using 

additive genetic model we found significant interaction of ELS with rs1360780 

in the analyses of fasting, 30-minute, incremental, and AUC insulin (Panel A). 

It further shows that we found significant interaction of ELS with rs9394309 

in the analyses of 30-minute and incremental insulin (Panel B). Figure 11 also 

shows significant interaction of ELS with rs9470080 in the analyses of 

incremental insulin (Panel C). All the results remained significant when 

adjusted for model 2 covariates; the analyses of fasting insulin survived 

Bonferroni correction (p<0.025). Adjustment for model 3 covariates did not 

affect the results. 

When we performed ELS interaction analyses using dominant genetic 

model, the results remained significant, revealing additional significant 

association between rs9470080 by separation status interaction with 30-

minute insulin. 
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Figure 11 A scatterplot with a regression line and 95% confidence intervals showing 
associations between epigenetic age acceleration and salivary cortisol upon 
awakening in 11.0–13.2-year-old adolescents 
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Table 5 shows that across all the significant interactions, insulin values 

were higher among carriers of at least one copy of the minor allele if they were 

separated compared to if they were not; no such differences between separated 

and non-separated groups existed among homozygous major allele carriers.  

In the dominant genetic model analyses we also found a significant 

interaction between rs9470080 and separation status with IFG (p value for 

interaction = 0.049; Bonferroni-corrected p-value = 0.098): among carriers of 

at least one copy of minor allele, the odds for IFG was higher in the separated 

(n = 87 [20.3%]) in comparison to the non-separated group (n = 535 [13.4%]; 

odds ratio = 1.84, 95% confidence interval = 0.97 – 3.52, p = 0.06)).  

All the significant interactions remained virtually unaffected in the 

analyses using models 2 and 3. In the additional analyses of quantitative 

glycemic traits with further adjustment for antidiabetic medication and 

physician diagnosed diabetes, the only interaction that remained significant 

was that of rs1360780 by separation status on fasting insulin (p = 0.009, 

Bonferroni-corrected p = 0.018). Here we also found a previously non-

significant interaction between rs1360780 by separation status on HOMA-IR 

(p = 0.030, Bonferroni-corrected p = 0.059). The findings remained virtually 

identical when we made adjustments following the Keller model. 

Finally, haplotype analysis demonstrated that carriers of the haplotype 

formed by the minor alleles in rs1360780 (T), rs9394309 (G), and rs9470080 

(T) (19.6% of individuals) who were separated from their parents had higher 

levels of fasting (p values for interaction = 0.048, Bonferroni-corrected p = 

0.096), 30-minute (p values for interaction = 0.032, Bonferroni-corrected p = 

0.064), and incremental insulin (p values for interaction = 0.021, Bonferroni-

corrected p = 0.042), thus, confirming our findings from the single SNPs by 

separation status analyses. None of the covariate adjustments affected these 

findings, except when adjusting for antidiabetic medication use and physician-

diagnosed diabetes, only the results for fasting insulin remained unaffected (p 

= 0.021), revealing additional association with higher levels of HOMA-IR (p = 

0.049). 
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6 DISCUSSION 

This work has three major aims. First, to examine whether exposure to 

prenatal stress was associated with polyepigenetic modifications in fetal cord 

blood and whether these modifications were associated with and mediated the 

effects of prenatal stress on child mental health outcomes. In order to attain 

this aim we used data from the PREDO prospective cohort with well-

characterized mother–child data on epigenomic, medical, psychological, and 

socio-demographic characteristics in the Studies I and II. The main results of 

Study I demonstrate that lower child’s epigenetic GA at birth was significantly 

associated with maternal history of depression diagnosed before pregnancy 

and higher antenatal depressive symptoms and it prospectively predicted 

child’s total and internalizing problems in early childhood, partially mediating 

the association of maternal antenatal depression with child internalizing 

problems, although only in boys. In Study II we show that polyepigenetic GC 

exposure score at birth was not associated with higher risk for any childhood 

mental and behavioral disorder, but it was significantly associated with the 

severity of these disorders.  

Second, as epigenetic processes undergo changes related to age, we set out 

to study whether polyepigenetic modifications were associated with physical 

growth, neuroendocrine functioning and mental health in adolescents. In 

order to obtain this aim we used data from the Glaku prospective cohort with 

a wide range of epidemiological data available. The results of Study III reveal 

that adolescents with higher AA, i.e. higher DNAm age compared to 

chronological age, displayed more advanced physical growth and 

development, had higher salivary cortisol upon awakening and higher odds for 

displaying borderline clinically significant internalizing problems.  

Third, this study aimed to examine whether exposure not only to prenatal, 

but also to ELS was associated with physical health outcomes in an elderly 

population, and whether these associations were moderated by genetic 

variants that play a role in the regulation of the HPA-axis functioning. In order 

to obtain this aim we used data from the HBCS prospective cohort with well-

defined genetic, medical, psychological, and socio-demographic 

characteristics. The main results of Study IV show that three selected FKBP5 

polymorphisms moderate the association of ELS on insulin and glucose values 

at fasting state and/or during an OGTT in late adulthood. 

Individual study findings in relation to previous evidence are discussed 

below. 
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6.1 MATERNAL ANTENATAL DEPRESSION, 
POLYEPIGENETIC BIOMARKER OF EPIGENETIC GA 
AND CHILD PSYCHIATRIC PROBLEMS (STUDY I) 

Study I shows that maternal history of depression diagnosed before 

pregnancy and higher levels of antenatal depressive symptoms were 

significantly associated with child’s lower epigenetic GA at birth, with no 

additive effect of these conditions and no gestation stage specificity.  

This study also shows that child’s lower epigenetic GA at birth 

prospectively predicted child’s total and internalizing problems in early 

childhood, although only in boys. Also in boys, we found partial mediation of 

the association between maternal antenatal depression and child internalizing 

problems by child’s epigenetic GA at birth. 

These findings may seem to contradict the existing evidence in adult 

populations which point to higher rather than lower DNAm age, in comparison 

to chronological age, as suboptimal in relation to physical and mental health 

outcomes (137,138). Importantly, DNAm age is an ongoing readout of 

molecular processes that play a significant role in development, maintenance 

of cells, tissues and organs, and, ultimately, their decay. DNAm age increases 

as stem and progenitor cells undergo differentiation to produce more 

committed cells for growth during the early developmental years and for 

replenishment of differentiated cells during the maintenance years (225). 

Therefore, the biological significance of the DNAm acceleration at early 

formative stages, and particularly at prenatal stage, may differ from the one at 

later stages of life. The study conducted in children confirms that children who 

are epigenetically older at birth are taller and have a higher fat mass 

throughout childhood and adolescence even after adjusting for sex (14).  

In line with our findings, a recent study reported epigenetic GA 

deceleration in newborns who were exposed to prenatal adversity reflected by 

the cerebroplacental ratio, a hemodynamic parameter reflecting fetal 

adaptation to hypoxic conditions (226). The association of lower epigenetic GA 

with increased risk is congruent with the DOHaD concept: the risk for aging-

related diseases and mental problems is higher for individuals exposed to 

prenatal environmental adversities, which are associated with lower birth 

weight, preterm birth, and maternal depression during pregnancy (36,43). 

Because DNAm is a dynamic process, which has been shown to undergo age-

related changes (16), both lower and higher epigenetic age might signal risk 

depending on the life stage.  

Although we expected to find sex differences in the associations, it remains 

unclear why the associations with psychiatric problems were specific to boys. 

These results disagree with previous evidence of higher vulnerability in girls 

exposed to maternal depression during pregnancy (71). Furthermore, Graham 

et.al have showed that in girls, rather than in boys, elevated maternal cortisol 

during pregnancy was associated with higher internalizing symptoms, and this 

association was mediated by stronger neonatal amygdala connectivity (100). 
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However, many studies suggest corresponding adverse effects of antenatal 

depression on offspring psychopathology in both sexes (5,72) and, 

corresponding with our findings, a rodent study showed that maternal early 

pregnancy stress predicted a depression-like phenotype only in male offspring 

(73). Indeed, evidence exists suggesting that what might be phenotypically 

adaptive for males and females may be determined by a complex interaction 

of type, timing, severity, and chronicity of the prenatal stress exposure and the 

developmental stage of the offspring (72,73). Whether lower epigenetic GA in 

boys would also predict other outcomes or would become predictive of 

outcomes in girls in later life stages is the subject of ongoing studies.  

Furthermore, our findings of lower epigenetic GA at birth in boys 

contradict previously demonstrated older epigenetic age in boys compared to 

girls, with this sex difference persisting into old age where it accompanies 

higher mortality risk (225). However, as discussed above, the biological 

meaning of the epigenetic age acceleration and deceleration in prenatal and 

postnatal environments might differ, with lower epigenetic GA reflecting less 

maturity, which may pose long-term mental health risk. Moreover, studies at 

later stages of development are performed using the tissues other than cord 

blood, which may account for the discovered discrepancies. Thus, the findings 

on the possible sex specificity of the effects of prenatal stress on offspring 

developmental outcomes are inconclusive, and a consensus exists that further 

exploration of the potential sex specificity of prenatal epigenetic programming 

effects is needed (72,73). 

6.2 ASSOCIATIONS BETWEEN POLYEPIGENETIC GC 
EXPOSURE SCORE AT BIRTH AND CHILD MENTAL 
AND BEHAVIORAL DISORDERS (STUDY II) 

 

Study II shows that a novel polyepigenetic biomarker reflecting fetal GC 

exposure at birth was not significantly associated with higher hazard for any 

childhood mental and behavioral disorder in a follow-up of the children from 

birth to 7.1-10.7 years of age. However, it was significantly associated with the 

severity of these disorders, such that lower polyepigenetic GC exposure score 

at birth was associated with more days spent in in- or outpatient treatment for 

any mental and behavioral disorder as the primary diagnosis in a public 

specialized medical care. For each SD unit decrease in this score, the child had 

spent almost three more days in in- or outpatient treatment. These findings, 

thus, suggest that this novel polyepigenetic biomarker may contribute to 

identification of children at risk for more severe mental and behavioral 

disorders already at birth, which may allow alternative avenues for timely 

targeted preventive interventions, before any manifest symptoms or disorders 

occur. 
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While maternal depressive and anxiety symptoms during pregnancy 

correlated with the fetal polyepigenetic GC exposure score in this study sample 

(13), they were not correlated with the severity of child mental and behavioral 

disorders in this study.  Hence, we could not test for mediation. However, in a 

larger sample of the PREDO study, for whom we missed cord blood samples, 

maternal higher depressive and anxiety symptoms were significantly 

associated with 1.3 more days spent in in- or outpatient treatment, indicating 

possible insufficient power in the subset to detect this association, suggesting 

plausibility for mediation in a larger sample.  

The fact that a lower polyepigenetic GC exposure score was associated with 

higher severity of child mental and behavioral disorders is in line with an 

increased prenatal GC exposure in the severely affected children. In fact, a 

lower polyepigenetic GC exposure score was previously shown to be reflective 

of higher DNA demethylation with GR activation (13) and exposure to GC has 

been associated with DNA demethylation specifically at glucocorticoid-

responsive elements (227). These findings would suggest that children with 

more severe mental health problems have been exposed to more GC prenatally 

or are more sensitive to their epigenetic effects. This may be indicative of an 

increased priming of target genes to subsequent stress exposure, as suggested 

by previous findings in hippocampal progenitor cells (13). Furthermore, 

combining GC-exposure of human cerebral organoids as a model of early brain 

development and single cell sequencing, we could show that GC target genes 

in the developing brain are enriched for genes that have been associated with 

neurodevelopmental disorders and psychiatric disease, including major 

depression, schizophrenia as well as cross disorders risk in large genome-wide 

association studies (228). The strongest disease enrichments were found for 

transcripts regulated in late neuronal progenitors and neurons. This would 

suggest that prenatal GC exposure may contribute to the increased risk for 

more severe mental and behavioral  disorders observed in the offspring (43) 

via lasting epigenetic changes in relevant neuronal target genes and that this 

risk maybe exacerbated in with additional genetic risk.  

6.3 ASSOCIATIONS OF POLYEPIGENETIC BIOMARKER 
OF EPIGENETIC CLOCK IN ADOLESCENCE WITH 
TEMPO OF MARKERS OF PHYSICAL GROWTH AND 
DEVELOPMENT, HPA AXIS FUNCTIONING, 
PSYCHIATRIC PROBLEMS AND COGNITION (STUDY 
III) 

In Study III we showed that adolescents with higher AA, i.e. higher DNAm 

age than chronological age, were heavier- and taller-for-age, and closer to their 

expected target adult height, suggesting an earlier growth spurt and less 

remaining growth potential. Their pubertal stage of breast/genital 

development, measured with Tanner Staging Questionnaire, and of secondary 
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sex characteristics, measured with PDS, were also at a more advanced stage. 

The advanced growth and maturation was accompanied by higher salivary 

cortisol upon awakening and higher odds for displaying borderline clinically 

significant internalizing problems, namely anxious/depressed and withdrawn 

problems, affective and anxiety and thought problems. While these 

associations remained significant after adjustments for a number of important 

covariates, only the associations with stature and with internalizing/affective 

problems remained significant after correction for multiple testing. Our 

results, thus, suggest that adolescents whose biological DNAm age is higher 

than their chronological age display more advanced physiological 

development and risk for psychiatric problems that may indicate risk of earlier 

aging. 

Our findings are in line with the life history theory, which suggests that 

early development and early puberty are meaningful tradeoffs in conditions of 

environmental adversity (49,50). We suggest that AA and advanced growth 

and maturation might indicate more advanced tempo of aging processes 

present from adolescence onwards. Indeed, more advanced physical growth 

and pubertal development have been shown to predict aging-related diseases, 

such as cancers (229), cardio-metabolic disorders and their risk factors 

(230,231), and depression (232). Interestingly, recent studies from the 

ALSPAC cohort discovered associations of childhood DNAm AA with exposure 

to adverse childhood experiences (233,234). As pubertal timing has been 

previously shown to mediate the association between childhood trauma and 

cardiovascular risk in adulthood (235) and overall early life adversity has been 

associated with both accelerated pubertal timing and cellular aging, future 

studies should examine whether the AA might be the biological mechanism 

explaining these risk avenues. 

The findings with physical growth agree with previously reported 

association of higher AA at age 7 with increased height in childhood and 

adolescence (148). Yet, in the same study, contrarily to our results, higher AA 

at age 7 predicted slower, rather than faster height growth between childhood 

and adolescence and AA at ages 7 and 17 years was not associated with a 

number of pubertal development markers, including the Tanner Staging 

Questionnaire (148). However, in line with our findings, higher AA at birth did 

predict higher odds of increasing Tanner stage of testes development (148). 

Similarly, our discovered association of higher AA with more advanced 

pubertal development agrees with the results from a study in Chilean 

adolescent girls, where a five-year average increase in AA was associated with 

a significant decrease in time to menarche and revealed an overall stronger 

inverse association of AA with pubertal tempo, although there was no 

significant association with the time of thelarche (149). There is evidence that 

the timing of pubertal development may be sensitive to exogenous factors 

during different critical exposure windows affecting the hypothalamic-

pituitary-gonadal maturation, the biological system orchestrating an increase 

in gonadal steroid production and initiating  puberty (236). As DNAm 
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undergoes age-related changes (16), a potential explanation for the somewhat 

discrepant study findings on physical growth and development and pubertal 

maturation between our and the previous studies is the age at which DNAm 

and physical and pubertal development were measured.  

Cortisol measurements are often used to study the HPA axis functioning, 

and while the effects of high cortisol concentrations on health vary, they are 

generally associated with a number of physical and mental health adversities, 

such as obesity (237), sleep problems (238), anxiety and depression (103,106) 

in studies in both children and adults. Our findings of the association between 

AA and elevated salivary cortisol upon awakening might indicate that risk for 

aging-related disease and dysregulation of the HPA axis may be discovered 

already in adolescence. These results are in partial agreement with previously 

discovered association of higher AA measured from salivary DNA at age 13 

with higher salivary cortisol measured across two days in a study of 46 

adolescent girls (150). That study, however, did not account for a number of 

covariates, such as genetic population structure, which is strongly associated 

with methylation profiles (195) or BMI, which is strongly associated with the 

cortisol levels (237), and, hence, it remains unclear if the findings of that study 

would have survived adjustments for these important covariates. Our results 

disagree with a more recent study from the ALSPAC cohort which 

demonstrated null findings in the study of AA and morning plasma cortisol 

(233). There have been conflicting evidence of significant discrepancy in the 

measurements of cortisol from plasma and saliva, which might explain the 

disagreement of our findings (239). The cortisol system is highly complex; 

therefore, further research using standardized measures for cortisol is needed 

to further examine its role in the relationship between epigenetic AA and 

aging-related disorders. 

Our study also revealed novel findings related to psychiatric problems, 

namely, that higher AA was associated with internalizing/affective-type and 

thought problems, but not externalizing-type of problems. This finding may 

reflect statistical power, as internalizing problems in our sample were twice as 

prevalent as externalizing problems, or adolescent sample, an age period with 

a marked rise in internalizing problems (240). This pattern is, however, 

congruent with Study I, where we have demonstrated that polyepigenetic 

biomarker of GA was inversely correlated with higher internalizing problems 

in boys. There is evidence that childhood psychiatric problems tend to track 

into adulthood (241), and even when they do not or are subthreshold (242), 

these problems increase risk for adverse adulthood outcomes and 

vulnerability for earlier aging. 

In Study III AA was not associated with cognitive abilities, which is 

somewhat surprising, as poorer childhood cognitive functioning is predictive 

of aging-related diseases, including dementia (243). However, due to the 

dynamic nature of DNAm alterations (16), we cannot rule out that AA at later 

developmental stages will change and become associated with cognitive 

function and perhaps change its links to behavioral problems. 
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6.4 MODERATION OF ELS ASSOCIATION WITH 
QUANTITATIVE GLYCEMIC TRAITS IN LATE 
ADULTHOOD BY FKBP5 POLYMORPHISMS (STUDY 
IV) 

Study IV demonstrated that three selected FKBP5 polymorphisms 

moderated the association of ELS on insulin and glucose values at fasting state 

and/or during an OGTT in midlife. Among carriers of at least one copy of the 

minor allele, those who had been exposed to ELS had higher insulin values at 

fasting and 30 minutes after the glucose load, higher incremental and the AUC 

insulin, and higher odds for IFG, compared with carriers not exposed to ELS. 

There were no such differences in these glycemic traits in carriers homozygous 

for the major allele. These findings were further confirmed by the haplotype 

analyses, where a haplotype formed by minor alleles of these three SNPs 

interacted with ELS in predicting the quantitative glycemic traits: carriers of 

the haplotype formed by the minor alleles had higher levels of fasting, 30-

minute, and incremental insulin if they were separated in comparison to those 

who were not. These findings were not explained by a number of important 

covariate; however, when we made adjustments for antidiabetic medication 

use and physician-diagnosed diabetes, only the ELS by rs1360780 and ELS by 

haplotype interactions on fasting insulin remained significant; interestingly, 

in these analyses also, these two interactions became significant on insulin 

resistance. Our findings, thus, suggest that ELS is associated with higher 

insulin and glucose values in midlife if we do not take into account their 

antidiabetic medication use and T2D diagnosis, and with higher insulin and 

insulin resistance values when we do, in individuals genetically vulnerable to 

HPA axis dysregulation. 

We did not find G x E interactions in the analyses of T2D or CVD, while 

they have been previously associated with ELS, regardless of the genetic 

vulnerability in FKBP5 region. The three selected FKBP5 polymorphisms, 

although related to HPA axis reactivity, may offer a perspective that grasps 

only a surface of the pathways that may explain the ELS–manifest associations 

on complex polygenic diseases, such as T2D and CVD. Furthermore, we cannot 

rule out that another explanation for the lack of significant G x E interactions 

on T2D and CVD relates to the still relatively young age of the sample and, 

consequently, small number of individuals with established diagnosis 

decreasing statistical power to detect significant associations. We did, 

however, find significant G x E interactions on higher levels of quantitative 

glycemic traits, which predict increased risk of future T2D and CVD (213). 

Elevated concentrations of insulin, which we observed in the participants with 

minor alleles in rs1360780, rs9394309, and rs9470080 and a haplotype 

formed from these alleles who also experienced ELS, may be an indication of 

compensatory hyperinsulinemia-increased insulin secretion in β cells in an 

attempt to overcome insulin resistance (244). However, if not controlled, after 

a period of compensatory hyperinsulinemia with normal glucose tolerance, β-
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cell insulin secretion declines, insulin receptors get down-regulated, and IGT 

and eventually overt T2D may result (245). Therefore, follow-up studies of 

HBCS participants are essential to see if this transition occurs at later stages 

of life, particularly in those who carry the environmental and genetic risks. 

Several potential pathways may account for our findings, which are related 

to FKBP5 expression in the body, with tremendous differences of its 

expression across tissues (168).  

First, hypothalamus, hippocampus and amygdala, the regions controlling 

the stress response and whole-body metabolism, show the highest FKPB5 

expression in the brain (168). FKBP5 has a number of upstream and intronic 

glucocorticoid response elements (GREs) (177), whose function is moderated 

by both genetic variation and environmental factors, the latter being mediated 

by epigenetic mechanisms. This has been demonstrated in the study by 

Klengel et al., where the function of the GRE in intron 2 in the whole blood 

was moderated by rs1360780 and linked to early adverse experience (24). 

Interestingly, there were no changes in DNAm after exposure to adult trauma, 

suggesting that there are developmental periods in which cells are particularly 

sensitive to epigenetic effects within FKBP5 (246). In fact, exposure to GCs 

during proliferation and differentiation was shown to lead to significant 

reduction in DNA methylation in intronic GREs (246). In line with our 

findings, increased stress-related epigenetic effects have been shown in risk-

haplotype carriers (24,247–249). Chronic or repeated exposure to stress (or a 

single exposure to severe stress) and associated elevated levels of stress 

hormones can, in turn, lead to increased portal and peripheral free fatty acids, 

impaired ability of insulin to translocate intracellular SLC2A4 glucose 

transporters to the cell surface, and insulin hypersecretion (250,251). These 

effects lead to long-term metabolic consequences, which include hypertension, 

metabolic syndrome, insulin resistance, and T2D (251).Thus, stressful 

experience in the early stages of development may lead to attenuated 

development of these brain areas due to high density of GRs and persistent 

postnatal neurogenesis, which, in combination with preexisting genetic 

vulnerability, may have permanent effects on brain development and 

endocrine and metabolic systems (46,251). 

Second, FKBP5 shows a strong expression in human adipocytes, skeletal 

muscle and lymphocytes (252). The first study investigating the effects of 

FKBP5 expression in adipose tissue on metabolism revealed that FKBP5 

expression levels were associated with markers of insulin resistance such as 

higher plasma insulin, HOMA-IR and subcutaneous adipocyte diameter and 

lower plasma high-density lipoproteins (252). Furthermore, the same study 

shows that FKBP5 expression was highly upregulated by the synthetic GC DEX 

in human subcutaneous and omental adipose tissue, suggesting that FKBP5 

regulation may be implicated in GC-induced insulin resistance (252). Finally, 

the authors suggest that a number of FKBP5 polymorphisms may be linked to 

the susceptibility to develop insulin resistance and dyslipidemia (252), as 

preclinical studies indicate a regulatory role of FKBP5 in adipogenesis 
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(240).These results were confirmed in a follow-up study, where FKBP5 gene 

expression was strongly correlated with insulin resistance, driven by glucose 

AUC during OGTT data, with the strongest associations in non-diabetic obese 

subjects (254), which  may link into previous findings of the rs1360780 

polymorphism within FKBP5 gene association with reduced weight loss 

following bariatric surgery of obese patients (255). Furthermore, Ortiz and 

colleagues reported an association between FKBP5 intron 2 methylation and 

higher glycated hemoglobin A1c protein (HbA1c), low-density lipoproteins 

(LDL), BMI and waist circumference, placing the patients with T2D at higher 

risk for CVD (256). Further studies are needed to identify whether methylation 

status at intron 2 may explain the elevated FKBP5 expression in adipose 

tissues and higher risk for glucose and insulin dysregulation and higher risk 

for T2D and CVD in individuals with risk alleles of FKBP5 polymorphisms who 

were exposed to early adversity. However, taken together, our study 

corroborates the body of literature demonstrating the significance of FKBP5 

in associations with metabolic dysfunction and dysglycemia, suggesting 

elevated risk for cardiometabolic disorders in FKBP5 risk allele carriers, 

particularly following the GC exposure, which may act via epigenetic 

dysregulation at FKBP5 loci. 

Finally, FKBP5 expression was shown to increase with age (257). It has 

been shown that transcriptional regulation of FKBP5 over age is mediated by 

similar epigenetic mechanisms as ELS–induced changes and that these effects 

could converge to alter the trajectory of FKBP5 expression, with potentially 

exacerbated effects in risk genotype carriers (258). Furthermore, a recent 

study revealed that aging and stress synergistically decrease DNAm at selected 

regulatory FKBP5 CpGs, which promotes nuclear factor-κB (NF-κB)–driven 

peripheral inflammation, while NF-κB binding to the FKBP5 enhancer 

stimulates FKBP5 expression, which together form a positive feedback loop 

and potentially contribute to pro-inflammatory states and higher risk for 

cardiovascular diseases (259). Therefore, FKBP5 demethylation, particularly 

in risk allele carriers exposed to ELS, may promote aging-related diseases via 

reinforcing the inflammatory pathways. 

6.5 METHODOLOGICAL CONSIDERATIONS 

The main general strengths of all the Studies I – IV relate to their 

longitudinal design and well-characterized cohorts. This allowed us to account 

for a large number of important covariates, which have been associated either 

with the predictors, or with the outcomes, in all of the analyses. Across all the 

analyses in Studies I – IV we have made adjustments for genetic population 

structure (195), and across Studies I – III for the effects of cell type 

heterogeneity (194,201), which are factors strongly influencing genetic and 

epigenetic profiles (260,261).  
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General limitation of Studies I through IV relates to the ethnic homogeneity 

of the cohorts, which were based in Nordic high-income country, which may 

limit generalizability of our findings to other populations. Another limitation 

for Studies I – III includes the use of one tissue type for the calculation of the 

polyepigenetic biomarkers, which may also preclude the generalizability to 

other tissue types. 

Both Studies I and II use data from the PREDO cohort, where in the 

assessment of DNAm from the umbilical cord blood we applied novel 

bioinformatics methods to account for any sample contamination by maternal 

blood (193). Study I strength also includes validation of the findings with the 

bootstrap method and hierarchically structured analysis strategy of child 

psychiatric problems to decrease the likelihood of false-positive findings. 

Strength of Study II is in utilization of the data from a validated nationwide 

healthcare registry on the child mental and behavioral disorder diagnoses as 

well as on the number of days the child had been in in- or outpatient treatment 

for these disorder as the primary diagnosis (199). This is likely to decrease the 

common-method bias present in studies where both the predictor and the 

outcome are reported by the same person (262). Furthermore, the 

polyepigenetic score in Study II has been derived from cross-tissue overlap of 

GC responsive CpG sites of neuronal cell lines and peripheral blood, which 

allows for more possible organisms-wide relevance. Yet, our novel findings 

from Studies I and II must be interpreted with caution, and further studies are 

needed to confirm or refute them, as they have several limitations. The first 

one relates to the PREDO recruitment strategy, which was based on women’s 

risk factor status for preeclampsia and IUGR, precluding generalizations to 

groups that differ from ours. The second limitation is statistical: in Study I the 

low number of mothers with depression diagnosis limited our statistical power 

to assess additive effects of depression before and during pregnancy, while in 

Study II there was comparatively low number of children with mental and 

behavioral disorders leading to decreased statistical power to study these 

disorder diagnoses, although in proportion (12.1%) this number was slightly 

higher in magnitude than the one found in the general population of Finnish 

children (263). Next, while there is convincing evidence that length of stay in 

hospital treatment may indicate the severity of psychiatric disorders (264), 

multiple factors such as SES, family structure, place of residence and others 

may affect the length of in- and outpatient treatment for these disorders, 

particularly in children. Therefore, future studies estimating the severity of 

child mental and behavioral disorders based on the length of in- and 

outpatient treatment, which control for those factors as well as use alternative 

indices of severity, such as the degree to which the disorder interferes the daily 

function, are warranted to confirm the plausibility of our approach. Moreover, 

as many psychiatric problems manifest in adolescence and later in life (265), 

further follow-ups of the PREDO cohort as the children age are warranted. 

Finally, even though we accounted for a number of important covariates, we 

cannot rule out that some other unmeasured factor might explain our findings, 
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and hence cannot rule out residual confounding. Hence, other factors 

operating in the prenatal and postnatal environment may be driving the 

discovered associations. In Study I prenatal factors, which may affect the 

epigenetic GA, include depression-related changes in endocrine and 

neurotransmitter functioning, and levels of inflammatory markers in the 

mother, fetus, and placenta (266). As for the postnatal environmental factors, 

there is preliminary evidence suggesting that DNAm, which, in turn, may 

associate with child psychopathology (267).  

A further strength of Study III relates to availability of a number of aging-

related phenotypes that we measured decades before the aging-related 

diseases become manifest. We were also able to account for a number of early 

life adversities and their proxies, particularly for maternal glycyrrhizin in 

licorice use during pregnancy, which is a potent inhibitor of the placental GC 

barrier enzyme 11β-HSD2 and has been previously associated with poorer 

neurocognitive tests performance and higher odds for having borderline 

clinically significant externalizing psychiatric problems at ages 8 and 11–13 

(209,268), higher diurnal and stress-induced salivary cortisol profiles at age 8 

(269), and more advanced pubertal maturation in girls at age 11–13 (209) in a 

larger sample of this study cohort. The limitations of Study III include the 

narrow age range of the sample, and hence, the small magnitude of the 

correlation between DNAm age and chronological age. The small magnitude 

of this correlation is, however, similar to the other two previous childhood 

epigenetic age studies (148,150). Further, in Study III we had only one DNA 

sample collection and, thus, only cross-sectional measurement of the 

epigenetic clock, which precludes testing developmental changes and causal 

inferences. Finally, while we measured psychiatric problems with a 

standardized, validated, and widely used tool (206), we cannot rule out 

potential information-bias as it was reported by the mother.  

Strengths of Study IV relate to objectively recorded ELS augmented by self-

report, and clinical measurement of glucose tolerance. Primary limitation of 

Study IV lies in the shortcomings of candidate GxE approach, which has been 

largely criticized for the lack of reproducibility, low power and high false 

discovery rates, among others  (26). Although the list of challenges associated 

with characterizing candidate GxE studies is long, many of these can be 

addressed by adopting a rigorous research practices (26). Moreover, stricter 

guidelines for publishing results of candidate GxE studies are now applied by 

respected peer-review journals in order to preserve the high quality of 

publications (27,28). In Study IV we have carefully followed these 

recommendations by using objective measurements of the ELS exposure and 

the health outcomes, following strong evidence for the choice of the candidate 

gene and its polymorphisms, correcting our analyses for a number of 

important covariates (including population heterogeneity), applying 

Bonferroni method to correct the alpha level, and using prospective cohort 

with well-characterized data (28). Furthermore, although it remains 

important to confirm our results in other cohorts with comparable exposure 
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and outcome data, in addition to testing the associations with single 

polymorphisms, we confirmed our findings with haplotype analysis that 

strengthened our approach. Next limitation includes possible lack of statistical 

power to detect significant G x E interactions for some of our outcomes due to 

limited sample size and uncertainty on the quality of the ELS experience 

during evacuation. The latter remains an unavoidable study limitation because 

we do not have objective data on the evacuation experience and any adulthood 

recall of childhood events is at least to some extent biased. Furthermore, 

staying in Finland during the war with one's parent(s) may have been equally 

or even more stressful than the separation from one's parent(s). However, 

both the separated and the nonseparated participants were exposed to war in 

childhood, because none of the children were evacuated before the war broke 

out, and some of them returned home during the war. Hence, our findings may 

offer a rather conservative estimate of the differences between the separated 

and the nonseparated groups. 

6.6 IMPLICATIONS OF THE STUDY AND DIRECTIONS 
FOR FUTURE RESEARCH 

The findings of the studies included in this thesis clearly show that prenatal 

and early life stress have a significant negative long-term impact on physical 

and mental health. These effects are embedded in human biology and act, at 

least in part, via genetic and epigenetic mechanisms.  

Currently there is an increased general public interest in postpartum 

depression and its impact on child development, but awareness on the 

antenatal depression remains insufficient. However, there is multiple 

evidence, including the studies from this thesis, that maternal mental health 

during pregnancy may disrupt child neurodevelopment via epigenetic 

mechanisms and put these children at lifelong risk for mental and physical 

disorders. Therefore, it is of essence to establish high-quality system to 

monitor maternal mental health and overall wellbeing during pregnancy, 

possibly embedding it in regular clinical checkup visits. Furthermore, it is 

important to popularize the information regarding maternal antenatal 

depression and anxiety, educate expecting parents and public on the impact of 

these disorders on the developing fetus and to normalize treatment for mental 

health problems.  

Early life adversity, including separation from parents during childhood, 

which was investigated as part of the thesis, should be addressed in order to 

mitigate the long-term impact of ELS on physical and mental health. 

Following the ideas of the attachment theory developed by John Bowlby (270), 

in times of war conflicts, cataclysms, immigration and social disputes, it 

should be a priority for children to stay with their parents, unless there is 

danger for their health and life under these circumstances.  
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The findings of this thesis highlight the potential value of the genetic and 

epigenetic biomarkers in identifying individuals at risk for mental and physical 

health problems. While the clinical utility of such biomarkers remains to be 

unraveled in future studies, this work is among the pioneer studies, which 

demonstrate that this kind of polyepigenetic biomarkers can be generated as 

early as at birth and may increase understanding of the origins and biological 

mechanisms of disease manifestation. Furthermore, our findings are a step 

forward in understanding how a routine collection of umbilical cord blood at 

birth for DNA sampling may contribute to early identification of children at 

risk for complex somatic and psychiatric disorders and open new avenues for 

timely targeted preventive and intervention measures. Furthermore, it may be 

beneficial to estimate the epigenetic clock and its deviation from chronological 

age at different time-points throughout the lifespan, in order to see its dynamic 

and allow for timely interventions. Next, identifying biological risks based on 

genetic makeup may also provide opportunities for developing therapeutic 

targets. Finally, more work needs to be done to better understand the clinical 

applications of DNA methylation and related to it polyepigenetic biomarkers. 

Interestingly, the insurance industry is already considering the use of 

epigenetic age acceleration to predict risk of mortality to determine insurance 

premiums (271).  

However, many questions remain unanswered. First, it is yet unclear 

whether the initial prenatal insult may induce immediate pathophysiological 

outcomes  and/or whether the initial exposure may lead to cellular 

reprogramming via DNAm and other biological mechanisms that prime 

differential responses to the same environmental conditions later on that then 

lead to pathology (11). Therefore, more longitudinal studies with multiple 

DNAm measurements, including epigenetic age and polyepigenetic GC 

exposure score estimation, which account for both pre- and postnatal 

adversities in relation to child neurodevelopment, are needed.  

Second, in Study I we observed that epigenetic GA deceleration in cord 

blood was associated with maternal depression and child psychiatric 

problems, while in Study III we saw the association of epigenetic age 

acceleration at the mean age of 12.4 years with more advanced physical growth 

and development, higher salivary cortisol and higher odds for psychiatric 

problems. Longitudinal studies with multiple measurements of the DNAm age 

and tracking of the health outcomes are warranted to establish whether the 

asynchrony of DNAm in relation to chronological age shifts from deceleration 

to acceleration in the risk groups and whether epigenetic GA at birth predicts 

other epigenetic age biomarkers in later life. 

Third, although we began to unravel the changes in methylation profiles 

associated with adverse exposures and mental health outcomes, we do not yet 

know how we could address these methylation changes, whether they could 

serve as therapeutic targets and to which extent they could have predictive 

power. Currently, epigenetic therapies are successfully used in the clinic to 

treat certain types of cancers and open new avenues to develop personalized 
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treatments, which may allow for lower dosing, limiting side effects of 

treatment and improving overall quality of life and treatment compliance 

(272–274). Future studies focused on deeper understanding of the role of 

epigenetic modifications in manifestation of psychiatric disorders and 

development of more precise genetic and epigenetic biomarkers should 

uncover the potential use of epigenetic therapeutics when addressing mental 

health problems as well. 

Next, while epigenetic age is clearly a strong biomarker for aging, it is a 

mystery as to what age-related biological process it is measuring (271). Future 

studies should address this knowledge gap and clarify, whether DNA 

methylation alterations contribute to pathogenesis of mental and physical 

health problems or it is a non-causal biomarker.  

It is also unclear whether the epigenetic age acceleration can be prevented, 

slowed, or reversed. However, lifestyle factors appear promising: 

observational data from the Women’s Health Initiative demonstrates that a 

higher intake of vegetables, fruits and fish is associated with reduced 

epigenetic age acceleration at a single time point (275).  

Finally, similar to emerging genome-wide interaction studies in relation to 

depression (276,277), genome-wide G x E studies in much larger samples than 

our Study IV sample are warranted in order to unravel the admittedly complex 

genetic pathways via which ELS may exert effects on manifest T2D and CVD. 

They may open avenues for generating more accurate polygenic risk scores 

that could lead to better understanding of genetic makeup of the complex 

phenotypes, development of improved prediction and treatment of psychiatric 

and somatic stress-related illnesses. However, such large-scale studies will 

need to concur challenges that relate not only to the sample size but also to 

ELS exposures that are quantitatively and qualitatively comparable across 

individuals. 

6.7 CONCLUSIONS 

Overall, the findings from the Studies I – IV that comprise this thesis add 

to results from previous studies exploring genetic and epigenetic mechanisms, 

which may mediate the associations between prenatal and early life adversity 

and lifelong physical and mental health outcomes. In Studies I and II we show 

that polyepigenetic biomarkers of child GA and GC exposure at birth are 

associated with both antenatal maternal mental wellbeing and psychiatric 

problems in children. However, the biological pathways explaining these 

associations are likely very complex, therefore, in Study I we found only partial 

sex-specific and in Study II no mediation of these polyepigenetic biomarkers 

in associations between maternal antenatal depression and anxiety and 

mental and behavioral disorders in children. We further show in Study III that 

polyepigenetic biomarker of epigenetic clock of aging predicted more 

advanced pubertal development, higher cortisol levels and more psychiatric 
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problems in adolescents. Finally, Study IV reveals that exposure to ELS is 

moderated by genetic variants that play a role in the regulation of the HPA axis 

functioning in association with quantitative glycemic traits in older adults.  

To sum up, we show that the polyepigenetic biomarkers of antenatal 

adverse exposures and aging and biomarkers of genetic vulnerability in 

combination with the information about ELS might contribute to early 

identification of individuals at risk for complex mental and physical disorders 

enabling timely targeted preventive and therapeutic interventions. 
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