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Abstract 12 

Extension of the Azores Plateau along the Terceira Rift exposes a lava sequence on the steep 13 

northern flank of the Hirondelle Basin. Unlike typical tholeiitic basalts of oceanic plateaus, the 14 

1.2 km vertical submarine stratigraphic profile reveals two successive compositionally distinct 15 

basanitic to alkali basaltic eruptive units. The lower unit is volumetrically more extensive with 16 

~1,060 m of the crustal profile forming between ~2.02 and ~1.66 Ma, followed by a second 17 

unit erupting the uppermost ~30 m of lavas in ~100 kyrs. The age of ~1.56 Ma of the youngest 18 

in-situ sample at the top of the profile implies that the 35 km-wide Hirondelle Basin opened 19 

after this time along normal faults. This rifting phase was followed by alkaline volcanism at D. 20 

João de Castro seamount in the basin center indicating episodic volcanic activity along the Ter-21 

ceira Rift. The mantle source compositions of the two lava units change towards less radiogenic 22 

Nd, Hf, and Pb isotope ratios. A change to less SiO2-undersaturated magmas may indicate in-23 

creasing degrees of partial melting beneath D. João de Castro seamount, possibly caused by 24 

lithospheric thinning within the past 1.5 million years. Our results suggest that rifting of oceanic 25 

lithosphere alternates between magmatically and tectonically dominated phases.   26 
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Introduction 27 

Oceanic plateaus with a crustal thickness to 30 km cover large areas in the oceans and these 28 

bathymetric swells affect oceanic currents and marine life 1,2. Most oceanic plateaus have com-29 

plex magmatic histories with several volcanic phases erupting tholeiitic to alkaline basaltic la-30 

vas over time scales of tens of millions of years 3-6. For example, drilling of Pacific oceanic 31 

plateaus revealed that the Ontong-Java Plateau apparently formed between 121 and 37 Ma by 32 

four volcanic episodes, whereas the Shatsky Plateau erupted continuously between 144 and 129 33 

Ma 4. The main magmatic episode forming oceanic plateaus is believed to reflect the initial 34 

arrival of a deep mantle plume head e.g. 5, but the overall sequence that follow the mantle and 35 

volcanic processes in oceanic plateau remains poorly understood 4. Stratigraphic sampling of 36 

continental flood basalt lava flows yields important insight into petrogenetic processes 7, but 37 

similar studies at oceanic plateaus have been limited by the depths of drill cores that typically 38 

sampled the uppermost few hundred meters 4,6. Oceanic plateaus frequently show evidence of 39 

rifting phases like, for example, the Manihiki and Kerguelen Plateaus 8,9. The Azores Plateau 40 

formed 10 to 4 million years ago 10 and is rifted by the NW-SE striking ultraslow Terceira 41 

Rift 11-13. Seismic work suggested an opening of the Terceira Rift ~since 25-20 Ma ago 14, 42 

whereas tectonic studies suggested rifting initiation 1to 2 Ma ago 15,16. Deep submarine rift 43 

basins of the Terceira Rift are results of the extension and expose the earlier volcanic stages 44 

along the 1 to 2 km high escarpments of the rift flanks. Volcanic edifices with ages <1.5 Ma 45 

formed within the Terceira Rift 17-20 causing a morphology that resembles the magmatic and 46 

amagmatic segments at ultraslow-spreading centers such as the Southwest Indian Ridge and the 47 

Gakkel Ridge in the Arctic Ocean 21,22. Large volcanic structures imply short-lived melt focus-48 

ing at the magmatic segments, whereas mantle peridotite occurs in deep sediment-covered 49 

amagmatic ridge segments 21,23. Magmatic segments with average lengths of 25 to 60 km are 50 

also typical for the continental Main Ethiopian rift system with a significantly thicker litho-51 

sphere than slow-spreading mid-oceanic ridges 24. The magmatic intrusions reduce the strength 52 

of the lithosphere and thus play an important role in the rifting process 25.  53 

Here, we present geochronological and geochemical data on the upper 1.2 km of the 54 

Azores Plateau crust that give evidence for episodic volcanic activity at the Terceira Rift. The 55 

new data show that the Terceira Rift opened after 1.56 Ma with tectonic extension followed by 56 

volcanism in the rift basin. The basanitic to alkali basaltic magmas form by low degree (<5%) 57 

partial melting beneath thick lithosphere and the increasing SiO2 contents of primitive melts 58 

with time probably reflect rifting-induced progressive lithospheric thinning and increasing de-59 

grees of melting at shallower depths.  60 
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Geological setting 61 

The Azores Plateau covers an area of ~4 x 105 km2 26 with a minimum crustal thickness of 62 

~16 km 27,28, thus representing a slightly smaller oceanic plateau than Shatsky Rise in the NW 63 

Pacific with an area of 5.33 x 105 km2 29. Large portions of the Azores Plateau probably formed 64 

by enhanced melt production close to the Mid-Atlantic Ridge (MAR) between 10 and 4 Ma 65 

ago, possibly with the abundant eruption of tholeiitic basalts from large melt volumes in the 66 

head of a deep mantle plume 10,30. In contrast, most of the Azores islands are younger than 67 

1.5 million years and erupt alkaline lavas 17-20. The abundant volcanism may be caused by a 68 

small thermal mantle anomaly 31,32, or by decompression melting of a volatile-enriched mantle 69 
33,34. The anomalously thick oceanic crust of the eastern Azores Plateau is bounded by the 70 

roughly N-S striking MAR in the west (Fig. 1). Extension within the Azores Plateau occurs 71 

along several NW-SE and WNW-ESE striking fault zones with the Terceira Rift being the most 72 

pronounced 11,12. Several authors suggested the formation of new oceanic lithosphere along the 73 

Terceira Rift but no systematic magnetic anomaly pattern parallel to the Terceira Rift is ob-74 

served 11,13,35. The extension may have occurred in two phases with the first by normal faulting 75 

of existing crust of the entire Azores plateau, and the second very recent phase with magmatic 76 

intrusions along the Terceira Rift 35. Seismic studies reveal an extended crust with numerous 77 

normal faults and suggest a NE directed migration of the rifting in the SE part of the Terceira 78 

Rift 14. The oblique ultraslow extension of the Terceira Rift opened the Hirondelle Basin with 79 

later formation of the volcanic islands of Terceira and São Miguel 15,36, and the large D. João 80 

de Castro seamount that occurs in the northwestern portion of the basin (Fig. 1). D. João de 81 

Castro seamount is an active volcano with reported eruptive activity in 1720 and active shallow 82 

hydrothermal venting 37. The Hirondelle Basin is less than 35 km wide and extends ~100 km 83 

from SE to NW and is bounded by rift flanks rising from ~2500 to 1300 meters below sea level 84 

(mbsl, Fig. 1). The northern rift flank is steeper than the southern flank probably reflecting the 85 

existence of several faulted blocks in the south (Fig. 1). The Hirondelle Basin is seismically 86 

active implying ongoing tectonic extension in this area 38. 87 

Methods 88 

Major and trace elements 89 

Most of the samples from ROV-Dives 738ROV and 789ROV (supplementary material I) are 90 

plagioclase ± clinopyroxene phyric moderately to highly vesicular volcanic rocks but some 91 

samples are aphyric. One volcanic glass sample was separated (IEAZO1047; 789ROV-01) and 92 

analyzed using the JEOL JXA-8200 superprobe electron microprobe at the GeoZentrum 93 
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Nordbayern in Erlangen, Germany, using methods described previously 39. Weathered surfaces 94 

and vesicle fillings were removed from the whole-rock samples prior to sample preparation. 95 

The samples were then washed, coarse crushed and powdered in an agate grinder. We carried 96 

out analyses of major and trace element concentrations at the GeoZentrum Nordbayern in 97 

Erlangen, Germany, following the procedures outlined previously 40. The international rock 98 

standards BHVO-2, BE-N, BR and GA were repeatedly measured with the samples. The major 99 

and trace element and isotope analysis procedure is described in detail in the supplementary 100 

material (II).  101 

Isotope analysis 102 

For Sr-Nd-Pb isotope ratio analysis, about 0.10 to 0.12 g dried whole rock powder was leached 103 

passed though the separation procedures outlined previously. All used acids were Teflon dis-104 

tilled (those for Pb were double-distilled), and typical procedural blanks for Pb, Sr and Nd were 105 

30 pg, 200 pg and 80 pg, respectively. Lead isotopes were measured by double spike analysis 106 

using a Thermo Scientific Neptune Plus High Resolution Multicollector ICP-MS (MC-ICP-107 

MS) at the GeoZentrum Nordbayern in Erlangen, Germany. Repeated measurements of the 108 

NBS981 Pb isotope standard measured as an unknown over the course of this study gave 109 
206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb ratios of 16.9391 ± 0.0018, 15.4965 ± 0.0019 and 36.7149 110 

± 0.0036, respectively, compared to published values of 16.9379±30, 15.4932±26, and 111 

36.7013±76 41. The Sr and Nd isotope ratios were determined in static mode with a Thermo 112 

Scientific Triton Series Multicollector Thermal Ionization Mass Spectrometer (TIMS) at the 113 

GeoZentrum Nordbayern in Erlangen, Germany. Repeated analyses of the NBS987 Sr standard 114 

yielded an average value of 0.710259, and the in-house ‘Erlangen Nd’ standard solution gave 115 
143Nd/144Nd of 0.511840, equivalent to a value of 0.511850 for the La Jolla standard. 116 

 Hafnium was separated using a modified version of published methods 42,43. Titanium 117 

(using an oxidation mixture) and Zr were separated from the Hf fractions through further steps 118 

on Ln-Spec columns. The isotopes were measured with a Thermo Scientific Neptune Plus High 119 

Resolution MC-ICP-MS, at the GeoZentrum Nordbayern in Erlangen, Germany. We measured 120 

the AMES Grenoble standard yielding a 176Hf/177Hf 0.282171±3 (n=6) compared to a published 121 

value of 0.282169±22 41. All measured standard values and the Hirondelle Basin dataset are 122 

listed in the supplementary material (III). 123 
 124 
40Ar/39Ar ages 125 

All 40Ar/39Ar age determinations (groundmass and plagioclase phenocrysts, see table 1) for the 126 

Hirondelle Basin samples were carried out at the Oregon State University (OSU) Argon 127 
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Geochronology Laboratory, USA (described in detail in supplementary material IV). The 128 

separated grain size fraction between 150-300 "m was washed (ultrapure water), dried at 55°C 129 

and plagioclase phenocrysts were separated by hand-picking from groundmass material. The 130 

density fractions were acid-leached with 1M HCl, then 6M HCl, 1M HNO3, 3M HNO3 and 131 

ultra-pure deionized water (all for about 60 min) in an ultrasonic bath heated to ∼50°C. The 132 

plagioclase phenocrysts were leached using 5% HF for 5-15 minutes. The leached samples were 133 

irradiated for 6 h in the TRIGA nuclear reactor at OSU, together with the FCT sanidine flux 134 

monitor 44. The individual J-values for each sample were calculated by parabolic extrapolation 135 

of the measured flux gradient against irradiation height and typically give 0.1-0.2% 136 

uncertainties (1σ). The 40Ar/39Ar incremental heating age was determined with two 137 

multicollector ARGUS-VI mass spectrometers. After loading the irradiated samples into Cu-138 

planchettes in an ultra-high vacuum sample chamber, they were incrementally heated by 139 

scanning a defocussed 25 W CO2 laser beam in preset patterns across the sample, in order to 140 

release the Ar evenly. Each pass involved incremental heating of 15-20 mg of separated 141 

groundmass material or plagioclase phenocrysts. The sample material was ‘pre-cleaned’ for 60 142 

s, while released gasses were pumped away directly at two low (0.5%, 1.8%) laser power 143 

settings to remove any loosely-held atmospheric Ar adsorbed onto grain surfaces. After heating, 144 

the reactive gases were cleaned out using a SAES Zr-al ST101 getter operated at 400°C and 145 

two SAES Fe-V-Zr ST172 getters operated at 200°C and room temperature, respectively. 146 

Samples were held in the extraction line for a total time of 6 minutes. Blank intensities were 147 

measured every 3 incremental heating steps for groundmass and glass, and every 2 steps for 148 

plagioclase phenocrysts. For calculating the ages, the corrected decay constant of Steiger and 149 

Jäger 45 was used: 5.530 ±0.097 x 10-10 yr-1 (2σ) as reported by Min, et al. 46. Incremental 150 

heating plateau ages and isochron ages were calculated as weighted means with 1/σ2 as 151 

weighting factor 47 and as YORK2 least-square fits with correlated errors 48 using the 152 

ArArCALC v2.7.0 software Koppers 49 available from the http://earthref.org/ArArCALC/ 153 

website. The samples were initially interpreted using the inverse isochron because such ages do 154 

not assume a 40Ar/36Ar composition for trapped Ar. Inverse isochron ages are calculated for 155 

samples with five or more data points using steps that deviate by less than 3σ from the 39Ar/40Ar 156 

and 36Ar/40Ar weighted means with a uniform distribution 50. In addition, the isochron ages are 157 

considered robust if (1) the total released 39Ar (k) ≥ 50%. (2) the isochron has a spreading factor 158 

> 5% (S-factor 50), MSWD <1 + 2 (2/ƒ)1/2 51, where f=n-2 and n is number of steps in the 159 

isochron, and (3) the 40Ar/36Ar intercept is within error or greater than 295.5 ±0.7 1σ. If 160 

experiments had no resolvable isochron but yielded highly radiogenic Ar, the initial trapped 161 
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40Ar/36Ar was assumed to equal 295.5 52, and a plateau model age was calculated.  162 

Results 163 

Sampling and age determinations of lavas from crustal profile 164 

The samples from the northern Hirondelle Basin wall (Fig. 1) were recovered by the Remotely 165 

Operated Vehicle (ROV) ‘Quest 4000’ (MARUM Bremen), during research cruise M128 166 

in 2016 with the German RV Meteor. We stratigraphically sampled a ~1.2 km vertical profile 167 

of the northern flank of the Hirondelle Basin between 2510 and 1308 mbsl (Fig. 2). All samples 168 

were obtained from submarine pillow lava flows (supplementary material I) and thus represent 169 

eruptive units rather than intrusive rocks. Whereas the lower part of the profile consists only of 170 

lavas and dikes, volcaniclastic rocks and pelagic sediments become more abundant shallower 171 

than 1690 mbsl depth where they alternate with pillow lavas.  172 

Four samples were selected for 40Ar/39Ar age dating (on groundmass and plagioclase 173 

phenocrysts) at Oregon State University, USA (Table 1). The lowermost sample IEAZO0903 174 

(2427 mbsl) has a groundmass plateau age of 2.020 ± 0.010 Ma (Fig. 2). Sample IEAZO1054 175 

(1760 mbsl) from the central part of the profile reveals a groundmass plateau age of 176 

1.958 ± 0.008 Ma. The uppermost samples IEAZO1064 (1367 mbsl) and IEAZO1065 177 

(1338 mbsl) show groundmass plateau ages of 1.657 ± 0.004 Ma and 1.558 ± 0.005 Ma, re-178 

spectively. The groundmass ages are interpreted as eruption ages, yet from the inverse isochron 179 
40Ar/36Ar intercept calculations, the samples do show evidence for (minor amounts of) excess 180 

Ar, which has been corrected accordingly 53. The four samples cover ~1.2 km of vertical crustal 181 

profile representing a time interval of ~500 kyrs. The lower ~1060 m indicate formation within 182 

~400 kyrs, whereas the uppermost ~30 m of the profile have an age difference of ~90 kyrs 183 

(based on the groundmass plateau ages).  184 

Geochemical variation within the profile 185 

Major and trace element concentrations, as well as Sr-Nd-Hf and double spike Pb isotope ratios 186 

were analyzed at the GeoZentrum Nordbayern (see Methods). Two lava units are defined based 187 

on different Nb/Zr ratios: (1) lavas between 2510 and 1438 mbsl have Nb/Zr <0.2, and (2) the 188 

uppermost four samples between 1390 and 1308 mbsl have Nb/Zr >0.2 (Fig. 2a). Lavas with 189 

low Nb/Zr also display low TiO2 contents (<4.2 wt.% at >4 wt.% MgO) and relatively high 190 
176Hf/177Hf isotope ratios (Fig. 2b). The lavas from the Hirondelle Basin wall are alkali basalts, 191 

basanites, tephrites, trachybasalts, and phonotephrites with 8.5 to 3.3 wt.% MgO (Fig. 3a). Most 192 

of the lavas from the Hirondelle Basin wall have lower SiO2 contents at a given MgO concen-193 

tration compared to lavas from the young volcanoes along the Terceira Rift (Fig. 3b). All lavas 194 
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are enriched in light relative to heavy Rare Earth Elements (REE) with chondrite-normalized 195 

Ce/Yb ratios between 7 and 11 which is similar to basalts from Terceira, whereas lavas from 196 

Sete Cidades on São Miguel and from D. João de Castro seamount are more enriched (Fig. 4a). 197 

The basalts from the Hirondelle Basin have relatively high (Dy/Yb)N that are comparable to 198 

Sete Cidades and Terceira lavas but the D. João de Castro alkali basalts have lower (Dy/Yb)N 199 

and higher SiO2 than those from the Hirondelle Basin wall (Fig. 4b). The lavas of the upper 200 

unit between 1390 and 1274 mbsl with high Nb/Zr have low 143Nd/144Nd and 176Hf/177Hf ratios 201 

but high 87Sr/86Sr relative to lavas from the lower unit (Figs. 2 and 5). In terms of Nb/Zr and 202 

Nd isotope ratios the upper basalts resemble those from D. João de Castro and Sete Cidades 203 

whereas the lower lavas overlap with compositions of Terceira basalts (Fig. 5b). The 206Pb/204Pb 204 

ratios of the Hirondelle Basin lavas range from 19.46 to 19.77 where the lower unit generally 205 

has higher ratios than the upper unit (Fig. 6). The isotopic composition of the Hirondelle Basin 206 

flank lavas overlaps with those of rocks from Terceira but the low Nd and Hf isotope ratios of 207 

the upper unit basalts resemble Sete Cidades lavas. Samples from the young D. João de Castro 208 

seamount have even lower Nd, Hf, and Pb isotope ratios than the Hirondelle Basin flank basalts.  209 

Discussion 210 

Magmatic evolution of the Azores Plateau 211 

Oceanic plateaus typically consist of tholeiitic lavas reflecting large degrees of melting in the 212 

shallow mantle 4,6. The alkali basaltic to basanitic lavas forming the upper >1 km of the crust 213 

at the Hirondelle Basin (Fig. 3a) are unlikely to represent the initial magmatic plateau-forming 214 

stage and differ significantly from >5 Ma old tholeiitic lavas found on the western Azores Plat-215 

eau 30. Experimental results indicate that alkali basaltic to basanitic melts form by low degrees 216 

of partial melting (<5%) of carbonated garnet peridotite at high pressures >3 GPa 54,55. The light 217 

REE enrichment supports low degrees of melting and the relative depletion of heavy REE in 218 

the Hirondelle Basin lavas (Fig. 4a) suggests a deep melting regime of the magmas in garnet 219 

peridotite stability field 56,57. Thus, the alkaline composition of the lavas from the Hirondelle 220 

Basin crustal profile reflects deep partial melting beneath thick lithosphere, unlike the tholeiitic 221 

mid-ocean ridge basalts at ultraslow-spreading axes 58. We conclude that the lavas from the 222 

Hirondelle Basin flank represent an alkaline magmatic phase suggesting formation of deep 223 

magmas beneath the lithosphere between ~2.0 and 1.5 Ma ago, rather than extensive shallow 224 

melting producing tholeiitic melts. The primitive basalts of the young D. João de Castro sea-225 

mount have higher SiO2 contents and lower (Dy/Yb)N than lavas of the Hirondelle Basin flank 226 
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(Fig. 4b) which implies larger degrees of melting at lower pressures. Consequently, deep melt-227 

ing apparently formed the magmas prior to ~1.5 Ma, followed by lithospheric thinning due to 228 

tectonic rifting of the Hirondelle Basin, and finally the generation and eruption of the D. João 229 

de Castro magmas. 230 

Change of mantle sources with time 231 

The Nb/Zr ratios are not affected by fractional crystallization processes because they remain 232 

constant over a large range of MgO contents (Fig. 5a). At similar MgO the upper unit lavas 233 

have higher Nb/Zr than the lower unit basalts (Fig. 5a). Additionally, Nd isotope ratios correlate 234 

with Nb/Zr implying that Nb/Zr variations reflect mantle source compositions (Fig. 5b). The 235 

lower Nb/Zr ratios of the Hirondelle Basin flank lavas compared to those of the islands indicate 236 

a more depleted source. Radiogenic isotope compositions suggest that volcanoes of the Azores 237 

are typically fed by distinct mantle sources 59,60. The Hf and Nd isotope ratios are insensitive to 238 

alteration and thus imply different mantle sources between the two lava units of the Hirondelle 239 

Basin flank (Fig. 6). Most lavas from the lower unit have higher 143Nd/144Nd, 208Pb/204Pb, and 240 
206Pb/204Pb compositions than those from the upper unit. The isotopes indicate a transition from 241 

a source resembling that of Terceira59,61 towards one with lower Nd and Pb isotope ratios 242 

(Fig. 6), possibly reflecting a source similar to Sete Cidades on western São Miguel or D. João 243 

de Castro magmas. The change in isotope composition confirms the large variation and small 244 

scale of the isotopic mantle heterogeneity in the Azores 59,60. We conclude that the two lava 245 

units recovered from the northern Hirondelle Basin rift flank show that the mantle beneath the 246 

Hirondelle Basin changed from a source comparable to that of Terceira magmas towards one 247 

closer to recent Sete Cidades and/or D. João de Castro seamount volcanism, implying rapid 248 

replacement of heterogeneous mantle in the melting zone of the Terceira Rift. Comparable 249 

changes of the mantle sources are observed at other volcanoes in the Azores, for example, at 250 

São Jorge 17. The change in composition of the Hirondelle Basin magmas apparently coincides 251 

with less frequent lava eruptions in the upper part of the profile. This suggests a decrease of 252 

magmatic activity and possibly decreasing melt production in the mantle at ~1.6 Ma prior to 253 

rifting of the Hirondelle volcanic structure. Volcanic eruptions and thus possibly also magma 254 

formation then recommenced in the Hirondelle Basin at D. João de Castro seamount after the 255 

rift basin had formed. 256 

Constraints on the extension process of the Terceira Rift 257 

No systematic magnetic patterns were observed along the Terceira Rift but the magnetic anom-258 

alies are different to the strike of the MAR and parallel to the young volcanic structures of 259 

Graciosa, Terceira, D. João de Castro, and Sete Cidades 35. These anomalies were interpreted 260 
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as indication of spreading of 160 to 75 km of new crust either since chron 13 (~36 Ma) or chron 261 

6 (~20 Ma) 13,35. However, seismic profiles across the southeastern Terceira Rift show faulted 262 

crust but no evidence for young magmatic spreading 14 which is in agreement with structural 263 

observations on São Miguel island 15. A teleseismic receiver function study reveals that the 264 

lithosphere beneath Terceira and São Miguel islands has a thickness of ~80 km implying rifting 265 

did not cause significant thinning of the plate 27. Additionally, the alkaline basaltic composition 266 

of the lavas erupting at the Hirondelle Basin in the past 2 million years implies melting beneath 267 

thick lithosphere, i.e. there is no geochemical evidence for lithospheric thinning with produc-268 

tion of tholeiitic magmas and formation of new magmatic crust and underlying lithospheric 269 

mantle. Rather, the uppermost ~1.2 km thick alkaline lava pile of the Hirondelle Basin flank 270 

erupted on top of existing thick lithosphere within 450 kyrs which is comparable to the esti-271 

mated 250-600 kyrs for formation of the volcanic layer 2A at slow-spreading mid-ocean ridges 272 
62. Ultraslow-spreading axes show alternating amagmatic extensional phases and magmatic 273 

phases with extension by dike intrusion 23. Although we do not find evidence for the formation 274 

of new lithosphere by magmatic processes in the Hirondelle Basin, we agree with Sibrant et al. 275 
15 that the extension of Terceira Rift follows patterns similar to other ultraslow mid-ocean 276 

ridges63.  277 

The crust exposed at the Hirondelle Basin may thus represent the early magmatic phase 278 

in the building of a volcanic ridge (Fig. 7). This volcanic ridge was split by tectonic rifting 279 

younger than 1.56 Ma that formed the Hirondelle Basin (Figs. 7 and 1 cross section: A-A’) and 280 

at a time when the Terceira Rift in this region became volcanically inactive. More recently, the 281 

formation of volcanic edifices like D. João de Castro seamount along the Terceira Rift (Figs. 7 282 

and 1 cross section: B-B’) indicates that magmas are focusing beneath this portion of the rift 283 

leading to volcanism and lateral dike intrusion, potentially with some magmatic spreading in 284 

the shallow crust. Our new age of <1.56 Ma for the opening of Hirondelle Basin is in agreement 285 

with previous estimates of the onset of Terceira Rift extension between 1.8 and 0.8 Ma further 286 

to the W 16, and between 2.7 and 1.4 Ma further to the E 15. The onset of volcanic activity in 287 

the Hirondelle Basin is unknown and we assume that D. João de Castro seamount formed within 288 

the past 500 kyrs similar to the youngest volcanoes on Terceira and São Miguel 17,19,64. Rifting 289 

of volcanic structures followed by formation of young volcanic cones has also been observed 290 

at the eastern end of Terceira 36 and on several other islands with the Terceira Rift like on 291 

Graciosa 65. Similar episodic magmatic phases along an ultraslow-spreading axis exist at the 292 

Southwest Indian Ridge 23. We conclude that the lavas from the northern rift shoulder of the 293 

Hirondelle Basin neither represent formation of new ocean floor by magmatic spreading as 294 
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previously suggested 13,35, nor do the samples represent an initial phase of formation of the 295 

Azores Plateau by high degrees of melting in a mantle plume. Rather, the lavas of the uppermost 296 

crust exposed along the Hirondelle Basin represent a rifted volcanic structure that formed by 297 

episodic deep and low degrees of partial melting. The volcanic succession implies that much of 298 

the thickening (>1 km) of the eastern Azores Plateau occurred by late addition of lavas. Dike 299 

intrusions into the crust and potential magmatic spreading are probably restricted to the volcanic 300 

centers of the Azores islands 16 and D. João de Castro seamount. We speculate that the wide 301 

zone of extension observed in the Azores Plateau 12,17 may become focused along the narrow 302 

Terceira Rift with four magmatic segments at western São Miguel, D. João de Castro seamount, 303 

Terceira, and Graciosa (Fig. 1). The magma intrusions weaken the oceanic lithosphere which 304 

in turn causes strain localization 24,25. Thus, the general pattern of extension of the Azores Plat-305 

eau resembles that of continental rifts where tectonic extension starts in a relatively wide area 306 

along boundary faults with later narrowing of the zone of deformation and active volcanism 66. 307 

Conclusions 308 

The upper ~1.2 km of the Azores Plateau crust along the Hirondelle Basin formed within 309 

~500 kyrs with the lower 1000 m-thick portion erupting within 350 kyrs. Thus, magmatic erup-310 

tion volumes decreased significantly to the top while the magma source compositions changed. 311 

The Hirondelle Basin shows similar episodic volcanic phases to ultraslow-spreading axes alt-312 

hough the lithosphere is much thicker and the alkaline basaltic magmas suggest deep melting 313 

at relatively low degrees. The formation of volcanoes with heights of >1 km is followed by 314 

tectonic extension with normal faulting but there is no evidence for magmatic spreading with 315 

production of new basaltic crust. Slight changes in basalt composition from mainly basanites 316 

prior to 1.56 Ma to recent alkali basalts at the D. João de Castro seamount may indicate increas-317 

ing degrees of melting due to thinning of the lithosphere associated with the formation of the 318 

Terceira Rift. The episodic volcanism along the Terceira Rift with breaks of perhaps 1 million 319 

years reflects variations of magma formation in the mantle possibly reflecting the ascent of 320 

fertile mantle into the melting zone. The tectonic and magmatic evolution of the Hirondelle 321 

Basin of the Terceira Rift thus resembles that known from narrow continental rift systems 24.  322 
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Figure legends 526 

Fig. 1: Bathymetric maps of the Azores Plateau in the North Atlantic with the tectonic structures 527 

of the Terceira Rift, the Mid-Atlantic Ridge, and the East Azores Fracture Zone shown in red 528 

in the smaller map. The small red square marks the sampling area, that is shown in more detail 529 

in the enlarged bathymetric map. The large map shows the bathymetry of the Hirondelle Basin 530 

between the islands of Terceira and Sete Cidades volcano on São Miguel. Bathymetric grids 531 

are combined ship-based multibeam maps from RV Meteor cruises M113, M128 and 67. The 532 

red triangle marks the location of the stratigraphic profile sampled during M128. The northern 533 

graben shoulder, as well as the southern flank appear to represent normal faults shown as white 534 

lines that caused basin opening. The black lines A-A’ and B-B’ indicate the profiles shown in 535 

Figure 7. Map created using QGIS 3.4 Madeira (2018). QGIS Geographic Information System. 536 

Open Source Geospatial Foundation Project. http://qgis.org. 537 

 538 

Fig. 2: The variation of a) Nb/Zr and b) 176Hf/177Hf ratios versus water depth [meters below sea 539 

level. mbsl] of the samples recovered at the northern graben shoulder of the Hirondelle Basin. 540 

Samples of the lower unit are depicted as black symbols and of the upper unit in red. Note that 541 

the error bars in b) are smaller than the symbols and therefore not shown in this graph. The bold 542 

numbers indicate the Ar-Ar groundmass plateau ages of selected samples.  543 

 544 

Figure 3. a) Anhydrous total alkali contents versus SiO2 (TAS) classification after Le Maitre 68 545 

with subdivision in alkaline and subalkaline composition after MacDonald 69 showing the lavas 546 

recovered from the flank of the Hirondelle Basin (HB) in comparison to those from Sete 547 

Cidades on São Miguel, Terceira, and D. João de Castro 17,59,61,70-73; b) Variation of SiO2 con-548 

tents versus MgO showing relatively low SiO2 for a given MgO of the Hirondelle Basin flank 549 

lavas compared to lavas from the other young volcanoes of the Terceira Rift. 550 

 551 

Figure 4. a) Variation of the chondrite-normalized Dy/Yb versus Ce/Yb of the basalts from the 552 

Hirondelle Basin (HB) flank in comparison to those from the young volcanoes of the Terceira 553 

Rift; b) Variation of (Dy/Yb)N versus SiO2 contents of the older basalts from the HB flank to 554 

the young lavas. Note that the basalts from D. João de Castro seamount have higher SiO2 but 555 

lower (Dy/Yb)N than the HB basalts. Data sources as in Figure 3. 556 

 557 

Figure 5. a) Nb/Zr versus MgO and b) Nb/Zr versus 143Nd/144Nd ratios for the lavas from the 558 

northern Hirondelle Basin (HB) compared to rocks from Terceira, Sete Cidades volcano on São 559 
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Miguel, and D. João de Castro. Data sources as in Figure 3. 560 

 561 

Figure 6. (a) 143Nd/144Nd versus 206Pb/204Pb and (b) 176Hf/177Hf versus 206Pb/204Pb ratios of the 562 

northern Hirondelle Basin (HB) lavas, compared to the data from Terceira, D. João de Castro, 563 

and Sete Cidades volcano on São Miguel. Data sources as in Figure 3. 564 

 565 

Figure 7. Cross section (SW - NE) of the distinct formation phases from top to bottom. The 566 

uppermost sketch shows the assumed first phase with the pre-rifting volcanic construction. The 567 

second diagram shows the opening of the basin through tectonic processes along profile A-A’ 568 

in Figure 1. The location of the sampled profile is shown at the north-eastern graben shoulder. 569 

The lowermost diagram shows the present situation along profile B-B’ in Figure 1. The new 570 

volcanic construction phase since perhaps 0.5 Ma formed the submarine seamount D. João de 571 

Castro. 572 

Table legend 573 

Table 1. Summary of 40Ar/39Ar data. 574 
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