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Abstract. Recent years have witnessed the proliferation of large-scale
Knowledge Bases (KBs). However, many entities in KBs have incomplete
type information, and some are totally untyped. Even worse, fine-grained
types (e.g., BasketballPlayer) containing rich semantic meanings are
more likely to be incomplete, as they are more difficult to be obtained.
Existing machine-based algorithms use predicates (e.g., birthPlace) of
entities to infer their missing types, and they have limitations that the
predicates may be insufficient to infer fine-grained types. In this paper,
we utilize crowdsourcing to solve the problem, and address the chal-
lenge of controlling crowdsourcing cost. To this end, we propose a hy-
brid machine-crowdsourcing approach for fine-grained entity type com-
pletion. It firstly determines the types of some “representative” entities
via crowdsourcing and then infers the types for remaining entities based
on the crowdsourcing results. To support this approach, we first propose
an embedding-based influence for type inference which considers not only
the distance between entity embeddings but also the distances between
entity and type embeddings. Second, we propose a new difficulty model
for entity selection which can better capture the uncertainty of the ma-
chine algorithm when identifying the entity types. We demonstrate the
effectiveness of our approach through experiments on real crowdsourcing
platforms. The results show that our method outperforms the state-of-
the-art algorithms by improving the effectiveness of fine-grained type
completion at affordable crowdsourcing cost.
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1 Introduction

The last decades have witnessed the booming of large-scale and open-accessible
Knowledge Bases (KBs) such as DBpedia [10], Freebase [2], and YAGO [20].
These KBs contain thousands of millions of real-world entities that fall into dif-
ferent types, e.g., Person, Place, Sport. Due to their large coverage and high
quality, the KBs have been successfully used to support many applications, such
⋆ This work is supported by NSFC (No.61602488, No.61632016 and No.61472427).
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as web search, question answering and entity linking. However, many entities
in the KBs have incomplete type information, and some are even totally un-
typed [17]. In DBPedia, for example, there are over 4 million entities assigned
with about 4 million types, which means that only one type per entity in aver-
age [8]. Even worse, many entities in DBPedia only have coarse-grained types
such as Thing, while fine-grained types such as GolfPlayer are missing since
they are difficult to be obtained when constructing the KBs. This incomplete-
ness of entity types affects the usefulness and usability of the KBs. For example,
entity Hedy_Lamarr4 in DBpedia is assigned with only general types includ-
ing Thing, Agent and Person but none of the fine-grained ones: neither Actor
nor Inventor. Therefore, Hedy_Lamarr is bound to be missed in the answer of
following question: Who is not only a famous Actor, but also an Inventor?

To complete the type information in KBs, some machine-based approaches
have been proposed. For example, SDType, which is reported as the state-of-
the-art method [13, 18], exploits the predicates, i.e., links between entities, to
infer missing types. Intuitively, if a predicate occurs in entities of one specific
type, it would be assigned with a large weight. In contrast, if it occurs in entities
of many different types, it will be assigned with a low weight. Obviously, high
weighted predicates are more likely to identify fine-grained types. For example,
in DBPedia, predicates teachingStaff and numberOfClassrooms have a high
weight to infer type School. SDType computes a confidence score for every pos-
sible type of an entity based on predicate weights. Then, if confidence of a type
is larger than some threshold, say 0.5, it completes the type for the entity.

However, since the KBs are often incomplete and noisy, it is difficult for SD-
Type to infer the correct fine-grained types if an entity misses the correct highly
weighted predicates or has some wrong predicates. For example, in DBPedia
with version 3.8, the BasketballPlayer entity Ron_Harper has only 4 pred-
icates, college, draftTeam, birthPlace and nationality. Given the entity
denoted by x, SDType computes a score of “inference ability” for each p of these
predicates to infer type C, which is denoted as Prob(C(x)|p). For example, as
shown in Table 1, Prob(BasketballPlayer(x)|draftTeam)=0.281 means 28.1%
entities having predicate draftTeam belong to type BasketballPlayer. We can
see that the scores of the four predicates of Ron_Harper are quite small, which
is insufficient to infer type BasketballPlayer for the entity. A detailed analysis
on computing Prob(C(x)|p) and limitations of SDType is referred to Section 3.

To overcome the limitation of machine-based approaches, we propose to uti-
lize crowdsourcing that leverages intelligence of the crowd to solve the entity type
completion problem. The main motivation is that human is much better than
machine to identify entity types, even though predicates of entities may be miss-
ing. For example, Fig. 1 shows an example crowdsourcing task for Ron_Harper.
We can see that it is not difficult for human to identify the correct type(s) for the
given entities. This is also verified by our experiments that the crowdsourcing
result is much better than machine-based approaches.

4 http://dbpedia.org/page/Hedy_Lamarr
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Table 1. Statistics of top 10 predicates
linked to BasketballPlayer

p Prob(C(x)|p) wp

1 draftTeam 0.281 0.078
2 highschool 0.241 0.337
3 college 0.224 0.422
4 nationality 0.035 0.005
5 ceo 0.023 0.002
6 coach 0.023 0.002
7 alumni 0.015 0.004
8 league 0.014 0.246
9 birthPlace 0.009 0.021
10 formerTeam 0.006 0.248

Select the appropriate type(s) for Ron_Harper.

Ron_Harper
Ronald Harper (born January 20, 1964) is an 

American retired professional basketball player 

and five-time National Basketball Association 

(NBA) champion. He played for four teams in 

the NBA between 1986 and 2001.

GridironFootballPlayer

BasketballPlayer

SoccerPlayer

GolfPlayer

MusicalArtist

Fig. 1. A example of micro-task

Unfortunately, the challenge in utilizing crowdsourcing for entity type com-
pletion is the crowdsourcing cost, since we need to pay rewards to the crowd for
their answers. Especially, in a large-scale knowledge base, it would be extremely
expensive if all the entities with their possible types are crowdsourced. Therefore,
we devise a hybrid framework which combines the intelligence of crowdsourcing
workers with the algorithmic approaches. We firstly select some “representative”
entities. Next, we publish the selected entities for crowdsourcing. At last, we
infer and determine the entities’ types based on the crowdsourcing results.

To support the hybrid framework, we develop the following techniques. First,
we propose an embedding-based influence for type inference which considers not
only the distance between entities but also the distance between entities and
types when inferring entity types. Second, we propose a new difficulty model
for entity selection which can better describe the uncertainty of the machine
algorithm to determine the correct types of entities. We demonstrate the effec-
tiveness of the method through experiments on real datasets. The results show
that our hybrid method outperforms the baseline machine algorithm by recalling
more fine-grained entity types with small extra crowdsourcing cost.

The remainder of this paper is organized as follows: Section 2 presents an
overview of our approach. Sections 3, 4 and 5 introduce the techniques on gen-
erating candidate types, type inference and entity selection respectively. The
experimental results are reported in Section 6 and related works are reviewed in
Section 7. We finally conclude the paper in Section 8.

2 An overview of Entity Type Completion

This section presents an overview of entity type completion in KBs. We first for-
mally define the problem and then introduce our crowdsourcing-based approach.
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Fig. 2. An overview of the hybrid method
2.1 Problem Formalization

We denote a knowledge base K = {E , T ,R,KR,KT }, where E is the set of entities
(e.g., Ron_Harper), T is the set of entity types (e.g., BasketballPlayer) and
R is the set of predicates (e.g., birthPlace). KR = {p(e, o) | e, o ∈ E ∧ p ∈ R}
contains the known predicate instances (e.g., birthPlace(Ron_Harper,Dayton)).
KT = {C(e) | e ∈ E ∧ C ∈ T } is a set of known type assertions indicating that
entity e is an instance of type C (e.g., Person(Ron_Harper)). With the notations,
we formulate the entity type completion problem as follows:

Definition 1 (Entity Type Completion). Given a set of entities A ⊆ E and
a set of entity types T , it determines whether an entity-type pair (e, C) is true
or not, where e ∈ A, C ∈ T and C(e) /∈ KT . Then, if (e, C) is true, we can add
the new found type assertion C(e) to KT : KT ← KT ∪ {C(e)}.

2.2 Framework of Our Crowdsourcing-Based Approach

To address the problem, we propose a crowdsourcing-based approach that uti-
lizes the intelligence of crowdsourcing workers. Moreover, as the crowdsourcing
budget is limited, we devise a machine-crowdsourcing hybrid framework that is
illustrated in Figure 2.

The approach takes as input a knowledge base K that contains all the known
predicate instances KR and type assertions KT . Given a set of entities missing
types, it first employs a machine-based algorithm to generate the candidate types
for them. Then, an Entity Selection Algorithm selects the most “representative”
entities under a given crowdsourcing budget. On the one hand, the selected
entities should be “uncertain” for the algorithm to identify the correct types. On
the other hand, the selected entities should be more useful to infer more type
assertions for unselected entities. Next, we generate micro-tasks for the selected
entities and publish them to crowdsourcing platform, e.g., Amazon Mechanical
Turk (AMTurk)5, where human workers could help to identify the right types.
Then, the answers collected from the crowds will be aggregated. Finally, the
Type Inference Algorithm infers the types for all target entities based on both
the crowdsourcing results and the inferred results.
5 https://www.mturk.com



Using Crowdsourcing for Fine-Grained Entity Type Completion in KBs 5

We note that there are some existing studies [5,9,12,14] that devise machine-
crowdsourcing hybrid approaches in other applications, such as, web table match-
ing and information extraction (more details can be referred to Section 7). How-
ever, we are the first to devise the hybrid framework in entity type completion.
The variety of knowledge bases requires us to develop new techniques on the
following components. We discuss how to generate candidate types in Section 3,
introduce the inference algorithm in Section 4, and present how to select “rep-
resentative” entities in Section 5.

3 Generating Candidate Types

We use the state-of-the-art machine-based type completion method SDType [18]
to generate candidate types. The basic building blocks of SDType are condi-
tional probabilities, e.g., the probability of an entity being of type C if it has a
predicate p. Additionally, each predicate p is assigned a weight wp which reflects
the discriminating power of the predicate. Note that p is treated differently with
its reverse predicate p−1, i.e., they are assigned different weights respectively.
According to the probability distribution of all predicates associated with each
entity, SDType computes a confidence score for each entity-type pair.

wp =
∑
C∈T

(Prob(C)− Prob(C|p))2 (1)

score(ei, Cj) =

∑
p∈Pred(ei)

Prob(Cj(ei)|p) · wp∑
p∈Pred(ei)

wp
(2)

where Prob(Cj(ei)|p) indicates how likely an entity ei having predicate p is of
class Cj , and Prob(C|p) indicates the prior probability of type C, i.e, how many
entities that belongs to the type C with predicate p.
Limitations of SDType. We utilize the example in Table 1 to analyze limi-
tations of SDType. In DBPedia, the BasketballPlayer entity Ron_Harper has
only 4 predicates, college, draftTeam, birthPlace and nationality. All of
them appear in the top-10 predicates linked with type BasketballPlayer re-
spect to the conditional probability. As is shown in Table 1, Prob(C(x)|p) indi-
cates how likely an entity having predicate p is of class C, and wp is the weight
of predicate p. For example, Prob(BasketballPlayer(x)|draftTeam)=0.281
means 28.1% entities having predicate draftTeam belong to BasketballPlayer.
Although the predicate college has the maximum weight as 0.422, it is hard
to determine the correct type BasketballPlayer because the conditional prob-
ability is just 0.224. As a result, the confidence value of the entity-type pair
<Ron_Harper, BasketballPlayer>is just 0.233. In fact, if the confidence thresh-
old is set to 0.5, Table 1 indicates that none of the BasketballPlayer entities
could obtain the correct type via SDType because no predicate has a conditional
probability greater than 0.5.
Candidate Types Graph. The target entities and their candidate types are
represented in a Candidate Types Graph. A Candidate Types Graph is a bipartite
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Algorithm 1 Type Inference Algorithm
Input
G = {A, T ∗, Π}: a initial Candidate Types Graph.
Sq = {< eq, C >}: the approved entity-type pairs for selected entities Aq.

Output
G′ = {A, T ∗, Π ′}: the updated Candidate Types Graph.

1: Initialize Π ′ = Φ
2: for each π =< e,C, s >∈ Π do
3: if e ∈ Aq then
4: Update the score of π with crowdsourcing answer, i.e., s′ = 1.0
5: else
6: Update the score of π: s′ = α · s+ (1− α) · Inf(π|Aq)
7: end if
8: Π ′ ← Π ′ ∪ {< e,C, s′ >}
9: end for

10: return G′ = {A, T ∗, Π ′}

graph G = {A, T ∗,Π} , where A is the set of target entities, T ∗ is the set of
candidate types and Π = {< ei, Cj , si,j > | ei ∈ A ∧ Cj ∈ T ∗} is the set of all
possible entity-type pairs. And πi,j =< ei, Cj , si,j > indicates the probability
that the type assertion Cj(ei) holds is si,j , where 1 ≤ i ≤ |A| and 1 ≤ j ≤ |T ∗|.
We also represent all candidate types of entity e as C(e). For example, Fig. 3 is
a toy Candidate Types Graph that consists of 3 entities, 4 candidate types and
7 candidate entity type pairs.

4 Inferring Types Using Crowdsourcing Results

4.1 Type Inference Algorithm

We adopt the concept determination algorithm proposed in [5] as our type infer-
ence algorithm. As shown in Algorithm 1, it takes the Candidate Types Graph G
and the crowdsourcing validated entity-type pairs Sq as input. For each entity-
type pair, the algorithm updates its score based on two evidences. One is the
initial score from SDType whose prior probability is denoted as α. The other is
the influences from the approved entity-type pairs by crowdsourcing with prior
probabilities 1 − α. Finally, the algorithm outputs updated Candidate Types
Graph G′ with the revised confidence scores for each entity-type pairs. The major
difference is that we propose a new method to compute the influences Inf(π|Aq)
in line 6 of Algorithm 1.

4.2 Influence between Entity-Type Pairs

In [5], the authors proposed a concept-based method to compute the inter-table
influence between two columns as the cosine similarity of their concept vectors.
The same idea can be adopted for entity type completion tasks, that is, similar
entities are more likely to belong to the same type.
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Type Vector Based Influence: Specifically, we generate a type vector for
each entity e based on Candidate Types Graph, which is denoted as −→e . Each di-
mension in the vector represents a candidate type and the value is the confidence
score si,j of the edge <ei, Cj>. Therefore, the influence from an entity-type pair
< em, C > to < en, C > can be computed as the cosine similarity of two entities’
type vectors, i.e., −→em and −→en.

Inf(< en, C > | < em, C >) = CosineSimilarity(−→em,−→en) (3)

Embedding-based Influence: Unlike the type vectors which are constructed
based on the edges in Candidate Types Graph, embedding is a latent represen-
tation for knowledge bases. Embedding-based algorithms, such as TransE [3],
embed entities and relations into relatively low dimensional representations (i.e.,
embeddings ) so that semantic related entities can be close to each other. For
example, entities of the same type are usually close to each other in the em-
beddings space. Additionally, entity types can also be embedded into the same
space, so that one type embedding can be close to the entities from that type [8].
Therefore, we propose an embedding-based method to compute the influences
between entity-type pairs, e.g., from an entity-type pair < em, C > to < en, C >.

Inf(< en, C > | < em, C >) =

{
1

1+∥−→em,−→en∥2
if∥−→em,

−→
C ∥2 ≥ ∥−→en,

−→
C ∥2

0 if∥−→em,
−→
C ∥2 < ∥−→en,

−→
C ∥2

(4)

where −→em, −→en denote the embeddings of em and en respectively, and −→C is the
type embedding of C in the same embedding space. We use 2-norm to measure
the distance between entity and type embedding. Unlike type vector based influ-
ence which only considers the similarity between two entities, embedding based
influence not only considers the distance between embeddings of two entities but
also the distances from type embedding to each entity.

Specifically, there are two meanings in Equation 4. On the one hand, if the
type of an entity is already determined to be one type, we can infer the type of
entity closer to the same type. For example, in Fig. 4, if a belongs to type T ,
Inf(< b, T > | < a, T >) = 1/(1 + d3), which depends on the distance between
a and b. So that, Inf(< b, T > | < a, T >) > Inf(< x, T > | < a, T >) because
b is closer to a than x. On the other hand, we cannot infer the type of entity far
away from the type. For example, in Fig. 4, we cannot infer the type of a based
on b, i.e., Inf(< a, T > | < b, T >) = 0.

4.3 Aggregating the Influences

We use the same method used in [5] to aggregate the influences from the selected
entities, where ξ(em) denotes all the candidate type assertions of entity em and
ξ(Aq) represents the approved entity-type pairs of selected entities Aq. Firstly,
we assume that the influences from those edges in ξ(em) to πn,j are independent
with each other. Therefore, the influence from an entity to an entity-type pair
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is aggregated as:

Inf(πn,j |em) = 1−
∏

πm,i∈ξ(em)

(1− Inf(πn,j |πm,i)) (5)

which could be interpreted as the probability that πn,j is influenced by at least
one edge of ξ(em). Then we compute the influence from selected entities to an
entity-type pair as:

Inf(πn,j |Aq) = 1−
∏

πm,i∈ξ(Aq)

(1− Inf(πn,j |πm,i)) (6)

Similarly, the influence from an entity em to en indicates the probability that
at least one edge in ξ(en) is influenced by entity em.

Inf(en|em) = 1−
∏

πn,j∈ξ(en)

(1− Inf(πn,j |em)) (7)

Finally, we obtain the influence from selected entities Aq to an entity en as:

Inf(en|Aq) = 1−
∏

πn,j∈ξ(en)

(1− Inf(πn,j |Aq)) (8)

5 Selecting Entities for Crowdsourcing

The fundamental challenge in the hybrid approach is to determine which entities
should be selected for crowdsourcing. In [5], the authors proposed an expected
utility function which considers both task difficulty and influence. They devel-
oped a greedy-based algorithm based on the expected utilities. Similarly, for
entity type completion tasks, we define the expected utility of the selected enti-
ties Aq as:

E[(Aq)] =
∑
e∈A
D(e) · Inf(e|Aq) (9)

We modify the greedy algorithm proposed in [5] and apply it to select entities
for entity type completion. The major difference is that we use our new difficulty
model and embedding based influence model when computing the utilities of the
selected entities. Thus, we mainly introduce our new difficulty model below.



Using Crowdsourcing for Fine-Grained Entity Type Completion in KBs 9

5.1 Entity Difficulty Model

The entity difficulty model illustrates how certain the machine algorithm is when
identifying the types for one entity. For example, the entropy of types distribution
is a common measure of uncertainty which is already used in [5]. The intuition
is that, the more uncertain the machine algorithm is, the more likely it will be
to make mistakes. Therefore, we need crowdsourcing to complete the types of
those entities which are most uncertain for machine algorithm.

For SDType, we find it is more uncertain because: (1) the probabilities of an
entity’s candidate types are almost identical; (2) the weights of related predicates
are very low; (3) the maximum of scores is very low; (4) the entity has too many
candidate types. Based on the observations, we propose a new difficulty model
which takes all of the above factors into consideration.

Entropy. Similar to [5], we firstly consider the entropy which reflects the dis-
tribution of the probabilities of an entity’s candidate types. On the one hand,
if a type has clearly higher score than others, the entropy is low. On the other
hand, if it is close to a uniform distribution, the entropy is high.

D1(e) = −
∑

C∈C(e)

score(e, C)

S
· log score(e, C)

S
(10)

where S =
∑

C∈C(e) score(e, C) is used for normalization.

Average Weight of Predicates. SDType uses all predicates linked with the
entity as indicators for its types. If each predicate in Pred(e) has a large weight
wp, i.e., each of them has a great discriminating power, then it is easy to identify
correct types for entity e. Otherwise, it is difficult.

D2(e) =
1

|Pred(e)|
·

∑
p∈Pred(e)

wp (11)

Max Score of Candidate Types. The intuition is that, if one type has sig-
nificant higher score than that of other types, it is easy to determine the answer,
otherwise, difficult.

D3(e) = 1−max{score(e, C)|t ∈ C(e)} (12)

Number of Candidate Types. Obviously, it is difficult to infer the correct
type if there are too many candidate types. Thus,

D4(e) = |C(e)| (13)

Finally, the difficulty of an entity e is defined as follows:

D(e) = D1(e)×D2(e)×D3(e)×D4(e) (14)



10 Z. Dong, J. Fan et al.

6 Experiments

We implement the algorithms using Scala 2.11 including SDType, the Entity
Selection Algorithm and Type Inference Algorithm. The codes run in a pseudo-
distributed spark-2.0.0 on a single PC with a 2.6GHz Intel core i5 processor
and 16GB RAM.

6.1 Datasets

We firstly extract 9, 970, 687 predicate instances of 629 predicates about 2, 283, 173
entities from DBPedia3.8 6. For types, we extract 7, 727, 665 type assertions and
transform the hierarchical structure in DBpedia Ontology7 into a tree structure8

where the root type (Level = 0) is “Thing”. It should be mentioned that, in this
paper, we mainly focus on the fine-grained entity type completion. In particular,
we evaluate completion for types with Level = 4.

DBP-904: We randomly extract about 1000 type assertions, i.e., <e, C>pairs
from 7, 727, 665 types where the type C is from Level = 4 and has at least 100
instances. Then we filter out some entities according to the pruning strategy for
candidate types (see Section 6.2). At last, 904 entities with their fine-grained
types are retained.

DBP-4987: We first extract predicates having at least 1000 instances and
their subjects and objects must have types of Level = 4. For each extracted
predicate, we sample 50 instances, then we obtain 5324 entities. We also filter
out those entities whose ground truth does not appear in the candidate type
list. Finally, we obtain 4987 entities with their type assertions. There are 7054
predicate instances of 107 predicates in total.

Embeddings of Entities and Types: We generate entity embeddings
using Fast-TransE9 which is an efficient implementation of TransE. We run
the code with the parameters: nepoches=5000, nbatches=100, dimension=250,
alpha=0.001, and threads=8. The remaining parameters have the default val-
ues as presented in the source code. Based on the entity embeddings, we use
the algorithm proposed in [8] to generate type embeddings in the same semantic
vector space.

6.2 Crowdsourcing on Amazon Mechanical Turk

Pruning Candidate Types: In SDType, the number of candidate types for
different entities is quite different. For example, some may have more than 100
candidate types since one predicate often provides many candidate types. Un-
fortunately, this will affect the quality of crowdsourcing because human workers
are easy to be bored with such a long list.
6 http://wiki.dbpedia.org/services-resources/datasets/previous-releases/dataset-38
7 http://wiki.dbpedia.org/services-resources/ontology
8 http://mappings.dbpedia.org/server/ontology/classes/
9 https://github.com/thunlp/Fast-TransX
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To tackle this problem, we set a threshold η for Prob(C(e)|p) to prune the
entity-type pairs with low probabilities. For example, when η = 0, we get 92
candidate types for entity Hirooka_Station. When η = 0.1, only 3 of them
are retained. Thus, it is easy for human workers to select the right types. In our
experiments, we empirically set η = 0.05 which can keep the number of candidate
types within an acceptable range. After being pruned, the average number of the
candidate types is 6 and the maximum is 15.
Micro-Tasks and Answer Aggregation: We generate micro-tasks for selected
entities and publish them on Amazon Mechanical Turk (AMTurk). In order to
reduce the crowdsourcing cost, a Human Intelligence Task (HIT) is designed to
contain 10 micro-tasks. In our experiments, each HIT is assigned to 5 workers
and we spend $0.1 for each assignment. As is shown in Fig. 1, each micro-task
contains a short description of an entity and a list of candidate types, human
workers are asked to select correct types from the list. For crowdsourcing answers
aggregration, we employ the codes of Get-Another-Label algorithm10, which is a
variation of Expectation-Maximization (EM) [4].

6.3 Evaluation on Entity Difficulty Model

We evaluate our entity difficulty model on DBP-904. Firstly, all testing entities
are sorted according to their difficulty in ascending order and then equally sep-
arated into 10 buckets. Fig. 5 shows that pure crowdsourcing method obtains
high and stable recall of entity-type pairs, while the SDType algorithm performs
worse on two datasets when the difficulty increases. This shows that the proposed
entity difficulty model can effectively capture the uncertainty of entities.

6.4 The Prior Probability α

To set an appropriate prior probability α in Algorithm 1, we perform an exper-
iment on DBP-4987. We set the α from 0.0 to 1.0 with step 0.1 and examine
the F-Measure with different amount of randomly selected entities, because F-
Measure considers both the Recall and Precision of the algorithm. On one hand,
we hope to recall more positive entity type pairs. On the other hand, we want
the false positives to be as few as possible. As shown in Fig. 6, we find that
α = 0.8 is the best for type vector based inference while α = 0.7 for embedding
based method.

6.5 Comparison of Influence Models

To evaluate the embedding based influence, we first randomly select x% of enti-
ties and publish them on AMTurk for crowdsourcing. Then, we infer the types
of all target entities using the following three methods respectively: (1). No-
Influence does not consider the influences, i.e., it directly merges the crowd-
sourcing results for selected entities and that of SDType for unselected. (2).
10 https://github.com/ipeirotis/Get-Another-Label/wiki
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Fig. 6. Determining the prior probability α.
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Fig. 7. Comparison of different influence models.
TypeVector-Similarity: Inferring with the type vector based influence. (3). Embedding-
Distance: Inferring with the embeddings based influence.

As shown in Fig. 7, Embedding-Distance method outperforms the other two
methods in Accuracy. The increasement is significant on DBP-4987. Compared
with No-Influence, it is increased by 30% in average across various number of
selected entities and about 8% compared with TypeVector-Similarity. This im-
provement is mainly attributed to the embedding-based representation learned,
which can better capture global structural information in the KBs.

6.6 Comparison with the Existing Methods

In this section, we compare our hybrid method with three existing methods.
Firstly, we briefly describe the methods to be compared as follows. (1) SD-
Type: the state-of-the-art pure machine algorithm [13,18]. (2) ICDE: the hybrid
method proposed in [5] for web table matching. We implement this algorithm for
entity type completion task. In comparison, we examine the performance sepa-
rately when 5% and 10% entities are selected. (3) EMBD: our hybrid method
for entity type completion based on embedding based influence. Similarly, we
examine the performance with two budgets 5% and 10%, separately. (4) Crowd-
sourcing: the pure crowdsourcing method, i.e., all the target entities are crowd-
sourced.

As shown in Figure 8, the pure crowdsourcing method achieves the best
performance. For example, the values of Recall are greater than 0.9 on both
DBP-904 and DBP-4987. However, it is too expensive to crowdsource all the
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Fig. 8. Comparison of different inference methods.

entities. The only special case is that on DBP-904, its Precision is lower than
others. This is mainly because we allow human workers to select multiple types
for one entity. As a result, some false positive entity-type pairs occur in the
crowdsourcing results.

On DBP-904, EMBD significantly outperforms SDType and ICDE. For ex-
ample, compared with SDType, EMBD(5%) increases about 40% (from 0.40 to
0.57) on the Recall and about 21% (from 0.54 to 0.65) on F-Measure. Compared
with ICDE(5%), EMBD(5%) increases about 24% (from 0.46 to 0.57) on the Re-
call and about 14% (from 0.57 to 0.65) on F-Measure. On DBP-4987, although
the advantage of EMBD is not so significant on F-Measure, it still outperforms
SDType on Accuracy and Recall. For example, EMBD(5%) increases about 12%
(from 0.69 to 0.77) on the Accuracy and about 24% (from 0.56 to 0.70) on Re-
call. In a word, EMBD outperforms SDType and ICDE on the whole by recalling
more fine-grained entity type assertions with affordable crowdsourcing cost.

7 Related work

Entity Type Completion is an important subproblem of knowledge base com-
pletion. Paulheim et.al [17] classified the related methods into two categories:
internal methods and external methods.

Internal methods only use the data in current knowledge base as input. A
straightforward internal method is classical ontology reasoning. However, RDFS
reasoning is prone to propagate errors since most knowledge bases are usually
incomplete and noisy [18]. Paulheim et.al found that types can be inferred via
the links between entities. For example, an entity is likely to be a Movie, if it has
a predicate director. Based on the observation, they propose SDType [18, 19].
SDType performs like a weighted voting, where each predicate casts a vote on
its object’s type, using the statistical distributions to weight its votes.

External methods take advantage of sources outside the knowledge bases,
e.g., text corpora or links to other knowledge bases. For example, Nuzzolese et
al. exploit the Wikipedia links to predict entity types [16]. Tipalo system [6]
parses the abstracts of entities which often follow similar patterns and map
them to the WordNet and DOLCE ontologies to find types. Aprosio et al. [1]
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exploit cross-language links between different language versions of DBpedia as
features for type completion. Sleeman et.al [21] use SVM to predict entity types
in DBpedia and Freebase. Crowdsourcing can be viewed as an external method
because it makes use of human knowledge which is a kind of data source beyond
the current knowledge base.
Hybrid Machine-Crwodsourcing Methods have attracted many attentions
in recent years. For example, Kamar [7] studied how to combine the comple-
mentary strengths of humans and machine for solving consensus crowdsourcing
tasks. Lofi et al. [12] extensively investigated the commonly reoccurring chal-
lenges and solutions for hybrid algorithmic-crowdsourcing workflows and pro-
pose a set of design patterns. Kondreddi [9] proposed Higgins, a novel system
architecture that effectively integrates combines Human Computing (HC) inputs
with machine based Information Extraction (IE). Mozafari et al. [14] advocated
integrating machine learning into crowdsourced databases. Fan et al. [5] pro-
posed a hybrid framework which assigns the most “beneficial” column-to-concept
matching tasks to human workers and then infer the best matches for the remain
columns utilizing the crowdsourcing results. In this paper, we extend their algo-
rithms with new features including an embedding-based influence model and a
new entity difficulty model and apply them to entity type completion.
Knowledge Graph Embedding, in recent years, has become an active area of
research for knowledge base construction and completion. One of the most suc-
cessful model is TransE [3], which learns the embeddings of entities and relations
in a neural-based approach. Various methods such as TransR [11], HolE [15] are
also proposed. Since TransE is the most simple and popular method, it is chosen
to train the embeddings.

8 Conclusion

In this paper, we have addressed the problem of fine-grained entity type comple-
tion in Knowledge Bases. We proposed a hybrid method integrating the intelli-
gence of crowdsourcing and the speed of machine algorithm. To discover more
type assertions with affordable crowdsourcing cost, we proposed an embedding-
based influence for type inference which considers not only the distances between
entities but also the distances between entities and types. And we also proposed
a new difficulty model for crowdsourcing entity selection. The experimental re-
sults on two real datasets illustrated the potential of our hybrid method.
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