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ABSTRACT1

2

Background3

Diabetic nephropathy (DN) is a major cause of morbidity and premature mortality of4

diabetic patients. Several genetic susceptibility loci have been documented, but no5

causative variants implying novel pathogenetic mechanisms have been elucidated.6

Methods7

We carried out whole-genome sequencing of a cohort of Finnish type 1 diabetes (T1D)8

siblings discordant for the presence (case) or absence (control) of DN, where the9

controls have had diabetes without complications for 15-37 years. We analyzed and10

annotated variants at genome, gene, and single nucleotide variant levels. We then11

replicated the associated variants, genes and regions in the FinnDiane replication cohort12

which includes 3,531 unrelated Finns with T1D.13

Results14

We observed protein-altering variants and an enrichment of variants in regions15

associated with the presence or absence of DN. Replication in FinnDiane confirmed16

variants in both regulatory and protein-coding regions. We also observed that DN17

associated variants, when clustered at the gene level, are enriched in a core protein18

interaction network of podocyte. These genes include protein kinases, i.e. protein kinase19

C isoforms epsilon and iota, and protein tyrosine kinase 2.20

Conclusion21

We carried out a comprehensive analysis of a DN cohort with T1D patients discordant22

for kidney disease and report our findings on a website http://dnc.systems-genetics.net/.23

The results shed light on variants and genes potentially causative or protective for DN.24

The results may facilitate analyses of other cohorts with DN.25

http://dnc.systems-genetics.net/
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INTRODUCTION26

27

With the increase in the incidence of diabetes worldwide, complications like diabetic28

nephropathy, retinopathy, neuropathy, skin ulcers and amputations, have become a29

major global health and socio-economic threat. In addition to intensive blood glucose30

control1, the only drugs providing a significant delay in progression of diabetic31

nephropathy (DN) are angiotensin-converting enzyme inhibitors (ACE-I) or32

angiotensin receptor blockers (ARB) that reduce intraglomerular pressure and efferent33

arteriolar vasoconstriction2. The molecular pathogenesis of DN is still poorly34

understood. Hyperglycemia, a major risk factor for complications, causes accumulation35

of toxic glucose derivatives, such as methylglyoxal, that bind covalently to the side36

chains of amino acids, particularly arginine and lysine, and also methionine and37

cysteine3; 4. Hyperglycemia alone is not sufficient to trigger the development of38

complications, as only 30-40 % of T1D individuals develop diabetic microangiopathy1;39
5; 6. Independent familial studies have shown a trend of family aggregation of DN in40

different populations7; 8, suggesting a genetic predisposition to DN. At least four41

metabolic pathways have been implicated in the development of complications: polyol42

flux, increased the formation of advanced glycation end products, hyperactivity of the43

hexosamine pathway and activation of protein kinase C (PKC) isoforms4; 9; 10.44

Genome-wide association studies (GWAS) and candidate gene approaches have45

identified several potential genomic loci for DN susceptibility11, but no variants with a46

major effect on the risk of complications have been found, suggesting that DN is47

modulated by a number of variants in genes that cooperate within complex pathways.48

It is intriguing, however, that several independent genome-wide linkage analysis49

studies carried out on American Caucasians, Pima Indians, African Americans, and50

Finns, have identified the same DN susceptibility locus on chromosome 3q12-15. The51

complex interaction between genetics, risk factors such as hyperglycemia and52

environmental components makes it more challenging to find specific genes for DN53

using genetic association studies. To that end, it could be advantageous to search for54

DN susceptibility genes in populations such as Finns, a uniquely homogeneous55

European population16 with the world’s highest incidence of T1D17; 18. With a56

combination of founder effects and genetic isolation, the population has accumulated57

rare genetic traits referred to as the “Finnish Disease Heritage”19. In addition, Finland58
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has a good public health care system, including nationwide disease and treatment59

registries, which facilitates identification of patients and follow-up of their clinical60

records.61

62

CONCISE METHODS63

Experimental design64

In order to search for DN susceptibility genes, we have assembled a cohort of Finnish65

T1D siblings with extreme phenotypes regarding the presence (case) or absence66

(control) of DN. This discovery cohort contained 76 T1D sibling pairs discordant (DSP)67

for DN, and three T1D families with three siblings (in total 80 cases and 81 controls).68

The samples came from two sources: the Finnish National Institute of Health and69

Welfare diabetes collections, as described elsewhere15, and the Finnish Diabetic70

Nephropathy (FinnDiane) study20. Furthermore, 3,531 unrelated T1D individuals71

(1,344 cases and 2,187 controls) (Figure 1a) from FinnDiane were used for replication72

of findings made in the discovery cohort. The main clinical characteristics of patients73

in the discovery cohort are summarized in Table 1.74

75

Study subjects76

The discovery cohort consisted of sib-pairs and small families, whereas the replication77

cohort consisted of unrelated individuals, all having T1D. The renal status was based78

on the albumin excretion rate (AER) in a 24 hr urine collection or the79

albumin/creatinine ratio (ACR) in a random, spot urine collection. The presence of end-80

stage renal disease (ESRD) was defined according to whether patients were undergoing81

dialysis or had received a kidney transplant. DN was defined by (1) persistent82

macroalbuminuria (AER>300 mg/24 hr or ACR>30 mg/mmol) in two of three83

consecutive measurements or the presence of end-stage renal disease; and (2) the84

absence of clinical or laboratory evidence of nondiabetic renal or urinary-tract disease.85

Control status was defined by normoalbuminuria (AER < 30 mg/24 hr or ACR < 386

mg/mmol) despite duration of diabetes for at least 15 years [range 15-37]. In the87

discovery cohort, all study subjects had been diagnosed with T1D for at least 15 years,88

with the age at onset<30 years; in the replication cohort, age at diabetes onset was ≤4089

years, with insulin dependence within one year after the diagnosis of diabetes (or age90

at diabetes onset ≤15 years). Controls in the replication cohort had minimum diabetes91
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duration of 15 years. The replication cohort included 2,187 controls with normal AER92

and 1,344 cases with macroalbuminuria and ESRD.93

94

Ethical permits95

All diabetic patients gave written, informed consent to participate in the study and the96

Ethical Committee of the Finnish National Public Institute, the Ethical Committee of97

the Helsinki and Uusimaa Health District, and Karolinska Institutet approved the98

protocol for the study. The transgene manipulation in zebrafish was approved by the99

local ethical committee (the North Stockholm district court).100

101

Whole Genome Sequencing (WGS)102

WGS was carried out on the discovery cohort using both Illumina HiSeq 2000 and103

Complete Genomics platforms. In order to evaluate the quality of the two different104

sequencing methods, we sequenced four discordant sib pairs with both platforms and105

compared the difference of the called variants across different platforms. The methods106

used for sequence alignment, quality control, variant calling and single nucleotide107

variant (SNV) annotation can be found in the Supplementary Methods.108

109

Bioinformatics approaches for Whole Genome Sequencing (WGS) analysis110

To fully utilize WGS data, we performed the association analysis with DN at three111

levels (Figure 1b): (A) genome-level analyses to study hot-spots of mutations and112

SNVs impacting regulatory regions; (B) gene-level aggregation tests to identify genes113

with DN-predisposing (or protecting) variants; and (C) SNV-level focusing on the114

PAVs (Protein-Altering Variants) present only in cases or only in controls and115

therefore, potentially causal or protective for DN. Each level of analysis uses different116

criteria for statistical significance; a brief summary of the statistical models and criteria117

used in each analysis is reported in Table 2. A global snapshot of all DN-associated118

variants and replicated in the FinnDiane cohort is provided in Figure 2.119

120

Association test for single nucleotide variants (SNVs)121

For each SNV, we tested the association with DN using four genetic models: (1) case-122

dominant, (2) case-recessive, (3) control-dominant and (4) control-recessive21. To this123

aim, we employed the Firth logistic regression method that accounts for rare variants124

and provides bias-reduction in case of small sample size analysis22; 23 to assess the125
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significance of the association (P-value) in the discovery, replication and combined126

cohorts. Odds ratio (OR) and P-values for association were calculated using Firth's bias-127

reduced penalized-likelihood logistic regression method, and was implemented in the128

R package logistf24. The association test results were used to select SNVs for (B) gene-129

level test, and (C) SNV level test. The criteria for selection are different in (B) and (C),130

see details below.131

132

(A) Genome level analysis133

To identify genomic regions with frequent variants associated with DN in the 76 DSP,134

we set out to (1) identify regions that are significantly recurrently mutated (recurrently135

mutated regions or RMRs) compared to the distribution of mutations across the genome136

and (2) test each region for significant overrepresentation of mutations in DN cases or137

controls. For (1) we followed the method proposed by Weinhold et al25. Briefly, all138

mutations located within 50 base pairs (bp) of each other were merged using139

BEDTools26 into hot-spot clusters and this procedure was repeated until no cluster was140

found within 50 bp of another cluster. The optimal cluster size was determined141

empirically given the observed distribution of mutations and their distance in the142

genome (data not shown). Clusters with less than three mutations were removed. For143

each cluster, a P-value was calculated using the negative binomial distribution, taking144

into account the length of the candidate hot-spot region, the number of mutations in the145

cluster and the background mutation rate (average mutation rate per sample) for the146

cluster that was estimated using the genome-wide expectation. The candidate hot-spot147

regions were selected for further analyses based on their P-value for significance and148

using a stringent Bonferroni correction for the number of regions tested (Figure S1).149

To identify RMR associated with DN (called DN-RMR), for each region we counted150

the number of mutations found in DN cases or controls and carried out Fisher’s Exact151

Test (FET) to assess whether a mutation was overrepresented in either cases or controls.152

The Benjamini-Hochberg false discovery rate (FDR) correction to account for the153

number of regions tested by FET was applied to identify DN-RMR at the genome-wide154

level. For details of the analyses performed on transcription factor binding sites (TFBS),155

promoters and enhancers, please see Supplementary Methods.156

157

(B) Gene-level analysis158
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We applied the adjusted SKAT test for familial data of dichotomous traits (F-SKAT27)159

on the multi-sib cohort (N=161). SNVs within a gene region were clustered together160

for the analysis. The gene region included variants in upstream 1000 bp, downstream161

1000 bp, 3’ UTR, 5’ UTR, intron and exon. Only the protein-altering variants in the162

exonic region were included, i.e. nonsynonymous, stop-gain, stop-loss and splice site163

variants in RefSeq. We performed the gene-level aggregation test on three different sets164

of variants: (i) SNVs nominally associated with a case-control phenotype in the165

discovery cohort (OR>1.5 and nominal P<0.05, Firth test) irrespective of their MAF166

(Minor Allele Frequency); (ii) all SNVs with MAF<0.01 irrespective of their167

association with DN in discovery cohort; (iii) all SNVs with MAF<0.05 irrespective of168

their association with DN in discovery cohort. Genes that reached significance in the169

F-SKAT analysis (nominal F-SKAT P<0.01) have been annotated for functional170

enrichment test using Enrichr28.171

172

(C) SNV level analysis173

To select significant SNVs for replication, we focused on the SNVs that are PAV174

(missense, nonsense, stop-loss, splicing site) or located in an exonic region in non-175

coding RNAs (ncRNAs). SNVs present only in cases or only in controls in dominant176

(³3 individuals) or recessive (³1 individual) were selected for replication in the177

FinnDiane cohort. For analysis of replication, an association test, as described above,178

was carried out on the discovery (T1D sib-pairs discordant for nephropathy, N=152),179

replication (FinnDiane, N=3,531) and combined cohorts (discovery plus replication,180

N=3,683). Methods for power calculation for SNVs association tests are described in181

Supplementary Methods.182

183

Analysis of replication cohort184

Genome-wide genotyping was performed on the Illumina HumanCoreExome Bead185

arrays 12-1.0, 12-1.1, and 24-1.0. The arrays include a core set of genome-wide variants186

plus an extensive set of exome variants. Data processing and quality control have been187

described earlier29. The genotype data were imputed with Micmac3 using the 1000188

Genomes reference panel (Phase 3, version 5). SNVs with poor quality (R2<0.3) were189

removed from analysis. Samples overlapping with the discovery cohort were excluded.190

Candidate SNVs were extracted from the GWAS imputation data and the number of191
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genotypes were counted for controls and cases based on the most likely genotypes using192

SNPTest.193

To evaluate the false positive rate of replication at the SNV level, we performed194

an empirical test in 3 steps: (1) select a random set of SNVs from discovery PAVs; (2)195

test association on this random set, and count the number of significant variants196

(OR>1.5, P<0.05); (3) repeat the steps 10,000 times to assess the false positive rate.197

For gene level replication, we could not apply F-SKAT to FinnDiane data, since that198

replication cohort does not contain familial data. Instead, we used SKAT30 (Sequence199

Kernel Association Test) on the same SNV set (if found in FinnDiane) as we used for200

F-SKAT in the discovery cohort. For replication in the genome level DN-RMR test, we201

extracted all SNVs within the RMR regions defined by tests of the discovery cohort,202

and tested enrichment of variants in cases or controls for each region using two-tailed203

FET, then corrected by Bonferroni P<0.01.204

205

RESULTS206

Variants detected by whole genome sequencing (WGS)207

We evaluated the sequencing quality by sequencing four sib pairs with both Complete208

Genomics and Illumina HiSeq 2000 platforms. The concordance rate across the two209

platforms for all eight individuals was 98.8% (Table S1a-c).210

WGS of the discovery cohort revealed 12 million SNVs (Table S2) and >6211

million short insertions and deletions (indels) (Table S3). Here, we focused on genetic212

variants functionally associated with the DN phenotype, i.e. variants affecting gene213

regulatory elements and/or coding regions.214

215

Genome-level analysis216

We analyzed the complete genome sequences of the 76 T1D discordant sibling pairs to217

systematically identify genomic regions that are recurrently mutated and218

overrepresented in the DN cases or controls (i.e., individuals with T1D but without219

DN). A similar approach has been employed in studies of genome-wide noncoding220

regulatory mutations in cancer25, and is based on (i) genome-wide “hot-spot” mutation221

analysis to identify small regions with frequent (recurrent) mutations and analysis of222

clusters of recurrent mutations, (ii) DNA variants impacting TFBS, and (iii) annotated223

regulatory regions (e.g., promoters and enhancers).224
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For the genome-wide “hot-spot” mutation analysis, we identified a total of225

850,137 RMR. Each RMR represents a genomic locus enclosing a cluster of variants226

within 50 bp of each other, and genome-wide RMRs have a median size of 436 (min 4227

to max 37,433) bp. Each identified RMR is significantly recurrently mutated compared228

to a random distribution of mutations across the genome (Bonferroni corrected229

P<3.7×10-5, Figure S1).230

We first tested whether these RMRs are significantly over-represented in DN231

cases or in controls. After correcting for the number of total RMRs analyzed, we232

detected 732 RMRs that are over-represented in either DN cases or in controls at FDR233

<5%, thereby identifying a set of RMRs associated with diabetic nephropathy234

(hereafter, DN-RMR) (Figure 3a and Table S4). 141 of these DN-RMRs (19.26%)235

were replicated in the FinnDiane cohort (Bonferroni P<0.01). 458 (63%) DN-RMRs236

are intergenic, whereas 274 (37%) overlap with 194 annotated genes. When compared237

with the whole set of RMRs identified at the genome-wide level in the discovery cohort,238

the DN-RMRs more frequently overlap with exons, introns, 3’ and 5’ UTRs, enhancers239

and gene promoter regions (Figure 3a). This suggests that DN-associated clusters of240

mutations are more likely to impact exons and regulatory regions than the RMRs that241

are not associated with DN. The genes overlapping with DN-RMRs are significantly242

enriched for several canonical KEGG pathways relevant to the pathobiology of DN243

(P<0.01), including ECM-receptor interaction, focal adhesion and type I diabetes244

(Figure 3b). These pathways have several genes in common, suggesting that the245

identified DN-RMRs affect multiple genes interacting across overlapping functional246

pathways (Figure 3b). Interestingly, COL4A1 and COL4A2, which encode the most247

prominent non-GBM collagens were shown to be associated with DN, as previously248

reported31,32. Both genes were enriched for variants in intronic regulatory regions, but249

their possible role in the pathogenesis of DN remains obscure, especially as no exonic250

mutations were different between cases and controls in these genes in the discovery251

cohort.252

As the second genome-level approach, in order to investigate the potential253

regulatory impact of DN-associated variants, we retrieved and annotated254

experimentally derived TFBS data from a large repository of ChIP-seq data255

representing DNA binding data for 237 transcription factors (TFs)33. Within each TFBS256

region, we tested whether there was a significant over-representation of variants in DN-257

ascertained cases or in controls (Figure 3c). Overall, we found more variants impacting258
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TFBS in controls than in cases, and in some instances these variants are present only in259

controls and across multiple families. By pooling results for TFs over their260

corresponding TFBSs, we identified 40 TFs with significantly different variant261

frequencies between cases and controls (Benjamini-Hochberg corrected P<0.05) and 6262

(out of 20 TFs for which genotype data was available in the replication cohort) were263

replicated in FinnDiane (Bonferroni P<0.01) (Table S5). The 40 TFs were enriched for264

pathways relevant to the pathophysiology of DN (Figure 3d). These include the265

epidermal growth factor receptor (EGFR)-dependent endothelin signaling (implicated266

in the development and progression of renal fibrosis and hypertrophy of the glomerular267

basement membrane), which has been proposed for targeting by endothelin antagonist268

therapy in DN34. We also found the structurally related transmembrane receptors269

belonging to the receptor tyrosine kinase superfamily (e.g. ErbB1) that are involved in270

the development and progression of DN35. Of note, variants in ERBB4 have previously271

been suggested to be associated with DN18; 36, even though the causal variants were not272

identified.273

The third genome-level analysis approach, was to study annotated regulatory274

regions in the genome (gene promoters and enhancers) which are derived from the275

FANTOM5 database37 and were further supported by ENCODE38 histone modification276

data, and to test whether variants in these regions were significantly overrepresented in277

DN cases or controls. We found significant enrichment (FDR<0.05) for DN-associated278

variants in 270 promoter regions (±1kb around the annotated gene transcription start279

site (TSS)), 68 (25.2%) were replicated in the FinnDiane cohort (Bonferroni P<0.01)280

(Table S6a). We also found significant enrichment (FDR<0.05) for DN-associated281

variants within ±1kb of 44 predicted enhancers (Table S6b). DN-associated variants in282

five enhancers were replicated in the larger FinnDiane cohort (Bonferroni P<0.01). We283

further prioritized candidate genes within these replicated enhancers using data related284

to topologically associated domains, epigenetic regulation, and transcriptome analysis285

of DN in human39 (Table S7).286

Not surprisingly, in a few cases distinct genome-level analyses prioritized the287

same gene locus. For instance, ALOX5, encoding arachidonate 5-lipoxygenase (a288

member of the lipoxygenase gene family regulating metabolites of arachidonic acid),289

was found to overlap with an intragenic DN-RMR spanning 4,724 bp and has DN-290

associated variants in two predicted enhancers and in its annotated promoter region,291

suggesting potential enhancer-promoter interaction40 (Figure 3e). A role for292
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lipoxygenase inhibitors in DN has been proposed in the rat41 and 12-lipoxygenase is293

increased in glucose-stimulated cultured mesangial cells and in kidney of rat DN294

model42. Furthermore, it has been shown that 5-lipoxygenase contributes to295

degeneration of retinal capillaries in a mouse model of diabetic retinopathy, suggesting296

a proinflammatory role of 5-lipoxygenase in the pathogenesis of DN43.297

298

Gene-level analysis299

To investigate the aggregated gene-level contribution of multiple SNVs, we used300

the F-SKAT framework (Sequence Kernel Association Test adjusted for familial data301

of dichotomous traits)27. We tested different sets of SNVs that were aggregated at the302

gene level (see Methods). We only found a few genes that reached the nominal303

significance level of P<0.05 by testing on the rare variants (Table S8), and found no304

associations with any relevant functional pathways or networks. Alternatively, we first305

identified 28,237 SNVs (within 3,745 genes) that were nominally associated with DN306

susceptibility or protection (OR >1.5, P<0.05). Then we gathered all DN-associated307

SNVs that were within upstream 1000 bp, downstream 1000 bp, UTR regions, intronic308

and PAVs, and tested their accumulative effect on each gene. We found 206 genes that309

reach a significance level of P<0.01 in the F-SKAT analysis (Table S9a-b).310

To investigate the potential function of the SNVs in the 206 genes detected by F-311

SKAT, we analyzed these SNVs using a recent expression quantitative trait locus312

(eQTL)44 dataset from the glomerulus and tubulointerstitium of subjects with nephrotic313

syndrome. We found that these F-SKAT significant genes are more likely to be under314

cis-acting regulation in the glomeruli of nephrotic syndrome patients than genes with315

non-significant F-SKAT (OR=3.84, P=2.2×10-16). This suggests that the SNVs316

contributing to the gene-level association with DN (detected by F-SKAT) may exert317

their pathological function by regulating gene expression in the kidney. We then used318

Enrichr28 to test for functional enrichment in the 206 genes identified by F-SKAT, and319

observed the only significant enrichment for protein-protein interactions in the320

podocyte network expanded by STRING (XPodNet45), (22/808 genes, enrichment321

P=0.0045, Wikipathways 2016). The F-SKAT associated genes within the core322

XPodNet are shown in Figure 4a and Table S10. The genes in this sub-network of323

XPodNet are enriched for several pathways, including focal adhesion and insulin324

signaling (Figure 4b and Table S11). The top candidate gene from the F-SKAT test is325

the protein kinase C epsilon gene (PRKCE) (F-SKAT P=0.0004), with multiple intronic326
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DN-associated SNVs that overlap with predicted regulatory regions (Figure 4c, Table327

S9b). Protein kinases PRKCE, PTK2 (F-SKAT P=0.0037) and PRKCI (F-SKAT328

P=0.0085) are part of a “core protein-interaction network” representing proteins329

essential for podocyte function. These genes are particularly interesting as PKCs have330

been implicated in the pathogenesis of DN10. However, specific inhibitors for those331

three PKCs have not yet been developed to our knowledge.332

Furthermore, we tested the 206 genes which were found to be significant using333

F-SKAT in the replication cohort. This replication is limited by the less numerous334

SNVs in FinnDiane compared with the discovery cohort (2,316 out of 3,755 SNVs),335

which also does not include family data. Therefore, we applied SKAT using only the336

same SNVs used by F-SKAT in the discovery cohort. This is a rather stringent337

replication approach, as it tests for both the genes and the specific SNVs that were found338

to be associated with DN in the discovery cohort. Out of the 206 genes tested, only 120339

genes were found with at least one F-SKAT SNV, and nine genes passed the nominal340

criteria P<0.05, including a protein kinase gene PTK2 (Table S9c). The replicated341

genes are highlighted in Figure 2.342

343

Analyses of protein-altering variants (PAVs)344

It has been estimated that about 85% of mutations underlying Mendelian diseases reside345

in coding sequences or at exon-intron borders46; 47. Numerous reports have described346

rare but highly penetrant exon mutations in Mendelian disease48,49, and it is likely that347

such mutations also frequently contribute to complex disease phenotypes. Our initial348

exon variant analyses have focused on 53,449 PAVs (nonsynonymous, stop-gain, stop-349

loss and splice site variants Table S2) that were exclusively found in cases or controls350

in the 76 T1D DSP and are associated with DN-susceptibility or DN-protection. The351

PAVs were tested for association with DN in the FinnDiane cohort using a recessive352

disease model for the homozygous variants detected in ³1 cases/controls in the353

discovery cohort and by a dominant model for the heterozygous SNVs detected in ³3354

cases/controls in the discovery cohort. The 47 PAVs identified in the recessive model355

were replicated in FinnDiane (P<0.05, OR>1.5). By using a permutation based-strategy356

(see Methods), we estimated the probability that these 47 PAVs are replicable by357

chance alone is only 2.3%. However, the false positive rate in the dominant model is358

estimated to be high (Figure S2). Therefore, only candidate SNVs that were replicated359
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in the recessive model are reported (top SNVs in Table 3, and in full in Table S12).360

Some of the top-replicated PAVs are within genes that have previously been linked to361

renal disease, implying a potential role in DN, e.g. mutations in WDR73 have been362

reported to be responsible for late-onset steroid-resistant nephrotic syndrome50. We also363

studied the gene function of ABTB1, where we found the only case-only homozygous364

mutation that is truncating the protein. Zebrafish knockout of the gene displayed a365

phenotype that is specific for kidney damage (Supplementary Method, Supplementary366

Results, Figure S3).367

Hyperglycemia causes an increase in intracellular ROS that leads to increase in368

glucose derivatives, such as methylglyoxal, that readily react with amino groups of369

protein amino acid residues, particularly arginine, lysine, cysteine and methionine51.370

Here, PAVs altering amino acid codons to arginine were found to be significantly less371

represented in the set of mutations detected in controls only as compared with all PAVs372

(OR = 0.66, 95% CI [0.43-0.97], P=0.03, Figure S4). No other classes of mutations373

leading to individual amino acid(s) substitution showed significant over-374

representation/depletion in either cases or controls.375

376

Power Calculation377

To estimate the statistical power for detecting association in our sibship discovery378

cohort, we used a method described by Li et.al52. We estimated the power assuming379

different levels of penetrance (Table S14a). Our sample size of 76 DSP reaches >80%380

power to detect significant associations (P<4.11x10-9) for rare variants with high381

penetrance (penetrance=90%, MAF=0.01). Furthermore, we estimate the power for the382

replication study. Similar to a previous report18, our replication cohort (N=3,531)383

reaches at least 80% power detect common variants with high OR (OR=2, MAF=0.05384

in the dominant model; OR=5, MAF=0.2 in the recessive model).385

386

DISCUSSION387

To the best of our knowledge, this is the first study where WGS has been applied in a388

search for genomic variants specifically associated with the presence or absence of DN389

in T1D patients. The challenge with finding susceptibility genes for diabetes390

complications is that one searches for mutations that only cause complications if the391

individual has hyperglycemia. We assembled a unique discovery cohort of T1D siblings392
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from the highly homogeneous Finnish population and replicated key findings in a larger393

cohort of unrelated T1D Finns. This enabled a direct comparison of whole-genome394

sequences in individuals with extreme phenotypes, i.e. T1D with progressive DN on395

one hand, and siblings with no complications for at least 15 years [range 15-37] on the396

other. The results provide a unique catalogue of DNA variants in Finns.397

We have developed a comprehensive panel of multiple bioinformatic approaches398

to detect genetic pre-deposition of DN in the discovery sib cohort. The SNVs approach,399

which evaluates PAVs that are present only in cases or controls, focuses on the potential400

protein function in DN. The kernel test (F-SKAT) prioritizes genes with multiple401

associated variants within the gene region, and hypothesizes that the accumulated402

burden leads to malfunction of the gene. The genomic approach includes variants in403

other genome regions and could potentially detect functionally important regions.404

These approaches identified different individual variants, genes and regulatory regions405

that are potentially involved in DN susceptibility.406

Although the discovery cohort only consisted of 161 individuals with T1D,407

together with the FinnDiane replication cohort, we show that they can provide enough408

power to identify and replicate potential causative and protective mutations for DN.409

Here, the use of discordant T1D sib-pairs for DN has been pivotal to increase power to410

identify variants associated with DN susceptibility of protection.411

We have also studied the replication of candidates and report candidates with412

robust signals for each analysis approach. However, while the replication of SNVs is413

commonly used for GWAS where it applies on the same loci, the replication for414

statistical tests which involve multiple loci, i.e. RMR, F-SKAT and TFBS have415

limitations that need to be taken into consideration. For replication of F-SKAT in416

FinnDiane, about one-third of F-SKAT SNVs cannot be found by array genotyping plus417

imputation. Thus, the number of replicable genes is limited (120/206), and within each418

gene, SNVs are also less represented. Additionally, the use of a different statistical419

model (SKAT versus F-SKAT) might also introduce a bias in the replication test. The420

constraints caused by limited genotypes in the replication cohort also apply to the RMR421

and TFBS replications. The data-driven detection of RMR requires comprehensive422

SNV data (i.e. WGS data). Using a panel of predefined genotyped SNPs (i.e. SNP array423

data), even if the panel is large and supported by imputation, might introduce a424

considerable bias in the replication of DN-associated RMRs.425
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The analyses of the discovery cohort led to the identification of several novel DN426

candidate genes in Finns, including PRKCE, PTK1, PRKCI, ABTB1, and ALOX5 as427

discussed above. The significant association of three protein kinase genes with DN is428

intriguing, as the large PKC protein family has long been associated with diabetes429

complications4; 10. Several clinical trials have been carried out for the treatment of DN430

with Ruboxistaurine, a compound that inhibits PRKC-b53. This suggests that431

hyperglycemia-driven PKC activation, particularly that of the b isoform, may underlie432

endothelial dysfunction. In the present study, we identified two novel isoforms of433

protein kinase C family (i.e. epsilon and iota) that have not been previously linked to434

DN. The results strongly support and extend previous hypotheses that protein kinases,435

especially protein kinase C family, play a role in the pathogenesis of DN, and could be436

attractive novel targets for the development of PKC inhibitors for DN treatment.437

DN is a disorder characterized by hyperglycemia, which can lead to non-438

enzymatic glycation of amino acids and formation of advanced glycation end products439

in both intracellular and extracellular proteins4; 9; 54. It can be speculated that glycation440

of amino acids in functionally important regions of the protein can affect functionality441

of the protein or promote their degradation3. Amino acids that are most prone to become442

non-enzymatically glycated by methylglyoxal and other carbonyls, are arginine, and to443

a lesser extent lysine55, cysteine and methionine4; 9. Our study highlighted mutated444

arginine codons as being of special interest when considering mutations that can cause445

pathogenic non-enzymatic glycation of proteins and consequent development of DN.446

Previously reported genes/regions associated with DN were not strongly447

replicated in our discovery cohort (Table S15), suggesting that different sets of448

loci/variants contribute to the pathogenesis of DN. However, despite the scarce449

replication of previous loci in our cohort, we report the identification of variants/genes450

in functional pathways relevant to the pathobiology of DN, many of which have been451

previously reported (e.g. EGFR-dependent endothelin signaling34 and PodNet45).452

Overall, we have performed a comprehensive study on the genetics of a unique453

T1D Finnish cohort of siblings discordant for nephropathy using WGS data. Although454

the sample size is relatively small and the association test for SNV cannot reach the455

genome-wide significance (P<4×10-9), efforts were made to optimize the test model to456

fit for the specific sibship cohort, and the top-listed SNVs were replicated (when457

applicable) in larger Finnish cohort. Novel potential DN susceptibility genes and458



16

regulatory variants are promoted in hope to merit further investigation in other459

populations and animal models.460
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Figures and Tables

Figure 1.  Cohorts and study design. (a) Cohorts used in the search for DN susceptibility

genes in Finnish type 1 diabetes (T1D) patients: the genomes of a total of 76 sib pairs

concordant for T1D but discordant for diabetic nephropathy (DSPs) were subjected to whole

genome sequencing (WGS). Additionally, T1D siblings from three families with three siblings

(Multiple Siblings, MS) with or without diabetic nephropathy (DN) were included in the

sequencing analyses. The control siblings (81) have had diabetes for at least 15 years [range
15-37] without developing DN, and have never been on ACE-I or ARB medication for kidney

disease. The case siblings (80) have had overt proteinuria, been on dialysis, received a kidney
transplant or have died from kidney complications. (b) Multi-level strategy used to analyze the

WGS data from Finnish T1D individuals with or without diabetes complications.

Figure 2.  Schematic view of DNA variants and regions in Finnish T1D sib pairs
discordant for diabetic nephropathy (DN). The circos plot consists of multiple layers,
each of which represents a bioinformatic analysis approach and its significant outcomes
in the discovery cohort. From the outside to the center; Cytoband as a genome location

reference. DN-associated protein altering variants (PAVs) that are replicated in FinnDiane are

highlighted. PAVs that are highly enriched in cases are marked in red while green in controls.

In the second layer, genes with highly enriched cluster of DN-associated variants that has been

prioritized by F-SKAT are depicted in the orange circle, and those passing the stringent

replication are marked by their names. From the third layer, regions of recurrent mutations that

are associated with case or control (DN-RMR) are shown in the light green circle, followed by
promoters (±500 bp from a promoter annotated CAGE cluster according to FANTOM5) in light

blue, enhancers (±500 bp from an enhancer annotated CAGE cluster according to FANTOM5)

in light purple, and Transcription Factor Binding Sites (TFBS) in light red. The details of the

statistical models and the call of significance of association for each approach are listed in
Table 2.

Figure 3. Genome-wide analysis of variants in recurrently mutated regions and
transcription factor binding sites associated with diabetic nephropathy in the discovery
cohort. (a) Annotation of recurrently mutated regions (RMR) with respect to overlapping gene

regulatory elements; relative frequencies have been calculated with respect to each group: all
RMR (white) and DN-associated RMR (red). (b) Significantly over-represented KEGG

pathways comprise common genes overlapping with DN-RMR. The relationships between

genes overlapping with DN-RMR and KEGG pathways is depicted as a network graph, wherein
the outer circle comprises genes and inner circle comprises the pathways. (c) Schematic

representation of genome-wide analysis of variants occurring in transcription factor binding
sites (TFBSs), that were derived from 668 ChIP-Seq datasets (see Methods). (d) We identified

40 transcription factors (TFs) with significantly different variant frequencies between cases and
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controls, in the TFBSs, which were significantly enriched for pathways relevant to the

pathophysiology of DN. For the top ten enriched KEGG pathways, the known relationships

(edges) between transcription factors (inner circle) and the KEGG pathways (outer circle) are
depicted as a network graph. (e) We found an enrichment of variants in cases in the promoter
and enhancer regions (±1kb) of the ALOX5 gene locus. Enhancers and promoter regions were

retrieved from FANTOM5 and cross-checked with chromHMM, whereas other gene
annotations were obtained from RefSeq (see Methods).

Figure 4. Genes identified by F-SKAT analysis within the podocyte network. (a) Graphical

representation of the core podocyte network that includes the genes associated with DN by F-
SKAT analysis in the discovery cohort. Node color indicates the statistical significance (P-

value) of the F-SKAT test. White color nodes indicates podocyte network genes not detected
in the current study. (b) The F-SKAT associated genes within the podocyte network are

enriched (adjusted P<0.05) for several pathways; top six pathways and contributing genes are

reported. Full functional enrichment results are reported in Table S6. (c) Details on the protein

kinase C epsilon (PRKCE) gene that showed the highest association with DN (by F-SKAT) and

location of the intronic SNVs associated with DN. For each SNV, the association with DN is

reported by odds ratio tested in either a recessive or dominant model. Full statistics and
regulatory information on the SNVs are reported in Table S4b.
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Table 1. Clinical characteristics of the Finnish type 1 diabetes patient discovery cohort. Data

are reported as range or mean ± standard deviation.

Cases Controls
N1 (male %) 80 (61.3) 81 (46.9)
T1D

Duration2 (years) Range 21-38 Range 15-37

Age at onset (years) 11.6±8.1 16.6±11.3
Blood pressure (mmHg)

Systolic 149.2±23.1 (n=60) 135.4±15.3 (n=59)

Diastolic 82.1±11.3 (n=60) 79.2±8.0 (n=59)
Antihypertensive medication (%)

At baseline

During follow-up

83.8

98.0

25.9

74.0

HbA1c (%) 9.0±2.0 (n=70) 8.4±1.4 (n=57)

BMI (kg/m2) 26.3±5.0 (n=63) 26.4±3.9 (n=57)

Total cholesterol (mmol/L) 5.5±1.2 (n=69) 5.1±1.0 (n=77)
Lipid-lowering medication (%)

At baseline

During follow-up

22.5

82.5

9.9

69.1
ESRD3 (%) 46.3 0

1 N, number of subjects
2 Duration till year 2017
3 ESRD, end-stage renal disease
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Table 2. Summary of test results from the genomic, gene and single variants levels of
data analysis on 76 DSP.

Test Name Test Model Multi-test
Correction
and
threshold
(discovery)

Functional
Annotation

Results Replicated
in
FinnDiane

Result
Report

Genome Level
Recurrently
Mutated
Regions
(RMR)

Hot-spot*
clustering,
negative
binomial
distribution

Bonferroni
p<3.7×10-5

N.A. 850,137
RMR

N.A.
Only DN-
RMR are
replicated

Figure 3, S1

Diabetic
Nephropathy
associated
RMR (DN-
RMR)

Fisher’s
Exact Test

FDR**<0.05 Genome location,
Pathway
overrepresentation
(KEGG), Protein-
protein interaction

732 DN-
RMR and
the
pathways
involved

Bonferroni
p<0.01
141 DN-
RMR
replicated

Figure 3,
Table S4

Promoters,
Enhancer,
Transcription
Factor
Binding
Sites (TFBS)

Fisher’s
Exact Test

FDR<0.05 Functional
enrichment test,
Protein-protein
interaction

270
promoters,
44
enhancers,
40 TFBS

Bonferroni
p<0.01,
68
promoters, 5
enhancers,
6 TFBS
replicated

Figure 3,
Table S5-S7

Gene Level
F-SKAT***

(76 pairs
plus 3 multi-
sib families)

F-SKAT on
DN-
associated
SNVs
(OR>1.5 &
P<0.05)

N.A.

nominal
P<0.01

Functional
enrichment test,
Protein-protein
interaction

206 F-
SKAT
significant
genes

9 genes
using strict
replication
approach

Figure 4,
Table
S9,S10,S11

F-SKAT on
rare SNVs,
(MAF#<0.05,
MAF<0.01)

N.A. Table S8

Single Variant Level
Single
variant
association
test

Odds Ratio
(OR) in
dominant
and
recessive
model

N.A.

Case-only or
control- only§,
PAV¥ or
ncRNA exonic

SNV location,
SIFT, Polyphen2

3562
PAVs,
3259
variants in
ncRNA
exonic

OR>1.5 &
P<0.05,
47 recessive
PAVs
replicated,
86 recessive
ncRNA
variants
replicated

Table 3,
S12, S13

*Variant clustering method proposed by Weinhold et al.
**FDR: Benjamini-Hochberg False Discovery Rate.
***F-SKAT: Sequence kernel association test for familial data with dichotomous traits.
§Case-only or control-only: ³3 heterozygous individuals in only case/control in dominant model; ³1 homozygous
individual in only cases/control in recessive model.
¥PAV: Protein-Altering Variants, i.e. nonsynonym, stopgain, and stoploss.
#MAF: Minor Allele Frequency
N.A. Not Available.
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Table 3. Top protein-altering variants replicated cohort with criteria P-value < 0.05, OR>1.5 in FinnDiane cohort.

Gene symbol Gene description dbSNP ID
MAF SIFT |

PP2
AA

change

Discovery Replication N=3,531 Combined N=3,683

1000G ExAC
(All|Finns) Case|Control Case|Control*

(Odds ratio) P-value Case|Control*
(Odds ratio) P-value

WDR73 WD repeat domain 73 rs72750868 0.044 0.076 T|B D->G 2|0 2.516 0.002 2.635 0.001

TPPP2 tubulin polymerization promoting protein family
member 2 rs9624 0.160 0.148 D|D R->L 1|0 3.284 0.003 3.395 0.002

UBR7 ubiquitin protein ligase E3 component n-recognin 7 rs2286653 0.113 0.147 T|B A->T 1|0 3.549 0.008 3.744 0.005
ATP10D ATPase phospholipid transporting 10D rs34208443 0.077 0.141 T|B P->T 1|0 1.654 0.009 1.648 0.009
ANO9 anoctamin 9 rs114405390 0.015 0.027 T|B T->A 1|0 4.089 0.012 4.407 0.007
SIGIRR single Ig and TIR domain containing rs117739035 0.016 0.029 D|D S->Y 1|0 3.600 0.013 3.847 0.008
SFT2D1 SFT2 domain containing 1 rs11551053 0.111 0.077 T|B I->V 1|0 3.041 0.015 3.208 0.009
HKR1 HKR1, GLI-Kruppel zinc finger family member rs2921563 0.098 0.054 T|D R->H 1|0 5.717 0.017 6.402 0.009
KRT32 keratin 32 rs2604956 0.046 0.071 T|D D->E 1|0 2.153 0.020 2.210 0.015
C6orf118 chromosome 6 open reading frame 118 rs17852379 0.103 0.073 T|D G->E 1|0 2.547 0.026 2.673 0.018
PPP4R1 protein phosphatase 4 regulatory subunit 1 rs329003 0.041 0.073 .|B I->V 2|0 2.999 0.027 3.474 0.009
ANKRD26 ankyrin repeat domain 26 rs12572862 0.067 0.036 T|B V->L 1|0 8.157 0.029 9.595 0.013
PKHD1L1 polycystic kidney and hepatic disease 1 rs117037399 0.005 0.019 T|P G->V 1|0 8.157 0.029 9.592 0.013
CSMD1 CUB and Sushi multiple domains 1 rs34337712 0.021 0.069 T|B Q->H 1|0 1.865 0.033 1.899 0.027
C6orf10 chromosome 6 open reading frame 10 rs7775397 0.019 0.060 T|P K->Q 1|0 1.546 0.036 1.546 0.035
TMEM176A transmembrane protein 176A rs10378 0.128 0.139 D|D L->F 0|1 0.383 0.004 0.366 0.002
C4orf51 chromosome 4 open reading frame 51 rs10008599 0.077 0.098 D|B D->N 0|1 0.180 0.007 0.167 0.004
SIGMAR1 sigma non-opioid intracellular receptor 1 rs1800866 0.217 0.184 T|B Q->P 0|2 0.432 0.010 0.403 0.005
CPTP ceramide-1-phosphate transfer protein rs150672559 0.005 0.007 T|B R->H 0|1 0|9 0.013 0.000 0.008
NEFH neurofilament heavy polypeptide rs5763269 0.151 0.182 D|B P->L 0|1 0.493 0.014 0.473 0.009
TNFRSF14 TNF receptor superfamily member 14 rs2234167 0.114 0.130 T|B V->I 0|1 0.472 0.018 0.451 0.012
TBC1D9 TBC1 domain family member 9 rs13118702 0.010 0.020 T|B E->K 0|1 0.135 0.021 0.122 0.012
UNC93A unc-93 homolog A rs2235197 0.110 0.109 .|. W->* 0|4 0.514 0.022 0.463 0.007
TYR tyrosinase rs1042602 0.123 0.252 .|D S->Y 0|5 0.630 0.025 0.581 0.007
ATAD3B ATPase family, AAA domain containing 3B rs139902189 0.078 0.076 D|P C->T 0|1 0.324 0.028 0.302 0.018
TEX101 testis expressed 101 rs35033974 0.041 0.084 D|D G->T 0|3 0.511 0.032 0.466 0.013
AVEN apoptosis and caspase activation inhibitor rs61729120 0.007 0.016 D|D G->T 0|2 0.231 0.033 0.198 0.014
ZNF844 zinc finger protein 844 rs76842919 0.026 0.060 D|B A->G 0|1 0.231 0.033 0.211 0.020
ZNF844 zinc finger protein 844 rs8102258 0.119 0.095 T|B T->C 0|1 0.231 0.033 0.211 0.020
OR6X1 olfactory receptor family 6 subfamily X member 1 rs12364099 0.077 0.122 D|B C->A 0|1 0.537 0.035 0.515 0.023
Case/control only protein-altering SNVs that remain significant (odds ratio >1.5, p<0.05) after replication in the FinnDiane cohort (1,344 cases, 2,187 controls). Only the top 15 protein-altering SNVs
detected in the recessive model (case or control only) are listed here (full results are reported in Table S12).
Minor Allele Frequency (MAF) in general population is annotated from 1000 Genome (1000G) project and ExAC. Odds ratios and p-values were assessed using the Firth’s Penalized Likelihood
logistic regression (see Methods). *Odds ratio, or number of homozygous carriers of the variant. The potential effect of a variant in the protein is predicted by SIFT and Polyphen2 (PP2).
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