-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Helsingin yliopiston digitaalinen arkisto

Dependencies between quantifiers vs.
dependencies between variables

Gabriel Sandu
January 7, 2019

One of the revolutionary aspects of modern logic consists in considering
valid inferences that involve multiple quantification. In this case one needs to
consider quantifiers that appear in the scope of other quantifiers. In this paper
I consider two kinds of dependencies: scopal dependencies between quantifiers
and material dependecies beween (the values of) variables. Some focus will be
put on the discussion of mutual dependencies of both kinds.

1 The other function of quantifiers

One of the revolutionary aspects of modern logic consists in considering valid
inferences that involve multiple quantification. In this case one needs to consider
quantifiers that appear in the scope of other quantifiers. Within the sequence of
quantifiers in a formula is linearly ordered, one indicates the scopal dependency
of a quantifier on other quantifiers in a syntactic way by writing the former
after the latter. The formal, scopal dependencies between quantifiers are indi-
cations of material dependencies between the values of the quantified variables
in an underlying universe of discourse. The way these material dependencies
are specified depends on the semantic representation. Each such representation
has to solve the challenge that comes from the need to combine a semantic
mechanism which corresponds to the “ranging over” semantic job of a quantifier
and thereby considers one quantifier at a time, with a distinct mechanism that
“glues” the successive steps together.

In the Frege-Tarski tradition this challenge is solved in a relatively straight-
forward way. For any formula in which the quantifiers are linearly ordered one
can consider only one singly quantified formula at a time and still account for
the dependency of a quantifer on the previous one in the sequence. To illustrate,
consider the scheme

1. leQZyR(xv y)

where Q12 and @,y are any two (generalized) quantifiers. The interpretation
of this sentence is specified in the following steps: (1) is true if and only if there
are are ¢ a's for each one of which there are ¢o b’s such that R(a,b). Here ¢;

https://core.ac.uk/display/363909558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and ¢y are the semantic conditions associated with the generalized quantifers
Q1, and Q2, respectively. (It is not easy to give an English paraphrase; 10) Here
the material dependence of the values of the variables, the “gluing together" is
very weak being achieved by a relative expression synonymous with “for each
one of which." One of Sher’s examples is

2. Three frightened elephants were chased by a dozen hunters
represented by
3. 3z12y (E(x) AN H(z) A C(x,y))

where 3z is the generalized quantifier interpreted in a universe of discourse
M by the set of all subsets of M with three elements, and the quantifier 12y is
interpreted analogously. Thus (3) says that there are three frightened elephants,
for each one of which there are 12 hunters such that every hunter chases it.

In the case in which @)1, and @2 are the standard quantifiers V and 3 ,
respectively, as in the sentence

4. VzIyR(z,y)

its truth-conditions state the existence of appropriate sets which are introduced
sequentially: there exists a set X consisting of the whole universe such that for
each of its elements a, there is a non-empty set Y such that a stands in the
R-relation with each element of Y. The two sets can actually be composed into
one binary relation S, making the truth-condition equivalent to: there is a set
S such that for each a there is at least a b such that R(a,b). Under some weak
set-theoretical assumptions, the last condition can be shown to be equivalent to
the more familiar: for each @ there is at least one b such that R(a,b). As we
see, the material dependency between the values of the variables 'z’ and 'y’ is
rather weak, in the sense that any value of x does not constrain in any way the
corresponing value of y except “externally” through the relation R (we assume
that...). In other words, the material dependencies of the values of the variables
take the form of a tree were each arrow starting from the root points to an
individual which represents a possible value of z, which in turn is connected by
arrows to all the individuals (leaves) with which it stands in the R-relation.

The dependencies we are interested in in this paper are arbitrary dependen-
cies between standard first-order quantifiers; in particular we are interested in
the scopal dependencies of an existential quantifier on a sequence of other stan-
dard quantifiers. When these dependencies can be linearly ordered, as in (4),
the semantic interpretation may follow the same pattern as that given for (4).
An increase in the number of quantifiers may lead, however, to scopal depen-
dency patterns which cannot be linearized. One of these patterns, discovered
long time ago by Henkin (4), involves four quantifiers:

e For every x and 2’, there exists a y depending only on x and a ¢’ depending
only on z’ such that Q(z,2',y, ') is true (here Q(z, 2’,y,v’) is a quantifier
free formula).

Henkin represented the four quantifiers prefix in a branching form:
Vr 3
(Vo! 35/) Q(z, ', Y, 3/)

to emphasize that Jy is only in the scope of Vo and Jy’ is only in the scope
of V2'. Finding a semantic interpretation for the branching prefix is not triv-
ial. (author?) (1) proposed a general scheme (for monotone quantifiers) which
respects the spirit of the interpretation given by (4), except that now, to ac-
count for the partial ordering of scopes, the relevant sets are not introduced
sequentially but right from the beginning. When these sets are combined into
corresponding relations, the result may be expressed in second-order logic by
the sentence

IR3S (VaIyR(z,y) AV’ Iy S(2',y") AVavVa'VyVu (R(z,y) A S(x',u) — Q(x, 2", y,y))) .

This is not the semantic interpretation chosen by Henkin for the branching quan-
tifier. Henkin’s interpretation is based on a stronger dependency between the
values of the variables, i.e., functional dependence, which goes back to Skolem.
Perhaps the best way to introduce it is with respect to our earlier example (4).
In this case the scopal dependency of dy on Vz induces a functional correlation
between the values of 'y’ on the values of ’z’: for each a, which is a value of "x’
there is exactly one b, which is a value of 'y’ such that R(a,b). This correlation
is assumed to be given by an unspecified function f so that the truth-conditions
of (4) may be now expressed by the second-order sentence:

5. AfVz (y = f(x) A R(z,y))

or equivalently
6. IfVzR(x, f(x)).

The function f is called a Skolem function.
Generalizing the Skolem functions approach to branching quantifiers yields
Henkin’s initial interpretation:

(v 3) Qoatsunr) & 3f30vat Qe i) gla")

2 Game-theoretical semantics (GTS)

Henkin’s interpretation of branching quantifiers based on the generalization of
the Skolem functions approach motivated Hintikka’s game-theoretical interpre-
tation of first-order quantifiers and connectives. A (semantic) game is associated
with any first-order sentence and underlying model which interprets the non-
logical constants of the sentence. The game is played by two players, the Verifier
(whose moves corresponds to existential quantifiers and disjunctions) and the

Falsifier (universal quantifiers and conjunctions). As an example we consider
the game associated with the sentence ¢

Vo (3yL(z,y) A 3zH(z, 2))

and a model M. The Falsifier chooses an individual from the universe of M,
say a, to be the value of ’x’ after which he has the choice between the left and
the right conjunct. If the former, the Verifier chooses an individual, say b, to
be the value of 'y’ and the play stops. The Verifier wins the play if LM (a,b);
otherwise the Falsifier wins. If the right conjunct is chosen, the Verifier chooses
an individual, say ¢, to be the value of 'z’ and this play stops here, with similar
conditions for winning and loosing.

Now as we see from the example, a quantifier or a connective being in the
scope of another quantifier amounts in the game-theoretical setting to the infor-
mational dependence of the move prompted by the former on the move prompted
by the latter. It is codified by the notion of information set associated with a
given move, an epistemic notion which indicates which other moves the player
making that move is aware of. Thus the the scopal dependencies of quantifiers
(and connectives) map directly into the knowledge of the players codified by
information sets.

On the other side, the truth (falsity) of a sentence S in a model M is defined
as the existence of a winning strategy for the Verifier (Falsifier) in the appro-
priate semantic game. When the strategies are defined determistically (func-
tionally), a winning strategy for the Verifier (when it exists) decomposes into
Skolem functions. They express the material dependencies of the appropriate
quantified variables. Referring to Skolem functions, say f, whenever b = f(a)
Hintikka thought of bas a witness individual which depends ontologically on the
individual a. Thus the game-theoretical framework has two levels, each with
its own notion of dependency. The epistemic level of information sets which
map isomorphically the scopal dependencies of quantifiers and connectives. The
ontological level of strategic functions which create a network of material de-
pendencies between the individuals (values of the quantified variables) of the
underlying universe.

3 Game-theoretical semantics as a basis for gen-
eral logic

The question asked in (author?) (6) was: How can one extend scopal quanti-
fier dependencies in order to express more material dependencies between the
values of the quantified variables? Given the game-theoretical setting in the
background, this question may be rephrased as: What are all the possible pat-
terns of information flow (quantifier dependencies) compatible with the game
rules for quantifiers and connectives? Recalling that quantifier dependency maps
into dependencies between moves in the relevant semantic game, two minimal
conditions came quite naturally:

e A player’s move can be informationally dependent only of an earlier move
in the game

e The moves have to take place in linear time (linear time playability con-
dition)

The two conditions are seen to be easily satisfied by the semantic games associ-
ated with first-order sentences where a move is informationally dependent on all
the earlier moves in the game. Given that we wanted to extend the dependency
patterns between quantifiers beyond the first-order ones, this is a condition we
did not want any longer to assume, so we gave it up and with it the transitivity
of the dependency relation. This together with the fact that the logical con-
stants occurring ¢ are not in the scope of those occurring in ¢ in the conjunct
© A 1, it was natural to think that the dependency relation governing scopes
is an antisymmetric, partial, intransitive, and discrete ordering. The problem
to be solved was to find a way to faithfully map this partial ordering onto a
linear order which could be thought of as the temporal order of the moves in a
semantical game. In this way the linear time playability condition would have
been ensured. Notice that this condition is not fulfilled by Henkin’s bramching
quantifiers prefix.

The way we chose to implement this condition in (author?) (6) was to
indicate separately the dependence (and independence) between moves. That
is, we assumed that all the quantifiers and connectives depend ceteris paribus
on all quantifiers and connectives before them in the ordering. The exceptions
are indicated by the slash as in

Vava' (3y/{='}) By /{z, yHQ(z, 2"y, ')

which is our representation of the branching quantifier. Here (Jy/{z'}) indi-
cates that Jy is not in the scope (is independent) of Vz' and thus, given the
assumption, it is only in the scope of Va. Similarly (3y'/{z,y}) indicates that
Jy is independent of Vx and Jy and thus it is only in the scope of Vz'. Game-
theoretically the first condition means that the Verifier does not know the value
chosen by the Falsifier for 'z’; and the second condition means that the Verifier
does not know the value chosen by the Falsifier for 'z’neither the one chosen
by herself for ’y’. There are some subtleties here concerning the Verifier “for-
getting” her own earlier moves but they will not be my concern in this paper.
Notice, however, the time linearity of the 4 moves in the semantic game.

There would have been another way to implement the linear time playability
condition, namely to assume that ceteris paribus all quantifiers and connectives
are scopally independent of each other. The ceteris paribus condition is now
represented by

Qay || Qi

which indicates the scopal dependence of QQoy on Q12 which occurs at its right,
and likewise for connectives. The two representations are equivalent. We chose
the first one, and we called the result IF first-order logic.

4 Dependency of quantifiers: Independence-Friendly
Logic
The IF sentence @y, ¢

7. VaIy@Fz/{a)(x=2Nc#y)

defines (Dedekind) infinity, a property which cannot be expressed in ordinary
first-order logic. The (scopal) dependency relation between quantifiers is anti-
symmetric and intransitive. The latter follows from the fact that Jy depends
on Vz and 3z depends on Jy but 3z does not depend on Vz (in other words,
in her move correspoding to 3y the Verifier knows the value chosen for x by
the Falsifier, and in the move corresponding to 3z show knows her own earlier
move but show she does not know the choice made by the Falsifier). Instead,
the material dependency between (the values of) variables expressed by the
Skolem functions y = f(z) and z = g(y) is transitive: one can define a new
function which expresses the dependecy of the values of ’z’ on the values of 'z’
h(z) = g(f(x)).

Now returning to our earlier question “What are all the possible patterns of
information flow (quantifier dependencies) compatible with the game rules for
quantifiers and connectives?”, we shall rephrase it, following (author?) (8) as:

e What patterns of scopal dependencies between quantifiers and correspond-
ingly, what patterns of material dependecies between variables does the
linear time playability condition exclude?

Hintikka & Symons’ answer is: mutually dependent variables. The challenge
is now to understand what such variables are. In (author?) (5), Hintikka
talks about “strongly correlated variables which are mutually dependent so that
they cannot be represented separably as functions of some third variable (non-
commuting variables in quantum theory)”. One of the examples Hintikka con-
siders is the following IF-sentence

8. VtVavy (z/{z}) Fu/{y}) [x =2zAy=uAS(t,z,y)] .

which expresses the scopal dependency of 3z on V¢ and Vy and that of Ju on Vi
and Vz. Here the quantifier V¢ ranges over moments of time. Making explicit
the dependencies of the variables induced by the quantifier dependencies yield
the following second-order sentence which expresses the truth-conditions of (8):

9. 3fIgVtvaVy [z = f(t,y) Ny = g(t,) N S(t,2,y)]

(9) shows that xis a function of time and of the variable y whereas y is a function
of time and of the other variable z.

Unfortunately Hintikka’s example can be shown to be flawed: (9) can be true
only in a model (set) with one element. To see this, suppose, for a contradiction,
that (9) is true in a model which has two distinct elements, aand b. It is easy to
see that in this case there are no functions f and g as described in (9). For let

t =a,z =aand y = a. Then we must have a = f(a,a). If on the other side,
we let t = a, z = b and y = a, we should have b = f(a, a), which is impossible.
The problem here is that the scheme

VivaVy (3z/{z})...[..x = z..]

can be true only in a model with one element. And by analogy the same holds
of the scheme

Vivy (Fu/{y})[...y = u..]

If we ignore the time variable ¢, (9) becomes

10. 3f3gVaVy [z = f(y) Ay = g(z) A S(z,y)]

But (10) may be shown to lead to the same problem as before, that is, it can
be true only in models with one element (for x = a and y = b we get a = f(b)
and b = g(a); from x = b and y = b we get b = f(b) which is impossible). As in
the earlier example, the problem is with the scheme

VaVy (3z/{z})...[x = z...]

which can be true only in a singleton set.

Perhaps considerations of this sort determined Hintikka to abandon later on
(8) the claim that mutual dependencies of two variables, can be expressed in
IF logic and to conclude that mutual dependency illustrates a pattern of vari-
able dependency which cannot be analyzed game-theoretically “along the lines
typically followed by logicians”. In his paper with Symons Hintikka endorsed
explicitly the linear time playability condition.

If T am allowed to speculate, I think that Hintikka wanted to get a mutual
correlation between the values of two variables, "z’ and 'y’ so that the values of’
'y’ depend on those of 'z’ in one way, and conversely, the values of ’x’ depend
on those of 'y’ in (possibly) another way. The problem now springs from the
fact that in order to get the first correlation, Hintikka needed something like

(i) Jy depends only on Vz
and in order to obtain the second correlation he needed
(ii) Va depends only on Jy.

But taken jointly (i) and (ii) violate the linear time playability condition, which
may have led Hintikka and Symons to the conclusion of their paper. Indepen-
dently of Hintikka and Symons’ motivation, I think that the question of the
logical representation of mutually dependent variables is of independent inter-
est. Hintikka tried to answer this question in the framework of IF logic, that is,
through the scopal dependency conditions among quantifiers. It might help to
approach the same question from a different but related angle.

5 Dependency of variables: Dependence Logic
(11)

As already pointed out, the formal dependency between quantifiers induces a
material, functional dependence between the values of the corresponding vari-
ables which is encoded in the semantics using (generalized) Skolem functions.
For an illustration, we recall the equivalence between (8) and (9). But one
can try to represent the functional dependency between the values of variables
directly in the syntax compltely disentangled from the dependencies of the quan-
tifiers which bind them. To this effect, (author?) (11) extends the syntax of
first-order logic with dependence atoms

= (T1,, Tn;Y)

which have the intended interpretation: the value of y is (functionally) deter-
mined by the values of x1,...,z,. The semantic unit of evaluation of a depen-
dence atom is a team X, that is, a set of partial assignments sharing a common
domain of variables with values in the universe of an underlying model. The
semantic clause for a dependence atom is then expressed by

(i) M Ex= (x1,...,2n;y) if and only if for all s,s’ € X, if 5,5’ agree on
z1,...,Zn, then they also agree on y.

For an example, let X = {s1, 82,53} be a team where the three assignments
share the same domain {z,y, 2z} as shown below:

T |y |z
S1 1 110
s2 12111
s5 | 111

It is easy to check that M Ex= (z;y) but M Ex= (x,y;z). The clauses for
complex formulae generalize the semantic clauses for first-order logic. We give
here only the clauses for quantifiers:

(ii) M =x 3z if and only if there is a function f : X — M such that
M Ex{z,5) ¥ , where X [, f] is the team formed by extending each as-
signment s in X with (z, f(s)).

(iii) M x Yoy it M E=x(p n) ¥ where X [z, M] is the team formed from X
by extending each assignment s in X with (z,a) for each a in M.

Notice that this interpretation induces, as game-theoretical semantics, a func-
tional dependency between the values of the existentiallly quantified variable x
and the values of the other variables bound by the quantifiers in the scope of
which 3z occurs.

Finally we define:

(iv) A sentence ¢ (formula with no free variables) is true in the model M if
M 9y A where () is the empty assignment.

It should not be too difficult to see, based on the definitions, that the truth of
VadyR(x,y) is equivalent to the truth of the second-order sentence 3fVzR(z, f(z)).
But now the functional dependency between the values of 'y’ and those of 'z’
may be explicitly asserted in the object language:

VedyR(z,y) < Vady(= (z;59) A R(z,y)) < FfVeR(z, f(z)).

The dependence atom = (z; y) may be read off from the scopal dependency of the
two quantifiers. Given the semantic interpretation of the quantifiers as described
by the two clauses above, this atom is redundant and it may be omitted. The
interesting cases (i.e. those which lead to an increase expressive power) are the
ones in which the dependencies between variables differ from those induced by
the scopal dependencies of quantifiers. For an example consider the sentence

11. VaTy3z(= (z;y) A= (y;2) ANz =2z Ac#y)

which is equivalent with

12. VaIy3z(= (z;9)AN = (z,y;2)A = (y;2) Ae =z Ac# y)
and with the second-order sentence

13. 3f3gva (z = g(f(2)) Ac # ().

The truth of (13) asserts the existence of an injective function f whose range is
not the whole universe. In other words, (13) is true in a model M if and only
if the universe of M is (Dedekind) infinite. Notice that the conjunct = (z,y; z)
is the one induced by the semantic interpretation of the quantifiers (and their
scopal dependencies) and is thus redundant. But its redundancy follows also
from = (y;z). As a general principle, if zdepends on y, then z depends on any
larger sequence of variables which contains .

6 Mutual dependency between variables

The last example should make it clear that dependency between variables is
transitive, i.e., if y depends on x and z depends on y then zdepends on =,
reflexive, xzdepends on z, but not symmetric. That is, there are cases (e.g.
many-one correlations) in which y depends on = but = does not depend on y.
The mutual dependency of two variables can be expressed in a straightforward
way:

= (z;y)A = (y;2).

It should be clear that any team X which verifies = (z;y)A = (y;z) establishes
a one-to-one correlation between the individuals which are the values of 'z’ and

those which are the values of 'y’. To see this, we observe that the functional
correlation f which associates the values of x with the values of y cannot be
such that it sends two distinct individuals, say a and b to one and the same
individual, say ¢, because the truth of the dependence atom = (y;z) forces a
and b to be identical. Using this fact, it can be shown (2) that (Dedekind)
infinity can be defined in Dependence Logic:

14. Va3y(= (y;2) Ny #)

(recalling that the formula = (z;y) is redundant.)

It should be obvious that all the scopal dependencies of quantifiers in IF
logic can be expressed using dependence atoms. It turns out that the converse
is also true, i.e. dependence atoms can be contextually eliminated using scopal
dependencies of IF quantifiers. Thus an occurrence of

(: (Y,y) A)

in a sentence may be replaced by
(Fz/W)(z=yA...)

where W is the set of variables dominating z minus X.
Here is an example. The Dependence logic sentence

VaTy(= (y;2) Ny # c)

has the same truth-conditions as the IF logic sentence

Vady (32/ {a}) (z = 2 Ay # 0)

which is our earlier sentence (7) whose truth-conditions are expressed by (13).
We take note that the IF counterpart obeys the “linear time playability con-
dition” in the underlying game. But we also observe that one can induce a
mutual dependency between the values of 'z’ and the values of 'y’ in IF logic,
by introducing the extra quantifier 3z which is not in the scope of V& but only
in the scope of dy. We recall in this context Hintikka’s endeavour to express
mutual dependency by the IF sentence (we ignore the time variable)

8. Vavy (3z/{z}) Gu/{y}) [z = 2 Ay = u A S(z,y)].

As we pointed out earlier, the problem lies with the pattern VaVy (3z/ {z}) (..x = 2...).
One way to describe what we have tried to achieve in the last two sections is that

in order to obtain the correct pattern, one should start with Vx3y which gives

one side of the mutual correlation, and then, to get the other side, one either

adds a dependence atom = (y;x), or, equivalently, an IF quantifier (3z/{x})
together with the conjunct z = z.!

1T am indebted to Fausto Barbero for the material of the last two sections.

10

To conclude this section, if we take variable dependency as a basic feature
of our general logic, then we obtain a substantial increase in expressive power
when we combine it with the linear dependency of first-order quantifiers. The
increasing growth in expressive power over ordinary first-order logic is due, as
our example has suggested, to the mismatch between the two kinds of depen-
dencies, one induced by quantifiers and the other one displayed by variables.
As a result of this, the distinction between first-order and second-order logic
is blurred as we argued in (author?) (7), as Dependence Logic, as well as IF
logic captures concepts that were thought to be expressed only by means of
second-order logic.

7 Kit Fine: dependency between arbitrary ob-
jects

Finally let us shortly describe another framework which deals with the same
problems we have deat with in this paper. It is the framework of arbitrary
objects introduced in (author?) (3). In this case there are also two kinds of
dependency, a (material) dependency at the level of individual objects which is
sustained, not by a relation of dependency between quantifiers, as in IF logic,
but by a relation of dependency between arbitrary objects. Arbitrary objects are
introduced by quantifiers (and are named by constants in the object language)
and the dependency relation between them is represented in the object language.
Thus when b is an arbitrary object that depends only on the arbitrary object a,
then the values assigned to b must be determined by the values assigned to a.
Arbitrary objects are divided into independent and dependent ones. Perhaps
at this stage an example might help. Consider the natural language discourse
fragment:

15. Every farmer owns a donkey. He beats it; he feeds it rarely.

Here 'Every farmer’ introduces an independent arbitrary object, and ’a donkey’
introduces another arbitrary object which is dependent on the first. The first
arbitrary object is associated with a set of individual farmer, and so is the
second. Every pair (a,b) of such individual objects stand in the relation of
ownership, aowns b.The anaphoric pronoun "He’ is a place holder for the name
of the first arbitrary object, and ’it’ is a placeholder for the name of the second
arbitrary object. And so on.

Fine formulates an objection against the use of Skolem functions to encode
the material dependencies of individuals which are associated with arbitrary
objects. According to it Skolem functions cannot handle multi-dependencies,
which arise for instance in the case of 3 arbitrary objects, a, b, and ¢, such that
c depends on b in a particular way, and b depends on «a in another way. Keeping
in mind that arbitrary objects are introduced by quantifiers, the independent
ones by universal quantifiers, and the dependent ones by existential quantifiers,
I take Fine’s concern (if I correctly understood him) to be essentially about

11

how to sustain the dependencies encoded by two Skolem functions by the scopal
dependencies of three quantifiers, one universal and two existential ones. This
is the question we discussed in the previos sections. Fine is right in that there is
no way to arrange the three quantifiers to get the dependencies encoded by the
two Skolem functions. The solution offered in IF logic is liberate the patterns of
dependencies between quantifiers and generalize the notion of Skolem function.
In this particular example, we get

Vedy (3z/ {2})

where Jz corresponds to Fine’s arbitrary object cand is only in the scope of Jy
(Fine’s arbitrary object b) which depends only on Vz (Fine’s arbitrary object
a). We can also achieve the same result using Dependence logic as a frame-
work, adding to the linear sequence of quantifiers Vx3y3z the dependence atoms
= (z;y) and = (y; z). Notice that the dependencies between the three variables
asserted by the two atoms match Fine’s dependencies between the three arbi-
trary objects, a, b and c. It is true that in this case we cannot, for instance,
represent (15) in such a way that 'He’ is a place holder of “Every farmer” but
the gain in ontological parsimony is considerable. I have tackled some of these
issues in (author?) (9).

References

[1] J. Barwise, On branching quantifiers in English, Journal of Philosophical
Logic 8 (1):47 - 80, 1979.

[2] J. Kontinen, A. Kuusisto, P. Lohmann and J. Virtema, Complexity of two-
variable dependence logic and IF-logic, Information and Computation, 239,
pp.237-253, 2014.

[3] K. Fine and N. Tennant, A defence of Arbitrary Objects, in Proceedings
of the Aristotelian Society, Supplementary Volumes Vol. 57 (1983), pp.
55-77-+79-89.

[4] L. Henkin, Some remarks on infinitely long formulas, in P. Bernays, edi-
tor, Infinitistic Methods: proceedings of the Symposium on Foundations of
Mathematics, Warsaw, 2-9 September 1959, pages 167-183, Oxford 1961.
Pergamon Press.

[5] J. Hintikka, Quantum Logic as a fragment of Independence-Friendly Logic,
Journal of Philosophical Logic, 31, 197-209, 2002.

[6] J. Hintikka and G. Sandu, Informational independence as a semantical
phenomenon, in J. E. Fenstad et al, editors, Logic, Methodology and Phi-
losophy of Science, volume 8, 571-589. Elsevier, Amsterdam, 1989.

[7] J.Hintikka and G.Sandu, What is Logic?, in Dale Jacquette (ed.), Philoso-
phy of Logic, North Holland, pp. 13-39, 2006.

12

[8] J. Hintikka and J. Symons, unpublished manuscript. Game-theoretical se-
mantics as a basis of a general logic.

[9] G. Sandu, Functional anaphora and arbitrary objects, forthcoming in
Mircea Dumitru (ed), Metaphysics, Meaning, and Modalities. Themes from
Kit Fine, Oxford University Press.

[10] G. Sher, Ways of Branching Quantiers, Linguistics and Philosophy, 13,
393-422, 1990.

[11] J. Va&nénen, Depenndence Logic. Cambridge University Press, UK, 2007.

13

