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ABSTRACT
We consider an inverse medium problem in two- and three-dimensional cases. Namely, we investigate the problem of reconstruction of
unknown compactly supported refractive index (contrast) from L2 with a fixed positive wave number. The proof is based on the new estimates
for the Green-Faddeev function in L∞ space. The main goal of this work is to prove a uniqueness result in the two- and three-dimensional
cases and to discuss some possible constructive methods for solving the problem. Finally, we present some numerical examples to demonstrate
the results in two dimensions.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5097915

I. FORMULATION OF THE PROBLEM
It is well known (see, for example, Ref. 3, Chaps. 8 and 10) that the propagation of time harmonic acoustic waves (with frequency ω) of

small amplitude in a slowly varying inhomogeneous medium can be governed by the following steady-state Helmholtz equation:

Δu(x) +
ω2

c2(x)
u(x) = 0, x ∈ Rn, n = 2, 3, (1)

where u(x) denotes the corresponding amplitude in two or three dimensions, Δ is the multidimensional Laplacian, and c2(x) is the speed of
sound. The wave motion is caused by an incident wave u0 satisfying the unperturbed linearized equation being scattered by the inhomoge-
neous medium. Assuming the inhomogeneous region is contained inside a bounded domain Ω ⊂ Rn, i.e., c(x) = c0 = constant for x ∈ Rn

/Ω,
we can see that the scattering problem under consideration is now modeled by

− Δu(x) − k2
0u(x) = k2

0m(x)u(x), (2)

where k0 =
ω
c0

is a fixed wave number, m(x) = c2
0

c2(x) − 1 ∶= n2(x) − 1 is a perturbation of the refractive index n(x), and

u(x) = u0(x) + usc(x), u0(x) = eik0(x,θ), θ ∈ Sn−1,

where the scattered field usc is required to satisfy the Sommerfeld radiation condition at the infinity,

lim
r→∞

r
n−1

2 (
∂usc(x)
∂r

− ik0usc(x)) = 0, r =∣x∣ . (3)
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We allow for m to be complex-valued in order to include the possibility that the medium is absorbing. The main practical example (it can
be considered as the motivation of this research) concerns to refractive index with an imaginary component. As described in Ref. 3, this is
often modeled in the literature by adding a term that is proportional to velocity in Euler’s equation, which implies that n2(x) is now of the
form

n2(x) = n1(x) + i
n2(x)

k0
=: 1 + m(x)

such that m has compact support in some bounded domain Ω. It is assumed [for uniqueness purposes of the corresponding boundary value
problem, see (10)] that 0 < n1 ≤ 1, n2(x) ≥ 0, that is, −1 < Re(m) ≤ 0 and Im(m) ≥ 0.

The scattering solutions are the unique solutions of the Lippmann-Schwinger equation

u(x) = u0(x) + k2
0∫

Rn

G+
k0

(∣x − y∣)m(y)u(y) dy, (4)

where G+
k0

is the outgoing fundamental solution of the operator (−Δ − k2
0) in Rn, i.e., the kernel of the integral operator (−Δ − k2

0 − i0)−1.
Our basic assumption for refractive index m is that it is a complex-valued function, which belongs to L2(Ω) (physically, only the imaginary

part of m can have some infinite singularities from L2, whereas the real part of m can only have jump singularities). In this case, for any fixed
k0 > 0, there is a unique solution u of (4) such that

∥usc∥Ls(Rn) <∞ (5)

for some s depending on the dimension n. More precisely, using the parameterization v =∣m∣
1
2 u, we may rewrite (4) as

v(x) = v0(x) + k2
0∫
Ω

K(x, y)m(y)v(y) dy, (6)

where v0 =∣m∣
1
2 u0 and K(x, y) =∣m(x)∣

1
2 G+

k0
(∣x − y∣)m 1

2
(y) with m 1

2
= sign(m) ∣ m∣

1
2 . Since the integral operator with kernel K(x, y) is compact

in L2(Ω) (see, for example, Ref. 24, Chap. 23), we may apply the Riesz theory to prove the existence and uniqueness of the solution u of Eq.
(4). These solutions usc belong to Ls(Rn) with s = 4 if n = 3 and with s = 6 if n = 2 (see Ref. 24, Chap. 23). Even more is true, these solutions u
belong to W2

p,loc(Rn) with p = 4
3 if n = 3 and with p = 3

2 if n = 2 (see, for example, Ref. 24, Chap. 23).
The property (5) allows us to conclude that the solution u(x, k0, θ) for fixed k0 > 0 admits asymptotically as ∣x∣ → ∞ uniformly with

respect to θ the representation

u(x, k0, θ) = eik0(x,θ) + Cn
eik0 ∣x∣k

n−3
2

0

∣x∣
n−1

2

A(k0, θ′, θ) + O(
1

∣x∣
n+1

2

),

where θ′ ∶= x
∣x∣ ∈ S

n−1, Cn is a known constant depending only on the dimension n, and the function A(k0, θ′, θ) is called the scattering
amplitude and is defined by

A(k0, θ′, θ) ∶= k2
0∫
Ω

e−ik0(θ′ ,y)m(y)u(y, k0, θ) dy. (7)

In this article, we consider an inverse problem of reconstruction of unknown function m from the knowledge of the scattering amplitude
A(k0, θ′, θ) for all θ′, θ ∈ Sn−1. We note that these results work also in the more limited (and important) case of backscattering data θ′ = −θ.

The following theorems hold:

Theorem 1. (n = 3) Suppose that mj(x) ∈ L2(Ω) are such that Re(mj) ≤ 0 and Im(mj) ≥ 0 for j = 1, 2 and the corresponding scattering
amplitudes are equal to each other

A1(k0, θ′, θ) = A2(k0, θ′, θ)

for fixed k0 > 0 and for all θ′, θ ∈ S2. Then,

m1(x) = m2(x)

almost every in Ω.
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Theorem 2. (n = 2) Suppose that mj ∈ L2(Ω) are such that Re(mj) ≤ 0 and Im(mj) ≥ 0 for j = 1, 2 and the corresponding scattering
amplitudes are equal to each other

A1(k0, θ′, θ) = A2(k0, θ′, θ)

for fixed k0 > 0 and for all θ′, θ ∈ S1. Then,

m1(x) = m2(x) (mod Ht
loc(R2))

for t < 1.

Corollary 1. Suppose all conditions of Theorem 2 are satisfied. If the contrasts m1 and m2 contain jumps over some smooth curves, then
these curves and the height functions of the jumps are the same for both contrasts m1 and m2.

The proof of this corollary follows from the fact that the difference between the functions m1 and m2 in the neighborhood of these curves
belongs to the space Ht

comp(R2) with any t < 1. Since no function in Hs(R2), s > 1
2 , can have conormal jumps, we have the claim.

The inverse medium problem (with fixed wave number) is very similar to the fixed energy problem for the Schrödinger operator. In
dimensions higher than two, it is well known that the scattering amplitude for a fixed positive energy uniquely determines a compactly
supported potential (see Refs. 17, 19, 20, and 2). Recently, Bukhgeim1 proved the uniqueness result in a two-dimensional fixed energy problem
for a bounded potential with compact support from W1

p , p > 2, and then Lakshtanov and Vainberg14 proved the uniqueness result for a singular
potential from Lp, p > 2. Our three-dimensional considerations for the Helmholtz operator generalize earlier studies3,17–20,27,28 to a more
singular refractive index. It should be noted that the reconstruction of singularities in the two-dimensional case for the Schrödinger operator
(using the Born approximation) is known much earlier (see Refs. 29–31, 26, and 22); see also Ref. 21. Again, it must be mentioned that the
fixed energy problem for Schrödinger operators, theoretically, is equivalent to the inverse medium problem for the Helmholtz operator with
a fixed wave number.

One may also be interested in Ref. 9, where inverse scattering problems for the Helmholtz equation are considered with more limited
data. Their approach is different from ours and the idea is to use convexification of a Dirichlet-to-Neumann map. The method is tested with
experimental measurement data. In Refs. 8 and 10, the uniqueness in the framework of the proposed approximate model is considered and
tested with smooth unknown n(x). The numerical approach in this work is similar to that of Refs. 4 and 25, where inverse problems for the
Schrödinger operator are considered. Numerically, in the case of the Helmholtz operator, one has to take into account the size of k0 (this is
not needed with the Schrödinger operator).

II. GREEN-FADDEEV FUNCTION
In order to prove Theorems 1 and 2, we need to investigate the mapping properties of the Green-Faddeev function

gz(x) ∶=
1

(2π)n∫

Rn

ei(x,ξ)

ξ2 + 2(z, ξ)
dξ,

where z ∈ Cn is the n-dimensional complex vector with (z, z) = 0. Here and in the sequel, the symbol (., .) denotes the inner product in Rn. It
can be mentioned that gz(x) is the fundamental solution of the following operator with constant coefficients:

(−Δ − 2i(z,∇))gz(x) = δ(x).

We assume as before that Ω is a bounded domain in Rn. We extend f by zero outside of Ω. The following results are proved in Ref. 23.

Lemma 1. There exists constant c > 0 depending on γ such that for any f ∈ L2(Ω) and for ∣z∣ > 1,

∥gz ⋆ f ∥L∞(Rn) ≤
c
∣z∣γ
∥ f ∥L2(Ω), (8)

where symbol gz ⋆ f denotes the convolution of gz and f, γ < 1 for n = 2, and γ < 1
2 for n = 3.

The estimates (8) allow us to prove the existence of complex geometric optics (CGO) solutions to the equation

− Δv − k2
0m(x)v = 0. (9)

By CGO solutions, we mean the solutions of this equation of the form
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v(x, z) = ei(x,z)(1 + R(x, z)),

where z ∈ Cn with (z, z) = 0.

Lemma 2. For m ∈ L2(Ω) and ∣z∣ large enough, there exists a unique CGO solution of the Schrödinger equation (9) such that

∥R∥L∞(Rn) ≤
Ck2

0

∣ z∣γ
,

where γ is as in Lemma 1 and C > 0 is a constant independent of k0.

III. PROOF OF THEOREM 1
The proof consists of two steps, following classical lines. The first step is to prove that the equality of Dirichlet-to-Neumann maps

Λ1 = Λ2

for boundary data on ∂Ω corresponding to two different refractive indices m1 and m2 implies the equality m1 = m2. The second step is to
show that the equality of the scattering amplitudes

A1(k0, θ′, θ) = A2(k0, θ′, θ)

for fixed k0 > 0 implies the equality of the Dirichlet-to-Neumann maps

Λ1 = Λ2.

For the first step, we consider the Dirichlet boundary value problem for the homogeneous Schrödinger equation

{
−Δu(x) − k2

0m(x)u(x) = 0, x ∈ Ω,
u(x) = f (x), x ∈ ∂Ω,

(10)

with function f from the Sobolev space H
1
2 (∂Ω). Using the Lax-Milgram theorem (see, e.g., Refs. 5 and 24) and the assumption Re(m) ≤ 0, we

can show that there exists a unique solution u ∈ H1(Ω) (in the weak sense) to (10). Thus, we may define the Dirichlet-to-Neumann map Λ as
follows:

Λ f (x) ∶=
∂u
∂ν

(x), x ∈ ∂Ω,

where ν is the outward normal vector at the boundary ∂Ω. This map acts here as

Λ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω).

The following lemma holds:

Lemma 3. If u1 and u2 are the solutions of Dirichlet boundary value problem (10) with m1 and m2 and with f 1 and f 2, respectively, then

k2
0∫
Ω

(m1(x) −m2(x))u1u2 dx = ∫
∂Ω

( f 1
∂u2

∂ν
− f 2

∂u1

∂ν
) dσ(x).

In particular, if f 1 = f 2 and Λ1 = Λ2, then

∫

Ω

(m1(x) −m2(x))u1u2 dx = 0. (11)

This orthogonality condition (11) holds for any two solutions of the Dirichlet boundary value problem (10). However, we need to use it
also for CGO solutions. We proceed as follows:

Extend m1 and m2 by zero for x ∈ R3
/Ω. Suppose also that Λ1 = Λ2. Now, if u1 and u2 are two CGO solutions, then it can be proved (see,

for example, Ref. 16) that u1 = u2 in R3
/Ω. Thus,

u1(x) = u2(x), x ∈ ∂Ω,

and we can use (11) also for CGO solutions. Denoting now by u1 and u2 CGO solutions for m1 and m2, respectively, we have
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u1(x, z) = ei(x,z)(1 + R1(x, z)), u2(x, z̃) = ei(x,z̃)(1 + R2(x, z̃))

with

iz = l + i(k + p), iz̃ = −l + i(k − p),

where l, k, p ∈ R3 and are mutually orthogonal. Fix arbitrary k and choose l, p→∞ such that

∣l∣2 =∣k∣2+ ∣p∣2.

We obtain from the orthogonality condition (11) that

∫

Ω

(m1(x) −m2(x))(1 + R1(x, z))(1 + R2(x, z))e2i(x,k) dx = 0.

Since

∥R1∥L∞(R3) → 0, ∥R2∥L∞(R3) → 0, l →∞ (p→∞),

then using Lebesgue’s theorem about dominated convergence, we obtain

∫

Ω

(m1(x) −m2(x))e2i(x,k) dx = 0.

This equality holds for all k ∈ R3. Hence, we conclude that

m1(x) = m2(x)

almost every in Ω. So, the first step is done. Namely, we proved that the equality of the Dirichlet-to-Neumann maps implies the equality of
the refractive indices.

Now we are in the position to make the second step. In order to finish the Proof of Theorem 1, we assume that the support of m belongs
to the ball BR(0) = {x ∈ R3 : ∣x∣< R}. The scattering solutions u1, u2 of the Schrödinger equation (2) satisfy the asymptotic representation
(k0 > 0 and fixed) as ∣x∣→∞,

uj(x, k0, θ) = eik0(x,θ) + C3
eik0 ∣x∣

∣x∣
Aj(k0, θ′, θ) + O(

1
∣x∣2
), j = 1, 2.

Since

A1(k0, θ′, θ) = A2(k0, θ′, θ),

then for ∣x∣→∞,

u1(x, k0, θ) − u2(x, k0, θ) = O(
1
∣x∣2
).

At the same time, these solutions satisfy

(Δ + k2
0)(u1 − u2) = k2

0(m2(x)u2(x) −m1(x)u1(x)).

Due to the assumptions, we have that

supp(m1u1 −m2u2) ⊂ BR(0).

Applying some modification of Rellich’s lemma (see Ref. 28), we obtain that

supp(u1 − u2) ⊂ BR(0).

This fact implies that
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u1(x) = u2(x), x ∈ ∂BR(0),

and
∂u1

∂ν
(x) =

∂u2

∂ν
(x), x ∈ ∂BR(0).

It remains only to remark that the latter equality is equivalent to the equality

Λ1 = Λ2

for the ball BR(0). Applying now the result of the first step, we finally obtain that the equality

A1(k0, θ′, θ) = A2(k0, θ′, θ)

implies
m1(x) = m2(x)

almost every in Ω. This finishes the Proof of Theorem 1.

IV. PROOF OF THEOREM 2
The geometry of the plane does not allow us to choose nonzero vectors l, k, p ∈ R2 such that

iz = l + i(k + p), iz̃ = −l + i(k − p)

and are mutually orthogonal. Due to this “property,” it is impossible in the 2D case to prove the result similar to Theorem 1. That is why we
proceed as follows: We define the scattering transform by

T(ξ) = k2
0∫

R2

ei(x,ξ)m(x)(1 + R(x, z)) dx, ∣ξ ∣≥
√

2C0, (12)

and the T(ξ) = 0 for ∣ξ ∣<
√

2C0, where C0 is defined in Lemma 2. Here, z = 1
2 (ξ − iJξ) and the matrix J is equal to

J = ( 0 1
−1 0).

The main idea here is as follows: the scattering amplitude A(k0, θ′, θ) with fixed spectral parameter k0 uniquely determines the Dirichlet-to-
Neumann map Λ (see Refs. 27 and 28 and also the Proof of Theorem 1 of this work), and the Dirichlet-to-Neumann map, in turn, uniquely
determines the scattering transform T (12) as a function of ξ (see, for example, Ref. 4). This allows us to introduce the Born approximation
for this fixed energy problem.

Definition. The inverse scattering Born approximation qB(x) of the refractive index m is defined by

qB(x) ∶= F−1(T(ξ))(x),

where F−1 is the inverse Fourier transform and the equality is understood in the sense of tempered distributions.

If we write now qB with respect to the solution R, then we obtain that

qB(x) = k2
0

1
(2π)2∫

R2

e−i(ξ,x)
⎛
⎜
⎝
∫

Ω

ei(y,ξ)m(y)(1 + R(y, z)) dy
⎞
⎟
⎠

dξ

= k2
0m(x) + q1(x) + qrest(x) (mod C∞(R2)), (13)

where the first nonlinear term q1 from the Born series is equal to

q1(x) = k4
0

1
(2π)2∫

R2

e−i(ξ,x)
⎛
⎜
⎝
∫

Ω

ei(y,ξ)m(y)
⎛
⎜
⎝
∫

Ω

gz(y − s)m(s) ds
⎞
⎟
⎠

dy
⎞
⎟
⎠

dξ
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and qrest is equal to

qrest(x) = k2
0

1
(2π)2∫

R2

e−i(ξ,x)
⎛
⎜
⎝
∫

Ω

ei(y,ξ)m(y)
∞

∑
j=1

Rj(y, z) dy
⎞
⎟
⎠

dξ

with the iterations Rj defined as

R0(x, z) = k2
0∫
Ω

gz(x − y)m(y) dy,

Rj(x, z) = k2
0∫
Ω

gz(x − y)m(y)Rj−1(y, z) dy, j = 1, 2, . . . .
(14)

Lemma 2 gives a rather simple (but a little bit rough) estimation of the smoothness of qrest. Indeed, since for z large enough ∣z∣ ≈ ∣ξ∣, we obtain
immediately that [see (12)]

∥qrest∥
2
Ht (R2) ≤ C ∫

∣ξ∣>
√

2C0

(1+ ∣ξ∣2)t

∣ξ∣4γ
dξ <∞, t < 1.

A more detailed analysis shows (see Ref. 26) that this term qrest is actually everywhere a continuous function. Concerning the first nonlinear
term q1, we also refer to Ref. 26 where it is proved that function q1(x) belongs to the Sobolev space W1

r (R2) for any r < 2. We are ready now
to finish the Proof of Theorem 2. Indeed, since for two different refractive indices m1 and m2 the representation (13) holds (with the same
inverse scattering Born approximation), we obtain that

k2
0(m1(x) −m2(x)) = q1,m2 − q1,m1 + qrest,m2 − qrest,m1

belongs to W1
r (R2) + Ht(R2)(mod C∞(R2)) with r < 2 and t < 1. Taking into account the imbedding

W1
r (R2) ⊂ Ht(R2),

we obtain the needed result. Thus, Theorem 2 is completely proved.

Corollary 2 (Backscattering problem with fixed k0).
Suppose that mj ∈ L2(Ω) are such that Re(mj) ≤ 0 and Im(mj) ≥ 0 for j = 1, 2, and the corresponding scattering amplitudes are equal to each

other
A1(k0,−θ, θ) = A2(k0,−θ, θ)

for fixed k0 > 0 and for all θ ∈ Sn−1, n = 2, 3 (this is backscattering data). Then,

m1(x) = m2(x), n = 3, m1(x) = m2(x) (mod Ht
loc), n = 2.

It can be verified that the considerations for backscattering data are completely the same as for the Proof of Theorems 1 and 2 of this
work.

Remark. As was mentioned (see also Ref. 26, Theorem 1), the term qrest is a continuous function and the first nonlinear term q1
belongs (in our concrete case) to the Sobolev space W1

r (R2) for any r < 2. That is why we may conclude that there is a little bit better
result than that formulated in Theorem 2 of this paper. Namely, the difference m1(x) −m2(x) belongs to the Sobolev space W1

r,loc(R2) for any
r < 2.

V. NUMERICS
We follow the numerical approach of Refs. 4 and 25. In this section, our scattering data will be the scattering transform T. The problem

of determining T from the scattering amplitude A is interesting and will be the subject of future research.
To begin, we first need to numerically evaluate the scattering transform. To do this, we compute the iterations Rj from (14) by

numerically integrating over the support of m. Due to the logarithmic singularity in gz on the diagonal (and possible singularities in m),
this integration is done by adapting the Kress n-point rectangular rule12 to the 2D-support. The nodes and weights of the integration
routine
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∫

1

0
f (x)dx ≈

n−1

∑
k=1

akxk

on the interval [0, 1] are given by

xk = w(
2πk

n
), ak =

2π
n

w′(
2πk

n
)

with the weight function

wp(t) =
tp

tp + (2π − t)p , p = 3,

see, e.g., Refs. 11 and 12. Here, the integral may have singularities only at the end-points. If the singularity occurs at some a ∈ ]0, 1[, we adapt
by considering instead the intervals [0, a] and [a, 1]. In our examples, we used two iterations,

R ≈ R0 + R1.

Since the functions Rj are bounded, the calculation of T is easier: we need to only worry about possible singularities of m. It should be
mentioned that the evaluation of the Faddeev’s Green function gz is done by using the exponential integral method (for details see, for
example, Sec. 14.3.2 of Ref. 15).

Having obtained the synthetic measurement data T, we can start the inversion. Our approach is to consider the inverse Born approxima-
tion qB as the unknown, in the sense that we do not directly calculate the Fourier transform of the data T(ξ), but rather solve a linear system
that gives qB as its solution. More precisely, since

qB(x) ∶= F−1(T(ξ))(x),

then by Fourier inversion,

T(ξ) = F(qB)(ξ) = ∫R2
ei(x,ξ)qB(x)dx.

We will now form a piecewise constant approximation of qB, where the values of qB inside the pixels are unknown. We divide our
reconstruction grid into N pixels and denote each pixel by rj. Then, we substitute instead of qB the piecewise constant form

FIG. 1. Example 1: Precise unknown left and the CGLS reconstruction right with the real part above and the imaginary part below.
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FIG. 2. Example 1: Precise unknown left and the Tikhonov reconstruction right with the real part above and the imaginary part below.

FIG. 3. Example 1: Precise unknown left and the TV reconstruction right with the real part above and the imaginary part below.
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qB(x) ≈
N

∑
j=0

f jχrj (x),

where χrj are the characteristic functions of the pixels and f j are the unknown values of qB in rj. Doing this, we obtain

T(ξ) =
N

∑
j=0

f j∫
rj

ei(x,ξ)dx + δ(ξ),

where we ignore the error term δ(ξ). The above integrals can be easily computed in closed form by hand. Now conducting measurements at
M points ξk, we arrive to the linear problem Ef = g, where gk = T(ξk) are the measurements and the matrix E ∈ CM×N contains the values of
the above integrals. One can think of this linear system as a linear inverse problem and use some inverse problems methods to solve it. In fact,
we always choose the number of unknowns M < N so that this linear system is under-determined, ill-conditioned, and rank-deficient, which
means that regularization methods are necessary.

This approach of regarding qB as the unknown has the benefit of easily allowing one to choose the regularization method. Note also that
there is no danger of committing inverse crime, since the measurement data T is obtained from the CGO-solutions by numerically integrating
R. The inversion on the other hand is done in a completely separate reconstruction grid.

FIG. 4. Example 2: Precise unknown left and the CGLS reconstruction right with the real part above and the imaginary part below.
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A. Regularization
We tested three (actually four) different regularization methods: the conjugate gradient least squares (CGLS), Tikhonov, and total varia-

tion (TV) regularization methods. Between these three, the CGLS- and TV-methods seem to work best for recovering jumps and singularities
in the presence of infinite singularities. Tikhonov regularization works well, when the components of the refractive index are small (in L2-
norm). We also tested the truncated singular value decomposition approach to regularize the problem, but in our experiments, this method
did not work so well.

The CGLS-method is an iterative approach to minimizing the expression

arg min{∥E f k − g∥2}

under the constraint f k ∈ {E∗g, . . . (E∗E)k−1E∗g}. This method focuses on the significant singular components. We used the CGLS-algorithm
of Hestenes and Stiefel (see, e.g., Refs. 6 and 7).

The Tikhonov regularization instead aims to minimize the expression

arg min{∥E f − g∥2
2 + λ∥ f ∥2

2},

where λ > 0 is the regularization parameter (see, e.g., Refs. 6 and 15). This method works rather well for our problem when the L2-norm of
our solution is relatively small. However, in our case, in the presence of infinite singularities, this method picks too small solutions.

FIG. 5. Example 2: Precise unknown left and the TV reconstruction right with the real part above and the imaginary part below.
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Finally, in TV-regularization, we use a little different penalty term and minimize the expression

arg min{∥E f − g∥2
2 + λ∥∇ f ∥1}.

This method allows the solution f to have some steep gradients and hence works rather well when reconstructing jumps and infinite sin-
gularities. The downside is that this method is somewhat complicated to implement. We use the approach described in Ref. 15 with some
modifications to allow for complex matrix E and solution f . In addition, since we a priori assume that the solution f satisfies −1 < Re(f ) ≤ 0
and Im(f ) ≥ 0, we can use these conditions as constraints to help find the optimized solution.

B. Numerical examples
In all of the following examples, m(x) = n1(x) − 1 + i

k0
n2(x) and k0 = 5. As shown in Lemma 2, the size of R depends on k0. Therefore, to

obtain visually good reconstruction, we need to use large enough measurement points (in modulus) to compensate for the size of k0. We used
M = 8100 measurement points in a [−100, 100]2 square grid. If k0 is smaller (say, k0 = 1), then a smaller grid suffices. The number of unknown
values f j is N = 104 and we attempt to recover m in a [−1,1]2 square. In all of the examples, the measurement data are corrupted by Gaussian
white noise with standard deviation of 1% of the maximum of the measurements.

The generation of the synthetic measurements T for one example with two iterations takes about 15 hours on a computer with 20 core
CPU at 2.2 GHz. In the future, we are interested in trying finite element methods for the direct problem so that one does not need to iterate

FIG. 6. Example 3: Precise unknown left and the CGLS reconstruction right with the real part above and the imaginary part below.
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the numerically expensive integral equation. The inversion methods are much quicker. The CGLS solutions can be computed in less than a
second, while Tikhonov solutions take few minutes. The TV method is the slowest. The numerical work is done in MATLAB.

Example 1. Let m(x) = −0.5χrectangle(x) + 0.7
k0
χellipse(x).

Example 2. Let

m(x) = −0.5χellipse(x) −
iφ∣x∣<0.3(x)

k0 ∣x∣ log(∣x∣)
.

Example 3. Let

m(x) = −0.5χellipse(x) +
iφ∣x∣<0.3(x)

k0 ∣0.25−∣x∥0.4 .

Here, χ(x) is the characteristic function and ϕ∣x∣<0.3 is a smooth bump function supported in the ball ∣x∣ < 0.3.

FIG. 7. Example 3: Precise unknown left and the TV reconstruction right with the real part above and the imaginary part below.
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Figures 1–3 demonstrate the recovery of shapes (with possible corners), while in Figs. 4–7, we attempt to detect infinite singularities. The
singularity in Example 2 is rather small and supported at a single point, while the large singularity of Example 3 is spread on the circle with
radius 0.25. Note that in Figs. 4–7, we plot only a small portion of the infinite singularity.

VI. CONCLUSIONS AND DISCUSSION
Remark. One could also try to introduce the inverse Born approximation for this problem. It could be defined (using a similar procedure

as for the Schrödinger operator with not fixed wave number k2) by (consider for simplicity only n = 3)

qB(x) ∶= ∫
S2

∫

S2

e−ik0(x,θ−θ′)A(k0, θ′, θ) dθ dθ′

= k2
0∫
Ω

m(y) dy∫
S2

∫

S2

e−ik0(x,θ−θ′)e−ik0(y,θ′)u(y, k0, θ) dθ dθ′

= k2
0∫
Ω

m(y) dy∫
S2

∫

S2

e−ik0(x−y,θ−θ′) dθ dθ′ + k4
0eik0 ∣x∣O(

1
∣x∣
), ∣x∣> 1,

where O is uniform with respect to θ and θ′. The first term in the latter sum can be calculated (using the knowledge of Bessel functions)
precisely (see Ref. 13) and it is equal to

qB(x) ≈ 16π2
∫

Ω

m(y)sin2(k0 ∣x − y∣)
∣x − y∣2

dy.

It is clear that this term is a bounded continuous function in x ∈ R3 and behaves as O∗ ( 1
∣x∣2 ) at the infinity. These facts show that the inverse

scattering Born approximation does not contain any significant information about the contrast m (for example, singularities of m) and,
therefore, cannot be used in the reconstruction of singularities (jumps) of unknowns.

We considered an inverse medium problem with possibly singular contrast (refractive index) in dimensions two and three. The main
motivation was to account for possibly absorbing medium, where the refractive index is allowed to be complex-valued. The real part of the
refractive index is bounded, but the imaginary part can have infinite singularities from L2. The main theorems are uniqueness theorems for
the inverse scattering problem with a fixed wave number: equality of the scattering amplitudes (the measurement data) implies the equality
of the corresponding refractive indices. These results also hold under the backscattering data, where measurements are made in the opposing
direction of the incident field. We also demonstrate the results numerically. We presented several examples, where we attempt to recover the
location of a compactly supported refractive index with a nonzero imaginary part. In the numerical approach, we have to take into account the
size of the wave number k0, in contrast with the corresponding numerical results for the Schrödinger operator. Examples where the imaginary
part of the refractive index has singularities at a point and along a surface are also given.
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