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Through the Habitats Directive (92/43/EEC) and the financial investments
of the LIFE projects, Europe has become an experimental arena for biological
conservation. With an estimated annual budget of €20 billion, the EU Biodi-
versity Strategy for 2030 has set an ambitious goal of classifying 30% of its
land and sea territory as Protected Areas and ensuring no deterioration in
conservation trends and the status of protected species. We analysed LIFE
projects focused on animals from 1992 to 2018 and found that investment
in vertebrates was six times higher than that for invertebrates (€970 versus
€150 million), with birds and mammals alone accounting for 72% of species
and 75% of the total budget. In relative terms, investment per species
towards vertebrates has been 468 times higher than that for invertebrates.
Using a trait-based approach, we show that conservation effort is primarily
explained by species’ popularity rather than extinction risk or body size.
Therefore, we propose a roadmap to achieve unbiased conservation targets
for 2030 and beyond.
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1. Introduction
Overwhelming evidence exists that most Earth ecosystem processes are being
altered by human activities, suggesting that we may have entered a human-
dominated geological epoch—the ‘Anthropocene’ [1]. It is largely accepted that
humans are causing the sixth mass species extinction [2], which can be considered
a clarion call to increase global efforts to study, halt, and possibly reverse the
ongoing negative environmental trends. Europe is no exception, given that it has
a long experience of human disturbance and consequent biodiversity loss [3]. At
the same time, since the Habitats Directive (92/43/EEC) was established in 1992,
the European Union (EU) has acted as a global test case for practical conservation
and restoration of natural habitats and their wild flora and fauna.

Although the Habitats Directive and the parallel financial investment on LIFE
projects—the EU flagship funding instrument for the environment and climate
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action created in 1992—are seen as pioneer endeavours and
represent a strong legal and financial tool for biodiversity
conservation, most species in Europe continue to decline [3].
However, evidence suggests that when enough resources are
invested in species-level conservation, we are able to halt
these negative trends. In Europe, for example, there are positive
rewilding trends in a few charismatic large carnivores that have
received constant conservation funding through LIFE projects
[4]. In the same vein, examples of effective allocations of funds
to species conservation come from Australian threatened birds
[5] and North America birds inhabiting wetlands [6].

At the end of the trial period of the Habitats Directive, the
EU launched a new Biodiversity Strategy intended to create
Protected Areas for 30% of its land and sea territory by 2030
and ensure no deterioration in conservation trends and the
status of protected species and habitats [7]. The ideals of this
ambitious plan resonate with that of other similar projects
such as the Global Deal for Nature [8] or the Half-Earth project
(E.O. Wilson Biodiversity Foundation), which aims to protect
up to 50% of the Earth’s ecoregions. Such an effort will be criti-
cal if we are to embrace the recent proposal of keeping known
species extinctions to below 20 a year over the next 100 years [9].

These conservation schemes should ideally encompass all
native ecosystem types, species, and ecological successions, in
order to ensure not to ‘add more land to reach [a] global
target that is similar to what is already well accounted for at
the expense of underrepresented habitats and species’ [8]. It is,
therefore, essential to assess whether conservation investment
is optimally allocated among species and habitats, or whether
taxonomic and other biases still permeate biological conserva-
tion [10–12]. For example, Moser et al. [13] showed that over
the 26 years of LIFE projects, strong disagreements have
arisen over the Red Lists and the Habitats Directive protected
species list, suggesting the need for a careful revision of EU
policy. As a result, important initiatives have been put forward,
most notably the recent proposal by the EU to account more
comprehensively for invertebrates in the LIFE program [14].

With the new Biodiversity Strategy for 2030, in addition to
the economic recovery plan in response to COVID-19 highly
focused on the biodiversity and climate crises, the EU is pro-
posing a large annual budget for spending on nature (an
estimated €20 billion [7]). Among other uses, this budget will
finance direct conservation actions towards protected species.
Therefore, the time is ripe to assess the achievements of the
Habitats Directive and LIFE projects in the past and look for-
ward to the goal of establishing an unbiased conservation
agenda in Europe. To quantify long-term taxonomic biases
andpotential drivers and their possible impact on conservation
strategies and decision-making policies, wemined information
on LIFE projects conducted between 1992 and 2018 that were
focused on animals (n = 835). Here, our aim was to obtain a
comprehensive picture of the number of applied conservation
initiatives and allocation of the LIFE’s conservation budget
across the animal tree of life in Europe.
2. Methods
(a) Extraction of data from the LIFE project
We extracted information on the amount of funding allocated to
various species using the LIFE projects database (https://ec.
europa.eu; accessed between February and May 2020). Note that
we focused here on a species-level conservation approach [9], in
contrast with other more general conservation measures (such as
socio-ecological approaches [15,16] and others [17]) that are only
indirectly covered by LIFE projects. We first filtered LIFE projects
specifically aimed at species conservation, using the query
STRAND= ‘All’; YEAR = ‘All’; COUNTRY = ‘All’; THEMES = ‘
Species’; SUB-THEMES = ‘Amphibians’; ‘Birds’; ‘Fish’; ‘Invert-
ebrates’; ‘Mammals’; ‘Reptiles’. This query resulted in 819 LIFE
projects that met the search criteria. A second query focused
on THEMES = ‘Biodiversity issues’; SUB-THEMES = ‘Ecological
coherence’; ‘Invasive species’; ‘Urban biodiversity’, which
matched an additional 298 LIFE projects. For the latter query, we
examined summaries of the LIFE projects and extracted further
information only from those specifically aimed at the conserva-
tion of animal species (n = 16). For example, projects aimed at
generically enhancing biodiversity through measures targeting
ecosystems or the impacts of anthropic activities were not con-
sidered. In total, we included 835 projects in our analyses—819
with the theme ‘Species’ and 16 with the theme ‘Biodiversity
issues’. To define the amount of funds allocated to each species
for each LIFE project, the budget of each project with multiple
species was divided equally among the target species.
(b) Calculation of species traits
To obtain a deeper understanding of the factors underlying the
observed pattern of conservation measures among species, we
investigated whether the number of LIFE projects and the
budget allocation for each specieswas driven by its riskof extinction,
body size, and/or online popularity.

We estimated the extinction risk category of each species in
our database using the International Union for Conservation of
Nature Red List of Threatened Species [18]. Using application
programming interface (API) keys, we automatically assigned
each species to its IUCN extinction risk category, and then we
manually checked this matching to correct potential mistakes.

Body size is one of the few traits that is fully comparable
across distant taxa [19], and it is also one of the most conspicuous
traits correlating with extinction risk [20]. We estimated body
size for birds using the Collins Bird Guide [21], for mammals
using Aulagnier et al. [22], for reptiles and amphibians using
Speybroek et al. [23], and for fish using FishBase [24]. For invert-
ebrates, we estimated body size using diverse sources, from
Wikipedia to original species descriptions and expert opinion
and unpublished data by the authors (e.g. molluscs and insects).

We characterized the online popularity of each species in our
database using a culturomics approach [25] based on the volume
of Internet searches performed on Google’s search engine. We
obtained data on the average monthly relative search volume
recorded between January 2010 and December 2019 for each
species from the Google Trends API. Google Trends returns relative
search volume data ranging from 0 to 100; the maximum value is
assigned to the highest proportion of total searches observed
during any given month of the sampled period and all other
values are scaled in relation to it. To ensure comparable data
between species, we collected the data using an approach similar
to that described by Davies et al. [26]. We performed topic
searches for combinations of multiple species, validating each
species-specific topic beforehand [27], and ensuring one
common species between each search. The values returned for
this species in either search were used to estimate a scaling
factor between searches, calculated as the coefficient of a linear
regression between the monthly values of either search. The
species used to calculate the scaling factor were selected itera-
tively to ensure the scaling factor was calculated as accurately
as possible based on (i) the highest number of non-zero values
between searches and (ii) a regression R2 value above 0.95. The
monthly values of search interest for each species were then
rescaled using this coefficient to ensure estimates were
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Figure 1. Breakdown of the number of projects (a) and budget allocation (b) across main animal groups covered by the LIFE projects (n = 835). (c) The most
covered 30 species of vertebrates (out of 410) and invertebrates (out of 78) in the LIFE projects analysed (n = 835). The vertical bar represents monetary investment
and the blue scatter line the number of LIFE projects devoted to each species. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20202166

3

comparable between species and averaged across 10 years of data
(i.e. 120 months of search volume). The resulting metric provides
an estimate of the average frequency with which each species
was searched for every month over the last 10 years relative to
the other species in our data. This metric can be seen as a
proxy for the underlying degree of public interest in each species
over the sampled time period [28].

(c) Statistical analyses
We explored the relationships between the three traits and con-
servation attention with a generalized linear mixed model that
accounted for taxonomic non-independence among species [29].

We performed the analyses in R [30], initially exploring
the dataset following a general protocol for data exploration [31].
We checked the homogeneity of continuous variables and log-
transformed non-homogeneous variables, when appropriate.
We verified multicollinearity among predictors with pairwise
Pearson’s r correlations (electronic supplementary material,
figure S1), setting the threshold for collinearity at |r| > 0.7 [31].
We visualized potential associations between continuous and
categorical variables with boxplots (electronic supplementary
material, figure S2). Given that average online popularity (logar-
ithm) and relative popularity (logarithm) were highly correlated
(r = 0.96), we included only average popularity in the regres-
sion analysis. Furthermore, since the number of LIFE projects
and total budget were highly correlated (r = 0.79), we expressed
conservation attention only as the number of LIFE projects
(dependent variable).

We fitted a generalized linearmixedmodel to the datawith the
R package lme4 [32]. The mixed part of the model allowed us to
take into account taxonomic non-independence of observations,
under the assumption that closely related species should share
more similar traits than would be expected of a random sample
of species. More specifically, the taxonomic relatedness among
species was accounted for with a nested random intercept struc-
ture (Class/Order/Family). Given that the response variable
number of projects are counts, we initially selected a Poisson
error and a log link function. The Poisson model was, however,
slightly over-dispersed (dispersion ratio = 3.5; Pearson’s χ2 =
1463.5; p-value < 0.001), and thus we switched to a negative bino-
mial distribution. Model validation was performed with the aid of
the R package performance [33].
3. Results and discussion
(a) Allocation of projects and fundings
We found that the number of LIFE projects (figure 1a) and
budget allocation (figure 1b) varied substantially across
faunal groups. Overall, LIFE projects focused on 410 vertebrate
and 78 invertebrate species. Net monetary investment for
vertebrates was over six times higher than for invertebrates
(approx. €970 versus €150 million; electronic supplementary
material, table S1), a long-known taxonomic bias [10] that see-
mingly persists in conservation throughout Europe [34]. This
bias in conservation efforts is evenmore strikingwhen it is rela-
tivized to the actual numbers of known species in Europe,
namely around 1800 species of vertebrates and 130 300 species
of invertebrates [35]. In relative terms, 23% of vertebrates
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received funding versus only 0.06% of invertebrates, and the
total investment per species for vertebrates was 468 times
higher than for invertebrates. Not counting the species of
invertebrates as yet to be discovered [36], including in Europe.

The top 30 invertebrate species, in terms of LIFE funds
allocation, were coleopterans, butterflies, dragonflies, and a
few molluscs (figure 1c); but this funding is miniscule,
given invertebrate diversity and the current rate of declines
across diverse habitats [37–39]. Even within invertebrates,
the biases are notorious, with widespread, large, and/or col-
ourful species being dominant [40]. Among vertebrates, 54%
of species covered by LIFE projects were birds (accounting for
46% of the budget allocated) and 18% mammals (24% of the
budget), with only 8 out of the 30 most protected vertebrate
species not belonging to these two groups (figure 1c).

As expected, we found a significant positive correlation
between budget allocation and the number of projects
(figure 2a), althoughwith key differences in conservation strat-
egies for distinct species. Whereas the majority of species were
covered by a small number of projects with a limited budget
(€0–5 million), some outlying species were the target of more
intense budget allocation and a higher number of projects
(e.g. the bear and great bittern), or a lower number of high-
budget projects (e.g. the lynx and wolf). The unique outlier
among invertebrates was the freshwater pearl mussel Margar-
itifera margaritifera, which was the focus of a small number of
high-budget projects (figures 1c and 2a). It should be noted,
however, that all these species are distributed over broad geo-
graphical expanses encompassing several EU countries and
thus are more likely to be targeted by researchers applying
to LIFE projects. Ironically, these broad geographical ranges
possibly make these species less prone to extinction.
(b) Drivers of taxonomic bias
We found that the only significant predictor explaining the
conservation attention a species receives is online popularity
(negative binomial GLMM: estimated β ± s.e.: 0.19 ± 0.03,
z = 6.14, p < 0.001; electronic supplementary material, table
S2). In particular, the species covered by a greater number
of LIFE projects were also those which attracted the most
interest online (figure 2b), suggesting that conservation in
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the EU is largely driven by species charisma, rather than
objective features. This result aligns with a recent study doc-
umenting a similar trend in a global sample of threatened
vertebrates [26].

Unexpectedly, risk of extinction did not seem to affect
LIFE fund allocation, as the species-under-extinction-threat
categories failed to receive significantly higher conservation
attention (see [41]). On the contrary, we found that the
majority of projects focused on Least Concern and Near
Threatened species (figure 2c). Whereas some of these
non-threatened species may be broadly distributed, thereby
acting as umbrella species for the habitat that they occupy
and the species they coexist with, this investment bias
seems unjustified given the limited budget of past LIFE pro-
jects. However, it is also worth noting that the use of umbrella
species to protect other faunal groups has given mixed results
with several examples of poor surrogacy [42,43].

The non-significant effect of body size was also somewhat
unexpected, as this trait is often a good proxy of species’
extinction risk [20,44], although it depends on the taxon
[45]. However, it should be noted that most invertebrates in
the Habitats Directive are large species. Moreover, the corre-
lation between online popularity and body size was quite
high (electronic supplementary material, figure S3), and
thus the strong and significant effect of popularity may
have partly masked a weaker effect of body size in explaining
conservation attention.
(c) A way forward
The EU’s commitment to the ambitious goals of the Biodiver-
sity Strategy for 2030 appears evident when considering the
proposed financial plan for nature conservation [7]. At least
€20 billion a year will be unlocked for spending on nature,
which will require mobilizing private and public funding at a
national and EU level, through a range of different pro-
grammes. Moreover, as nature restoration will make a major
contribution to climate change mitigation objectives, a signifi-
cant proportion of the 25% of the EU budget dedicated to
climate action will be invested in biodiversity and nature-
based solutions. All these actions go hand-in-hand with the
EU Green Deal, which emphasizes the post-COVID-19
economic recovery, with the intention to invest further in con-
servation and sustainable development. However, based on
past investment and taking the Habitats Directive and LIFE
projects as a proxy, it seems likely that a few charismatic species
will receive almost all the attention in the context of species-
based conservation funding. When striving to assign the
status of protected area to 30% of the EU’s territory and halt
the documented trends in species extinction [9], especially
the silent extinctions of invertebrates [38], it is essential to
overcome the prevailing taxonomic [34] and other [46] biases.
We, therefore, propose a roadmap for more equitable
species-focused conservation investments in the next decade.

First, we should promote species inventories and data
compilation, to overcome the main knowledge gaps [47,48].
Aside from funding, overcoming such gaps will require crea-
tivity in using diverse sources of data, including monitoring
schemes that already exist at the national (e.g. recording
and monitoring schemes in the UK and Germany) and EU
levels (e.g. Water Framework Directive monitoring for fresh-
water taxa), citizen science projects [49], and Internet-derived
data (e.g. through iEcology; [50]).
Second, armed with such knowledge, we should quickly
assess the status of a broader sample of species to obtain a
real picture of the level of diversity that is threatened by
human activities. Currently, only a handful of invertebrates
are included in the IUCN Red List, preventing us from fully
understanding their status, trends, and conservationneeds [40].

Third, it is critical to review the Habitats Directive
Annexes and thereby produce unbiased criteria for species
protection [48]. This will allow us to build sound scenarios
for the possible enlargement of the Natura 2000 network to
implement the 30% target for protected areas in EU
Member States [3].

Fourth, we should focus on endangered species and their
habitats rather than directing substantial conservation efforts
towards non-threatened species (figure 2c). The EU Biodiver-
sity Strategy for 2030 will request the Member States to
ensure no deterioration in conservation trends and the status
of all protected habitats and species by 2030. This goal will
be reached only by directing conservation efforts to species at
greater risk of extinction, and by focusing on those taxa and
habitats that are currently not accounted for [8].

Fifth, going forward, it will be necessary to monitor con-
servation priorities and funding investment on an annual
basis. The EU currently lacks a comprehensive governance
framework for steering the implementation of biodiversity
commitments agreed at the national, European, or inter-
national level. To address this gap, the Commission is
planning a new European biodiversity governance frame-
work to map obligations and commitments and set out a
roadmap to guide their implementation. As part of this
new framework, a monitoring and review mechanism will
be established, including a clear set of agreed indicators. It
is within this framework that we must challenge the current
taxonomic bias and establish a more equitable redistribution
of funds.

The EU has recently released a technical report making
clear the intent to more comprehensively account for invert-
ebrates in the LIFE program [14]. Considering the number
of European species in question [35], we realize that it will
be impossible to implement this agenda for all invertebrate
species and habitats [51,52]. As proposed by Cardoso &
Leather [53], the simplest solution will be to maximize
phylogenetic and functional coverage of the species targeted
by the LIFE projects, by applying a positive discrimination
mechanism during their evaluation. This can be achieved
by including a taxonomic component in future project assess-
ments and weighting its score according to objective criteria
based on phylogenetic, functional, and spatial uniqueness
in relation to previous projects. In this way, species that
have received substantial funding in the past (e.g. the bear
and lynx) would see their scores down-weighted; conversely,
the project score of species that have never received funds
(e.g. most invertebrates) would increase. These, or similar
approaches and criteria, will increase the objectivity of the
EU’s future conservation planning, allowing it to lead the
world by example and action.

Data accessibility. Data supporting this study and R code to generate
graphs and analyses are available in the Dryad Digital Repository:
https://dx.doi.org/10.5061/dryad.1rn8pk0s0 [54].
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