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FACTORS INFLUENCING BIGHEADED CARP SPATIAL REPRODUCTIVE DYNAMICS IN ILLINOIS AND 
WABASH RIVER TRIBUTARIES 

 

ABSTRACT 
 

Fisheries managers are devoting considerable effort, time, and funding towards limiting the 

spread of invasive Bighead and Silver (bigheaded) Carp. A better understanding of factors that 

influence spatial patterns of bigheaded carp reproduction can help fisheries managers prevent 

their spread. To examine factors that influence spatial patterns of reproduction, we sampled 

ichthyoplankton using drift nets and larval push nets in three tributaries of the Illinois and 

Wabash Rivers March-September 2016-2018. We compared relative abundances of bigheaded 

carp eggs and larvae among tributaries using catch per unit effort (CPUE). Abiotic data were 

analyzed from individual study tributaries and pooled among tributaries with substantial versus 

minimal evidence of bigheaded carp reproduction. In total, 5,689 larval bigheaded carps were 

captured during three sampling seasons. Of the six study tributaries, we captured the most 

bigheaded carp larvae in the Sangamon River, followed by the Little Wabash, Embarras, Spoon, 

Mackinaw, and Vermilion Rivers. Based on previous literature, we investigated differences in 

watershed area, discharge, water temperature, turbidity, and free-flowing stretches of river in 

our study tributaries. In general, tributaries with greater relative abundance of bigheaded carp 

eggs and larvae had larger watersheds, greater discharge, lower secchi depths (higher 

turbidity), and longer free-flowing stretches than those with minimal evidence of reproduction. 

This study provides a thorough investigation of bigheaded carp reproduction in six large river 

tributaries and will help fisheries managers better monitor and mediate the spread of these 

invaders by helping prioritize potential monitoring locations.   
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INTRODUCTION 

Predicting reproductive success in novel ecosystems is crucial for understanding the 

probability of an introduced species establishing itself (Coulter et al. 2013). Bighead Carp 

Hypophthalmichthys nobilis and Silver Carp H. molitrix (hereafter termed “bigheaded carps”) 

are two highly invasive fish species causing deleterious effects on native food webs throughout 

much of the Mississippi River basin (DeBoer et al. 2018). Among other traits making these fishes 

successful invaders is their high reproductive capacity (Garvey et al. 2006).  

Bigheaded carps rely on flowing water for reproduction (Kocovsky et al. 2012) and are 

thought to require 40-100km of free-flowing river for their eggs to incubate and hatch (Krykhtin 

and Gorbach 1981; Yi et al. 1988; Garcia et al. 2015). However, Murphy and Jackson (2013) 

suggest this length is influenced by water temperature, current velocity, and dispersal of eggs. 

Further, Murphy and Jackson (2013) propose river reaches as small as 25 km may be sufficient 

for bigheaded carp egg survival.  

Water temperature and flow influence the reproductive events of most pelagic-

spawning riverine fishes (Dudley and Platania 2007), including those of bigheaded carps 

(Kocovsky et al. 2012). However, invasive bigheaded carp have selected different habitats and 

demonstrated greater reproductive plasticity than in their native range (Deters et al. 2012; 

Coulter et al. 2013), which is thought to have facilitated their expansion. To better understand 

the reproductive plasticity of bigheaded carps, it is important to study their reproduction in a 

variety of systems.  

The Illinois River (IL) is a highly impounded river thought to have the highest density of 

Silver Carp in the world (Sass et al. 2010) and has a direct connection to the uninvaded 
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Laurentian Great Lakes through the Chicago Area Waterway System (CAWS). Currently, a series 

of electric barriers serve as defense against invasive Bighead Carp, Black Carp 

Mylopharyngodon piceus, Grass Carp Ctenopharyngodon idella, and Silver Carp (collectively 

termed “invasive carps”) from entering Lake Michigan and potentially impairing the $7 Billion 

annual fishery of the Great Lakes (ASA 2008). In contrast to the heavily impounded Illinois River, 

the Wabash River is the largest free-flowing river east of the Mississippi River (Skibsted 2012), 

with a relatively lower Silver Carp density (Stuck et al. 2015). Both the Illinois (Zhu et al. 2018) 

and Wabash (Coulter et al. 2016) Rivers have established spawning populations of bigheaded 

carps. 

Relating observed reproduction in already invaded waterbodies to potential use of 

Great Lakes tributaries would help fisheries managers better predict bigheaded carp invasions 

and reproductive activity, should they enter the latter ecosystem. Great Lakes tributaries are 

not as long as the Illinois or Wabash Rivers (Murphy and Jackson 2013), therefore tributaries of 

large rivers make more applicable sites for studying bigheaded carp reproductive activity. 

Tributaries provide reproductive habitat for various fishes (Douglas and Douglas 2000; Webber 

et al. 2013) and can host populations of large river species (Brown and Coon 1994). Although 

there is no direct connection to the Great Lakes, the Wabash River tributaries in this study have 

generally greater discharge than those of the Illinois River, providing a larger range of systems 

to study. Additionally, several tributaries of the La Grange Reach of the Illinois River have 

known populations of Silver Carp (Sass et al. 2010) and ample free-flowing distance for 

potential bigheaded carp reproduction. Aside from Deters et al. (2012) finding minimal 

evidence of bigheaded carp spawning in Missouri River tributaries, there is limited literature on 
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bigheaded carp reproduction in large river tributaries. Murphy and Jackson (2013) suggest 

suitability for bigheaded carp spawning is determined by a complex relationship between 

hydraulic and water-quality characteristics. The goal of our study was to better understand 

reproduction of bigheaded carps in Illinois and Wabash River tributaries and better predict 

potential use of Great Lakes tributaries for reproduction, should bigheaded carps invade.  

During the 2016-2018 field seasons, we sampled bigheaded carp ichthyoplankton with 

the objectives of (1) determining to what extent individual tributaries of the Illinois and Wabash 

Rivers are used for bigheaded carp reproduction, and (2) elucidating the characteristics of the 

tributaries producing the most bigheaded carp eggs and larvae. We hypothesized that the most 

larval bigheaded carps would be sampled in Wabash River tributaries. We expected this 

because Wabash River tributaries have a more natural flow regime than Illinois River tributaries 

(Stuck et al. 2015) and bigheaded carp are known to use increases in water flow as a spawning 

cue (Kocovsky et al. 2012). Additionally, Wabash River tributaries generally have a higher 

discharge than the Illinois River tributaries of this study. Specifically, we expected tributaries 

with the greatest maximum discharge values to produce the most bigheaded carp eggs and 

larvae, as high discharge events have been associated with bigheaded carp spawning (Kolar et 

al. 2007). Further, rivers with longer free-flowing distance likely have more potential spawning 

sites and provide sufficient distance for eggs to incubate (Kocovsky et al. 2012; Murphy and 

Jackson 2013; Garcia et al. 2015). We also expected tributaries with warmer temperatures to be 

utilized more than cooler tributaries, as these could potentially be the first to have conditions 

suitable for spawning and bigheaded carp eggs incubate faster in warmer water (Kocovsky et al. 

2012).  
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METHODS 

Study Sites 

We selected three tributaries of the Illinois (Mackinaw, Sangamon, Spoon) and Wabash 

(Embarras, Little Wabash, Vermilion) Rivers as our study sites (Figure 1). All three Illinois River 

tributaries flow into the impounded La Grange Reach of the Illinois River, while all three 

Wabash River tributaries flow into the free-flowing lower section of the Wabash River. Four of 

our six study tributaries have notable impoundments (Table 2). We sampled tributaries monthly 

from March-September 2016-2018. Additionally, we sampled bi-weekly during June-August, as 

water temperatures are generally sufficient (> 17ᵒ C) for bigheaded carp spawning (Kolar et al. 

2007; Coulter et al. 2013), and Coulter et al. (2016) previously sampled bigheaded carp eggs in 

the Wabash River during these months.  

Sampling Techniques 

We deployed ichthyoplankton drift nets at an upper, middle, and lower reach of each 

tributary (Table 1). At lower sites, we measured flow velocity (m/s) and sampled far enough 

upriver to ensure any ichthyoplankton sampled was derived from the tributary being sampled. 

Drift net openings were 0.25m height x 0.45m width with a 1.0m length 500µm mesh net to 

filter water and collect drifting larval fishes and eggs. Drift nets were positioned directly below 

the water surface. Flow was measured using a HACH flowmeter and used to determine the soak 

time of drift nets to standardize the amount of water filtered. Additionally, we sampled with 

bow-mounted ichthyoplankton push nets at the lower site of each tributary. We implemented 

push nets at middle sites in 2018 when water depth and boat access were adequate. Push net 

openings were 0.5m in diameter and had 3.0m of 500µm mesh net for sample collecting. Push 
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nets were driven upriver for five minutes, also directly below the water surface. A General 

Oceanics flowmeter was mounted to the push net opening to gauge the volume of water 

filtered. We set drift nets and conducted ichthyoplankton pushes at a left, mid-channel, and 

right section of the river at each site. We recorded water depth (m), surface velocity (m/s), 

water temperature (ᵒC), dissolved oxygen (mg/L), pH, conductivity (µs), specific conductivity 

(µs/L), and secchi depth (cm) at each site. When available, we used mean daily river discharge 

(meters3/second) and water gauge height (m) from the furthest downstream United States 

Geological Survey (USGS) river gauge on each tributary for all days within our sampling season 

to compare discharge among tributaries.  

  Ichthyoplankton samples were immediately preserved in 95% EtOH after collection. 

Eggs and fishes were separated from debris and identified to family under a dissecting 

microscope using Auer (1982) and Chapman (2006) as references. Cyprinids were identified as 

Hypophthalmichthys spp. (bigheaded carps) if applicable (Chapman 2006). A subsample was 

tested genetically at the Georgia Southern University genetics lab to verify identification. 

Individual fish were distinguished as being a late-stage larva versus juvenile based on the 

presence or absence of a median fin-fold. 

Statistical Techniques 

We calculated catch per unit effort (CPUE) of bigheaded carp eggs and larvae as the 

total number sampled from each site divided by the amount of water filtered by that gear type. 

Specifically, we calculated CPUE as the number of eggs and larvae sampled per 100m3 of water 

filtered. Amount of water filtered by drift nets was calculated using: 
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𝑊𝑎𝑡𝑒𝑟 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (𝑚3)

= 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐷𝑟𝑖𝑓𝑡 𝑁𝑒𝑡 𝑂𝑝𝑒𝑛𝑖𝑛𝑔(𝑚2) X 𝑊𝑎𝑡𝑒𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (
𝑚

𝑠
) X 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓  𝑆𝑎𝑚𝑝𝑙𝑒 (𝑠) 

 Amount of water filtered by larval push nets was calculated using a General Oceanics 2030R 

standard flowmeter and the following equations provided by General Oceanics (1980): 

𝑊𝑎𝑡𝑒𝑟 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (𝑚3) = (
3.14 𝑋 𝑁𝑒𝑡 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟2

4
) 𝑋 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚) = (𝐹𝑙𝑜𝑤𝑚𝑒𝑡𝑒𝑟 𝐶𝑜𝑢𝑛𝑡𝑠 𝑋
26,873

999999
)   

An analysis of variance (ANOVA) was performed to test for differences in mean secchi 

depth, water temperature, and mean daily discharge among tributaries at lower sites pooled 

for all three years and individual years. In the event where a variable was not recorded for a 

given tributary, that variable was not used for analyses from other tributaries for that day. 

Upon performing ANOVAs, we assessed statistical differences among tributaries using a Tukey’s 

post-hoc test. Secchi depth data was log10-transformed and tested for homogeneity of 

variances with a Fligner-Killeen test. Discharge and water temperature data were determined 

non-normal after log10 transformation, so a Kruskal-Wallis one-way ANOVA was performed with 

a Dunn’s post-hoc test on the non-transformed data. Values were considered significant at α < 

0.05 for ANOVAs and Tukey HSD post hoc tests. 

To examine the relationship between environmental variables and ichthyoplankton 

relative abundance, we used both simple and multiple regression analyses. Data were log10-

transformed to ensure variables measured at different scales were of the same order of 

magnitude and met the assumptions of normality and homogeneity of variance. Backward 

model selection and Akaike information criterion (AIC) were used to determine the model of 
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best fit for the relationship between watershed area, coefficient of variation (CV) of mean daily 

discharge, free-flowing river length, and latitude for drift net egg CPUE, drift net larvae CPUE, 

larval push egg CPUE, and larval push larvae CPUE. We used the “step” function to remove the 

least informative variables and final models were based on AIC values. Predictor variables were 

removed until all remaining variables had AIC scores > the null model. All statistical analyses 

were performed using R version 3.6.0 (R Development Core Team 2019).  
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RESULTS 

 A total of 5,689 larval bigheaded carps were sampled from 2016-2018; 5,165 were 

sampled by larval push nets and 524 from ichthyoplankton drift nets (Table 3). Across years, 

1,040 larvae were collected in 2016, 30 in 2017, and 4,619 in 2018. Of these larvae, 4,427 were 

captured in the Sangamon, 1,129 in the Little Wabash, 252 in the Embarras, 44 in the Spoon, 10 

in the Mackinaw, and 10 in the Vermilion River (Table 3). Additionally, a total of 3,799 

bigheaded carp eggs were sampled during this study. We sampled the most eggs in the 

Embarras and Little Wabash Rivers with 1,746 and 1,386, respectively. Further, we captured 

653 eggs in the Sangamon, 7 in the Mackinaw, 7 in the Vermilion, and 0 in the Spoon River 

(Table 4). Since most (>98%) bigheaded carp larvae were captured at the furthest downstream 

sampling site of a tributary, we focused on both ichthyoplankton catch and abiotic data taken 

from those lower sites. Although egg CPUE was also highest at the downstream-most sites, 

substantial bigheaded carp eggs were collected at other sites; therefore upstream, middle, and 

downstream sites were all analyzed for egg data. At downstream sites, we sampled ~26,133 m3 

of water using larval push nets and ~55,045 m3 of water using ichthyoplankton drift nets. When 

all sites were combined for egg data, we sampled ~28,573 m3 of water using larval push nets 

and ~143,072 m3 of water using ichthyoplankton drift nets. Larval push nets were deployed less 

frequently due to the requirement of boat accessibility for using this gear, which was limited 

during periods of low water. 

 Secchi depth (cm) was recorded a minimum of 27 times at the lower site of each study 

tributary during the field seasons of 2016-2018. Secchi depth ranged from 20.1cm ± 1.9 (mean 

± SE) in the Spoon River to 40.6cm ± 3.8 (mean ± SE) in the Vermilion River (Table 5). A Shapiro-
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Wilks test revealed these data were not normal both before (P < 0.01) and after (P < 0.001) data 

was log-transformed. After log10 transformation, a Fligner-Killeen test showed the data met the 

assumption of homoscedasticity (P = 0.23). Overall, the model was significant (ANOVA: F = 8.15, 

df = 5, P < 0.001). A Tukey’s post hoc test indicated significant (P < 0.01) differences in eight of 

the 15 comparisons. Notably, the mean secchi depth in both the Mackinaw and Vermilion 

Rivers were significantly greater than in the Embarras, Little Wabash, Sangamon, and Spoon 

Rivers (Figure 2). Mean secchi depth was not significantly different between the Embarras, 

Little Wabash, Sangamon, and Spoon Rivers (Figure 2); these being the tributaries with the 

most larval bigheaded carps captured from 2016-2018. 

A total of 1,258 water temperature readings were recorded for our six tributaries. Water 

temperature during our study periods ranged from 21.88ᵒC ± 0.92 (mean ± SE) in the Mackinaw 

River to 24.14ᵒC ± 0.25 (mean ± SE) in the Embarras River (Table 5). When analyzed by 

individual years using a Kruskal-Wallis one-way ANOVA, no tributaries were significantly 

different in 2016 (P = 0.29), 2017 (P = 0.14), or 2018 (P = 0.22). When all three years of water 

temperature data were pooled, no tributaries had significantly different water temperatures (α 

= 0.003, Figure 3). All tributaries reached the 17ᵒC and 22ᵒC thresholds in all study years. 

Daily discharge from March-September 2016-2018 ranged from 24.73 meters3/second ± 

1.38 (mean ± SE) in the Mackinaw River to 115.80 meters3/second ± 6.60 (mean ± SE) in the 

Little Wabash River (Table 5). Our initial Kruskal-Wallis one-way ANOVA determined there were 

significant differences (χ2 = 625.77, df = 5, P < 0.05) in mean daily discharge between tributaries. 

A Dunn’s post-hoc test determined mean daily discharge was significantly different (P < 0.003) 

between all tributaries except the Spoon and Vermilion Rivers (P = 0.38, Figure 4). 
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Upon completing simple regressions, watershed area (Table 5) explained the most 

variation (in order) in drift net larvae CPUE (F1,4 = 21.89, P < 0.01, R2 = 0.85), larval push larvae 

CPUE (F1,4 = 16.84, P = 0.01, R2 = 0.81), drift net egg CPUE (F1,4 = 3.53, P = 0.13, R2 = 0.47), and 

larval push egg CPUE (F1,4 = 2.07, P = 0.22, R2 = 0.34).  Regarding multiple regressions, 

watershed area was the best predictor, followed by CV of discharge for drift net egg and larvae 

CPUE along with larval push larvae CPUE (Table 6). For larval push egg CPUE, CV of discharge 

was followed by watershed area, length of free-flowing river, and latitude (Table 6). 

Based on bigheaded carp egg catch and larval relative abundance (Tables 3 and 4), we 

categorized tributaries into those with substantial, moderate, and minimal evidence of 

reproduction. Substantial (Little Wabash and Sangamon Rivers) tributaries had > 1.0 

larvae/100m3 sampled in larval push nets (all years) and/or > 1,000 larval fish sampled with all 

years combined. Moderate (Embarras and Spoon Rivers) tributaries had > 1.0 larvae/100m3 

sampled in larval push nets in an individual year and/or > 750 eggs sampled in multiple years. 

Minimal (Mackinaw and Vermilion Rivers) tributaries had < 10 total eggs and ≤ 10 larvae 

sampled in all three years combined. 
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DISCUSSION 

Overall, this study provides a thorough investigation of bigheaded carp reproduction in 

large river tributaries. We found the highest number of bigheaded carp eggs and larvae in 

tributaries with the largest watershed areas, which subsequently had the highest discharge, 

greatest turbidity, and although not significant, tributaries with warmer water temperatures. 

These findings are not only helpful to fisheries managers within the Illinois and Wabash river 

basins, but also to better predict where bigheaded carps may spawn, should they invade the 

Laurentian Great Lakes. 

Of our six study tributaries, we collected the most bigheaded carp larvae from (in order) 

the Sangamon, Little Wabash, Embarras, Spoon, Mackinaw, and Vermilion Rivers. We divided 

these tributaries into three groups; those with “substantial” (Little Wabash and Sangamon 

Rivers), “moderate” (Embarras and Spoon Rivers), and “minimal” (Mackinaw and Vermilion 

Rivers) evidence of bigheaded carp reproduction. Furthermore, larval push was our more 

efficient gear type, which was consistent with Roth et al. (in review, this issue). CPUE for the 

Mackinaw and Vermilion Rivers appeared to be biased high, as we were unable to use this gear 

in these tributaries during times of low flow when very few larvae of any species were 

captured. This lack of sampling likely resulted in fewer catches of zero for the Mackinaw and 

Vermilion Rivers in low flow conditions relative to the other four tributaries we sampled.  

Watershed area and CV of yearly discharge were the best predictors of bigheaded carp 

egg and larvae relative abundance in our study tributaries. We predicted high discharge 

variation and “flashiness” to be associated with greater egg and larval CPUE, as Silver Carp are 

thought to move up tributaries during times of increased flow and have been documented 
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exhibiting this in tributaries of the Mississippi and Missouri Rivers (Deters et al. 2013; Vallazza, 

personal communication). However, CV of discharge was negatively correlated with all CPUEs 

aside from larval push eggs. We suggest this to be a factor of small, flashier tributaries being 

used less for reproduction than those with sustained higher discharges. Regarding the influence 

of latitude, warmer water temperatures at lower latitudes can decrease time needed for egg 

incubation (Kocovsky et al. 2013) and increase egg and larvae survival. However, we believe our 

study tributaries are close enough in proximity where this likely has a minimal effect. The 

statistical outcome of latitude predicting egg and larval relative abundance is potentially 

confounded by three of our four southern-most tributaries having the highest discharges and 

longest free-flowing stretches, which allow for a greater chance of successful reproduction 

(Camacho et al. This Issue). 

We analyzed water temperature regimes of our six study tributaries because bigheaded 

carps require 17ᵒC to spawn, but 22-26ᵒC is preferred (Jennings 1988; Coulter et al. 2013). No 

tributaries had significantly different mean temperatures in either of the three individual years 

or when all years were pooled. All study tributaries reached both the 17ᵒC and 22ᵒC thresholds 

in all three years without a discernible pattern in the order of warming. Although the two 

tributaries with minimal evidence of reproduction (Mackinaw and Vermilion Rivers) had the 

two lowest mean water temperatures, this was likely not enough to have biological effects. We 

found no appreciable differences in this study, however, warmer Great Lakes tributaries flowing 

in from regions such as southern Wisconsin and southern Michigan are likely more suitable for 

bigheaded carp spawning than coolers tributaries in the far-northern parts of those states. 
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An increase in discharge (Zhang et al. 2000; Schrank et al. 2001; Wang et al. 2008) and 

adequate flow (Huet 1970) are primary cues for bigheaded carp reproduction. DeGrandchamp 

(2007) concluded that while high water may not be critical for reproductive success, it may 

augment egg and larvae survival. Further, Sullivan et al. (2018) states that sustained periods of 

high discharge can lead to strong Silver Carp year-classes. Further, the two tributaries with the 

highest larval bigheaded carp CPUE had the highest mean discharge values (Little Wabash and 

Sangamon Rivers), whereas the two tributaries with minimal evidence of reproduction 

(Mackinaw and Vermilion Rivers) had the lowest mean discharge values.  

Although often covarying with watershed area and discharge, turbidity may also 

influence recruitment of bigheaded carps (Chang 1966; Verigin et al. 1978; Fermin 1990; Deters 

et al. 2013) and turbid water may reduce predation on bigheaded carp larvae (Reichert et al. 

2010). However, Krykhtin and Gorbach (1981) found no relationship between turbidity and 

Grass Carp or Silver Carp reproduction. More recently, Deters et al. (2013) concluded that 

turbidity positively correlated with bigheaded carp egg production in the Missouri River; 

supporting our findings that our least turbid rivers had the least evidence of reproduction, 

although this is likely a product of discharge and watershed area. Most rivers where bigheaded 

carps have reproductive success are turbid, regardless of the mechanism leading to this success 

(Kocovsky et al. 2012). Although the relationship between turbidity and bigheaded carp 

reproduction may not be causal, this characteristic is likely indicative of a waterbody supporting 

bigheaded carp reproduction. Thus, Great Lakes tributaries with greater turbidity should be 

prioritized with regards to sampling for potential bigheaded carp reproduction if they enter the 

system. 
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In their native range, bigheaded carp spawning sites are often highly turbulent from 

tributary confluences or other hard points such as islands (Huet 1970; Yi et al. 1988).  While 

bigheaded carp eggs are semi-buoyant, adequate turbulence is required for eggs to maintain 

suspension in the water column (Soin and Sukhanova 1972; Pflieger 1997; Deters et al. 2013). In 

Summer 2017, we visually witnessed Silver Carp actively spawning where the Embarras River 

converges with the Wabash River. Eggs fertilized at this and similar locations, along with 

resulting larvae, would not have been sampled by our gear, because we sampled upstream of 

confluences to avoid capturing ichthyoplankton that may have originated from the mainstem 

river. However, our two tributaries where we caught the most larvae both have notable inputs; 

the Skillet Fork flows into the Little Wabash River in White County (IL) and Salt Creek flows into 

the Sangamon River in Menard County (IL), creating areas of turbulence and potential spawning 

sites. Moreover, the Little Wabash and Sangamon Rivers were the only seventh order rivers in 

this study. The confluence of two sixth order rivers, as described above, likely provides 

adequate turbulence for bigheaded carp eggs to stay in the water column during times of 

relatively higher flow.  

Eggs of bigheaded carps were thought to require 100 km of free-flowing river to 

incubate and hatch (Krykhtin and Gorbach 1981; Yi et al. 1988), but recently, Murphy and 

Jackson (2013) suggest that this length depends on water temperature, current velocity, and 

dispersal of eggs. Further, Murphy and Jackson (2013) propose river reaches > 25 km may be 

sufficient for bigheaded carp egg survival. Five of our six study tributaries had > 100 km of free-

flowing and the Vermilion River has 37 km of free-flowing river downstream from the Danville 

Dam (Danville, IL). Although we found minimal evidence of bigheaded carp reproduction in the 
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Vermilion River, we did capture ten larvae and seven eggs in this tributary between 2016 and 

2018. Further, the Danville and Ellsworth Dams were both removed in 2019, increasing the 

length of free-flowing river available and potentially making the Vermilion River more suitable 

for bigheaded carp reproduction. We recommend further sampling to evaluate how these dam 

removals and increased free-flowing river length affect future bigheaded carp reproduction.  

Silver Carp exhibit highly plastic reproductive traits that allow them to spawn over a 

wider range of hydrological conditions, a more protracted time period, and in smaller rivers 

than reported from their native range (Coulter et al. 2013). Due to this plasticity and our 

biweekly sampling design, some spawning events may have been missed. Further, Cyr et al. 

(1992) states that most surveys of larval fish are based on few, large samples. Although many of 

our mean CPUE values were influenced by individual days with large catches, we had a large 

sample size during the three years of this study to consider. Additionally, the phenomenon of 

many sampling events with low catches in concurrence with few events of large catches reflects 

the sporadic nature of bigheaded carp reproduction (Zhang et al. 2000) and is supported by the 

high weekly variation in Coulter et al. (2016). However, we were likely to document evidence of 

substantial reproduction that took place in our study tributaries due to our extensive sampling 

efforts over three seasons and using both passive (drift nets) and active (larval push) gears in a 

variety of hydrological regimes. 

Although adult abundance certainly influences recruitment (Garvey 2007) and 

production of eggs and larvae, we do not have relative abundance data for adults in our 

tributaries. CPUE of adults was not part of the scope of this project, but would be insightful in 

the future. Further, adults have been observed moving from mainstem rivers into tributaries 
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with rising discharge during likely times of spawning (Vallazza, personal communication); 

therefore, resident tributary population values may not be indicative of the spawning stock 

using a particular tributary to reproduce, especially with the protracted spawning patterns 

(Coulter et al. 2013) of these species. 

Although our study rivers flow into larger rivers (Illinois or Wabash), whereas tributaries 

of Lakes Erie and Michigan flow into a lentic system, this study provides a basis for determining 

higher priority Great Lakes tributaries to monitor for bigheaded carp reproduction, should 

Bighead or Silver Carp invade either of these systems. While watershed land use varies between 

the Great Lakes tributaries and our study system, which can affect runoff and variables such as 

turbidity (Knoll et al. 2003), we recommend prioritizing tributaries that have larger watersheds 

and have greater discharge, turbidity, and length of free-flowing stretches. For example, the St. 

Joseph River (Michigan) is one of the southern-most Lake Michigan tributaries, generally has a 

high discharge, and although not necessarily free-flowing, fish ladders intended for salmonids 

would likely be used by Silver Carp to move upriver, as they have been observed leaping as high 

as 276 cm (Stell 2018). Contrastingly, the Menominee River forms part of the Wisconsin-Upper 

Michigan border. The Menominee warms later and has an impassible dam, aside from a 

monitored fish-elevator, just 4 km upriver from Lake Michigan (Porter 2019). This dam would 

prohibit bigheaded carps from reaching viable stretches of free-flowing river for reproduction. 

It should be noted, however, that Great Lakes tributaries like those of the Illinois or Wabash 

Rivers with minimal evidence of bigheaded carp reproduction should still be monitored, 

especially considering the high reproductive plasticity observed in bigheaded carps (Coulter et 

al. 2013). Our study, along with Coulter et al. (2013) and Murphy and Jackson (2013), shows 
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bigheaded carps are capable of spawning in shorter rivers than previously considered viable. 

Further, with climate change expected to contribute to warmer water temperatures (Meisner 

1990; Flebbe et al. 2006; Lyons et al. 2010), the length of river necessary for larval bigheaded 

carp development will likely decrease (Kocovsky et al. 2012); therefore, increasing the 

likelihood of these fishes successfully reproducing in shorter tributaries.  

This study provides an examination of bigheaded carp reproduction in large river 

tributaries and will help fisheries managers better assess the risk of bigheaded carp spawning in 

various systems. We recommend further ichthyoplankton sampling of these six and potentially 

other tributaries, as Silver Carp populations continue to grow in the Wabash River (Carpenter, 

personal communication), and two dams were removed from the Vermilion River in 2019, 

increasing free-flowing river stretches and allowing access to new habitats. The findings 

presented in this paper and continued sampling should assist fisheries managers in better 

prioritizing sites to monitor the potential further spread of bigheaded carps.  
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TABLES 
 
Table 1.1 - Sampling sites including river kilometers (km) from confluence, stream order, and 
nearest municipality of three tributaries of the Illinois River (Mackinaw, Sangamon, and 
Spoon Rivers) and three tributaries of the Wabash River (Embarras, Little Wabash, and 
Vermilion Rivers) sampled from March-September 2016-2018. All municipalities are within the 
state of Illinois unless otherwise noted. 
 

River Basin Tributary Site 
River 
km Stream Order Nearest Municipality 

  Upper 122 5 Congerville 

 Mackinaw Middle 82 6 Mackinaw 

  Lower <1 6 Pekin 

   Upper 208 5 Decatur 

Illinois Sangamon Middle 137 5 Riverton 

  Lower <1 7 Beardstown 

   Upper 113 5 London Mills 

 Spoon Middle 61 6 Seville 

  Lower <1 6 Havana 

    Upper 193 6 Charleston 

 Embarras Middle 146 6 Greenup 

  Lower <1 6 St. Francisville 

   Upper (2016) 357 4 Neoga 

Wabash Little Wabash 
Upper (2017,2018) 127 6 Albion 

Middle 51 7 Carmi 

  Lower <1 7 New Haven 

   Upper 37 5 Danville 

 Vermilion Middle 19 6 Georgetown 

    Lower <1 6 Cayuga, IN 
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Table 1.2 - Notable impoundments on study tributaries including distance to mouth (km) and 
height (feet) among three tributaries of the Illinois River (Mackinaw, Sangamon, and Spoon 
Rivers) and three tributaries of the Wabash River (Embarras, Little Wabash, and Vermilion 
Rivers) sampled from March-September 2016-2018. 
 

River Basin Tributary Barrier River km Height (ft) 

 Mackinaw NA   

Illinois Sangamon Decatur Dam 210.3 33 

  Spoon NA     

 Embarras Charleston Spillway 194.4 29 

Wabash Little Wabash Lake Mattoon Dam 360.5 46 

  Vermilion Danville Dam 35.4 11 
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Table 1.3 - Mean yearly catch per unit effort (CPUE) in fish/100m3, standard error (SE), and total 

catch (n) of larval bigheaded carp by drift nets (DN) and larval pushes (LP) in three Illinois River 

tributaries (Mackinaw, Sangamon, and Spoon Rivers) and three Wabash River tributaries 

(Embarras, Little Wabash, and Vermilion Rivers) from March-September 2016-2018 and for all 

years combined. 

       DN     LP   

   Tributary CPUE SE n CPUE SE n 

2016  Mackinaw 0 0 0 0 0 0 

  Sangamon 0 0 0 0.06 0.06 1 

  Spoon 0 0 0 0 0 0 

  Embarras 0 0 0 0.70 0.70 20 

  Little Wabash 1.12 0.44 99 40.22 23.17 916 

  Vermilion 0.01 0.01 1 0.19 0.14 3 

2017  Mackinaw 0.05 0.05 1 0.47 0.47 4 

  Sangamon 0.03 0.03 1 0.09 0.09 1 

  Spoon 0.08 0.05 3 0.08 0.08 1 

 
 Embarras 0.03 0.03 1 0.20 0.14 2 

  Little Wabash 0.08 0.05 5 1.00 0.69 8 

  Vermilion 0 0 0 0.31 0.22 3 

2018  Mackinaw 0.04 0.03 2 0.52 0.36 3 

  Sangamon 4.43 2.11 276 123.05 79.94 4148 

  Spoon 0.19 0.08 10 1.51 0.97 30 

  Embarras 0.27 0.12 41 0.24 0.15 5 

  Little Wabash 0.96 0.65 81 0.95 0.51 20 

   Vermilion 0.07 0.04 3 0 0 0 

2016-2018  Mackinaw 0.02 0.01 3 0.27 0.15 7 

  Sangamon 1.53 0.73 277 61.56 40.2 4150 

  Spoon 0.09 0.03 13 0.54 0.34 31 

  Embarras 0.10 0.04 42 0.39 0.25 27 

  Little Wabash 0.80 0.29 185 17.98 10.2 944 

   Vermilion 0.03 0.01 4 0.16 0.08 6 
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Table 1.4 – Total catch of bigheaded carp eggs caught in drift nets and larval pushes fished on 
three tributaries of the Illinois River (Mackinaw, Sangamon, and Spoon Rivers) and three 
tributaries of the Wabash River (Embarras, Little Wabash, and Vermilion Rivers) from March-
September 2016-2018. 

Tributary 2016 2017 2018 Sum 

Mackinaw 7 0 0 7 

Sangamon 0 0 653 653 

Spoon 0 0 0 0 

Embarras 984 0 762 1746 

Little Wabash 475 0 911 1386 

Vermilion 7 0 0 7 
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Table 1.5 – Watershed area (meters2), mean discharge (meters3/second), secchi depth (cm), 
water temperature (ᵒC) and standard error (SE) from the Mackinaw, Sangamon, Spoon, 
Embarras, Little Wabash, and Vermilion Rivers from March-September 2016-2018.  

Tributary Watershed Discharge SE Secchi SE Temp SE 

Mackinaw 2,942 887 52 33.9 2.6 21.88 0.92 

Sangamon 13,888 3,886 198 22.2 1.3 23.77 1.02 

Spoon 4,817 1,132 62 23.1 1.9 23.34 1.06 

Embarras 6,320 3,123 239 21.4 1.5 24.15 0.24 

Little Wabash 8,386 4,090 233 20.1 1.5 23.99 0.22 

Vermilion 3,367 1,307 79 40.6 3.8 23.06 0.26 
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Table 1.6 – Multiple regression model selection results including response variable, model 
predictor variables, Akaike weights (Wi), R2, and P-values of the best model for predicting 
relative abundance (CPUE) of bigheaded carp (Hypophthalmichthys spp.) eggs and larvae caught 
in drift nets and larval push nets. Variables include log-transformed watershed area (LogArea), 
log-transformed coefficient of variation of mean daily discharge (LogCVQ), log-transformed 
unimpounded river length (LogLength), and log-transformed latitude of downstream-most 
sampling site of each tributary (LogLat). Environmental data was analyzed from March-
September 2016-2018. 

Response Variable Predictive Model Wi R2 P 

Drift Net Eggs LogArea - LogCVQ 0.55 0.73 0.14 

Drift Net Larvae LogArea - LogCVQ 0.54 0.93 0.02 

Larval Push Eggs LogArea + LogCVQ + LogLength - LogLat 0.65 0.99 0.15 

Larval Push Larvae LogAeea - LogCVQ 0.51 0.92 0.02 
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FIGURES 

 
Figure 1.1 – Study area including the Mackinaw, Sangamon, Spoon, Embarras, Little Wabash, 
and Vermilion Rivers (Illinois and Indiana). 
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Figure 1.2 – Mean secchi depth (cm) from the Mackinaw (MA), Sangamon (SA), Spoon (SP), 
Embarras (EM), Little Wabash (LW), and Vermilion (VE) Rivers during 2016-2018 field seasons. 
Different letters denote significantly different mean secchi depth.  
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Figure 1.3 – Mean water temperature (ᵒC) from the Mackinaw (MA), Sangamon (SA), Spoon 
(SP), Embarras (EM), Little Wabash (LW), and Vermilion (VE) Rivers during 2016-2018 field 
seasons. 
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Figure 1.4 – Mean river discharge (m3/second) from the Mackinaw (MA), Sangamon (SA), Spoon 
(SP), Embarras (EM), Little Wabash (LW), and Vermilion (VE) Rivers during 2016-2018 field 
seasons.  
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BIGHEADED CARP POPULATION GENETICS IN WABASH RIVER TRIBUTARIES 

 

ABSTRACT 

Bighead and Silver Carp (bigheaded carp) are non-native fishes that have deleterious effects on 

the ecosystems they invade. Because of their negative effects on native species, fisheries 

managers devote substantial time and effort to limit the spread of these fishes. Better 

understanding of the patterns of bigheaded carp reproduction and dispersal can help manage 

these invaders. To determine spawning locations, we used ichthyoplankton drift nets and larval 

push nets in three Wabash River tributaries to capture bigheaded carp larvae in 2016 and 2017. 

Further, we used microsatellite loci to determine if genetic differences existed between larval 

bigheaded carp in our three study tributaries. In total, 1,246 larval bigheaded carp were 

collected from three tributaries, with the Little Wabash and Embarras River producing roughly 

83% and 16% of larvae. Genetic analyses using various methods revealed high levels of genetic 

diversity in all three sites. Minimal evidence of inbreeding or outbreeding, as well as genetic 

difference between the upper Little Wabash and lower Embarras River samples help to improve 

our understanding of bigheaded carp reproduction and provide useful information for fisheries 

professionals to better mediate their spread. 
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INTRODUCTION 

Invasive species generally have a smaller gene pool than that of natives and have 

substantially less time to disperse throughout their newly invaded range (Yang et al. 2015). 

However, invasive species are often under immense selective pressure (Chun et al. 2009) and 

often have high phenotypic diversity, increasing the potential for rapid evolution and genetic 

divergence (Lee 2002). Studies of genetic diversity and evolutionary changes can be useful for 

understanding the potential for colonization, establishment, geographic patterns of invasion, 

range expansion, lag times, and the potential for evolutionary responses to novel 

environments, including management practices (Sakai et al. 2001). 

Genetic analyses are an increasingly popular tool used by fisheries researchers to gain 

insight regarding fish population structure (Gyllensten 1985) and determine if individual 

reproductive stocks exist within a population (Shaklee et al. 1990). Previously, a genetic stock 

has been defined as a local population that maintains recognizable genetic differentiation by 

separation of their spawning time or place (Bailey and Smith 1981). The delineation of genetic 

stocks has been used to better understand and manage the harvest of commercially or 

recreationally important fishes such as Lake Whitefish Coregonus clupeaformis (VanDeHey et al. 

2009). Microsatellite loci can show genetic differences between populations separated by 

relatively short geographic distance (Koskinen et al. 2002) and can assist fisheries managers in 

examining population structure. 

In the case of Bighead Carp Hypophthalmichthys nobilis and Silver Carp 

Hypophthalmichthys molitrix, hereafter termed “bigheaded carps”, genetic tools afford the 
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ability to better understand reproductive patterns, determine if there is genetic isolation, and 

potentially determine if natal homing is exhibited (Freedman et al. 2005). In previous research, 

Stepien et al. (2019) found Silver Carp to exhibit high levels of genetic diversity and significant 

population differentiation across their North American range, including invasion fronts in the 

Illinois and Wabash Rivers. Although statistically significant genetic differentiation was found 

among populations in the Illinois, upper Mississippi, lower Mississippi, Missouri, and Wabash 

Rivers (Stepien et al. 2019), genetic structure of Silver Carp has yet to be examined on a finer 

scale within North America.  

All previous genetic studies on Silver Carp have examined free-swimming juveniles or 

adults. This could potentially confound inferences of stock structure as Silver Carp exhibit high 

levels of dispersal (Coulter et al. 2016). Thus, individuals captured in one location may not 

represent individuals reproduced in that region. For example, a Silver Carp captured in the 

Illinois River was confirmed a full sibling of a lower Mississippi River individual (Stepien 2019). 

Additionally, the authors know of no Silver Carp genetics studies performed on populations 

within large river tributaries. For these reasons, we investigated population genetics of larval 

Silver Carp in tributaries of the Wabash River using larvae.  

During the 2016-2017 field seasons, we sampled larval bigheaded carps with the 

objectives of (1) determining if genetic differences exist between study tributaries, and (2) 

investigating levels of genetic diversity within Wabash River tributaries. We hypothesized that 

Silver Carp would be genetically distinct between tributaries within systems, as they are known 

to spawn at relatively few, discrete sites in their native Yangtze River (Yi et al.  
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1988), indicating either a low rate of straying or minimal reproductive habitat. Additionally, 

Stepien et al. (2019) found silver carp in the mainstem Illinois and Wabash Rivers to be 

genetically different. Genetic differentiation between tributaries would be notable, as invasive 

species generally have a smaller gene pool than that of natives and have had substantially less 

time to separate throughout their newly invaded range. However, invasive species are often 

under immense selective pressure (Chun et al. 2009) and often have numerous phenotypic 

differences, increasing the potential for rapid evolution and genetic divergence (Lee 2002). 
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METHODS 
Study Sites 

We selected three tributaries of the Wabash River (Embarras, Little Wabash, and 

Vermilion Rivers) as study sites (Figure 1). All three tributaries flow into the free-flowing lower 

Wabash River. Tributaries were sampled monthly from March-September 2016-2017. 

Additionally, we sampled bi-weekly during June-August in 2016-2017, as water temperatures 

are generally suitable for bigheaded carp spawning during these months (Verigen et al. 1978; 

Kolar et al. 2007).  

Sampling Techniques 

We deployed ichthyoplankton drift nets at an upper, middle, and lower reach of each 

tributary (Figure 2.1). At lower sites, we intentionally sampled > 100m upstream of confluences 

to avoid sampling ichthyoplankton that may have washed into a tributary from the mainstem 

river. Drift net openings were 0.25m x 0.45m with a 1.0m 500µm mesh net to filter water and 

collect drifting larval fishes and eggs. Flow was measured using a HACH flow-meter and used to 

determine the soak time of drift nets using: 

𝑆𝑜𝑎𝑘 𝑇𝑖𝑚𝑒 (𝑚𝑖𝑛) = 60 − (𝐹𝑙𝑜𝑤 (
𝑚

𝑠
) ∗ 100) 

Additionally, we sampled with bow-mounted ichthyoplankton push nets at the lower site of 

each tributary. Push net openings were 0.5m in diameter and had 3.0m of 500µm mesh net for 

sample collecting. Push nets were driven upriver for five minutes. A General Oceanics flow-

rocket was mounted to the push net opening to gauge the volume of water filtered. Drift nets 

were set and ichthyoplankton pushes were conducted at a left, mid-channel, and right section 

of the river at each site.  
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Samples were immediately preserved in 95% EtOH after collection. Larval fishes were 

identified to family under a dissecting microscope using Auer (1982) and Chapman (2006). 

Cyprinids were further identified to Hypophthalmichthys (bigheaded carp) if applicable. Fish 

were distinguished as being a late-stage larva versus juvenile based on the presence of a 

median fin-fold.  

Laboratory Techniques 

30 bigheaded carp were subsampled for genetic analyses. Individuals were subsampled 

to include fish from as many sampling events as possible. Bigheaded carp DNA was extracted 

using Qiagen DNeasy Animal Tissue Kit (Qiagen, Valencia, California) at Eastern Illinois 

University. For genetic analyses, all larvae were sent to the genetics laboratory at Georgia 

Southern University. Larval bigheaded carp were genotyped using a suite of 13 previously 

developed microsatellite loci (King et al. 2011). Microsatellites were amplified by multiplex 

polymerase chain reaction (PCR) using a common labeled M13F primer labeled with 5′ 6-FAM 

or 5′ HEX following Shimizu et al. (2002). The PCR was conducted at a final volume of 10 μL, 

containing 1X PCR buffer (50 mM KCl, 10 mM tris HCl pH 9.0), 2 mM MgCl2, 200 μM of each 

dNTP, 0.1 unit Taq DNA polymerase, 0.9 μM of each PCR primer, and 1–20-ng template DNA. 

Thermal cycles were 94°C for 2 min, then 94°C for 30 s, 50–56°C for 30 s, and 72°C for 30 s, 

repeated 35 times, and finally 70°C for 5 min; this was done due to the different optimization 

thermocycler conditions for individual microsatellite loci. Products were then sent to the 

Georgia Genomics Facility (University of Georgia) for electrophoresis. Lane files were analyzed, 

and allele sizes were defined with Peak Scanner™ (Applied Biosystems, USA). 
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Data Analysis 

All microsatellite loci were tested for Hardy-Weinberg equilibrium (HWE) conformation 

using GENEPOP (Rousset 2008). Based on significant deviations from HWE, loci were 

individually tested for null alleles. Locus genotypes were then corrected for expected null 

alleles using FreeNA software (Chapius and Estoup 2007). GENEPOP (Rousett 2008) was used to 

calculate linkage disequilibrium. Allelic richness (Ar) was estimated for this corrected dataset 

with HP-RARE version 1.1 (Kalinowski 2005). Inbreeding coefficients (FIS), observed 

heterozygosity (Ho), and expected heterozygosity (He) were estimated with GenAlEx version 

6.501 (Peakal and Smouse 2006).  

 Overall, pairwise genetic differentiation between sites and groupings based off 

STRUCTURE analysis were measured by calculating the ΦST estimator of FST (Peakal and Smouse 

2006) with GenAlEx 6.501; 9,999 permutations were used to approximate statistical 

significance. To compare pairwise genetic differentiation {ΦST/ (1- ΦST)} and pairwise 

geographic distance (river miles), a Mantel’s test was used to test for isolation by distance.  

Bayesian clustering program STRUCTURE version 2.3.4 (Pritchard et al 2000; Falush et al. 

2003) and GENELAND version 4.0.6 (Guillot et al. 2005) were implemented to determine the 

number of distinct genetic groups (k) in our samples. In STRUCTURE, independent runs were 

conducted for k = 1-8 using 10,000 burn-in steps and 100,000 post burn-in steps. The highest 

probability of k was identified by the maximum estimated natural log of the probability of 

observing the data, given the number of groups and the delta k method of Evanno et al. (2005). 

STRUCTURE HARVESTER was used to determine delta k for each cluster (Earl and Von Holdt 

2012). For GENELAND, the k value was selected using the spatial, uncorrelated allele 
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frequencies model. After k was estimated, another run with the k value was performed to 

determine genetic group membership probabilities. Individuals were assigned to genetic groups 

if their q-value was ≥ 0.7. If an individual did not have q-values ≥ 0.70, it was placed into a 

mixture group.  
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RESULTS 

A total of 1,246 larval bigheaded carp were sampled in Wabash River tributaries in 2016 

and 2017 (Table 2.1). Of those captured, 1,033 bigheaded carp were from the Little Wabash, 

206 from the Embarras, and 7 from the Vermilion River. Due to the lack of sample size, we 

removed fish from the Vermilion River from our analyses. Adequate (Nosova et al. 2019) 

numbers (n = 30 from each site) of bigheaded carp larvae were captured to analyze the lower 

Embarras River (EM), upper Little Wabash River (ULW), and lower Little Wabash River (LLW). 

Upon analyses, locus 3 in a lower Little Wabash sample, and locus 6 and 7 in Embarras 

samples did not conform to Hardy Weinberg Equilibrium (HWE); all other loci conformed. Aside 

from those three loci, we found no null alleles or linkage disequilibrium present. Allelic richness 

(Ar) ranged from 7.12 to 7.69 (Table 2.2). Observed heterozygosity (Ho) ranged from 0.66 to 

0.68 (Table 2.2). Expected heterozygosity (He) ranged from 0.72 to 0.74 (Table 2.2). Inbreeding 

coefficients (FIS) ranged from 0.03 to 0.08.  

Pairwise comparisons showed a significant genetic difference between EM and ULW 

samples (ΦST = 0.021, P = 0.002), (Table 2.3). LLW was not significantly different from EM (ΦST = 

0.004, P = 0.147) or ULW (ΦST = 0.004, P = 0.163), (Table 2.3) samples. A Mantel’s test did not 

detect a significant isolation-by-distance pattern between pairwise compared sites (r = 0.74, P = 

0.47) (Figure 2.2).   

Two groups (k = 2) were selected as the appropriate number of unique genetic 

population groups using GENELAND and STRUCTURE. All three sample sites had fish assigned to 

population groups 1, 2, and the mixture group (Figure 2.3; Table 2.4). Our EM sample (n = 30) 
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had 21 fish assigned to population group 1, 6 fish assigned to population group 2, and 3 mixed 

fish (Figure 2.3; Table 2.4). Regarding our Little Wabash samples, LLW (n = 29) had 18 fish 

assigned to population 1, 5 fish assigned to population 2, and 6 mixed fish (Figure 2.3; Table 

2.4), while ULW (n = 29) had 14 fish assigned to population group 1, 6 fish assigned to 

population group 2, and 9 mixed fish (Figure 2.3; Table 2.4).  
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DISCUSSION 

Invasive species often have lower genetic diversity and have had less time to diverge 

throughout their invaded range (Yang et al. 2015) that natives. However, immense selective 

pressure can often increase the potential for rapid evolution and genetic divergence (Chun et 

al. 2009; Lee 2002). In the case of Silver Carp, our study further illustrates the ability of these 

fishes to invade new ranges while maintaining high genetic diversity.  

Greater genetic diversity was found among our Silver Carp samples than those from the 

Illinois (IL), upper Mississippi (UM), lower Mississippi (LM), Missouri (MO), and Wabash (WA) 

Rivers (Stepien et al. 2019). Using similar microsatellite techniques, Ar ranged from 5.7 to 6.3 

and Ho ranged from 0.57 to 0.60 in IL, UM, LM, MO, and WA samples (Stepien et al. 2019), 

while our Embarras and Little Wabash River samples ranged from 7.12 to 7.69 in Ar and 0.66 to 

0.68 in Ho. Relative to Silver Carp found in Eastern European and Asian aquaculture, our 

samples had greater Ho than those documented in Bangladesh (Gheyas et al. 2006), Belarus 

(Nosova et al. 2019), and Pakistan (Nazish et al. 2018). Embarras and Little Wabash River 

samples had greater Ar than Silver Carp in Pakistan (Nazish et al. 2018), similar Ar values as 

Bangladesh samples (Gheyas et al. 2006), but lower than Belarus samples (Nosova et al. 2019). 

Regarding wild populations in their native range in China, our samples had greater Ho than 

those observed in two studies (Liao et al. 2006; Feng et al. 2014), but lower than two others 

(Wang et al. 2008; Guo et al. 2013). Embarras and Little Wabash River samples had lower Ar 

than one Chinese study (Guo et al. 2013), comparable to Liao et al. (2006), and greater than 

those in two other studies (Wang et al. 2008; Feng et al. 2014) on wild Silver Carp in their native 

range. This is notable, as genetic diversity at the edge of an invasion front is often lacking 
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(Piaggio et al. 2017). Additionally, this indicates a lack of genetic bottleneck and high population 

viability, should the population continue to expand. This further exacerbates the need for 

vigilance in monitoring for these fish in new waters and potential mechanical removal using 

methods such as commercial harvest. 

Embarras River Silver Carp were genetically different from those in the upper Little 

Wabash River while those in the lower Little Wabash River were not significantly different from 

those in the upper Little Wabash or the Embarras River. Our Mantel test showed no significant 

isolation-by-distance pattern, which may be influenced by a low number of sampling sites (n = 

3), potentially leading to a type II error. It should be noted that our two genetically different 

sites were the furthest apart (Figure 2.2). Isolation by distance is commonly seen in various 

adult riverine fishes (Primmer et al. 2006; Sotola et al. 2017).  

This is the only study to our knowledge that uses larvae to examine Silver Carp 

population genetics. Further, this is also the only study to our knowledge that investigates Silver 

Carp genetics on this fine of scale or in large river tributaries. With adult Silver Carp traveling 

approximately 10.6km/day (DeGrandchamp et al. 2006) and evidence of high dispersal, even 

among full siblings (Stepien et al. 2019), it was beneficial to investigate population structure 

using larvae. Silver Carp larvae generally can only disperse downriver (Kolar et al. 2007) and are 

theoretically more likely to be near the site they were spawned at, relative to adults. Future 

genetic studies of Silver Carp should compare adults to the larvae from our study and include 

samples of larval Silver Carp from other large river tributaries, such as those of the Illinois River.  
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TABLES 
Table 2.1 – Total catch of larval bigheaded carp by river reach in three Wabash River tributaries 

from March-September 2016-2017. 

Tributary Lower Middle Upper Total 

Embarras 205 1 0 206 

Little Wabash 968 63 2 1033 

Vermilion 7 0 0 7 

Total 1180 64 2 1246 

 

 

  



  

49 
 

 

Table 2.2 – Sample size (n), observed heterozygosity (Ho), expected heterozygosity (He), 

inbreeding coefficient (FIS), allelic richness (Ar), private allelic richness (PAr), and median 

pairwise RST (MPR), of larval bigheaded carp sampled from the Embarras, lower Little Wabash, 

and upper Little Wabash Rivers from March-September 2016-2017. 

  n Ho He FIS Ar PAr MPR 

Embarras 30 0.68 0.72 0.030 7.12 1.33 0.001 

Lower LW 29 0.66 0.74 0.080 7.69 1.66 -0.027 

Upper LW 29 0.66 0.72 0.056 7.14 1.28 0.018 
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Table 2.3 – Pairwise genetic comparisons between lower Little Wabash (LLW), upper Little 

Wabash (ULW), and Embarras (EM) River Silver Carp from March-September 2016-2017; ΦST 

values are below diagonal blanks and significance values are above. * indicates significant 

pairwise differences after using Bonferroni corrections for multiple comparisons. 

  LLW ULW EM 

LLW   0.163 0.147 

ULW 0.004   *0.002 

EM 0.004 0.021   

 

  



  

51 
 

 

Table 2.4 – Number of individuals assigned to genetic group 1, 2, or a mixture (3) from the 

Embarras (EM), lower Little Wabash (LLW), and upper Little Wabash (ULW) Rivers from March-

September 2016-2017. Groups are based off Structure and Geneland analyses. 

               Genetic Groups 

Site 1 2 3 

EM 21 3 6 
LLW 18 5 6 
ULW 14 6 9 
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FIGURES 

 
Figure 2.1 – Study area including upper, middle, and lower sampling sites on the Embarras, 

Little Wabash, and Vermilion Rivers (Illinois and Indiana). 
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Figure 2.2 – Scatter plot with genetic difference (ΦST) among larval Silver Carp versus distance 

(river miles) for sites on the Embarras (EM), upper Little Wabash (ULW), and lower Little 

Wabash (LLW) Rivers, 2016. Mantel’s test was not significant (correlation coefficient r = 0.74, P 

= 0.47). 
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Figure 2.3 – STRUCTURE plot for k = 2, illustrating groupings and genetic structure among larval 
Silver Carp samples taken from the Embarras, upper Little Wabash, and lower Little Wabash 
Rivers, 2016. 
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CONCLUSION 
 
In summary, we found bigheaded carps are more likely to utilize tributaries with larger 

watersheds, higher discharges, and greater turbidity. Further, tributaries in larger watersheds 

are more likely to have prolonged periods of higher discharge and turbidity, making watershed 

area a good predictor of bigheaded carp utilization for reproduction. Using genetic analyses, we 

analyzed Silver Carp in the Embarras and Little Wabash Rivers and found high genetic diversity 

and minimal evidence of inbreeding or any genetic bottleneck. Based on these findings, 

fisheries managers should prioritize bigheaded carp monitoring in Great Lakes tributaries within 

larger watersheds. If found in new waters, we recommend agencies respond with rapid 

control/removal efforts, due to the high genetic diversity found at leading edges of the species 

range and thus a propensity to quickly expand, both in abundance and range. 
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