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Abstract 

MitoNEET was discovered through interactions with a labeled and photoactive derivative of 

pioglitazone (pio ), a drug used to increase peripheral insulin sensitivity. Its unique coordination 

of a [2Fe-2S] cluster by three cysteine residues (Cys-72, Cys-7 4, and Cys-83) and one histidine 

(His-8 7) gives this cluster both stability and the ability to be donated to acceptor proteins. These 

qualities allow mitoNEET to participate in a diversity of biological functions. Functions of 

mitoNEET and the consequences of pioglitazone (pio) treatment in human hepatocellular 

carcinoma (HepG2) cells cultured in glucose or galactose-based medium were examined by 

respiration and proliferation studies. Pio treatment decreased complex I stimulated respiration for 

cells grown in both glucose and galactose-based medium. Additionally, pio was found to 

significantly decrease cell proliferation. HepG2 cells cultured in galactose exhibited significantly 

higher oxygen flux than those cultured in glucose-based medium, but proliferation of these cells 

was notably reduced. Interestingly, mitoNEET levels were substantially lower in cells cultured in 

galactose. We hypothesize that some of the effects of pio may depend on the cellular levels of 

mitoNEET and the metabolic consequences of culturing cancerous cells in a galactose-based 

medium. 
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Introduction 

Type-II diabetes is characterized by diminished insulin secretion and reduced insulin 

sensitivity1. Thiazolidinediones (TZDs) (Fig. 1) are a class of drugs that work as glucose-

lowering agents and have been reported to impact mitochondrial activity1•2. Pioglitazone, a 

General TZD 
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Figure I.The general structure of thiazolidinediones 
(TZDs) followed by the structure ofpioglitazone. "R'" 

represents any substituent specific to TZDs. 

member of this drug class, is used in the treatment of 

type-II diabetes and was thought to exhibit its 

therapeutic functions by binding to perox1some 

proliferator-activated receptor gamma (PPAR-y)2. This 

receptor is responsible for several components of 

metabolic control, namely lipid and glucose 

metabolism3,4. The therapeutic effects of TZDs are not 

limited to type-II diabetes, but may also provide benefit 

for patients with metabolic syndrome and cardiovascular disease5•6. These effects and others may 

be mediated through other processes related to the mitochondrion, as pioglitazone was found to 

inhibit complex I and III of the respiratory chain, induce mitochondrial biogenesis in adipose 

tissue, and bind with the protein mitoNEET7-10. 

NEET family proteins are a class of iron-sulfur cluster proteins that contain a unique 

three cysteine (Cys-72, Cys-74, and Cys-8 3) and one histidine (His-87) CDGSH domain 

coordination of the [2Fe-2S] cluster (Fig. 2)11. This coordination provides more stability 

compared to other classes of [2Fe-2S] cluster proteins, but it is capable of transfer to acceptor 

proteins 12• 13. The metal cluster is labile under acidic conditions, which is in stark contrast to 

other protein families that contain [2Fe-2S] cluster14. MitoNEET is a small NEET family protein 

that was discovered through interactions with a labeled and photoactive derivative of the TZD 
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pioglitazone7. Localized to the outer membrane of the mitochondrion mitoNEET has been found 

to play a significant role in regulating electron transfer and oxidative phosphorylation in 

mammalian cells1• Pioglitazone has been shown to stabilize mitoNEET's cluster in vitro, but the 

physiological consequences of these data are 

undetermined7•12• Other proposed functions of 

mitoNEET include the regulation of redox reactions 

and reactive oxygen species in the mitochondria, 

control of carbon flux through interactions with 

dehydrogenase enzymes, and the regulation of cellular 

iron homeostasis1•15•16• In a study examining the role of 

microRNAs (miRNA) in spinal chord injuries in rats, 

the targeting of mitoNEET with miRNA resulted in 

Figure 2. Crystal structure of mitoNEET (A) and 
Miner-1 (B). Obtained from RCSB Protein Data 
Banlc (Structures 2QH7 and 3FNV for mitoNEET 
and Miner-1 respectively). 

neuronal loss and apoptosis in primary cultured spinal neurons17• 

Furthermore, Miner-I (sometimes referred to in the literature as NAF-1) is also a member 

of NEET family proteins and has been found to have a significant role in regulating autophagy 

and apoptosis18•19. Increased levels of Miner-I have been found in breast, gastric, and liver 

cancers. Suppressing Miner-1 expression yields reduced tumor growth, increased autophagy, and 

accumulation of reactive oxygen species in the mitochondria i s.io.21. The properties of these two 

unique iron-sulfur cluster proteins make them potential targets for anti-cancer and anti-diabetes 

drugs. Mitochondria play a key role in many human diseases because of their central functions in 

energy production and biosynthesis of essential cellular compounds, but how NEET family 

proteins integrate into these functions has yet to be fully characterized 1•15•22. 
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Uncontrolled proliferation is central to the characterization of cancer. To sustain the 

energy requirements for cell growth and proliferation, neoplastic tissues exhibit a metabolic 

adaptation in the form of a shift from oxidative phosphorylation to glycolysis as the primary 

energy-supplying pathway23,24. This alteration in metabolism is becoming increasingly 

recognized as a hallmark of cancer22. Initially, this shift was attributed to the hypoxic conditions 

of the tumor microenvironment; however, it has been observed that this shift occurs in cancerous 

cells exposed to adequate concentrations of oxygen, which came to be known as the "Warburg 

effect"25•26. Substituting galactose for glucose has been shown to ameliorate these effects in some 

cell lines but the mechanisms of glucose induced inhibition and galactose mediated increase in 

respiration are still poorly resolved27. In the present study, we investigated the impact of 

pioglitazone, over-expression of mitoNEET and Miner-1, and galactose on human hepatocellular 

carcinoma (HepG2) cell bioenergetics and proliferation. HepG2 cells that were cultured in 

glucose or galactose based medium over 2 weeks showed strikingly lower mitoNEET levels if 

cultured in the presence of galactose. We hypothesize that some of the effects of pioglitazone on 

HepG2 bioenergetics may depend on the cellular levels of NEET family proteins, and we 

therefore investigated the impact of pioglitazone on HepG2 cells with low and high levels of the 

protein. 
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Materials and Methods 

Chemicals 

All chemicals used for respirometry and solution preparations were of the highest grade 

and purchased from Sigma-Aldrich (St. Louis, MO), or Fisher Scientific (Fair Lawn, NJ). Water 

for solution preparation was purified with a Milli-Q Reagent Water System (Billerica, MA) to an 

electrical resistance of 18 mn. 

Cell Culture 

Human hepatocellular carcinoma cells (HepG2) were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA) and grown in 75 cm2 cell culture flasks (Corning 

Incorporated, Corning, NY). Standard cell culture medium to maintain HepG2 cells was 

composed of Opti-MEM I reduced serum medium (ThermoFisher, Grand Island, NY) 

supplemented with 5.5% fetal bovine serum (FBS) (Atlanta Biologicals Inc., Flowery Branch, 

GA), 100 units/ml penicillin, 100 µg/ml streptomycin, and 250 ng/ml amphotericin B (MP 

Biomedicals, Santa Anna, CA). Galactose treatment groups were cultured for a minimum of 4 

weeks in glucose free DMEM (Dulbecco's Modified Eagle Medium) supplemented with 10 mM 

D-galactose, 2 mM glutamine, 1 mM pyruvate (all from ThermoFisher, Grand Island, NY), plus 

10% dialyzed or complete FBS as indicated in the figure legends (Gal-DMEM). Gal-DMEM 

medium prepared with complete FBS contained >0.2 mM glucose (data not shown). For 

experiments directly comparing the impact of high glucose and galactose, cells were cultured in 

the above medium supplemented with 10 mM glucose instead of galactose (Glu-DMEM). The 

cells were maintained in a humidified atmosphere of 6.5% C02 and 93.5% air at 37 °C, and the 

culture medium was renewed every 3 - 4 days. The cells were subcultured every 7 days or before 
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reaching 90% confluency. To subculture, cells were dissociated using 0.25% trypsin and 1 mM 

EDT A in balanced salt solution (ThermoFisher, Grand Island, NY) and reseeded at 1.5 • 106 

cells per 75 cm2 cell culture flasks. 

SDS-PAGE and Immunoblotting 

Protein was isolated from 5x106 cells using 0.5 mL of RIPA buffer (150 mM NaCl, 1% 

NP-40, 1 % sodium deoxycholate, 0.1 % SDS, 25 mM TRIS-HCl, pH 7.6) and gentle agitation for 

2 h at 4 °C. Cell extracts were centrifuged for 30 min at 10,000 g and the supernatant was 

collected. Protein concentration in samples was determined using the Pierce™ Coomassie Plus™ 

(Bradford) protein assay (ThermoFisher, Grand Island, NY) with bovine serum albumin as 

standard. The extracts were either stored at -80°C until used, or immediately diluted 1: 1 with 2X 

Laemmli buffer (2% SDS, 25% glycerol, 5% P-mercaptoethanol, 0.01 % bromophenol blue, and 

62.5 mM Tris-HCl, pH 6.8 ). Proteins in samples were denatured at 96°C for 5 min and 15-20 µg 

of protein were loaded per lane on a 12% polyacrylamide gel. Gels were run using the Mini­

PROTEAN 3 Cell system (Bio-Rad Laboratories, Hercules, CA). After electrophoresis, proteins 

in the gel were electrophoretically transferred in buffer ( 192 mM glycine, 20% methanol, 

0.025% SDS, and 25 mM Tris) onto a nitrocellulose membrane (0.2 µm, Bio-Rad) using the 

Mini Trans-Blot apparatus (Bio-Rad Laboratories, Hercules, CA). Membranes were stained with 

Ponceau S in 0.1 % glacial acetic acid to confirm transfer of proteins. The nitrocellulose 

membrane was then incubated in blocking buffer (5% w/v milk powder, 137 mM NaCl, 0.1 % 

Tween-20, 20 mM Tris-HCl, pH 7.6) for 1 h. Anti-mitoNEET [2B3] mouse monoclonal 

antibody, anti-VDAC rabbit polyclonal antibody, and anti-P-actin rabbit polyclonal antibody (all 

from Abeam, Cambridge, MA) were used as primary antibodies at 1 :5000 dilutions. Biotinylated 

protein ladder was used as molecular weight marker (Cell Signaling Technology, Danvers, MA). 
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The blots were incubated overnight with the primary antibody in blocking buffer at 4°C. 

Appropriate secondary antibodies conjugated to horseradish peroxidase were used at a dilution of 

1: 10,000 (Cell Signaling Technology, Danvers, MA and Abeam, Cambridge, MA). Proteins 

were visualized using LumiGLO (Cell Signaling Technology, Danvers, MA) and Hyperfilm 

ECL (GE Healthcare, Pittsburgh, PA). ImageJ l .38e (http://imagej.nih.gov/ij/) was used to 

analyze band intensities. 

Cloning of CISDl and CISD2, Selection, and Visualization 

DNA constructs ( 5' -CACCA TGGCCCTGACTTCCTCTTCCTCTGTGCGCGTGGAGTGG 

ATAGCTGCTGTGACTATAGCAGCTGGAACAGCAGCCATCGGTTATTTGGCTTACAAG 

CGCTTCTACGTTAAGGACCACAGAAACAAGGCCATGATCAATCTCCATATCCAGAA 

AGACAACCCAAAGATCGTCCATGCTTTCGATATGGAGGACCTTGGAGATAAGGCTG 

TGTACTGCCGGTGTTGGCGATCTAAGAAGTTTCCCTTTTGCGACGGGGCTCATACTA 

AACACAACGAGGAGACGGGCGATAACGTCGGCCCACTTATCATCAAGAAAAAGGA 

AACCGGAGGCGGCGGCAAA-3') encoding for the human mitoNEET protein (GenBank: 

AAH59168) and (5 '-GTTCGTTGCAACAAATTGA TGAGCAATGCTTTTTTATAA 

TGCCAACTTTGTACAAAAAAGTTGGCATGGTGCTGGAGAGCGTGGCCCGTATCGTGA 

AGGTGCAGCTCCCTGCATATCTGAAGCGGCTCCCAGTCCCTGAAAGCATTACCGGGT 

TCGCTAGGCTCACAGTTTCAGAATGGCTTCGGTTATTGCCTTTCCTTGGTGTACTCGC 

ACTTCTTGGCTACCTTGCAGTTCGTCCATTCCTCCCGAAGAAGAAACAACAGAAGGA 

TAGCTTGATTAATCTTAAAATACAAAAGGAAAATCCGAAAGTAGTGAATGAAATAA 

ACATTGAAGATTTGTGTCTTACTAAAGCAGCTTATTGTAGGTGTTGGCGTTCTAAAA 

CGTTTCCTGCCTGCGATGGTTCACATAATAAACACAATGAATTGACAGGAGATAATG 

TGGGTCCACTAATACTGAAGAAGAAAGAAGTATACCCAACTTTCTTGTACAAAGTTG 
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GCATTATAAGAAAGCATTGCTTA TCAATTTGTTGCAACGAAC-3 ') encoding for the 

human Miner- 1 protein (GenBank: KJ896300. l) were obtained from a commercial DNA 

synthesis service (IDTDNA, Coralville, IA). The synthetic DNA was amplified using the 

phusion high-fidelity PCR master mix (New England BioLabs, Ipswich, MA). PCR reactions 

were prepared by adding 0.5 µM forward primer, 0.5 µM reverse primer, 50 ng template DNA 

and PCR-grade water to the 2x master mix to yield a total reaction volume of 25 µl. Primer 

sequences used were 5'-CACCATGGCCCTGACTTCCTCTTCCTCTGG-3' and 5'­

TTTGCCGCCGCCTCCGGTTTC CTTTTTC-3'. Cycling parameters were 30 s at 98 °C and 

then 25 cycles of 98 °C ( 1 5  s) and 72 °C (60 s), followed by a final extension step at 72 °C for 1 0  

minutes. The PCR product was cloned into the pENTR/D-TOPO cloning vector following the 

instructions of the manufacturer and subcloned into the pcDNA™-DEST47 destination vector 

using clonase technology (ThermoFisher, Grand Island, NY). The pcDNA ™-DEST47 vector 

was chosen to express a chimeric protein composed of green fluorescence protein fused to the c­

terminus of mitoNEET in HepG2 cells. 

For transfections, 5 µL of FuGENE HD (Promega, Madison, WI) was mixed with 1 µg of 

plasmid DNA in 50 µL of sterile water and incubated for 1 5  min at room temperature. HepG2 

cells were grown in 12-well plates to a confluence of about 50% using Opti-MEM I reduced 

serum medium (ThermoFisher, Grand Island, NY) supplemented with 5.5% FBS without 

antibiotics. The reaction mixture was added to HepG2 grown in one well of a 1 2-well plate. The 

cells were transferred 24 h later to 100 cm2 culture plates. After additional 24 h of incubation, 

geneticin (ThermoFisher, Grand Island, NY) was added to the cell culture medium at an effective 

concentration 8 00 µg mL-1• The medium was exchanged every 3 - 4 days until colonies were 

observed in the culture dish. Single colonies were dissociated using 0.25% trypsin plus 1 mM 
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EDTA in balanced salt solution (ThermoFisher, Grand Island, NY). MitoNEET-GFP and Miner-

1 expressing clones were identified by fluorescence microscopy and western blotting 

respectively and expanded for subsequent experiments. 

Respirometry on HepG2 Cells 

Respiration was measured at 3 7 °C using 1 x 106 cells per chamber of the Oxygraph-2K 

(OROBOROS Instruments, Innsbruck, Austria). Routine respiration of intact cells was measured 

in either Opti-MEM I reduced serum medium, DMEM supplemented with glucose, or DMEM 

supplemented with galactose. The media formulations in these experiments were identical to the 

media used to culture cells. In some experiments, cellular respiration was uncoupled by 

successive titrations of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 0.5 µM 

steps), and leak respiration was measured in the presence of oligomycin (2 µg/mL). 

Oxygen consumption of permeabilized cells was measured in 2 mL of MiR05 ( 110 mM 

sucrose, 60 mM potassium lactobionate, 20 mM taurine, 10 mM KH2P04, 3 mM MgCh, 0.5 mM 

EGTA, 0.1% BSA, 20 mM HEPES-KOH, pH 7.1). In order to supply mitochondrial substrates, 

cells were permeabilized by the addition of digitonin dissolved in dimethyl sulfoxide (DMSO) at 

10 mg/mL (final concentration 10 µg x 1 o-6 cells). This digitonin concentration was found to be 

sufficient to permeabilize the plasma membrane of HepG2 cells with minimal impact on the 

integrity of the outer mitochondrial membrane as tested by addition of cytochrome c. Electron 

flow through complex I was stimulated by adding 2 mM malate, 10 mM glutamate, and 5 mM 

pyruvate. To engage the phosphorylation system, 1 mM ADP was added, followed by the 

addition of 10 mM succinate to supply electrons to the ubiquinone pool via succinate 

dehydrogenase. Leak respiration in presence of ADP and ATP was measured after addition of 

oligomycin (2 µg/mL), and contribution of complex I to leak respiration was recorded after 
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addition of rotenone (0.5 µM). Non-mitochondrial oxygen consumption was recorded after 

addition of 2.5 µM of antimycin A. DATLAB software (OROBOROS Instruments, Innsbruck, 

Austria) was used for data analysis and acquisition. 

Cell Proliferation 

Approximately 250,000 cells were plated per well on 12-well plates, placed in a 

humidified atmosphere of 6.5% C02 and 93.5% air at 37 °C, and grown in glucose or galactose 

containing medium. After 24 h, cell counts were performed on untreated control cells. Samples 

for proliferation assays were exposed to pioglitazone concentrations of 0 or 60 µM and after an 

additional 24 h of culture time, treated and untreated cells were enumerated using a 

hemocytometer. Membrane integrity was assessed by diluting samples in a 1: 1 ratio with trypan 

blue prior to cell counts, and only trypan blue negative cells were used to calculate cellular 

proliferation rates. Fold increase in cell numbers were expressed as numbers of cells recovered 

after 24 h of plating divided by cell numbers recovered after 48 h. 

Statistical Analyses 

Data were analyzed with a one-way analysis of variance (AN OVA) on ranks followed by 

comparison of experimental groups with the appropriate control group (Holm-Sidak method), or 

3-way ANOVA followed by comparison of experimental groups with the appropriate control 

groups (Holm-Sidak method). SigmaPlot 12.5 (Systat Software Inc., San Jose, CA) was used for 

the analyses. 
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Results 

Respiration of HepG2 

Routine respiration rates of cells cultured in medium containing 10 mM glucose or 10 

mM galactose as the fuel source were significantly reduced in presence of 60 µM pioglitazone 

(Fig. 3A and B). Treatment with pio reduced respiration of HepG2 cells cultured in medium 

containing galactose, but had no effect on those cultured in glucose-based medium. Oxygen flux 

of cells cultured in galactose-based medium exhibited significantly increased maximum 

uncoupled respiration m the presence of a carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone FCCP uncoupler. Interestingly, pio treatment appeared to have no effect on 

uncoupled respiratory rates in these same cells (Fig. 3B). However, drug treatment significantly 

reduced maximum uncoupled respiration 

by 30% for HepG2 cultured in glucose-
... ., 
'"() 

T 
based medium (Fig. 3A). Proton leak 

100 

... , respiration in presence of Fo-F1 ATPase 

.... 
.... inhibitor oligomycin (LEAK.o) was 
.. ., 

0 ..__ __ _ significantly increased in cells treated 
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40 
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with pioglitazone. This was a common 

finding throughout the study. 

To reveal the impacts of 

pioglitazone on the oxidative 

Figure 3. Respiration rates of HepG2 cells cultured in glucose (3A) or galactose (3B) phosphorylation (OXPHOS) system, 
based medium for two weeks. Oxygen flux is shown for control cells (black bars), and in 
presence of 60 µM pioglitazone (grey bars). Maximal uncoupled respiration was induced 
by successive titrat.ions with FCCP (FCCP), and teak respiration was recorded after Hep02 cells were permeabilized, and 
inhibition of the FoF1-A TPase with oligomycin (Olig). *Indicates statistically significant 
differences after addition of pioglitazone. 'Indicates statistically significant differences 
between cells cultured in glucose or galactose based medium (n = 6, ±SE). two different substrate titration protocols 
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were performed. The first examined complex II of the electron transport chain (ETC) in the 

presence of a complex I inhibitor, rotenone, with saturating levels of succinate. In the presence of 

succinate, pioglitazone treatment produced a significant increase in respiration by 63% and 27% 

for HepG2 cultured in glucose and galactose respectively (Fig. 4A and B). After engaging the 

phosphorylation system with ADP, drug treatment significantly lowered respiration rates for 

cells cultured in galactose (Fig. 4B), while there was no impact on control (Fig. 4A). Similar to 

previous findings, LEAKo respiration was significantly increased in presence of pioglitazone. 

The second protocol examined 
GO 

ii 
! �o the impact of treatment on complex I in 

.. r 
·. 

·� 0 
40 the presence of both NADH and F ADH2 

l ..10 
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� 20 
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19 60 
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Figure 4. Respiration rates of HepG2 cells cultured in glucose (4A) or galactose (48) as an increase in LEAKo rates (Fig. 5). 
based medium for two weeks. Oxygen flux is shown for control cells (black bars), and in 
presence of 60 µM pioglitazone (grey bars). Respiration rates of cells permeabilized with 
digitonin (Dig) were recorded in presence of the Complex I inhibitor rotenone (Rot) and Similarly' respiration rates of HepG2-
succinate (Succ). OXPHOS rates were measured after the addition of ADP (ADP), and 
leak respiration was recorded after inhibition of the F0F 1-A TPase with oligomycin (Olig). 

*Indicate statistically significant differences after addition ofpioglitazone (n = 6, :l: SE). Miner cells after the addition of 

succinate in presence of ADP were increased (Fig. 5). Drug treatment severely inhibited complex 

I of both HepG2 and HepG2-NEET cells and increased LEAKo respiration rates (Fig. 5). This 

was evident from the large reduction of oxygen flux after the addition of ADP. Culturing all 
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three cell lines in galactose resulted in significant increases in oxygen flux after engaging the 

phosphorylation system with ADP (Figs. 5 and 6). Additionally, galactose-based medium 

increased LEAKo respiration for all three-cell lines, while Hep02-Miner cells exhibited the 

largest increase in proton leak (Figs. 5 and 6). 
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Figure S. Respiration rates of I lepG2 (SA and B) or HepG2 engineered to over-express the protein CISD I (HepG2-NEET, SC and D) cells cultured in glucose 
(5A and C) or galactose (5B and D) based medium for two weeks. Oxygen flux is shown for control cells (black bars), and in presence of 60 µM pioglitazone 
(grey bars). Respiration rates of cells penneabilized with digitonin (Dig) were recorded in presence NADH generating substrates (MGP) and OXPHOS rates 
were measured after the addition of ADP (ADP). Convergent electron entry into the ubiquinone pool was initiated by addition of succinate (Succ) and leak 
respiration was recorded after inhibition of the FoF1-ATPase with oligomycin (Olig). •indicate statistically significant differences after addition ofpioglitazone. 
'Indicate statistically significant differences between cells cultured in glucose or galactose containing medium. slndicate statistically significant differences 
between cell lines (n • 6, :1: SE). 
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Figure 6. Respiration rates of HepG2 cells that were engineered to over-express the protein CISD2 (HepG2-2) 
cultured in glucose (Black Bars) or galactose (Gray Bars) based medium for two weeks. Respiration rates of cells 
permeabilized with digitonin (Dig) were recorded in presence NADI I generating substrates (MGP) and OXPHOS 
rates were measured after the addition of ADP (ADP). Convergent electron entry into the ubiquinone pool was 
initiated by addition of succinate (Succ) and leak respiration was recorded after inhibition of the FoF 1-ATPase with 
oligomycin (Olig). 'Indicate statistically significant differences between cells cultured in glucose or galactose 
containing medium (n = 2 and 4 for glucose and galactose, respectively,± SE). 

Western Blot Analysis and Cell Proliferation 

Cell culture medium containing 10 mM galactose significantly reduced cellular levels of 

mitoNEET compared to those cultured in 10 mM glucose (Fig. 7). However, levels of the 

housekeeper P-actin remained similar, regardless of the culture medium used. When cultured 

with a combination of glucose and galactose, less reduction of mitoNEET was observed (Fig. 78 

and D). Levels of the mitochondrial housekeeper VDAC remained the same despite changes in 

medium composition. Proliferation of HepG2 cultured in galactose-based medium was 

significantly reduced compared to glucose controls (Table 1 ). Treatment with pioglitazone 

reduced the fold-increase of cells cultured in glucose, but the same treatment failed to produce a 

difference in HepG2 proliferation after being cultured in galactose for 2 weeks. 
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Figure 7. Medium supplemented with 0-galactose significantly reduces cellular CISDl levels compared to high glucose controls in 
HepG2 cells. Protein levels were measured by immunoblotting. A) CISDl levels are reduced in galactose medium compared to 
control; �-actin was used as cellular housekeeper protein. B) CISDl levels are decreased in medium supplemented with galactose 
(Gal) or both galactose and glucose, VDAC served as mitochondrial housekeeper. C) Band intensities were quantified using the 
software Image), CISDl bands were normalized based on the intensity of the housekeeper proteins and expressed as percentage of 
glucose controls (p < 0.05, n = 3, ± SEM). 

Table 1. Impact of galactose and pioglitazone treatment on proliferation rates of HepG2 cells. 
*Indicate statistically significant differences after treatment with 60 µM pioglitazone. #Indicate 
statistically significant differences in proliferation between cells cultured in glucose and 
galactose. 

Conditiont Fold-increase in cells 

Glu (Ve) 2.19 ± 0.15 

Glu (Pio) 1.77* ± 0.02 

Gal (Ye) 1.37# ± 0.05 

Gal (Pio) 1.17# ± 0.15 
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Discussion 

Our study investigated the impact of pioglitazone as well as over-expression of 

mitoNEET and Miner- I on HepG2 bioenergetics after shifting metabolic activity from glycolysis 

to oxidative phosphorylation by using a cell culture medium that contained galactose instead of 

glucose. Maximum uncoupled respiration rates were reduced in the presence of 60 µM 

pioglitazone for cells cultured in 10 mM glucose, but not for those cultured in 10 mM galactose. 

Pioglitazone harshly reduced activity of complex I in permeabilized cells, but this effect 

appeared to be mitigated by addition of succinate to supply F ADH2 to complex II for subsequent 

electron delivery to the ubiquinone/ubiquinol pool. Moreover, using a galactose-based cell 

culture medium greatly reduced endogenous levels of mitoNEET and significantly slowed 

proliferation of HepG2. Additionally, pioglitazone was found to reduce proliferation in cells 

cultured in both glucose and galactose-based medium. These results increase our understanding 

of the molecular actions of pioglitazone and suggest that galactose may be used as a novel 

chemical tool to reduce cellular levels of mitoNEET. 

Pioglitazone has been found to change mitochondrial energetics through multiple 

mechanisms. Complex I-fueled respiration rates of pnmary hepatocytes were reduced in 

response to treatment with pioglitazone9. Furthermore, examination of isolated mouse liver 

mitochondria revealed that pioglitazone treatment reduced complex I and III activity, as well as 

disassembled complex I into four discrete subcomplexes2. Moreover, pioglitazone has been 

found to inhibit pyruvate-driven oxygen consumption and decrease glucose production in liver 

cells2·28. Energetically speaking, glycolysis is an inefficient method of ATP production for 

cellular processes. However, highly proliferative cells have greater carbon and nitrogen 

requirements to maintain their growth. Glucose and glutamine are the two most utilized 
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compounds for energy, carbon, and nitrogen requirements for proliferation in mammalian cell 

culture29,30. Catabolism of galactose yields no net ATP, thus it is hypothesized that culturing cells 

in galactose forces energy yield through oxidative phosphorylation27. Our respiration and 

proliferation results confirm this hypothesis, but future works elucidating the utilization of 

glutamine to fuel OXPHOS through its conversion to a-ketoglutarate in the presence of galactose 

as the principal sugar molecule are required to better determine the role of galactose in energy 

production in immortalized cell lines. 

Additionally, mitochondrial metabolism is becoming recognized as a new therapeutic 

target for anti-cancer drugs due to the discoveries surrounding tumor promotion and 

mitochondrial biogenesis 18,31. MitoNEET has been implicated in stimulating mitochondrial 

biogenesis and resisting autophagy in cancer cells31. Cells with lower levels of mitoNEET have 

been shown to exhibit reduced oxidative capacity and accumulation of iron and reactive oxygen 

species (ROS) in the mitochondrion. In several breast cancer cell lines, levels of mitoNEET were 

significantly increased, which corresponded with an increase in mitochondrial respiratory 

complexes I, III, IV, and V and a decrease in autophagy31,32. Interestingly, overexpression of 

mitoNEET led to increased tumor growth independent of angiogenesis while mitoNEET 

deficiency conferred significant tumor mass reduction. 

Furthermore, exposure to galactose decreased endogenous levels of mitoNEET. Culturing 

cells in galactose-based medium also reduced levels of the transgenic-expressed mitoNEET-GFP 

under the control of human cytomegalovirus promoter. Given the differences in the promoters 

and sequences between the endogenous and synthetic protein, we postulate that galactose likely 

increases proteasomal degradation of mitoNEET. Whether galactose targets mitoNEET directly 

or disrupts the iron-sulfur cluster assembly is not known. However, a recent study found that 
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interference with cluster assembly marks mitoNEET for proteasomal degradation33. In light of 

this finding, future metabolic studies performed on immortalized cell lines cultured in galactose­

based medium should be thoroughly evaluated as galactose induces complex changes to the 

mitochondrial proteome. 
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