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ABSTRACT 

Aedes albopictus, Asian tiger mosquitoes, are vectors of a wide number of human viral diseases 

including, West Nile virus, Dengue virus, Chikungunya virus and (recently) Zika virus. A large 

body of evidence has suggested that microbiomes of mosquito midguts are closely associated 

with specific mosquito life processes such as nutrition, reproduction, aggregation and defense 

against toxins. In this study we characterize the bacterial flora of the midguts of adult female Ae. 

albopictus collected from woodlots and residential areas in Champaign and Coles Counties of 

Central Illinois ( 40 samples in each category). After extraction of DNA from dissected midguts, 

we used next generation sequencing (Mi Seq V3) to obtain sequences spanning the V 4 

hypervariable region of the 16S rRNA gene. The bacterial sequences were analyzed with 

QIIME. After quality filtering and rarefying, we identified 551 operational taxonomic units 

(OTUs) from 114 samples. Of the top 30 most abundant OTUs, 31 genera were discovered in 22 

families. According to an indicator species analysis, in Champaign County Pseudomonas (50%) 

and Sediminibacterium (63.5%) characterized the midguts of Ae. albopictus collected from 

residential areas and woodlots, respectively. For Coles County, the midguts of Ae. albopictus 

from residential area were well characterized by the OTU for Bradyrhizobiaceae (49.3%), and 

by Janthinobacterium (51.2%) for woodlots. In general, the composition of bacterial 

communities differed between both trapping locations and land use types, with some overlap 

occurring in the residential sectors. In contrast, alpha-diversity measures were largely similar 

across locality, but differed between land use types, with greater species richness (Chaol), 

heterogeneity (Shannon Index) and equitability in the midguts of mosquitoes collected from 
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wooded areas. In conclusion, the midgut bacterial community composition and diversity of Ae. 

albopictus varies by land use and location. Further studies on whether and how such differences 

in midgut biota influence variation in vectorial capacity traits are warranted. 
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INTRODUCTION 

Mosquitoes of the species Aedes albopictus (Figure 1) are vectors of a wide number of human 

viral diseases including West Nile virus (1 ), Dengue virus (2), Chikungunya virus (3) and 

(recently) Zika virus ( 4, 5). Mosquito midguts play a central role in pathogen transmission. 

After a blood meal from an infected host, there occurs crucial intermediate development and 

replication within the midgut before eventual dissemination into secondary sites such as salivary 

glands (6). The midgut can modify and impede vector transmission via the influence of 

digestive enzymes and innate immunity (7, 8). 

Also present in the mosquito midgut are bacteria of various species. The origin of 

midgut bacteria and the determinants of subsequent colonization are variable. Immature 

mosquitoes may acquire bacteria through their habitats ( 17), while blood feeding adults may 

acquire bacteria via their blood meal (from host skin, for example) (18). Finally, there is 

evidence for trans-stadial acquisition of these midgut micro biota ( 19). 

Recently, a large body of evidence has suggested that the midgut bacterial composition 

can vary within and between mosquito species, sex, stage of development, and habitat (9-11, 

14). These bacteria can exist in a symbiotic relationship with host mosquitoes. In such 

instances, they could function in the synthesis of essential nutrients absent in food sources ( 15). 

On the other hand, these bacteria can be directly pathogenic to their host mosquitoes ( 16). 

Finally, such bacteria can affect vector susceptibility to antigen through multiple mechanisms, 

and thereby influence transmission efficiency (20). For example, the bacterium Wolbachia 

pipientis induces resistance in Ae. albopictus and Ae. aegypti to Chikungunya and Dengue 
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viruses respectively (21, 22). Such observations have spurred interest in the possibility of using 

these microbiota in pathogen and mosquito control strategies. 

Recent development of metagenomic PCR and next generation sequencing have fueled 

wider and more accurate exploration of these organisms as a supplement to culture-dependent 

techniques traditionally used previously (20). While many such studies have been carried out in 

other medically important mosquito species in the Cu/ex and Anopheles genera (23 ), our 

understanding of the midgut bacterial flora specifically involving Ae. al bop ictus is limited. Yet 

recent outbreaks of Zika virus disease transmitted by this species of mosquitoes are an indication 

of its significance in human health and disease (24 ). 

Using high throughput Mi Seq® sequencing of 16s rRNA, the main objective of this study 

was to characterize the microbial diversity and composition of the midguts of Ae. albopictus 

collected from various locations and land use types in Champaign and Coles Counties, Illinois. 
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MATERIALS AND METHODS 

Mosquito collection 

Between May 20 and October 14, 20 17, mosquitoes were collected from multiple geographical 

locations in both Champaign and Coles counties of central Illinois (Figures 2 and 3) using 

standard CDC light traps baited with dry ice (Figure 4). These locations were grouped into 

wooded and residential land use types. Specimens were transported to the lab and identified to 

species level using standard unique morphological characteristics on the dorsum of the head, 

abdomen and legs ( 13 ). After morphologic identification, all adult female Ae. albopictus were 

stored at -80°C until further processing 

DNA extraction and 16S rRNA gene library preparation 

One hundred and sixty ( 160) adult female Ae. albopictus were randomly selected from each of 2 

land use types (residential and woodlot) in both Charleston and Champaign (Table 1 ). The 

mosquitoes were sterilized as previously described by Muturi et al. (12). Each was rinsed three 

times in sterile water and surface disinfected in 70 % ethanol for 5 min, followed by a 5-minute 

wash in sterile Dulbecco's phosphate buffered saline (DPBS) solution (ThermoFisher, Waltham, 

MA), then a 5-cycle rinse (each cycle being 3 minutes) in sterile DPBS. Each surface-cleaned 

Ae. albopictus was placed in a drop of sterile DPBS under a stereo dissecting microscope and 

the midgut was removed. Midguts were individually suspended in 1.5-mL microcentrifuge tubes 

containing 50 µL RNAlater solution (ThermoFisher, Waltham, MA) and stored at -80 °C until 

DNA isolation. Total DNA from each midgut was extracted using DNeasy Blood & Tissue kit 
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(Qiagen, Valencia, CA) following manufacturer's recommendation except that the volume of 

final elution buffer was 50 µL. DNA was quantified using an Epoch spectrophotometer 

(BioTek, Winooski, VT) and its quality assessed using Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). For bacterial characterization, we targeted the V4 

hypervariable region of the 16S rRNA gene (292 base pairs) using the following primer set: 

forward 5'-GTGYCAGCMGCCGCGGTAA-3' and reverse 

5'-GGACT ACNV GGGTWTCT AA T-3'. 

Library preparation and sequencing were conducted at the W. M. Keck Center for 

Comparative and Functional Genomics at the University of Illinois at Urbana-Champaign. DNA 

of each mosquito sample was amplified using the above primer set on the Fluidigm® 

microfluidics quantitative PCR platform with appropriate linkers and sample barcodes. The final 

Fluidigm® libraries were pooled in equimolar ratio for sequencing. The final denatured library 

pool was spiked with 10% non-indexed PhiX control library ( Illumina®) and sequenced by 2 x 

300 nt paired-end sequencing on the Illumina® MiSeq® V3 Bulk system. The PhiX control 

library provides a balanced genome for calculation of matrix, phasing and pre-phasing, which 

are essential for accurate base-calling. The libraries were sequenced from both ends of the 

molecules to a total read length of 300 nt from each end. Cluster density was 964 k/mm2 with 

85.9 % of clusters passing filter. We present the results for the forward reads only because 

reverse reads, which are not independent from the forward reads, showed the same patterns 

among samples. This is expected because single-end reads are known to be sufficient to observe 

the same relationships among samples that are revealed with paired-end reads. 
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Illumina OTU analysis and statistics 

The QIIME version 1.9.0 pipeline was used to demultiplex and quality filter the forward and 

reverse reads using defaults. Barcodes and primer sequences were removed using Fastx toolkit 

operated in QIIME. The operational taxonomic units (OTUs) were chosen and identified at 97 

% similarity using de nova OTU picking process. OTUs accounting for <0.005 % of the total 

sequences were discarded to reduce the problem of spurious OTUs that may result from random 

sequencing errors and are likely to overestimate the overall diversity. Due to variations in the 

number of sequences between samples (range 1 - 48,629 sequences), read depth was rarefied to 

3022 reads per sample to retain adequate samples for statistical analysis and to standardize the 

sampling effort (Table 1). Alpha diversity metrics including Shannon diversity index, observed 

species, chaol, and evenness were generated in QIIME; analysis of variance (ANOVA) with 

Tukey adjustments was used to test the effect of site and mosquito species on these indices 

using the R statistical package. Bacterial communities were visualized using non-metric multi-

dimensional scaling (NMDS) plots generated using vegan package in R. Non-parametric 

multivariate community analyses including indicator species analysis and Multi-Response 

Permutation Procedures (MRPP) were conducted using PC-ORD version 6.08. MRPP was used 

to test for differences in microbial communities between study sites while indicator species 

analysis was used to identify bacterial species that are strongly associated with land use types 

and locations. Indicator values range from 0 to 1001X), with a value of 1 ()()°!(, indicating that the 

species occurs in all samples of a treatment and are specific to those samples. 
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RES UL TS AND DISCUSSION 

Bacterial composition 

Out of 160 samples dissected and processed, 114 samples remained after the quality filtering 

and rarefaction process (Table 1 ). These samples accounted for 551 OTUs. The top 30 most 

abundant OTUs, were definitively classified into 5 phyla (Figure 5) and 22 families (Figure 6) 

from which 31 genera were discovered (Figure 7). There were unclassified OTUs at each of 

these taxonomic levels. The phylum Proteobacteria was the most dominant in woodlots and 

residences in both Champaign and Charleston locations. The highest OTUs were derived from 

the family Rickettsiaceae in Champaign (38.5 %) and Charleston (44.2%) residences, as well as 

in Charleston woodlot (16.42%). However, in Champaign woodlots, the highest OTUs were 

derived from the family Enterobacteriaceae (15.9%). Indicator Species Analysis ( ISA) was used 

to characterize the bacterial OTUs that were strongly associated with the midgut of Ae. 

albopictus from one location and land type over the other. One indicator species was identified 

for midgut of Ae. albopictus from each of land use type in Champaign: Pseudomonas (50%) 

from residential areas and Sediminibacterium (63.5%) from woodlots (Table 2). Three and 8 

indicator bacterial species were identified for residential and woodlots in Charleston, 

respectively. The bacterial OTU of Bradyrhizobiaceae (49.3%) characterized residential area 

well, while Janthinobacterium ( 51.2%) did for woodlot in Charleston (Table 2). Only one 

indicator species identified for woodlots in Champaign had an indicator value greater than 60% 

(Table 2). 
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Bacterial diversity and richness 

Bacterial species richness for Charleston was significantly greater than that of Champaign, 

particularly in the Woodlot areas (Figure 8; Table 3). The midgut of Ae. ablopictus from 

woodlots in Charleston was found to have the most diverse bacterial community amongst all 4 

treatments. This observation was interesting because the Champaign-Urbana metropolitan area, 

with a population nearing 240,000, was expected to have a more diverse bacterial community, 

possibly due to humans and their activities providing a greater source of bacterial variety. 

However, Charleston, a much smaller town with approximately 22,000 people, showed a greater 

variety of fauna in this ecological zone than Champaign. Charleston has a woodier and more 

forested area than Champaign. In addition, the Embarras River may provide additional habitats 

and niches in which a greater variety of both flora and fauna may thrive. The midgut samples 

from woodlot in Champaign were more diverse than either residential treatment but did not show 

enough variation amongst species to be more diverse than the Charleston woodlots treatment. 

These findings suggest that bacterial diversity may be positively correlated with the diversity and 

abundance of vegetation surrounding mosquito habitats rather than anthropogenic factors. 

Furthermore, some human activities such as gardening and urbanizing may decrease diversity 

and abundance of plant species and consequently contribute to a reduction of bacterial diversity 

in mosquitoes from residential areas. 

7 



Composition of bacterial communities between Woodland and Residential areas 

The composition of bacterial communities differed between trapping locations (Woodland or 

Residential), with some overlap occurring in the residential sectors (Table 4; Figure 9). 

According to the NMDS analysis based on occupancy data, bacterial communities in each 

category were different with the most dissimilar amongst Charleston woodlot and Charleston 

Residential communities (Figure 9 upper panel; Table 4). An additional NMDS analysis based 

on abundance of bacterial OTUs also agrees with the results from NMDS analysis of occupancy 

data (Figure 9 lower panel; Table 4). 

It is interesting that Charleston woodlot and Charleston residence show the most 

separation in their bacterial communities when they are in the same geographical location 

indicating the role of vegetation rather than anthropogenic factors on bacterial diversity. 

Furthermore, Charleston residence is very similar to Champaign residence although they are 

miles apart. It is possible that the human population plays a large part in this, as humans share 

much of the same bacteria between each other, making residential areas similar in microbial 

diversity. A study by Grice et al. (25) of twenty skin sites on each of ten healthy humans found 

205 identified genera in nineteen bacterial phyla, with most sequences assigned to four phyla: 

Actinobacteria (51.8%), Firmicutes (24.4%), Proteobacteria (16.5%), and Bacteriodetes (6.3%). 

These findings are in close agreement with our observations of the mosquito midguts where we 

found OTUs mapping to the same phyla (plus Cyanobacteria). Additionally, the woodiness and 

composition of Charleston forests must be a contributing factor in the diverse community 
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retained in the Charleston woodlots as the Champaign woodlot shows much more overlap and 

similarity with other bacterial communities of a different treatment than the Charleston woodlot 

(Figure 9). 

Many of these genera could be commonly expected when their habitats are taken into 

account. Sediminibacterium, for example, is a genus that is associated with ground-water. We 

detected the OTU of the bacteria from all sampling locations and land use types with the highest 

proportion (9%) in Champaign woodlot (Figure 7). This would be expected in mosquitoes 

because they lay their eggs within water sources, especially those found in the woodlot. 

Pseudomonas is a common bacterial strand found on human skin, this makes sense considering it 

was prominent (13%) in Champaign residence (Figure 7). This genus has also been found to emit 

an unattractive odor that mosquitoes serving as malaria vectors dislike (26). The 16S rRNA 

sequence of Bradyrhizobiaceae has been analyzed and was found to have great affiliation with 

organisms from different environments such as soil, plant, or animal hosts (27). It is a key 

component in nitrogen fixation, being found in a wooded area seems very common because of its 

ecological role and host preference (27). It is interesting that this genus was found (5%) in 

Charleston residence (Figure 7), but this could be due to shrubs and various plants or trees 

throughout the city. Charleston is also a rural area with a large farming community, as 

Bradyrhizobiaceae is commonly found on soybean plants, these bacteria could be brought in 

from surrounding fields. 

Enterobacteriaceae were one of the most abundant and common genera throughout the 

sample locations (Figure 7). Enterobacteriaceae are a normal part of the gut flora found in the 
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intestines of humans and other animals, while others are found in water or soil, or are 

parasites on a variety of different animals and plants. The abundance of Enterobacteriaceae in 

the mosquito midgut has been found to be correlated significantly with the Plasmodium infection 

status with regards to malaria transmission (28). 

Wolbachia was another genus that was most abundant across all sampling locations 

(Figure 7). Wolbachia are a widely studied group of bacteria in relation to mosquitoes. They 

have been found not only to halt the transmission of Zika virus (29) but also to reduce the blood­

feeding success in mosquitoes that serve as vectors for Dengue Fever (30). 

These predominant bacterial genera within the midguts of Ae. albopictus from various 

habitats lend further knowledge to the public from both a health and ecological standpoint. 

Ultimately, understanding the relationship between midgut microbiota and their mosquito hosts 

would lead to developing disease control measures that are ecologically and environmentally 

sound. 
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CONCLUSION 

This study is the first description and comparison of microbial communities associated with Ae. 

albopictus in wooded and residential habitats in two distinct communities of central Illinois. To 

our knowledge, this is also the first such study involving Ae. albopictus. We have observed that 

bacterial species richness for Charleston was greater than that of Champaign, particularly in the 

woodlot areas. The Charleston woodlots presented the highest amount of species richness, 

heterogeneity, and evenness amongst all trapping locations. We conclude that the composition 

and diversity of bacterial communities differed based on land use type and location. Further 

studies on whether such differences in midgut biota affect disease transmission by mosquito 

vectors are warranted. 
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TABLES AND FIGURES 

Table 1. The size of samples that were utilized for midgut dissection and statistical analysis. 

City Land use types 

Residential 
Champaign 

Woodlot 

Residential 
Charleston 

Woodlot 

12 

Dissected 

40 

40 

40 

40 

Analysis 

25 

28 

28 

33 



Table 2. Bacterial OTUs that characterize locations and land use types. 

City Land use type OTU lD Phylum1 Class" Specics/Other3 IV4 p 

Residential 58121 l p G Pseudomonas 50 0.001 
Champaign · --------- - ----------- - - ------------- - - - - ---------- - - -------- - - -- ----------------- -------- -------- - ------

Woodlot 332283 B s Sediminibacterium 63.5 0.001 

Residential 220528 p Al Bradyrhizobiaceae 49.3 0.001 

679879 p Al Wolbachia 42.4 0.001 

1124258 Un Un Unassigned 41.3 0.002 
- - - - - - - - - - - - - ---------------------- - - -------------- - - - - - --------------- - - -------- - - ------ - - - - - - -

Woodlot 353404 p Bt Janthinobacterium 51.2 0.001 

156446 p G Acinetobacter 49.4 0.001 

Charleston 456174 p Bt Oxalobacteraceae 49.4 0.001 

250282 Ac Ac Corynebacterium 47.9 0.001 

1080486 p Bt Polaromonas 45.5 0.001 

878622 p G Acinetobacter lwoffii 42.4 0.001 

452119 p Bt Comamonadaceae 41.8 0.001 

996306 F Ba Bacillus 41.1 0.001 

1 Phyla abbreviations: Ac= Actinobacteria. B = Bacteroidetes. F = Firmicutes. P = Proteobacteria. Un= Unassigned 

2 Class abbreviations: Al= Alphaproteobacteria. Ac= Actinobacteria, Ba= Bacilli, Bt = Betaproteobacteria, G = 

Gammaproteobacteria. S = Saprospirae. Un= Unassigned 

3 The lowest classification based on de novo OTUs 

4 IV= indicator value, computed by Indicator Species Analysis 
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Table 3. Statistics showing significant differences in diversity/richness measures between land 

use types and a significant interaction between land use and locality for equitability. Asterisks 

indicate significant differences at 95% confidence level and above. 

Coefficients Estimate Std. Error z value Pr(>lzl) 

(Intercept) 2.79870 0.08978 31.172 < 2e-16 •• • 

n City_ Charleston 0.19970 0.12192 1.638 0.101 
:r 
� 
0 

Land use Woodlot 0.65778 0.11921 5.518 3.43e-08 *** 

City_ Charleston : Landuse_ Woodlot 0.11157 0.16117 0.692 0.489 
------------------------------------------------------ - - - - -- - -- - - -- ----------- ------------------ - - - - - -

(Intercept) 0.52471 0.15385 3.411 0.000648*** 

VJ City_ Charleston -0.09917 0.21681 -0.457 0.647365 :r 
� 
;:> 
;:> 

Land use Woodlot 0.40657 0.19427 2.093 0.036371 * 0 
;:> -

City_Charlcston: Landusc_ Woodlot 0.48452 0.26306 1.842 0.065497 
------------- ------------ ----------------------- - - - - - - -- - - -- ----------------------- - - - -- - - -----

(Intercept) 0.47283 0.03449 13.711 < 2e-l 6 ••• 

tTl 
..0 City_ Charleston -0.03894 0.04745 -0.821 0.41352 E. 

� Land use Woodlot 0.10312 0.04745 2.173 0.03189* 
q' 

City_ Charleston : Land use_ Woodlot 0.17969 0.06491 2.768 0.00662** 
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Table 4. Multi-Response Permutation Procedures (MRPP) analysis. 

Comparison Ad 

Residential in Champaign vs. Woodlot in Champaign 0.42 VS. 0.49 

Residential in Champaign vs. Residential in Charleston 0.42 VS. 0.40 

Residential in Champaign vs. Woodlot in Charleston 0.42 VS. 0.36 

Woodlot in Champaign vs. Residential in Charleston 0.49 VS. 0.40 

Woodlot in Champaign vs. Woodlot in Charleston 0.49 vs. 0.36 

Residential in Charleston vs. Woodlot in Charleston 0.40 VS. 0.36 

Ad= average within group distances for the mosquito species 

N = sample size. 

T =test statistic describing separation between groups. 

A= chance-corrected within group agreement as log 10 

1 5  

N 

25 VS. 28 

25 vs. 28 

25 VS. 33 

28 VS. 28 

28 VS. 33 

28 VS. 33 

T A p 

-7.19 0.09 < 0.05 

-5.19 0.05 < 0.05 

-12.05 0.13 < 0.05 

-10.36 0.12 <0.05 

-10.19 0.11 <0.05 

-13.46 0.15 < 0.05 



/ 

..., 

Figure 1. Female adult mosquito of the species Aedes a/bopictus. Distinct morphologic 

characteristics of the head, thorax, abdomen and legs were used to identify these mosquitoes. 
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Figure 2. Geographical location of mosquito traps in Champaign County. These are derived 

from the following latitudes and longitudes: 

1)40.129 -88.143 
2) 40.096 -88.202 
3) 40.13 -88.142 
4) 40.123 -88.249 
5) 40.084 -88.214667 

6) 40.084 -88.214262 
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Figure 3. Geographical location of mosquito traps in Coles County. These are derived from the 

following latitudes and longitudes: 

1) 39.46 -88.163 

2a) 39.49 -88.168 

2b) 39.475 -88.175 

3a) 39.486 -88.173 

3b) 39.477 -88.175 

4) 39.472 -88.172 

5) 39.492 -88.167 

6) 39.4761 -88.189 
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Figure 4. CDC light trap for collection of mosquitoes. The canister (left) was filled with dry ice 

which attracted mosquitoes into the motor driven trap (right). Traps were laid out between 15:00 

and 09:00 hours. 
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Figure 5. OTU abundance at phylum level for bacterial communities in Aedes albopictus 

amongst the 4 treatments (These were: Charleston woodlot and residential as well as Champaign 

woodlot and residential). 
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Figure 6. OTU abundance at family level for bacterial communities in Aedes albopictus 

amongst the 4 treatments (These were: Charleston woodlot and residential as well as 

Champaign woodlot and residential). 
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Figure 7. OTU abundance at genus level for bacterial communities in Aedes albopictus amongst 

the 4 treatments (These were: Charleston woodlot and residential as well as Champaign woodlot 

and residential). 
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Figure 8. Estimates of species richness (Chao 1 ), heterogeneity (Shannon Index), and evenness 

for Aedes a/bopictus microbiota populations from different localities and land use types. 
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Figure 9. Non-metric multi-dimensional scaling (NMOS) analysis on occupancy (presence and 

absence) data (top) and on abundance (bottom). 
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APPENDIX 
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Figure Al. a-Diversity chart of species richness in bacterial communities in all treatment 

locations (Charleston woodlot and residential as well as Champaign woodlot and residential). 
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Figure A2. a-Diversity chart of the evenness of bacterial communities in all treatment locations 

(Charleston woodlot and residential as well as Champaign woodlot and residential). 
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Figure A3. a-Diversity chart of the Shannon Index (a combination of equitability and species 

evenness amongst bacterial communities) of the 4 treatments (Charleston woodlot and residential 

as well as Champaign woodlot and residential). 
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