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Abstract 

Keywords: Bulk polymerization, solution polymerization, emulsion copolymerization, 

batch reactor, temperature, modelling, optimization, gPROMS 

Dynamic modelling and optimization of three different processes namely (a) bulk 

polymerization of styrene, (b) solution polymerization of methyl methacrylate (MMA) 

and (c) emulsion copolymerization of Styrene and MMA in batch and semi-batch 

reactors are the focus of this work. In this work, models are presented as sets of 

differential-algebraic equations describing the process. Different optimization 

problems such as (a) maximum conversion (Xn), (b) maximum number average 

molecular weight (Mn) and (c) minimum time to achieve the desired polymer 

molecular properties (defined as pre-specified values of monomer conversion and 

number average molecular weight) are formulated. Reactor temperature, jacket 

temperature, initial initiator concentration, monomer feed rate, initiator feed rate and 

surfactant feed rate are used as optimization variables in the optimization 

formulations. The dynamic optimization problems were converted into nonlinear 

programming problem using the CVP techniques which were solved using efficient 

SQP (Successive Quadratic Programming) method available within the gPROMS 

(general PROcess Modelling System) software.  

The process model used for bulk polystyrene polymerization in batch reactors, using 2, 

2 azobisisobutyronitrile catalyst (AIBN) as initiator was improved by including the gel 

and glass effects. The results obtained from this work when compared with the 

previous study by other researcher which disregarded the gel and glass effect in their 

study which show that the batch time operation are significantly reduced while the 

amount of the initial initiator concentration required increases. Also, the termination 

rate constant decreases as the concentration of the mixture increases, resulting rapid 

monomer conversion.  

The process model used for solution polymerization of methyl methacrylate (MMA) in 

batch reactors, using AIBN as the initiator and Toluene as the solvent was improved 

by including the free volume theory to calculate the initiator efficiency, f. The effects 

of different f was examined and compared with previous work which used a constant 

value of f 0.53. The results of these studies show that initiator efficiency, f is not 

constant but decreases with the increase of monomer conversion along the process.    

The determination of optimal control trajectories for emulsion copolymerization of 

Styrene and MMA with the objective of maximizing the number average molecular 

weight (Mn) and overall conversion (Xn) were carried out in batch and semi-batch 

reactors. The initiator used in this work is Persulfate K2S2O8 and the surfactant is 

Sodium Dodecyl Sulfate (SDS). Reduction of the pre-batch time increases the Mn but 

decreases the conversion (Xn). The sooner the addition of monomer into the reactor, 

the earlier the growth of the polymer chain leading to higher Mn. Besides that, Mn also 

can be increased by decreasing the initial initiator concentration (Ci0). Less oligomeric 

radicals will be produced with low Ci0, leading to reduced  polymerization loci thus 

lowering the overall conversion. On the other hand, increases of reaction temperature 

(Tr) will decrease the Mn since transfer coefficient is increased at higher Tr leading to 

increase of the monomeric radicals resulting in an increase in termination reaction. 
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3
 

μr Viscosity of initial reactor content, cp 

φm Volume fraction of monomer, dimensionless 

φP Volume fraction of polymer, dimensionless 

μn (n=0,1,2), nth moment of dead polymer chains for MMA model, kmol/m
3
 

τJ Jacket time constant, s 
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ABBREVIATION 

 

AIBME 2,2' - azodiisobutyrate 

AIBN 2-2 Azobisisobutyronitrile catalyst 

AVN 2,2',4,4 - tetramethyl - 2,2'-azovaleronitrile 

BA Butyl Acrylate 

CSTR Continuous Stirred Tank Reactor 

CTA Chain Transfer Agent 

CVP Control Vector Parameterization 

DAEs Differential-Algebraic Equations 

DAOP Differential Algebraic Optimization Problem 

DMP Discrete Maximum Principle  

EA Evolutionary Algorithms 

gPROMs General Process Modelling System 

GRG Generalized Reduced Gradient   

IDP Iterative Dynamic Programming  

jcrit Critical Size For Homogeneous Nucleation 

K2S2O8 Potassium Persulfate Catalyst 

KPS Potassium Peroxodisulfate 

M Monomer 

MMA Methacrylate 

Mn Number Average Molecular Weight 

MWD Molecular Weight Distribution 

Na-MMT Sodium Montmorillonite 

NLP Nonlinear Program 

OC Orthogonal Collocation  

P Polymer 

PMMA Polymethyl Methacrylate 

PMP Pontryagin‟s Maximum Principle  

PS Polystyrene 

PSD Particle Size Distribution 

QSSA Quasi Steady State Assumption 

S Solvent 

SLS Sodium Laurylsulfate 

SQP Successive Quadratic Programming   

T Transfer Agent 

TB Tert-Butanol 

TSPM Three Stage Polymerization Model 

VA Vinyl Acetate 

VAC Vinyl Acetate 
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Chapter One 

Introduction 

 

 

 

1.1 Introduction 

 

Batch processes occupy an important position in chemical industry, especially with 

regards to manufacturing specialty chemicals, pharmaceuticals, bio-products and 

polymers (Zhou and Yuan, 2004). Their flexibility and convenient operation ensure 

that batch reactors are often used in manufacturing of small volume products that 

have a high added value. Batch reactors are also helpful in the production of goods 

whose demands are seasonal as sometimes, only a few batches per annum are 

required to meet the demand for an unusual product. 

  

Polystyrene is a widely used polymer with many day-to-day uses which is certainly 

in the interest of this billion-Euro-a-year business that production be optimized 

(Ekpo and Mujtaba, 2004). According to Lyulin and Michels (2002), polystyrene is 

probably only polyethylene which is more common in our daily life for its 

inexpensive and hard plastic.  Some of the products made out of polystyrene are 

model cars and airplanes, the outside housing of the computer, clear plastic drinking 

cups and it also is made in the form of foam packaging and insulation.  Besides that, 
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polystyrene is also used in toys, and the housings of things like hairdryers and 

kitchen appliances a lot of the moulded parts on the inside of a car, like the radio 

knobs. 

 

Polymethyl methacrylate (PMMA) is a synthetic polymer of methyl methacrylate 

(MMA). It is often used as a light or shatter-resistant alternative to glass because of 

its transparent thermoplastic (Arora et al., 2010; Ekpo, 2006). It has a wide range of 

uses in medicine, being used as a component of implants, bone cement, in dentures 

and also implanted lens in the eyes. 

 

Polymerization is basically the joining end to end of monomers. The distribution of 

these repeat units in the final product is defined as the molecular weight distribution 

(MWD) (Rudin, 1999). The MWD can be represented by its statistical properties, 

using moments of the distribution (Lorenzini et al., 1992). Materials with different 

MWD will have different properties. The width of the MWD also important, 

especially for the mechanical properties of the polymer produced. Certain desired 

mechanical and physical properties of a polymer product can be improved by 

controlling the molecular weight and its distribution (Kiparissides, 1996). 

 

Molecular weight of a polymer is an important factor for determining its physical 

properties (Gilbert, 1995; Clay and Gilbert, 1995). Different molecular weight of 

polymer can have different properties, such as different temperatures for transition 

from liquids to waxes, different mechanical properties such as stiffness, strength, 

viscoelasticity, toughness and also viscosity of the polymer. A high molecular weight 

material exhibits a higher melt viscosity, which is above its crystalline melting point. 
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A higher molecular weight material also has a higher modulus of elasticity and thus, 

will give higher mechanical strength. A breadth of the MWD of a polymer may 

significantly affect its suitability for certain applications. For example, the best 

balance of processing characteristics and tensile strength for the process of extrusion 

can be achieved when the molecular weight distribution is as narrow as possible. 

 

Monomer conversion is another important factor that can influence mechanical, 

physical and biocompatible properties of the resultant polymer (Holmes et al., 2007; 

Asmussen and Peutzfeldt, 2001). However, the monomer conversion is never 

complete when monomers in a resin composite polymerize to form a polymer 

(Asmussen and Peutzfeldt, 2001). This makes the resultant polymer still has 

numerous unreacted double bonds (Holmes et al., 2007). 

 

Polymer structure and properties normally cannot be modified after it is produced, all 

required characteristics need to be clearly defined before the polymerization process 

begins. As the polymerization is under way, only few parameters can be controlled 

and one of this is the temperature of the reacting mixture.       

 

The Gel Effect also known as Tromsdorff-Norrish-Smith Effect or auto acceleration, 

which only occur during polymerizations with high concentrations of monomer 

(Kalfas and Ray, 1993; Rudin, 1999; Chiu et al., 1983). During the early stage of the 

polymerizations, the kinetic rate constant for initiation is equal with initial kinetic 

rate constant for termination. As time proceeds the polymer concentration will 

increase. This high concentration hinders the diffusion of chains because of 

entanglements, so the rate of termination slows considerably. In diluted solutions, the 
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viscosity never builds up to the point where the diffusion of chains is slowed, so the 

gel effect does not occur. This auto acceleration phenomenon strongly affects the 

end-use properties of the produced polymer as it leads to broader molecular weight 

distribution (Verros et al., 2005).  

 

The glass effect is related to the decrease in the propagation rate constant caused by a 

decreased in mobility of monomer molecules due to the „freezing‟ of the reaction 

mixture at the glass transition temperature (Achilias and Kiparissides, 1992). It 

appears in the polymerization reactions taking place at a temperature below the glass 

transition temperature of the polymer. As a consequence from this phenomenon, the 

reaction mixture will freeze below 100% and for styrene it is around 95% (Wolff and 

Bos, 1997).  

 

The decomposition of initiator molecules at the beginning of the process to form very 

active primary radicals are dependant on the initiator efficiency, f. The 

decomposition of the initiator does not form 100% primary radicals since some of 

them might either have self-terminate or react with other reactants in the systems 

(Medeiros et al., 2010; Kiparissides, 1996). The value of initiator efficiency is not 

constant and will decrease with the increase of viscosity inside the reactor (Capek, 

2001, Medeiros et al., 2010).  

 

The bulk polymerization is the simplest of all polymerization processes since the 

conversion of monomer into a polymer will occur without any solvent other than 

catalyst (Asua, 2007). Initiator will be added to the process to initiate the addition 
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polymerization by forming primary free radicals. The viscosity of the reaction 

mixture change as the concentration of the monomer decreases continuously.  

 

Solution polymerization is a polymerization process which incorporates solvent in 

the reactor process to aid in efficient heat transfer (Odian, 2004). At the beginning of 

the process, initiator and solvent are added into the reactor. Initiator will initiate the 

polymerization process by decomposition to form primary free radicals. These free 

radicals then will react with the monomer added in the reactor in homogeneous 

solution until the end of the process. 

 

Basic ingredients or recipe for emulsion polymerization are water, surfactant, 

monomer and initiator where the system is agitated to form emulsion (Gilbert, 1995). 

The monomer are dispersed and emulsified with the surfactant in the water phase. 

Micelles are created from the excess surfactant in the water. Then initiators are added 

to the reactor to initiate the free radical polymerization process. Initiator is 

decomposed to form free radical initiator in the water phase. These radicals then 

react with monomer in the aqueous phase forming oligomeric radicals. These 

oligomeric radicals then continue to propagate until it reaches a degree of 

polymerization z when they become surface active (Gilbert, 1995, Zeaiter et al., 

2002, Coen et al., 2004). Besides continuing propagation, these oligomeric radical 

also can terminate in the aqueous phase by termination or radical transfer.  
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1.2 Scope of This Research 

 

According to Ekpo and Mujtaba (2008), the optimization of batch reactors has been 

researched since the early work of Denbigh. It is necessary to operate them in 

optimal condition to produce as many profitable products as possible while 

minimizing the generation of waste or undesirable by products. 

 

Focus of this report is the modeling and optimization of three different 

polymerization process namely bulk polymerization of styrene, solution 

polymerization of methyl methacrylate (MMA) and emulsion copolymerization of 

styrene and MMA. Method used for optimization is the Control Vector 

Parameterization (CVP) technique. Dynamic optimization method has been used in 

order to find the optimal control variable profile that will yield a desired level of 

monomer conversion (Xn) and number average molecular weight (Mn) in a batch and 

semi-batch reactor. The batch time is divided into a finite number of intervals, and a 

piecewise constant temperature is used in each interval. In each interval, the 

temperature and length of the interval are optimized. The objective of solving the 

dynamic optimization for batch polymerization in this work is to find optimal control 

variable profiles that can be used in the polymerization system for desired product 

properties.  

 

The Control Vector Parameterization (CVP) technique is employed in this work for 

the dynamic optimization of the process. Different mathematical models are used for 

the dynamic optimization in order to find optimal profiles for control variables used 

in this work. The optimization process for this work is for minimization of 
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production time values, maximization of the number average molecular weight and 

maximization of overall monomer conversion. All of these are based on a desired 

and fixed level of monomer conversion, number average chain length, polydispersity 

and batch time. 

 

The general Process Modelling System (gPROMS) software is employed in this 

work to carry out the dynamic optimization problems for the polymerization batch 

reactor of polystyrene. This software is a powerful tool and can be used to solve the 

simulation and optimizations problems. Among its other advantages are modelling 

and solution power, project environment, multiple activities using the same model, 

integrated steady state and dynamic capabilities, and also it has sophisticated 

optimization capabilities ((PSE), 2007). The users of this software are able to build 

high accuracy models of their production facilities, make significant savings in 

process capital and operating costs while improving safety and environmental 

compliance via optimisation. Due to the advantages listing above among many 

others, gPROMS is chosen for the modelling, simulation and optimization of 

processes in this work. 

 

The research on the diffusion control in bulk polymerization was started by Balke 

(1973) and Balke and Hamielec (1973) for MMA polymerization with AIBN initiator 

(Cunningham and Mahabadi, 1996). Baillagou and Soong (1985b) developed gel 

effect model for the polymerization of MMA under nonisothermal condition.  Arai 

(1986) studied the bulk thermal polymerization of styrene which introduced gel 

effect into each elementary reaction by considering the decrease of segmental jump 

frequency during the polymerization. Soots and Stanford (1991) studied the gel-
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effect for the batch solution polymerization of styrene with toluene. They also used 

AIBN as the initiator. A new framework was proposed by Achilias and Kiparissides 

(1992) for modeling the diffusion-controlled free radical polymerization for solution 

MMA. Raja (1995) and Ekpo (2004) studied the bulk polymerization of styrene with 

AIBN, however, the gel and glass effect was not included in their model. In this 

work, the process model of bulk polymerization of styrene was improved by 

including the gel and glass effect. 

 

The initiator efficiency is often considered to be constant (Achilias and Kiparissides, 

1992). Wang and Matyjaszewski (1995) observed that the increase of initiator 

efficiency, f from 22% to 65% with the addition of 2 molar CuCl2 in the system for 

bulk styrene polymerization with AIBN initiator. The initiator efficiency decreases 

with the decrease of temperature (Xia and Matyjaszewski, 1997). A theoretical 

investigation of the initiator efficiency was undertaken by Kurdikar and Peppas 

(1994) and reported that the initiator efficiency at the start of the polymerization 

reaction is usually between 0.3 and 0.8 and decreases as the reaction proceeds until it 

reaches a limiting value of zero. Achilias (2007) used time varying initiator 

efficiency in his work and reported that initiation reaction could also be diffusion-

controlled and should be decreased at higher conversion of bulk polymerization. 

Ghosh et al. (1998) improved the model of Ray et al. (1995) by allowing the value of 

f to decrease at high conversion. Ekpo and Mujtaba (2008) carried out a dynamic 

optimization of MMA in batch reactor and a constant value of initiator efficiency 

(0.53) was employed in their work. In this work, the process model is improved for 

the solution polymerization of MMA by using the free volume theory to calculate the 

initiator efficiency. 
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Zeaiter et al. (2002) developed the control of particle size and molecular weight 

distribution described by a population balance model of styrene emulsion 

polymerization in semi-batch process. The model developed by Saldivar (1996) was 

validated by Saldivar and Ray (1997) with the emulsion copolymerization of styrene 

and MMA. Mead and Poehlein (1989) developed a steady state model for emulsion 

copolymerization in a seed-fed continuous stirred tank reactor (CSTR) for Styrene-

MMA and Styrene-Acrylonitrile. Another extensive kinetic model was developed by 

Coen et al. (1998) for the particle size distribution (PSD), particle number, particle 

size and amount of secondary nucleation in emulsion polymerizations. The extension 

of this model for zero-one system was undertaken later by Coen et al.(2004) where 

pseudo bulk kinetics was included in the time evolution of the particle size 

distribution. Alhamad et al. (2005a) developed a comprehensive model for emulsion 

copolymerization process of styrene and MMA. However, the model used one fixed 

time for the seed formation for ab initio system. The effect of different pre-batch 

time for seed formation in emulsion copolymerization of styrene and MMA is 

studied in this work. Besides that, the simulation was carried out in batch and semi-

batch process without pre-batch time. 

 

 

1.3 Aims and Objectives 

 

The aim of this work is to study the modeling and optimization of bulk 

polymerization of Styrene, solution polymerization of MMA and emulsion 

copolymerization of Styrene and MMA in batch and semi-batch reactors.  

The objectives of this work are:  
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A. Bulk Polymerization 

 

i. To improve the process model used for bulk polymerization of styrene in 

batch reactors, using 2, 2 azobisisobutyronitrile catalyst (AIBN) as the 

initiator by including the gel and glass effects which was absent in the earlier 

work. 

 

ii. To find an optimal temperature profile for bulk polymerization of styrene that 

will yield desired polymerization characteristics in minimum time. 

 

iii. To compare the results for the dynamic optimization of the bulk 

polymerization of styrene with or without taking into account the gel and 

glass effect. 

 

B. Solution Polymerization 

 

i. To improve the process model used for solution polymerization of methyl 

methacrylate (MMA) in batch reactors, using 2, 2 azobisisobutyronitrile 

catalyst (AIBN) as the initiator by including the free volume theory to 

calculate the initiator efficiency. 

 

ii. To find an optimal temperature profile for solution polymerization of MMA 

that will yield desired polymerization characteristics in minimum time. 
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iii. To compare the results for the dynamic optimization of the solution 

polymerization of MMA with using i) the free volume theory to calculate the 

initiator efficiency, f  ii) a constant value of f. 

 

C. Emulsion Copolymerization 

 

i. To find an optimal temperature profile for emulsion copolymerization of 

styrene and MMA that will yield desired polymerization characteristics for 

maximization of the number average molecular weight and maximization of 

overall conversion with different pre-batch time in a semi-batch reactor. 

 

ii. To find an optimal temperature profile for emulsion copolymerization of 

styrene and MMA that will yield desired polymerization characteristics for 

maximization of the number average molecular weight and maximization of 

overall conversion with fixed batch time and fixed the number average 

molecular weight in a batch reactor respectively. 

 

 

1.4 Layout of the Thesis 

 

This thesis is laid out as follows: 

 

Chapter one presents overview on polymerization process, brief introduction on 

polymer and their uses, molecular weight and monomer conversion. Also the scope 

of this research, aim, objectives together with thesis layout have been stated. 
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Chapter Two gives literature reviews of past works in the field of modeling and 

dynamic optimization of batch and semi-batch polymerization for styrene and MMA. 

Furthermore, types of polymerization process namely bulk polymerization, solution 

polymerization, emulsion polymerization and suspension polymerization are 

discussed. Mechanism of free radical polymerization, gel and glass effect, initiator 

efficiency are also explained. 

 

Chapter Three presents an overview of three main mathematical models for free 

radicals of bulk polymerization of styrene, solution polymerization of MMA and 

emulsion copolymerization of styrene and MMA in batch reactors. The models are 

discussed and presented in a way that will be used in dynamic optimization. 

 

Chapter Four focuses on the dynamic optimization of the free radical bulk 

polymerization of styrene in a batch reactor using 2, 2 azobisisobutyronitrile catalyst 

(AIBN) as the initiator by taking into account the gel and glass effect.  Two models 

were employed for the dynamic optimization namely simple kinetic model and 

detailed model, with the energy balance equation added to the simple model. The 

types of solutions for dynamic optimization problems and formulation for 

optimization of bulk polymerization of styrene in a batch reactor also discussed here. 

 

Chapter Five focuses on the dynamic optimization of the free radical solution 

polymerization of MMA in a batch reactor using 2, 2 azobisisobutyronitrile catalyst 

(AIBN) as the initiator by using free volume theory to calculate the initiator 

efficiency.  As before, two different models also used here; simple kinetic model and 

detailed model (with energy balance model). The types of solutions for dynamic 
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optimization problems and formulation for optimization of solution polymerization 

of MMA in a batch reactor are highlighted. 

 

Chapter Six focuses on the dynamic optimization of the free radical emulsion 

polymerization of styrene and MMA in a batch reactor using potassium persulfate 

catalyst (K2S2O8) as the initiator. Nine case studies were carried out for the 

maximization of the number average molecular weight and maximization of overall 

conversion with different problem formulation for batch and semi-batch process.   

 

Chapter Seven concludes the thesis by discussing the achievement of this work and 

laying out suggestions for future work. 
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Chapter Two 

Literature Reviews 

 

 

 

2.1 Introduction 

 

In this chapter, literature reviews of four most popular polymer process namely bulk 

polymerization, solution polymerization, emulsion polymerization and suspension 

polymerization will be discussed including the mechanism of free radical 

polymerization. There are two monomers used in this research, styrene and methyl 

methacrylate (MMA) for the bulk, solution and emulsion polymerization process in 

jacketed batch reactor. The properties and uses of styrene and methyl methacrylate 

are also discussed briefly. Mechanism of free radical polymerization namely chain 

initiation, chain propagation, chain termination and chain transfer are explained since 

all the polymerization processes in this work have free radical polymerization. 

Besides that, a review of previous works in the field of batch reactor modelling and 

optimization are also discussed here. 

 

In this chapter, section 2.2 to 2.7 describe general knowledge required to carried out 

this research. Section 2.9 provides further review of previous work on batch 

polymerization which are the main focus of this research. 
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2.2 Polymerization Process 

 

The most popular ways of the polymerization process in the industry today are bulk 

polymerization, solution polymerization, emulsion polymerization and suspension 

polymerization (Stevens, 1999). Each of the polymerization process has advantages 

and disadvantages. These polymerization processes can be carried out using different 

reactants, additives and reactors. Different parameters like temperatures, 

concentration, reaction process time, flow rate, etc control the desired end properties 

of the products. 

 

 

2.2.1 Bulk Polymerization 

 

Bulk polymerization is the simplest polymerization process which is carried out with 

the monomer itself without any addition of dilutent or carrier (Odian, 2004). 

However, small amounts of an initiator are present to initiate the polymerization 

process. Conversely, it is also the most difficult polymerization process to control as 

the reaction process is very exothermic. Further problem is added when the viscosity 

of the monomer-polymer solution is increased leading to heat transfer problem 

(Stevens, 1999). The major commercial uses of bulk vinyl polymerization are in 

casting formulation and low molecular weight polymers for use as adhesive, 

plasticizers and lubricant additives. Polystyrene for general purpose usually produce 

by bulk thermal polymerization in the temperature range from 100
o
C to 200

o
C (Arai 

et al., 1986). 

  Formatted: Normal, Line spacing: 
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There are several advantages and disadvantages of bulk polymerization: 

Advantages 

• It is the simplest polymerization process 

• The polymer product obtained at the end of the process is pure since no 

solvent added 

• Large casting may be prepared directly from the polymer obtain by bulk 

polymerization process 

• Chain transfer agent can be used to change the molecular weight distribution 

  

Disadvantages 

• The mixing becomes very difficult as the concentration of the reaction 

mixture inside the reactor is increased 

• Heat transfer is a major problem for highly exothermic nature of free radical 

addition polymerization 

• Broad molecular weight distribution will be obtained due to the high viscosity 

and no aid (solvent) for heat transfer 

• Polymer with very low molecular weight will be obtained 

 

 

2.2.2 Solution Polymerization 

 

Solution polymerization incorporates solvent in the process to aid in efficient heat 

transfer (Stevens, 1999). However, solvent must be chosen vary carefully since it 

will have a big impact on the chain transfer reaction, otherwise it can limit the 

molecular weight (Odian, 2004). The difficulty to remove solvent completely from 
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the finished polymer becomes a major problem apart from the environmental 

concerns associated with the organic solvents (Stevens, 1999). Advantages and 

disadvantages of solution polymerization process are given below: 

 

Advantages 

 Better reactor temperature control compared to bulk process since the solvent 

used in the process will absorb the exothermic of the polymerization process. 

 The viscosity of the reaction mixture will decrease and make the mixing 

process in the reactor easier so the autoacceleration can be avoided. 

 The product can be used directly (paint, adhesive) 

 

Disadvantages 

 Molar mass of the mixture will reduce making this polymerization process 

not suitable for high molecular weight. 

 The removal of solvent used at the end of process will raise the production 

cost 

 Solvent used in solution polymerization must be carefully selected since it 

can create environmental pollution  

 

 

2.2.3 Emulsion Polymerization 

 

Emulsion polymerization has an efficient heat transfer since it has water as a medium 

in the polymerization process (Odian, 2004; Stevens, 1999). Water is used in 

emulsion process while in solution polymerization process, solvent is used to aid in 
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efficient heat transfer. Monomer in emulsion polymerization is dispersed in the 

continuous aqueous phase by emulsifier. Initiator is then added to the process to 

initiate the primary free radicals which then diffuses into micelles swollen with 

monomer molecules. As monomer is used up in the polymerization reaction, more 

monomers enter the micelles to continue the reaction. Termination by radical 

combination occurs when a new radical diffuses into the micelles. Extremely high 

molecular weight is achievable in this process because only one radical is present in 

the micelles due to termination (Gilbert, 1995). The overall process is very complex, 

with heterogeneous phase of the process and also the reaction kinetics significantly 

different from that of bulk and solution polymerization. 

 

Emulsion copolymerization is a heterogeneous reaction of two monomers with very 

complex mechanisms (Saldivar and Ray, 1997).  Emulsion copolymerization of 

Styrene and MMA based on zero-one kinetic was employed by Alhamad et al. 

(2005). For a zero-one model, the particle diameters (Dmm) are small (~100nm). 

Polymerization within a relatively large particle is known as pseudo-bulk kinetics 

where the cross over diameter of Styrene for zero-one to pseudo-bulk is reported 

between 100 nm – 120 nm (Gomes et al., 2009). In ab initio emulsion 

polymerization, pre-batch time is needed for the seed formation and to eliminate any 

dissolved oxygen from the system (Gilbert, 1995; Coen et al., 1998; Zeaiter et al., 

2002).  

 

Initially monomer, initiator and surfactant were added in the continuous phase of 

water. Surfactant molecules coat the monomer droplets to form stabilized emulsion 

before polymerization starts. Surfactants have hydrophilic and hydrophobic end in 
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order to stabilize and emulsify the polymer droplets. Other surfactants form small 

aggregates called micelles which are required for particle formation by micellar 

nucleation. Besides that these micelles also absorb monomer molecules.       

 

At the beginning of the reaction process, the initiator decomposes in the aqueous 

phase to form free radicals of initiator. These free radicals then react with the 

dispersed monomer forming oligomeric radicals in the aqueous phase. These 

oligomeric radicals can further the propagation process or undergo termination. 

 

While propagating in the aqueous phase, the monomer will develop enough 

hyrophobicity in order to enter into the micelles also known as z-mer when it 

becames surface active (Coen et al., 2004; Gilbert, 1995). In other word, when the 

oligomeric radicals achieves equal or greater than the critical degree of 

polymerization for entry, z, it can enter into the micelles. However, there are three 

routes for the surface active polymer as shown in Figure 2.1Figure 2.1Figure 2.1.  

 

Three routes that are possible for those oligomeric radical either enter the pre-

existing particle, enter the formed micelles or propagate further until it reaches its 

critical size for homogeneous nucleation (jcrit) and collapse to form a particle 

(Meadows et al., 2003; Arai et al., 1979; Coen et al., 2004). Concentration of 

monomer in the particles are higher than that in the aqueous phase since monomers 

are consumed and oligomeric radicals enclosed in the micelles propagate rapidly to 

produce polymer particle. The micelles now contain long polymer chain while 

particle formation is still taking place until all the micelles disappear.  
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Figure 2.1: Some kinetic events in emulsion polymerization, including the competing 

paths for particle formation and for particle growth (adapted from Coen et al., 2004) 

 

 After the micelles disappear, no new particles are formed. Each free radical begins 

the polymerization within the micelles. Once a free radical has entered a micelle, the 

particles grow by chain propagation. Propagation, termination and radical transfer to 

monomer can occur inside the particles. 

 

At the early stage of reaction process, the number average molecular weight (Mn) are 

very high because the particles formed are small in numbers, so monomers tend to 

enter the particles and increase the molecular chain in the particles. Then the 

molecular weight are decreased dramatically as the number of micelles capturing the 
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free radicals are increased. As time increases, all micelles are disappeared and no 

new particles are initiated.  

 

The addition of monomer along the process increases the molecular weight of the 

produced polymer. Surfactant and initiator are fed to the reactor to cause the micellar 

nucleation and to initiate the radical process to form and allow entry of new particles. 

This will lead the addition monomer to enter into the existing growing particles to 

increase the molecular chain in the particles and also in the new particles.  

 

Low monomer flow rates are used to ensure that all monomers are reacted in the 

micelles and the molecular weight are increased constantly afterward to reach the 

desired number average molecular weight. It has been observed that the reaction 

times are increased with the increase of molecular weight since more monomers are 

needed to increase the polymer chain.  

 

The advantages and disadvantages of emulsion polymerization are given by Gilbert 

(1995) as below. 

 

Advantages: 

 The heat generated by the highly exothermic free radical polymerization 

process can be both readily absorbed by water and dissipated by the aqueous 

phase as the water has a high heat capacity. This is because the control of 

reactor temperature is easier compared to bulk process in order to prevent it 

from overheating. 
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 The rate of emulsion polymerization is usually considerably more rapid in an 

equivalent bulk process, thereby allowing faster throughput for a given 

capital cost. 

  In the absence of modifier, the polymer that is formed usually has a 

considerably higher average molecular weight than that from an equivalent 

bulk process; as well it has a different molecular weight distribution. 

 The final polymer product is formed in latex which makes it easier to handle 

compared to polymer product from the bulk and solution polymerization 

process which is a solid or is a viscous solution respectively.  

 Molecular weight can be easily controlled by the addition of chain transfer 

agents which gives the additional control of the properties such as mechanical 

strength of the polymer and also the minimum film-forming temperature for 

latex. 

 The process itself, and the resulting polymer latex, is water based rather than 

solvent based, which reduces both safety and environmental hazards. 

 An emulsion polymerization can be carried through to relatively high 

conversion of monomer into polymer. This means the residual monomer are 

minimized while the monomer consumption is maximized. 

 

Disadvantages: 

 Generally initiator and surfactant used in emulsion polymerization product 

may impair the quality of the final product since it is difficult and/or 

expensive to be removed.  
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 The separation of the polymer from the water by coagulation or dewatering 

process might be necessary which increase the production cost for the further 

process. 

 The mechanism for emulsion polymerization process is very complex and 

hard to understand and control since its heterogeneous process involves a 

minimum of two phases.   

 

 

2.2.4 Suspension Polymerization 

 

Suspension polymerization involves mechanically dispersing monomer in a 

noncompatible liquid, usually water (Odian, 2004; Stevens, 1999). Monomer soluble 

initiator is used for the polymerization process to occur. Monomer is kept in 

suspension by continuous agitation and the use of stabilizers such as poly vinyl 

alcohol or methyl cellulose. Polymer product obtained from this process will be in 

the form of granular beads if the process is carefully controlled (Odian, 2004). This 

polymer is easy to be handled and can be isolated by filtration or by spraying using 

spray dryer into a heated chamber (Stevens, 1999). Like emulsion, suspension 

polymerization allows efficient heat transfer and therefore the reaction is easily 

controlled. Suspension polymerization cannot be used for elastomer because it has a 

tendency for agglomeration of polymer particles.   
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2.3 Different Types of Polymers 

 

2.3.1 Styrene  

 

Styrene is an aromatic liquid monomer that is commercially manufactured from 

petroleum to make an aromatic polymer called polystyrene (PS). As a thermoplastic 

substance, this polymer normally is present in solid state at room temperature. Even 

though this hard plastic has a limited flexibility, it can melt if heated and becomes 

solid again when cooled. 

 

Polystyrene is one of the most commonly used polymers because of its recyclable 

and can be cast into moulds with fine details. As a colourless polymer, it can be 

transparent or can be made into any favourable colour. Polystyrene products can 

easily be found in today‟s market like disposable cutlery, CD cases, the housing of 

the computer, smoke detector housing and most of the kitchen appliances. Some of 

the products of polystyrene is in the soft foam which is usually used for foam 

drinking cup, packaging materials, container and insulation among many others.  

 

Polystyrene are made up of a long hydrocarbon chain from many styrene molecules. 

Chemical formula for Polystyrene is (C8H9)n, which contains the chemical elements 

carbon and hydrogen. Figure 2.2 below show the formation of polystyrene from 

many molecule of styrene after undergoing a polymerization process.  
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Figure 2.2: Chemical reaction for the formation of polystyrene 

  

 

Polystyrene is commonly produced in three forms, extruded polystyrene, expanded 

polystyrene foam and extruded polystyrene foam. Each form of polystyrene has its 

variety of applications. Properties of Styrene are presented in Table 2.1Table 

2.1Table 2.1 below. 

 

Table 2.1: Properties of Styrene 

Properties 

Molecular formula C8H8 

Molar mass 104.15 g/mol 

Appearance colorless oily liquid 

Density 0.909 g/cm³ 

Melting point -30 °C, 243 K 

Boiling point 145 °C, 418 K 

Solubility in water < 1% 

Viscosity 0.762 cP at 20 °C 
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2.3.2 Methyl Methacrylate (MMA) 

 

Methyl methacrylate (MMA) is an organic compound used primarily for the 

production of polymethyl methacrylate (PMMA) by free radical polymerization. The 

chemical formula for MMA is CH2=C(CH3)COOCH3 which then can produce 

PMMA by free radical vinyl polymerization as shown in Figure 2.3 below. 

 

PMMA has been used in a wide range of fields and applications especially for 

transparent glass substitute like shatterproof, commercial aquarium and also 

motorcycle helmet visors. Besides that it is also used in medical technologies and 

implants (used for replacement lenses in the eye for cataract, bone cement and 

dentures); artistic and aesthetic uses (acrylic paints, substitute for a normal glass in 

picture framing); along many daily products (surface of hot tubs, shower units, sinks 

and also sheets for sign industry).  

 

 

Figure 2.3: Chemical reaction for formation of PMMA 
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Properties of MMA are presented in Table 2.2 below. Table 2.2 below. 

 

Table 2.2: Properties of MMA 

Properties 

Molecular formula C5H8O2 

Molar mass 100.12 g/mol 

Appearance colourless liquid 

Density 0.94 g/cm³ 

Melting point -48 °C (225 K) 

Boiling point 101 °C (374 K) 

Solubility in water 1.5 g/100 ml (25 °C) 

Viscosity 0.6 cP at 20 °C 

 

 

2.4 Batch Reactor 

 

Batch processes are widely used to produce small volume products with quite high 

value. Usually the production facilities used to carry out these processes are intended 

for multi-purpose use.  In order to obtain the required product purity, cycle times, 

and to satisfy the commercial requirements and relevant regulatory authorities, 

achievements of stable and reproducible operating conditions are very important. 

 

In a batch reactor, all reactants and the catalyst are charged into the reactor at the 

beginning of the process which is then closed to transport of substance and the 

reaction is allowed to proceed for a given time.  The mixture of unreacted material 

together with the products is withdrawn at the end of the batch process. There is no 



 

 

28 

 

inflow or outflow of material during the process in the batch reactor. However, in 

semi-batch reactor, addition of reactants and catalyst are permitted along the process 

yet the product and unreacted material still will be withdrawn at the end of the 

process. 

 

Modelling the batch reactor is more difficult since it is a dynamic process. It is also a 

very challenging task to control the process once it is underway as very little task can 

be done to change the reaction process in the reactor. The quality of end product can 

be controlled during the process to try to achieve the desired specifications of the 

product by controlling the external parameters like reactor temperature, jacket 

temperature, batch time or coolant flow rate. 

 

A schematic diagram of a batch reactor system is shown in Figure 2.4 below. All 

reactants and catalysts are charged into the tank reactor using the inlet feed. A stirrer 

is used to agitate the reaction mixture inside the tank reactor. This is to ensure 

uniform mixing of the reactants for consistency of the process. Pressure building up 

inside the reactor is very dangerous since it could end up with disaster if explosion 

occurs. That is why a vent condenser is used for the batch reactor. The temperature 

inside the reactor can be controlled by using a jacket around the reactor with cooling 

or heating liquids to flow. Steam or cooling water is used to for the heating or 

cooling of the reactor temperature to follow the set point in the reactor respectively. 
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Figure 2.4: Schematic diagram of batch reactor system 

 

 

2.5 Mechanism of Free Radical Polymerization 

 

Free radical polymerization is the most common of all addition polymerization 

mechanisms. It is a chain polymerization in which each polymer molecule grows by 

addition of monomer to a terminal free radical reactive site which is known as active 

center. 

Free-radical polymerization proceeds via multiple steps: chain initiation, chain 

propagation, chain termination, and chain transfer. 

 

 

2.5.1 Chain initiation  

 

Chain initiation involves formation of reactive radicals‟ active center. Initiating 

radicals may be provided via thermal decomposition of added initiators (I) in the first 

step and can be as:  

Feed 

inlet 

Feed inlet 

Coolant / 

steam 

outlet 

Output 

Stirrer 
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                        (2.1) 

 

There are some common thermal initiators: 2,2‟-azo-bis-isobutyronitrile (AIBN); t-

butyl hydroperoxide; cumyl peroxides; benzoyl peroxide (BPO); t-butyl peroxide; 

lauroyl peroxide, dipotassium persulfate.  

 

Figure 2.5 shows the chemical reaction for the chain initiation process where AIBN 

was heated to form 2 free radical molecules which then initiate the process of 

polymerization. 

 

 

Figure 2.5: Chemical reaction for formation of free radicals molecules 

 

Then in the second step, there will be addition of one of these free radicals to a 

molecule of monomer M and polymer P begins to grow as illustrated in the following 

steps: 

      
  
                      (2.2) 

      
  
                     (2.3) 

 

Where         

Free radicals,     go on to react with monomer molecules, M, then polymer chains, P 

begins to grow.  
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Chemical reaction of this step as shown in Figure 2.6 below shows that the free 

radical formed earlier from the AIBN react with styrene monomer to form a styrene 

free radical. kd and ki in the equations are the rate constants for the decomposition 

and initiation step in the chain initiation. 

 

 

Figure 2.6: Chemical reaction for chain initiation of styrene free radical 

 

 

2.5.2 Chain propagation  

 

Chain propagation is where the monomer molecules are continuously added to the 

growing polymer chain. The equations for chain propagation steps can be written as: 

  

       
  
                                    (2.4) 

     
  
                        (2.5) 

    
  
                        (2.6) 

 

kp is the rate constant for propagation. Chemical reaction for chain propagation of 

styrene polymerization process is shown in Figure 2.7 below. 
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Figure 2.7: Chemical reaction for chain propagation of styrene polymerization 

process 

 

 

2.5.3 Chain termination  

 

Chain termination is when the growth of the polymer chain is terminated. There are 

two types of chain termination which is known as combination and 

disproportionation. 

 

i. Combination: 

Two growing polymer chains terminate by combining together to form a single bond. 

kt is rate constant for termination with combination. Chemical reaction for chain 

termination by combination of styrene polymerization process is shown in Figure 2.8 

below. 

 

     
  
                       (2.7) 

 

 

Figure 2.8: Chemical reaction for chain termination by combination of styrene 

polymerization process 
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ii. Disproportionation: 

Termination by disproportionation gives two terminated chains. The radical at the 

end of one chain attacks a hydrogen atom at the second-to-last carbon atom in the 

second chain and the polymer chains terminate independently. In this case, one 

terminated chain will have an unsaturated carbon group while the other terminated 

end is saturated as shown in Figure 2.9. ktd is the rate constant for termination with 

disproportionation. 

 

      
   
                                  (2.8) 

 

 

Figure 2.9: Chemical reaction for chain termination by disproportionation of styrene 

polymerization process 

 

 

2.5.4 Chain transfer 

 

Termination by chain transfer can be achieved when the free radical reacts with non 

radical species. The chain end radical attacks a weak bond and a hydrogen atom gets 

transfer to the end chain. When this is happened, the current chain terminates to yield 

a „dead‟ polymer while a new „living‟ polymer chain may start from the radical 

chain. The termination chain transfer can be occurred by a few chain transfer 

reactions, namely transfer to monomer M, transfer to polymer P, transfer to solvent 

agent S, or transfer to transfer agent T.  
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                                           (2.9) 

    
   
                        (2.10) 

    
   
                           (2.11) 

    
   
                                   (2.12) 

 

kfm, kfs, kfp and kft are the kinetic rate constants for transfer to monomer, transfer to 

solvent agent, transfer to polymer and transfer to transfer agent respectively. 

However, in bulk polymerization of Styrene, chain transfer to monomer and polymer 

do not take place in the process. Furthermore there are no solvent involved in the 

bulk and emulsion process. In solution polymerization of MMA, chain transfer to 

monomer and solvent are considered. In emulsion copolymerization of Styrene and 

MMA, transfer to each monomer is considered. No transfer agent involved in all 

polymerization process. 

 

 

2.6 Gel and Glass Effect 

 

There is a phenomenon which occurs during the polymerization process for high 

concentration of reactant mixture in the reactor which is called the gel effect 

(Ramteke and Gupta, 2011; Rudin, 1999; Kalfas and Ray, 1993). It is also known as 

Tromsdorff-Norrish-Smith Effect / or auto acceleration in recognition of the early 

workers in the field (Odian, 2004). The initiation kinetic rate constant and the initial 

kinetic rate constant for termination are equal at the beginning of the process. 

However, the viscosity of the reaction mixture in the reactor will increase as the time 
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proceeds which will leads to entanglement of the polymer chain. This is because the 

diffusion of chain is hindered which then slows down the termination process as it 

involves the reaction between the two chain ends. This phenomenon always occurs in 

bulk polymerization (Tulig and Tirrell, 1981).  

 

However, for high concentration solution polymerization, gel effect might happen 

when the viscosity of the reaction mixture is increased as the polymer chain forms 

(O'Neil and Torkelson, 1999). This is when the rate of polymerization suddenly goes 

up drastically because of slow kinetic rate constant and produces a higher molecular 

weight than the chains that grew earlier. In contrary for dilute solutions, the gel effect 

does not occur. This is because the addition of solvent in the reaction mixture will 

hinder the build-up of the viscosity to slow down the chain diffusions. This auto 

acceleration phenomenon strongly affects the end-use properties of the produced 

polymer as it leads to broader molecular weight distribution (Verros et al., 2005; 

Achilias and Kiparissides, 1992).  

 

These effects are undesirable in a polymerization reaction, as they can lead to reactor 

runaway which effect results in hot spots and erratic behavior, which worsens the 

quality of the end product, and even can lead to reactor explosion. 

 

The problem of the gel effect is usually avoided by performing the free radical 

polymerization in solution by adding a solvent to the reactor which can limit the 

increase of the viscosity and eliminate the diffusion constraints (Ekpo, 2006). 

However, the use of considerable amounts of solvent implies much larger reactors 

and an extra separation step have to be taken. Besides that, the solvents are usually 
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hazardous chemicals and their usage is limited. Moreover the purity of the product 

decreases with the increase of solvent added to the reactor. 

 

The graph in Figure 2.10 shows the free radical polymerization of MMA in Benzene 

solution at various initial monomer solutions. It can be clearly seen that the more 

concentrated the solution, the earlier the gel effect occurs. On the other hand its 

values are reduced when there is lower initial concentration of monomer in the 

solution. However, as already mentioned the addition of a solvent has many negative 

consequences and is not the most desirable solution to the problem.  

 

 

Figure 2.10: Autoacceleration in the free radical polymerization of MMA in benzene. 

The different curves refer to different initial concentrations of the monomer in the 

solvent (Odian, 2004) 

 

The glass effect is related to the decrease in the propagation rate constant caused by a 

decreased in mobility of monomer molecules due to the „freezing‟ of the reaction 

mixture at the glass transition temperature (Achilias and Kiparissides, 1992). This 

phenomenon occurs at much higher conversion (Ramteke and Gupta, 2011). It 

appears that the polymerization reactions taking place at temperature below the glass 

transition temperature of the polymer. As a consequence from this phenomenon, the 



 

 

37 

 

reaction mixture will freeze below 100% which for styrene it is around 95% (Wolff 

and Bos, 1997). 

 

 

2.7 Initiator Efficiency 

 

The decomposition of initiator molecules at the beginning of the process to form very 

active primary radicals depend on the initiator efficiency, f. Not all initiator 

molecules decompose to form primary radicals since some of them might either have 

self-terminate or react with other reactants in the system which make the initiator 

efficiency less than 100%.  

Achilias and Kiparissides (1992) had reported that there are quite a lot of published 

paper which have treated the initiator efficiency, f as a constant value. Ekpo (2006) 

and Ekpo and Mujtaba (2008) was using a constant value of 0.53 for the initiator 

efficiency in solution polymerization of MMA. However, it is believed that the 

initiator efficiency is not constant and will decrease as the viscosity inside the reactor 

increases. Dube et al. (1997) have used the free volume theory to model the changing 

of initiator efficiency. Initiator efficiency should decrease at high conversion for bulk 

polymerization (Achilias, 2007). 

 

 

2.8 Batch Polymerization 

 

The dynamic optimization of batch polymerization reactors has not received much 

attention from researchers as much as the dynamic optimization of general batch 
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reactor. However, many solution techniques relating to general batch reactor can 

easily be extended in order to be emploed for polymerization batch reactor (Ekpo, 

2006). This is due to the similarities between both systems which arise from the same 

batch mode operation. 

 

 

2.8.1 Gel and Glass Effects 

 

According to Cunningham and Mahabadi (1996), Balke (1972) and Balke and 

Hamielec (1973) carried out the first work to compare the experimental and 

theoretical distribution in the bulk polymerization of methyl methacrylate by using 

AIBN as the initiator. The results showed that the bulk polymerization of MMA to 

high conversion leads to a gel effect in which there is a sharp rise in both the 

monomer conversion and the polymer average molecular weight (Balke and 

Hamielec, 1973). 

 

The viscosity of the reacting mixture inside a reactor increases by several orders of 

magnitude as the polymerization started until the conversions complete in free 

radical polymerization. This is due to autoacceleration or gel effect which begins at 

30-50% of conversion (Andrzejewska and Bogacki, 1997) which caused a drastic 

decrease in the rate of termination because of limited mobility of polymer chains 

(Achilias, 2007) . 

 

Baillagou and Soong (1985a) developed gel effect model for the free radical 

polymerization of poly methyl methacrylate (PMMA) under nonisothermal 
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conditions. It has been used to simulate profiles of various system parameters such as 

temperature, initiator concentration, and conversion. The results from his study show 

the radical and dead polymer molecular weight distributions give average consistent 

by those found by the method of moment. 

 

A kinetic study has been performed by Arai et al. (1986) on the bulk thermal 

polymerization of styrene in the temperature range 100
o
C to 180

o
C. Rate equations 

were derived on the basis of a model which introduced the gel effect into each 

elementary reaction by considering the decrease of segmental jump frequency during 

polymerization. Jump frequency for bulk diffusion usually identified through the 

atomic jump and the spatial diffusion coefficient (Capasso, 2003). The model from 

this work could successfully simulate the conversion and the average molecular 

weight. 

 

The gel-effect for the batch solution polymerization of styrene initiated by AIBN 

with toluene as the solvent was investigated by Soots and Stanford (1991). The study 

used a central composite experimental design in two variables and they are 

temperature and initial initiator concentration. The results show that the gel-effect 

correlates very well with the solution viscosity and reaction temperature. The 

resulting process model was found to simulate well the experiments carried out by 

others. 

 

Penlidis et al. (1992) derived a detailed and complex mechanistic model for a batch 

solution polymerization of MMA. They showed how this complex model can be 

simplified using various assumptions and approximations. Five models of different 
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levels of complexity are presented and examined for their suitability for process 

optimization and control applications. They also discussed and compared the model 

responses in order to check whether the simplifications degrade the predictive 

capabilities of the original model. 

 

A model for the simulation of suspension polymerization of MMA has been 

developed by Maschio et al. (1992) which allows to accounts for the effect of 

diffusive phenomena on reaction rate and to evaluate molecular weight distribution 

under non-isothermal conditions. Experiments were carried out in a laboratory 

reactor in order to validate the developed model. The results showed that an increase 

of the reaction temperature during the gel effect time had a favorable influence on 

the polymer quality.  They also indicated that the control of temperature profiles in 

the reactor is an interesting operating strategy to be adopted in industrial units. 

 

A new theoretical framework was proposed for modeling diffusion-controlled free-

radical polymerization reactions by Achilias and Kiparissides (1992). The ability of 

the present model to explain the mechanism of diffusion-controlled reactions was 

demonstrated by analyzing the free-radical polymerizations of styrene and methyl 

methacrylate initiated by the thermal decomposition of AIBN, AIBME, AVN, and 

LPO chemical initiators. Termination rate constant, propagation rate constants and 

initiator efficiency were expressed in terms of a reaction-limited and a diffusion-

limited. The diffusion limited was shown to depend on the diffusion coefficient of 

the corresponding species such as polymer, monomer, primary radicals and an 

effective reaction radius. It was shown that the proposed approach for modeling 

diffusion-controlled reactions did not require the introduction of critical break points 
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to mark the onset of various diffusional effects such as gel effect and glass effect. In 

this approach, the diffusion effects are taken as an integral part of the initiation, 

propagation and termination reactions from the beginning until the end of the 

polymerization process. It was shown that, at high conversions, initiator efficiency 

strongly depended on the size of initiator molecules.  

 

Raja (1995) solved a minimum time problem for the batch polymerization of styrene 

using Lagrange multipliers with the Pontryagin‟s Maximum Principle to get the 

optimal temperature profiles for different fixed values of monomer conversion and 

number average chain lengths. He did not consider the gel and glass effect in his 

study. 

 

Pinto and Ray (1996) calculated the molecular weight distribution (MWD) of a 

polymer from its mathematical model by using generating functions. The system 

used in his study was free-radical solution copolymerization of vinyl acetate (VA) 

and methyl methacrylate (MMA) in tert-butanol (TB). Besides that he also used the 

simplex method to determine the optimal temperature sequence for free radical 

polymerization to obtain desired monomer conversions and average molecular 

weights. 

 

Loeblein et al. (1997) considered the parametric uncertainty for his study on the on-

line optimization of batch reactors. The method of orthogonal collocation is 

employed to convert the differential algebraic optimization problem (DAOP) of the 

dynamic optimization into a nonlinear program (NLP) and determine the nominal 

optimum. The method of average deviation from optimum is developed for time 



 

 

42 

 

optimal problems  in  a  semi  batch  reactor  to produce 2-acetoacetyle pyrrole from 

pyrrole and  diketene in  minimum  time. 

 

A computational model for free-radical polymerization reactions for styrene and 

MMA in an ideally macromixed batch stirred tank reactor has been developed by 

Wolff and Bos (1997). In this research, they included a fundamental approach to 

account for the viscosity effects such as the cage effect, gel effect and glass effect as 

proposed by Achilias and Kiparissides (1992).  

 

Asteasuain et al. (2000) introduced a dynamic model of the high pressure 

polymerization of ethylene in tubular reactor and a dynamic optimization problem is 

formulated for studying start-up strategies. The objective functions for this study are 

to maximize outlet conversion and optimize the time necessary for its stabilization 

while keeping product molecular properties within commercial ranges. Results from 

this work showed the time responses for temperature, number-average molecular 

weight and conversion along the reactor axial distance for different control variable 

profiles. The interface gOPT of the gPROMS simulator was used to resolve the 

optimization problem and to perform the simulations undertaken for this study. 

 

The effect of operational conditions on the performance of a controlled batch 

polymerization reactor for solution polymerization of styrene was investigated 

experimentally by Erdogan et al. (2002). Besides that they also investigated the 

effect of agitation speed on conversion and heat transfer coefficient in free radical 

chain growth polymerization in this controlled, stirred, jacketed batch reactor. The 

experiments were conducted under optimal loading conditions calculated by using 



 

 

43 

 

Lagrange's multiplier method. The reactor temperature was controlled by 

manipulating the heat input to the reactor. A good agitation was found to improve the 

process control and efficiency of the control performance by improving heat transfer 

between the jacket and the reactor and quite promising in improving the heat transfer 

and temperature control. 

 

The kinetics of bulk thermal polymerization of styrene over the range of 100-200 
o
C 

was studied based on three stage polymerization model (TSPM) in the research 

carried out by Qin et al. (2002). TSPM plots showed that the whole polymerization 

course only exhibits two stages, low conversion stage and gel effect stage, which is 

consistent with TSPM as the reaction temperature is higher than the glass transition 

temperature of polystyrene. From this research it was found that the critical 

conversion for the transition from low conversion stage to gel effect stage was 

independent of the reaction temperature and approximately equal to 0.5. In addition, 

the apparent reaction rate constants obtained from TSPM plots could be correlated to 

temperature by Arrhenius equation. Expressions predicting number-average 

molecular weight were also derived according to TSPM. Using the expressions, it 

was found that number-average molecular weight is independent of the conversion 

and relative to the reaction temperature at low conversion stage. However, it varied 

with the conversions at gel effect stage and the variations were more obvious as the 

reaction temperature rises.  

 

Fan et al. (2003) worked on a pilot-scale tubular reactor fitted with in-line static 

mixers. It is experimentally and theoretically evaluated for the polymerization of 

concentrated MMA solution. A non-isothermal and non-adiabatic axially dispersed 
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plug-flow model was used to describe the flow characteristics of the reactor. 

Measured monomer conversions and polymer molecular weight were accurately 

predicted by model simulation. Studies also demonstrated the importance of inhibitor 

kinetics on the dynamic and steady-state performance of the reactor. 

 

Ekpo and Mujtaba (2004) worked on the optimization of free radical polymerization 

of styrene using 2,2' azobisisobutyronitrile catalyst, (AIBN) as initiator in a batch 

reactor. A dynamic optimization method was used to find the optimal temperature 

profile that will yield a desired level of monomer conversion and number average 

molecular weight in minimum time. They used CVP technique in order to optimize 

the temperature and the length of the interval. Gel and glass effects were not 

considered in their work. However, Ekpo and Mujtaba (2008) also considered 

solution polymerization of MMA but included gel and glass effect into their model. 

 

Verros et al. (2005) compared two different approaches to model diffusion controlled 

free radical polymerization, namely the free volume model and the entanglement 

theory. Both of the approaches were applied to MMA bulk polymerization in a batch 

reactor to calculate the conversion, total radical concentration, the number and 

weight average molecular weights as well as the entire molecular weight distribution 

as a function of the polymerization time and the process conditions. All the 

diffusion-controlled phenomena were taken into account, including gel, glass and 

cage effects as well as residual termination. Model predictions in this work were in 

good agreement with the available experimental data for conversion, number and 

weight average molecular weights as well as the entire molecular weight distribution.  
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A comprehensive mathematical framework for modeling the gel effect in branched 

polymer systems with application to the solution polymerization of vinyl acetate 

(VAC) was developed by Verros and Achilias (2009). The model is based on the free 

volume theory to describe the solution free radical homopolymerization of VAC. The 

model predictions for monomer conversion and number and weight average 

molecular weight were in good agreement with the data in the literature. 

 

An experimental studies was carried out by Achilias and Verros (2010) for MMA 

bulk polymerization as well as the bulk and solution polymerization of VAC using 

the model developed in their previous study. Again the estimated parameters in the 

models were found to be in close agreement with literature. A detailed experimental 

study of diffusion-controlled reactions in free radical polymerization using 

differential scanning calorimetry (DSC) was carried out by Achilias and Verros 

(2010) at a wide range of experimental conditions including initial initiator 

concentration, reaction temperature, and type and amount of solvent for methyl 

methacrylate bulk polymerization as well as the solution and the bulk polymerization 

of vinyl acetate. 

 

 

2.8.2 Initiator Efficiency 

 

The initiator efficiency is often considered to be constant (Achilias and Kiparissides, 

1992). However, the initiator efficiency may decrease significantly with the high 

viscosity of reaction mixture (Russell et al., 1988). Free radical polymerization is 

usually initiated by either thermal or photolytic dissociation of initiators. The rate of 
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primary radical formation is reflected by the initiator efficiency, f. For bulk styrene 

polymerization with AIBN initiator at 130
o
C, Wang and Matyjaszewski (1995) 

observed the increase of initiator efficiency, f from 22% to 65% with the addition of 

2 molar CuCl2 in the system. Note, the initiator efficiency decreases with the 

decrease of temperature (Xia and Matyjaszewski, 1997). 

 

Initiator efficiency at the start of the polymerization reaction is usually between 0.3 

and 0.8 and decreases as the reaction proceeds until it reaches a limiting value of 

zero (Kurdikar and Peppas, 1994). A theoretical investigation of the initiator 

efficiency was undertaken by using 2,2-dimethoxy-2- phenylacetophenone as a 

model initiator. Expressions that allow for the prediction of the initiator efficiency at 

the onset and during the course of the polymerization were developed.  

 

Initiation reaction could also be diffusion-controlled and should decrease at higher 

conversion of bulk polymerization (Achilias, 2007). The initiator decomposition rate 

constant, kd, is not affected by viscosity of the reaction medium. The initiator 

efficiency was assumed to strongly depend on diffusion-controlled phenomena.   

 

Ekpo and Mujtaba (2008) carried out a dynamic optimization of MMA in batch 

reactor to attain the desired polymer molecular and end point characteristics. A 

constant value of initiator efficiency 0.53 was employed in this work.  

 

According to Ghosh et al. (1998) initiator efficiency, f decreases as the viscosity of 

the reaction  medium  increases. They improved the model of Ray et al. (1995) was 

improved by allowing the value of f to decrease at high conversion. A series of bulk 



 

 

47 

 

and solution polymerizations have been carried out at two different temperatures 

(50°C and 70°C) using benzoyl peroxide (BPO) as initiator. 

 

 

2.8.3 Emulsion Polymerization 

 

Many detailed studies have been reported in the literature on kinetic studies of batch 

emulsion copolymerization. Zeaiter et al. (2002) developed the control of particle 

size and molecular weight distribution described by a population balance model of 

styrene emulsion polymerization in semi-batch process. A bimodal distribution was 

observed at very low rate and a bigger particle size with higher feed.  

 

 Saldivar (1996) provided extensive information on developing a comprehensive 

mathematical model for emulsion copolymerization of several monomers in tank 

reactors. The developed model was validated by Saldivar and Ray (1997) with the 

emulsion copolymerization of styrene and MMA. A good agreement between the 

model predicted results for the effects of initiator and emulsifier initial 

concentrations and experimental data was obtained.  

 

Another extensive kinetic model was develop by Coen et al. (1998) for the particle 

size distribution (PSD), particle number, particle size and amount of secondary 

nucleation in emulsion polymerizations. The model included the kinetic events such 

as the aqueous phase propagation, entry and re-entry, transfer, termination, diffusion, 

coagulation and particle formation by both micellar and homogeneous nucleation 

mechanisms for a zero-one system. The extension of this model which takes all the 
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complex events in emulsion polymerization into account for zero-one system was 

undertaken later by Coen et al. (2004). Pseudo bulk kinetics was included in the time 

evolution of the particle size distribution. 

 

Alhamad et al. (2005a) developed a comprehensive model for emulsion 

copolymerization process of styrene and MMA which allowed the prediction of key 

polymer properties such as conversion, particle size distribution (PSD), molecular 

weight distribution (MWD), number average molecular weight (Mn), weight average 

molecular weight (Mw) and also average particle size. The model was used to 

maximize Mn for emulsion copolymerization of styrene with one fixed pre-batch time 

1500s. They optimized temperatures, monomer flow rates, initiator flow rates and 

surfactant flow rates using 5 control intervals. Total monomer feed was used as 

constraint based on which the final batch time was calculated. Experimental works 

was also carried out to validate the results. 

 

A steady-state model was developed by Mead and Poehlein (1989) for emulsion 

copolymerization in a seed-fed continuous stirred tank reactor (CSTR) for Styrene-

MMA and Styrene-Acrylonitrile. The main reaction sites were considered to be the 

monomer-swollen polymer particles. The model was used to predict the steady-state 

PSD and rate of reaction for emulsion copolymerization in a seed-fed CSTR.   

 

Bakhshi et al. (2010) carried   out   a semi-batch  emulsion  copolymerization  to 

prepare poly(butyl acrylate-co-glycidylmethacrylate) latexes using potassium 

persulfate as  an  initiator,  sodium  dodecylbenzene  sulfonate  as  an emulsifier and 

sodium bicarbonate as a buffer. According to them, high agitation speed reduced the 
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coagulation of polymer particles however had a negative effect on the monomer 

conversion.    

 

The stability and kinetic behaviour of ab-initio emulsion copolymerizations of 

methyl methacrylate/butyl acrylate (MMA/BA) initiated by KPS (Potassium 

peroxodisulfate) in the presence of different amounts of sodium montmorillonite 

(Na-MMT) and different Sodium laurylsulfate (SLS) concentrations was studied by 

Bonnefond et al. (2011). The kinetics of the emulsion copolymerization of MMA/BA 

(MMA/BA = 50/50) in the presence of (Na-MMT) was investigated. SLS was used 

as surfactant at different concentrations and potassium persulfate as initiator.  

 

Valappil (2002) formulated the control of end-use product properties as a nonlinear 

model predictive control problem of emulsion polymerization of styrene. Besides 

that an efficient numerical technique using successive linearization was utilized for 

the solution for this work. A parameter adaptive extended Kalman filter was used for 

state estimation of the molecular properties for the emulsion polymerization of 

styrene. The model developed by him can be used to predict the end-use properties, 

as a function of both the molecular weight and particle-size distributions of the 

product.  

 

The development of a mathematical model for emulsion copolymerization of styrene 

and butyl acrylate carried out in the presence of n-dodecyl mercaptan as chain 

transfer agent (CTA) was carried out by Benyahia et al. (2009). This model is based 

on the kinetics of the complex elementary chemical reactions occurring both in the 

aqueous phase and in the particles. It takes into account the particles nucleation, the 
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radicals absorption and desorption, and the partition of each monomer, CTA and 

inhibitor between the monomers droplets, the aqueous phase and the polymer 

particles. A new approach was used to simplify the population balance by using two 

differential equations instead of the large number of differential equations generally 

used for the same purpose. This approach allowed reducing the corresponding 

simulation time. 

 

Ginsburger et al.(2003) carried out the modeling and simulation of batch and semi-

batch emulsion copolymerization of styrene and butyl acrylate. The key parameter of 

the data used to simulate in semi-batch process was taken from the basis of batch 

experimental data of emulsion copolymerization. Initiator used in the process is 

ammonium persulfate (NH4S2O8) and surfactant composed of a mixture of anionic 

Texapon and non-ionic Genapol emulsifiers. A ten minutes pre-batch time for seed 

formation was used in the semi-batch process.  

 

 

2.9 Dynamic Optimization Problems 

 

Many engineering systems including polymerization in batch reactor are transient 

and are modelled by combinations of Differential-Algebraic Equations (DAEs) of 

varying complexities (Ekpo, 2006). The objective of dynamic optimization is to find 

the optimal control profile of one or more control variables or control parameters of a 

system. Today, there are large ranges of computational methods available for solving 

dynamic optimization problem.  
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 Most popular methods used for optimization are presented here; 

 Pontryagin‟s Maximum Principle (PMP) (Davisson et al., 1992) 

 Discrete Maximum Principle (DMP) (Karátson and Korotov, 2005) 

 Orthogonal collocation with successive quadratic programming (OC with 

SQP) (Xuemei et al., 2006) 

 Orthogonal collocation (OC) (Gupta, 2006) 

 Iterative dynamic programming (IDP) (Chen and Wang, 2007) 

 Generalized reduced gradient  (GRG) with golden search (GS) (Garcia et al., 

1995) 

 Nonlinear Programming with control vector parameterization (CVP) and 

successive quadratic programming (SQP) (Ekpo, 2006) 

In the next sections Nonlinear Programming, CVP and SQP are briefly summarized. 

 

 

2.9.1 Conversion of Dynamic optimization Problem to Non-Linear 

Programming Problem 

 

The model equations used in the polymerization process (Chapter 3) results to in 

differential and algebraic equations (DAEs) due to the dynamic nature in batch 

reactor system. The DAEs can be represented in the compact form (Aziz, 2001Ekpo, 

2006): 

 

                                      (2.13) 

 

Where: 
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t   is the independent variable,  

x(t)  R
n
  is the set of all state variables ,  

x’(t)   is the derivatives of x(t) with respect to time,  

u(t)  R
m
  is a vector of control variables such as reactor temperature,  

v  is a vector of time invariant parameters (design variables) such as 

volume of   the reactor.  

Suitable initial conditions x(t) are defined at time t = t0. The time interval of interest 

is [t0, tf] and the function f: R  R
n
  R

n
  R

m
  R

p
  R

n
 is assumed to be 

continuously differentiable with respect to all its arguments. 

 

The system is subject to bounds on the controls; 

 

                                (2.14) 

   

Where       and       are given continuous functions of time on         and 

interior point or terminal constraints at time     of the form: 

 

         
                           (2.15) 

 

Where 

                     (2.16) 

 

At the terminal point where tp equals tf, the system performance is minimised in terms 

of a scalar objective function as: 
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                        (2.17) 

 

The optimal control problem is to choose to optimize set of control variables u(t) 

subject to constraints and bounds on the lower and upper limit in order to perform the 

dynamic optimization problems. 

 

 

2.9.1.1 Control Vector Parameterization (CVP) Technique 

 

Control vector parameterization is one of the most frequently used techniques for 

determining the optimal control profile in optimization of a batch process (Zhou and 

Yuan, 2004). According to Morison (1984), Vassiladis (1993) and, Mujtaba and 

Macchietto (1998), this technique applies parameterization to the control variable 

u(t) only and are approximated by a finite dimensional representation (Ekpo, 2006) 

to correct the dynamic optimization problem to a nonlinear programming problem. 

The technique is explained below. 

 

The time interval          is divided into a finite number of subintervals which 

contain a set of basis functions involving a finite number of parameters (Aziz, 2001): 

 

                                                           (2.18) 

 

Where tJ is equal to tf, the function is assumed to be continuously differentiable with 

respect to t and zj. The derivatives are uniformly bounded and the control is defined 

by the parameters zj and the switching time tj. 
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Then the constraints on the control become: 

 

 

                                                                  (2.19) 

 

The set of decision variables for the non-linear program can be written as: 

                                            (2.20) 

 

Where for this work, x0 refers to the initial condition (e.g. initial initiator 

concentration), z1, z2, …,zj is refer to the control variables (e.g. reactor temperature), 

t1, t2,… is the switching time and tj  is the final batch time, tf. 

 

Fikar et al. (1998) compared the Iterative Dynamic Programming (IDP) and Control 

Vector Parametrisation (CVP) and come to the conclusion where CVP was 

significantly faster and within the framework of CVP methods, it is possible to 

investigate minimum time or sensitivity problems. Utilizing the nonlinear 

programming approach through discretization appears to be the most promising 

compared to evolutionary algorithms (EA) in the work of Balku et al. (2009).   

 

 

2.9.1.2 NLP Optimization Problem 

 

The optimization problem can now be presented as: 

 

Minimize  J(y)  
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Subject to  Equality constraint  (Eqn. 2.13) 

   Inequality constraints  (Eqn. 2.15 and 2.19)  
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Successive Quadratic Programming (SQP) algorithm can be used to solve the 

nonlinearly constrained optimization problem using a sequence of quadratic 

programming (QP). The constraints of each QP problem are linearized of the 

constraints in the original problem. The resulting of QP problem is then used to find 

the direction which will specify the next step length of the decision variable. See 

Chen (1988) and Edgar et al. (2001) for further details. 

 

 

2.10 Choice of gPROMS Sofware for Modelling and Optimization 

 

2.10.1 Commercial Software 

 

There are numbers of commercial simulators in the market today for developing 

process model such as Hysis, AspenPlus and ProII. Each of the software has its 

unique features for the developed process model and it seems all of them provide a 

wide range of application flexibility. Full comparison of these software are not 

available in the literature and was beyond the scope of this work. 

 

Assessment of the parameters estimation capabilities of the gPROMS software 

compared with the Aspen Custom Modeler (ACM) software was carried out by Tijl 

(2005) using Sec-Butyl-Alcohol stripper for the case study. The physical and 

thermodynamics properties of the components in ACM are made available to the 

gPROMS model via the CAPE-OPEN interface. The CAPE-OPEN is a tool that 

allows the execution of any gPROMS model with a CAPE-OPEN compliant 

flowsheeting environment. Various aspects of parameter estimation are assessed such 
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as experiment data input, output interpretation, speed and accuracy of obtaining the 

solution. The author comes to the conclusion that the parameter estimation using 

gPROMS are better than using ACM.  

 

 

2.10.2 Features of gPROMS 

 

gPROMS (general Process Modelling Systems) has many advantages compared to 

other commercial software available in market today. The main applications of the 

software are in model-based engineering activities for process and equipment 

development and design, and optimization of process operations. Its equation 

oriented representation allows using one model for many different activities. 

According to Winkel et al. (1995), gPROMS has been widely used for the front end 

modeling and design of industrial process such as batch plants among others. The 

capability of this software package for modeling, simulation and optimization has 

been tested by Asteasuain et al. (2000), Ekpo (2006), and Sowgath (2007). Following 

are some advantages of gPROMS among many of them: 

 

1. Modelling and solution power 

 All solvers within gPROMS are specifically designed for large scale systems 

and there are no limits regarding problem size. This unparalleled modeling 

powers with the generality of the software means that it can be used for any 

processes that can be described by a mathematical model. 
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2. Project environment 

 Project tree structure is a comprehensive project environment which all 

elements of a modeling project can be easily accessed and maintained. 

Besides that, a palette view can be used to access libraries of model icons 

when building a flowsheet. 

 

3. Multiple activities using the same model 

 Once a model is built in gPROMS, it can be used for steady-state and 

dynamic simulation, parameter estimation, optimization and experiment 

design. There are multiple activities can be done using the same model. 

 

4. Integrated steady state and dynamic capabilities 

 Models can be written to be steady-state or dynamic or both. It is not like 

steady state simulators which have added dynamic capabilities or dynamic 

simulator which have to iterate to steady state. gPROMS can always solve for 

a steady state providing the models and specifications allow this.  

 

5. Sophisticated optimization capabilities 

 gPROMS's optimisation facilities can be used for steady state or dynamic 

model to find the optimal answer to any design or operational questions 

directly rather than by trial-and-error iteration.  

 

To summarize, gPROMS is a powerful general-purpose process modelling and 

optimization environment used to enhance design and operation that covers the full 

range of processes, from purely batch to purely continuous. With an accurate 
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gPROMS model of their process represented in equation form, engineers can 

simulate the system behavior, estimate unknown parameters from available data, 

optimize design and performance, and communicate with other applications and 

systems through sophisticated interfaces. Therefore, due to its strong modeling 

power among other advantages illustrated above, gPROMS is chosen for the 

modelling, simulation and optimization of processes to carry out the tasks in this 

thesis. 

 

 

2.11 Summary 

 

It is clear from the literature that the gel effect is occurs in bulk polymerization and 

concentrated solution polymerization. The research were carried out by Balke 

(1973), Balke and Hamielec (1973) for bulk polymerization of MMA initiated with 

AIBN shows the diffusion control of termination is dramatic in bulk process. 

Baillagou and Soong (1985b) developed gel effect model for the polymerization of 

PMMA. A kinetic study by Arai (1986) on the bulk polymerization of styrene also 

introduced the gel effect into the model. Soots and Stanford (1991) investigated the 

gel effect for the batch solution polymerization of styrene initiated by AIBN with 

toluene as the solvent. A new theoretical framework for modeling the diffusion-

controlled free radical polymerization of styrene and MMA by the thermal 

decomposition of AIBN, AIBME, AVN and LPO chemical initiators was proposed 

by Achilias and Kiparissides (1992). Raja (1995) and Ekpo (2004) carried out the 

optimization of bulk styrene polymerization process with AIBN initiator, however, 

the gel and glass effect is not considered in his work. In this work, the process model 
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used by Raja (1995) and Ekpo (2004) for bulk polymerization of styrene was 

improved by including the gel and glass effect. 

 

Many reported research used a constant value for initiator efficiency, f in 

polymerization process (Achilias and Kiparissides, 1992). However, the variable of 

initiator efficiency along the polymerization was also considered by other researcher 

(Wang and Matyjaszewski, 1995; Xia and Matyjaszewski, 1997; Kurdikar and 

Peppas, 1994; Achilias, 2007; Ghosh et al., 1998). In this work, the process model 

from the work of Ekpo (2004) is improved for the solution polymerization of MMA 

by using the free volume theory to calculate the initiator efficiency. 

 

Mathematical model for styrene emulsion polymerization was developed by Zeaiter 

et al., (2002) which used 45 minutes for the seed formation. The model developed by 

Saldivar (1996) was validated by Saldivar and Ray (1997) with the emulsion 

copolymerization of styrene and MMA and no pre-batch time for seed formation is 

considered. Coen et al. (2004) extended her earlier model of zero-one to pseudo bulk 

kinetics and no pre-batch time is allocated in their ab-initio system. Alhamad et al. 

(2005a) developed a comprehensive model for emulsion copolymerization process of 

styrene and MMA using one fixed time for the seed formation for ab initio system. 

The effect of different pre-batch time for seed formation in emulsion 

copolymerization of styrene and MMA is studied in this work. Besides that, the 

process model was carried out in batch and semi-batch process without pre-batch 

time. Different optimization formulation is used in this work for maximize the 

number average molecular weight (Mn) in emulsion copolymerization process by 
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using the model developed by Alhamad (2005), where the total batch time is fixed, 

instead of free time. 

 

The dynamic optimization problems were converted into nonlinear programming 

problem using the CVP techniques which were solved using efficient SQP 

(Successive Quadratic Programming) method available within the gPROMS 

software.  
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Chapter Three 

 

Mathematical Modelling of Polymerization 

Process 
 

 

 

3.1 Introduction 

 

A model is an imitation of reality and a mathematical model is a particular form of 

representation consisting of mathematical objects, such as equations, graphs and 

rules (Hangos and Cameron, 2001). Mathematical modelling is a technique for 

understanding the dynamics of a system and for predicting future outcomes within 

the system. Mathematical models of chemical and polymer  processes can be very 

complex due to their typical characteristics including non-linearity, stochastic 

behavior, time variation and also chemical reaction. By using the mathematical 

model to represent the real process will allows the model user to study and 

understand the relationships between the elements of the system without having to 

manipulate the actual system. So, use of a model to investigate the working of a 

process, certainly give many advantages rather than using the real process.  
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3.2 Modelling of Batch and Semi-batch Reactor 

 

For this work, a polymerization batch reactor model has been developed using 

gPROMS for a process to be investigated. Simulations have taken place before 

performing any significant dynamic optimization. The model describes the working 

of the polymerization in batch and semi-batch reactor systems for bulk 

polymerization of styrene, solution polymerization of MMA and emulsion 

copolymerization of styrene and MMA.  

 

A batch process is used to process a fixed amount of material each time it is operated 

where the product is removed after the processing of the reactants mixture in the 

reactor is complete. On the other hand, in a semi-batch process, material enters the 

process reactor during its operation, and no product is leaving the reactor until the 

processing time is finished. 

 

 

3.3 Modelling Free Radical Bulk Polymerization of Styrene 

 

In this work, an improvement of the process model used for polystyrene 

polymerization in batch reactors by Ekpo (2006) is first considered. Optimization of 

the process using the improved model is then considered. The process model for 

polymerization of styrene in batch reactors using 2, 2 azobisisobutyronitrile catalyst 

(AIBN) as initiator has been improved by including the gel and glass effects which 

was absent in the earlier work of Ekpo (2006).  The model is essentially a set of 

differential equations that describe the changes taking place in the reactor.  
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3.3.1 Simple Kinetic Model 

 

The model used was adopted from work of Ekpo (2006). They are presented in terms 

of first three moments of dead polymer and living polymer since this work is 

considering the gel and glass effects. Methods of moments of molecular weight 

distribution (MWD) are suitable for the purpose of controlling the MWD of the 

polymer (Begum and Simon, 2011; Baillagou and Soong, 1985b; Prasad et al., 2002). 

The first three moments are adequate to characterize the MWD where the zeroth 

moment refers of the mean of distribution, the first moment describe the standard 

deviation and the second moment describe the skewness of the distribution. 

 

Polymer MWD can be characterized by means of ratios of dead polymer moment 

using methods of moments. The moments for the dead polymer moment are defined 

in this equation: 

 

              (3.1) 

 

Where Pn is the chain length, n is the number of molecules in the chain and k is the 

order of the moment. The rate of change of the zeroth, first and second moments of 

dead polymer molecular weight distribution (MWD) (Ray, 1972) can be given as:  

          

   

  
        

  
 (3.2) 

   

  
        

          (3.3) 

   

  
           

   
 (3.4) 
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Where kt is the rate of termination reaction and μi is the i
th

 active polymer moment. 

Dimensionless form for monomer concentration, M, initiator concentration, I and 

dead polymer moments     can be defined as equation 3.5, 3.6 and 3.7. M0 and I0 in 

the equations are initial monomer concentration and initial initiator concentration 

respectively.  

 

       
 

  
 

 (3.5) 

    
 

  
 

 (3.6) 

   
  

  
  (3.7) 

 

The rate of consumption of initiator concentration, I and the dimensionless form of 

rate of initiator conversion, c can be expressed as: 

 

  

  
       

 (3.8) 

  

  
          

          (3.9) 

 

Quasi steady state assumption (QSSA) is a hypothesis saying that the rate of radical 

generation is approximately equal to the rate of radical destruction throughout the 

polymerization. By applying quasi steady state assumptions (QSSA) for this model, 

the equations for zeroth, first and second active polymer moment become: 

    
     

  
 
   

 
 (3.10) 
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 (3.11) 

   
                   

    
 

 (3.12) 

 

Initiator concentration in the equation of zeroth active polymer moment is substituted 

with the initiator conversion in order to get the dimensionless form of zeroth active 

polymer moments which becomes: 

 

    
           

  
 
   

 
 (3.13) 

    
     

    
 

     

    
  

 (3.14) 

 

Rearrange the equation 3.10 for    to become: 

 

  
   

     

  
  

 (3.15) 

          

Then substitute    from equation 3.15 into equation 3.11 with yield the 

dimensionless equation of the first active polymer moment: 

 

    
  

 

  
 

     

    
  

 (3.16) 

       
   

  
  

 (3.17) 

Rearrange and substitute equation 3.12 yield the dimensionless form for second 

active polymer moment: 
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 (3.18) 

   

To make the dead polymer moments of zeroth dead polymer moment of molecular 

weight distribution dimensionless, substitute    and    in equation 3.2 with 

rearranged equation 3.7 and equation 3.15. Then equation 3.2 becomes: 

 

   
  

 
             

    
 

 (3.19) 

   
  

          
 (3.20) 

        

Where a is defined from the equation: 

 

   
  
  

 
 (3.21) 

 
  

f in the equation is the initiator efficiency which is the fraction of primary free 

radicals that successfully initiate polymerization. Value for f is normally in the range 

of 0.3 to 0.8 due to side reaction where some of the radicals decompose to form 

compounds cannot decompose further to initiate the polymerization.  For this system 

with AIBN as initiator, f is equal to 0.6 which is the same as previous work of Ekpo 

(2006) for bulk polymerization of Styrene. 

               

Substitute    from equation 3.17 into equation 3.3 yield; 

 

   

  
         

   

  
  

 (3.22) 
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 (3.23) 

   

  
                 

           

  
 
   

 
 (3.24) 

 

For the dimensionless form of first dead polymer moments, again the relation for    

is used and the equation becomes: 

 

     

  
                 

           

  
 
   

 
 (3.25) 

                   

Equation 3.25 also can be written: 

 

   
  

              
      

  
 
   

               
 (3.26) 

   
  

                            
 (3.27) 

 

Where, 

      
      

  
 
   

 
 (3.28) 

Long chain hypothesis (LCH) is the assumption that the amount of monomer 

consumed in the initiation stage is negligible compared to that consumed by growing 

chain. By making long chain approximation, the first term on the right hand side of 

equation 3.28 can be neglected (Chen and Jeng, 1978). Therefore, the first dead 

polymer moment is: 

   
  

                  
    (3.29) 
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By using the relation for   , the dimensionless form of the second dead polymer 

moment become: 

 

   
  

 
  

  
  

      

    
      

   
 (3.30) 

   
  

 
      

  
 

    
 

  
 

 (3.31) 

   

Substituting the    from 3.17, the above equation becomes: 

 

   
  

 
    

  
    

   

  
  

  

  
    

   

  
 

 

 
 (3.32) 

   

Rearranging and simplification gives: 

 

   
  

 
      

  
 

   
   

    
 

  

  
    

   

  
 

 

 
 (3.33) 

   

   
  

 
      

  
 

   
   

    
 

  

  
   

  
      

  
 

  
   

  
   

  (3.34) 

   

   
  

 
      

  
 

   
   

    
 

    
 

  
 

      

  
 

  
   

    
 

  (3.35) 

   

   
  

 
      

  
 

   
   

    
 

    
 

  
 

 (3.36) 

Substituting the    from equation 3.10, the above equation becomes: 

   
  

 
    

  
 
           

  
 
   

 
   

   

    
 

  

  
 
           

  
  

 (3.37) 
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Simplifying the above equation from equation 3.29 and using 

     

  
 

  
 

 (3.38) 

   

the dimensionless equation for second moment of molecular weight distribution 

becomes: 

   
  

                            
              

 (3.39) 

 

For the convenience of the readers, all the model equations are collected again and 

presented here. 

 

First three dead polymer moments 

   
  

          
 (3.20) 

  

  
 

   
  

                  
 (3.29) 

   
  

                            
              

 (3.39) 
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First three living polymer moments 

   

  
        

  
 (3.2) 

   

  
        

 (3.3) 

   

  
           

   
 (3.4) 

 

Initiator concentration and initiator conversion 

  

  
       

 (3.8) 

  

  
          

 (3.9) 

 

Number average molecular weight and weight average molecular weight 

           (3.40) 

           (3.41) 

      
      

  
 
   

 
        (3.28) 

     

  
 

  
 

        (3.38) 

 

Rate constant for decomposition, propagation and termination 

          
   

  
  

 (3.42) 

   
        

   

  
  

 (3.43) 

           
   

  
  

 
 
      (3.44) 

   
  

  
 

 (3.45) 
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        (3.21) 

 

In this work, the gel and glass effect will take into account for the bulk free radical 

polymerization initiated by AIBN which was absent in early work of Ekpo and 

Mujtaba (2004).  

 

The equations that will be used to calculate the gel and glass effects in polystyrene 

polymerisation for this work are the same as in Ekpo and Mujtaba (2008); Fan, 

Gretton-Watson et al. (2003) and Baillagou and Soong (1985b) which was used for 

MMA polymerization. However some parameters have been changed in order to fit 

the process of bulk free radical polystyrene process. The value for     and     are 

taken from Baillagou and Soong (1985b) with some amendment of the value of 

activation energy in calculation of       This value have been chosen based on the 

theory that the termination kinetic rate will decrease due to severe diffusion 

limitations. The result shows that the trend of kp and kt agreed with the theory of the 

diffusion limitation. 

 

In order to calculate the diffusion coefficient of the polystyrene, the glass 

temperature, Tgp in the equation is referred to glass transition temperature (Tg) of the 

polystyrene. These equations express the changing volume fractions of consumed 

monomer and produced polymer during the polymerization reaction. Auto 

acceleration modifies the rate constants as the polymer fraction increases (Ekpo, 

2006). The equations are presented below.  
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 (3.46) 

   
     

  
 

 (3.47) 

   
   

  
   

    

      

 
 (3.48) 

   
   

  
   

    

      

 
 (3.49) 

                                  (3.50) 

                                    (3.51) 

      
            

                      
 
           

  
 (3.52) 

         

A detailed treatment of all aspects of the model can be found in the referenced texts. 

 

 

3.3.2 Energy Balance Model 

 

Detailed model or energy balance model was developed by adding energy balance 

equations to the simple kinetic model. Energy balance equations for the free radical 

polymerization of styrene using jacket coolant flow and jacket temperature set point 

as the control variables are presented here 

 

 

 

 

Type 1: jacket coolant flow (Fj) as control variable 
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 (3.53) 

   

  
 

  

  
         

  

       
 

 (3.54) 

              (3.55) 

             (3.56) 

 

Type 2: Jacket temperature set point (Tjsp) as control variable; 

 

  

  
 

     

    
 

 (3.57) 

   

  
 

       

  
 

  

       
 

 (3.58) 

 

Rp and r0 are the rates of polymerization and radical formation respectively. 

          (3.59) 

    
     

  
 
   

 
 (3.60) 

 

 

3.4 Modelling Free Radical Solution Polymerization of MMA 

 

This work is concerned with the improvement of the process model used for MMA 

polymerization in batch reactors by Ekpo (2006) and optimization the process using 

the improved model. The process model for solution polymerization of MMA in 

batch reactors using 2, 2 azobisisobutyronitrile catalyst (AIBN) as initiator has been 

improved by using the free volume theory to calculate the initiator efficiency,f. The 
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value of f in the earlier work of Ekpo (2006) was set at a constant value in order to 

avoid more complexity to the model.   

 

The free radical solution polymerization of Methyl Methacrylate (MMA) with the 

initiator are feed into the tank reactor where the process of polymerization occurs. 

After the cycle batch time the product of Polymethyl Methacrylate (PMMA) can be 

taken out from batch reactor. 

 

The free radicals solution polymerization of MMA in batch process proceeds in 

much the same as bulk process except the addition of solvent. Solvent is added to 

ensure that there is no heat build-up in the reactor and to aid an effective heat 

removal strategy. This eventually will hinder the occurrence of gel and glass effect in 

the reactor by reducing the viscosity of the reacting mixture.  

 

The mechanism of the process also starts with the initiation of initiator at the 

beginning of the process. Simply put, the initiator breaks down in the presence of 

heat to produce free radicals which combine with the monomer to form growing 

polymer chains. However, chain termination for MMA is predominantly by 

disproportionation, where growing chains will terminate independently (Ekpo, 2006). 
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3.4.1 Simple Kinetic Model 

 

The model equations adopted in this work for the solution polymerization of MMA 

have been taken from Ekpo (2006). The free radical polymerization mechanism as 

discussed before in section 2.5 is used to express the simple kinetic model. The 

standard assumptions of the model for the solution polymerization of MMA are as 

follows; 

a) Quasi-steady state approximation (QSSA) and long chain hypothesis are valid 

for the system. 

b) All reactions steps in the system are irreversible. 

c) Chain transfer to solvent is negligible compared to other reaction steps. 

d) The gel and glass effects for the polymerization are included. 

 As with polystyrene, the polymerization process start with the decomposition of 

initiator to breakdown the initiator molecules, followed by the reaction of the free 

radicals with the monomer. The initiator and monomer balances can be given by 

equations: 

 

   

  
       

 (3.61) 

   

  
               

 (3.62) 

 

where Ci and Cm are the concentrations of initiator and monomer respectively.  

The decomposition of initiator molecules to form very active primary radicals are 

depend on the initiator efficiency, f. Not all initiator molecules decomposed to form 

primary radicals since some of them might either have self-terminate or react with 

other reactants in the system which make the initiator efficiency less than 100%.  
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Achilias and Kiparissides (1992) had reported that there are quite a lot of published 

paper has treated the initiator efficiency, f as a constant value. Ekpo (2006) and Ekpo 

and Mujtaba (2008) used a constant value of 0.53 for the initiator efficiency. 

However, it is believed that the initiator efficiency is not constant and will decrease 

as the viscosity inside the reactor increases. In this work, the initiator efficiency used 

in the simple model is improved by using the free volume theory.  

Dube et al (1997) have used the free volume theory to model the changing of initiator 

efficiency as below: 

 

            
 

  
 

 

       
   

(3.63) 

 

Where; 

 f0 is the initial initiator efficiency. 

Cf is a parameter which modifies the rate of change of the efficiency.  

VF is free volume 

VF,crit is critical free volume. 

 

The value of Cf and f0 are 0.006 and 0.53 respectively (Fan et al., 2003). The free 

volume (VF) and critical free volume (VF,crit) equations were given by Fan et al. 

(2003) as below: 

 

                                        

                  

(3.64) 
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                                (3.65) 

 

where       and    are the volume fraction of monomer, polymer and solvent 

which can be obtained by the equations below:  

            (3.66) 

            (3.67) 

           (3.68) 

 

The first three moments equations of living and dead polymer are presented in 

equation (3.70) – (3.75). 

   
  

             
  

 (3.69) 

   
  

                                            
 (3.70) 

   
  

                                                  
 (3.71) 

   

  
                          

  
 (3.72) 

   

  
                      

 (3.73) 

   

  
                             

  
 (3.74) 

 

The monomer conversion at any point, the number and weight average molecular 

weight are: 

   
  

     
  (3.75) 
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 (3.76) 

   
     
     

     
 (3.77) 

 

Where MWm is the molecular weight of the MMA monomer. Then the polydispersity 

index can be written: 

   
  

  
 

 (3.78) 

 

The gel effect is very pronounced in MMA polymerization. This is an auto 

acceleration effects that occurs when the increasing viscosity of the reacting mixture 

slows down the termination rate because of diffusional limitations. Autoacceleration 

modifies the rate constant as the polymer fraction increases. The equations given 

below express the temperature dependent rate constant used in the simple kinetic 

model for the solution polymerization of MMA. 

 

                                      (3.79) 

                                     (3.80) 

                                      (3.81) 

                                       (3.82) 

                                      (3.83) 

                                         (3.84) 

                                              (3.85) 

                     (3.86) 

                     (3.87) 
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 (3.88) 

 

 

3.4.2 Energy Balance Model 

 

 

 
Figure 3.1: Schematic diagram of batch reactor system 

 

As shown previously for polystyrene process, an energy balance model is developed 

by adding energy balance equations to the simple model. The reactor is assumed to 

be well mixed. The dynamics of the reactor wall are assumed to be negligible with 

respect to the reacting mixture. Based on these assumptions, the energy balance for 

the reactor temperature and jacket temperature can be expressed as: 

  

Feed 
inlet 

Coolant / 

steam inlet 

Coolant / 

steam 

outlet 

Output 

Stirrer 

Jacket 

temperature, Tj 
Initiator 

concentration, Ci 
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 (3.89) 

   

  
 

         

  
 

        

       
 

 (3.90) 

 

TJsp is the jacket temperature set point and is used as the control variable in place of 

reaction temperature in the energy balance model. This model is similar to Type 2 

(page 70) model presented for styrene polymerization and was used by Ekpo and 

Mujtaba (2008). However, online implementation of the optimal control paths 

obtained in this work is not done within this research and will be put as the 

suggestion for future work in chapter 7. τJ is the jacket time constant while Rp is the 

rates of polymerization. 

 

The specific heat capacity and the density of the the reacting mixture are given below 

   
                    

        
 

 (3.91) 

                               (3.92) 

   

The specific heat is calculated from the mole average value of the various 

components in the reacting mixture namely polymer, monomer and solvent. 
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3.5 Modelling Free Radical Emulsion Copolymerization of Styrene and 

MMA  

 

The mathematical model for emulsion copolymerization of Styrene and MMA using 

zero-one kinetics system in this work adopted from Alhamad (2005).  The emulsion 

copolymerization process of two monomers (styrene and MMA) begins with the 

decomposition of the initiator to become free radical initiators in the water phase, 

with coefficient of kd (s
-1

). These initiator radicals are needed to initiate the 

polymerization process where they react with the monomers A and B to generate 

oligomeric radicals in the water phase as describe below: 

   
  
      

 (3.93) 

    
   
     

  
 (3.94) 

 

Since this copolymerization process involves two types of monomer, the primary 

radical will undergo propagation process by propagated with monomer A (styrene) or 

B (MMA), with coefficient of kp,A or kp,B and can be described by, 

     

    
       

  
 (3.95) 

     

    
       

  
 (3.96) 

 

Then these oligomeric radicals undergo a sequence of reactions as shown below: 

   
   

     
 

          
  

 (3.97) 

 

These oligomeric radicals will continue the propagation process with monomer A or 

monomer B with coefficient of kpAA, kpAB, kpBB or kpBA. 
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 (3.98) 

   
    

     
         

  
 (3.99) 

   
    

     
         

  
 (3.100) 

   
    

     
         

  
 (3.101) 

 

There are three fates of these oligomeric radicals; they can undergo termination with 

another radical, enter into a latex particle or a micelle, or further propagate and form 

a new particle by homogeneous nucleation when it achieve its critical size for 

homogeneous nucleation, jcrit.  

   
    

     
                          

 (3.102) 

   
                 

  
 

                         
 (3.103) 

   
          

          
 

                                     
 (3.104) 

       
                (3.105) 

 

The dissociation of the initiator can be described with: 

 

    

  
           

  

  
 

(3.106) 

   
            

   

       
   

   

 

(3.107) 

                        (3.108) 

 

Where f is the initiator efficiency and kd is the dissociation coefficient (l/mol.s). 

There are four types of radical species that need to be addressed and balanced in the 

aqueous phase. They are the oligomeric radicals of degree 1; oligomeric radicals for 
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degree greater than 1 and less than z; oligomeric radicals degree greater than or equal 

to z and less than jcrit -1; and oligomeric when it achieved the jcrit. The balance 

equation for the four types of oligomeric mentioned above can be represented by the 

set equations below: 

 

    
      

     
          

 
 (3.109) 

     
     

            

     
          

                                                                 
 (3.110) 

     
     

            

     
         

                
                  

 
 (3.111) 

                                                                        for i = z to (jcrit-1);   

        
     

       
             

      
 

 (3.112) 

  

Where; 

Cw is the monomer concentration in water phase 

T is total concentration of the radicals in the aqueous phase 

 

The monomeric radicals formed by radical transfer to the monomer, M
●
, either the 

terminal monomer could be styrene or MMA, M
●

A or M
●

B may desorb from the 

particle with such “excited radicals”. This adsorption- desorption process is 

reversible. 

 

The decomposition coefficient, kd of the persulfate is given by,  
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                                  (3.113) 

 

The entry processes to the particle and to the micelles are assumed to be diffusion 

controlled. The entry coefficient of monomer A and B to a micelle or pre-existing 

particle can be calculated as follows; 

 

            
                    

    

 
          

for i ≥ z; (3.114) 

            
                         for i < z; (3.115) 

              
                    

    

 
        

for     z; (3.116) 

             
                 for i < z; (3.117) 

 

The average entry of the monomer to the micelle is given by, 

          
              

                    
         (3.118) 

 

While the entry rate coefficient of monomer A and B to the particles  are given by, 

    
   

     
 
   

    

 
                    

  
  (V) = 0,   i<z      (3.119) 

    
   

     
 
   

    

 
               

  
  (V) = 0,   i<z      (3.120) 

 

The average entry of the monomer to the particle is given by, 

  
   

           
   

           
   

  (3.121) 

 

Where fA is a fraction of monomer A and fB is the fraction of monomer B which can 

be calculated by, 
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     (3.122) 

             (3.123) 

Where;  

Na is Avogadro‟s number 

    
   

 is the number of moles fed for A 

    
   

 is the number of moles fed for B 

   is the probability of the reaction of radicals A in the water phase 

   is the probability of the reaction of radicals B in the water phase 

 

The propagation constant for monomer A and monomer B at low conversion are 

given as follows; 

                            (3.124) 

                           (3.125) 

 

These propagation coefficients are diffusion controlled at high conversion and are 

given by, 

 

    
  

 

     
  

 

       
 

  (3.126) 

 

    
  

 

     
  

 

       
 

  (3.127) 

 

Where kdiff,A and kdiff,B are the diffusion controlled rate coefficient defined as: 

                                 (3.128) 

                                 (3.129) 

 The average propagation coefficient in aqueous phase is given by, 
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         (3.130) 

 

The average propagation coefficient in the particle phase is calculated by, 

           
                                

   (3.131) 

 

Transfer to monomeric radicals takes place within the particle phase. No transfer to 

polymeric radicals is assumed since no transfer agents are involved in the reaction. 

The transfer coefficient for styrene and MMA as given by, 

                
       

       
   

 
 

 (3.132) 

                 
       

   
 

 
 (3.133) 

 

The average transfer coefficient is given by, 

             
          

                         (3.134) 

 

The particles with a radical could undergo termination reactions. However, they may 

further be activated and propagate again, and then terminate and so on. The 

termination coefficient at high conversions is subjected to the gel effect and is given 

by, 

                                     (3.135) 

                                  (3.136) 

                           (3.137) 

      
   

       (3.138) 

  
   

 

    
                     

  
  

 

 
 (3.139) 

  
                      

         
      (3.140) 
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   (3.141) 

 

Where kt is the average termination coefficient in the particle phase and Xn is overall 

conversion. 

The conversion of monomer A (xA) and monomer B (xB) to a copolymer is given by, 

     
    

    
   

 
(3.142) 

     
    

    
   

 
(3.143) 

   
             

         
 

(3.144) 

 

For a semi-batch process, the rate of monomer accumulates in the reaction vessel can 

be obtained from the equation below: 

     

  
                   

(3.145) 

     

  
                   

(3.146) 

     
   

  
     

(3.147) 

     
   

  
     

(3.148) 

The surfactant added into the reactor can be calculated by, 

   

  
    

(3.149) 
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The area and average diameter of the particle is given as: 

               
        

   
 (3.150) 

     
  

     
 
   

 
(3.151) 

 

A detailed model of emulsion copolymerization of styrene and MMA can be found in 

Alhamad (2005) and Alhamad et al. (2005a). 

 

 

3.6 Conclusions 

 

This chapter presents three process models of the polymerization systems used in this 

work. They are bulk polymerization of styrene, solution polymerization of MMA and 

emulsion copolymerization of styrene and MMA. The simple kinetic models and 

energy balance model are shown for the first two models which were adopted from 

the work of Ekpo (2006) while for the latter process the model was adopted from 

Alhamad (2005). 

 

The process model for the bulk polymerization of styrene was improved by including 

the gel and glass effect which was absent in the earlier work of Ekpo (2006). The 

equations used to calculate the gel and glass effects in polystyrene polymerisation for 

this work are the same as in Ekpo and Mujtaba (2008); Fan, Gretton-Watson et al. 

(2003) and Baillagou and Soong (1985b) which was used for MMA polymerization. 

However some parameters have been changed in order to fit the process of bulk free 

radical polystyrene process. The value for     and     are taken from Baillagou and 

Soong (1985b) with some amendment of the value of activation energy in calculation 
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of       This value have been chosen based on the theory that the termination kinetic 

rate will decrease due to severe diffusion limitations. The result shows that the trend 

of kp and kt agreed with the theory of the diffusion limitation. 

 

The process model for the solution polymerization of MMA was improved by 

including the free volume theory to calculate the initiator efficiency,f. In the earlier 

work of Ekpo (2006), the value of f was set at a constant value in order to avoid 

introducing more complexity to the models. However, the initiator efficiency is not 

constant and will decrease as the viscosity inside the reactor increases.  

 

The process model for emulsion copolymerization of styrene and MMA was adopted 

from Alhamad (2005). The details of the process model can be found in the 

referenced text. 

 

The final forms of the model equations are used within gPROMS environment to 

carry out the dynamic optimizations which are presented in Chapter 4, 5 and 6 for 

dynamic optimization of bulk polymerization process of styrene, solution 

polymerization process of MMA and emulsion copolymerization process of styrene 

and MMA respectively.           
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Chapter Four 

 

Dynamic Optimization of Bulk Polymerization Process of 

Styrene in Batch Reactor 

 

 

 

4.1 Introduction 

 

Typical problems in chemical engineering process design or plant operation can be 

represented by some equations. These equations have many and possibly an infinite 

number of solutions. An optimization is concerned with selecting the best among the 

entire set by efficient quantitative methods with its aim to find the values of the 

variables in the process that yield the best value of the performance criterion. 

 

In plant operations, optimization can be applied to improve plant performance which 

includes the improved yields of valuable products, reduced energy consumption and 

higher processing rates among many others. Besides that, optimization can also lead 

to reduced maintenance costs, less equipment used and for a better staff utilization. It 

is extremely helpful yet very useful to a process plant to systematically identify the 

objective, constraints and also degrees of freedom which can lead to such benefits as 

improved quality of design, faster and more reliable troubleshooting, and faster 

decision making.  
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This chapter discusses the dynamic optimization for free radical bulk polymerization 

process of styrene in batch reactor. The mathematical models for the process is  

presented in chapter three. The initiator used to initiate the polymerization process 

for this work is 2, 2 azobisisobutyronitrile catalyst (AIBN). A dynamic optimization 

method using the Control Vector Paramerisation (CVP) technique is used to find the 

optimal temperature profile that will yield a desired level of monomer conversion 

(m) and number average molecular weight (Mn) in minimum batch time by taking 

into account the gel and glass effects. The batch time is divided into a finite number 

of intervals and piecewise constant temperature is used in each interval. The same 

model and method have been used by Ekpo (2004; 2006) in his bulk polymerization 

of styrene but without taking into account the gel and glass effect. In this work, the 

gel and glass effect is considered for the same process. 

 

                                                   

4.2 Formulation for Optimization of Styrene Batch Polymerization Reactor 

 

For batch reactors there are three broad optimization problems known as minimum 

time problem, maximum conversion problem and maximum profit problem.  This 

work only considers minimum time problem and will be discussed here. 

 

4.2.1 Minimum Time problem 

 

The optimization problem can be described as: 
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Given Fixed volume of reactor, Fixed monomer conversion, Number 

average molecular weight  

 

Optimize Values for control variables such as Fj, Tj0, T, Initial initiator 

concentration (I0), Controller switching times 

 

So as to minimize Final batch time for polymerization (tf) 

 

Subject to Process constraints: Model equations, Constraints on initiator 

conversion, Polydispersity values (PD), Linear bounds on the 

coolant flow rate (Fj), Inlet cooling / jacket temperature (Tj0), 

Reactor temperature (T) 

 

The free radical bulk polymerization of styrene only incorporates 2,2‟-azo-bis-

isobutyronitrile (AIBN) as the initiator and styrene monomer which are fed into the 

tank reactor where the process of polymerization are occur. After the cycle batch 

time the product of polystyrene can be taken out from batch reactor which the chain 

termination is predominantly by combination. 

 

 

4.3 Case Study 1 – Optimal temperature profile in minimum batch time 

Case study 1 solves the minimum time problem for simple kinetic model of bulk 

styrene polymerization in order to find optimal reactor temperature profiles. 

Measured constant values for the kinetic model for Styrene are the same as in Ekpo 
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(2006) are given in Table 4.1 below. According to Raja (1995), the same constant 

values have been used by Duerksen et al. 1967, Ponnuswamy et al. 1987 and Chen 

and Huang 1981. 

 

Table 4.1: Kinetic model constant values for styrene polymerization 

Ad = 1.58 x 10
15

 sec
-1

 

Ap = 1.1050 x 10
7
 l/gmol-sec 

At = 1.255 x 10
9
 l/gmol-sec 

R = 1.987 cal/gmol.K 

Ed = 30800 cal/gmol 

Ep = 7060 cal/gmol 

Et = 1680 cal/gmol 

 

 

The results obtained from this case study are compared with the previous study by 

Ekpo (2006) who disregards the gel and glass effects.   

 

Monomer conversion (m) for the optimization of free radical polymerization of 

styrene is fixed (m
*
) at 0.3, 0.4, 0.5, 0.6 and 0.7 while the number average molecular 

weight, Mn is fixed (Mn*) at 500 g/mol, 1000 g/mol and 1500 g/mol for several 

different runs. Initiator conversion (c) is fixed to be between 95% and 100% at the 

end of the batch. This is necessary to ensure that very little traces of initiator are left 

over at the end of the batch, so that there is no defect of the finished polymer. The 

value for the polydispersity (PD) of the final product is specified to be between 1.5 

and 2.0 at the end of the batch cycle time which is same as in the previous research 

that are used here for the comparison.  

 

Mathematically, the optimization problem for the simple model of the free radical 

styrene polymerization in batch reactor can be represented as: 

 



 

 

95 

 

Min                                        tf 

T, I0  

s.t.                                              model equations 

                                   m = m* 

                                 Mn = Mn* 

               0.95 <  c < 1.0  (lower and upper bound on c) 

                  320K <  T < 375K  (lower and upper bound on T) 

                       1.5 <  PD < 2.0 (lower and upper bound on PD) 

                  0.0003 <  I0 < 0.03 (lower and upper bound on I0) 

 

f represents the DAE model equations (see Chapter 3) for the polymerization process 

in compact form (as explained in section 2.9.1).  

Results for case study 1 using three control intervals are presented in Table 4.2Table 

4.2Table 4.2 and Table 4.3Table 4.3Table 4.3. The results of Ekpo (2006) for the 

same system but without gel and glass effect are also shown in Table 4.2Table 

4.2Table 4.2. When compared with Ekpo (2006) the results show the reduction in 

cycle batch is very pronounced with the gel effects while the initial initiator 

concentration are a bit higher.  

 

The trend of the results shows that when lower monomer conversions and lower 

number average molecular weight are specified, batch time is lower than for higher 

conversions and higher molecular weight which is obvious. The initial initiator 

concentration required decreases with increasing molecular weight. For example for 

30% conversion of styrene monomer, the initial initiator concentration required 

decreases from 0.9143 x10
-2

 to 0.4564 x10
-2 

to 0.3038 x10
-2 

for number average 
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molecular weight (Mn) 500 g/mol, 1000 g/mol and 15000 g/mol respectively. This is 

due to less primary radical needed from the decomposition of the AIBN initiator for 

further propagation and termination process until attain the higher molecular weight 

desired.   Lower initial initiator concentration (I0) produces less primary free radical 

at the beginning of the process. This will contribute to higher Mn since the 

propagation will occur with less initiator radical and leads to increased the chain 

length, meaning higher number average molecular weight (Mn). 

 

Table 4.2 Result summary for case study 1 

Run m* Mn* Mw PD 

I0 (x10
-2

) tf 

This 

work 

Ekpo 

(2006) 

This 

work 

Ekpo 

(2006) 

1 0.3 500 804 1.61 0.9143 0.8880 2298.9 3046.3 

2 0.4 500 805 1.61 1.2196 1.1167 3338.5 5823.3 

3 0.5 500 811 1.62 1.5249 1.4520 4068.0 10816.7 

4 0.6 500 825 1.65 1.8302 1.7409 4503.2 20250.9 

5 0.7 500 825 1.65 2.1355 2.0300 4858.3 38845.0 

6 0.3 1000 1635 1.63 0.4564 0.4355 3588.4 8870.9 

7 0.4 1000 1659 1.66 0.6090 0.5800 4418.3 18290.8 

8 0.5 1000 1786 1.79 0.7617 0.7255 4966.0 34502.2 

9 0.6 1000 1864 1.85 0.9143 0.8700 5329.3 65788.8 

10 0.7 1000 1838 1.84 1.0670 1.0100 5589.2 126183.0 

11 0.3 1500 2462 1.64 0.3038 0.2895 4147.7 17603.8 

12 0.4 1500 2521 1.68 0.4055 0.3858 4898.4 35768.8 

13 0.5 1500 2612 1.74 0.5073 0.4827 5395.7 68622.8 

14 0.6 1500 2728 1.82 0.6090 0.5790 5742.4 127138.0 

15 0.7 1500 2843 1.90 0.7108 0.6760 5989.4 248977.0 

 

Table 4.3 shows the optimal temperature profiles obtained for nine runs which are 

selected from Table 4.2 above. These results are piecewise constant temperature 

profile with 3 intervals. In practice, piecewise constant temperature profiles are 
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easier to implement by any simple controller compared to the continuously time 

varying profiles which will require more sophisticated and robust controller to 

follow. The optimal temperature profiles for all runs followed an upward trend which 

are similar to that obtained by Ekpo (2006) although the actual numerical values of 

temperature are different. 

 

 

Table 4.3: Optimal temperature profile for case study 1 (9 runs) 

Run 1 

  
        

Temp.(K) 
 

367.77 370.53 375 
 

         
Time (secs.) 0 717.5 1234.5 2298.8 

Run 3 

  
        

Temp.(K) 
 

339.73 362.21 374.83 
 

         
Time (secs.) 0 50 3050 4067.9 

Run 5 

  
        

Temp.(K) 
 

358.86 367.11 375 
 

         
Time (secs.) 0 3340.0 3921.8 4858.3 

Run 6 

  
        

Temp.(K) 
 

362.68 363.47 375 
 

         
Time (secs.) 0 682.4 2567.6 3588.4 

Run 8 

  
        

Temp.(K) 
 

360.82 359.16 375 
 

         
Time (secs.) 0 939.1 3939.1 4965.9 

Run 10 

  
        

Temp.(K) 
 

358.62 365.51 375 
 

         
Time (secs.) 0 4199.3 4699.3 5589.2 

Run 11 

  
        

Temp.(K) 
 

360.7 367.29 375 
 

         
Time (secs.) 0 2622.2 3204.8 4147.7 

Run 13 

  
        

Temp.(K) 
 

358.08 365.58 375 
 

         
Time (secs.) 0 3848.1 4453.3 5395.7 

Run 15   
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Temp.(K) 
 

357.24 363.48 375 
 

         
Time (secs.) 0 4505.1 5005.1 5989.4 
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Table 4.3 shows that the temperature is lower at the first interval to achieve higher 

desired Mn, since less initiator radical are produced at lower temperature. For 

example the temperature in the first interval is decreased from 367.77K (Run 1) to 

362.68K (Run 6) to 360.7K (Run 11) as shown in Table 4.3 for higher desired Mn 

from 500 g/mol to 1000 g/mol to 1500 g/mol at 30% conversion. 

 

The time taken to reach the desired monomer conversion (m) and number average 

molecular weight (Mn) is significantly less than Ekpo (2006) when considered the gel 

effect. This is because entanglement of the chain diffusion hindered the termination 

process but increases the propagation process. On top of that, more concentrated 

initial initiator in this work (Table 4.2) also contributes to faster polymerization 

process. The results really show that the gel and glass effect occurs in styrene 

polymerization reactions in a bulk process. As consequences, the equation related to 

this gel effect cannot be neglected. 

 

Monomer conversion (m) and initiator conversion (c) for cases with and without the 

gel and effect is presented in Figure 4.1. It clearly shows that by taking into account 

the gel effect, the time taken for the system to achieve 30% monomer conversion is 

shorter by 24.53%. Initiator continues to add more free radicals to the system which 

initiated the polymerization process. The rates of initiation and propagation come out 

of balance. Chains grow without termination, so the conversion is rapid and the 

molecular weight will increase dramatically in a very short time (Cassagnau et al., 

2006). 
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Figure 4.1: Monomer conversion and initiator conversion for run 1 with and without 

gel effect. 

 

 The result for number average molecular weight (Mn) and weight average molecular 

weight (Mw) for run 1 is given in Figure 4.2 below. These results clearly show that 

when considered the gel effect equation in the system, the time taken to achieve the 

desired molecular weight is shorter. The time taken to achieve Xn 500 is 24.53% 

shorter with the gel effect compared to that without gel effect since the termination 

rate constant was reduced and the propagation rate constant was increased as 

mentioned before. 

 

  

Figure 4.2: Number average molecular weight and weight average molecular weight 

for run 1 with and without gel effect. 

 

As discussed earlier in Chapter 2, during the early stage of the polymerizations, the 

initiation kinetic rate constant is equal to the initial kinetic rate constant for 

termination. As time proceeds the concentration of polymer in the tank reactor will 
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increase. When the viscosity of the polymer is increased, terminations are difficult to 

occur because this high viscosity hinders the diffusion of chains because of 

entanglements, so the rate of termination slows considerably (Achilias and 

Kiparissides, 1992). However, the diffusion of small molecular monomers is hardly 

affected by viscosity, so propagation proceeds as before.  

 

The described phenomenon can be seen in Figure 4.3 below where the rate of 

termination is going down and affected by the gel effect while the rate of propagation 

proceeds as before.  

 

  

Figure 4.3: Kinetic rate for termination, kt and kinetic rate for propagation, kp for run 

1 with and without gel effect. 

 

Final batch times for each run are presented here in Figure 4.4. From this bar chart, 

the trend of time taken for each run can be seen clearly where it is increased with 

increasing the monomer conversion and number average molecular weight. This 

result is as expected that higher monomer conversion and higher molecular weight 

need longer batch time for the polymer reaction compared to that needed for the 

lower monomer conversion and lower molecular weight.   
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Figure 4.4: Final batch time for case study 1 

 

 

4.4 Case Study 2 – Effects of number of intervals 

 

The effect for using different number of control interval for case study 1 was 

investigated here.  

 

The results with three control intervals have been presented in case study 1. Here, the 

outcome of having 1 interval and 6 intervals are considered. Table 4.4 shows the 

effect of control intervals on the final batch time for the same kinetic model of 

styrene polymerization with the gel effects. The batch time is reduced as the number 

of intervals increases and increases with the increased value of monomer conversion 

and number average molecular weight as clearly shown in Figure 4.5 below. 

However, the increase of the number of intervals might not be so significant when 
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consider all the economic and optimization cost for the multiple intervals when the 

difference of the final batch time (tf) is very small. 

 

Table 4.4: Effect of control intervals on the final batch time 

Run m* Mn* 
tf  (s) 

(1 intervals) 

tf  (s) 

(3 intervals) 

tf (s) 

(6 intervals) 

1 0.3 500 2460.3 2298.85 2297.96 

8 0.5 1000 5437.05 4965.99 4954.41 

15 0.7 1500 6593.02 5989.42 5974.54 

 

The results in Table 4.4 really show the decrease of the final batch time when 3 

intervals and 6 intervals are applied. For example, the desired Mn 1500 g/mol at 70% 

conversion (Run 15), the reduction of 9.16% (3 intervals) and 9.38% (6 intervals) of 

total batch time can be achieved compared to 1 interval (Table 4.4). There are 

reduction of 6.56% (Run1) and 8.66% (Run 8) can be achieved for three intervals 

compared to one interval. However, very small reduction from three intervals to six 

intervals shows that the increase of interval might not be so significant since the 

batch time reduction is very small. 
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Figure 4.5: Effect of control intervals on the final batch time 

 

 

4.5 Case Study 3 – Effect of coolant flow on reactor temperature 

 

In this case study, the coolant flow (Fj) at constant feed coolant temperature is 

optimized using detailed model (Type 1, page 69) with energy balance (presented in 

Chapter 3). The reactor temperature (T) is calculated within a lower and upper 

bounds. Constant values from the energy balance model are given in Table 4.5 

below. 

 

Table 4.5: Constant and values from the energy balance model 

A  = 5.25 m
2
 

M0 = 8.7006 gmol/l 

Cp  = 0.54 cal/gK 

CPJ  = 1.003 cal/g K 

TJ0 = 298 K 

V = 1230 litres 

VJ = 500 litres 

 

-∆Hr         = 16700 cal/gmol 

ρ  = 9.06 x 105 g/l 

ρJ = 9.97 x 105 g/l 
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The optimization problem formulation for the detailed model of the free radical 

styrene polymerization in batch reactor can be mathematically represented as:  

 

Min                                                              tf 

Fj  

s.t.                                              model equations 

Mn = Mn* 

m = m* 

0.95 <  c < 1.0 

320K <  T < 375K 

0.001 < I0 <0.03 

1.5 <  PD < 2.0 

0.0 m
3
/s  <  Fj < 1.0 m

3
/s 

 

Monomer conversion (m) for the optimization of free radical polymerization of 

styrene for the detailed model is fixed at 0.3, 0.5, and 0.7 and the number average 

molecular weight, Mn is fixed at 500 g/mol, 1000 g/mol and 1500 g/mol which 

correspond to run 1, run 8 and run 15 of case study 1(simple kinetic model). These 

have been chosen to present a general picture of the trends at the top, middle and 

bottom section from the kinetic model study presented in Table 4.2. Results for case 

study 3 are presented here in Table 4.6 and Table 4.7. 

 

Table 4.6 shows the results for 1 interval while Table 4.7 for three intervals. The 

results show that the batch time for three intervals is shorter than 1 interval and is 

expected. The optimal profile for coolant flow rate (Fj) is increased from 5.57 x 10
-2
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m
3
/s (Run 1) to 27.61 x 10

-2
 m

3
/s (Run 2) to 32.36 x 10-2 m

3
/s (Run 3) for the 

increased of monomer conversion (m) and number average molecular weight (Mn) as 

shown in Table 4.6 for longer final batch time (tf).  

 

The reduction of 2.6% (Run 1a), 1.75% (Run 2a) and 0.32% (Run 3a) for the final 

batch time (tf) can be achieved when using three intervals (Table 4.7) instead of one 

interval (Table 4.6). This is due to the flexibility of the coolant flow rate (Fj) for the 

process in order to achieve the desired properties in minimum time.  

 

Table 4.6: Result for energy balance model with control coolant flow rate Fj for 1 

interval. 

Run m* Mn* Mw PD Fj (m
3
/s) tf (s) 

1 0.3 500.0   998.0 1.99 0.0557 2486.8 

2 0.5 1000.0 1907.0 1.91 0.2761 3803.2 

3 0.7 1500.0 3227.0 2.15 0.3236 4153.7 

 

 

Table 4.7: Result for energy balance model with control coolant flow rate Fj for 3 

intervals. 

Run m* Mn* Mw PD I0 (x10
-2

) tf 

1a 0.3 500.0 1000.0 2.0 0.808 2422.3 

2a 0.5 1000.0 1949.4 1.99 0.754 3737.8 

3a 0.7 1500.0 3000.0 2.00 0.544 4140.4 

 

The results obtained for using three control intervals (Table 4.7) show that the initial 

initiator concentration (I0) is decreased with the increased desired monomer 

conversion (m) and number average molecular weight (Mn). As discussed before, this 

is due to the longer batch time (tf) is needed to achieve higher m and Mn.  
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The profiles of coolant flow (Fj) and reactor temperature (T) together with the jacket 

temperature profile (Tj) for Run 1, Run 2 and Run 3 is shown in Figure 4.6 below. 

  

  

  

Figure 4.6: Optimal coolant flow profile (Fj), reactor temperature (T) and jacket 

temperature (Tj) for Run 1, 2 and 3 

 

As mentioned before, the optimal coolant flow rate (Fj) is increased for the increased 

of monomer conversion (m) and number average molecular weight (Mn) (Figure 4.6a, 

c and e). The profiles of optimal coolant flow, jacket temperature and reactor 

temperature for three intervals (Run 1a, Run 2a and Run 3a) are shown in Figure 4.7. 

The flexibility of using three control intervals for the coolant flow rate (Fj) resulted 

reduction of the final batch time (tf) for the same desired characteristics can clearly 

be seen in Figure 4.7.   
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Figure 4.7: Optimal coolant flow profile (Fj), reactor temperature (T) and jacket 

temperature (Tj) for Run 1a, 2a and 3a 

 

 

4.6 Case Study 4 – Effect of reactor temperature on coolant flow rate  

 

In this case study, the minimum time optimization problem is solved to study the 

effect of optimal reactor temperature on the coolant flow trajectories for the 

polymerization of styrene using detailed model with energy balance (Type 1, page 

69). Monomer conversion (m) for the detailed model in this case study is fixed at 0.3 

and 0.5 for the number average molecular weight, Mn is fixed at 500 g/mol and 1000 

g/mol.  
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The optimization problem formulation for the detailed model of the free radical 

styrene polymerization in batch reactor can be mathematically represented as: 

Min                                                          tf 

T, I0  

s.t.                                              model equations 

                                        Mn = Mn* 

                                          m = m* 

                                   0.95 <  c < 1.0 

                                 320K <  T < 375K 

                                 0.001 < I0 <0.03 

                           0.0 m
3
/s  <  Fj < 1.0 m

3
/s (lower and upper bounds on Fj) 

 

As in case study 1, reactor temperature T and initial initiator concentration I0 are 

optimized. The coolant flow Fj which will be required to manipulate to achieve the 

optimized reactor temperature is added as constraint with lower and upper bounds.  

 

Table 4.8 shows the result for one interval while Table 4.9 shows the result for the 

same optimization process for three intervals. As the previous case study, the time 

taken for final batch time for three intervals are shorter than one interval as it gives 

more flexibility to the process variables to achieve the desired m and Mn. 

 

  



 

 

110 

 

Table 4.8: Result for energy balance model with control reactor temperature T and 

initial initiator concentration I0 for 1 interval. 

Run m* Mn* Mw PD I0 (x10
-2

) T tf 

4 0.3 500 1090 2.18 0.7633 371.8 2434.0 

5 0.5 1000 4788 4.79 0.6106 366.8 4284.4 

 

Table 4.9: Result for energy balance model with control reactor temperature T and 

initial initiator concentration I0 for 3 intervals. 

Run m* Mn* Mw PD c I0 (x10
-2

) tf 

4a 0.3 500 977 1.95 95.00 0.7633 2273.1 

5a 0.5 1000 3510 3.51 95.00 0.6106 3824.3 

 

Same initial initiator concentration was required for both one and three intervals.  

 

However, a higher polydispersity (PD) is obtained for higher monomer conversion 

(m) and number average molecular weight (Mn). As shown in Table 4.8, the PD is 

increased from 2.18 to 4.79 for the increase of m and Mn. It shows that broader 

molecular weight distribution (MWD) of the polymer can be obtained by optimizing 

the Tr and I0 as PD measures the width of a molecular weight distribution. The 

temperature and coolant flow rate profiles are shown in Figure 4.8 (1 interval) and 

Figure 4.9 (3 intervals). 
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Figure 4.8: Coolant flow rate and reactor temperature for run 4 and run 5 

 

 
 

  

Figure 4.9: Coolant flow rate and reactor temperature for run 4a and run 5a 

 

The coolant flow rate profiles show that more coolant flow is needed to maintain the 

higher temperature for the reactor (Figure 4.9). This is necessary to prevent reactor 

runaway and to obtain the preset characteristics of the desired polymer product. 
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However, by using only 1 interval, the coolant flow rate cannot maintain the increase 

of temperature in the reactor. Note, when the coolant flow rate is used as control 

variables (case study 3), it is much easier to maintain the required coolant flow rate 

practically as shown in Figure 4.7 compared to maintaining the continuously 

changing coolant flow rate as shown in Figure 4.9. 

 

 

4.7 Conclusions 

 

The dynamic optimization for free radical polymerization process of styrene in batch 

reactor was carried out in this chapter by using Control Vector Paramerisation (CVP) 

technique. The batch time was divided into a finite number of intervals and 

piecewise constant temperature is used in each interval where the temperature and 

the length of the interval are optimised. Case studies are presented by taking into 

account the gel and glass effects. The first two cases are using simple kinetic model 

while the last two cases are using the energy balance model. 

 

Minimum time optimization problem was carried out and solved for the pre-specified 

monomer conversion, number average molecular weight and also polydispersity. The 

kinetic model considered within the optimization framework is sufficient to 

determine the optimal temperature profile. Optimal temperature profile is the main 

control parameter affecting the quality of final product. Besides that, the initial 

initiator concentration I0 was also optimized for case study 1.  
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The results obtained from this work were compared with the previous study by other 

researcher which disregarded the gel and glass effect in their study. This study shows 

that the batch operation time is significantly reduced while the amount of the initial 

initiator concentration required is increased. In study case 2, the effect different 

number of the time intervals was investigated (1, 3 and 6 intervals). The result shows 

that there was time reduction with the increasing number of intervals.  

 

The third and fourth case studies were with energy balance model (which was the 

extension of the kinetic model by including the energy balance equations). Two 

different controllers have been used, they are control coolant flow rate (case study 3) 

and reactor temperature (case study 4).  

 

The results obtained in case study three and four show that the initial initiator 

concentration (I0) is decreased with the increased desired monomer conversion (m) 

and number average molecular weight (Mn) due to the longer batch time (tf) is needed 

to achieve higher m and Mn. Besides that, the results also show that the batch time for 

three intervals is shorter than 1 interval for the same desired monomer conversion 

and number average molecular weight for both case studies. The same observations 

have been made for kinetic model.  

 

In order to achieve the desired m and Mn in minimum time by using detailed model, 

it is much easier to maintain the required coolant flow rate practically when the 

coolant flow rate is used as control variables (Case study 3), compared to 

maintaining the continuously changing coolant flow rate (Case Study 4). 
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The results obtained in this work show that the gel and glass effect occuring in 

styrene polymerization reactions in a bulk process cannot be ignored. As 

consequences, the equation related to this gel effect cannot be neglected. 
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Chapter Five 

Dynamic Optimization of Solution 

Polymerization Process of Methyl 

Methacrylate in Batch Reactor 

 

 

 

5.1 Introduction 

 

This chapter discusses the dynamic optimization for solution polymerization of 

Methyl Methacrylate (MMA) in batch reactor. The initiator used to initiate the 

polymerization process for this work is 2, 2 azobisisobutyronitrile catalyst (AIBN). 

The mathematical model presented in chapter three are used here for the 

optimization. Two different models are used in this work, Simple Kinetic Model and 

Energy Balance Model respectively which was employed from Ekpo and Mujtaba 

(2004; 2006; 2008). 

 

Two dynamic optimizations were carried out in this work namely minimum time 

problem (by simple kinetic model) and maximum conversion problem (by energy 

balance model). The effect of different approach for initiator efficiency, f used in 

dynamic optimization was investigated for constant value and time-varying value. A 
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constant value of f (0.53) was employed by of Ekpo (2006) in his previous work. 

This work is carried out to improve the model by taking into account the varying  f 

with time by using free volume theory.  

 

A dynamic optimization method using the Control Vector Paramerization (CVP) 

technique is used to find the optimal temperature profile that will yield a desired 

level of monomer conversion and number average molecular weight in minimum 

time and maximum conversion at fixed batch time. The batch time is divided into a 

finite number of intervals and piecewise constant temperature is used in each 

interval. In each interval, the temperature and the length of the interval are 

optimized. 

 

 

5.2  Formulation for Optimization Problem  

 

For batch reactors there are three broad optimization problems known as minimum 

time problem, maximum conversion problem and maximum profit problem as 

mentioned in chapter 4.  This work will consider minimum time problem with simple 

kinetic model and maximum conversion problems with detailed energy model.  

 

 

5.2.1 Minimum time problem 

 

The optimization problem can be described as: 
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Given   Fixed volume of reactor 

   Fixed monomer conversion 

Average number molecular weight or weight average 

molecular weight 

 

Optimize  Values for control variables such as T  

Initial initiator concentration (Ci0) 

Controller switching times 

 

So as to minimize Final batch time for polymerization (tf) 

 

Subject to  Process constraint: 

Model equation, Initiator conversion, Polydispersity values 

(PD), Linear bounds on reactor temperature (T) 

 

Mathematically the optimization problem for minimum time problem can be 

described as: 

 

Min tf 

T(t), Ci0  

s.t.                                              model equations 

Mn = Mn* 

Xn = Xn* 

c
l
 <  c < c

u
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T
l
 <  T < T

u
  

PD
l
 <  PD < PD

u
 

Ci0
l
 <  Ci0 < Ci0

u
 

 

 

5.2.2 Maximum conversion problem 

 

The optimization problem can be described as: 

 

Given   Fixed volume of reactor 

   Fixed batch time (tf) 

Number average molecular weight (Mn) 

 

Optimize  Values for control variables such as Tjsp  

Initial initiator concentration (Ci0) 

Controller switching times 

 

So as to maximize Monomer conversion (Xn) 

 

Subject to  Process constraints: 

Model equations, Initiator conversion, Polydispersity values 

(PD), Linear bounds on the jacket temperature set point (Tjsp), 

Linear bounds on reactor temperature (T) 
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Mathematically the optimization problem for maximum conversion problem can be 

described as: 

 

Max Xn 

Tjsp(t) , Ci0  

s.t.                                              model equations 

Mn = Mn* 

tf = tf * 

c
l
 <  c < c

u
 

Tjsp
l
 <  Tjsp < Tjsp

u
  

PD
l
 <  PD < PD

u
 

Ci0
l
 <  Ci0 < Ci0

u
 

 

Subscript l and u referred to lower and upper bounds. 

Unlike bulk polymerization of styrene case studies presented in chapter 4, in this 

work Tjsp is optimized instead of Fj. The use of such optimization is also noticed in 

Aziz (2001). 

 

 

5.3 Case Study 1 – Effect of initiator efficiency using Simple Model 

 

The model equations are presented in chapter 3. The constants values used in the 

model are given in the Table 5.1Table 5.1Table 5.1. 
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Table 5.1: Constant values used for simple model of solution polymerization of 

MMA 

Rg    = 8.314 kJ/kmol.K 

Cs    = 5.0 kmol/m
3
 

Cm,0  = 3.76 kmol/m
3
 

MWm  = 100.12 kg/kmol 

ρm     = 915.1 kg/m
3
 

ρm     = 1200 kg/m
3
 

 

The decomposition of initiator molecules at the beginning of the process to form very 

active primary radicals depends on the initiator efficiency, f. As mentioned in chapter 

three, not all initiator molecules decompose to form primary radicals since some of 

them might either have self-terminate or react with other reactants in the system 

which make the initiator efficiency less than 100% (Kiparissides, 1996).  

 

A number of published papers have used a constant value for the initiator efficiency, 

f (Achilias and Kiparissides, 1992). Ekpo (2006) and Ekpo and Mujtaba (2008) used 

a constant value of 0.53 for the initiator efficiency for the MMA polymerization 

process. However, it is believed that the initiator efficiency is not constant and will 

decrease as the viscosity inside the reactor increases. In this work, the initiator 

efficiency used in the simple kinetic model is improved by using the free volume 

theory (Dube et al., 1997; Fan et al., 2003).  

 

 

5.3.1 Formulation of Optimization Problem 

 

In this case study optimization of solution polymerization of MMA is carried out in 

order to achieve desired number average molecular weight (Mn* = 150000 kg/kmol) 

and monomer conversion (Xn* = 0.6 and 0.75) at minimum time by using three 
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control intervals. The dynamic optimization formulation and constraints are 

described as: 

 

Min tf 

T, Ci0 

s.t.                                              model equations 

                     Mn = 150000 kg/kmol 

                      Xn   = Xn*  (0.6 or 0.75) 

0.0001 < Ci0 < 0.150 

1.5 <  PD < 1.8 

320 < T < 398 K 

 

The optimization is carried out using the value 0.53 as f (F1) and the time-varying 

initiator efficiency (F2) employed by Achilias and Kiparissides (1992); Dube et al. 

(1997); and Fan et al. (2003).  

 

 

5.3.2 Results 

 

The effect of two different approaches for the initiator efficiency, f can be observed 

in the results shown in Table 5.2 below.  
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Table 5.2: Results for the optimization of MMA simple kinetic model using different 

initiator efficiency, f 

Run f Ci0 Xn Mn PD tf (s) 

1 F1 1.41E-3 0.60 150014.7 1.8 2969.5 

1a F2 1.45E-3 0.60 149999.0 1.8 3772.7 

2 F1 2.13E-3 0.75 150003.7 1.8 6142.5 

2a F2 2.21E-3 0.75 150003.5 1.8 8419.6 

 

The results clearly show that the minimum batch time and initial initiator 

concentration required for the process had increased for the increased monomer 

conversion (Xn) at desired number average molecular weight (Mn* = 150000 

kg/kmol) for both initiator efficiency used. The same observation was made by Ekpo 

(2006). However, longer batch time (increased by 21.29% for Run 1 and 27% for 

Run 2) and higher initial initiator (Ci0) was required when using the free volume 

theory to calculate the initiator efficiency compared to the batch time required for 

constant f at 0.53. This is because the initiator efficiency was decreased when using 

F2 (Figure 5.1b) resulting in less primary free radical produced inside the reactor.  

 

As the propagation proceeds, the viscosity of the reaction mixture is increased. 

However, the mixture with variable f (F2) is less concentrated than that with constant 

f (F1) since lower primary radical was produced in the reactor to propagate further. 

The termination rate constant (kt) is lower for Run 1 (more concentrated mixture) as 

shown in Figure 5.1e which makes the monomer conversion faster (Figure 5.1c). 

Longer time was required for the process to achieve the desired monomer conversion 

for Run 1a since the termination rate constant is higher (Fig. 5.1e) which slows down 

the monomer conversion. Therefore, higher concentration of initial initiator was 
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needed to initiate free radicals at the beginning of the process. The optimum 

temperature profile for this case study is shown in Figure 5.1a. 

 

  

  

  

Figure 5.1: Results for case study 1 (a) Temperature profile (T); (b) initiator 

efficiency (f); (c) monomer conversion (Xn); (d) termination rate constant (kt); (e) 

propagation rate constant (kp) 
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5.4 Case Study 2 – Effect of solvent concentration on different initiator 

efficiency using simple model 

 

The same (as in the last case study) minimum time optimization problem is solved 

for two other solvent concentration values. The concentration of the solvent 

(Toluene) used for case study 1 was 5.0 kmol/m
3
. The two new solvent concentration 

considered in this case study are 2.5 kmol/m
3
 and 0.0 kmol/m

3
 (monomer is 100% 

concentrated without any solvent).  

 

 

5.4.1 Results  

 

The results are presented together with the base case from case study 1 (Run 1 and 

1a) as comparison in Table 5.3. 

 

Table 5.3: Results for different solvent concentrations 

Run 
Cs 

(kmol/m
3
) 

f 
Ci0 

(kmol/m
3
) 

Xn 
Mn 

(kg/kmol) 
PD tf (s) 

1 5.0 F1 1.41E-3 0.6 150014.7 1.8 2969.5 

1a 5.0 F2 1.45E-3 0.60 149999.0 1.8 3772.7 

2 2.5 F1 1.23E-3 0.6 149996.8 1.8 1903.5 

2a 2.5 F2 1.29E-3 0.6 150000.1 1.8 2490.2 

3 0.0 F1 0.80E-3 0.6 150000.4 1.77 828.7 

3a 0.0 F2 0.80E-3 0.6 150000.5 1.61 951.1 

 

The results of this case study show that reducing the solvent concentration will 

decrease the batch time. This is to be expected since the model incorporates the gel 

and glass effect. A less concentrated reacting mixture inside the reactor will initiate 
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these effects quicker and reach the specified values in shorter time. For all cases, the 

results also show that time varying f (F2) needs longer time than using constant f 

(F1). It seems that solvent is not needed in order to achieve the desired monomer 

conversion and number average molecular weight in minimum time. However, 

solvents need to be added to the polymerization reactor to aid an effective heat 

removal.    

 

The optimum temperature profile are shown in Figure 5.2a for concentrated mixture 

without addition of the solvent (Run 3 and Run 3a). The temperature for Run 3 (F1) 

was very high during the first control interval (Figure 5.2a) which leads to increase 

the propagation rate constant kp (Figure 5.2f) and termination rate constant kt (Figure 

5.2e). This is because the particles will have more kinetic energy and there would be 

more productive collisions at higher temperature. This high temperature resulted 

lower number average molecular weight Mn (Figure 5.2d) at the early stage before it 

is increased to achieve the desired Mn at 150000 kg/kmol . 

 

As discussed earlier, the batch time for the optimization process to achieve monomer 

conversion 0.6 using the free volume theory to calculate the initiator efficiency (F2) 

is longer than constant value of f at 0.53 (F1) as shown in Fig. 5.2c. As mentioned 

before, less primary radical produced for the time varying initiator efficiency of f  

(Figure 5.2b), leading to less concentrated mixture. 
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Figure 5.2: Results for case study 2 (Run 3 and Run 3a): (a) optimum temperature 

profile (T); (b) initiator efficiency (f); (c) monomer conversion (Xn); (d) number 

average molecular weight (Mn); (e) termination rate constant (kt); (f) propagation rate 

constant (kp) 
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350 

355 

360 

365 

0 200 400 600 800 1000 

Time (s) 

T (K) 

T -  F1 (Run 3) T - F2 (Run 3a) 

(a) 

0 

0.2 

0.4 

0.6 

0 200 400 600 800 1000 

Time (s) 

f 

f - F1 (Run 3) f - F2 (Run 3a) 

(b) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 200 400 600 800 1000 

Time (s) 

Xn  

Xn - F1 (Run 3) Xn - F2 (Run 3a) 

(c) 

0 

50000 

100000 

150000 

0 200 400 600 800 1000 

Time (s) 

Mn (kg/kmol) 

Mn - F1 (Run 3) Mn - F2 (Run 3a) 

(d) 

0 

5000000 

10000000 

15000000 

0 500 1000 

Time (s) 

kt m
3/kmol-s)  

kt - F1 (Run 3) kt - F2 (Run 3a) 

(e) 

800 

900 

1000 

1100 

1200 

0 200 400 600 800 1000 

Time (s) 

kp (m3/kmol-s) 

kp - F1 (Run 3) kp - F2 (Run 3a) 

(f) 



 

 

127 

 

Table 5.4: Constants and values from the detail model of MMA polymerization 

A       = 0.0774 m
2
 

CP,J     = 4.184 kJ/kg.K 

CP,m   = 1.648 kJ/kg.K 

CP,P   = 1.47 kJ/kg.K 

CP,S   = 1.70 kJ/kg.K 

MWi  = 164.21 kg/kmol 

ρm     = 915.1 kg/m
3
 

ρp      = 1200 kg/m
3
 

MWs    = 106.17 kg/kmol 

MWm   = 100.12 kg/kmol 

V         = 2 L 

VJ        = 1.5 L 

-∆Hr   = 5.78 x 104 kJ/kmol 

 ρJ       = 997 kg/m
3
 

U        = 2.55 kJ/s.m
2
.K 

τJ        = 50s 

 

Maximum conversion problem is solved here for different desired number average 

molecular weight (Mn) such as 50000 kg/kmol, 100000 kg/kmol and 150000 kg/kmol 

for different fixed batch time 3000s, 5000s and 10000s using the detailed model.  

 

 

5.5.1 Formulation of Optimization Problem 

 

Optimization problem for maximum conversion can be represented as: 

Max Xn 

Tjsp(t), Ci0 

s.t.                                              model equations 

Mn = Mn* 

tf  = tf* 

0.0001 < Ci0 < 0.150 

1.5 <  PD < 1.8 
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320 < Tjsp < 373 K 

320 K < T < 398 K 

 

 

5.5.2 Results  

 

Results obtained for maximum conversion problem at fixed batch time (3000s, 5000s  

and 10 000s) are presented in Table 5.5. 

 

Table 5.5: Results for maximum conversion at fixed batch time, tf* 

Run Xn, % Mn Mn* tf*(s) PD Ci0 (x10
-3

) 

1 76.5 50 000 50 000 3000 1.8 2.898 

2 72.5 100 000 100 000 3000 1.8 1.729 

3 56.1 150 000 150 000 3000 1.8 1.448 

4 91.7 50 000 50 000 5000 1.8 3.171 

5 81.3 100 000 100 000 5000 1.8 2.378 

6 69.3 150 000 150 000 5000 1.8 1.907 

7 95.5 50 000 50 000 10 000 1.8 4.646 

8 91.6 100 000 100 000 10 000 1.8 3.378 

9 81.8 150 000 150 000 10 000 1.8 2.859 

 

As expected, monomer conversion increased with increased final batch time since 

more time is available for the monomer to react inside the reactor. Initial initiator 

concentration also increased with increased final batch time to ensure that there are 

more initiators to initiate the polymer process and for the propagation process to 

happen at longer batch time. In all cases, polydispersity (PD) values hit the upper 

bound set. 
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Figure 5.3 show the optimum reactor temperature set point (Tjsp) profile and the 

monomer conversion (Xn) profile of each run in this case study. The optimum Tjsp 

profiles (Figure 5.3a, c, e) really show that the temperature is higher for lower 

molecular weight. This higher temperature is required to decompose higher 

concentration of Ci0.  

 

Monomer conversion decreased with increased molecular weight (Figure 5.3b, d, f), 

because to achieve higher molecular weight, low initial initiator are needed at the 

beginning of the process so the monomer will continue the propagation process 

rather than initiate a new polymerization process with the initiator. This can be seen 

where initial initiator concentration (Ci0) decreased with increased molecular weight 

in Table 5.5. 

 

  



 

 

130 

 

 

Figure 5.3: Optimum reactor temperature set point profiles (Tjsp) and monomer 

conversion (Xn) profiles for case study 3 
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5.6 Case Study 4 – Effect of Different f on Maximum Monomer Conversion 

for fixed Number Average Molecular Weight (Mn) with Detailed Model 

 

In this work, the effect of different initiator efficiency approaches in the optimization 

process of polymerization of MMA in batch reactor was investigated using detailed 

model.  

 

 

5.6.1 Formulation of Optimization Problem 

 

Optimization problem for maximum conversion can be represented as: 

 

Max Xn 

Tjsp(t), Ci0 

s.t.                                              model equations 

Mn = Mn* 

tf  = tf* 

0.0001 < Ci0 < 0.150 

1.5 <  PD < 2.5 

320 K < Tjsp < 373 K 

320 K < T < 398 K 
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5.6.2 Results  

 

The optimization problem is solved to achieve number average molecular weight 

(Mn) 150000 kg/kmol in fixed batch time of 5000s using constant value of f (0.53) 

(F1) and time varying f (F2). This case is same as that in Run 6 of case study 3 but 

with wider polydispersity. The results are shown in Table 5.6  and Figure 5.4.  

 

Table 5.6: Results for different initiator efficiency 

Run f Xn Mn Mn* tf(s) PD Ci0 (x10
-3

) 

1 F1 96.64 149901.5 150000 5000 2.249012 1.00 

2 F2 90.18 149989.8 150000 5000 2.048531 1.00 

 

The results, clearly shows the effect of constant and variable f on Xn and PD even 

though Ci0 was same.  The using of constant f in the model will mislead the expected 

results as it does not represent the real phenomenon in the process.  

 

The optimum profile for jacket temperature set point (Tjsp) for three control intervals 

is shown in Figure 5.4a. The figure clearly shows that Tjsp for time varying f (F2) is 

higher than for constant f (F1) for each interval. Figure 5.4b shows that f (F2) 

decreases as the monomer conversion increases (Figure 5.4e).  

 



 

 

133 

 

  

  

  

 
 

Figure 5.4: Results for case study 4 (Run 1 and Run 2): (a) Optimal profile of jacket 

temperature set point (Tjsp); (b) initiator efficiency (f); (c) reactor temperature T;     

(d) jacket temperature (Tj); (e) propagation rate constant (kp); (f) termination rate 

constant (kt); (g) monomer conversion (Xn); (h) number average molecular        

weight (Mn) 
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As mentioned before (chapter 4, page 94), the concentration of the reaction mixture 

increases as the time proceeds. However, the concentration of the F2 is lower than F1 

since the decrease of the f with time leads to lower the initiator free radical in the 

process. With the increase of monomer conversion with time, lower initiator 

concentration reduces the diffusion of primary radicals as observed by Achilias and 

Kiparissides  (1992) in their work. This lower concentration (F2) resulting in higher 

termination rate constant kt (Figure 5.4f) and propagation rate constant kp (Figure 

5.4e) compared to F1 as discussed before. This means in F2, the polymer chain does 

not grow beyond a certain limit and new polymer chain starts to grow making overall 

Mn at anytime lower compared to F1. 

 

It will be interesting to compare the results of Run 2 (F2 of Table 5.6) with that of 

Run 6 (Table 5.5) to see the effect of polydispersity. It is clear that conversion can be 

significantly improved (by almost 20%) for the same Mn by having higher PD value 

that can be used to measure the width of the molecular distribution. Broader 

molecular weight distribution will increase the melt temperature. 

 

 

5.7    Conclusions 

 

For the solution polymerization of Methyl Methacrylate in batch reactor, two models 

are employed namely simple kinetic model and detailed model. In the later model, 

energy balance equations were added to the simple model. 
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Most of the steps and effects that occur in polymerization process was incorporated 

in simple kinetics model for solution MMA. Optimal control paths for the reactor 

temperature and initial initiator concentration are obtained by using Control Vector 

Parameterization (CVP) technique to solve the minimum time optimization problem 

over three intervals.  

 

The effects of different initiator efficiency, f was examined. The results of these 

studies show that initiator efficiency, f decreased along the process in the solution 

polymerization of MMA when the free volume theory was applied (F2). The results 

were compared between two approaches which confirm that the initial initiator 

needed at the early stage of the process is higher and longer batch time is required in 

order to achieve the specified Xn and Mn for F2. The effect of solvent are very 

pronounced for both approaches where there are large decrease in the reaction time 

for more concentrated reaction mixture in the reactor. This is to be expected since the 

model incorporates the gel and glass effect. 

 

A dynamic optimization using a detailed model to maximize the monomer 

conversion was done for solution polymerization process of MMA. Jacket 

temperature set point (Tjsp) is used as the control variables in the MMA detailed 

model along with the initial initiator concentration (Ci0). Monomer conversion (Xn) 

increased with the increased of final batch time as expected, since more time 

allocated will ensure to reduce the unreacted monomer inside the reactor. Initial 

initiator concentration also increased with the longer final batch time as more 

initiators will needed to initiate the primary radicals for the polymerization process to 

occur in the batch reactor. Higher monomer conversion also observed when broader 
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molecular weight distribution was in the optimization problem. Finally, the effect of 

different initiator efficiency need to take into account since it follows the theory lied 

behind. These really show the significance of using the free volume theory for the 

initiator efficiency rather than a constant value. 
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Chapter Six 

Dynamic Optimization of Emulsion 

Copolymerization of Styrene and Methyl 

Methacrylate in Batch and Semi-batch Reactor 
 

 

 

6.1 Introduction 

 

This chapter discusses the dynamic optimization of emulsion copolymerization of 

Styrene and Methyl Methacrylate (MMA) in batch and semi batch reactor. The 

initiator used to initiate the polymerization process for this work is Persulfate K2S2O8 

and the surfactant is Sodium Dedocyl Sulfate (SDS). The model adopted from 

Alhamad (2006) was used to optimize the emulsion copolymerization process in 

order to maximize the number average molecular weight (Mn) and also overall 

monomer conversion (Xn). Five variables were used as optimization variables namely 

Styrene monomer feed rate (FmA), MMA monomer feed rate (FmB), initiator feed rate 

(FI), surfactant feed rate (FS) and also reaction jacket temperature (TJ0).  Alhamad 

(2005) and Alhamad et al. (2005) maximized the Mn at fixed pre-batch time of 1500s 

for different optimization formulation. The same model as Alhamad (2005) is 

employed in this work, however, the effect of different pre-batch time is investigated. 
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6.2 Optimization Problem Formulation of Emulsion Copolymerization 

Process 

 

6.2.1 Maximum number average molecular weight problem 

 

The optimization problem can be described as: 

 

Given  Fixed diameter of particle (Dmm), Fixed total amount of 

monomer (Nm,T), Fixed overall conversion (Xn), Fixed pre-

batch time (tbp), Fixed number of intervals (Int), Fixed final 

batch time 

 

Optimize Styrene feed rate (FmA), MMA feed rate (FmB), Surfactant feed 

rate (FS), Initiator feed rate (FI), Jacket temperature (Tj0), 

Controller switching times 

 

So as to maximize  Number Average Molecular weight (Mn) 

 

Subject to constraint Model equations, Linear bounds on: 

Initial Initiator concentration (CI0), Initial Surfactant 

concentration (S0), Initial styrene concentration (FmA,0), Initial 

MMA concentration (FmB,0), Reactor temperature (Tr), 

Copolymer composition 
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Mathematically the optimization problem can be described as: 

                            Max           Mn 

FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 

s.t.                                             model equations 

tf = tf* 

Xn
l
  < Xn < Xn

u 

FmA
 l
 <  FmA < FmA

 u
 

FmB 
l
 < FmB < FmB 

u
 

FS
 l
 <  FS < FS

 u
 

FI
 l
 <  FI < FI 

u
  

Tr
l
 < Tr < Tr

u
 

Dmm 
l
 <  Dmm < Dmm

 u 

Nm,T  = 8 mol 

 

6.2.2 Maximum conversion problem 

 

The optimization problem can be described as: 

 

Given  Fixed diameter of particle (Dmm), Fixed total amount of 

monomer (Nm,T), Fixed molecular weight (Mn), Fixed pre-

batch time (tpb), Fixed number of intervals, Fixed batch time 
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Optimize Styrene feed rate (FmA), MMA feed rate (FmB), Surfactant feed 

rate (FS), Initiator feed rate (FI), Jacket temperature (Tj0), 

Controller switching times 

 

So as to maximize  Overall conversion (Xn) 

 

Subject to constraint Model equations, Linear bounds on: 

Initial Initiator concentration (CI0), Initial Surfactant 

concentration (S0), Initial styrene concentration (FmA,0), Initial 

MMA concentration (FmB,0), Reactor temperature (Tr), 

Copolymer composition 

 

Mathematically the optimization problem for minimum time problem can be 

described as; 

              Max                          Xn 

FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 

s.t.                                              model equations 

Mn = Mn* 

FmA
 l
 <  FmA < FmA

 u
 

FmB 
l
 < FmB < FmB 

u
 

FS
l
 <  FS < FS

 u
 

FI
 l
 <  FI < FI

 u
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Tr
l
 < Tr < Tr

u
 

Dmm 
l
 <  Dmm < Dmm

 u 

Nm,T  = 8 mol 

 

Where subscript l and u referred to lower and upper bounds. 

When batch time is fixed, tf = tf* is also added as constraint to the optimization 

problem. When the batch time is free, tf is optimized with all other parameters. 

 

6.3 Description of Case Studies 

 

This section looks at the dynamic optimization of a batch and semi-batch emulsion 

copolymerization process of styrene and MMA. There are nine case studies 

presented in this work and was classified into three groups namely semi-batch 

process (with pre-batch time); batch process; and semi-batch process (without pre-

batch time) respectively. These nine study cases have been carried out and grouped 

as shown below: 

 

6.3.1 Semi-batch process (with pre-batch time) 

 

 Case study 1 - Maximize the number average molecular weight (Mn) for 

different pre-batch time at fixed total batch time (5 

intervals) 
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 Case study 2 - Maximize the number average molecular weight (Mn) for 

different pre-batch time at fixed total batch time (3 

intervals) 

 

 Case study 3 - Maximize overall conversion (Xn) for specified number 

average molecular weight (Mn) with free final batch time 

 

 Case study 4 - Maximize overall conversion (Xn) for specified number 

average molecular weight (Mn) at fixed total batch time  

 

 Case study 5 – Maximize number average molecular weight (Mn) for 

different initial initiator concentration (pre-batch time 

1500s) 

 

6.3.2 Batch process 

 

 Case study 6 – Maximize overall conversion (Xn) for batch process 

 

 Case Study 7 – Maximize number average molecular weight (Mn) for batch 

process 

 

6.3.3 Semi-batch process (without pre-batch time) 

 

 Case study 8 –  Maximize number average molecular weight (Mn) for 

different number of intervals  
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 Case study 9 – Maximize number average molecular weight (Mn) for 5 

intervals with control the monomer flow of 5
th

 interval. 

 

The objective functions are maximized by optimizing five variables namely styrene 

feed rate (FmA), MMA feed rate (FmB), initiator feed rate (FI), surfactant feed rate (FS) 

and also jacket reactor temperature (Tj0). The initiator used in this work is Persulfate 

K2S2O8 and the surfactant is Sodium Dodecyl Sulfate (SDS) which has been widely 

used in conventional emulsion polymerization of Styrene (Luo et al., 2011). Data and 

procedure for emulsion copolymerization of styrene and MMA is given in Table 6.1 

below. In semi-batch process, 17.1%53.45 g of  total monomer was added at the 

beginning of the process for seed formation. Then the rest of the monomer was added 

continuously along the process. The ratio of the copolymer composition for the 

styrene/MMA feed inside the reactor is 50/50 with the constraint of total amount of 

monomer added inside the reactor is 8 mols. 

 

Table 6.1: Data from emulsion copolymerization process 

Styrene monomer (g) 410.40 

MMA monomer (g) 410.40 

Water (g) 2.50 

Initiator-persulfate K2S2O8 (g) 1.875 

Surfactant-SDS (g) 5.39 

Monomer feed:  

826.96% semibatch charge  

13.047.1% initial charge (seeding process)  

 

  

Formatted: Space After:  0 pt, Don't
keep with next
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6.4 Case study 1 - Maximize the number average molecular weight (Mn) for 

different pre-batch time at fixed total batch time (5 intervals) 

 

6.4.1 Optimization Problem Formulation and Constraints 

 

The number average molecular weight for different pre-batch time in 5 intervals was 

maximized in this case study. Previous study by Alhamad (2005) and Alhamad et al. 

(2005a) have maximized the molecular weight of emulsion copolymerization of 

styrene and MMA with 5 intervals and 1500s pre-batch time without fixing the total 

batch time (tf). In this work, the pre-batch time (tpb) is set at 1800s, 1500s, 1200s, 

900s, 600s, 300s and without pre-batch time for the total batch time 5500s. The 

reason for the pre-batch time is for the seeds formation, which means by reducing the 

pre-batch time will reduce the time for the seed formation. The dynamic optimization 

formulation and constraints for this case study can be described as: 

 

                      Max                                              Mn 

FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 

s.t.                                              model equations 

     tpb = tpb* 

tf = tf* = 5500s 

0.94  < Xn < 1.0 

0.0 g/s <  FmA < 0.2 g/s 

0.0 g/s < FmB < 0.2 g/s 
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0.0 g/s <  FS < 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s 

343.00 K < Tr < 358.00 K 

0.4 x 10
-7

m <  Dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

 

 

6.4.2 Results and discussions 

 

Results for maximum number average molecular weight for different pre-batch time 

are summarized in Table 6.2 below.  As the pre-batch time decreases, the number 

average molecular weight (Mn) increases with slight decrease in overall conversions 

(Xn).  

 

The results in Table 6.2 show that the maximum molecular weight 258654.4 g/mol 

can be achieved with 300s pre-batch time with an overall conversion of 94.13%. A 

seed population with a smaller particle and larger size particles are produced during 

the pre-batch time (Zeaiter et al., 2002). The results clearly show that the pre-batch 

time for seed formation is needed but can be reduced to maximize the molecular 

weight (Mn) (although by 3% only in this case) for run 1 and run 6. 
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Table 6.2: Maximize the molecular weight for different pre-batch time (5 intervals) 

Run Mn (g/mol) Xn (%) Dmm (nm) tpb (s) 

1 251199.0 94.29 87.7 1800 

2 253041.0 94.25 87.7 1500 

2a (Alhamad) 248109.9 94.18 87.2 1500 

3 254816.0 94.20 87.7 1200 

4 256371.6 94.18 87.7 900 

5 257717.6 94.16 87.7 600 

6 258654.4 94.13 87.6 300 

7 258077.5 93.56 87.6 0 

 

This optimization process also was carried out to achieve maximum Mn without any 

pre-batch time (Run 7) in order to compare with the process where the pre-batch time   

was allocated as shown in Table 6.2. The results show that the Mn for Run 6 is 

decreased by only 0.22% for the decreased of 300s (compared to Run 7) however the 

Mn (Run 7) is much higher (2.74%) when compared to the longer pre-batch time 

(Run 1). The results show that the pre-batch time can be reduced to achieve the 

higher Mn but without pre-batch time allocated for the seed formation, a small 

decrease in Mn and Xn is observed. 

 

Figure 6.1 shows the optimization result with the optimal profile of monomer feed 

rate (Fig. 6.1c) and jacket temperature (Fig. 6.1d) for Run 2. During 1500s pre-batch 

time (Run 2), no further feed of monomer was added to the reactor. It can be seen 

that the temperature will remain constant at 358 K until 4200s before it goes down to 

343 K when the reaction stop. At high temperature, the radical transfer in the 

polymerization process will increase (Fig. 6.1d) which will lead to shorter chains of 

polymer (low Mn) as shown in Figure 6.1a. 
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Figure 6.1: Case study 1 (Run 2); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  

 

When the temperature is decreased the molecular weight will increase to achieve the 

maximum molecular weight. On the other hand, increasing the temperature will 

increase the kinetic transfer coefficient (ktr).When the transfer coefficient is 

increased, the monomeric radicals are increased resulting in an increase in 

termination reaction. Besides that, the entry of radicals to the particles also will result 

in instantaneous termination for zero-one emulsion process. The transfer and 

termination reaction will stop the increase of molecular weight. The jacket 

temperature profile (Fig.6.1d) was constant at 358 K until 4200s to ensure that the 

reactor temperature is high for the radical transfer to happen in the process. Then it 

was decreased to 343 K to ensure that Mn was increased to its maximum value with 
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the lower reactor temperature. On the other hand, lowering the reaction temperature, 

will lead to decrease in the transfer event resulting in longer polymer chains meaning 

higher molecular weight. Alhamad (2005) made similar observation. However, the 

maximum Mn in his work for 1500s feed batch time was 235758 g/mol which is 

lower than that obtained in this work due to lower batch time of 4998s. This is due to 

decreasing the reaction time also can reduce the molecular weight. The surfactant 

feed was about 0.0056 mol/s for about 450s towards the end of the process. The 

addition of surfactant at very slow feed rate is to stabilize the bigger particles formed, 

without producing any new micelles for micellar nucleation. No initiator added along 

the process since the addition can reduce the Mn.  

 

Note, Run 2a in Table 6.2 is carried out using Xn = 94.17 (same as Alhamad (2005)), 

tpb = 1500s (same as Alhamad (2005)) but with tf = 4998s (same as Alhamad (2005) 

but fixed in this work). The comparison shows that higher number average molecular 

weight can be achieved when the final batch time is fixed. 

 

 

6.5 Case study 2 - Maximize the number average molecular weight (Mn) for 

different pre-batch time at fixed final batch time (3 intervals) 

 

6.5.1 Optimization Problem Formulation and Constraints  

 

In Case study 2 the number average molecular weight is maximized for different pre-

batch time in 3 intervals. The pre-batch time (tpb*) is set at 1500s, 1200s, 900s and 

600s for the total batch time 5500s and 5000s. Total amount of monomer (Nm,T) 
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added into the reactor is 8 mol. The dynamic optimization formulation and 

constraints can be described as: 

 

                           Max                                         Mn 

FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 

s.t.                                              model equations 

tpb = tpb* 

0.94  < Xn < 1.0 

0.0 g/s <  FmA < 0.2 g/s 

0.0 g/s < FmB < 0.2 g/s 

0.0 g/s <  FS < 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s  

343.00 K < Tr < 358.00 K 

0.4 x 10
-7

m <  Dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

 

6.5.2 Results and discussions 

 

Results for case study 2 are shown in Table 6.3 and Table 6.4 for total batch time 

5500s and 5000s respectively. The results show that by decreasing the pre-batch 

time, the molecular weights were increased while the overall conversion is slightly 

the same.  
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For a total batch time 5500s (Table 6.3), the Mn is 0.72% higher for 1200s pre-batch 

time (Run 3) compared to 1500s pre-batch time (Run 2). However, 1.44% increase of 

the Mn can be observed for longer difference of the pre-batch time (1200s) from Run 

1 and Run 5 (Table 6.3).  

 

For a total batch time 5000s, the Mn is increased 2.56% for the difference of 900s 

(Run 1 and Run 4) as shown in Table 6.4. A higher increased of Mn can be observed 

for a smaller decrease of pre-batch time (900s) for shorter total batch time of 5000s 

compared to 5500s. On top of that, for shorter total batch time (5000s), the decrease 

of 1.95% of Mn can be seen for the same 1500s pre-batch time (Run 2 in Table 6.3 

and Run 1 in Table 6.4). This is because with longer processing time, it gave the 

opportunity to the monomer added along the process to react and increase the 

polymer chain inside the particle. 

 

The results in Table 6.3 and Table 6.4 below show good agreement with the results 

in case study 1 in the sense that decreasing the pre-batch time increases the number 

average molecular weight (Mn). As mentioned before, this is happened due to the fact 

that the sooner the monomers added into the reactor, the sooner the propagation 

occurs in the particle. This will lead to increasing the chain length of the polymer in 

the particles as time increases.  

 

The results show that the molecular weight of copolymerization of Styrene and 

MMA with 3 intervals (Table 6.3) is lower compared with 5 intervals (Table 6.2) 

especially for lower pre-batch time (600s and 900s) for the same total batch time 

5500s. However, for the pre-batch time 1200s and above, the results of the Mn are 
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quite the same.  This is because more flexibility for the optimization process was 

needed when shorter time for seed formation was allocated. Same optimal 

temperature profile also observed with the last case study in order to maximize the 

number average molecular weight (Mn). 

 

Table 6.3: Maximize the molecular weight for different pre-batch time (3 intervals) 

total time 5500s 

Run Mn (g/mol) Xn (%) Diameter (nm) Pre-batch time (s) 

1 251198 94.29 87.7 1800 

2 253053 94.25 87.7 1500 

3 254863 94.22 87.7 1200 

4 253621 94.01 87.8 900 

5 254881 93.98 87.8 600 

 

 

Table 6.4: Maximize the molecular weight for different pre-batch time (3 intervals) 

total time 5000s 

Run Mn (g/mol) Xn (%) Diameter (nm) Pre-batch time (s) 

1 248212 94.27 87.2 1500 

2 251520 94.28 87.7 1200 

3 253250 94.24 87.7 900 

4 254741 94.22 87.7 600 

 

The optimal profile of the jacket temperature, monomer flow rates (styrene and 

MMA) and initiator flow rates case study 2 (Run 2) for the total batch time 5500s is 

shown in Figure 6.2 below. The rest of the optimal profile shown the same 

observation and are given in the appendix 2.  
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Figure 6.2: Case study 2 (Result Run 2) for total batch time 5500s, (a) overall 

conversion (Xn); (b) number average molecular weight (Mn); (c) monomer flow rate 

(FmA and FmB); (d) jacket temperature (Tj0) ;(e) optimal profile of surfactant flow rate 

(FS); (f)  optimal profile of initiator flow rate (FI). 

 

 

6.6 Case study 3 - Maximize overall conversion (Xn) for specified molecular 

weight with free final batch time 

 

6.6.1 Optimization Problem Formulation and Constraints  

 

Case study 3 is for maximization of the overall conversion of the reaction process of 

emulsion copolymerization of styrene and MMA for specified molecular weight in 5 

control intervals. The pre-batch time is set constant at 1200s and 1500s for 
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comparison and effect of different pre-batch time. The constraint on total monomer 

added into the reactor is 8 mols. The dynamic optimization formulation and 

constraints for this case study can be described as: 

                          Max                                          Xn 

FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 ; tf 

s.t.                                              model equations 

Mn = Mn* 

tpb = tpb* 

0.0 g/s <  FmA < 0.2 g/s 

0.0 g/s < FmB < 0.2 g/s 

0.0 g/s <  FS < 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s 

343.00 K < Tr < 358.00 K 

0.4 x 10
-7

m <  Dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

 

6.6.2 Results and discussions 

 

Maximum conversion is very important to ensure that most of the monomers have 

reacted in the reactor and the product is at high quality. In this case study the process 

is optimized to achieve the desired number average molecular weight (Mn) in 1200s 

and 1500s pre-batch time using 5 control intervals. The desired number average 

molecular weight is set at 100000 g/mol, 150000 g/mol and 200000 g/mol. Results 
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are shown in Table 6.5. The maximum overall conversion for specified molecular 

weight of 100000 g/mol, 150000 g/mol and 200000 g/mol is compared with different 

pre-batch time of 1200s and 1500s. 

 

Table 6.5: Maximize overall conversion for specified molecular weight (pre-batch 

time 1200s and 1500s) 

 1200s pre-batch time 1500s pre-batch time 

Run Mn* 

(g/mol) 

Xn (%) Mn 

(g/mol) 

Time (s) Xn (%) Mn 

(g/mol) 

Time (s) 

1 100000 96.24 100002 4895.48 96.16 100047 5079.93 

2 150000 97.10 150004 5170.87 96.96 150039 5214.09 

3 200000 95.79 200012 5293.15 95.67 200013 5546.68 

 

The results show that by reducing the pre-batch time, the desired molecular weight 

can be achieved in shorter time and with higher overall conversion as observed 

previously. For example, for a given Mn* = 200000 g/mol (Run 3), the total batch 

time is 4.79% shorter with pre-batch time of 1200s compared to the pre-batch time of 

1500s. Very small increases of overall conversion (Xn) for 1200s pre-batch time 

compared to 1500s pre-batch time in each run as shown in Table 6.5.  

   

Even though the final batch time for 1500s pre-batch time is higher (5079.93s) 

compared to 1200s pre-batch time (4895.48s) as shown in Table 6.5, less time are 

required for the propagation process to occur (after pre-batch time) to achieve the 

desired Mn for longer pre-batch time (1500s). For example, 3579.93s is required after 

the 1500s pre-batch time (Run 1) while 3695.48s is required after the 1200s pre-

batch time (Run 1) to achieve the desired Mn 100000 g/mol. This is due to higher 
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number of particles being produced during the pre-batch time when longer pre-batch 

time (1500s) was allocated. 

 

The optimal profile of the jacket temperature, monomer flow rates (styrene and 

MMA) and initiator flow rates case study 3 (Run 2) for the 1200s pre-batch time is 

shown in Figure 6.3 below.  

 

  

  

  

Figure 6.3: Case study 3 (Result Run 2) for 1200s pre-batch time, (a) overall 

conversion (Xn); (b) number average molecular weight (Mn); (c) jacket temperature 

(Tj0); (d) monomer flow rate (FmA and FmB); (e) optimal profile of surfactant flow rate 

(FS); (f)  optimal profile of initiator flow rate (FI).  
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The results show that the jacket temperature is increased from about 2100s to 3100s 

to decrease the Mn, which then increase the Xn. As the monomer added after the pre-

batch time, the addition of surfactant and initiator can be observed which retarded the 

increases of the Mn. The rest of the optimal profile shown the same observation and 

are given in the appendix 3. 

 

 

6.7 Case study 4 - Maximize overall conversion (Xn) for specified molecular 

weight at fixed final batch time in a semi-batch process with pre-batch time 

 

6.7.1 Optimization Problem Formulation and Constraints 

 

The objective function of case study 4 is to maximize the overall conversion of the 

reaction process of emulsion copolymerization of styrene and MMA in 5 intervals 

with the fixed reaction time 5500s.  Constraint for the total monomer added into the 

reactor is 8 mols. The pre-batch time is set constant at 1200s. The dynamic 

optimization formulation and constraint for case study 5 can be described as: 

 

                              Max                                       Xn 

FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 

s.t.                                              model equations 

Mn = Mn* 

tf = 5500s 
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tpb = 1200s 

0.0 g/s <  FmA < 0.2 g/s 

0.0 g/s < FmB < 0.2 g/s 

0.0 g/s <  FS < 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s 

343.00 K < Tr < 358.00 K 

0.4 x 10
-7

m <  Dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

 

6.7.2 Results and discussions 

 

In this case study the process is optimized to achieve the desired molecular weight in 

1200s pre-batch time and 5 intervals with fixed total batch time 5500s. The styrene 

feed rate (FmA), MMA feed rate (FmB), initiator feed rate (FI), surfactant feed rate (FS) 

and jacket reactor temperature (Tj0) are optimized here.  The desired number average 

molecular weight is set at 100000 g/mol, 150000 g/mol and 200000 g/mol and the 

results are shown in Table 6.6. The desired molecular weight can be achieved at 

fixed time 5500s with higher conversion, 99.38%, 97.92% and 95.84% when 

compare without fixed batch time (Table 6.5) for 100 000 g/mol, 150 000 g/mol and 

200 000 g/mol respectively (same pre-batch time 1200s). This is because in previous 

case study, the maximum overall conversion was achieved at lower batch time.  
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Table 6.6: Maximize overall conversion for specified molecular weight (pre-batch 

time 1200s) 

Run Mn* (g/mol) Xn (%) Mn (g/mol) Dmm (nm) 

1 100000 99.38 100006.7 90.0 

2 150000 97.92 149998.7 89.7 

3 200000 95.84 200001.8 88.7 

 

Overall conversion (Xn) and particle diameter (Dmm) were decreased with the increase 

of molecular weight. For a given batch time, with the desired low number average 

molecular weight, formation of new radicals and new polymer chains continue to 

occur thus leading more conversion of the monomer. On the other hand, for the same 

batch time, to achieve a polymer with higher number average molecular weight, 

formation of new polymer chain is restricted and the polymer chains already in 

propagation continue to grow (no secondary nucleation occur) and this leads to 

comparatively lower overall conversion (Xn) of the monomers.  

 

Also for the higher molecular weight polymer, lower particle diameter will be 

obtained. This is because the addition of surfactant and initiator for the secondary 

nucleation (for lower Mn) produced higher number of polymer particles (Ntot). In 

order to achieve the maximum conversion, the desired number average molecular 

weight can be achieved with broader particle distribution, thus lower the diameter of 

the particle. 
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Figure 6.4 presents the results and optimal profiles (FmA, FmB, FS, FI and Tj0) for Run 

3 in case study 4. 

 

  

  

  

Figure 6.4:  Result case study 4 (Run 3); (a) overall conversion (Xn);  (b) number 

average molecular weight (Mn); (c) jacket temperature (Tj0) and reaction temperature 

(Tr); (d) monomer flow rate (FmA and FmB); (e) optimal profile of surfactant flow rate 

(FS); (f)  optimal profile of initiator flow rate (FI). 

 

The overall conversion drops (Fig. 6.4a) at 1200s during the addition of monomer to 

the reactor. This is because most of the monomers had converted to polymer 

particles, and at the time of addition, the total amount of monomer in the reactor 

increases. Surfactant also increases (Fig 6.4e) at that time to produce micelles for the 
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of initiator flow rate (Fig. 6.4f) to the reactor in order to achieve the desired Mn (Fig. 

6.4b). The rest of the optimal profiles for this case study is given in the appendix 4. 

 

 

6.8 Case study 5 - Maximize number average molecular weight (Mn) for 

different initial initiator concentration in a semi-batch process with pre-batch 

time 

 

6.8.1 Optimization Problem Formulation and Constraints 

 

The objective of case study 5 is to maximize the number average molecular weight 

(Mn) for different concentration of initial initiator purged into the reactor using 5 

control intervals. The mass of initial initiator was set at 1.875 g, 1.775 g, 1.575 g, 

1.375 g, 1.175 g and 1.075 g at the beginning of the process. The pre-batch time is 

set constant at 1500s for the fixed final batch time 5500s. The dynamic optimization 

formulation and constraint for case study 5 can be described as: 

 

Max Mn 

FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 

s.t. 
                                             model equations 

Ci0 = Ci0* 

tf = 5500s 

0.90  < Xn < 1.0 
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0.0 g/s <  FmA < 0.2 g/s 

0.0 g/s < FmB < 0.2 g/s 

0.0 g/s <  FS < 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s 

343.00 K < Tr < 358.00 K 

0.4 x 10
-7

m <  dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

 

6.8.2 Results and discussions 

 

The mass of initiator, I (g) was decreased in order to decrease the concentration of 

the initial initiator charged into the reactor at the beginning of the process.  The 

results in Table 6.7 show that the number average molecular weight can be increased 

by decreasing the initial initiator concentration (Ci0). This is because by reducing the 

concentration of the initiator at the beginning of the process, less oligomeric radical 

will be produced and this will reduce the polymerization loci leading to lower 

conversion (Bakshi et al., 2010). These oligomeric radicals then will react with added 

monomer to increase the chain length. As the added monomer distributed to less 

oligomeric radicals produced at the early stage of the polymerization process, the 

increase of chain length are possible to achieve higher molecular weight.  

 

The results in Table 6.7 show that the diameters of the particles were smaller at 

higher initiator concentration. This is due to the more oligomeric radicals was 
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produced with higher CI0 at the beginning of the process leading to lower the Mn. 

With the same concentration of monomer, the shorter each polymer chain will 

become, yielding a lower average molecular weight, resulting smaller average 

particle size. On the other hand, the overall conversion was slightly decreased with 

the decreased of the initial initiator concentration.  

 

Table 6.7: Maximize molecular weight for different initial initiator concentration 

Run CI0 (mol/L)x10
-3

 I (g) Mn (g/mol) Xn (%) Dmm (nm) 

1 2.774 1.875 253041 94.25 87.7 

2 2.626 1.775 260167 94.15 87.8 

3 2.331 1.575 276684 94.00 88.2 

4 2.035 1.375 297740 93.62 88.3 

5 1.739 1.175 324562 93.22 89.0 

6 1.591 1.075 341013 92.97 89.3 

 

Three graphs were plotted in Figure 6.5 below from the results in Table 6.7. The 

graphs are number average molecular weight (Mn), overall conversion (Xn) and 

diameter particle (Dmm) versus initial initiator concentration (CI0) respectively.  

   

Figure 6.5: Regression and coefficient of determination (R
2
) between initial initiator 

concentration (Ci0) and: a) number average molecular weight (Mn) ; b) Overall 

conversion (Xn) ; c) Particle diameter (Dmm).  
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The linear regression in Figure 6.5 have very strong coefficient of determination (R
2
) 

with the value 0.9845 (Fig. 6.5a); 0.9686 (Fig. 6.5b) and 0.9927 (Fig. 6.5c). It shows 

that the value of number average molecular weight, overall conversion and particle 

diameter can be predict by using the related regression above for initial initiator 

concentration between 1.591 x 10
-3

 mol/L to 2.774 x 10
-3

 mol/L. 

 

The optimal profile of the jacket temperature, monomer flow rates (styrene and 

MMA), surfactant flow rates and initiator flow rates case study 5 (Run 4) for the 

different initial initiator concentration is shown in Figure 6.6 below.  

 

  

  

  

Figure 6.6:  Result case study 5 (Run 4); (a) overall conversion (Xn);  (b) number 

average molecular weight (Mn); (c) reaction temperature (Tr); (d) monomer flow rate 

(FmA and FmB); (e) optimal profile of surfactant flow rate (FS); (f)  optimal profile of 

initiator flow rate (FI).  
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The results show that no surfactant ( Figure 6.6e) and initiator (Figure 6.6f) are 

added along the process in order to avoid the occurrence of the micellar and 

secondary nucleation which can decrease the Mn. The rest of the optimal profile 

shown the same observation and are given in the appendix 5. 

 

 

6.9 Case study 6 – Maximize overall conversion (Xn) in a batch process 

 

6.9.1 Optimization Problem Formulation and Constraints 

 

The objective of case study 6 is to maximize the overall conversion (Xn) for batch 

process with the fixed number average molecular weight (Mn) using 5 control 

intervals. The number average molecular weight (Mn) for fixed final batch time (tf) 

5000s was set at 55000 g/mol, 50000 g/mol, 45000 g/mol and 40000 g/mol for each 

optimization process respectively. Monomer flow rate of styrene and MMA (FmA and 

FmB) are not optimized for the batch process since all the monomer are feed into the 

reactor at the beginning of the batch process. The dynamic optimization formulation 

and constraint for this case study can be described as: 

              Max                                                        Xn 

FS(t) ; FI(t) ; Tj0 

s.t.                                              model equations 

Mn = Mn* 

tf = 5000s 
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0.0 g/s <  FS < 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s 

343.00 K < Tr < 358.00 K 

0.4 x 10
-7

m <  Dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

6.9.2 Results and discussions 

 

Table 6.8 shows the results for maximization of Xn in batch reactor. Jacket 

temperature (Tj0), surfactant flow rates (FS) and initiator flow rate (FI) were 

optimized in order to achieve the maximum overall conversion for the desired 

molecular weight. The results show that maximum overall conversion for all desired 

molecular weight can be achieved around 98%. The value of Xn for run 2 is slightly 

lower than the rest since more initiator was feed at the beginning of the process 

compared to Run 1, 3 and 4. 

 

Table 6.8: Results for maximization of Xn in batch reactor. 

Run Xn (%) Mn (g/mol) Mn*(g/mol) Dmm (nm) 

1 98.24 55005.15 55000 93.46 

2 97.36 49998.85 50000 96.56 

3 98.24 45005.42 45000 93.46 

4 98.18 40003.56 40000 93.50 

 

When initiator flow rate is high at the beginning of the process (Fig. 6.7f), the 

number average molecular weight (Mn) is low (Fig. 6.7a) since more monomer will 

react with the initiator to initiate the polymerization process rather than continue to 
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propagate with the oligomeric. This lower molecular weight then makes the Xn for 

Run 2 faster at the early process where it can achieve 75% at 440s while the rest is 

about 10 seconds late as shown in Figure 6.7b in small picture and this lead to lower 

Xn for Run 2. This is due to the fact that monomer conversion is relatively low after 

the end of particle nucleation. 

  

  

  

Figure 6.7: Result case study 6: (a) average number molecular weight (Mn); (b) 

overall conversion (Xn);  (c) optimal profile of jacket temperature (Tj0); (d) reaction 

temperature (Tr); (e) optimal profile of surfactant flow rate (FS); (f)  optimal profile 

of initiator flow rate (FI). 

 

Temperature was increased for Mn 40000 g/mol and 45000 g/mol at the end of the 

process (Fig. 6.7c and Fig. 6.7f) to decrease the Mn in the optimization process. This 

is because by increasing the temperature, the chain length decreases due to the 

transfer kinetic event (Zeaiter et al., 2002; Alhamad, 2005). The entry of radicals to 
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the particles would result instantaneous termination. Flow rate of surfactant is 

increased for Mn 55000 g/mol at the end of the process (Fig. 6.7e) to achieve the 

desired Mn since the added surfactant will produce new particles by micellar 

nucleation.  

 

 

6.10 Case Study 7 – Maximize number average molecular weight (Mn) in a 

batch process 

 

6.10.1 Optimization Problem Formulation and Constraints 

The objective of this case study is to maximize the number average molecular weight 

(Mn) for batch process using 5 control intervals. Final batch time (tf*)is fixed at 

5000s, 5500s and 6000s. The dynamic optimization formulation and constraints for 

this case study can be described as: 

 

           Max                                                         Mn 

FS(t) ; FI(t) ; Tj0 

s.t.                                              model equations 

tf = tf* 

0.90  < Xn < 1.0 

0.0 g/s <  FS < 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s 

343.00 K < Treact < 358.00 K 
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0.4 x 10
-7

m <  dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

 

6.10.2 Results and discussions 

 

Table 6.9 shows the results for the maximization of Mn in batch reactor. Jacket 

temperature, surfactant flow rates and initiator flow rate were optimized in order to 

achieve the maximum number average molecular weight at fixed time. The results 

show that molecular weight was decreased with the increased fixed batch time while 

overall conversion was slightly increased for this study case. Very small increment of 

the particle diameter also can be observed. 

 

Table 6.9: Results for maximization of Mn in batch reactor 

 Run Mn (g/mol) Xn (%) Dmm (nm) tf (s) 

1 59371.94 98.18 93.36 5000 

2 57080.51 98.28 93.43 5500 

3 55585.33 98.34 93.47 6000 

 

The longer the batch time gives more time for monomer radicals to absorb and 

desorb from one particle to another particle in polymerization loci. This will lead to 

decrease the number average molecular weight and increased the overall conversion 

which agreed with the result obtained in Table 6.9.   

 

The results from this case study is compared with case study 2 which was carried out 

in semi-batch process (1200s pre-batch time) for the same final batch time 5000s 

(Run 2 from Table 6.4 and Run 1 from Table 6.9) and 5500s (Run 3 from table 6.3 
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and Run 2 from Table 6.9). It shows that lower number average molecular weight 

(Mn) and higher overall conversion (Xn) can be achieved in batch process (case study 

7) for the same fixed total batch time. Mn is very low in batch process since more 

monomer will react with the initiator to initiate the polymerization process rather 

than continue to propagate with oligomeric radicals. Larger volume of particle at the 

beginning of the process (batch process) leads to produce bigger particle diameter 

(Dmm) compared to semi-batch process.  In batch process, all monomer added at the 

beginning of the process will undergo propagation process without any interfere of 

monomer addition along the reaction process which leads to increase the Xn. 

 

Figure 6.8 below show the optimal profile for batch process in case study 7 (Run 2). 

No initiator and surfactant are added along the process, only a very small increment 

of jacket temperature can be observed (Figure 6.8d) in order to achieve the maximum 

Mn. The rest of the profile in this study case is presented in appendix 6. 
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Figure 6.8: Result case study 7 (Run 2); (a) overall conversion (Xn);  (b) number 

average molecular weight (Mn); (c) reaction temperature (Tr); (d) optimal profile of 

surfactant flow rate (FS) and optimal profile of initiator flow rate (FI). 

 

 

6.11 Case study 8 – maximize number average molecular weight (Mn) for 

different number of intervals in a semi-batch process without pre-batch time 

 

6.11.1 Optimization Problem Formulation and Constraints 

 

This case study maximizes the molecular weight using different number of control 

intervals (from one interval to five intervals). No pre-batch time is assigned to the 

process for the total reaction time 5000s. The dynamic optimization formulation and 

constraint for this case study can be described as: 
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FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 

s.t.                                              model equations 

0.90  < Xn < 1.0 

0.0 g/s <  FmA < 0.2 g/s 

0.0 g/s < FmB < 0.2 g/s 

0.0 g/s <  FS < 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s 

343.00 K < Tr < 358.00 K 

0.4 x 10
-7

m <  Dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

 

6.11.2 Results and discussions 

 

Different numbers of intervals are used in the dynamic optimization process to 

control in this study case to see the effect of number of intervals in the optimization 

process. In each interval, the control value and length of the interval (i.e. switching 

time) are optimized in order to achieve the maximum value of number average 

molecular weight. 

 

The results in Table 6.10 show that increasing the number of intervals can increase 

the molecular weight until certain number of interval where increasing the number of 

interval does not bring much difference to the process in terms of Mn.   
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Table 6.10: results for maximize molecular weight for different number of intervals 

(no pre-batch time) 

Run Mn (g/mol) Xn (%) Dmm (nm) Intervals 

1 194758.4 95.33 88.64 1 

2 251152.0 94.00 87.64 2 

3 258991.7 94.00 87.66 3 

4 258543.1 93.58 87.65 4 

5 258362.6 93.44 87.65 5 

 

However, larger differences in values of Mn for 1 and 2 intervals with the 3 intervals 

can be observed (32.981% for 1 and 3 intervals and 3.121% for 2 and 3 intervals). 

This is happened because with the higher number of intervals, it gives more 

flexibility to the process variables to optimize with certain constraints given to the 

process. Figure 6.9 below show the results for maximize molecular weight for 

different number of intervals without any pre-batch time. No initiator was added 

along the process. 

 

By using only 1 interval, the temperature has to be constant for the whole process, 

343 K (Fig. 6.9b). This will lead to higher Mn from the beginning of the process (Fig. 

6.9a) since low temperature will increase the transfer rate and termination constant. 

Flow rate of surfactant increased (Fig. 6.9d) to achieve the maximum Mn since the 

addition of surfactant produce new particle by micellar nucleation. 

  



 

 

173 

 

  

  

Figure 6.9: Result case study 8: (a) number average molecular weight (Mn); (b) 

reaction temperature (Tr); (c) overall conversion (Xn); (d) optimal profile of 

surfactant flow rate (FS) 

 

 

6.12 Case Study 9 – maximize number average molecular weight (Mn) for 5 

intervals with control the monomer flow of 5
th

 interval. 

 

6.12.1 Optimization Problem Formulation and Constraints 

This case study maximizes the number average molecular weight (Mn) with 5 control 

intervals where the length and flow of the monomer for the fifth interval (t5*) was 

varied for the total reaction time 5000s without any pre-batch time. The length of the 

fifth interval with 0 g/s of monomer flow was set at 600s, 420s, 300s and 180s. The 

dynamic optimization formulation and constraint for this case study can be described 

as: 
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                            Max                                         Mn 

FmA(t) ; FmB(t) ; FS(t) ; FI(t) ; Tj0 

s.t.                                              model equations 

tf = 5000s 

0.90  < Xn < 1.0 

0.0 g/s <  FmA < 0.2 g/s 

0.0 g/s < FmB < 0.2 g/s 

0.0 g/s <  FS< 0.2 g/s 

0.0 g/s <  FI < 0.2 g/s 

343.00 K < Tr < 358.00 K 

0.4 x 10
-7

m <  Dmm < 9.0 x 10
-7

m
 

Nm,T  = 8 mol 

 

6.12.2 Results and discussions  

The length of the fifth interval with no monomer added into the reactor gives a very 

significant effect to the molecular weight of the polymer in the system. By increasing 

the length for the fifth interval the maximum value of number average molecular 

weight can be decreased (Fig. 6.10c and Fig. 6.10d) with increase in the overall 

conversion of the monomer as shown in Table 6.11. 
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Table 6.11: Results for maximization of Mn for different length of fifth interval in 

semi batch process 

Run Mn (g/mol) Xn t5* (s) Dmm (nm) 

1 142473.3 99.04 600 90.03 

2 164110.3 98.51 420 89.60 

3 183351.3 97.63 300 89.21 

4 207956.8 96.56 180 88.71 

 

This is happened because no addition of the monomer into the reactor near to the end 

of the process (Fig. 6.11e and Fig. 6.11f) will help the polymerization process to 

propagate and terminate with all the monomer already added into the reactor and 

reduce the unreacted monomer in the reactor. This event can be clearly seen in 

Figure 6.10a and Figure 6.10b where overall monomer conversion increased 

drastically when the monomer flow is stop in the fifth interval. Adsorption and 

desorption of monomer radicals is happened without interference of any added 

monomer towards the end of the process. 

 

Figure 6.11g and Figure 6.11h show the optimal value of reactor temperature and 

surfactant flow rate to achieve the maximum Mn. Molecular weight was low (Figure 

6.10c) at higher temperature (Figure 6.11g) and was increased when the reaction 

temperature was reduced. This is due to the increase of the radical transfer rate at 

high temperature leading to the formation of shorter chains. 
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Figure 6.10: Result case study 3: (a, b) overall conversion (Xn); (c, d) average 

number molecular weight (Mn) 

 

  

  

Figure 6.11: Result case study 3: (e) optimal profile of Styrene monomer flow rate 

(FMA); (f) optimal profile of MMA monomer flow rate (FMB); (g) optimal profile of 

jacket temperature (Tj0); (h) optimal profile of surfactant flow rate (FS).  
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6.13 Conclusions 

 

The determination of optimal control trajectories for emulsion copolymerization of 

Styrene and MMA was carried out in this chapter. The resulting trajectories of FmA, 

FmB, FS, FI and Tj0 are obtained by formulating and solving different types of 

dynamic optimization problems with the objective of maximizing number average 

molecular weight (Mn) and overall conversion (Xn). Several constraints were used 

with lower and upper bounds to ensure that the process was running towards the 

desired process. The dynamic optimization technique based on Control Vector 

Parameterization (CVP) with the Sequential Quadratic Programming (SQP) method 

is employed for the solution of the optimization problems. 

 

The objectives for case study 1 and 2 were to maximize number average molecular 

weight (Mn) in different pre-batch time for different number of intervals with fixed 

final batch time. The results show that by reducing the pre batch time, Mn will be 

higher but conversion (Xn) will be decreased respectively. In all semi-batch process, 

17.1% of total monomer was feed at the beginning of the process for seed formation. 

Lower pre-batch time for seed formation allows to add  the remaining monomer to 

the reactor earlier. As the monomers enter the micelles at the early stage of the 

emulsion process, Mn are very high because the monomer will enter into the small 

amount of particles and increased the molecular chain in the particles. Additional 

monomers are then fed to the reactor along the process which increases the molecular 

weight. So the shorter the seed formation time the sooner the molecular weight will 

increase along the reaction time. 
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Different pre-batch times are used (1200s and 1500s) in the dynamic optimization 

process in case study 3 to see the effect of different pre-batch time when overall 

conversion (Xn) is maximized to achieve desired number average molecular weight 

(Mn) using free final batch time. The results show that the desired molecular weight 

can be achieved in shorter time with higher overall conversion for lower pre-batch 

time. This case study was carried out with free time. 

 

The objectives for case study 4 was to maximize overall conversion (Xn) for desired 

number average molecular weight (Mn) at 1200s pre-batch time and fixed total batch 

time 5500s. The results show that higher Xn can be achieved for lower desired Mn 

since addition of surfactant and initiator formed new micelles and radicals, thus new 

polymer chains continue to occur. This leads to more conversion of the monomer. 

 

The effect of different initial initiator concentration (Ci0) purged inside the reactor at 

the beginning of the process was study in case study 5. The number average 

molecular weight (Mn) was maximized for 1500s pre-batch time and fixed final batch 

time 5500s. The results show that the Mn can be increased by decreasing the Ci0. This 

is due to less oligomeric radicals will be produced (with low Ci0) which reduces the 

polymerization loci for the propagation process to continue with the added 

monomers thus lowered the overall conversion. 

 

Case studies 6 and 7 were carried out for batch process, to maximize overall 

conversion and maximize number average molecular weight respectively. The results 

show that maximum value for overall conversion of both cases can be achieved 

around 98%. However, maximum value for Mn was decreased as the final batch time 
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was increased. The results from case study 7 (maximize Mn) was compared with case 

study 2 which was carried out in semi-batch process (1200s pre-batch time) for the 

same final batch time 5000s and 5500s. It shows that lower number average 

molecular weight (Mn) and higher overall conversion (Xn) can be achieved in batch 

process for the same fixed batch time. Mn is very low in batch process since more 

monomer will react with the initiator to initiate the polymerization process rather 

than continue to propagate with oligomeric radicals. Larger volume of particle at the 

beginning of the process (batch process) leads to produce bigger particle diameter 

(Dmm) compared to semi-batch process.  In batch process, all monomer added at the 

beginning of the process will undergo propagation process without any interfere of 

monomer addition along the reaction process which leads to increase the Xn. 

 

The effects of number of intervals were investigated in case study 8 where no pre-

batch time was allocated for the process. In each interval, the control value and 

length of the interval (i.e. switching time) are optimized. It shows that increasing the 

number of intervals can increase the molecular weight until certain number of 

interval beyond which increasing the number of interval does not give much effect to 

the process. In this case, three intervals are enough for the flexibility of the control 

variables to achieve the desired properties. Comparison of the results with 1500s pre-

batch time for 3 intervals (Table 6.4 - Run 1) and 5 intervals (Table 6.2 – Run 2) 

show that higher number average molecular weight (Mn) and lower overall 

conversion Xn was achieved for the process carried out without any pre-batch time. 

The chain length of polymer start to increase from the beginning of the process 

(without pre-batch time), leads to achieve higher number average molecular weight 

(Mn). 
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The last study case was carried out to observe the effects of the fifth interval length 

where the monomer flow in was set at 0 g/s (no monomer added).  The longer the 

fifth interval, the lower the molecular weight achieved. On the other hand, the overall 

conversion was increased significantly due to more time was given for all the 

monomer radicals to settle in the particles. 

 

As a conclusion from all case studies carried out in this emulsion copolymerization 

of styrene and MMA, reduction of pre-batch time can increase the number average 

molecular weight. However, higher Mn can be achieved for semi-batch process 

without any pre-batch time when compared to semi-batch process with longer pre-

batch time. On the other hand, polymer produced in batch process will have low Mn 

and a very high overall conversion (Xn) as discussed before. Number average 

molecular weight (Mn) can be increased by increasing the total batch time. Addition 

of monomer along the semi-batch process also increased the polymer chain length, 

means increase of Mn. Besides that, addition of surfactant and initiator along the 

semi-batch process will form new particles which lower the Mn and increase the Xn 

respectively. The Mn also decreases with the increase of reaction temperature (Tr) 

since transfer coefficient is increased at higher Tr leads to increase the monomeric 

radicals resulting in an increase in termination reaction. 
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Chapter Seven 

Conclusions and Future Work 

 

 

 

7.1 Conclusions 

 

This chapter summarizes the work carried out in this work. Three different free 

radical polymerization processes were considered in this work using Control Vector 

Parameterization (CVP) techniques. They are bulk polymerization of styrene in batch 

reactor, solution polymerization of methyl methacrylate (MMA) in batch reactor and 

emulsion copolymerization of styrene and MMA in batch and semi-batch reactor. 

Mathematical modelling were presented in chapter three for all the free radical 

polymerization process. 

 

The process model used for polystyrene polymerization in batch reactors, using 2, 2 

azobisisobutyronitrile catalyst (AIBN) as initiator includes the gel and glass effects 

and this is an improvement over the earlier work of Ekpo and Mujtaba (2004). Four 

study cases were carried out in this study by taking into account the gel and glass 

effects. The first two cases were based on simple kinetic model while the last two 

cases were based on the energy balance model. 
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Optimal profiles for temperature (T), jacket coolant flow rate (Fj) and jacket 

temperature set point (Tjsp) affecting the quality of final product was obtained. The 

results obtained from this work were compared with the previous study by other 

researcher which disregarded the gel and glass effect in their study shows that the 

batch time operation are significantly reduced while the amount of the initial initiator 

concentration required is increased. As the concentration of the reaction mixture 

increases, termination rate constant decreases because entanglement of the polymer 

chains hindered the termination process (gel effect). However, propagation proceeds 

as before, so the conversion is rapid and the molecular weight will increase in a very 

short time.  

 

The process model used for solution polymerization of methyl methacrylate (MMA) 

in batch reactors, using 2, 2 azobisisobutyronitrile catalyst (AIBN) as the initiator 

was improved by including the free volume theory to calculate the initiator efficiency 

which was not considered in the earlier work of Ekpo and Mujtaba (2006). Two 

types of models were developed in chapter five to investigate the effect of f namely 

simple model and detailed model. 

 

Optimal temperature profile for solution polymerization of MMA that will yield 

desired polymerization characteristics in minimum time of the improved process 

model by using the Control Vector Parameterization (CVP) technique was obtained. 

The effects of different initiator efficiency, f was examined and compared with 

previous work of Ekpo and Mujtaba (2006) which used a constant value of f at 0.53. 

The results of these studies show that initiator efficiency, f decreased along the 

process with the increased of the monomer conversion in solution polymerization of 
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MMA when the free volume theory was applied. The results between two approaches 

confirm that the initial initiator needed at the early stage of the process is higher and 

longer batch time is required in order to achieve the specified Xn and Mn by using the 

time-varying initiator efficiency.  

 

The effect of solvent are very pronounced for both approach where there are large 

decrease in the reaction time for more concentrated reaction mixture in the reactor. 

This is to be expected since the model incorporates the gel and glass effect. The 

effect of different initiator efficiency need to take into account since it follows the 

theory lied behind. These really show the significant of using the free volume theory 

for the initiator efficiency rather than a constant value and it cannot be ignored. 

 

The determination of optimal control trajectories for emulsion copolymerization of 

Styrene and MMA was carried out in chapter six. The resulting trajectories of FmA, 

FmB, FS, FI and Tj0 are obtained by formulating and solving different types of 

dynamic optimization problems with the objective of maximizing number average 

molecular weight (Mn) and overall conversion (Xn). These were carried out with 

different pre-batch time in semi-batch reactor by using the CVP techniques. Three 

different processes were carried out in chapter six. They are semi-batch process with 

pre-batch time (case studies 1 – 5), batch process (case study 6 and 7) and semi-batch 

process without any pre-batch time allocated for the process (case study 8 and 9). 

 

The objectives in the first five case studies were to maximize number average 

molecular weight (Mn) and overall conversion (Xn) in semi-batch process with 

different pre-batch time. The results show that by reducing the pre-batch time, Mn 
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will be higher but conversion (Xn) will be decreased respectively. Addition of 

monomers fed to the reactor along the process increases the molecular weight. So the 

shorter the seed formation time the sooner the increase of molecular weight along the 

reaction time. Besides that effect of different initial initiator concentration (Ci0) also 

studied. The results show that the Mn can be increased by decreasing the Ci0 due to 

less oligomeric radicals will be produced with low Ci0. This leads to reduce the 

polymerization loci for the propagation process to continue further with the added 

monomers thus lowered the overall conversion. 

 

Two study cases (study case 6 and study case 7) were carried out for batch process, 

to maximize overall conversion and maximize number average molecular weight 

respectively. The optimal profile of jacket temperature (Tj0), surfactant flow rate (Fs) 

and initiator flow rate (FI) for emulsion copolymerization of styrene and MMA in 

batch reactor was obtained. The results show that maximum value for overall 

conversion of both cases can be achieved around 98%. However, maximum value for 

Mn was decreased as the final batch time was increased. 

 

The effects of number of intervals were investigated in case study 8 where no pre-

batch time was allocated for the semi-batch process. It shows that increasing the 

number of intervals can increase the molecular weight until certain number of 

interval where increasing the number of interval does not give much effect to the 

process in term of Mn. It was observed that three control intervals are enough for the 

flexibility of the control variables to achieve the desired properties in this case study.  
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In study case 9, the optimization of the semi-batch process without any pre-batch 

time was optimized to study the effects of the fifth interval length where the 

monomer flow in was set at 0 g/s (no monomer added).  The results show that the 

longer the fifth interval, the lower molecular weight will be. Inversely, the overall 

conversion was increased significantly with longer fifth interval (0 g/s) due to more 

time was given for all the monomer radicals to settle in the particles. 

 

 

7.2 Contribution of This Work 

 

Contribution of this work for bulk polymerization of styrene, solution polymerization 

of Methyl Methacrylate (MMA) and emulsion copolymerization of styrene and 

MMA are given below: 

 

 The process model used for bulk polymerization of styrene in batch reactor, 

using 2, 2 azobisisobutyronitrile catalyst (AIBN) as the initiator has been 

improved by including the gel and glass effect. 

 

 The process model used for solution polymerization of methyl methacrylate 

(MMA) in batch reactors, using 2,2 azobisisobutyronitrile catalyst (AIBN) as 

the initiator has been improved by including the free volume theory to 

calculate the initiator efficiency. 
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 A set of different pre-batch time for the seed formation is used for 

optimization process of emulsion copolymerization of styrene and Methyl 

Methacrylate (MMA). 

 

 Different optimization formulation is used in this work for maximize the 

number average molecular weight (Mn) in emulsion copolymerization 

process, where the total batch time is fixed, instead of free time. 

 

 Maximization of overall conversion (Xn) is carried out in batch process and 

semi-batch process with pre-batch time for emulsion copolymerization 

process. 

 

 The number average molecular weight (Mn) is maximized in semi-batch 

process without pre-batch time for emulsion copolymerization of styrene and 

MMA. 

 

 

7.3 Future Work 

 

Some suggestions for the future works are outlined below: 

 

1. General batch and semi-batch polymerization was carried out in this work. 

Optimization can be carried in the future with more specific scenario like 
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model uncertainty and operating and economic constraints using the CVP 

techniques. 

 

2. The results obtained in dynamic optimization problems from this work can be 

used for online control of the each polymerization process in the future work. 

 

3. The results achieved in this thesis should be validated by experimental work. 

The results from experimental work can be compared with the dynamic 

optimization obtain in this work. 

 

4. The market prices for finished polymers as well as the cost of manufacturing 

the polymer at different sites could be added in the future work. So, the 

maximum profit problems can be solved to establish the feasibility of running 

a polymerization process at different sites. 

 

5. Copolymerization of bulk and solution process can be carried out using these 

models which only consider homopolymerization process. 

 

6. The effects of jacket dynamics can be incorporated in future work which are 

assumed to be negligible in the energy balance models used in this work. 

 

7. It is desirable to study more than one of the effects at the same time to further 

tune the optimization process and to give closer picture of the real phenomena 

in the chemical industry. 
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APPENDIX 1 

Optimal profile for case study 1 

Case study 1A: Run 1 

  

  

  

Figure 12: Case study 1 (Run 1); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 1: Run 2 

 

  

  

  

Figure 2: Case study 1 (Run 2); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 1: run 3 

 

 
 

  

  

Figure 3: Case study 1 (Run 3); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 1: run 4 

 

  

 
 

  

Figure 4: Case study 1 (Run 4); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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 Case study 1: run 5 

 

  

  

  

Figure 5: Case study 1 (Run 5); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 1 : run 6 

 

  

  

  

Figure 6: Case study 1 (Run 6); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 1: run 7 

 

  

  

  

Figure 7: Case study 1 (Run 7); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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APPENDIX 2 

Optimal profile for case study 2 

Case study 2: run 1 

  

  

  

Figure 8: Case study 2 (Run 1); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 2: run 2 

 

  

  

  

Figure 9: Case study 2 (Run 2); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 2: run 3 

 

  

  

  

Figure 130: Case study 2 (Run 3); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 2: run 4 

 

  

  

  

Figure 141: Case study 2 (Run 4); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 2: run 5 

 

  

  

  

Figure 152: Case study 2 (Run 5); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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APPENDIX 3 

Optimal profile for case study 3 

Case study 3: run 1 

  

  

  

Figure 163: Case study 3 (Run 1); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 3: run 2 

 

  

  

  

Figure 174: Case study 3 (Run 2); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 3: run 3 

 

 
 

  

  

Figure 185: Case study 3 (Run 3); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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APPENDIX 4 

Optimal profile for case study 4 

Case study 4: run 1 

  

  

  
Figure 16: Case study 4 (Run 1); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 4: run 2 

 

  

  

  

Figure 17: Case study 4 (Run 2); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 4: run 3 

 

  

  

  
Figure 18: Case study 4 (Run 3); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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APPENDIX 5 

Optimal profile for case study 5 

Case study 5: run 2 

  

  

  

Figure 19: Case study 5 (Run 2); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 5: run 3 

 

  

  

  
Figure 20: Case study 5 (Run 3); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 5: run 4 

 

  

  

  
Figure 21: Case study 5 (Run 4); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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Case study 5: run 5 

 

  

  

  
Figure 192: Case study 5 (Run 5); Optimization result (a) number average molecular 

weight (Mn); (b) overall conversion (Xn); (c) optimal profile of monomer flow rate 

[FmA - styrene; FmB - MMA]; (d) optimal profile of jacket temperature Tj0; (e) optimal 

profile of surfactant flow rate (FS); (f) optimal profile of initiator flow rate (FI)  
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APPENDIX 6 

Optimal profile for case study 7 

 

Case study 7: run 1 

 

  

  
Figure 23: Result case study 7 (Run 2); (a) overall conversion (Xn);  (b) number 

average molecular weight (Mn); (c) jacket temperature (Tj0); (d) optimal profile of 

surfactant flow rate (FS) and optimal profile of initiator flow rate (FI). 
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Case study 7: run 2 

 

  

  
Figure 24: Result case study 7 (Run 2); (a) overall conversion (Xn);  (b) number 

average molecular weight (Mn); (c) jacket temperature (Tj0); (d) optimal profile of 

surfactant flow rate (FS) and optimal profile of initiator flow rate (FI). 
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Case study 7: run 3 

 

  

  
Figure 25: Result case study 7 (Run 2); (a) overall conversion (Xn);  (b) number 

average molecular weight (Mn); (c) jacket temperature (Tj0); (d) optimal profile of 

surfactant flow rate (FS) and optimal profile of initiator flow rate (FI). 
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APPENDIX 7 

Typical gPROMS Models 

 

 

Figure 26: gPROMS Model Builder Window for bulk polymerization of styrene 
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Figure 27: gPROMS Model Builder Window for solution polymerization of MMA 
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Figure 28: gPROMS Model Builder Window for emulsion copolymerization of 

styrene and MMA 
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