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Abstract

By employing a randomization procedure on the geometric Brownian motion (GBM)

model, we construct our new pricing models with stochastic volatility exhibiting symmetric

smiles in the log-forward moneyness, and admitting simple closed-form analytical expressions

for European-style option prices. We assume that there are no infinitesimal correlations

between the underlying asset prices and their volatility, and the integrated squared volatility

processes are random variables with well-known probability density functions. Under some

regularity conditions, closed-form expressions are obtained by taking the expectation of

option prices under diffusion models over the integrated squared volatility process, which

relate to the Bayesian framework in the GBM model studied by Darsinos and Satchell

[12]. Surprisingly, the pricing formulas for the novel models presented in this thesis are

even simpler than the classical GBM model as they are expressed as elementary analytical

functions. The option prices are also obtained numerically in an efficient manner since they

only involve one-dimensional integrals of complementary error functions with respect to the

variable of integration. We also calibrate to the market data from Coca Cola to compare

the performance on the new models and the SABR model.

Key Words: static randomization, pricing European-style options, Black-Scholes im-

plied volatility, calibration, randomized GBM model, SABR model, CEV model.
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Chapter 1

Introduction and Main Results

1.1 Introduction

Today, investors trade financial assets and contracts in the stock market. They trade

because they are willing to take their risks to earn profits with right predictions. In order to

hedge their risks associated from trading financial assets, they use options. An option is a

contract that gives the owner the right to buy/sell the underlying asset at a predetermined

price. Option prices are determined so that no investors can exploit arbitrage opportunities.

However, options cannot be priced without a background in mathematics. We thus require

mathematical models for pricing options.

Mathematicians have developed stochastic models to value options. The geometric

Brownian motion (GBM) model is known as one of the simplest continuous-time models that

admits analytical closed-form formulas for pricing various kinds of options [7]. The GBM

model is a complete market model which means the risks can be perfectly hedged. The

limitation is that there is a discrepancy between anticipated Black Scholes (BS) prices and

market traded option prices since the model fails to capture price movements for extreme
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events [15]. Local volatility diffusion models (also known as state-dependent volatility mod-

els) are more flexible continuous-time models known for describing the behavior of implied

volatility smile and skew patterns observed in a market place. Local volatility diffusion

models are also complete market models like the GBM model. In fact, the (1-dimensional)

GBM model is based on a geometric Brownian motion which is simply a local volatility

model with constant local volatility. In some cases, nonlinear local volatility models admit

closed-form formulas for pricing options. Families of local volatility diffusion models that

can be analytically solved in closed form have been developed in several papers, see e.g.,

Albanese and Campolieti [2] and Campolieti and Makarov [9]. They are obtained by ap-

plying the “diffusion canonical transformation” to more basic diffusions such as the Bessel,

Cox–Ingersoll–Ross and Ornstein-Uhlenbeck processes. These models have been shown to

calibrate quite well to equity and FX options. One drawback of local volatility diffusion

models is that they assume a perfect correlation between the underlying asset price and the

volatility. In some cases, this contradicts the empirical evidence that they should have an

imperfect negative correlation [19].

The stock market is incomplete in many situations as traders cannot use options

for hedging all the risks. Stochastic volatility models are incomplete and assume that the

volatility is a random process. We can make the movements of the underlying asset price

and the volatility to be negatively correlated. One example is the Heston model proposed in

1993 by Heston [14]. Heston successfully applied the Fourier transform method to evaluate

European vanilla options with an arbitrary correlation between the asset price and the

volatility. He also showed that the distribution of asset returns is asymmetric and found

that when the marginal distributions of the asset returns and the volatility are negatively

skewed, the BS out-of-the-money (OTM) option prices are negatively biased (i.e., BS OTM

2



option prices are usually smaller compared to market prices) and BS in-the-money (ITM)

option prices are positively biased. Another example is the SABR model introduced in

2002 by Hagan et al [13]. The implied volatility curve captured by the SABR model gives

consistency with the observed marketplace in dynamics.

In this thesis, we are mainly interested in constructing new pricing models with stochastic

volatility exhibiting symmetric smiles in the log-forward moneyness, and admitting simple

closed-form analytical expressions for European-style option prices. Classical examples of

solvable stochastic volatility models with symmetric smiles include the Heston model and

the lognormal SABR model with zero correlation case. These models admit closed-form

formulas for European-style option prices which are often expressed as integrals. Closed-

form expressions were obtained by taking the expectation of option prices under diffusion

models over the integrated squared volatility process, which relate to the Bayesian framework

in the GBM model studied by Darsinos and Satchell [12]. We will employ the Bayesian

framework to our new models in this thesis. In particular, we will assume that; (1) there are

no correlations between the asset prices and their volatility, and (2) the integrated squared

volatility processes are random variables with well-known probability density functions.

This thesis is organized as follows. In Section 1.2, we state some of our main results

pertaining to static randomization in Part II. In Part I we briefly go through some existing

option pricing models that motivated us in studying the new models, namely, the CEV

model (Chapter 2) and the SABR model (Chapter 3). In Chapter 2, we formulate two

pricing formulas for a European vanilla option under the CEV model. In Chapter 3, we state

Hagan et al. implied BS volatility formula (Section 3.1). The closed-form pricing formula

assuming zero infinitesimal correlation between asset price and volatility is explained in

detail (Section 3.2 and Appendix A). In Part II, we introduce the static randomization in the

3



GBM framework for the single-asset economy (Chapter 4) and some applications (Chapter

5). Before we state our new main results, we first give motivations on the randomized

GBM models by randomizing the volatility parameter in the GBM model (Section 4.1), and

also how the randomization can be extended from the GBM model with a time-dependent

volatility (Section 4.2). In Sections 4.3 and 4.4, we derive analytical expressions for the

transition probability density functions (PDFs) and the cumulative density functions (CDFs)

for the randomized processes. In Section 4.5, we obtain our European vanilla call option

pricing formulas and compare with the BS formula for the call option prices. In Section

4.6, we find the greeks of European vanilla call options under the randomized GBM models.

In Section 4.7, we investigate the shapes of BS implied volatility under randomization. In

Section 4.8, we conduct our numerical experiments pertaining to model calibrations to a real

world data. In Section 4.9, we test the stability of the parameters in the randomized GBM

models. In Chapter 5, we provide an extension to transition PDFs with imposed killing

(Section 5.1), first hitting times up to some threshold level (Sections 5.2 and 5.3), novel

two-asset economy models (Section 5.4) and randomized CEV models (Section 5.5).

1.2 Main Results

Let (Ω,F ,P, {Ft}t>0) be some fixed filtered probability space where {Ft}t>0 is the natural

filtration generated by the P-BM.1 Assume we are under the GBM model in a single-asset

economy where the asset price (diffusion) process {St}t>0 follows a GBM with stochastic

differential equation (SDE):

dSt
St

= rdt+
√
vdW̃t; S0 > 0, (1.1)

1Throughout this thesis, we use (Ω,F ,P, {Ft}t>0) to denote a filtered probability space.
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where r is the constant risk-free rate, v is the constant variance2 and {W̃t}t>0 is a standard

P̃-BM (i.e., Brownian motion under the risk-neutral measure). The well-known BS formula

of a European vanilla call option price struck at K (with current time t and the maturity

at calendar time T ) can be expressed in terms of the standard normal CDF:3

CBS(τ, S;K, r, v) =e−rτ Ẽt,S [(ST −K)+] ≡ e−rτ Ẽ[(ST −K)+|St = S]

=S

[
N

(
m+ 1

2vτ√
vτ

)
− e−mN

(
m− 1

2vτ√
vτ

)]
,

(1.2)

where τ = T − t is the time to maturity and

m = ln
S

K
+ rτ (1.3)

is the log-forward moneyness.4 Dividing both sides in (1.2) by S yields:

ĈBS(τ,m; v) ≡ CBS(τ, S;K, r, v)

S
= N

(
m+ 1

2vτ√
vτ

)
− e−mN

(
m− 1

2vτ√
vτ

)
. (1.4)

Note that the RHS in (1.4) depends on (τ,m, v), and hence we write the call option price

CBS relative to the spot price S as ĈBS(τ,m; v) for convenience. It follows that we have

the following symmetry property:5

ĈBS(τ,m; v) =N

(
m+ 1

2vτ√
vτ

)
− e−mN

(
m− 1

2vτ√
vτ

)

=

[
1−N

(
−m− 1

2vτ√
vτ

)]
− e−m

[
1−N

(
−m+ 1

2vτ√
vτ

)]

=(1− e−m) + e−m
[
N

(
−m+ 1

2vτ√
vτ

)
− emN

(
−m− 1

2vτ√
vτ

)]

=(1− e−m) + e−mĈBS(τ,−m; v),

(1.5)

which is useful and carries over to the randomized GBM models later. In formulating newly

solvable models based on randomization of the variance parameter v, we consider v as a
2In the GBM model, σ =

√
v usually denotes the constant volatility parameter.

3Throughout this thesis, we will use Ẽ to denote the risk-neutral expectation with bank account as
numéraire.

4We denote m ≡ m(S,K, τ) = ln S
K

+ rτ to avoid clutter.
5They are symmetric in a sense that CBS(τ,m; v) and CBS(τ,−m; v) are related to one another
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random variable equipped with some known PDF. We denote such a random variable by V to

distinguish it from the ordinary variable v. Then, we can formulate the (time-homogeneous)

pricing function for a European-style option with payoff function Λ(S) by:

VV(τ, S) = e−rτ
∫ ∞

0
Ẽt,S [Λ(ST )]fV(v)dv (1.6)

For example, the price of a European vanilla call option under the BS model, with variance

randomized according to the PDF fV , can be expressed as:

ĈV(τ,m) ≡ CV(τ, S;K, r)

S
=

∫ ∞
0

CBS(τ, S;K, r, v)

S
fV(v)dv

=

∫ ∞
0
N

(
m+ 1

2vτ√
vτ

)
fV(v)dv − e−m

∫ ∞
0
N

(
m− 1

2vτ√
vτ

)
fV(v)dv,

(1.7)

which depends on (τ,m) and a set of parameters in V, it is easy to see that under some mild

regularity conditions, (1.7) retains the symmetry property after the volatility randomization:

ĈV(τ,m) = (1− e−m) + e−mĈV(τ,−m). (1.8)

The interesting and surprising fact about the pricing function in (1.7) is that it can be

expressed as an elementary analytical function (perhaps, more trivial than the corresponding

BS formula) assuming V follows either the gamma and the inverse gamma distribution.

For example, if V follows the gamma distribution with shape parameter θ = 1 and scale

parameter λ, i.e., V ∼ G (1, λ), then the PDF of V is

fV(v) ≡ fG(θ,λ)(v) =
1

λθΓ(θ)
vθ−1e−

v
λ . (1.9)
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By applying (1.7), the price of a European vanilla call option, with variance randomized

according to (1.9), can be expressed as the Laplace transform of the standard normal CDFs:6

ĈG(1,λ)(τ,m) ≡
CG(1,λ) (τ, S;K, r)

S
=λ−1Lv

{
N

(
m+ 1

2vτ√
vτ

)}
(λ−1)

− e−mλ−1Lv

{
N

(
m− 1

2vτ√
vτ

)}
(λ−1),

(1.10)

and (1.10) takes the simple analytical form:

ĈG(1,λ)(τ,m) = (1− e−m)+ +

√
λτ√

8 + λτ
exp

(
−|m|

2

√
8 + λτ√
λτ

− m

2

)
, (1.11)

where x+ = max(x, 0) and m was defined in (1.3). If V follows the inverse gamma distribu-

tion with shape parameter θ = 1 and scale parameter λ, i.e., V ∼ IG(1, λ), then the PDF

of V is

fV(v) ≡ fIG(θ,λ)(v) =
λθ

Γ(θ)

(
1

v

)θ+1

e−
λ
v . (1.12)

By a change of variable (v′ = 1
v ), we have an integral identity:

∫ ∞
0

(
1

v

)2

e−
λ
vN

(
m± 1

2vτ√
vτ

)
dv =

∫ ∞
0

e−λv
′N

(
m
√
v′√
τ
±
√
τ

2
√
v′

)
dv′. (1.13)

Again, by applying (1.7), the price of a European vanilla call option can be expressed as the

Laplace transform of the standard normal CDFs:

ĈIG(1,λ)(τ,m) ≡
CIG(1,λ) (τ, S;K, r)

S
=λLv′

{
N

(
m
√
v′√
τ

+

√
τ

2
√
v′

)}
(λ)

− λe−mLv′
{
N

(
m
√
v′√
τ
−
√
τ

2
√
v′

)}
(λ),

(1.14)

and (1.14) takes the simple analytical form:

ĈIG(1,λ)(τ,m) =1− exp

(
−1

2

(
m+

√
m2 + 2λτ

))
;m ∈ R. (1.15)

6Recall that a Laplace transform of a function f at s is defined as:

Lt{f(t)}(s) =

∫ ∞
0

e−stf(t)dt, <(s) > c,

where c is the abscissa of convergence.
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More generally for any integer-valued shape parameter θ = n ∈ N, the pricing function can

be expressed in terms of the modified Bessel function of the second kind K. For example, if

V ∼ G(n, λ), then

ĈG(n,λ)(τ,m) ≡
CG(n,λ) (τ, S;K, r)

S

=(1− e−m)+ +

√
|m|√
π

(
λτ

8 + λτ

) 1
4

e−
m
2

×
n−1∑
k=0

1

k!

(
2|m|√

λτ
√

8 + λτ

)k
Kk+ 1

2

(
|m|
2

√
8 + λτ√
λτ

)
.

(1.16)

If V ∼ IG(n, λ), then

ĈIG(n,λ)(τ,m) ≡
CIG(n,λ) (τ, S;K, r)

S

=1− (m2 + 2λτ)
1
4

√
π

e−
m
2

×
n−1∑
k=0

1

k!

(
λτ

2
√
m2 + 2λτ

)k
Kk− 1

2

(√
m2 + 2λτ

2

)
.

(1.17)

It can be shown that the option prices in (1.16) and (1.17) retain the symmetry property

in (1.8), and exhibit symmetric smiles in the BS implied volatility. Thus, these models may

be used to calibrate to option price market data

It is also worth noting that the underlying probability distribution of such randomized

processes have thicker tails than the GBM. In particular, randomized processes considered

in our paper do not have second moments in most cases.
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Literature Review
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Chapter 2

CEV Model

2.1 Pricing European Vanilla Options

The stochastic differential equation (SDE) of the driftless CEV process ({Ft}t>0) with de-

terministic time-dependent squared volatility v(t) > 0 for any t > 0 is

dFt
Ft

=
√
v(t)F βt dWt; F0 > 0, (2.1)

where Ft is the forward price at time t, β is the skew parameter and {Wt}t>0 is a standard P-

BM. Our objective here is to convert the driftless CEV into a squared Bessel (SQB) process

for β 6= 0. In our first step, we define the monotonic mapping:

X : F −→ F−2β

β2
(2.2)

to construct a new process:

Xt = X(Ft) =
F−2β
t

β2
= 4ν2F

− 1
ν

t , (2.3)
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where ν = 1
2β . By Ito’s formula, the process satisfies the SDE:

dXt =
1

2

(
4(ν + 1)F

−2− 1
ν

t

)
(dFt)

2 −
(

4νF
−1− 1

ν
t

)
dFt

=

(
2(ν + 1)F

−2− 1
ν

t

)
v(t)F

2+ 1
ν

t dt−
(

4νF
−1− 1

ν
t

)√
v(t)F

1+ 1
2ν

t dWt

=2(ν + 1)v(t)dt+ 2
√
v(t)

(
2|ν|F−

1
2ν

t

)
dWt

=2(ν + 1)v(t)dt+ 2
√
v(t)

√
XtdWt.

(2.4)

We define a deterministic time change1 as:

Υ(s, t) =

∫ t

s
v(u)du, s < t, (2.5)

where we denote Υ(t) ≡ Υ(0, t). Then XΥ(t) is a SQB process with the SDE:

dXΥ(t) = 2(ν + 1)dΥ(t) + 2
√
XΥ(t)dWΥ(t); dWΥ(t) =

√
v(t)dWt. (2.6)

The transition probability density function (PDF) of the SQB process is2

pSQB(τ ;x, y) =
P(XT ∈ dy|Xt = x)

dy
=

1

2τ

(y
x

) ν
2 e−

x+y
2τ Iν̃

(√
xy

τ

)
=

1

τ
fχ2

(x
τ

; 2 + 2ν̃,
y

τ

)
; τ = T − t > 0, x, y > 0,

(2.7)

where Iν̃ is the modified Bessel function of the first kind of order ν̃, and where

ν̃ =


ν if ν > 0 or ν ∈ (−1, 0) with 0 specified as a reflecting boundary,

|ν| if ν 6 −1 or ν ∈ (−1, 0) with 0 specified as a killing boundary.

(2.8)

fχ2 is the PDF of the noncentral chi-square distribution

fχ2(x; k, λ) =
1

2

(x
λ

) k−2
4
I k−2

2
(
√
λx) exp

(
−λ+ x

2

)
, (2.9)

where k > 0 is the degree of freedom and λ > 0 is the noncentrality parameter. For β < 0

with killing boundary at 0, the transition PDF for the driftless CEV process {Ft}t>0 can be
1We may call it a "stochastic time-changed process", denoted by Υs,t if v(t) ≡ σ2

t is a stochastic process.
2Note that Px (Xτ ∈ dy) = p(τ ;x, y)dy. That is, the density is w.r.t. the Lebesgue measure.
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obtained from the change of variables:

pcev(t, T ;F, y) =pSQB(Υ(t, T );X(F ),X(y)) · X′(y)

=
y−2β− 3

2F
1
2

|β|Υ(t, T )
exp

(
−y
−2β + F−2β

2β2Υ(t, T )

)
I 1

2|β|

(
y−βF−β

β2Υ(t, T )

)
.

(2.10)

Let us extend it to the CEV process with a constant drift r satisfiying the SDE:

dSt
St

= rdt+
√
v(t)Sβt dW̃t; S0 > 0, (2.11)

where r is the constant risk-free interest rate. One can easily show that it can be transformed

into (2.6) using the following scaling transformation and deterministic time change:3

X : S −→ S−2β

β2
, Υ : (s, t) −→

∫ t

s
e2βr(u−s)v(u)du. (2.12)

For β < 0 with killing boundary at 0, the (risk-neutral) transition PDF for the drifted CEV

process {St}t>0 can be obtained from the change of variables:4

p̃cev(t, T ;S, y) = e−rτpSQB(Υ(t, T );X(S),X(e−rτy)) · X′(e−rτy)

= e−rτ
(e−rτy)−2β− 3

2S
1
2

|β|Υ(t, T )
exp

(
−(e−rτy)−2β + S−2β

2β2Υ(t, T )

)
I 1

2|β|

(
(e−rty)−βS−β

β2Υ(t, T )

)
.

(2.13)

Note that the discounted asset price process {e−rtSt}t>0, with β < 0 and killing boundary

at 0, is a P̃-martingale. The pricing formula for a European vanilla call option at time t

(with current price St = S, maturity time T and strike price K) is as follows:5

Ccev(t, T, S;K, r) =e−rτ
∫ ∞
K

(y −K)+p̃cev(t, T ;S, y)dy

=S0Q

(
m; 2 +

1

|β|
, y0

)
− e−rτK

(
1−Q

(
y0;

1

|β|
,m

))
,

(2.14)

where

τ = T−t, m =
(e−rτK)−2β

β2Υ(t, T )
, y0 =

S−2β

β2Υ(t, T )
, Υ(t, T ) =

∫ T

t
e2βr(u−t)v(u)du, (2.15)

3We defined the time change in a way that it retains time-homogeneity (i.e. Υ(s, t) depends solely on the
time difference t− s) for the time-independent CEV model (i.e., constant variance v(t) ≡ v).

4See (16.21) in Campolieti and Makarov [10].
5See (16.28) in Campolieti and Makarov [10]
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and Q is the complementary distribution function for the noncentral chi-square distribution

Q(x; k.λ) =

∫ ∞
x

fχ2(y; k, λ)dy. (2.16)

The option price in (2.14) can be easily obtained numerically using quadrature rules. Alter-

natively, since the complementary noncentral chi-square distribution function can be com-

puted using the double series:

Q(x, k, λ) = 1−
∞∑
n=1

g(n+
k

2
,
x

2
)

n∑
j=1

g(j,
λ

2
)

 , (2.17)

where g is the gamma PDF

g(m,x) =
e−xxm−1

Γ(m)
. (2.18)

In the next section, we will present an alternative approach for computing European vanilla

call option prices from Antonov et al. and state its advantages and disadvantages.

2.2 An Integral Representation of the Pricing Formula

For general time-homogeneous diffusion models, we assume that the forward price process

{Ft}t>0 is a P-martingale obeying the following SDE:

dFt
Ft

= σ(Ft)dWt, (2.19)

where σ(·) is the time-independent local volatility function. (Here, the local volatility func-

tion depends only on the spot forward price.) The price of a European vanilla call option

on the forward price struck at K, with spot Ft = F , can be decomposed into its intrinsic

and time value in the following sense:6

C(τ, F ;K) =

intrinsic value︷ ︸︸ ︷
(F −K)+ +

time value︷ ︸︸ ︷
σ2(K)K2

2

∫ τ

0
p(t;F,K)dt, (2.20)

6See (26) in Carr and Jarrow [11].
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where p is the transition PDF for the diffusion process. The decomposition can also be

used for the driftless CEV process with time-dependent variance v(t). In this case, the local

volatility function is time-dependent, i.e.,

σ2(t, F ) = v(t)F 2β, (2.21)

and the transition PDF for {Ft}t>0 is given in (2.10). So that the price of a European vanilla

call option (with r = 0) for the driftless CEV process can be expressed as

Ccev(t, T, F ;K) =(F −K)+ +
K2(1+β)

2

∫ T

t
pcev(t, u;F,K)du.

=(F −K)+ +

√
KF

2|β|

∫ T

t

exp
(
− q2

K+q2
0

2Υ(t,u)

)
Υ(t, u)

I 1
2|β|

(
qKq0

Υ(t, u)

)
dt,

(2.22)

where τ = T − t and

qK =
√

X(K) =
K−β

−β
, q0 =

√
X(F ) =

F−β

−β
, Υ(t, T ) =

∫ T

t
v(u)du. (2.23)

And the integral representation of the modified Bessel function of the first kind is:

Iν(s) =
1

2πi

∫
Cw

ecoshw−νwdw (2.24)

where Cw is the three-legged contour bounded by (−πi +∞,−πi], [−πi, πi], [πi, πi +∞).

Applying the change of variable s = qkq0
τ and integration by parts in w yields:7

Ccev(t, T, F ;K) =(F −K)+ +

√
KF

4|β|πi

∫
Cw

e−
w

2|β|

∫ ∞
qkq0

Υ(t,T )

e−s(b−coshw)

s
dsdw

=(F −K)+ +

√
KF

4|β|πi

∫
Cw

e−
w

2|β| sinhw

∫ ∞
qkq0

Υ(t,T )

e−s(b−coshw)dsdw

=(F −K)+ +

√
KF

2πi

∫
Cw

e−
w

2|β| sinhw

b− coshw
e−

qKq0(b−coshw)

Υ(t,T ) dw

=(F −K)+ +

√
KF

π

(∫ π

0

sin( θ
2|β|) sin θ

b− cos θ
e
−qkq0(b−cos θ)

Υ(t,T ) dθ

+ sin

(
π

2|β|

)∫ ∞
0

e−
x

2|β| sinhx

b+ coshx
e−

qkq0(b+cosh x)

Υ(t,T ) dx

)
,

(2.25)

7See (2.3) in Antonov et al [4]
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where τ = T − t and

q0 =
F−β

−β
, qk =

K−β

−β
, b =

q2
k + q2

0

2qkq0
, Υ(t, T ) =

∫ T

t
v(u)du. (2.26)

From (2.25), we obtain an alternative pricing formula for the call option by sending F → S

and K → e−rτK

Ccev(t, T, S;K, r) =(S − e−rτK)+ +

√
e−rτKS
π

(∫ π

0

sin( θ
2|β|) sin θ

b− cos θ
e
−qkq0(b−cos θ)

Υ(t,T ) dθ

+ sin

(
π

2|β|

)∫ ∞
0

e−
x

2|β| sinhx

b+ coshx
e−

qkq0(b+cosh x)

Υ(t,T ) dx

)
,

(2.27)

where

q0 =
S−β

−β
, qk =

(e−rτK)
−β

−β
, b =

q2
k + q2

0

2qkq0
, Υ(t, T ) =

∫ T

t
e2βr(u−t)v(u)du. (2.28)

However, the integrands in (2.25) and (2.27) are oscillatory functions and we require eval-

uating the integrals using quadrature rules. Despite the issues in evaluating integrals of

oscillatory functions numerically, the integral representations in (2.25) and (2.27) can be

extended to the SABR model for the zero correlation case. We will illustrate this in more

detail in Chapter 3.
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Chapter 3

SABR Model

3.1 The Hagan et al. Implied Volatility Formula

The classical stochastic-alpha-beta-rho (SABR) model is a two-factor model governed by

two SDEs:1 

dFt
Ft

= σtF
β
t dW

(1)
t , F0 > 0,

dσt
σt

= αdW
(2)
t , σ0 > 0,

dW
(1)
t dW

(2)
t = ρdt,

(3.1)

where {σt}t>0 is the volatility process, α is the volatility of the volatility, β is the skew param-

eter, ρ is a correlation parameter, and {Wt}t>0 ≡ {(W (1)
t ,W

(2)
t )}t>0 is a two-dimensional

P-BM, with {W (i)
t }t>0, i = 1, 2, as standard P-BMs. Note that {(Ft, σt)}t>0 is time-

homogeneous jointly Markovian2 so we can obtain the joint density function in terms of

the time to maturity (τ = T − t):

psabr(τ ;F, σ, x, y) ≡ psabr(t, T ;F, σ, x, y) =
Pt,F,σ (FT ∈ dx, σT ∈ dy)

dxdy
, (3.2)

1The reader must be careful with the notations as Hagan et al used α to denote the volatility process (or
the initial volatility) and v to denote the volatility of the volatilty.

2For example, see Section 2.1 in Wu [22].
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and path-independent option prices with payoff function Λ(F ) can be expressed as double

integrals:

Vsabr(τ, F, σ) =

∫ ∞
0

∫ ∞
0

Λ(x)psabr(τ ;F, σ, x, y)dxdy. (3.3)

Based on the singular perturbation method, the Hagan et al. approximate formula for the

implied BS volatility given strike K, spot forward price Ft = F and volatility at spot time

σt = σ with maturity time τ is:3

σhagan ≡ σhagan(τ, F, σ;K)

=

(
1 +

(
β2σ2

24 (KF )β + αβρσ
4 (KF )

β
2 + α2(2−3ρ2)

24

)
τ
)
σ(KF )

β
2[

1 + β2

24

(
ln F

K

)2
+ β4

1920

(
ln F

K

)4] z

χ(z)
,

(3.4)

where

z =
α

σ
(KF )−

β
2 ln

F

K
,

χ(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

(3.5)

After taking a careful limit in (3.4) as K → F , we obtain the at-the-money (ATM) BS

implied volatility

σatm ≡ σatm(τ, F, σ;F ) =

(
1 +

(
β2σ2

24
F 2β +

αβρσ

4
F β +

α2(2− 3ρ2)

24

)
τ

)
σF β (3.6)

So the price of a European vanilla call option can be approximated by plugging σ = σhagan

for the volatility in the BS formula:

Csabr(τ, F, σ;K) = FN
(
d+(

F

K
, τ)

)
−KN

(
d−(

F

K
, τ)

)
(3.7)

where

d+(x, τ) =
lnx+ 1

2σ
2
haganτ

σhagan
√
τ

; d−(x, τ) = d+(x, τ)− σhagan
√
τ . (3.8)

We plotted the implied volatility in Figure 3.2. We can see that the Hagan et al. formula

works well for shorter maturity times, but exhibits substantial errors for longer maturity
3See Hagan et al. [13] or (13) in West [20].
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times. In Section 3.2, we will state the Antonov et al. formula which works well for both

short and long maturity times.

3.2 Pricing European Vanilla Options with Zero Correlation

European vanilla option prices can be expressed in integral forms assuming there is no

infinitesimal correlation between an asset price and its volatility. The zero correlation SABR

option prices (given τ , St = S, σt = σ) can be written as the expectation of the CEV price

(with a constant volatility) over the cumulative variance, i.e.,

Vsabr(τ, S, σ) =E[Vcev(τ, S, σ)] =

∫ ∞
0

Vcev(τ, S)Pt,σ (Υt,T ∈ dγ)

=

∫ ∞
0

Vcev(τ, S;K)Pσ (Υτ ∈ dγ) .

(3.9)

where the asset price process St conditional on σt follows the drifted CEV process. Note

that the PDF of an integrated squared GBM given σt = σ:

Υτ (σ) ≡
∫ τ

0
e2βruσ2

t+udu, (3.10)

can be expressed as a series representation.4 Recall from (2.27) that European vanilla call

option prices under the CEV process, with a constant volatility σ and a time to maturity

τ , can be expressed as:

Ccev(τ, S;K, r) =(S − e−rτK)+ +

√
e−rτKS
π

(∫ π

0

sin( θ
2|β|) sin θ

b− cos θ
e
−qkq0(b−cos θ)

Υ(τ) dθ

+ sin

(
π

2|β|

)∫ ∞
0

e−
x

2|β| sinhx

b+ coshx
e−

qkq0(b+cosh x)

Υ(τ) dx

)
,

(3.11)

where

q0 =
S−β

−β
, qk =

(e−rτK)
−β

−β
, b =

q2
k + q2

0

2qkq0
, Υ(τ) =

∫ τ

0
e2βruσ2du. (3.12)

4See 1.9.4 in Borodin et al [8].
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From (3.11) and (3.9), we can write out the pricing formula for a European vanilla call

option given strike K, spot price St = S and volatility at spot time σt = σ as:5

Csabr(τ, S, σ;K, r) =(S − e−rτK)+

+

√
e−rτKS
π

(∫ π

0

sin( θ
2|β|) sin θ

b− cos θ
E
[
e
−qkq0(b−cos θ)

Υτ (σ)

]
dθ

+ sin

(
π

2|β|

)∫ ∞
0

e−
x

2|β| sinhx

b+ coshx
E
[
e−

qkq0(b+cosh x)

Υτ (σ)

]
dx

)
,

(3.13)

where q0, qk, b, Υτ (σ) were defined in (3.12) and (3.10). To obtain the option price ana-

lytically, we require the moment generating function of Υ−1
τ (σ) in (3.13) to be analytically

tractable. Note that the MGF of an integrated GBM can be expressed in analytically closed

form. The expression for the MGF of Υ−1
τ (σ) is:6

E
[
exp

(
− λ

Υτ (σ)

)]
=
G(τ, s)

cosh s
, (3.14)

where

G(τ, s) =
2e−

µ2α2τ
2

µ2
√

2πα2τ

(
1 +

2α2λ

σ2

) 1+µ
2

×
∫ ∞
s

u

α2τ
exp

(
− u2

2α2τ

)
sinh

[
|µ| cosh−1

(
coshu

cosh s

)]
du,

µ =
βr

α2
− 1

2
,

s = cosh−1

(√
1 +

2α2λ

σ2

)
= sinh−1

(√
2α2λ

σ2

)
.

(3.15)

Thus, we arrive at

Csabr(τ, S, σ;K, r) =(S − e−rτK)+ +

√
e−rτKS
π

(∫ π

0

sin( θ
2|β|) sin θ

b− cos θ

G(τ, s(θ))

cosh s(θ)
dθ

+ sin

(
π

2|β|

)∫ ∞
0

e−
x

2|β| sinhx

b+ coshx

G(τ, s(x))

cosh s(x)
dx

) (3.16)

5See (3.3) in Antonov et al [4].
6The detailed proof can be found in Appendix A
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where

s(θ) = sinh−1

(√
2α2qkq0(b− cos θ)

σ

)
,

s(x) = sinh−1

(√
2α2qkq0(b+ coshx)

σ

)
.

(3.17)

By change of variables,

θ(s) = 2 tan−1

(√
sinh2 s− sinh2 s−

sinh2 s+ − sinh2 s

)
, x(s) = 2 tanh−1

(√
sinh2 s− sinh2 s+

sinh2 s− sinh2 s−

)
,

s− = sinh−1

(
α|qk − q0|

σ

)
, s+ = sinh−1

(
α(qk + q0)

σ

)
,

(3.18)

we can express (3.16) as an integral over s ∈ (s−, s+) and s ∈ (s+,∞):

C(τ, S;K) =(S − e−rτK)+ +
2
√
e−rτKS
π

(∫ s+

s−

sin( θ(s)2|β| )

sinh s
G(τ, s)ds

+ sin

(
π

2|β|

)∫ ∞
s+

e−
x(s)
2|β|

sinh s
G(τ, s)ds

)
.

(3.19)

We can compute the two-dimensional integrals numerically to value the option under the

drifted SABR model for the zero correlation case. Unfortunately, it is difficult to inte-

grate such functions as they are often oscillatory. We will not consider evaluating integrals

numerically here since it is not the main objective of this thesis.

We will compare the integral formula in (3.19) with a plain Monte Carlo SABR prices

where the set of parameter values are listed in Table 3.1. Figure 3.1 shows the plot the Plain

Monte Carlo (MC) using the Euler-Maruyama method. We can observe that both curves

exhibit the same patterns and the error between the two is small (with 95% confidence

interval).

The exact pricing formula for the zero correlation case allows us to obtain more precise

BS implied volatility in the general correlation case, even for longer time to maturity τ .

Antonov et al. considered mapping the parameter space in the general correlation to the

zero correlation one via small-time asymptotic expansions. We will not give the approximate
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implied BS volatility formula here explicitly since it is unnecessarily long. The reader may

refer to Antonov et al. [6], [3], and [5] for more details.

Variable Name Description Value

S spot price 1, 10

τ time to maturity (in years) 1, 10

β skew parameter −0.4

r constant risk-free interest rate (%) 3

σ spot volatility (%) 30

α volatility of volatility (%) 30

ρ correlation parameter (%) 0

h Step size 0.01

M Sample size 100, 000

Table 3.1: Set of parameters used for the numerical experiment.
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Figure 3.1: Plots of implied volatility under the drifted SABR model. We used 95%

confidence interval for the plain MC.

3.3 Numerical Example

In this section, we sketch plots of BS implied volatility using the following methods:

• The MC method with the zero correlation SABR model as a control variate (MC).

• The Hagan et al. formula (Hagan).

• The Antonov et al. formula: Map to the zero correlation SABR model (ZC Map) .

The set of parameter values can be found in Table 3.2. We can observe from Figure 3.2 that

all three BS implied volatility are almost the same for small maturity times (i.e., τ = 1), but

accuracy of the Hagan et al. formula worsens as time to maturity increases (i.e., τ = 10)

and the Antonov et al. formula remains accurate for long times to maturity.
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Variable Name Description Value

S = F spot price 1, 10

τ time to maturity (in years) 1, 10

β skew parameter −0.4

r constant risk-free interest rate (%) 0

σ spot volatility (%) 30

α volatility of volatility (%) 30

ρ correlation parameter (%) -20

h Step size 0.01

M Sample size 100, 000

Table 3.2: Set of parameters used for the numerical experiment.
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Figure 3.2: Plots of implied volatility under the classical SABR model.
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Part II

Parameter/Static Randomization
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Chapter 4

Risk-Neutral Pricing in the

Single-Asset Economy

4.1 Motivation: Randomizing the Asset Price Volatility

Assume we are under a general diffusion model in the single-asset economy where the asset

price (diffusion) process {St}t>0 obeys the SDE:

dSt
St

= rdt+ σ(St)dW̃t; S0 > 0, (4.1)

where r is the constant risk-free interest rate, σ(St) is the time-independent local volatility

function, and {W̃t}t>0 is a standard P̃-BM. We will write the local volatility function σ(S)

in the following way:

σ2(S) = vf(S) (4.2)

where v is the constant variance (i.e., v = σ2 with σ as volatility parameter) and f is a

non-negative function in C2(0,∞). We randomize the parameter v as a random variable

equipped with some known PDF. We will denote such a random variable by V to distinguish
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it from the parameter v. Then we can formulate the pricing function for a European-style

option with payoff function Λ(S) by:

VV(τ, S) = e−rτ
∫ ∞

0
Ẽt,S [Λ(ST )]fV(v)dv, τ = T − t. (4.3)

Note that VV denotes the pricing function for a given choice of r.v. V. Our methodology for

computing option prices using (4.3) is closely related to the Bayesian framework in the GBM

model studied by Darsinos and Satchell [12]. They considered randomizing the volatility

where the variance follows the inverse gamma distribution. They were successful in deriving

analytically closed-form expressions for the joint PDF of the asset price and the volatility,

as well as the marginal PDF of the asset price. However, they were unable to determine the

call pricing formulas analytically, and the option prices could only be obtained numerically.

We will specify the unconditional distribution of V in two separate ways: as a gamma and

as an inverse gamma random variable in the GBM framework. We will refer to Prudnikov’s

book [17] which provides many integration identities that are helpful in our analysis.

4.2 Motivation: Extending to the Time-inhomogeneous Case

Assume we are under a general diffusion model in the single-asset economy where the asset

price (diffusion) process {St}t>0 obeys the SDE:

dSt
St

= rdt+ σ(t, St)dW̃t; S0 > 0, (4.4)

where r is the constant risk-free interest rate, σ(t, S) is the time-dependent local volatility

function, and {W̃t}t>0 is a standard P̃-BM. Let us suppose that σ(t, S) is separable, i.e.,

σ2(t, S) = v(t)f(S) (4.5)

where v(t) is the deterministic time-dependent variance function and f is a non-negative

function in C2(0,∞). We consider cases where the discounted process {Ft}t>0 = {e−rtSt}t>0
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is a P̃-martingale. By Itô’s formula,

dFt
Ft

=
√
v(t)f(ertFt)dW̃t. (4.6)

We will further assume that f is separable in the following sense,

f(ertF ) = g(t)h(F ). (4.7)

This assumption is met for a family of local volatility functions taking the form of a power

function:

h(F ) = AFB, (4.8)

where A,B,∈ R.1 For example, in the GBM model with time-dependent variance function

v(t), we have the trivial case: f(S) = g(t) = h(F ) = 1. Another example is the CEV model

with time-dependent variance function v(t) where

f(S) = S2β, g(t) = e2βrt, h(F ) = F 2β. (4.9)

We can construct a deterministic time change by defining:

Υ(s, t) ≡
∫ t

s
g(u− s)v(u)du, s < t. (4.10)

We can notice that if g(t) ≡ 1 (which is true for the GBM model and the driftless CEV

model), then (4.10) is just the cumulative variance. The construction above allows us to

construct a time-changed forward price process {FΥ(t)}t>0 which obeys a SDE with time-

independent local volatility function:

dFΥ(t)

FΥ(t)
=
√
f(FΥ(t))dW̃Υ(t), dW̃Υ(t) =

√
g(t)v(t)dW̃t. (4.11)

In particular, for the GBM model with a constant variance v, recall that the (risk-neutral)

transition PDF for {St}t>0 is:

p̃(t, T ;S, y) =
1

y
√

2πvτ
exp

(
−

[ln y
S − (r − 1

2v)τ ]2

2vτ

)
; S, y > 0, τ > 0 (4.12)

1See Section 6.1 in Campolieti and Makarov [9]
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where S is the spot price at time t, T is the maturity at calendar time, and τ = T − t is the

time to maturity. Since the time-changed GBM process {FΥ(t)}t>0 is Markovian, we can

obtain the transition PDF of the GBM process with time-dependent volatility by mapping

v 7→ 1 and τ 7→ Υ(t, T ) (or simply, v 7→ Υ(t,T )
τ ):

p̃(t, T ;S, y) =
1

y
√

2πΥ(t, T )
exp

(
−

[ln y
S − rτ + 1

2Υ(t, T )]2

2Υ(t, T )

)
; S, y > 0, τ > 0, (4.13)

and we can obtain the price of a path-independent European-style option under the GBM

model with time-dependent variance by a mapping v 7→ Υ(t,T )
τ .

Now, we consider extending the notion from the deterministic time-dependent variance

to the stochastic variance process {vt}t>0. We define a stochastic time change process:

Υt,T =

∫ T

t
g(u− t)vudu (4.14)

We can formulate the pricing function for a European-style option for the zero correlation

case with payoff function Λ(S) by:

VV(t, T, S) = e−rτ
∫ ∞

0
Ẽt,S [Λ(ST )]Pt,v (Υt,T ∈ dγ) , τ = T − t. (4.15)

For example, we saw in Section 3.2 that the zero correlation (drifted) SABR option prices are

computed by randomizing volatility in the (drifted) CEV model prices where the stochastic

time-change given σt = σ:

Υτ (σ) ≡
∫ τ

0
eβruσ2

t+udu, (4.16)

follows an integrated squared GBM process (recall that σt is a driftless GBM process). In

this chapter, we take a different approach by assuming that Υt,T is a random variable. In

particular, for the randomized GBM model, we take the cumulative variance as a parameter

to be randomized. Thus, the idea of randomizing the parameter v is equivalent to randomiz-

ing time-averaged variance for the GBM model with time-dependent variance in some sense.

However, this notion cannot be applied to pricing path-dependent options.
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4.3 Transition Probability Density Functions

Assume the underlying asset price (diffusion) process {St}t>0 follows a GBM with SDE:

dSt
St

= rdt+
√
vdW̃t; S0, v > 0, r > 0. (4.17)

Let Xt = ln St
S0
− rt. Then, {Xt}t>0 is a drifted Brownian motion:

Xt = −1

2
vt+

√
vW̃t; X0 = 0. (4.18)

The transition PDF of this process started at 0 is2

p̃(τ ;x) =
1√

2πvτ
exp

(
−

[x+ 1
2vτ ]2

2vτ

)
; x ∈ R, τ > 0 (4.19)

Let us consider a static randomization of the parameter v. We assume V is a random variable

equipped with a Borel measurable PDF fV . Then we can easily show that the joint PDF p̃fV

is (Lebesgue) integrable (i.e., p̃fV ∈ L1(R2,B(R2), µ), where µ is the Lebesgue measure):∫ ∞
0

∫ ∞
0

p̃(τ ;S, y)fV(v)dvdy =

∫ ∞
0

(∫ ∞
0

p̃(τ ;S, y)dy

)
fV(v)dv

=

∫ ∞
0

fV(v)dv = 1.

(4.20)

By applying the Fubini’s theorem, the (marginal) transition PDF p̃V for the asset price pro-

cess with a randomized volatility (the randomized GBM process), denoted by {SVt }t>0,3

is well-defined for fixed τ, S > 0:4

p̃V(τ ;S, y) :=

∫ ∞
0

fV(v)p̃(τ ;S, y)dv <∞; y > 0 almost everywhere.5 (4.21)

Since p̃ is bounded, i.e, for every y > 0, there exists 2 positive constants C(y), q(y) > 0 and

a non-negative constant p(y) > 0 such that

p̃(τ ;S, y) =
C(y)√
v

e−p(y)v− q(y)
v <∞. (4.22)

2A drifted Brownian motion is both time- and space-homogeneous. Thus, the transition PDF depends
on the time difference τ and the spatial distance x− 0.

3We use {St}t>0 to denote the asset price (diffusion) process with constant volatility and {SVt }t>0 to
denote the asset price (non-diffusion) process under a probability distribution.

4Note that P̃t,S
(
SVT ∈ dy

)
= p̃V(τ ;S, y)dy, τ = T − t.

5µ({y ∈ R+ : p̃V(τ ;S, y) is undefined}) = 0.
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Note that p(y) = 0 occurs with Lebesgue measure zero, so we can alternatively say that for

y > 0 almost everywhere, there exists 3 positive constants C(y), p(y), q(y) > 0 such that

p̃(τ ;S, y) =
C(y)√
v

e−p(y)v− q(y)
v <∞. (4.23)

By employing the boundedness property in (4.23), we can write an equivalent statement of

the transition PDF p̃V in (4.21):

∫ ∞
0

fV(v)
1√
v
e−pv−

q
v dv <∞ (4.24)

for all p, q > 0.6 In particular, the gamma and the inverse gamma PDFs give analyti-

cal expressions for (4.24), which is why we consider the gamma and the inverse gamma

randomization.

In this section, we derive the transition PDFs of the asset price process with static

randomization of the parameter under the gamma and the inverse gamma randomization.

Firstly, we look at the transition PDF for the randomized asset price process under the

gamma randomization (the randomized G process), denoted by {SG(θ,λ)
t }t>0, where

V follows the gamma distribution with shape parameter θ and scale parameter λ (i.e.,

V ∼ G(θ, λ)).7 The PDF of V is

fG(θ,λ)(v) =
1

λθΓ(θ)
vθ−1e−

v
λ ; θ, λ > 0 (4.25)

where Γ(θ) =
∫∞

0 tθ−1e−tdt is the gamma function. The transition PDF for the drifted BM

{Xt}t>0 under the gamma randomization, denoted by {XG(θ,λ)
t }t>0, started at 0 is:

p̃G(θ,λ)(τ ;x) =

∫ ∞
0

fG(θ,λ)(v)p̃(τ ;x)dv

=

∫ ∞
0

fG(θ,λ)(v)

(
A√
v

)
exp

(
−C
v
−D − Ev

)
dv,

(4.26)

6Similarly, the transition PDF for {XVt }t>0 is well-defined almost everywhere if (4.24) holds for all p, q > 0.
7In general, θ, λ are time-dependent (e.g., θ = θ(t, T )).
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where

A =
1√
2πτ

, C =
x2

2τ
, D =

x

2
, E =

τ

8
. (4.27)

We state a useful integral formula:8

∫ ∞
0

vr−1e−pv−
q
v dv = 2

(
q

p

) r
2

Kr (2
√
pq) ; r ∈ R, p, q > 0, (4.28)

where Kν(·) is the modified Bessel function of the second kind of order ν. Using this within

(4.26) gives9

p̃G(θ,λ)(τ ;x) =
2A

λθΓ(θ)

(
C

E + 1
λ

) 1
2

(θ− 1
2

)

Kθ− 1
2

(
2

√
C

(
E +

1

λ

))

=
e−

x
2

√
πΓ(θ)

(
2

λτ

)θ ( λτx2

8 + λτ

) θ
2
− 1

4

Kθ− 1
2

(√
(8 + λτ)x2

4λτ

)
.

(4.29)

By a change of variable: x(y) = ln y
S − rτ , we have the transition PDF for the randomized

G process {SG(θ,λ)
t }t>0:

p̃G(θ,λ)(τ ;S, y) =x′(y) · p̃G(θ,λ)(τ ;x(y))

=
e−

x(y)
2

y
√
πΓ(θ)

(
2

λτ

)θ (λτx(y)2

8 + λτ

) θ
2
− 1

4

Kθ− 1
2

(√
x(y)2 (8 + λτ)

4λτ

)
.

(4.30)

Note that we have the following expressions:10

K 1
2
(z) =

√
π
2z e
−z,

K 3
2
(z) =

√
π
2z e
−z (1 + 1

z

)
,

K 5
2
(z) =

√
π
2z e
−z (1 + 3

z + 3
z2

)
,

(4.31)

and higher order terms can also be expressed as elementary functions using the recurrence

relation for n = 0,±1,±2, . . . :11

Kn+ 3
2
(z) =

(
2n+ 1

z

)
Kn+ 1

2
(z) +Kn− 1

2
(z). (4.32)

8See 2.3.16.1 in Prudnikov et al, [17]
9The transition PDF with θ 6 1

2
is undefined at x = 0.

10E.g. See 10.2.17 in Abramowitz and Stegun [1].
11E.g. See 10.2.18 in Abramowitz and Stegun [1].
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This implies that for θ = n ∈ N, the transition PDF can be represented by elementary func-

tions. In particular, when θ = 1, 2, the transition PDF in (4.30) simplify to the respective

expressions (where x = ln y
S − rτ):

12

p̃G(1,λ)(τ ;S, y) =
2

y
√
λτ
√

8 + λτ
exp

(
−|x|

2

√
8 + λτ√
λτ

− x

2

)
,

p̃G(2,λ)(τ ;S, y) =
4

yλτ(8 + λτ)
exp

(
−|x|

2

√
8 + λτ√
λτ

− x

2

)(
1 +

2
√
λτ

|x|
√

8 + λτ

)
,

(4.33)

Another interesting fact is if θ = λτ = 1, then we see that the PDF is distributed uniformly

for y 6 Serτ :

p̃G(1,λ)(τ ;S, y) =
2√
3S

e−rτ ; y 6 Serτ . (4.34)

We plotted the PDFs in (4.33) in Figure 4.1. Note that the asymptotic behavior of Kν(x)

as x→∞ is:

Kν(x) ∼
√
πe−x√
2x

. (4.35)

As a result, the asymptotic behaviours at the endpoints are:

p̃G(θ,λ)(τ ;S, y) ∼ y−
3
2

+
√

1
4

+ 2
λτ

(
ln

1

y

)θ−1

as y → 0,

p̃G(θ,λ)(τ ;S, y) ∼ y−
3
2
−
√

1
4

+ 2
λτ (ln y)θ−1 as y →∞.

(4.36)

Based on the asymptotic behaviours of the transition PDF, we can say that the α-moment

(α > 0) of the randomized G process:

Ẽt,S
[(
S
G(θ,λ)
T

)α]
≡ Ẽ

[(
S
G(θ,λ)
T

)α
|SG(θ,λ)
t = S

]
=

∫ ∞
0

yαp̃G(θ,λ)(τ ;S, y)dy (4.37)

is finite iff α < 1
2 +

√
1
4 + 2

λτ . This implies the first moment exists, but the second moment

exists iff λτ < 1.

Let us now consider the transition PDF for the asset price process under the inverse

gamma randomization (the randomized IG process), denoted by {SIG(θ,λ)
t }t>0. As-

sume that V now follows the inverse gamma distribution with shape parameter θ and scale
12We denote x = x(y, S, τ) = ln y

S
− rτ to avoid clutter.
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parameter λ (i.e., V ∼ IG(θ, λ)). The PDF of V is

fIG(θ,λ)(v) =
λθ

Γ(θ)

(
1

v

)θ+1

e−
λ
v ; θ, λ > 0. (4.38)

By using the integral identity in (4.28) we obtain the transition PDF for the drifted BM

{Xt}t>0 under the inverse gamma randomization, denoted by {XIG(θ,λ)
t }t>0:

p̃IG(θ,λ)(τ ;x) =
e−

x
2

√
πΓ(θ)

(
λτ

2

)θ (
x2 + 2λτ

)− θ
2
− 1

4 Kθ+ 1
2

(√
x2 + 2λτ

4

)
. (4.39)

By a change of variable: x(y) = ln y
S − rτ , we have the transition PDF for the randomized

IG process {SIG(θ,λ)
t }t>0:

p̃IG(θ,λ)(τ ;S, y) =
e−

x(y)
2

y
√
πΓ(θ)

(
λτ

2

)θ (
x(y)2 + 2λτ

)− θ
2
− 1

4 Kθ+ 1
2

(√
x(y)2 + 2λτ

4

)
. (4.40)

In particular, if V ∼ IG(1, λ) the transition PDF in (4.40) simplifies to

p̃IG(1,λ)(τ ;S, y) =
λτ(
√
x2 + 2λτ + 2)

2y(x2 + 2λτ)
3
2

exp

(
−|x|

2

√
8 + λτ√
λτ

− x

2

)
. (4.41)

The plots of the PDFs in (4.41) can be found in Figure 4.1. The asymptotic behaviours of

the transition PDF is as follows:

p̃IG(θ,λ)(τ ;S, y) ∼ y−1

(
ln

1

y

)−θ−1

as y → 0,

p̃IG(θ,λ)(τ ;S, y) ∼ y−2(ln y)−θ−1 as y →∞.

(4.42)

From the asymptotic behaviours, we can observe that

∫ ∞
0

yαp̃IG(θ,λ)(τ ;S, y)dy (4.43)

is finite iff α 6 1.

We can see from Figure 4.1 that the GBM has the thinnest tail among the three models

for θ = 1, 2. The plot in the top-left shows that for θ = 1, the randomized G process has

thinner tail than the randomized IG process for θ = 1. The randomized G process appears
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to have the thickest tail among the three for θ = 2, but eventually the randomized G process

tails off faster than the randomized IG process as shown in the bottom-right corner plot. It

is interesting to see that the PDF of the randomized G process is uniform for y 6 Serτ at

the bottom-left corner plot. We can also observe that the PDF of the randomized G process

is not differentiable at y = Serτ since Kν(z) is not differentiable at z = 0.

Figure 4.1: Plots of the transition PDFs for the process St, S
G(θ,λ)
t and S

IG(θ,λ)
t , where

S = 100, r = 0.03 and v = 0.1 is the variance parameter in the GBM model.
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4.4 Risk-neutral Probabilities and Expectations

Let {Vt}t>0 ≡ {f(t, St)}t>0 with a Borel function f : R+ → R+ be an Ft-adapted13 bounded

stochastic process. The risk-neutral expectation of V VT = f(T, SVT ) is

VV(t, S) = e−rτ Ẽt,S
[
V VT
]

= e−rτ Ẽ
[
V VT |SVt = S

]
= e−rτ

∫ ∞
0

fV(v)Ẽt,S [VT ] dv, (4.44)

where T is the expiry time at a calendar time and τ = T − t is the time to maturity. We

know that {e−rtSt}t>0 is a P̃-martingale process, i.e., for the GBM process:

Ẽt,S
[
e−rTST

]
= e−rtS. (4.45)

We can easily show that the randomized process {e−rtSVt }t>0 is a P̃-martingale process:

Ẽt,S
[
e−rTSVT

]
=e−rT

∫ ∞
0

yp̃V(τ ;S, y)dy = e−rT
∫ ∞

0
y

(∫ ∞
0

fV(v)p̃(τ ;S, y)dvdy

)
=e−rt

∫ ∞
0

fV(v)

(∫ ∞
0

e−rτyp̃(τ ;S, y)dy

)
dv

=e−rtS
∫ ∞

0
fV(v)dv = e−rtS.

(4.46)

By taking Vt = 1{St>K} with K > 0, where 1A is the indicator function of some event A.,

we can obtain the following risk-neutral probability that the asset price is above the strike

K at time T :

P̃t,S(SVT > K) =Ẽt,S
[
1{SVT>K}

]
=

∫ ∞
K

p̃V(τ ;S, y)dy

=

∫ ∞
−m

p̃V(τ ;x)dx = P̃t(XVT > −m).

(4.47)

where m = ln S
K + rτ . In particular for θ = 1, the risk-neutral probability can be obtained

easily by making use of (4.33), (4.41) and (4.47):

P̃t,S
(
S
G(1,λ)
T > K

)
= P̃t(X

G(1,λ)
T > −m) =1{m>0} −

1

2

(
sgn(m) +

√
λτ√

8 + λτ

)

× exp

(
−|m|

2

√
8 + λτ√
λτ

+
m

2

)
,

(4.48)

13Note that Vt is Ft-adapted w.r.t. its natural filtration Ft = {σ(W̃s) : 0 6 s 6 t}) where σ here is the
σ-algebra generated by the P̃-BM.
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where sgn(·) is the sign function with sgn(0) ≡ 1, and:

P̃t,S
(
S
IG(1,λ)
T > K

)
=

λτe−
1
2

(−m+
√
m2+2λτ)

√
m2 + 2λτ(−m+

√
m2 + 2λτ)

. (4.49)

Recall that under the GBM model, the risk-neutral probability that the asset price is above

the strike K at time T is:

P̃t,S(ST > K) =

∫ ∞
K

p̃(τ ;S, y)dy = N

(
m− 1

2vτ√
vτ

)
. (4.50)

Sometimes, it may be more convenient to express (4.47) in the following way:

P̃t,S(SVT > K) =

∫ ∞
0

fV(v)N

(
m− 1

2vτ√
vτ

)
dv =

1

2

∫ ∞
0

fV(v) erfc

(
−
m− 1

2vτ√
2vτ

)
dv, (4.51)

where erfc(·) is the complementary error function. We state another integral formula:14∫ ∞
0

xne−pxerfc
(
c
√
x+

b√
x

)
dx =

2(n!)
√
b(c2 + p)

1
4

√
πpn+1

e−2bc
n∑
k=0

pk

k!

(
b2

c2 + p

) k
2

×

[
Kk− 1

2
(2b
√
c2 + p)− c√

c2 + p
Kk+ 1

2
(2b
√
c2 + p)

]
.

(4.52)

In particular for n = 0, the integral formula in (4.52) reduces to the Laplace transform of

the complementary error function:∫ ∞
0

e−pxerfc
(
c
√
x+

b√
x

)
dx =

1

p

(
1− c√

c2 + p

)
e−2b(c+

√
c2+p). (4.53)

We can use (4.52) to obtain analytical formulas for the randomized processes in the case

with integer-valued θ = n ∈ N. For the randomized G process, we have two cases. For

m < 0 we have

P̃t,S(S
G(n,λ)
T > K) =

1

2

∫ ∞
0

1

λn(n− 1)!
vn−1e−

v
λ erfc

(
−m√
2vτ

+

√
vτ

2
√

2

)
dv

=
1

2λn(n− 1)!

∫ ∞
0

vn−1e−
v
λ erfc

(
|m|√
2vτ

+

√
vτ

2
√

2

)
dv

=

√
|m|

2
√
π

(
8 + λτ

λτ

) 1
4

e
m
2

n−1∑
k=0

1

k!

(
2|m|√

λτ
√

8 + λτ

)k
×

[
Kk− 1

2

(
|m|
2

√
8 + λτ√
λτ

)
−
√
λτ√

8 + λτ
Kk+ 1

2

(
|m|
2

√
8 + λτ√
λτ

)]
.

(4.54)

14See 2.8.9.7 in Prudnikov et al [17]. The integral formula is valid for b > 0,<(c2 + p) > 0.
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For m > 0, we use the identity

erfc(a) = 2− erfc(−a); a ∈ R, (4.55)

to obtain

P̃t,S(S
G(n,λ)
T > K) =

1

2

∫ ∞
0

1

λn(n− 1)!
vn−1e−

v
λ erfc

(
−m√
2vτ

+

√
vτ

2
√

2

)
dv

=

∫ ∞
0

1

λn(n− 1)!
vn−1e−

v
λdv

− 1

2λn(n− 1)!

∫ ∞
0

vn−1e−
v
λ erfc

(
|m|√
2vτ
−
√
vτ

2
√

2

)
dv

=1−
√
|m|

2
√
π

(
8 + λτ

λτ

) 1
4

e
m
2

n−1∑
k=0

1

k!

(
2|m|√

λτ
√

8 + λτ

)k
×

[
Kk− 1

2

(
|m|
2

√
8 + λτ√
λτ

)
+

√
λτ√

8 + λτ
Kk+ 1

2

(
|m|
2

√
8 + λτ√
λτ

)]
.

(4.56)

By combining (4.54) and (4.56), we have for m ∈ R:

P̃t,S(S
G(n,λ)
T > K)

=1{m>0} −
sgn(m)

√
|m|

2
√
π

(
8 + λτ

λτ

) 1
4

e
m
2

n−1∑
k=0

1

k!

(
2|m|√

λτ
√

8 + λτ

)k
×

[
Kk− 1

2

(
|m|
2

√
8 + λτ√
λτ

)
+

sgn(m)
√
λτ√

8 + λτ
Kk+ 1

2

(
|m|
2

√
8 + λτ√
λτ

)]
.

(4.57)

For the randomized IG process, by using the change of integration variable (w = 1
v ), we

have

P̃t,S(S
IG(n,λ)
T > K)

=
1

2

∫ ∞
0

λn

(n− 1)!

(
1

v

)n+1

e−
λ
v erfc

(
−m√
2vτ

+

√
vτ

2
√

2

)
dv

=
1

2

λn

(n− 1)!

∫ ∞
0

wn−1e−λwerfc
(
−m
√
w√

2τ
+

√
τ

2
√

2w

)
dw

=
(m2 + 2λτ)

1
4

2
√
π

e
m
2

n−1∑
k=0

1

k!

(
λτ

2
√
m2 + 2λτ

)k
×

[
Kk− 1

2

(√
m2 + 2λτ

2

)
+

m√
m2 + 2λτ

Kk+ 1
2

(√
m2 + 2λτ

2

)]
.

(4.58)
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Asymptotic behaviours are:15

P̃t,S(S
G(n,λ)
T 6 K) ∼ K

1
2

(√
8+λτ√
λτ
−1
)(

ln
1

K

)n−1

as K → 0,

P̃t,S(S
G(n,λ)
T > K) ∼ K−

1
2

(√
8+λτ√
λτ

+1
)

(lnK)n−1 as K →∞,

P̃t,S(S
IG(n,λ)
T 6 K) ∼

(
ln

1

K

)−n
as K → 0,

P̃t,S(S
IG(n,λ)
T > K) ∼ K−1 (lnK)−n−1 as K →∞.

(4.59)

Note that the asymptotic behavior of the complementary error function as x→∞ is:

erfc(x) ∼ e−x2

√
πx

(4.60)

For the GBM case (with constant variance parameter v), asymptotic behaviours are :

P̃t,S(ST > K) ∼ 1

ln 1
K

exp

(
−
(
ln 1

K

)2
2vτ

)
as K → 0,

P̃t,S(ST > K) ∼ 1

lnK
exp

(
−(lnK)2

2vτ

)
as K →∞,

(4.61)

We can see from the analytical expressions that the CDF of the GBM model has the thinnest

tail , whereas the randomized IG process has the thickest tail among the three models for

any given θ, λ > 0. We can also observe from the visual plots in Figure 4.2 that the GBM

has the thinnest tail among the three models for θ = 1, 2. The randomized G process has

thinner tails than the randomized IG process for θ = 1, whereas the randomized G process

appears to have the thickest tails among the three for θ = 2 (the opposite is true for deep

in (and out-of) -the-money options).

Now, we consider the risk-neutral conditional probability P̂ ≡ P̃(S) under an equivalent

martingale measure with the original asset price process {St}t>0 as the numéraire, where

P̂t,S(SVT > K) =

∫ ∞
0

fV(v)Êt,S
[
1{ST>K}

]
dv =

∫ ∞
0

fV(v)

(
Ẽt,S

[
ST1{ST>K}

]
Serτ

)
dv

=
1

Serτ

∫ ∞
0

fV(v)

(∫ ∞
K

yp̃(τ ;S, y)dy

)
dv =

1

Serτ

∫ ∞
K

yp̃V(τ ;S, y)dy,

(4.62)

15Asymptotic behaviours w.r.t. S can be obtained by a change of variable K → 1
S
.
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Figure 4.2: Plots of the transition complementary CDFs for the process St, S
G(θ,λ)
t and

S
IG(θ,λ)
t , where S = 100, r = 0.03 and v = 0.1 is the variane parameter in the GBM model.

or equivalently,

P̂t,S(SVT > K) =
Ẽt,S

[
SVT 1{SVT>K}

]
Serτ

. (4.63)

The above identity follows from the Radon-Nikodym derivative:

Êt,S [VT ] =
1

S
Êt,S

[
St
ST

STVT

]
=

1

S
Ẽ(B)
t,S

[
Bt
BT

STVT

]
=
Bt
S
Ẽ(B)
t,S

[
STVT
BT

]
(4.64)

where Bt = e
∫ t
0 rsds is the bank account value at time t. Assuming that rt = r, we have

Bt = ert and Bt
BT

= e−rτ . The PDF defined in (4.19) has the following useful symmetry

identity

p̃(τ ;−x) = exp̃(τ ;x). (4.65)

We can use (4.65) to obtain the following probability:

P̂t,S
(
SVT > K

)
=

1

Serτ

∫ ∞
K

yp̃V(τ ;S, y)dy =
1

Serτ

∫ ∞
−m

Sex+rτ p̃V(τ ;x)dx

(4.65)
=

∫ ∞
−m

p̃V(τ ;−x)dx =

∫ m

−∞
p̃V(τ ;x)dx

=P̃t
(
XVT 6 m

)
,

(4.66)

39



In particular for θ = 1, by using (4.66) and (4.48) we obtain the following risk-neutral

probability explicitly for the randomized G process:

P̂t,S
(
S
G(1,λ)
T > K

)
=1{m>0} −

1

2

(
sgn(m)−

√
λτ√

8 + λτ

)
exp

(
−|m|

2

√
8 + λτ√
λτ

− m

2

)
.

(4.67)

Similarly for the randomized IG process, we can obtain it by using (4.66) and (4.49):

P̂t,S(S
IG(1,λ)
T > K) = 1− λτe−

1
2

(m+
√
m2+2λτ)

√
m2 + 2λτ(m+

√
m2 + 2λτ)

. (4.68)

For the randomized G process {SG(n,λ)
t }t>0, n ∈ N, by using (4.66) and (4.57) we have

P̂t,S(S
G(n,λ)
T > K)

=1{m>0} −
sgn(m)

√
|m|

2
√
π

(
8 + λτ

λτ

) 1
4

e−
m
2

n−1∑
k=0

1

k!

(
2|m|√

λτ
√

8 + λτ

)k
×

[
Kk− 1

2

(
|m|
2

√
8 + λτ√
λτ

)
− sgn(m)

√
λτ√

8 + λτ
Kk+ 1

2

(
|m|
2

√
8 + λτ√
λτ

)]
.

(4.69)

For the randomized IG process {SIG(n,λ)
t }t>0, n ∈ N, by using (4.66) and (4.58) we have

P̂t,S(S
IG(n,λ)
T > K)

=1− (m2 + 2λτ)
1
4

2
√
π

e−
m
2

n−1∑
k=0

1

k!

(
λτ

2
√
m2 + 2λτ

)k
×

[
Kk− 1

2

(√
m2 + 2λτ

2

)
− m√

m2 + 2λτ
Kk+ 1

2

(√
m2 + 2λτ

2

)]
.

(4.70)

The main feature of this section is that the risk-neutral probability that the randomized

asset price process is above strike K at time T can be written as elementary analytical

functions for θ = n ∈ N. This will help us obtain analytical pricing formulas for European

vanilla options. We will illustrate it in the next section.
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4.5 Pricing European Options

The price of a European vanilla call option can be written in terms of P̂t,S and P̃t,S , i.e.,

ĈV(τ,m) ≡ CV(τ, S;K, r)

S
=P̂t,S(SVT > K)− Ke−rτ

S
P̃t,S(SVT > K)

=P̃t(XVT 6 m)− e−mP̃t(XVT > −m).

(4.71)

For the randomized G process with θ = 1, by substituting (4.48) and (4.67) into (4.71), we

have

ĈG(1,λ)(τ,m) = (1− e−m)+ +

√
λτ√

8 + λτ
exp

(
−|m|

2

√
8 + λτ√
λτ

− m

2

)
. (4.72)

For the randomized IG process with θ = 1, by substituting (4.49) and (4.68) into (4.71), we

have

ĈIG(1,λ)(τ,m) =1− exp

(
−1

2

(
m+

√
m2 + 2λτ

))
, (4.73)

For the randomized G process with θ = n ∈ N, by substituting (4.57) and (4.69) into (4.71),

we have

ĈG(n,λ)(τ,m) =(1− e−m)+ +

√
|m|√
π

(
λτ

8 + λτ

) 1
4

e−
m
2

n−1∑
k=0

1

k!

(
2|m|√

λτ
√

8 + λτ

)k
Kk+ 1

2

(
|m|
2

√
8 + λτ√
λτ

)
.

(4.74)

For the randomized IG process with θ = n ∈ N, by substituting (4.58) and (4.70) into (4.71),

we have

ĈIG(n,λ)(τ,m) =1− (m2 + 2λτ)
1
4

√
π

e−
m
2

n−1∑
k=0

1

k!

(
λτ

2
√
m2 + 2λτ

)k
Kk− 1

2

(√
m2 + 2λτ

2

)
.

(4.75)

We can see from Figure 4.3 that when θ = 1, for a given time to maturity, the option price

under the inverse gamma randomization has the highest value, and the gap increases as the

time to maturity increases. When θ = 2, for a given time to maturity, the option price
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under the gamma randomization has the highest value. From Figure 4.4, we can see that

the model prices differ from the other for near in- or out-the-money options, and the gap

shrinks for deep in- or out-the-money options. For θ /∈ N, we can derive the at-the-money

forward (ATMF) option prices in closed-form in terms of the hypergeometric functions. In

particular, for the randomized G process, we have

ĈG(θ,λ)(τ, 0) = 1−
Γ(θ + 1

2)
√
πΓ(θ + 1)

(
8

λτ

)θ
2F1

(
θ, θ +

1

2
; θ + 1,− 8

λτ

)
. (4.76)

For the randomized IG process, we have

ĈIG(θ,λ)(τ, 0) =

√
λτ

2
√

2π
(
θ − 1

2

)
Γ(θ + 1)

[
2θΓ

(
θ +

1

2

)
1F2

(
1

2
;
3

2
,
3

2
− θ; λτ

8

)

−
(
λτ

8

)θ− 1
2

Γ

(
3

2
− θ
)

1F2

(
θ; θ + 1, θ +

1

2
;
λτ

8

)] (4.77)

We will derive (4.76) and (4.77) rigorously in Appendix B.
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Figure 4.3: Plots of the in-the-money call option prices (top row) and out-of-the-money call

option prices (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variane parameter

in the GBM model.
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Figure 4.4: Plots of the call option prices for short time-to-maturity (top row) and for

long time-to-maturity (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variance

parameter in the GBM model.
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4.6 Greeks

In this section, we derive general formulas for the main Greeks of a European vanilla call

option under the randomized GBM model.The Delta of a European vanilla call option is

∆V =
∂CV
∂S

=
∂

∂S

(
SP̂t,S(SVT > K)

)
−Ke−rτ

∂

∂S

(
P̃t,S(SVT > K)

)
=P̂t,S(SVT > K) + S

∂

∂S

(
P̂t,S(SVT > K)

)
−Ke−rτ

∂

∂S

(
P̃t,S(SVT > K)

)
=P̂t,S(SVT > K) + S

∂m

∂S
· ∂
∂m

(
P̃t(XVT 6 m)

)
−Ke−rτ

∂(−m)

∂S
· ∂

∂(−m)

(
P̃t(XVT > −m)

)
=P̂t,S(SVT > K) +

∂

∂m

(
P̃t(XVT 6 m)

)
+
Ke−rτ

S

∂

∂(−m)

(
1− P̃t(XVT 6 −m)

)
=P̂t,S(SVT > K) + p̃V(τ ;m)− e−mp̃V(τ ;−m)

=P̂t,S(SVT > K) = P̃t(XVT 6 m) = P̃t,S
(
SVT 6

S2e2rτ

K

)
.

(4.78)

The Gamma of a European vanilla call option is

ΓV =
∂2CV
∂S2

=
∂

∂S

(
P̂t,S(SVT > K)

)
=
∂m

∂S
· ∂
∂m

(
P̃t(XVT 6 m)

)
=

1

S
p̃V(τ ;m) =

S

K
e2rτ p̃V

(
τ ;S,

S2e2rτ

K

)
.

(4.79)

The Rho of a European vanilla call option is

ρV =
∂CV
∂r

=S
∂

∂r

(
P̂t,S(SVT > K)

)
−K ∂

∂r

(
e−rτ P̃t,S(SVT > K)

)
=S

∂m

∂r
· ∂
∂m

(
P̃t,S(XVT 6 m)

)
−K

[
−τe−rτ P̃t,S(SVT > K) + e−rτ

∂

∂r

(
P̃t,S(SVT > K)

)]
=S

∂m

∂r
· ∂
∂m

(
P̃t(XVT 6 m)

)
Kτe−rτ P̃t,S(SVT > K)

−Ke−rτ
∂(−m)

∂r
· ∂

∂(−m)

(
1− P̃t(XVT 6 −m)

)
=τSp̃V(τ ;m) +Kτe−rτ P̃t,S(SVT > K)−Kτe−rτ p̃V(τ ;−m)

=Kτe−rτ P̃t,S(SVT > K).

(4.80)
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Recall that the price of a European vanilla call option under the GBM model satisfies the

BS partial differential equation (PDE) in the time to maturity τ :

∂CBS
∂τ

=
1

2
vS2∂

2CBS
∂S2

+ rS
∂CBS
∂S

− rCBS . (4.81)

By multiplying f(v) on both sides and then integrating w.r.t v from 0 to infinity, we have

the formula for theta:

ΘV = −∂CV
∂τ

=− 1

2
S2 ∂2

∂S2

(∫ ∞
0

vf(v)CBSdv

)
− rS ∂CV

∂S
+ rCV

=− 1

2
S2 ∂2

∂S2

(∫ ∞
0

vf(v)CBSdv

)
− rSP̂t,S(SVT > K)

+ r
[
SP̂t,S(SVT > K)−Ke−rτ P̃t,S(SVT > K)

]
=− 1

2
S2 ∂2

∂S2

(∫ ∞
0

vf(v)CBSdv

)
− rKe−rτ P̃t,S(SVT > K)

=− 1

2
S

∫ ∞
0

vf(v)p̃(τ ;m)dv − rKe−rτ P̃t,S(SVT > K).

(4.82)

The first integral in (4.82) can be expressed analytically for the gamma and inverse gamma.

For the randomized G process, by substituting (4.29) into (4.82), we have

− 1

2
S

∫ ∞
0

vfG(θ,λ)(v)p̃(τ ;m)dv = −1

2
S

∫ ∞
0

v

(
1

λθΓ(θ)
vθ−1e−

v
λ

)
p̃(τ ;m)dv

=− 1

2
S

∫ ∞
0

λΓ(θ + 1)

Γ(θ)

(
1

λθ+1Γ(θ + 1)
v(θ+1)−1e−

v
λ

)
p̃(τ ;m)dv

=− Sλ

2

Γ(θ + 1)

Γ(θ)
p̃G(θ+1,λ)(τ ;m)

=− Se−
m
2

τ
√
πΓ(θ)

(
2

λτ

)θ ( λτm2

8 + λτ

) θ
2

+ 1
4

Kθ+ 1
2

(√
m2 (8 + λτ)

4λτ

)
.

(4.83)

For the randomized IG process, by substituting (4.39) into (4.82), we obtain

− 1

2
S

∫ ∞
0

vfIG(θ,λ)(v)p̃(τ ;m)dv = −1

2
S

∫ ∞
0

v

(
λθ

Γ(θ)

(
1

v

)θ+1

e−
λ
v

)
p̃(τ ;m)dv

=− 1

2
S

∫ ∞
0

λΓ(θ − 1)

Γ(θ)

(
λθ−1

Γ(θ − 1)

(
1

v

)(θ+1)−1

e−
λ
v

)
p̃(τ ;m)dv

=− Sλ

2

Γ(θ − 1)

Γ(θ)
p̃IG(θ−1,λ)(τ ;m)

=− Se−
m
2

τ
√
πΓ(θ)

(
λτ

2

)θ
(m2 + 2λτ)−

θ
2

+ 1
4Kθ− 1

2

(√
m2 + 2λτ

2

)
.

(4.84)
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4.7 Implied BS Volatility

In this section, we study the implied BS volatility under the randomized GBM model where

the variance process follows the gamma and the inverse gamma randomization. Theoretical

results of implied volatility under the GBM model with stochastic volatility are given in the

Renualt and Touzi’s paper [18]. They have shown that an implied volatility surface is an

even function of the log-forward moneyness and necessarily produces a smile effect under

the randomized GBM models with zero correlation. Recall that the ratio of a European

vanilla call option price relative to a spot price under the GBM model can be expressed in

terms of (τ,m, v):

ĈBS(τ,m; v) ≡ CBS(τ, S;K, r, v)

S
. (4.85)

Recall the symmetry property from (1.5):

ĈBS(τ,m; v) = (1− e−m) + e−mĈBS(τ,−m; v). (4.86)

By multiplying both sides by fV and integrating w.r.t v on the real positive line yields:

ĈV(τ,m) = (1− e−m) + e−mĈV(τ,−m). (4.87)

where

ĈV(τ,m) :=

∫ ∞
0

ĈBS(τ,m; v)fV(v)dv. (4.88)

was defined in (1.7).
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In particular, we can easily show that the symmetry property holds true for the call

option pricing functions under the gamma randomization in (4.74):

ĈG(n,λ)(τ,m) =(1− e−m)+ +

√
|m|√
π

(
λτ

8 + λτ

) 1
4

e−
m
2

n−1∑
k=0

1

k!

(
2|m|√

λτ
√

8 + λτ

)k
Kk+ 1

2

(
|m|
2

√
8 + λτ√
λτ

)

=1− e−m + e−m
[

(1− em)+ +

√
|m|√
π

(
λτ

8 + λτ

) 1
4

e
m
2

n−1∑
k=0

1

k!

(
2|m|√

λτ
√

8 + λτ

)k
Kk+ 1

2

(
|m|
2

√
8 + λτ√
λτ

)]

1− e−m + e−mĈG(n,λ)(τ,−m),

(4.89)

where we used the identity:

(1− e−m)+ = (1− e−m) + (e−m − 1)+. (4.90)

We can also show that that the symmetry property holds true for the call option pricing

functions under the inverse gamma randomization in (4.75):

ĈIG(n,λ)(τ,m) =1− (m2 + 2λτ)
1
4

√
π

e−
m
2

n−1∑
k=0

1

k!

(
λτ

2
√
m2 + 2λτ

)k
Kk− 1

2

(√
m2 + 2λτ

2

)

=1− e−m + e−m
[

1− (m2 + 2λτ)
1
4

√
π

e
m
2

n−1∑
k=0

1

k!

(
λτ

2
√
m2 + 2λτ

)k
Kk− 1

2

(√
m2 + 2λτ

2

)]

=1− e−m + e−mĈIG(n,λ)(τ,−m).

(4.91)

Let us define the BS implied volatility σV here as a function depending on m (i.e., σV ≡

σV(m)). Then we can see that σV is a unique solution of:

ĈBS(τ,m;σ2
V(m)) ≡ ĈV(τ,m). (4.92)

Since the call option pricing functions under the classical GBM and the randomized GBM

models have the symmetry property in (4.86), (4.89) and (4.91) respectively, we can use
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(4.86) and (4.87) to show that σV is an even function of m:16

ĈBS(τ,m;σ2
V(m)) ≡ ĈV(τ,m) = (1− e−m) + e−mĈV(τ,−m)

= (1− e−m) + e−mĈBS(τ,−m,σ2
V(−m))

= ĈBS(τ,m;σ2
V(−m)).

(4.93)

Note that σ2
V(m) and σ2

V(−m) yield the same price, and hence we can conclude that σV(m) =

σV(−m) for arbitrary m ∈ R.

In Figure 4.5, we can see that for given λ > 0, τ > 0 and log-forward moneyness m,

the BS implied volatility is increasing in θ, and deep in- (and out-) of-the-money option

(i.e., large value of m in absolute term) prices are more sensitive to the parameter θ than

near in- (and out-) of-the-money option (i.e., small vale of m in absolute term) prices. In

Figure 4.6, we can see that for given λ > 0, τ > 0 and log-forward moneyness m, the BS

implied volatility is decreasing in θ, and deep in- (and out-) of-the-money option prices are

less sensitive to the parameter θ than near in- (and out-) of-the-money options. Both figures

show symmetric smile effects.

We can also see that the BS implied volatility under the gamma randomization exhibits

the V-shaped (i.e., concave) smile, whereas the BS implied volatility under the inverse

gamma randomization exhibits the U-shaped (i.e., convex) smile. We will present in the

next section that the inverse gamma randomization model calibrates well to some U-shaped

market volatility, and hence it may be useful for practitioners to employ the model. However,

the gamma randomization model does not fit well as we rarely see market volatility with

concave smiles in practice.

16See Proposition 3.1 from Renault and Touzi [18].
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Figure 4.5: BS implied volatility of a European vanilla call option under the gamma

randomization.
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Figure 4.6: BS implied volatility of a European vanilla call option under the inverse gamma

randomization.
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4.8 Numerical Example

In this section, we calibrate our models to some market option data. We extract the market

data for the Coca Cola European call options with spot time on April 2, 2019. The market

data contains 354 sample data points with 15 distinct values of the maturity time. The

market volatility in the data set exhibits pronounced smiles across different strikes fro small

times to maturity, and skewed smiles for long times to maturity. We consider the following

two scenarios:

• The time-invariant case where we calibrate the models to the market data across

all maturity times. The reader may refer to Tables 4.1, 4.2, 4.3 and Figure 4.7 (more

plots can be found in Figures D.1, D.2, D.3, D.4, D.5, D.6).

• The time-variant case where we calibrate the models to the market data among

classes consisting of all observations with same maturity times. The reader may refer

to Tables 4.4, 4.5, 4.6 and Figures 4.8, 4.9.

Firstly, we consider the time-invariant case. Suppose that V ∗i , Σ∗i are the observed

market option price and market volatility respectively for i = 1, . . . , N where N is the

number of sample points, and τi,Ki are the corresponding maturity time and strike price.

Here, we use the root mean squared error (RMSE) as a loss function L(θ, λ) for the model

calibration under the gamma and the inverse gamma randomization whose weights depend

on the maturity times, i.e.,

L(θ, λ) =

√∑N
i=1wp(τ) (V (τi, S;Ki)− V ∗i )2

N
; wp(τ) =

1

τp
, (4.94)

where p is some constant controlling the weight function wp(τ). This means that when the

value of p is high, the observed market prices with smaller maturity times contribute to the
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loss function more than the observed market prices with longer maturity times. Alternatively

for the SABR model, we use the Hagan et al. formula in (3.4) and (3.6) to find optimal

values of parameters which minimizes the difference between the corresponding BS implied

volatility and the market volatility in the RMSE sense. Hence, the loss function L(θ, λ) for

the SABR model calibration is:

L(α, β, σ, ρ) =

√∑N
i=1wp(τ) (σhagan(τi, S, σ;Ki)− Σ∗i )

2

N
; wp(τ) =

1

τp
, (4.95)

Variable Name Description Value

S spot price 46.57

r constant risk-free rate 0%

τ maturity times (in years) 0.008 ∼ 1.792

K strike prices 23 ∼ 65

TolX termination tolerance on the current value 10−6

TolFun termination tolerance on the function value 10−6

Table 4.1: Set of parameters and stopping criterion to be used for calibrating to the market

data.

The summary of the market data used here can be found in Table 4.1. The set of

optimal values of the parameters can be found in Tables 4.2 and 4.3, where we randomly

chose p = 0, 1,−1 in our analysis. We found that the inverse gamma randomization performs

better than the gamma randomization because the RMSE is smaller for fixed p = 0, 1,−1.17

From Table 4.2, we can see that as p increases, the optimal value of θ decreases while the

optimal value of λ increases under the gamma randomization, and the optimal values of θ
17Note that we can only compare the RMSE between randomized G and IG models for fixed p, but we

cannot compare the RMSE across different values of p since the weight functions have different scaling. Also,
we cannot compare between the G or IG randomization and the SABR since the loss functions are different.
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and λ decrease under the inverse gamma randomization. For the SABR model parameters,

we attempted to find optimal values for the parameters (α, σ, ρ) ≡ (α(β), σ(β), ρ(β)) across

different values of β ∈ [−1, 0], and find the optimal value by β comparing the associated

RMSEs.18 We found that β = −1 gave the lowest RMSE. From Table 4.3, we see that as

p increases, the optimal value of α increases while the optimal value of σ decreases. The

SABR model does not fit the market volatility for the time-invariant case (See Figure 4.7)19.

We will see later that the model works substantially well for the time-variant case which

gives consistency with a literature and will be stated in the next scenario. Since the market

volatility at τ = 0.008 exhibits a smile having a strong curvature (as we can see from Table

4.6 that it has a large value of α at the maturity time), the performance on the Hagan

et al. implied BS volatility formula degrades and often gives out negative values. For the

particular case, we instead use the Antonov et al. formula which takes up more time to

compute. Overall, the inverse gamma randomization model is the best model to fit the

Coca Cola market data set for the time-invariant case.

18In our data set, we saw that β was not a robust parameter since the optimal value for β varies with
different initial values of β. So we used the calibration method in Hagan et al. [13] to find β in advance.
There are different approaches for the SABR model calibration, see e.g., West [20].

19Detailed plots are shown in Figures D.1, D.2, D.3, D.4, D.5, D.6.
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Model Parameters θ λ RMSE Time

Gamma

p = 0 1.214 0.021 0.168 28.746

p = 1 0.358 0.092 0.396 75.737

p = −1 2.481 0.010 0.124 25.132

Inverse Gamma

p = 0 1.356 0.013 0.159 37.845

p = 1 0.931 0.005 0.356 31.712

p = −1 2.187 0.031 0.121 34.557

Table 4.2: Optimal values of the model parameters for the time-invariant case under the

gamma and the inverse gamma randomization with the weight function wp(τ) = 1
τp .

Model Parameters α β σ ρ RMSE Time

SABR

p = 0 5.314 −1 4.481 −0.924 0.166 149.149

p = 1 18.861 −1 1.803 −0.826 1.025 493.847

p = −1 0.562 −1 7.791 −0.706 0.053 12.307

Table 4.3: Optimal values of the model parameters for the time-invariant case under the

SABR model with the weight function wp(τ) = 1
τp .
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Figure 4.7: 2D Implied volatility plots for the time-invariant case for SMALL maturity

times (top) and LONG maturity times (bottom) with p = 1 (left) p = −1 (right)
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Now, we consider calibrating parameters among classes consisting of all observations

with same maturity time. Define T = {τi : i = 1, . . . , N} as the collection of maturity times

in the data set arranged in an increasing order. Let Sτ = {i|τi = τ ∈ T} be the collection

of observations with maturity time τ ∈ T. For each τ , we use the usual RMSE (wp(τ) = 1)

for the loss function under the gamma and the inverse gamma randomization:

Lτ (θ, λ) =

√∑
i∈Sτ (V (τi, S;Ki)− V ∗i )2

Nτ
; τ ∈ T, (4.96)

where Nτ = #Sτ is the number of observations with maturity time τ . Similarly, the loss

function for the SABR model calibration is:

Lτ (α, β, σ, ρ) =

√∑
i∈Sτ (σhagan(τi, S, σ;Ki)− Σ∗i )

2

Nτ
; τ ∈ T, (4.97)

Based on Tables 4.4, 4.5 and 4.6, we found that: The inverse gamma randomization per-

forms20 quite well for small maturity times. The SABR model fits almost perfectly for the

time-variant case, although we saw in the first scenario that the model did not calibrate

well for the time-invariant case. This result is consistent with the literature21 that the time-

invariant SABR model calibrates well at a single maturity, but does not calibrate well at

multiple maturities.

Putting to the two scenarios together, we conclude that the inverse gamma randomization

works the best for the time-invariant case and the SABR model works the best for the time-

variant case.

20Note that we can only compare the RMSE across different models for fixed τ , but we cannot compare
the RMSE across different values of τ .

21For example, see [21].
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Maturity Times Data Points θ λ RMSE Time

0.008 33 0.095 0.575 0.041 71.194

0.027 33 0.108 0.334 0.059 91.963

0.044 35 0.176 0.171 0.070 8.189

0.066 19 0.405 0.104 0.083 1.932

0.085 15 0.214 0.215 0.159 3.123

0.104 15 0.087 0.720 0.295 40.699

0.123 24 0.193 0.228 0.121 5.902

0.219 32 0.153 0.276 0.162 15.721

0.373 31 0.369 0.089 0.169 4.230

0.468 29 0.322 0.105 0.173 5.593

0.622 24 0.482 0.067 0.175 3.156

0.795 17 2.669 0.009 0.184 1.989

1.216 16 3.245 0.007 0.186 1.837

1.466 14 2.070 0.012 0.227 2.087

1.792 17 11.021 0.002 0.173 2.154

Table 4.4: Optimal values of θ and λ for the time-variant case under the gamma random-

ization
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Maturity Times Data Points θ λ RMSE Time

0.008 33 0.719 0.002 0.032 6.087

0.027 33 0.827 0.002 0.051 3.460

0.044 35 0.877 0.003 0.062 3.569

0.066 19 1.227 0.014 0.079 2.332

0.085 15 0.885 0.005 0.147 2.107

0.104 15 0.672 0.002 0.280 2.533

0.123 24 0.923 0.006 0.106 2.788

0.219 32 0.799 0.003 0.135 3.897

0.373 31 0.979 0.006 0.147 2.903

0.468 29 0.926 0.005 0.141 3.787

0.622 24 1.091 0.009 0.153 3.789

0.795 17 2.406 0.035 0.181 2.338

1.216 16 2.962 0.048 0.183 2.697

1.466 14 1.861 0.024 0.217 2.310

1.792 17 8.016 0.155 0.173 3.485

Table 4.5: Optimal values of θ and λ for the time-variant case under the inverse gamma

randomization
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τ Data Points α β σ ρ RMSE Time

0.008 33 21.729 −1 2.994 −0.502 0.026 0.435

0.027 33 10.616 −1 3.643 −0.560 0.021 0.574

0.044 35 7.711 −1 4.204 −0.619 0.018 0.353

0.066 19 4.691 −1 6.793 −0.465 0.011 0.329

0.085 15 5.040 −1 6.239 −0.610 0.030 0.341

0.104 15 5.967 −1 5.473 −0.704 0.059 0.344

0.123 24 3.633 −1 6.119 −0.570 0.014 0.337

0.219 32 2.916 −1 5.424 −0.604 0.015 0.360

0.373 31 1.895 −1 5.701 −0.535 0.014 0.159

0.468 29 1.631 −1 5.680 −0.385 0.011 0.392

0.622 24 1.147 −1 6.256 −0.341 0.008 0.378

0.795 17 1.001 −1 6.032 −0.425 0.011 0.359

1.216 16 0.673 −1 6.272 −0.242 0.010 0.371

1.466 14 0.782 −1 5.940 −0.154 0.016 0.303

1.792 17 0.467 −1 6.371 −0.058 0.007 0.331

Table 4.6: Optimal values of θ and λ for the time-variant case under the SABR model
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Figure 4.8: 2D Implied volatility plots for the time-variant case for small maturity times.
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Figure 4.9: 2D Implied volatility plots for the time-variant case for long maturity times.
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4.9 Stability of the Model Calibration Procedure

Suppose we can perfectly calibrate the market data in the sense that L(θ, λ) = 0 for a given

loss function L. In other words, we assume that the market prices can be generated from

the chosen model parameters, i.e.,

VMkt
τ,K = VV(τ, S;K, r); V ∼ G(θ, λ) or IG(θ, λ). (4.98)

In this section, we will calibrate to the market prices generated from the model itself with

given parameters, and see whether the values for the calibrated parameters and the original

model parameters coincide. Here is a sketch of the algorithm:

1. Generate two uniformly distributed random numbers between 0 and 20 for the model

parameters, (i.e., θMod, λMod i.i.d.∼ Unif(0, 20)).

2. Generate two uniformly distributed random numbers between−5 and 5 (i.e., uθ, uλ
i.i.d.∼

Unif(−5, 5)). Then add uθ, uλ to θMod, λMod respectively to determine the initial

values of the model parameters (θ, λ must be positive):

θInit = |θMod + uθ|, λInit = |λMod + uλ|. (4.99)

3. Calibrate to the market prices in the usual way.

4. Repeat 1 ∼ 3 multiple times.

We ran the test 10 times and the resulting tables under the gamma and the inverse gamma

randomization can be found in Table 4.7 and 4.8 respectively. We can see that the values

of the calibrated parameters and the original model parameters coincide most of the time

except for one instance where the calibrated parameters (43.482, 1.055) significantly differ

from the model parameters (16.424, 0.308).
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model parameter initial parameter calibrated parameter RMSE

θ λ θ λ θ λ

3.244 15.886 1.356 16.171 3.244 15.886 1.54× 10−5

3.313 12.040 0.943 13.580 3.313 12.040 4.79× 10−5

13.784 14.963 13.290 10.801 13.784 14.964 5.72× 10−6

4.580 18.267 1.103 21.525 4.580 18.267 8.10× 10−5

10.767 19.923 6.549 19.349 10.767 19.922 6.54× 10−6

2.133 19.238 2.821 21.987 2.133 19.238 6.48× 10−5

16.346 17.374 12.190 16.372 16.346 17.373 2.03× 10−6

5.197 16.001 4.512 20.108 5.197 16.001 2.26× 10−5

3.637 5.276 0.092 1.637 3.637 5.276 4.19× 10−5

17.386 11.594 17.884 8.044 17.386 11.594 4.26× 10−6

Table 4.7: A list of model, initial and calibrated parameters under the gamma randomization.
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model parameter initial parameter calibrated parameter RMSE

θ λ θ λ θ λ

17.061 12.441 15.570 12.574 17.060 12.441 1.54× 10−6

8.036 1.519 5.435 2.247 8.036 1.519 2.72× 10−6

3.678 4.799 2.851 0.296 3.678 4.799 2.60× 10−5

18.054 18.896 17.963 18.788 18.055 18.896 2.59× 10−6

6.754 18.001 5.447 14.113 6.754 18.001 1.89× 10−5

15.605 7.795 13.022 6.834 15.604 7.794 2.37× 10−6

1.929 2.639 6.350 7.201 1.929 2.639 2.81× 10−5

11.504 1.196 8.852 0.273 11.504 1.196 1.21× 10−6

16.424 0.308 11.854 3.002 43.482 1.055 0.52

12.982 14.634 14.460 14.144 12.983 14.635 3.81× 10−6

Table 4.8: A list of model, initial and calibrated parameters under the inverse gamma

randomization.
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Chapter 5

Alternative Randomization Models

5.1 Transition Density Functions with Imposed Killing

For the GBM model, the transition PDF for {St}t>0 killed at some threshold level B > 0

is:1

p̃S(B)(t;S, y) =
1

y
√

2πvt
exp

(
−

[ln y
S − (r − 1

2v)t]2

2vt

)

−
(
B

S

) 2r
v
−1 1

y
√

2πvt
exp

(
−

[ln yS
B2 − (r − 1

2v)t]2

2vt

) (5.1)

defined on the respective domains (0, B) and (B,∞). Alternatively, let {Xt}t>0 = {ln St
S }t>0

be the log-return process and b = ln B
S be the corresponding threshold level. The transition

1See (12.133) from Campolieti and Makarov [10].
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PDF for the drifted BM {Xt}t>0 killed at b is:2

p̃X(b)(τ ; 0, x) =
1√

2πvτ
exp

(
−

[xr + 1
2vτ ]2

2vτ

)

− 1√
2πvτ

exp

(
b

(
2r

v
− 1

)
−
[
xr − 2b+ 1

2vτ
]2

2vτ

)

=
1√

2πvτ
exp

(
−xr

2
− vτ

8

)
×
[
exp

(
− x2

r

2vτ

)
− exp

(
−
x2
b

2vτ

)]
,

(5.2)

where xr = x − rτ and xb =
√

(x− 2b− rτ)2 − 4brτ > 0. The transition PDF in (5.2)

is defined on the respective domains (−∞, b) and (b,∞). In this section, we derive the

transition PDF of the stock price process with imposed killing under the randomized GBM

model. If V ∼ G(θ, λ), by making use of (4.28) we have the transition PDF:

p̃
X(b)

G(θ,λ)(τ ; 0, x) =
2e−

xr
2

λθΓ(θ)
√

2πτ

[(
2|xr|√

τ
√

8 + λτ

)θ− 1
2

Kθ− 1
2

(
|xr|
√

8 + λτ√
4λτ

)

−
(

2xb√
τ
√

8 + λτ

)θ− 1
2

Kθ− 1
2

(
xb
√

8 + λτ√
4λτ

)]
.

(5.3)

If V ∼ IG(θ, λ), the transition PDF is

p̃
X(b)

IG(θ,λ)(τ ; 0, x) =
2λθe−

xr
2

Γ(θ)
√

2πτ

[(
4[x2

r + 2λτ ]

τ2

)− θ
2
− 1

4

Kθ+ 1
2

(√
x2
r + 2λτ

4

)

−
(

4[x2
b + 2λτ ]

τ2

)− θ
2
− 1

4

Kθ+ 1
2

√x2
b + 2λτ

4

]. (5.4)

2See (10.80) from Campolieti and Makarov [10].
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5.2 First hitting time in the driftless case

The first hitting time T Xb ≡ min{t > 0|Xt = b} of standard driftless BM (i.e., r = 0) started

at 0 up to level b has CDF:3

FT Xb
(τ) = 1−

∫ b

−∞
p̃X(b)(τ ; 0, x)dx = N

(
−b− 1

2vτ√
vτ

)
+ e−bN

(
−b+ 1

2vτ√
vτ

)

=P̃t,S (XT > b) + e−bP̃t,S (XT 6 −b) ; b > 0,

FT Xb
(τ) = 1−

∫ ∞
b

p̃X(b)(τ ; 0, x)dx = N

(
b+ 1

2vτ√
vτ

)
+ e−bN

(
b− 1

2vτ√
vτ

)

=P̃t,S (XT 6 b) + e−bP̃t,S (XT > −b) ; b < 0,

(5.5)

for τ > 0, and 1 at b = 0. We can use (4.52) to obtain the first hitting time to level b with

randomization. For example, if V ∼ G(n, λ), n ∈ N, then

F
G(n,λ)

T Xb
(τ) =

√
|b|√
π

(
8 + λτ

λτ

) 1
4

e−
b
2

n−1∑
k=0

(
2|b|√

λτ
√

8 + λτ

)k
Kk− 1

2

(
|b|
2

√
8 + λτ√
λτ

)
. (5.6)

if V ∼ IG(n, λ), n ∈ N, then

F
IG(n,λ)

T Xb
(τ) = min{1, e−b}− |b|√

π
(b2 +2λτ)−

1
4 e−

b
2

n−1∑
k=0

(
λτ

2
√
b2 + 2λτ

)k
Kk+ 1

2

(√
b2 + 2λτ

2

)
.

(5.7)

5.3 First hitting time with a drift

The first hitting time (of drifted BM started at 0) up to level b has CDF:4

FT Xb
(τ) =P̃t,S (XT > b) + e

2µb
v P̃t,S (XT 6 −b) ; b > 0,

FT Xb
(τ) =P̃t,S (XT 6 b) + e

2µb
v P̃t,S (XT > −b) ; b < 0,

(5.8)

for τ > 0, and 1 at b = 0, where µ = r − 1
2v. We consider the first hitting time under the

inverse gamma randomization5. We can use (4.52) to obtain the first hitting time under the
3See (10.83) and (10.88) from Campolieti and Makarov [10].
4See (10.83) and (10.88) from Campolieti and Makarov [10].
5The first hitting time under the gamma randomization cannot be obtained analytically for r > 0.
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inverse gamma randomization:

F
IG(n,λ)

T Xb
(τ) =A1 −B1 +

λn

(λ− 2br)n
e−b; b > 0, λ 6= 2br,

F
IG(n,λ)

T Xb
(τ) =1−A1 +B1; b < 0,

(5.9)

where

A1 =
1

2

√
A√
π
e−

b−rτ
2

n−1∑
k=0

1

k!

(
λτ

2A

)k [
Kk− 1

2

(
A

2

)
− b− rτ

A
Kk+ 1

2

(
A

2

)]
,

B1 =
1

2

λn

(λ− 2br)n

√
A√
π
e−

b−rτ
2

n−1∑
k=0

1

k!

(
λτ − 2brτ

2A

)k
×
[
Kk− 1

2

(
A

2

)
+
b+ rτ

A
Kk+ 1

2

(
A

2

)]
,

A =
√

(b− rτ)2 + 2λτ.

(5.10)

For λ = 2br, numerical tests showed (by applying the L’Hôspital’s rule n times) that the

limit exists. For example, if n = 1, 2, 3 we have

lim
λ→2br

F
IG(1,λ)

T Xb
(τ) =A1 + e−b

brτ

(b+ rτ)2
(b+ rτ + 1),

lim
λ→2br

F
IG(2,λ)

T Xb
(τ) =A1 +

e−b

2

(
brτ

(b+ rτ)2

)2

((b+ rτ)2 + 4(b+ rτ) + 6),

lim
λ→2br

F
IG(3,λ)

T Xb
(τ) =A1 +

e−b

3!

(
brτ

(b+ rτ)2

)3

× ((b+ rτ)3 + 9(b+ rτ)2 + 36(b+ rτ) + 60).

(5.11)
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Figure 5.1: Plots of the first hitting times (with a drift r = 0.01) under the inverse gamma

randomization.
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5.4 Two-Asset Economy with perfectly correlated volatility

In this section we consider extending the randomized GBM model to a two-asset economy

whose driven asset price processes are necessarily correlated. We denote {S(j)
t }t>0 as the jth

asset price (diffusion) process with constant volatility
√
λjv, given parameters λj > 0, v > 0.

For simplicity we assume the volatility of the two risky assets are perfectly correlated 6.

The two-dimensional process { #»

S t}t>0 = {(S(1)
t , S

(2)
t )}t>0 (with constant variances v1, v2

respectively) obeys the following SDEs:

dS
(1)
t

S
(1)
t

= (r − q1)dt+
√
λ1vdW̃

(1)
t ; S

(1)
0 > 0,

dS
(2)
t

S
(2)
t

= (r − q2)dt+
√
λ2vdW̃

(2)
t ; S

(2)
0 > 0,

dW̃
(1)
t dW̃

(2)
t = ρdt,

(5.12)

where qj is the continuous dividend rate for the jth asset price process. Define

X
(1)
t = ln

(
S

(1)
t

S
(1)
0

)
− rt, X

(2)
t = ln

(
S

(2)
t

S
(2)
0

)
− rt; t > 0. (5.13)

Recall that the pair
#»

Xt = (X
(1)
t , X

(2)
t ) follows the bivariate normal distribution whose joint

PDF is:7

p̃(τ ;x1, x2) =
1

2πvτ
√
λ1λ2(1− ρ2)

exp

(
− 1

2(1− ρ2)[
(x1 + 1

2λ1vτ)2

λ1vτ
+

(x2 + 1
2λ2vτ)2

λ2vτ
−

2ρ(x1 + 1
2λ1vτ)(x2 + 1

2λ2vτ)
√
λ1λ2vτ

])

=

(
D

v

)
exp

(
−A
v
−B − Cv

)
(5.14)

6Asset pricing in the imperfect correlation case may introduce the multivariate gamma/inverse gamma
distributions which can be difficult to employ.

7For example, see (9.82) from Campolieti and Makarov [10].
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where

A =
1

2(1− ρ2)λ1λ2τ2
[λ1τx

2
1 + λ2τx

2
2 − 2ρ

√
λ1λ2τx1x2],

B =
1

2(1− ρ2)
√
λ1λ2τ

[
√
λ1λ2τ(x1 + x2)− ρ(λ1τx2 + λ2τx1)],

C =
1

8(1− ρ2)
[λ1τ + λ2τ − 2ρ

√
λ1λ2τ ],

D =
1

2πτ
√
λ1λ2(1− ρ2)

.

(5.15)

We will consider a static randomization in the variance parameter v. In particular, we

consider V ∼ G(θ, 1) and V ∼ IG(θ, 1). We set λ = 1 here so that we can specify the

randomized variance Vj of the jth asset price process {SVjt }t>0 to be either G(θ, λj) or

IG(θ, λj). We can use the integral identity in Prudnikov et al within (4.28) to extend

our analytical expressions for the one-dimensional transition PDFs in (4.30) and (4.40) to

the two-dimensional case. First we will look at the randomized process under the gamma

randomization. The (joint) transition PDF for { #»

X
G(θ,λ1,λ2)
t }t>0 ≡ {(XG(θ,λ1)

t , X
G(θ,λ2)
t )}t>0

is:

p̃G(θ,λ1,λ2)(τ ;x1, x2) =

∫ ∞
0

1

Γ(θ)
vθ−1e−vp̃(τ ;x1, x2)dv

=

∫ ∞
0

1

Γ(θ)
vθ−2e−vD exp

(
−A
v
−B − Cv

)
dv

=
De−B

Γ(θ)

(
A

C + 1

) θ
2
− 1

2

Kθ−1

(
2
√
A(C + 1)

)
.

(5.16)

Similarly, the transition PDF for { #»

X
IG(θ,λ1,λ2)
t }t>0 is:

p̃IG(θ,λ1,λ2)(τ ;x1, x2) =

∫ ∞
0

1

Γ(θ)

(
1

v

)θ+1

e−
1
v p̃(τ ;x1, x2)dv

=

∫ ∞
0

1

Γ(θ)
wθe−wD exp

(
−Aw −B − C

w

)
dw

=
De−B

Γ(θ)

(
C

A+ 1

) θ
2

+ 1
2

Kθ+1

(
2
√
C(A+ 1)

)
,

(5.17)

where A,B,C,D are given in (5.15).
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Consider any standard European options with payoff function Λ(S1, S2), where S1, S2

are the spot variables (at time t < T ), at maturity time T > 0. The no-arbitrage pricing

function, V (τ, S1, S2), in the time-to-maturity τ > 0 satisfies the two-dimensional BSPDE:

∂V

∂τ
= GS1,S2V − rV, (5.18)

where

GS1,S2 :=
1

2

2∑
j=1

(
λjvS

2
j

∂2

∂S2
j

+ (r − qj)Sj
∂

∂Sj

)
+ ρv

√
λ1λ2S1S2

∂

∂S1∂S2
. (5.19)

We now define

Yt :=
S

(1)
t

S
(2)
t

; t > 0. (5.20)

By Feymann-Kac Theorem, the process {Yt}t>0 has generator:8

G(Y )
y ≡ 1

2
λyvy

2 ∂

∂y2
+ (q2 − q1)y

∂

∂y
, (5.21)

where

y =
S1

S2
, λy = λ1 + λ2 − 2ρ

√
λ1λ2. (5.22)

We wish to consider payoffs having a symmetry. In particular, consider a payoff of the form

(e.g., an exchange option):

Λ(S1, S2) = (aS1 − bS2)+ = aS2 (y − c)+ ; a, b > 0, c =
b

a
, (5.23)

where y = S1
S2

is an effective spot price variable. The no-arbitrage price of the exchange

option can be obtained by setting V (τ ;S1, S2) = S2f(τ, y), where f(τ, y) satisfies an effective

one-dimensional BSPDE in (5.21) with effective discount rate q2 and effective dividend rate

q1, i.e.,

∂f

∂τ
= G(Y )

y f − q2f, (5.24)

8See (13.78) in Campolieti and Makarov [10].
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subject to lim
τ↘0

f(τ, y) = φ(y) = a(y − c)+. By Feymann-Kac Theorem, we have

f(τ, y) =e−q2τ Ẽt,y
[
a (YT − c)+]

=aCBS (τ, y; c, q2, q1)

=ae−q1τCBS (τ, y; c, q2 − q1) ,

(5.25)

where we used the symmetry:

VBS(τ, S; r, q) = e−qτVBS(τ, s; r − q, 0). (5.26)

Then, by randomization in (5.25) we get

VV(τ, S1, S2) = aS2e−q1τCV(τ, y; c, q2 − q1) = aS1e−q1τ
CV(τ, y; c, q2 − q1)

y
. (5.27)

Since we have expressions for CV (τ,y;c,q2−q1)
y in analytically closed forms in Section 4.5, we can

obtain the following explicit formulas for VV(τ, S1, S2) under G(n, λ1, λ2) and IG(n, λ1, λ2),

n ∈ N:

VG(n,λ1,λ2)(τ, S1, S2)

ae−q1τS1
=(1− e−m)+ +

√
|m|√
π

(
λyτ

8 + λτ

) 1
4

e−
m
2

n−1∑
k=0

1

k!

(
2|m|√

λyτ
√

8 + λyτ

)k
Kk+ 1

2

(
|m|
2

√
8 + λyτ√
λyτ

)
,

VIG(n,λ1,λ2)(τ, S1, S2)

ae−q1τS1
=1− (m2 + 2λyτ)

1
4

√
π

e−
m
2

n−1∑
k=0

1

k!

(
λyτ

2
√
m2 + 2λyτ

)k
Kk− 1

2

(√
m2 + 2λyτ

2

)
,

(5.28)

where

m = ln
aS1

bS2
+ (q2 − q1)τ (5.29)

is an effective log-forward moneyness.
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5.5 Randomized CEV Models

Recall that the standard CEV (diffusion) process (with variance parameter v and a drift

parameter r) {St}t>0 obeys the SDE:

dSt
St

= rdt+
√
vSβt dW̃t. (5.30)

Assume β < 0 and 0 is a killing boundary. We consider static randomization in V ≡ Υt,T
τ .

By sending Υ(t, T ) 7→ vτ in (2.13) the transition PDF for the drifted CEV process is

p̃cev(τ ;S, y) =e−rτ
(e−rτy)−2β− 3

2S
1
2

v|β|τ
exp

(
−(e−rτy)−2β + S−2β

2vβ2τ

)
× I 1

2|β|

(
(e−rτy)−βS−β

vβ2τ

)
.

(5.31)

We will consider randomization in the parameter v. Note that we have the following integral

formula in terms of the Gaussian hypergeometric function:

∫ ∞
0

1

va
e−

b
v Ir

( c
v

)
dv =

( c
2

)r Γ(a+ r − 1)

Γ(1 + r)

2F1

(
a+r

2 , a+r−1
2 ; 1 + r; c

2

b2

)
ba+r−1

. (5.32)

We consider V ∼ IG(θ, λ). Then the transition PDF of {SIGt }t>0 is

p̃cev
IG(θ,λ)(τ ;S, y) =

λθ

Γ(θ)
e−rτ

(e−rτS)−2β− 3
2S

1
2
0

|β|τ

∫ ∞
0

1

va
e−

b
v Ir

( c
v

)
dv, (5.33)

where

a = θ + 2, b = λ+
(e−rτy)−2β + S−2β

2β2τ
,

c =
(e−rτy)−βS−β

β2τ
, r =

1

2|β|
= |ν|.

(5.34)
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Thus,

p̃cev
IG(θ,λ)(τ ;S, y) =

λθ

Γ(θ)
e−rτ

(e−rτy)−2β− 3
2S

1
2

|β|τ

(
(e−rτy)−βS−β

2β2τ

)|ν|
×
(

2β2τ

2β2λτ + (e−rτy)−2β + S−2β

)θ+|ν|+1
Γ(θ + |ν|+ 1)

Γ(1 + |ν|)

× 2F1

(
θ + |ν|+ 2

2
,
θ + |ν|+ 1

2
; 1 + |ν|;

(
2(e−rτy)−βS−β

2β2λτ + (e−rτy)−2β + S−2β

)2
)

=λθe−rτ
(e−rτy)−2β−1S

|β|τ
(2β2τ)θ+1

(2β2λτ + (e−rτy)−2β + S−2β)θ+|ν|+1

Γ(θ + |ν|+ 1)

Γ(θ)Γ(1 + |ν|)

× 2F1

(
θ + |ν|+ 2

2
,
θ + |ν|+ 1

2
; 1 + |ν|;

(
2(e−rτy)−βS−β

2β2λτ + (e−rτy)−2β + S−2β

)2
)
,

(5.35)

where |ν| = 1
2|β| . When β = −1, (i.e., the asset price process follows an Ornstein–Uhlenbeck

process) we have the special elementary case of the Gaussian hypergeometric function:9

2F1

(
1

2
+ a, a;

3

2
; z2

)
=

(1 + z)1−2a − (1− z)1−2a

2z(1− 2a)
. (5.36)

So the transition PDF in (5.35) becomes

p̃cev
IG(θ,λ)(τ ;S, y) =(2λτ)θ

(
Γ(θ + 3

2)

2Γ(θ)Γ(3
2)

)

×
(

[2λτ + (e−rτy + S)2]−θ−
1
2 − [2λτ + (e−rτy − S)2]−θ−

1
2

)
.

(5.37)

We can see from Figures 5.2 and 5.3 that the randomized CEV processes exhibits non-

symmetric smiles as opposed to symmetric smiles observed from the randomized GBM pro-

cesses. The CEV process under the gamma randomization have sharp kinks at-the-money,

whereas the CEV process under the inverse gamma randomization have smooth BS implied

volatility against the strikes. Hence, the randomized CEV model with inverse randomization

may be useful for model calibrations as each BS implied volatility exhibits an asymmetric

and U-shaped smile.

9See 15.1.10 in Abramowitz and Stegun [1].
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Figure 5.2: BS implied volatility of a European vanilla call option under the gamma

randomization.
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Figure 5.3: BS implied volatility of a European vanilla call option under the inverse gamma

randomization.
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Chapter 6

Summary and Future Work

6.1 Summary

In this thesis, we constructed the randomized GBM processes under the gamma and the

inverse gamma randomization, namely the randomized G and IG processes. The European-

style option prices under the new processes exhibit symmetric smiles in the log-forward

moneyness and admit simple closed-form analytical expressions for European-style option

prices. Surprisingly, the pricing formulas presented in this thesis are even simpler than the

classical GBM model as they are expressed as elementary analytical functions. The option

prices were also obtained numerically in an efficient manner since they only involve one-

dimensional integrals of complementary error functions w.r.t. the variable of integration.

In Chapter 2, we briefly introduced the CEV model. In Section 2.1 we provided the

pricing formula for a European vanilla call option. In Section 2.2, we stated the alternative

pricing formula which can be extended to the SABR model.

In Chapter 3, we stated some main facts about the SABR model. In Section 3.1, we

stated the well-known Hagan et al. formula for the approximate implied BS volatility, and

77



we showed that it works well for European options with small times to maturity. In Section

3.2 we considered pricing European vanilla call options in the zero correlation case, with

derivations given in Appendix A. It also provides the Antonov et al. formula by mappping

the parameters in the general correlation case to the zero correlation one. In Section 3.3,

we performed a numerical experiment which showed that both formulas work well for small

times to maturity. For large times to maturity, the accuracy of the Hagan et al. formula

worsens, but the Antonov et al. formula retains good accuracy.

In Chapter 4, we presented our main work in the proposed randomization models. In

Section 4.3, we derived the transition (marginal) PDF for the randomized G and IG pro-

cesses. We observed that both processes had thicker tails than the GBM process, and the

randomized IG process had heaviest tails among the three. In Section 4.4, we investigated

the risk-neutral probability which was later used in pricing European-style options under

the new models. In Section 4.5, we obtained explicit pricing formulas for European vanilla

call options with integer-valued shape parameter, as well as ATMF option prices with real-

valued shape parameter. In Section 4.6, we derived analytical expressions for the greeks of

European vanilla call options under volatility randomization, and plotted the greeks as a

function of strike and time to maturity. We also made comparisons to the greeks for the

classical GBM model. In Section 4.7, we showed that the BS implied volatility under the

gamma and the inverse gamma randomization exhibit symmetric smiles in the log-forward

moneyness. In Section 4.8 we calibrated the randomized GBM models and the SABR model

to the actual market data set from Coca Cola. We found that the inverse gamma randomiza-

tion fitted well especially for small maturity times, and fitted quite decently when calibrated

across all maturity times. The SABR model fitted to the market data almost perfectly when

calibrated at a single maturity time, but the the model fails miserably when calibrated across
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all maturity times. In Section 4.9, we tested the robustness of the parameters, and observed

that they were robust.

In Chapter 5, we provided extensions to (1) the transition PDFs with killing, (2) the

multi-asset pricing models with perfectly correlated volatility randomization, and (3) the

randomized CEV models. In Section 5.1, we observed that the transition PDFs with killing

admit analytically closed-form expressions under the gamma and the inverse gamma ran-

domization. The CDFs of the first hitting times were derived in Section 5.2 and 5.3. In

Section 5.4, We built the randomization framework in a two-asset economy, and derived

closed-form expressions for a European-style exchange option. In Section 5.5, we briefly

introduced the randomized CEV models, which exhibit skew smiles and admit closed-form

solutions for European vanilla call option prices under the inverse gamma randomization

which were expressed in terms of the Gaussian hypergeometric functions.

6.2 Future Work

An obvious disadvantage of our new models is that the models assume zero correlation

between the asset price and its volatility as empirical work suggests that they must be

negatively correlated. One feasible solution might be to employ copula methods in the

models which can introduce dependencies between the asset price process and its volatility.

We also make use of the use of the transition PDFs with killing and FHT to exotic option

pricing of barrier and lookback options under the randomized models.

We would like to further extend the multi-asset pricing model with perfectly correlated

volatility randomization in Section 5.4 to the general correlated volatility randomization.

We might employ copula methods in the model to price options such as exchange options.

We may extend to more general solvable diffusion models such as hypergeometric dif-
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fusion models. Once we have constructed the randomized models, we may also consider

efficient algorithms for numerical integrations. This includes the randomized CEV process

under the inverse gamma randomization whose integrand involves the Gaussian hypergeo-

metric functions.
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Appendix A

Derivation of the Pricing Formula

under the SABR Model in the Zero

correlation Case

Recall that the drifted SABR model is a two-factor model governed by two SDEs (assuming

the risk-neutral probability measure P̃ exists):

dSt
St

= rdt+ σtS
β
t dW

(1)
t ; S0 > 0,

dσt
σt

= αdW
(2)
t ; σ0 > 0,

dW
(1)
t dW

(2)
t = 0,

(A.1)

Note that the stochastic time change is the integrated squared GBM process given σt = σ

which was defined by:

Υτ (σ) ≡
∫ τ

0
eβrsσ2

t+sds. (A.2)
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Then, the joint distribution of (Υτ (σ), σT ) given σt = σ is:

(Υτ (σ), σT )
d
=

(
σ2

∫ τ

0
e(2βr−α2)t+2Zα2tdt, σe(βr− 1

2
α2)τ+Zα2τ

)
.

=

(
σ2

α2

∫ α2τ

0
e(2βr/α2−1)t+2Ztdt, σe(βr− 1

2
α2)τ+Zα2τ

)

=

(
σ2

α2
A

(βr/α2− 1
2

)

α2τ
, σ exp

(
B

(βr/α2− 1
2

)

α2τ

) )
,

(A.3)

where

A
(µ)
t =

∫ t

0
exp

(
2B(µ)

s

)
ds, B

(µ)
t = Bt + µt. (A.4)

From Matsumoto and Yor [16], we have

E

[
exp

(
− λ

A
(µ)
t

)
|B(µ)

t = x

]
= exp

(
−φx(λ)2 − x2

2t

)
, (A.5)

where

φx(λ) = cosh−1
(
λe−x + coshx

))
. (A.6)

Integrating over the density of B(µ)
t , we have

E

[
exp

(
− λ

A
(µ)
t

)]
=

e−
µ2t
2

√
2πt

∫ ∞
−∞

exp

(
−φx(λ)2 − 2µtx

2t

)
dx, (A.7)

where µ = βr
α2 − 1

2 and t = α2τ . So

E
[
exp

(
− λ

Υτ (σ)

)]
=

e−
µ2α2τ

2

√
2πα2τ

∫ ∞
−∞

exp

(
−
φx
(
α2λ/σ2

)2 − 2µα2τx

2α2τ

)
dx. (A.8)

Observe that

u = φx

(
α2λ

σ2

)
= cosh−1

(
α2λ

σ2
e−x + cosh(x)

)
(A.9)

satisfies

cosh(u) =
α2λ

σ2
e−x + cosh(x)

=
α2λ

σ2
e−x +

ex + e−x

2
=

ex

2
+

(
1

2
+
α2λ

σ2

)
e−x

=
ex

2
+

1

2

(
1 +

α2λ

σ2

)
e−x

=
1

2
ex +

1

2

(
1 +

2α2λ

σ2

)
e−x

(A.10)
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Let x = v + 1
2 ln

(
1 + 2α2λ

σ2

)
, then

cosh(u) =
1

2
ev+ 1

2
ln
(

1+ 2α2λ
σ2

)
+

1

2

(
1 +

2α2λ

σ2

)
e−v−

1
2

ln
(

1+ 2α2λ
σ2

)

=
1

2
ev
(

1 +
2α2λ

σ2

) 1
2

+
1

2

(
1 +

2α2λ

σ2

)
e−v

(
1 +

2α2λ

σ2

)− 1
2

=

(
1 +

2α2λ

σ2

) 1
2
(

1

2
ev +

1

2
e−v
)

=

(
1 +

2α2λ

σ2

) 1
2

cosh(v).

(A.11)

Thus, u ≡ u(v) and

E
[
exp

(
− λ

Υτ (σ)

)]
=

e−
µ2α2τ

2

√
2πα2τ

∫ ∞
−∞

exp

(
−
φx
(
α2λ/σ2

)2 − 2µα2τx

2α2τ

)
dx

=
e−

µ2α2τ
2

√
2πα2τ

∫ ∞
−∞

exp

(
−u(v)2 − 2µα2τx

2α2τ

)
dv

=
e−

µ2α2τ
2

√
2πα2τ

∫ ∞
−∞

exp

(
−u(v)2

2α2τ

)
exp

(
2µα2τv

2α2τ

)
exp

µα2τ ln
(

1 + 2α2λ
σ2

)
2α2τ

 dv

=
e−

µ2α2τ
2

√
2πα2τ

∫ ∞
−∞

exp

(
−u(v)2

2α2τ

)
eµv exp

(
µ

2
ln

(
1 +

2α2λ

σ2

))
dv

=
e−

µ2α2τ
2

√
2πα2τ

∫ ∞
−∞

exp

(
−u(v)2

2α2τ

)
eµv
√(

1 +
2α2λ

σ2

)µ
dv.

(A.12)

By applying the symmetry about the v−axis and u(v) is an even function, we have

E
[
exp

(
− λ

Υτ (σ)

)]
=

2e−
µ2α2τ

2

√
2πα2τ

√(
1 +

2α2λ

σ2

)µ ∫ ∞
0

exp

(
−u(v)2

2α2τ

)
cosh(|µ|v)dv. (A.13)

By substituting (A.11) into (A.13), we have

cosh(|µ|v)dv =
1

|µ|
d(sinh(|µ|v)) =

1

|µ|
d

sinh

|µ| cosh−1

 cosh(u)√
1 + 2α2λ

σ2

 . (A.14)
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By plugging (A.14) into (A.12), we obtain

E
[
exp

(
− λ

Υτ (σ)

)]
=

2e−
µ2α2τ

2

√
2πα2τ

√(
1 +

2α2λ

σ2

)µ

×
∫ ∞
s

exp

(
− u2

2α2τ

)
1

|µ|
d

sinh

|µ| cosh−1

 cosh(u)√
1 + 2α2λ

σ2


=

2e−
µ2α2τ

2

|µ|
√

2πα2τ
(1 +

2α2λ

σ2
)
µ
2

×
∫ ∞
s

u

α2τ
exp

(
− u2

2α2τ

)
1

|µ|

sinh

|µ| cosh−1

 cosh(u)√
1 + 2α2λ

σ2

 du

=
G(τ, s)√
1 + 2α2λ

σ2

=
G(τ, s)

cosh(s)
,

(A.15)

where

G(τ, s) =
2e−

µ2α2τ
2

µ2
√

2πα2τ

(
1 +

2α2λ

σ2

) 1+µ
2

×
∫ ∞
s

u

α2τ
exp

(
− u2

2α2τ

)
sinh

[
|µ| cosh−1

(
coshu

cosh s

)]
du,

µ =
βr

α2
− 1

2
,

s = cosh−1

(√
1 +

2α2λ

σ2

)
= sinh−1

(√
2α2λ

σ2

)
.

(A.16)

For a special case when r = 0, then the kernel function G in (A.16) simplifies to:

G(τ, s) =
2e−

α2τ
8√

π(α2τ)3

∫ ∞
s

ue−
u2

2α2τ

√
cosh(u)− cosh(s)du. (A.17)

The reader can consult Antonov et al. [4] for more details.
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Appendix B

Exact Pricing Formulas for ATMF

Options under the Randomized GBM

Models

Recall that the price of a European vanilla call option under the GBM model, with variance

randomized according to the PDF fV , can be expressed as:

ĈV(τ,m) ≡ CV(τ, S;K, r)

S
=

∫ ∞
0

CBS(τ, S;K, r, v)

S
fV(v)dv

=

∫ ∞
0
N

(
m+ 1

2vτ√
vτ

)
fV(v)dv − e−m

∫ ∞
0
N

(
m− 1

2vτ√
vτ

)
fV(v)dv,

(B.1)

where N (·) is the standard normal CDF. We state the following identity that

N (x)−N (−x) = erf
(
x√
2

)
(B.2)
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where erf(·) is the error function. For ATMF call options (i.e., m = ln S
K + rt = 0), we can

reformulate (B.1) as:

ĈV(τ, 0) =

∫ ∞
0
N
(√

vτ

2

)
fV(v)dv −

∫ ∞
0
N
(
−
√
vτ

2

)
fV(v)dv

=

∫ ∞
0

erf
(√

vτ

2
√

2

)
fV(v)dv

(B.3)

We can use (B.3) to derive the pricing formulas for ATMF options explicitly under the

gamma and inverse gamma randomization for shape parameter θ ∈ R+.

Proposition B.1. Assume V is the gamma r.v. with pdf:

fV(v) ≡ fG(θ,λ)(v) =
1

λθΓ(θ)
vθ−1e−

v
λ ; θ, λ > 0, (B.4)

then the price of an ATMF European vanilla call option under the gamma randomization is:

ĈG(θ,λ)(τ, 0) =

[
1−

Γ(θ + 1
2)

√
πΓ(θ + 1)

(
8

λτ

)θ
2F1(θ, θ +

1

2
; θ + 1,− 8

λτ
)

]
(B.5)

where pFq(a;b; z) is the generalized hypergeometric function.

Proof. We first make a note that the incomplete gamma function can be expressed in terms

of generalized hypergeometric functions. i.e.,

γ(θ, x) =θ−1xθM(θ, θ + 1,−x),

M(a, b, c) =1F1(a; b; c).

(B.6)

And an integral representation of a generalized hyperbolic function is

p+1Fq

a0, . . . , ap

b1, . . . , bq

; z

 =
1

Γ(a0)

∫ ∞
0

sa0−1e−spFq

a1, . . . , ap

b1, . . . , bq

; zs

 ds. (B.7)
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From (B.6) and (B.7), we have∫ ∞
0

fG(θ,λ)(v) erf
(√

vt

2
√

2

)
dv =

∫ ∞
0

fG(θ,λ)(v)

[∫ √
vτ

2
√

2

0

2√
π
e−x

2
dx

]
dv

=

∫ ∞
0

2√
π
e−x

2

[∫ ∞
8x2

τ

fG(θ,λ)(v)dv

]
dx =

2√
π

∫ ∞
0

e−x
2

[
1−

γ(θ, 8x2

λτ )

Γ(θ)

]
dx

=1− 2√
πΓ(θ)

∫ ∞
0

γ

(
θ,

8x2

λτ

)
e−x

2
dx

=1− 2√
πΓ(θ)

(
8

λτ

)θ
θ−1

∫ ∞
0

M

(
θ, θ + 1,−8x2

λτ

)
x2θe−x

2
dx

=1− 1√
πΓ(θ + 1)

(
8

λτ

)θ ∫ ∞
0

1F1

(
θ; θ + 1;− 8y

λτ

)
yθ−

1
2 e−ydy

=1−
Γ
(
θ + 1

2

)
√
πΓ(θ + 1)

(
8

λτ

)θ
2F1

(
θ, θ +

1

2
; θ + 1;− 8

λτ

)
.

(B.8)

Proposition B.2. Assume V is the inverse gamma r.v. with pdf:

fV(v) ≡ fIG(θ,λ)(v) =
λθ

Γ(θ)

(
1

v

)θ+1

e−
λ
v ; θ, λ > 0, (B.9)

then the price of an ATMF European vanilla call option under the inverse gamma random-

ization is:

ĈIG(θ,λ)(τ, 0) =

√
λτ

2
√

2π
(
θ − 1

2

)
Γ(θ + 1)

[
2θΓ

(
θ +

1

2

)
1F2

(
1

2
;
3

2
,
3

2
− θ; λτ

8

)

−
(
λτ

8

)θ− 1
2

Γ

(
3

2
− θ
)

1F2

(
θ; θ + 1, θ +

1

2
;
λτ

8

)] (B.10)

Proof. We first make a note of an integral representation of the Kummer function of the

first kind

M(a, b, c) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
ecuua−1(1− u)b−a−1du. (B.11)
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Then, ∫ ∞
0

fIG(θ,λ)(v) erf
(√

vt

2
√

2

)
dv =

∫ ∞
0

fIG(θ,λ)(v)

[∫ √
vτ

2
√

2

0

2√
π
e−x

2
dx

]
dv

=

∫ ∞
0

2√
π
e−x

2

[∫ ∞
8x2

τ

fIG(θ,λ)(v)dv

]
dx =

2√
π

∫ ∞
0

e−x
2

[
1−

Γ(θ, λτ
8x2 )

Γ(θ)

]
dx

=
2√
πΓ(θ)

∫ ∞
0

γ

(
θ,
λτ

8x2

)
e−x

2
dx

=
2√

πΓ(θ + 1)

(
λτ

8

)θ ∫ ∞
0

M

(
θ, θ + 1,− λτ

8x2

)
x−2θe−x

2
dx

=
1√

πΓ(θ + 1)

(
λτ

8

)θ ∫ ∞
0

1F1

(
θ; θ + 1;−λτ

8y

)
y−θ−

1
2 e−ydy

=
1√
πΓ(θ)

(
λτ

8

)θ ∫ ∞
0

[∫ 1

0
uθ−1 exp

(
−λτ

8y
u

)
du

]
y−θ−

1
2 e−ydy

=
1√
πΓ(θ)

(
λτ

8

)θ ∫ 1

0
uθ−1

[∫ ∞
0

y−θ−
1
2 exp

(
−λτu

8y
− y
)
dy

]
du

=
1√
πΓ(θ)

(
λτ

8

)θ ∫ 1

0
uθ−1

[
2

(
λτu

8

) 1
4
− θ

2

K 1
2
−θ

(
2

√
λτu

8

)]
du

=
2√
πΓ(θ)

(
λτ

8

) 1
4

+ θ
2
∫ 1

0
u
θ
2
− 3

4K 1
2
−θ

(√
λτu

2

)
du

=

√
π

cos(θπ)Γ(θ)

(
λτ

8

) 1
4

+ θ
2

·

[∫ 1

0
u
θ
2
− 3

4

(
λτu

2

) θ
2
− 1

4
0F1(; θ + 1

2 ; λτu8 )

2θ−
1
2 Γ(θ + 1

2)
du

]

−
∫ 1

0
u
θ
2
− 3

4

(
λτu

2

) 1
4
− θ

2
0F1(; 3

2 − θ;
λτu

8 )

2
1
2
−θΓ(3

2 − θ)
du

(B.12)

The last line in (B.12) came from the fact that modified Bessel functions of the first and

second kind can be expressed in terms of generalized hypergeometric functions. i.e.,

Iθ(x) =

(
x
2

)θ
Γ(θ + 1)

0F1(; θ + 1;
x2

4
)

Kθ(x) =
π

2

I−θ(x)− Iθ(x)

sin(θπ)

(B.13)

Another integral representation of a generalized hyperbolic function is

p+1Fq+1

a0, . . . , ap

b0, . . . , bq

; z

 =
Γ(b0)

Γ(a0)Γ(b0 − a0)

∫ ∞
0

sa0−1(1−s)b0−a0−1
pFq

a1, . . . , ap

b1, . . . , bq

; zs

 ds.

(B.14)

From the integral representation in (B.14), we obtain the final expression in (B.10).
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Part IV

Numerical Plots
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Figure C.1: Plots of the in-the-money call option deltas (top row) and out-of-the-money

call option deltas (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variane

parameter in the GBM model.
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Figure C.2: Plots of the call option deltas for short time-to-maturity (top row) and for

long time-to-maturity (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variane

parameter in the GBM model.
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Figure C.3: Plots of the in-the-money call option gammas (top row) and out-of-the-money

call option gammas (bottom row), where S = 100, r = 0.03, r = 0.03 and v = 0.1 is the

variane parameter in the GBM model.
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Figure C.4: Plots of the call option gammas for short time-to-maturity (top row) and for

long time-to-maturity (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variane

parameter in the GBM model.
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Figure C.5: Plots of the in-the-money call option rhos (top row) and out-of-the-money call

option rhos (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variane parameter in

the GBM model.
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Figure C.6: Plots of the call option rhos for short time-to-maturity (top row) and for

long time-to-maturity (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variane

parameter in the GBM model.
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Figure C.7: Plots of the in-the-money call option thetas (top row) and out-of-the-money

call option thetas (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variane

parameter in the GBM model. It is interesting that the theta value for the call option

embedded by the inverse gamma process with θ = 1 diverges as τ goes to zero.
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Figure C.8: Plots of the call option thetas for short time-to-maturity (top row) and for

long time-to-maturity (bottom row), where S = 100, r = 0.03 and v = 0.1 is the variane

parameter in the GBM model.
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Figure D.1: 2D Implied volatility plots for the time-invariant case for small maturity times

with p = 0.
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Figure D.2: 2D Implied volatility plots for the time-invariant case for long maturity times

with p = 0.
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Figure D.3: 2D Implied volatility plots for the time-invariant case for small maturity times

with p = 1.
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Figure D.4: 2D Implied volatility plots for the time-invariant case for long maturity times

with p = 1.
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Figure D.5: 2D Implied volatility plots for the time-invariant case for small maturity times

with p = −1.
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Figure D.6: 2D Implied volatility plots for the time-invariant case for long maturity times

with p = −1.
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