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Abstract
Three-dimensional, time-dependent simulations afisdeagitated solid-liquid suspensions involving
particles of cylindrical shape in a Newtonian lidjinave been performed. The liquid flow is resolbgd
the lattice-Boltzmann method at length scales fthan the size of the particles, which implies ipbat
resolved simulations. The flow solution includes ttydrodynamic forces and moments on each particle
that are used to integrate their linear and rataliequations of motion. No-slip at the particlefaces is
imposed by an immersed boundary method (IBM). Tlagker points of the IBM are also used to detect
and carry out collisions between particles. Thisnarical procedure has been applied to systems
contained in a rectangular box and agitated byalvang disk as well as by a pitched-blade turbivith
an impeller-based Reynolds number of 87, whichcagis laminar flow. The overall solids volume
fraction has been fixed to 15%; the number of plasiis of the order of one thousand. We study the
effect of impeller type and particle shape (in terof the length over diameter ratio of the cylirsdtérat
has been varied between 1 and 4) on the extenhtchwhe solids are suspended and on the way the

cylinders orient themselves.
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Introduction

There are numerous challenges when it comes tdctikedsimulations of liquid flows carrying solid
particles, specifically for industrially relevanolsl-liquid systems. To name some important ones:
resolving turbulence in the fluid phase and ace&lyaaccounting for how flow turbulence interactgiwi
the particulate phase; representing (wide) partgilee distributions; dealing with dense, collision-
dominated suspensions and accounting for the sbiajhe particles. This paper focuses on the laiter
aspects: dense suspension of non-spherical part&stehe same time, it does not consider turbideard
size distributions. The reason for not considetunipulence at this stage is that we aim for sinnonest
that accurately represent the shape of particlegeisas the close-range interactions betweengbestin
dense suspensions, i.e. we aim for particle-redobinmulations. This needs three-dimensional gitas t
are finer (by at least one order of magnitude chemordinate direction) than the particle sizehsd we
need to restrict ourselves to small systems tleahardly able to develop turbulence.

Computational research on solid particles suspendekiuids has so far largely focused on
particles of spherical shape. For example, modmisélid-liquid interaction are usually formulated
terms of drag force correlations for spheres [Klzamd al 2003; Van der Hoef et al 2005; Tennetlet
2011]; constitutive models for solids derived frémetic theory of granular matter normally assuime t
granular equivalent of monoatomic gases, which iespspherical particles [Gidaspow 1994]; and also
particle-resolved, direct simulations mostly inw@bpheres [Kidanemariam & Uhimann 2017; Vowinckel
et al 2014; Derksen & Sundaresan 2007]. Particpshhowever, is expected to have significant impac
on the individual behavior of particles and theref@also on the collective behavior of solids-liquid
mixtures [Richardson & Zaki 1954]. In order to @tlate particle-shape effects in a computational
manner, we need a simulation procedure that edgletcounts for the shape of the particles.

With this in mind we have devised a method for ipkrtresolved simulations of dense solid-liquid
suspensions involving non-spherical particles [8h& Derksen 2012; Derksen 2019]. Given the high

solids volume fractions we are interested in, sah handling and close-range interactions between



particles are an important feature of the numepcatedure. So far, we have applied this methddltp
periodic systems and studied solid-liquid fluidi@aatwith cylindrical particles as well as settlingsolid
particles having the shape of red blood cells. €rm@e homogeneous systems without walls. In oaler t
increase the flow’'s complexity, to study interang8owith walls and moving solid objects (such as a
revolving impeller), and also to simulate flow ®ysts that can be easily replicated experimentally, w
here report the behavior of solid-liquid suspensiaith non-spherical particles in small agitateoksa

As we will see, these are strongly inhomogeneousadten only partially suspended systems. In such
cases, part of the particles form a granular bedhenbottom of the container. Mobilizing the bed
critically depends on how the bed is packed with tructure of the packing strongly influencedthos
shape of the particles. Granular bed erosion haidations well beyond agitated tanks in areas agh
sediment transport in pipelines, rivers, and cdasigions [Uijttewaal 2014; Ramesh et al 2011]. One
advantage of working with small, confined agitaggtems is that they can be built easily and are
amenable to quantitative (flow) visualization expemnts, ideally with refractive index matching betn
solids and liquid so that one can look deep infigesystem. As an example, we have reported refeact
index-matched Particle Image Velocimetry (PIV) expents for measuring flow velocities of the
interstitial liquid in an agitated solids suspemnsiiavolving spherical particles [Li et al 2018].

The aim of this paper is to study the way partidésylindrical shape are entrained by laminar
liquid flow and how this depends on the way theiiligis agitated, and on the shape (here aspeot rati
length over diameter) of the particles. From a cotagponal methods perspective, we show in this pape
that the immersed boundary method is an elegantoivagt only dealing with imposing no-slip boundary
conditions on moving solid surfaces but is alsdrummental when it comes to collision detection and
handling between particles and between particldsaaevolving impeller.

This paper is organized in the following mannersFthe flow geometries and conditions are

defined, mostly in dimensionless terms. We thereflyridescribe the numerical procedure whieh

compared to previous papers [Shardt & Derksen 2D&Pksen 2019t has been extended with particle-



wall and particle-impeller interactions. Subseqlyemarameter settings and parameter ranges are
discussed. In the Results section we begin by tgtiakly showing particle suspension levels fofetiént
mixing configurations. These observations are theantified in terms of the average elevation of
particles as a function of process conditions d$ agehow solids and their kinetic energy are dstied
over the height of the tank under dynamically syeemhditions. Also the orientation of the partickesd
their alignment with the flow field have been intigated. The final section presents conclusions and

suggestions for future work.

Flow systems
The three-dimensional flow domain is a rectanghtatr closed on all sides with a square footpiintT

and a heightH = 0.96T . It contains a Newtonian liquid with densigy and kinematic viscosity, as
well asn cylindrically shaped solid particles with length diameterd, and densityp, > p . The solids-
liquid mixture is agitated by spinning an impeheith diameterD = 0.53[ at a rate oN revolutions per
unit time placed in the center of the flow domaed Figure 1 that also defines the Cartesian coabei
system used throughout this paper). Two differemellers that have the same diamddehave been
used: a circular disk and a %pitched-blade turbine (PBT) with four impeller tés that pump in the
downward direction; geometrical details are giuwerrigure 1. Gravity acts in the negatizelirection:
g=-—g9e,.
The parameters introduced above have been combmadset of dimensionless numbers: the

impeller-based Reynolds numb&e= ND?/v is an important characteristic of the liquid flowe
Shields number quantifies the inertial forces sndpey a particle relative to net gravity pullingeth

particle down 6 = pN®D?/(gApd) with Ap=p, —p; the density ratio isy=p,/p; and the overall
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solids volume fraction is{qS):Zr_'—ész. The cylindrical particles have an aspect ratid . To quantify

the size of a particle relative to the stirringteys we taked/D .



The above set of dimensionless groups fully defittesflow system in a physical sense. Other
dimensionless numbers can be formed by combiniegaiove groups. As an example, previously

[Derksen 2019] we identified the Archimedes numbkeased on the equivalent diameter

Ar,=(y-1)gd?/v* (with d,=33¢d*/2) as a useful parameter for scaling the hinderétingespeed

for particles with different aspect ratigd . This Archimedes number can be formed by combifirgd

and aspect ratios.

Simulation procedure

At the heart of the numerical simulations preseitteck is the lattice-Boltzmann (LB) method [Chen &
Doolen 1998; Aidun & Clausen 2010]. It solves —arnime-dependent manner — the continuity and
Navier-Stokes equations in three dimensions irldheMach number limit on a uniform, cubic grid with
spacing A. It has been supplemented with an immersed boyndathod (IBM) to impose no-slip at
solid surfaces moving through the flow domain [T@ate et al 2002]. In our simulations these solid
surfaces belong to the impeller as well as to #réigles. In the simulations, the solid surfacegehlaeen
defined by sets of closely spaced marker pointe distance between neighboring marker points is
typically in the range0.5— 0.7%\. At these — off-grid — marker points we determirtietough
interpolation from the grid, the fluid velocity asdbsequently the local velocity difference betwteial

and solid. We then locally apply forces on thedlto bring this velocity difference to zero andtlis
way impose the no-slip condition. The IBM (combinedth the LB method) has been validated
experimentally for spherical particles [Ten Catalé2002]; its convergence rate is first order.

For solid surfaces with prescribed velocity — sashthe impeller — this method has been introduced
in a LB context in [Derksen & Van den Akker 199Bpr the surfaces of the freely moving particlesg, th
local forces required for no-slip are integratederothe particle surface to determine the overall
hydrodynamic force and torque on the particle #ratthen used to update its linear and angulacitglo

as well as its location and orientation. For spi&rparticles, that do not require orientation updathis



procedure has been discussed in [Ten Cate et &, Zrksen & Sundaresan 2007]. For non-spherical
particles we use quaternions for keeping trackefdrientation of the particles [Kuipers 1999]. §has
been described in more recent papers of ours [Slamderksen 2012; Derksen 2019]. The outer —
bounding — walls of the container are aligned i cubic grid. Here no-slip is imposed by applying
half-way bounce-back rule on the LB distributiomdtions [Succi 2001].

We are dealing with three types of collisions: jgéatparticle, particle-impeller, and particle-wall
(where “wall” stands for the fixed, bounding watisthe container). Collisions are a challenging p&
the simulation process. Where collisions betweehespal particles can be easily anticipated by
monitoring the distance between center locationsyedrby particles, this is less straightforward for
collisions involving non-spherical particles. Iretmethod we have proposed [Derksen 2019], the marke
points used in the IBM are also used to detectipribx of solid particle surfaces. When the proxiynit
falls below a certain threshold, this locally aates an elastic repulsive force between the pastitiat
prevents them from overlapping. Next to the locatbthe marker points, also the outward norméahat
location has been stored so that the directiomefrépulsive force can be determined. In additmart
elastic repulsive force, a damping force propodidi the relative velocity of nearby marker poiots
two different particles is calculated. This dampimgrounts for unresolved lubrication forces [Kim &
Karrila 1991; Nguyen & Ladd 2002]. The above pragedhas been explained in detail for particle-
particle collisions [Derksen 2019], including theotce of parameters (spring and damper constauis, ¢
off and saturation distances) involved. For congrless and reference, the expressions for elagdic an
damping forces are given in Table 1, along withthkies of the parameters used in the current study

Note that the parameters are given in lattice unig of length is the grid spacindy, unit if time is the

time stepAt, unit of mass is the average mass pér(cubic) lattice cell.
In our previous paper [Derksen 2019], cylindricadlgaped solid particles moved through fully
periodic domains with the flow driven by gravityof@n) and a pressure gradient (up) and we had no

agitation device and no bounding walls. In the entripaper, the flow is agitated by a revolving iltgre



The extension towards particle-impeller collisioagelatively straightforward since also the impelis
represented by means of the immersed boundary ohetflhe marker points on the impeller have outward
normal vectors associated to them and exactly #mesprocedure as applied for particle-particle
collisions has been adopted for particle-impelletligions, including the values of the collision
parameters: If the distance between a marker poirda particle and a marker point on the impellds fa
below the threshold distance an elastic repulsoreef and a damping force are activated. The latter
depends on the relative velocity between the magrkart on the impeller and the one on the particle.

For particle-wall collisions the proximity of mankpoints and bounding walls is monitored. As for
the other collision types, when the distance betwaeenarker point on a particle and a wall gets Emnal
than the threshold distance, forces on the paréicdeactivated that effectively perform the paetialall
collision in the same way as particle-particle gadticle impeller collisions. The elastic part biet

collision force acts in the wall-normal direction.

Set-up of the simulations

The TxTxH flow domain is discretized withnxxnyxnz cubic cells with nx=ny=251 and
nz=240. In this domain, the impeller is represented bgolection of marker points and associated
outward unit normal vectors at its surface. The tmpellers (disk and PBT) both have a diameter that

spansD =132A lattice spacings. The marker points revolve arothelz-axis such that the impeller

makes one revolution in 4000 time step$=£ ]/(4000&)). In all simulations the Reynolds number has

the fixed to a value of Re=87. This is achievedétting the kinematic viscosity of the liquid #o= 0.05
in lattice-units. It therefore is important to ndiat we are dealing with laminar liquid flow.

The particles are of cylindrical shape and havéamdter of 12 lattice spacings E12A). In this
paper, particles with three aspect ratios have mestigated://d =1, 2, and 4. In our previous paper
[Derksen 2019], a grid-refinement study has beefopeed. Results with resolutions df=12A, 16A

and 24A for dense liquid-fluidized suspensions were coregan terms of average and fluctuating



velocities. Reasonable agreement between the elfferlesolutions was observed. As we will see, we
need many impeller revolutions to develop the twage flow systems to a dynamically steady state.
Therefore, with a view to computational affordalyiliin this paper we have chosen the lower resmiuti
of d=12A.

As mentioned above, Table 1 shows the settingshef dollision parameters, along with the
equations for the normal elastic collision fordes hormal lubrication force and the tangential iicddion
force. These settings are the same as used in §8@rR019]. For particle-impeller and particle-wall
collisions the same parameters as for particlegbartollisions have been used.

For initialization of the simulations we first raoly distribute the particles in a non-overlapping
way in theT xT xH flow domain, without the impeller being presente \ét the particles settle so that
they eventually form loosely packed random bedshenbottom. Impressions of these beds are given in
Figure 2. We then insert the impeller. Only sitoas have been considered with all the particldgallyi
underneath the impeller. In the first 4000 (BN ) time steps, the impeller speed linearly incredséts
steady-state value so that in these initial 406 tsteps only half an impeller revolution is congde
Beyond the first 4000 time steps, the impeller tegavith a constant angular velocity. The solidHi
flow system is monitored so as to estimate whereaches a quasi-steady state. After steady state is
reached we continue the simulation in order toembltatistical flow data.

A set of six simulations involving all combinatiookthe two impellers and the three particle aspect
ratios will be discussed. In addition to fixing tiReynolds number to Re=87, also the density ratio

v=p,/p=1.25, the ratio of particle size over impellerrdégter (atd/D =0.091), as well as the overall
solids volume fraction(@b) =0.148) have fixed values. The latter mean644 in case//d =1, n=822 if

¢/d =2, andn=411 if //d =4 with n the total number of particles in the container.
The emphasis in analyzing the results will be omgaring how particles with different aspect ratio
respond to the flow induced by the disk and byRBJ. All particles are made of the same materral; i

experimental terms this means that we cut them diifierent length from long rods of diametgrand



expose them to fluid flow. We thus compare the bneof particles with different aspect ratio ateth

same Shields numbér= pN°D?/(gApd)=9.08.

Results

Impressions of the solids-liquid flow generated thg spinning disk are given in Figure 3. The disk
creates a swirling flow along with a much weaketiabflow coming off the disk. This radial stream
recirculates in the container [Mo et al 2015]. Tdweirling flow creates a low-pressure zone near the
center of the tank. Since the swirl gets weaketh&rraway from the disk, a negative vertical pressu

gradient Pp/0z< 0) develops on the centerline underneath the dislo ¢t al 2015]. This provides a

driving force for upward vertical motion of the pales in the granular bed. This lifting of the fiees in
the upper layers of the bed underneath the impkikslly dilutes the bed and makes that the mostly
horizontal swirling shear flow can penetrate thel l@end move the particles, also in the horizontal
direction. The collisions between particles that #re result of this motion — particles tumblinggpwne
another — helps in the entrainment of the solidhénliquid stream. As can be judged from the shaiss

in Figure 3, the suspension process is slightlyefafor the larger//d =4 cylinders compared to the
¢/d =1 cylinders, despite that the net weight of the ferns 4 times larger. Compared to the disk, the

PBT creates a stronger flow that has larger vértigdocity components which leads to a faster
suspension process, see Figure 4. Also with a PBTIdnger cylinders get suspended better than the

shorter ones.
Time series of the average vertical center locatibthe particles<zp> are presented in Figure 5.
For the disk (upper panel of Figure 5) we foIIc{wp> from the moment =0 when all particles are

resting on the bottom and on one another and 8leisliset to rotate. In the time series relatetth¢oPBT
we have omitted some of the first stages of theexusion process and — instead — focus on the taeseph

system reaching a dynamic steady state. We notevihaeed long simulations, covering more than 100

10



impeller revolutions to develop the systems to dyeatate (and more than 200 revolutions for the

combination PBT and;/d =1). In all cases, steady state valueg zf) /H are well below 0.5. Since a
uniform distribution of particles over the tank uoie would result in<zp>/H =0.5, it is clear that

under the given conditions the impellers are only able to partially suspemel golid cylinders. For the

disk there is a small but significant differencetie steady value fo{zp>/H with different ¢/d : the

longer the cylinders, the highézp>/H . The PBT is spinning with the same speed as thlg dgitating
the same solids-liquid system, and is able to beitepend the particles. The differences between th
suspension levels of the different length cylindermore pronounced than for the disk with steddyes
values of(z,) /H of 0.37, 0.31, 0.26 fof/d = 4, 2,1 respectively.

In Figure 6, suspension levels are further examinethe form of time-averaged vertical solids
volume fraction profiles where time averaging hasrbperformed over a time window of a duration of
10 impeller revolutions after the flow has reacllgdamic steady state. The resolution of the prefise

finer than the diameter of the cylinders. This ngaltee layering of the particles on the bottom Vésin

the profiles. It is noted that the layering is mprenounced for the PBT as compared to the disk.

That the disk shows Iowe<rzp>/H levels than the PBT is largely due to the fact the solids

hardly reach vertical levels higher than the didle disk is an obstacle for vertical mobility ofeth
particles. Solids concentrations above the PBTappeeciable, specifically for th&/d = 4 cylinders.

The dynamics of the particles we quantify in terofstheir kinetic energy and the way it is

distributed over the tank volume, specifically iretvertical direction. The kinetic energy assodiate

linear motion is k,in:%mp‘up‘z with m_ the particle mass and, its velocity respectively; for the
rotational motion it isk, =4 (lwh, +1 w2, +1w? ) with 1,2,3 denoting the principal axes of the

cylinders (see e.g. [Derksen 2019]) ahdi=1,2,3 and w; (i=1,2,3 the moments of inertia and

11



angular velocities along these axes respectivebyn-8imensional profiles of kinetic energy are given
Figure 7. They show extreme concentration for tbe driven by the disk, just underneath the diske T
virtual absence of particles above the disk leadsegligible solids kinetic energy levels there.e@al
for the disk, the energy contained in the lineatiamois at least an order of magnitude larger timatne
rotational motion of the particles. We also obsehat the longer cylinders store more energy iatioh
than the shorter ones.

Wider vertical kinetic energy distributions are ebh&d for the flows driven by the PBT. This is due
to the solids being more evenly distributed over ieight of the container. Different from the ditthe
kinetic energy contained in linear motion strondgpends on the aspect ratio of the particles. iBhis
reflection of the longer particles being better pgrgled than the shorter ones. The kinetic energy
contained in rotational particle motion shows digat distribution very similar to that of linearation.

Its values are, however, lower by more than onerooflmagnitude.

For non-spherical particles it is relevant to montheir orientation. For this purpose the angles
defined as the angle between the cylinder’s cdirterand the vertical direction. The impressiontiod
long (¢/d = 4) cylinders in Figures 3 and 4 is that they maindient horizontally so that we expect the
distribution of anglesy to be skewed towardg = 7/2. Figure 8 shows that this is indeed the case for
¢/d =4 as well as for//d =1. The angle distribution fof/d =1 also shows a peak near=0. This
relates to the short cylinders resting on the lmottm their end-plane. The peaks in the angle Higions
are almost exclusively due to the unsuspendedctestilf we exclude the particles witfh <0.2H from
the angle distributions, the peaks disappear (sgerd-9). The choice forz=0.2H to distinguish
between suspended (i.e. mobile) and unsuspendademis based on the vertical solids volume foarct
profiles in Figure 6 that show that layering ontcors beneatlz=0.2H .

For reference we plasing in Figure 8 (and also in the subsequent FigurdR@pdomly oriented

cylinders with length? will have their end points uniformly distributedey a sphere with diametéer.
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The vertical location of these endpoints will thes distributed according té/siney and the angley
therefore is distributed according $me .
Orientation angle distributions of mobile particlase shown in Figure 9. The shoffd =1

cylinders orient themselves largely in a randomhifatg, with only a slight preference for horizontal,

¢ =m/2, orientation. The longer cylinders tend much mimrex horizontal direction, most pronounced
for the ¢/d =4 cylinders in the flow generated by the disk. hattsituation cylinders align along the

bottom surface of the disk.

As a more global flow characteristic we now consithe torque and — directly related — the power
required to rotate the impeller. Given the two-ghasiture of the flow system, one can distinguish
between two contributions to the torque: in thstfplace the “fluid torque” which is due to theiflu
stress distribution (including pressure) over tmgeller surface, in the second place the “solidgue”
that is the result of collisions between partickesl the impeller surface. Both have been calculated
explicitly in the simulation procedure: The fluidrgue through the immersed boundary method that
forces no-slip at the impeller surface; the solidjue through the contact forces (see Table 1f) tha
handle particle-impeller collisions.

Results for the PBT are presented in Figure 10enms$ of the dimensionless power number
Po= 27?NF/<,0N3D5) with T' the torque. In the first place we observe sigaiitdevels of fluctuations in
Po, although we are dealing with laminar flow. Treatic motion of the particles is responsible tfoe
fluctuations; in a direct way when it comes to $loéids torque contribution but also in an indireety via
the fluid, i.e. the solids locally influencing ftiflow and therefore the fluid stress distributiover the
impeller surface. This is confirmed by the powemier measured in the absence of particles as
displayed in the lower panel of Figure 10 (greervel Its marginal fluctuations are periodic anthte

to interaction between impeller blades and the taaks. The better suspendddd =4 particles thus

produce stronger fluctuations and also an on aeehagher power number. In addition, thgd =4
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particles have the highest mass and thus the medta with direct consequences for the levelsotifis
torque.

Time averaged quantities for the power number arengn Table 2. The division over solids and
fluid torque strongly depends on the aspect ratid 8o does the overall power number. Power
characteristics are important from a practical pofrview as they are a means of — global — expemii

validation of the results since torque is a medsdarquantity.

Summary and conclusions
We have reported simulations on solids suspensiam ¢ontainer agitated by a disk and by a pitched-
blade turbine (PBT) under laminar flow conditionghathe particles having cylindrical shape. This
particle shape is fully accounted for through timemiersed boundary method that imposes no-slip at the
cylinder surfaces and that also assists in handigligsions between particles, between particles tue
impeller as well as between particles and the coatavall. With the lattice-Boltzmann method aswlo
solver, the developed numerical procedure is capafoparticle-resolved simulations with of the ardé
one thousand particles in complex flow — here tloavfgenerated by revolving impellers — over
appreciable process time (over one hundred impe#eolutions). It is worthwhile noting that the
simulations reported here have been run in seqleniode; parallelization has the potential of
performing simulations of larger systems and/oruations with higher spatial and temporal resolutio

In the first instance we let the cylindrical paei settle in the container so that they form sébp
packed, random granular bed on the bottom. Afteitceimg on the agitation we keep track of the
suspension process. It takes at least 100 impedislutions for the two-phase systems to develop a
dynamic steady state. A relatively low inertial &ds number of 9.1 has been applied that results in
partially suspended solids with the particles tiembain on the bottom forming a layered structurg.iA
expected, the disk does not perform very well irbiting and suspending particles. Not only is tiosv

it generates relatively weak, it also forms a mastruction for particles migrating upwards. Thaim
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mechanism for particle suspension by the disk @svirtical pressure gradient as a result of theliagi
flow it creates. Particles are more effectivelypmreded by the PBT that creates a stronger fluid Wath
more pronounced vertical components.

Since the particles are inhomogeneously distribotegt the tank volume, this also is the case for
the kinetic energy of the particles. The kinetiemgy in the rotational motion of the particles iaah less

— by one order of magnitude — than that containetthé linear motion. The larger thé/@ ) aspect ratio

of the particles, the more energy is in particléation. Also the orientation of the particles clgar
depends on the aspect ratio with the longer peastiténding to a horizontal orientation whereas the
shorter particles are largely randomly oriented.

The simulations provide data for the torque reqlite spin the impeller. This is an interesting
avenue for experimental validation in terms of thiisbal parameter. It was shown that the torqueahas
contribution directly related to collisions betwettre particles with the impeller, and a contribotidue
to the liquid flow. The latter is — of course —ostgly influenced by the presence of particles andHat
reason fluctuates strongly, although the flow mmitzar. The relative strength of the two contribogo
depends on the aspect ratio of the cylinders.

With a view to practical applications there is aado increase the Reynolds numbers so as to
create mildly turbulent flow in the mixing tank. iShwill likely require higher resolution, not onkp
resolve the flow generated by the impeller but dls® flow around the cylindrical particles. Firstda
foremost, however, it is important to establish exkpental validation of the numerical procedurer Fo
this reason we will be working on studying the hebi of a single cylinder and the way it gets
suspended in laminar flow driven by a disk and theperimentally visualize multi-particle systems as

the ones simulated in the current paper.
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Tables

Table 1: Collisional force equations and parameter sedtfierksen 2019]; all parameters in lattice units

normal elastic forcé

A, =n))
A ‘nj—ni‘

R = k(60—6)|(SA if §<6, and|é,[|<A; F} =0 otherwis

k=5.0; 6, =0.50; A =0.50

1 1]6,—A L ,
normal lubrication forc8 Rl =kK" [?—6—]¥Au” if 6 <6, and|6A|<)\; F' =0 otherwis
d
k" =5.0; 6, =1.0; 6, =0.20
1 116, —A - :
tangential lubrication force | F; =k’ [§—6—]¥Aut if & <6, and|6,|<\; F;=0 otherwis
d

k' =0.50

%the force on marker poinwith normaln; due to marker poirjton a different particle with normal; at

normal distance and tangential distancg

®the force on poinit due to poinj on a different particle due to the relative vetpan normal direction

between the two pointau";

§ =68if §>6, ands =6, if6<d,

¢ the force on point due to poinj on a different particle due to the relative vetpan tangential direction

between the two point&u’

Table 2: Power numbers for PBT simulations as a functibpasticle aspect ratio.

E/d Pof Poc PQotaJ
1 2.24 0.286 2.52
2 2.37 0.537 291
4 2.93 0.965 3.89
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Figures

Figure 1. Flow configurations and Cartesian coordinate systeeft: top and side view of the rectangular
tank equipped with the disk. Right: top and sigawof the pitched-blade turbine (PBT) that is mimah
on the same shaft at the same location as the disk.PBT rotates such that it pumps liquid in the
downward (negative) direction.
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Figure 2. Particle configurations at the start of an agddtew simulation. From left to right cylinders
with aspect ratios¢//d =4, 2 and 1 respectively. In all cases the ovesalids volume fraction is

(¢)=0.148.
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Figure 3. Instantaneous realizations of the solid-liquidiMldriven by the spinning disk. Top and bottom:
¢/d =4 and 1 respectively. Left and right: 10 and 9kdivolutions after startup. The color contours in

the mid plane denote the liquid velocity magnitsdeled with the impeller tip speeg, v 7ND .
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Figure 4. Instantaneous realizations of the solid-liquidiMldriven by the pitched-blade turbine. Top and
bottom: ¢/d =4 and 1 respectively. Left and right: 10 and 96kdievolutions after startup. The color
contours in the mid plane denote the liquid velpaitagnitude scaled with the impeller tip speed

V. =7ND.

tip
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Figure 5. Time series of the average vertical center looatibthe particles agitated by the disk (top) and
PBT (bottom);¢/d as indicated. Note the different range of the taxis of the two panels.
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Figure 6. Time-average vertical solids concentration profoe the disk (top) and PBT system with
particles of different aspect ratigd as indicated.
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Figure 7. Vertical distribution of kinetic energy of thergiales. Left: energy contained in linear motion;
right: energy contained in rotational motion. Tajisk; bottom: PBT. Aspect ratio of the particles as

/
indicated. The dimensionless quanti?q*/:L2 with k' solids kinetic energy per unit height,
nmyvz, /H
m, = %ppfdz the mass of a particle ang], = 7ND the impeller tip speed.
1 , .

z/H disk —— (=4d disk

0.8¢ - —— (=2d

— (=d
0.6

0.4}

| ;AV

0.01 4+ 0.02

fi rot

i

K 020 0.005 . 0.01

rot

25



Figure 8. Orientation distribution of particles agitatedthy PBT. The angle is the angle between the
centerline of the cylinder and the vertical. Léftd =4; right ¢/d =1. We distinguish between all particles
(“all”) and particles with a vertical center loaati z, > 0.2H . For referencesing has been included.
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Figure 9. Orientation distribution of mobile particlez (> 0.2H) agitated by the disk (top) and PBT
(bottom). Thesing curve indicates a uniformly random distribution.
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Figure 10. Time series of the power number over the lastngeller revolutions of PBT simulations
with (from top to bottom) particles witli/d = 4, 2 and .. Blue: power due to liquid; red: power due to

particle-impeller collisions. The green line in tloaver panel indicates the single-phase (liquidyveo
number.
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