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Abstract 

There is currently no effective treatment for spinal cord injury leaving around 90% of 

patients with permanent disabilities. Stem cell therapies are showing promise in preclinical 

studies of central nervous system injury and there is increasing evidence suggesting the 

improvements in functional recovery are mediated by paracrine actions. In this systematic 

review and meta-analysis, we aimed to determine the overall efficacy of stem cell secretome 

therapies in promoting recovery in preclinical models of spinal cord injury. We searched 

PubMed and Embase to identify relevant studies. A random effects meta-analysis was 

conducted using the restricted maximum likelihood estimator. We assessed risk of bias using 

a modified CAMARADES checklist. Publication bias was then assessed using funnel plots and 

trim-and-fill analysis. We identified 26 studies that met our inclusion criteria. Overall, stem 

cell secretome therapies conferred improvement in locomotor score (SMD: 2.30, 95% CI: 

1.68-2.91), reduction in lesion size (SMD: 3.27, 95% CI: 2.06-4.48) and increased axonal 
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profiles in the lesion (SMD: 2.36, 95% CI: 1.02-3.71). We found there was significant 

asymmetry in the funnel plots for all three outcome measures, suggesting publication bias. 

Trim-and-fill analysis estimated 19 and 3 unpublished studies in the locomotor score and 

axonal profiles datasets respectively. The median score on the modified CAMARADES 

checklist was 4 (IQR 4-5). Reporting of power calculations and allocation concealment was 

absent. The stem cell secretome is showing great potential as a therapy for spinal cord injury. 

As the vast majority of studies began treatment acutely and favoured reduction in lesion size, 

we argue neuroprotection is likely the key mechanism of action. Future studies should focus 

on exploring the contribution of other mechanisms, the mediators involved and effect of 

treatment at a chronic stage of injury. 

Keywords  

Stem cells; cell therapy; spinal cord injury; neuroprotection; regeneration; systematic review; 

meta-analysis 

 

1. Introduction 

Spinal cord injury (SCI) was described as an “ailment not to be treated” in the Edwin Smith 

surgical papyrus in 1700 BC [1] and almost 4,000 years later, there is still no cure. Of the 27 million 

patients worldwide living with SCI [2], around 90% experience long-term disabilities including loss 

of motor and sensory functions below the injury level. There are a number of major obstacles to 

SCI repair including the limited intrinsic regenerative capacity of the adult mammalian central 

nervous system (CNS) neurons, physical barrier of a cystic cavity and presence of numerous 

inhibitory molecules at the injury site including chondroitin sulphate proteoglycans (CSPGs) which 

prevent axon regrowth [3].  

In the past decade, there has been great interest in the development of regenerative medicine 

and tissue engineering approaches for SCI repair. Stem cell therapies, in particular, are showing 

great promise. Several cell types have been progressed to clinical trial including neural stem cells 

(NSCs), bone marrow aspirate and mesenchymal stem cells (MSCs), the latter of which is the most 

widely investigated [4]. There is increasing evidence that the improvements in functional recovery 

observed in CNS injury models following stem cell transplantation are mediated by paracrine 

actions [5]. The secretome is a collective term for the vast array of secreted chemokines, cytokines, 

growth factors and extracellular vesicles (EVs) [6]. Numerous studies have characterised the stem 

cell secretome through techniques including mass spectroscopy and bioinformatics. Growth 

factors including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular 

endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and epidermal growth 

factor (EGF) have been detected in both the MSC and NSC secretome [7, 8]. However, it must be 

noted that there is great heterogeneity between donors, tissue source and cell types. 

In more recent years, many groups have been focusing specifically on the role of EVs in the 

stem cell secretome. EVs are membrane-bound vesicles which play an important role in 

intracellular signalling [9]. EVs can be characterised based on their biogenesis: apoptotic bodies 

(500-4,000 nm) arise as a result of plasma membrane blebbing and cell disintegration during 
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apoptosis; microvesicles (50-2,000 nm) bud directly from the membrane whereas exosomes (30-

100 nm) are released when an multivesicular body fuses with the membrane [9, 10]. While EVs 

can contain proteins and lipids, most research into therapies for CNS repair has focussed on the 

mRNA and microRNA (miRNA) cargo [11]. For example, EVs derived from MSCs overexpressing 

miR-133b or the miR-17/92 cluster has previously been associated with improvements in recovery 

in rodent models of stroke [12-14]. 

Acellular secretome therapies hold great translational potential and have several advantages 

over conventional cell therapies including the mitigation of the risk of immune rejection, reduced 

risk of tumourigenesis and ability to cryopreserve treatments without needing to consider the 

issues of maintaining cell viability [6]. This systematic review and meta-analysis aims to determine 

the overall efficacy of stem cell secretome therapies in promoting locomotor recovery, lesion 

volume reduction and axonal regrowth in preclinical models of SCI. We also hope to identify 

possible sources of bias and highlight future avenues of research. 

2. Materials and Methods 

This systematic review followed the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses statement (PRISMA) guidelines [15]. The PRISMA checklist includes a 27 item list 

defined by a panel of experts as the minimum reporting criteria for systematic reviews and meta-

analyses. We preregistered a protocol in the PROSPERO database (CRD42020167718). 

2.1 Search Strategy 

We searched PubMed and Embase (OVID) for articles published in English from January 2008 

onwards using the search strategy detailed in the PROSPERO protocol. Previously published filters 

were used to limit searches to animal studies only [16, 17]. We also screened relevant review 

articles for additional studies. The last search was performed on 23 January 2020. 

2.2 Study Selection 

After removing duplicates, we first screened the titles and abstracts of articles for eligibility. 

Articles which were clearly irrelevant (e.g. reviews, irrelevant disease model) were excluded. In 

the second screen, the full texts of identified articles were screened for against complete inclusion 

criteria. Studies assessing the therapeutic potential of stem cell secretome therapies in pre-clinical 

models of SCI were included. We included studies if a locomotor score was used as an outcome 

measure and there was an appropriate control group (SCI + vehicle/control). Studies with sham 

surgery or naïve control groups only were excluded. Two independent reviewers (MP, MEV) 

conducted the screening and disagreements were resolved by discussion with a third reviewer 

(CC). 

2.3 Data Extraction 

Two independent reviewers (MP, MEV) extracted qualitative data from the included articles. 

Any discrepancies which occurred were resolved by a third reviewer (CC). We extracted study 

design information including the following: species; strain; SCI model and injury level; stem cell 

secretome therapy including cell source; route of administration and behavioural tests used. Study 
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quality was then assessed using an adapted 7-point CAMARADES (Collaborative Approach to 

Meta-Analysis and Review of Animal Data in Experimental Studies) Risk of Bias Checklist [18]. The 

items were: 1) peer reviewed publication 2) random allocation to group 3) allocation concealment 

4) blinded assessment of outcome 5) sample size calculation/power calculation 6) compliance with 

animal welfare regulations 7) statement of potential conflict of interest. 

Two independent reviewers (MEV, WMS) extracted locomotor data from the included studies. 

Data from the secondary outcome measures was then extracted by a second team of reviewers 

(CC, WMS). We defined locomotor score (any scale) as the primary outcome measure and the 

secondary outcome measures as lesion size and axonal regrowth. We extracted mean values and 

SEM or SD from the article text where possible. Where one control group was used for multiple 

treatment groups, we corrected for this by dividing the number of animals in the control group by 

the number of treatment groups. In instances where outcome measures were assessed at multiple 

timepoints, data from the last timepoint were extracted. Where data were only presented 

graphically, we used the online graphical tool WebPlotDigitizer 

(https://automeris.io/WebPlotDigitizer/) to extract values from the graphs. Estimates were cross-

checked by a second independent reviewer and where these varied by <10%, means were taken. 

Any differences >10% were resolved through discussion. Where it was not possible to extract data 

using this tool and exact n numbers were not reported, we emailed authors for clarification. If the 

data were not made available after two attempts, we excluded the corresponding studies from 

the meta-analysis. 

2.4 Statistical Analysis 

We used the metafor package [19] in RStudio V1.3.959 (RStudio, USA), R version 4.0.1 for all 

statistical analyses and graphs. Standardised mean difference (SMD) effect sizes were calculated 

using Hedges’ g. For all outcome measures, a positive SMD favours treatment. A random effects 

meta-analysis was conducted using the restricted maximum likelihood estimator for all outcome 

measures due to the high heterogeneity in the data. We used funnel plots to visualise publication 

bias and confirmed by Egger’s regression test. Trim-and-fill analysis was used to estimate the 

number of "missing" unpublished studies and calculate an adjusted effect size accounting for 

publication bias. Heterogeneity was assessed using I2 (between-study variance not attributed to 

sampling error) and Tau2 (between-study variance). We performed subgroup analyses to explore 

sources of heterogeneity in the data including use of reporting of blinding, stem cell type and 

route of administration. Independent random effects models were fitted to subgroups and 

estimates were compared with a Wald-type test. Analysis was only performed when there were at 

least 4 comparisons in a subgroup [20]. Significance was defined as p < 0.05.  

3. Results 

3.1 Study Characteristics 

We identified a total of 919 articles, of which 26 met our inclusion criteria (Figure 1). Study 

details including secretome intervention, timepoint of administration and SCI model are 

summarised in Table S1. The vast majority of included studies were conducted in rats (n=21) with 

the remainder using mice (n=5). All studies induced traumatic SCI at the thoracic level (T7-12) 
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using the following models: contusion (n=15); compression (n=7); hemisection (n=3) and complete 

transection (n=1). MSCs were by far the most common stem cell type used (n=19) with remaining 

studies using NSCs (n=4), OECs (n=1), ESCs (n=1) and stem cells derived from breast milk (n=1). 

There was close to an even division between studies which administered conditioned medium 

(n=13) and EVs (n=12). Kim et al. [21] administered exosome-mimetic nanovesicles derived from 

human MSCs which encapsulated iron oxide nanoparticles to facilitate magnet-guided navigation 

to the lesion. Only one used a combination therapy which was the use of a collagen-based 

hydrogel as a drug delivery system for human deciduous dental pulp MSC-derived conditioned 

medium [22]. There were three studies which used genetically modified stem cells to overexpress 

MiR-126 [23], MiR-113b [24] and VEGF-A [25]. The most widely used route of administration used 

was IV (n=14) followed by intrathecal (n=8), IP (n=3) and intralesional (n=1). 

 

Figure 1 PRISMA flow chart summarising the literature search and number of included 

studies. 

There was great variability in the dosing strategies in the included studies. Single dose (n=14), 

multiple dosing (n=9), continuous infusion (n=3) of secretome therapies were used. However, the 

majority of studies did begin treatment acutely within 3 h of injury onset (n=22). Only one study 

began treatment at greater than 48 h. Chudickova et al. [26] administered doses of conditioned 

medium derived from human MSCs at 1, 2 and 3 weeks post-injury. 

Liang et al. [27] used biotinylated dextran amine (BDA) tracing to study axonal regeneration. All 

other studies used markers such as GAP-43 or class III β-tubulin to label axons in the lesion then 
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quantified by area of positive staining or counts. We aimed to evaluate axonal regrowth as a 

secondary outcome measure but this was not feasible as these methods do not distinguish 

between axonal regeneration, sprouting and white matter sparing. We proceeded with data 

extraction as we felt it was still of interest and have instead termed the outcome measure as 

axonal profiles in the lesion. 

3.2 Synthesised Results 

All 26 studies (35 comparisons) were assessed in our meta-analysis of locomotor score. We 

identified 20 and 12 comparisons for our secondary outcome measures lesion size and axonal 

profiles respectively. All 4 authors contacted for clarification of their data responded. Overall, 

stem cell secretome therapies improved locomotor scores compared with control (SMD: 2.30, 95% 

confidence interval [CI]: 1.68-2.91, p < 0.0001, Tau2 = 2.7, I2 = 86.7%). This equates to a ~68.9% 

improvement in locomotor score. In similarity, treatment favoured improvements in the 

secondary outcome measures leading to around a 32.6% reduction in lesion size (SMD: 3.27, 95% 

CI: 2.06-4.48, p < 0.0001, Tau2 = 6.17, I2 = 90.3%) and ~177% increase in axonal profiles in the 

lesion (SMD: 2.36, 95% CI: 1.02-3.71, p < 0.0001, Tau2 = 4.46, I2 = 89.7%). 

 

Figure 2 Forest plot showing effect of stem cell secretome therapies on locomotor 

score. A positive SMD represents an improvement in locomotor score. Points indicate 

effect size estimates for each individual comparison and error bars are 95% confidence 

intervals (CIs). Point size indicates the relative weight of each estimate. Diamond 

represents overall effect size and diamond width is 95% CI. 
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Figure 3 Forest plots showing effect of stem cell secretome therapies on secondary 

outcome measures lesion size (A) and axonal profiles in the lesion (B). Positive SMDs 

demonstrate a reduction in lesion volume and increased axonal profiles. Points 

indicate effect size estimates for each individual comparison and error bars are 95% 

confidence intervals (CIs). Point size indicates the relative weight of each estimate. 

Diamond represents overall effect size and diamond width is 95% CI. 

To explore sources of heterogeneity in the data, we then conducted a subgroup analysis. In the 

locomotor score data, secretome therapies derived from NSCs were suggested to be less effective. 

The effect size of NSCs was 1.20 (0.620-1.78) compared with 2.65 (1.73-3.58, p = 0.009, Table S2) 

for MSCs and 2.64 (1.96-3.32, p = 0.009, Table S2) for the remaining other stem cell types. EV 

therapies were associated with a greater reduction in lesion size than conditioned medium (SMD: 

1.81 95% CI: 0.179-3.44 vs. SMD: 4.18, 95% CI: 2.62-5.75, p = 0.039, Table S3). 

3.3 Risk of Bias 

We assessed risk of bias using a modified 7-point CAMARADES checklist. As shown in Table 1, 

the median score was 4 (IQR 4-5). While the majority of studies reported blinding to outcome 

assessment (77.8%) and randomisation (70.4%), there were no studies which included a power 

calculation or reported allocation concealment. 
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Table 1 Risk of bias as assessed using a modified CAMARADES checklist. 

Checklist Item  

1. Peer reviewed (%) 100 

2. Random allocation to group (%) 70.4 

3. Allocation concealment (%) 0 

4. Blinded assessment outcome (%) 77.8 

5. Sample size calculation (%) 0 

6. Animal welfare regulations (%) 92.6 

7. Conflict of interest (%) 92.6 

Median study quality (IQR) 4 (4-5) 

Leading on from this, we then assessed publication bias. As shown in Figure 4A, there was 

pronounced funnel plot asymmetry for locomotor score data indicating there was publication bias 

and this was confirmed by Egger’s regression (p > 0.001). Trim-and-fill analysis (Figure 4B) 

estimated there were 19 “missing” unpublished studies on the left-hand side of the funnel plot 

with neutral effect sizes. When adjusted for, this reduced effect size from 2.30 to 0.94. While 

there was also asymmetry in the funnel plot for the lesion size data (Figure 4C; p > 0.001), trim-

and-fill analysis did not estimate any unpublished studies (Figure 4C). Furthermore, there was 

pronounced asymmetry in the funnel plot of the axonal profiles data (Figure 4E) as indicated by 

Egger’s regression (p = 0.0002). Trim-and-fill analysis predicted there were 3 “missing” studies 

which when accounted for, reduced effect size from 3.71 to 1.55. 
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Figure 4 Assessment of publication bias in locomotor score data. Funnel plots show 

pronounced asymmetry in locomotor score (A), lesion size (B) and axonal profiles (C). 

Vertical lines indicate the effect size. Trim-and-fill analysis of the locomotor score (D), 

lesion size (E) and axonal profiles in the lesion (F) datasets predicted 19, 0 and 3 

“missing” studies (unfilled circles) respectively. White funnels show 95% CIs. 

4. Discussion 

In this systematic review and meta-analysis of the efficacy of stem cell secretome therapies in 

preclinical models of SCI, we identified 26 studies that met our inclusion criteria. Overall, 

treatment favoured improvement in locomotor score, reduction in lesion size and increased 

presence of axonal profiles in the lesion. We assessed risk of bias using a modified CAMARADES 

checklist finding that although reporting of blinding and randomisation was high, no studies 

reported allocation concealment and power calculations. We found there was significant 
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asymmetry in the funnel plots for all three outcome measures indicating publication bias. Leading 

on from this, we conducted trim-and-fill analysis identified which estimated there were 19, 0 and 

3 unpublished studies for the locomotor score, lesion size and axonal profiles datasets respectively. 

While there was no consensus on whether single, multiple doses or continuous infusion of stem 

cell secretome was optimal, almost all studies began treatment acutely within 24 h of injury onset. 

This is within the time window for SCI neuroprotection and, indeed, our results showed that 

treatment was associated with a reduction in lesion size. We therefore argue that neuroprotection 

is likely the key mechanism of action which contributed to the observed improvements in 

locomotor recovery. At present, the exact mechanisms of action of the stem cell secretome are 

unclear and this should be the focus of future studies. We also recommend that treatment at 

subacute and chronic timepoints after SCI be investigated further and this would be useful for 

distinguishing between neuroprotection and other mechanisms. Given the vast array of cytokines, 

chemokines, growth factors and EVs present in the secretome, it is likely that a combination of 

mechanisms and mediators are involved [5]. The MSC secretome in particular, contains a number 

of molecules which may have immunomodulatory effects on immune cells such as activated 

microglia and infiltrated macrophages after SCI. For example, secretion of prostaglandin E2 from 

MSCs has been shown to drive macrophages towards a less pro-inflammatory phenotype in a 

mouse model of sepsis [28]. A number of studies included in our meta-analysis reported that stem 

cell secretome therapies polarised macrophages towards a more regulatory M2-like phenotype 

[21,29,30]. Angiogenesis may also contribute to observed improvements in recovery. As previously 

mentioned, both MSCs and NSCs secrete VEGF which is a potent promoter of angiogenesis. One 

included study showed that administration of NSC-derived exosomes transfected VEGF-A 

significantly enhanced angiogenesis and locomotor recovery, compared with exosomes in which 

VEGF-A was knocked down [25]. 

The holy grail in SCI research is identifying a therapy capable of promoting axonal regeneration. 

However, a lack of consistency in the use of the terms regeneration, sprouting and growth in the 

literature has previously been described [31], which could lead to the misinterpretation of results. 

We encountered this as a potential issue with the studies included in our meta-analysis. Many 

studies reported that their stem cell secretome therapies promoted axonal regeneration or 

sprouting. As only one study used tract tracing methods, these conclusions were not be 

substantiated. Given that treatment appeared to promote SCI neuroprotection, the observed 

increased axon staining in the lesion could be attributed to white matter sparing rather than 

sprouting or regeneration. 

To address the issues of poor study reporting and transparency in animal research, The 

National Centre for the Replacement, Refinement and Reduction of Animals (NC3Rs) developed 

the Animal Research: Reporting of in vivo Experiments (ARRIVE) guidelines [32]. Since publication 

in 2010, many journals have endorsed these guidelines and now require authors to complete an 

ARRIVE checklist alongside their submission. However, a recent study of manuscripts submitted to 

PLOS ONE [33] showed that this was not sufficient to ensure compliance. It is therefore not 

surprising that while all of the studies included in our systematic review were published after the 

ARRIVE guidelines, reporting of power calculations and allocation concealment was absent. A 

major issue decreasing the reliability of results is a lack of power in animal experiments. Button et 

al. [34] estimated that the median statistical power of neuroscience studies was 21%. It is likely 

that many of the studies included in our meta-analysis were therefore underpowered and this 
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may have resulted in our reported effect sizes being overestimated. Publication bias is another 

well-documented issue in animal research, whereby studies with negative or neutral findings are 

far less likely to be published. In an analysis of preclinical stroke studies, Sena et al. [35] found that 

just 2.2% of studies did not report significant results and publication bias may have inflated 

efficacy by a third. As our meta-analysis indicated there was publication bias for all three of our 

outcomes, this may have led to an overestimation in our reported effect sizes.  

5. Conclusions 

Our systematic review and meta-analysis showed the stem cell secretome may have great 

potential as a therapy for spinal cord injury. As the vast majority of studies began treatment 

acutely and lesion volume was reduced, we argue neuroprotection is the key mechanism of action. 

An important but challenging step in the translation of stem cell secretome therapies to the clinic 

will be to identify the exact mechanisms of action and the mediators involved. 
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