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Abstract

In this thesis we consider five problems in extremal combinatorics all of which which are

all amenable to approaches based on local structure.

The first part of this thesis looks at rainbow subgraphs at extremal thresholds. We

show that as soon as they appear, we can also find rainbow copies of Perfect Matchings,

H-factors and Hamilton cycles in large graphs.

We then look to random digraphs and consider the D(n, p) model in which each edge

is present independently with probability p. We find tail bounds on the size of the largest

strongly connected component in the critical window around p = 1/n.

Finally, we consider the partition function of the ferromagnetic Potts model on graphs

of bounded maximum degree. We show that there exists an open set in C containing an

interval [1, w] inside which the partition function has no zeros.
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CHAPTER 1

INTRODUCTION

1.1 Extremal Combinatorics

Extremal combinatorics is concerned with problems related to the containment of certain

substructures. In particular one can ask how many edges a graph must contain before

containing a given subgraph. Or alternatively, what minimum degree is required to

contain a given spanning subgraph.

Dirac’s theorem [33] states that if a graph with n vertices has minimum degree at

least n/2, then it has a Hamilton cycle. We call such graphs Dirac graphs. One can

deduce that such a graph has a perfect matching if it has an even number of vertices

by picking alternate edges of this cycle. A bipartite graph with parts of size n has a

perfect matching precisely when it satisfies Hall’s condition [52]. Note that such a graph

of minimum degree n/2 can easily be seen to satisfy Hall’s condition. We call bipartite

graphs with parts of size n and minimum degree n/2 Dirac bipartite graphs.

There are many further results on when one can find certain spanning subgraphs of a

large graph based upon the minimum degree. The Hajnal-Szemerédi [51] theorem states

that one can find a Kk-factor of any graph with n vertices and minimum degree at least

(1− 1/k)n (provided the obvious divisibility condition is satisfied). This was generalised

to H-factors for arbitrary H by Alon and Yuster [6] and subsequently improved by Kühn

and Osthus [75, 77] who gave an optimal threshold up to an additive constant factor.
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In general the question of when one can find graphs of bounded maximum degree is

still open and the following was conjectured by Bollobás Eldridge and Catlin [11, 19].

Conjecture 1.1 (Bollobás-Eldridge-Catlin Conjecture). Let G and H be graphs with n

vertices. If H has maximum degree at most ∆ and G has minimum degree greater than

(1− 1
∆+1

)n, then H is a subgraph of G.

This conjecture is however known to be true for graphs of sublinear bandwidth [15]:

Theorem 1.2 (Bandwidth Theorem). For all r,∆ ∈ N and γ > 0, there exist constants

β > 0 and n0 ∈ N such that for every n ≥ n0 the following holds.

If H is an r-colourable graph on n vertices with ∆(H) ≤ ∆, and bandwidth at most

βn and if G is a graph on n vertices with minimum degree at least (1− 1/r + γ)n, then

G contains a copy of H.

Note that the issue of the substitution of the maximum degree of H for its chromatic

number may be rectified by appealing to Brooks’ theorem [16].

1.2 Local Approaches

Methods used in the study of extremal problems can broadly be grouped into two types:

local and global. Global approaches use holistic properties of the graph or structure in

question to draw conclusions. Examples of such methods include Alon’s combinatorial

nullstellensatz [4], Szemerédi’s regularity lemma [113] and container-based arguments [66,

67].

In contrast, local approaches look at or edit very small pieces of the graph at a time.

In this thesis we use a number of local methods to study large scale structure and prop-

erties of graphs, hypergraphs and digraphs. In particular we use switchings, exploration

processes and vertex neighbourhood based methods. We describe these methods in the

following sections.
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1.2.1 Switchings

Informally, a switching is a small local change to a graph or other structure which we can

control well. For example, we might say that two matchings M1 and M2 are related by

switching over a 4-cycle if the graph M1∆M2 is a 4-cycle. The benefit of switchings is that

they are often able to give good bounds on the probability a random subgraph of a graph

which is difficult to sample from contains some collection of edges. For example, consider

the following bound on the probability that a uniformly random perfect matching in a

graph G of minimum degree at least (1/2 + ε)n contains a given edge e.

The proof proceeds by a double counting argument. Let F be the collection of perfect

matchings in G and Fe be the set of those which contain the edge e. We construct an

auxiliary bipartite graph G between Fe and F\Fe where M1 and M2 are connected if they

are related by a 4-cycle switching. For a given M1 ∈ Fe, by looking at neighbourhoods,

there are at least 2εn−2 4-cycles containing e and another edge of M1. Given M2 ∈ F\Fe,

there is at most one 4-cycle containing two edges of M2 as well as e. So, δ(Fe) ≥ 2εn− 2

and ∆(F \ Fe) ≤ 1. Counting the edges of G using these bounds we discover (2εn −

2)|Fe| ≤ |E(G)| ≤ |F \ Fe|. As we choose a perfect matching uniformly at random from

all possible perfect matchings of G, the probability that this perfect matching contains e

is precisely |Fe|/|F| which can be bounded as follows,

|Fe|
|F|
≤ |Fe|
|F \ Fe|

≤ 1

2εn− 2
.

That is, a random perfect matching in G contains e with probability at most 1
2εn−2

, which

is clearly of the correct order of magnitude.

We will use switchings in Chapters 4, 5 and 6 to bound the probabilities of containing

a pair of edges with the same colour in given subgraphs.
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1.2.2 Exploration Processes

Exploration processes are commonly used to find connected components of a graph. We

run an exploration process as follows. Partition the vertex set of the graph into three

sets: active, neutral and explored vertices. At each step, we pick an active vertex v and

look at its neighbours and add any neutral neighbours into the active set. After this is

done we move v into the explored set.

The method of selecting which active vertex to explore next is often important in

algorithmic applications. Two common paradigms are Breadth-first search (BFS) and

Depth-first search (DFS). In BFS vertices are explored in the order which they are found.

This gives rise to a search tree in which all but the lowest two layers are completely

explored at any point. This makes BFS an excellent choice for shortest path finding and

related algorithms. DFS algorithms explore the most recently added active vertices first.

This means that the algorithm gives rise to search trees that are commonly very deep.

As such DFS search procedures are often used to find long paths in random graphs or for

maze solving.

In chapter 7 we use an exploration process to find the descendants of a subset of a

random digraph. In this case we are only interested in the number of descendants so

the way in which we choose the next active vertex to explore does not matter as any

procedure will find all of the descendants.

1.2.3 Neighbourhoods

In chapter 8 we study zero-free regions of the ferromagnetic Potts model. The proof of

the zero-free region is by showing that changing the spin of one vertex does not have a

large effect on the partition function. To do this we look at one vertex at a time, replacing

it with one copy of itself connected to each of its neighbours so that we only need to look

at vertices of degree 1 in a similar way to previous work by Bencs et al. [9]. This could

also be viewed as another type of switching.
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1.3 Our Work

We study a number of problems related to extremal combinatorics with very local meth-

ods. A short introduction to each topic and a statement of the main results can be found

in this section. In addition, a more in depth introduction is provided at the start of each

of the relevant chapters.

1.3.1 Rainbow Subgraphs

Given a graph G and an edge colouring χ : E(G) → N of G, the subgraph H ⊆ G is

rainbow if for every c ∈ N, |χ−1(c)∩E(H)| ≤ 1. That is, H is rainbow if and only if each

of its edges has a different colour.

The study of rainbow substructures originated with the study of Latin squares. A

Latin square of order n is an n× n array of symbols where each symbol occurs precisely

one in each row and column. A partial transversal of size k in a Latin square is a set

of cells, including at most one from each row and each column that contains k distinct

symbols. The question of finding the largest transversal in an arbitrary Latin square has

attracted considerable attention in particular it has been conjectured that it is almost

possible to find a full transversal.

Conjecture 1.3 (Ryser, Brualdi, Stein [17, 103, 109]). Every Latin square of order n

contains a partial transversal of size at least n− 1.

The link with rainbow subgraphs is due to a natural bijection between Latin squares

of order n and proper edge colourings of the complete balanced bipartite graph on 2n

vertices such that a partial transversal of size k in the Latin square is mapped to to a

rainbow matching of size k.

One can extend the problem to edge colourings of Kn,n that satisfy a milder condition.

An edge colouring is k-bounded if |χ−1(c)| ≤ k for every c ∈ N. Stein [109] conjectured

that Conjecture 1.3 still holds for n-bounded edge colourings. This is true if the size of

each colour class is small enough.
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Theorem 1.4 (Erdős, Spencer [39]). Let Kn,n be the complete bipartite graph on 2n

vertices, then any (n − 1)/16-bounded edge colouring of Kn,n contains a rainbow perfect

matching.

This motivates further study of rainbow substructures of large graphs and the proper-

ties which they have. In particular we look at three structures whose extremal thresholds

have been well studied: Perfect matchings, H-factors and Hamilton cycles. We show

that as soon as these structures appear in a graph, a rainbow copy can also be found in

a µn-bounded edge colouring of the same graph.

Perfect Matchings

First we look at perfect matchings. It is an easy corollary of Hall’s theorem that a bipartite

graph with n vertices in each part and minimum degree n/2 has a perfect matching. We

will call such graphs Dirac bipartite graphs. It turns out that this is all we need to find

rainbow perfect matchings.

Theorem 1.5. There exist µ > 0 and n0 ∈ N such that if n ≥ n0 and G is a Dirac bi-

partite graph on 2n vertices, then any µn-bounded edge colouring of G contains a rainbow

perfect matching.

H-factors

An H-factor in a graph G is a collection of |G|/|H| vertex disjoint copies of the graph

H (note that we require that |H| divides |G| here). In graphs the threshold for their

existence is well understood [77] however no similar result exists for hypergraphs. Our

result shows that once an H-factor exists, so does a rainbow H-factor and only requires

the knowledge that a threshold for the existence of an H-factor exists. We will denote

this threshold as δ∗` (H) and refer the reader to (5.1) for the definition.

Theorem 1.3.1. Let 1/n � µ � ε � 1/h ≤ 1/r < 1/` ≤ 1 with h|n and `, r, h, n ∈ N.

Let H be an r-graph on h vertices and G be an r-graph on n vertices with δ`(G) ≥
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(δ∗` (H) + ε)nr−`. Then any µ-bounded edge-colouring of G admits a rainbow H-factor.

Hamilton cycles

A Dirac graph on n vertices is any graph with minimum degree n/2. Dirac’s theorem

tells us that this is the threshold for the existence of a Hamilton cycle. We generalise this

theorem and show further that this threshold also suffices for the existence of a rainbow

Hamilton cycle.

Theorem 1.6. There exist µ > 0 and n0 ∈ N such that if n ≥ n0 and G is a Dirac graph

on n vertices, then any µn-bounded colouring of E(G) contains a rainbow Hamilton cycle.

1.3.2 Random Digraphs

The binomial random digraph D(n, p) is defined analogously to the Erdős-Renyi random

graph G(n, p); Each arc is present independently with probability p. A strong component

in a digraph D is a maximal subset S of the vertices such that for each pair u, v ∈ S

there exists a directed u− v path and v − u path.

The threshold for the existence of a giant strong component was shown to be when

p = 1/n by Karp [60] and  Luckzak [84] independently. This was refined by  Luczak and

Seierstad [86] who studied the strong components of D(n, p) in the range p = (1 + ε)/n

for ε→ 0 and |ε|3n→∞. We further refine this and study the critical window, p = n−1 +

λn−4/3 for λ constant providing tail bounds on the size of the largest strong component

in this range.

Theorem 1.7 (Lower Bound). Let 0 < δ < 1/800, λ ∈ R and n ∈ N. Let C1 be the

largest component of D(n, p) for p = n−1 + λn−4/3. Then if n is sufficiently large with

respect to δ, λ,

P(|C1| < δn1/3) ≤ 2eδ1/4

provided that δ ≤ (log 2)2

4|λ|2 .
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Theorem 1.8 (Upper Bound). Let C1 be the largest component of D(n, p) for p = n−1 +

λn−4/3. There exist constants, ζ, η > 0 such that for any A > 0, λ ∈ Rthe following holds.

Provided n is sufficiently large with respect to A, λ, and defining λ+ := max(λ, 0),

P(|C1| > An1/3) ≤ ζe−ηA
3/2+λ+A.

1.3.3 Zero-Free Regions

Given a graph G, k ∈ N, and w ∈ C the partition function of the univariate Potts model

is defined as

Z(G; k, w) :=
∑

φ:V→[k]

∏
uv∈E

φ(u)=φ(v)

w,

For w > 0 real, this can be viewed as the normalising constant for a family of probability

distributions over functions, φ : V → [k] where the mass of φ is given by

µG;w(φ) = Z(G; k, w)−1
∏
uv∈E

φ(u)=φ(v)

w

When w < 1, this is often referred to as the anti-ferromagnetic Potts model as connected

particles with the same spin repel one another. This regime was studied by Bencs et

al. [9] who found an open subset of C containing [0, 1] (for w) on which Z(G; k, w) 6= 0.

Combining their results with a method of Patel and Regts [96] they find a fully polynomial

time approximation scheme (FPTAS) to count k-colourings of bounded degree graphs

whenever k ≥ e∆(G).

The case w > 1 is known as the ferromagnetic Potts model as particles with the same

spin are attracted to each other. There are a number of barriers to finding zero-free

regions containing any large interval [1, x] for any x > 1. In particular, this would imply

the existence of an FPTAS for #BIS [43, 45] if one can take x > 1 + 2 log k
∆(G)

approxi-

mately. However, this would conflict with the commonly held belief that #BIS is an

NP-intermediate problem i.e. neither in P nor NP. We show that one can get almost half

8



way to this obstruction.

Theorem 1.9. Let k,∆ ≥ 3 then there exists an open set U containing the interval

[1, 1 + log(k)−1
∆

] such that for any w ∈ U and any graph G of maximum degree at most ∆,

Z(G; k, w) 6= 0.

The work presented in this thesis is joint work with various subsets of Ewan Davies [26],

Peter Keevash [27], Alexandra Kolla [26], Guus Regts [26], Viresh Patel [26], Guillem

Perarnau [27, 28, 29] and Liana Yepremyan [27] as well as some solo work [25].
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CHAPTER 2

NOTATION AND TERMINOLOGY

This chapter contains the major notation which we use for the remainder of the thesis.

We shall repeat any definitions given in the introduction for convenience.

2.1 Graphs

A graph G = (V,E) is an ordered pair where V is a set of vertices and E is a collection

of unordered pairs of elements from V is the set of edges. If u and v are vertices of

G = (V,E) write uv for the edge {u, v} we say u and v are the ends of uv. We write

V (G), E(G) for the sets of vertices and edges of the graph G respectively. Furthermore

define v(G) = |V (G)| and e(G) = |E(G)| for the numbers of vertices and edges of G.

Given a vertex v of a graph G = (V,E), its neighbourhood is N(v), the set of vertices

u ∈ V such that uv ∈ E. Its closed neighbourhood is N(v) ∪ {v} and its degree is d(v) =

|N(v)|. If X ⊆ V , we let NX(v) = N(v) ∩X and define dX(v) = |NX(v)|. Furthermore

the neighbourhood of X is defined as N(X) = ∪x∈XN(x). The minimum degree of G is

δ(G) = minv∈V (G) d(v). Similarly the maximum degree of G is ∆(G) = maxv∈V (G) d(v).

A subgraph of G = (V,E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E.

Write G′ ⊆ G to mean G′ is a subgraph of G. We say a subgraph G′ of G is spanning if

V (G′) = V (G). An induced subgraph of G is a graph G′ = (V ′, E ′) such that uv ∈ E ′ if

and only if u, v ∈ V ′ and uv ∈ E. We write G[V ′] for the induced subgraph G′ = (V ′, E ′)
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and call it the subgraph induced by V ′.

A path P is a graph such that there exists an ordering v0v1 . . . vm of the vertices of P

where the edges of P are precisely vi−1vi for i ∈ [m]. A u − v path in the graph G is a

subgraph of G which is a path and such that v0 = u and vm = v. A connected component

of the graph G is a maximal induced subgraph C of G such that for every pair of vertices

u, v ∈ V (C) there exists a u − v path in G. If G has an unique connected component

then we say G is connected.

A matching in a graph G is a subset M of E(G) consisting of vertex disjoint edges.

A perfect matching in G is a matching M such that each v ∈ V (G) is contained in some

element of M .

A cycle C of length m ≥ 3 is a graph such that there exists an ordering v1v2 . . . vm of

the vertices of C where the edges of C are precisely vivi+1 mod m for i ∈ [m]. A Hamilton

cycle in a graph G is a subgraph of G which is a cycle of length v(G).

Let H be a fixed graph. An H-factor is a collection of vertex disjoint copies of H

which covers all the vertices of a host graph G. If the latter condition is not satisfied we

will use the phrase partial H-factor.

2.1.1 Bipartite Graphs

A graph G = (V,E) is bipartite if there exists a partition (A,B) of the vertex set such

that every edge of G has exactly one end in A. We will often write G = (A,B;E) if G is a

bipartite graph with partition (A,B). All definitions for graphs as stated above still hold

for bipartite graphs. In addition we also define the maximum and minimum A-degree or

B-degree as δA(G) = minv∈A d(v) and the other three definitions are analogous.
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2.2 Digraphs

A digraph D = (V,E) is an ordered pair where V is a set of vertices and E is a collection of

ordered pairs of elements from V is the set of edges. If u and v are vertices of D = (V,E)

write uv for the edge (u, v) we say u and v are the ends of uv.

Given a vertex v of D its out-neighbourhood, N+(v) is the set of vertices u such that

vu ∈ E. Its in-neighbourhood, N−(v) is the set of vertices u such that uv ∈ E. We may

define the in-degree and out-degree as d−(v) = |N−(v)| and d+(v) = |N+(v)| respectively.

We also define the minimum and maximum in or out-degrees in the obvious way.

A subdigraph of D = (V,E) is a digraph D′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E.

An induced subdigraph of D is a digraph D′ = (V ′, E ′) such that uv ∈ E ′ if and only if

u, v ∈ V ′ and uv ∈ E. We write D[V ′] for the induced subgraph D′ = (V ′, E ′) and call

it the subdigraph induced by V ′. The underlying graph of a digraph D = (V,E) is the

graph, G = (V,E ′) where uv ∈ E ′ if and only if uv ∈ E or vu ∈ E.

Furthermore, a path may be defined exactly the same as in graphs. However, note

that these paths are directed and so a u−v path is not the same as a v−u path. A weakly

connected component of the digraph D is a connected component C of the underlying

graph G. The in-component of v in the digraph D is the set of vertices u ∈ V (D) such

that there exists a u − v path in D. The out-component of v in the digraph D is the

set of vertices u ∈ V (D) such that there exists a v − u path in D. A strongly connected

component of the digraph D is a maximal induced subgraph C of G such that for every

pair of vertices u, v ∈ V (C) there exists a u− v path and a v − u path in G.

2.3 Hypergraphs

A hypergraph H = (V,E) is an ordered pair where V is a set of vertices and E is a

collection of subsets of V which we call the set of edges. A hypergraph is r-uniform or

an r-graph if every edge contains r elements. So, in particular a graph is a 2-uniform

12



hypergraph.

For a set L of ` vertices of H, its `-neighbourhood N`(L) is the collection of all edges

e ∈ E such that L ⊆ e. Its `-degree is d`(L) = |N`(L)|. The minimum `-degree of H is

δ`(H) = minL⊆V (`) d`(L) and the maximum `-degree is ∆`(H) = maxL⊆V (`) d`(L).

We define a subgraph of H analogously to subgraphs of a graph G. If H is a fixed

hypergraph and H a hypergraph such that v(H)|v(H), we say F ⊆ H is an H-factor if it

consists of v(H)/v(H) vertex disjoint copies of H.

2.4 Common Definitions

In this section we give some definitions which do not rely on whether we have a graph,

digraph, hypergraph or any other combinatorial structure. We state these definitions for

graphs, however they may be extended in the obvious way to digraphs or hypergraphs.

A colouring of the vertices (or edges) of a graph G is a function φ : V (G) → C (or

φ : E(G)→ C) where C is a set of colours. Often we will take C = [k], an initial segment

of N. A graph G together with a colouring φ of its vertices (edges) is called a vertex

(edge) coloured graph.

A subgraph G′ of an edge (vertex) coloured graph G is called rainbow if the restriction

of φ to E(G′) (V (G′)) is injective.

Given a graph G, k ∈ N, and w ∈ C the partition function of the univariate Potts

model is defined as

Z(G; k, w) :=
∑

φ:V→[k]

∏
uv∈E

φ(u)=φ(v)

w,

In many of the results of this thesis we use hierarchies of the form

a� b� c

By this we mean that we may select the constants from right to left where we may pick
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b ≤ f(c) < c, and a ≤ g(b) < b etc. for some non-decreasing functions f, g of c, b

respectively. For example, we could have 5ε3 + 2εe2 � ε� −1
log(ε)

� 1.

In principle we may be able to explicitly compute the constants in question, however

this does not add anything to the theorems in question as the constants involved are rather

small. (For example the proof of Theorem 1.5 can be made to work taking µ ≈ 10−16.)
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CHAPTER 3

THE LOPSIDED LOVÁSZ LOCAL LEMMA

The Lovász local lemma originated in a paper of Erdős and Lovász [38]. A lopsided

generalisation due to Erdős and Spencer [39] has often been a key tool in the study of

rainbow subgraph problems. We shall apply a similar generalisation a number of times in

Chapters 4, 5 and 6 where we study rainbow subgraph problems at extremal thresholds.

In this chapter we will introduce the associated notation and prove the versions of the

local lemma which we will require later.

The general setting we shall work in is as follows. Let E = {E1, . . . , En} be a finite

family of events over some probability space. We would like to show that

P
( n⋂
i=1

Ec
i

)
> 0. (3.1)

That is, we wish to show that with positive probability none of the events in E occur. Of

course if E is a family of independent events, then provided no event holds with probability

1, the inequality (3.1) follows by the definition of independence. The Lovász local lemma

and its generalisations in some sense gives a definition of the family E being “nearly

independent” in the sense that it provides a sufficient condition such that inequality (3.1)

still holds.
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3.1 The Lovász Local Lemma

We begin with a definition. Let E be a finite family of events and suppose that D is a

digraph with vertex set V (D) = E . Suppose further that for each E ∈ E , E is independent

of the family E \ ({E} ∪N+(E)). Then we say that D is a dependency digraph for E .

In this thesis we shall more commonly work with dependency graphs for simplicity. We

say G with vertex set E is a dependency graph for E if for each E ∈ E , E is independent

of the family E \ ({E}∪N(E)). Note that a dependency digraph naturally gives rise to a

dependency graph formed by undirecting each edge and removing any double edges that

may be formed.

With the notion of dependency digraphs we may now state the local lemma.

Lemma 3.1 (Lovász Local Lemma). Suppose that E is a finite family of events with

dependency (di)graph D and that for each E ∈ E there exists xE ∈ (0, 1) such that

P(E) ≤ xE
∏

(E,F )∈E(G)

(1− xF ). (3.2)

Then,

P
( ⋂
E∈E

Ec

)
≥
∏
E∈E

(1− xE) > 0. (3.3)

We defer the proof to section 3.3 where we prove a generalisation of this lemma.

3.2 The Lopsided Lovász Local Lemma

The independence condition in the local lemma is very strong and often difficult to

check in practice. An observation by Erdős and Spencer [39] is that we do not require

independence and in fact a negative correlation condition suffices to deduce the conclusion

of Lemma 3.1. Thus we define the lopsidependency digraph as follows.

Let E be a finite family of events and suppose that D is a digraph with vertex set

V (D) = E . Suppose further that for each E ∈ E , the following holds for all sets S ⊆
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E \ ({E} ∪N+(E)) with P(∩F∈SF c) > 0.

P
(
E

∣∣∣∣ ⋂
F∈S

F c

)
≤ P(E). (3.4)

Then we say that D is a lopsidependency digraph for E . Lopsidependency graphs may

be defined analogously.

Now, the Local Lemma holds as before with lopsidependency (di)graphs in place of

dependency (di)graphs.

Lemma 3.2 (Lopsided Lovász Local Lemma). Suppose that E is a finite family of events

with lopsidependency (di)graph D and that for each E ∈ E there exists xE ∈ (0, 1) such

that

P(E) ≤ xE
∏

(E,F )∈E(G)

(1− xF ). (3.5)

Then,

P
( ⋂
E∈E

Ec

)
≥
∏
E∈E

(1− xE) > 0. (3.6)

3.3 The p-Lopsided Lovász Local Lemma

Using P(E) as a bound in equations (3.4) and (3.5) also turns out to be unnecessary.

All we require here is any bound which does not depend on what we condition on. This

motivates the definition of the p-dependency (di)graph.

So, let E be a finite family of events and suppose that D is a (di)graph with vertex

set V (D) = E . Suppose further that for each E ∈ E , there exists pE ∈ (0, 1) and that the

following holds for all sets S ⊆ E \ ({E} ∪N+(E)) with P(∩F∈SF c) > 0.

P
(
E

∣∣∣∣ ⋂
F∈S

F c

)
≤ pE. (3.7)

Then we say that D is a p-dependency (di)graph for E where p = (pE : E ∈ E).
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Then the p-lopsided Lovász local lemma is then essentially the same as the lopsided

version with P(E) replaced by pE. We shall give a proof following the proof of the Lovász

local lemma by Spencer [108] with minor adaptations.

Lemma 3.3 (p-Lopsided Lovász Local Lemma). Suppose that E is a finite family of

events and p a vector indexed by E. Suppose further that E has p-dependency (di)graph

G and that for each E ∈ E there exists xE ∈ (0, 1) such that

pE ≤ xE
∏

(E,F )∈E(G)

(1− xF ). (3.8)

Then,

P
( ⋂
E∈E

Ec

)
≥
∏
E∈E

(1− xE) > 0. (3.9)

Proof. For an arbitrary subset S ⊆ E we define

BS =
⋂
F∈S

F c, (3.10)

where we use the convention that the empty intersection is the entire probability space.

We will show by induction on |S| that for any E 6∈ S,

P
(
E

∣∣∣∣ ⋂
F∈S

F c

)
≤ xE (3.11)

When |S| = 0, we have

P
(
E

∣∣∣∣ ⋂
F∈S

F c

)
= P(E) ≤ pE ≤ xE

∏
(E,F )∈E(G)

(1− xF ) ≤ xE

as required. Now, suppose that the claim holds whenever |S| < r. Suppose further that

|S| = r and E 6∈ S. Define T = {F ∈ S : (E,F ) ∈ E(D)}. Now,

P(E|BS) =
P(E ∩BS)

P(BS)
=

P(E ∩BS)

P(BS\T )

P(BS\T )

P(BS\T ∩BT )
=

P(E ∩BT |BS\T )

P(BT |BS\T )
. (3.12)
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We now bound the numerator and denominator of equation (3.12) separately. First for

the numerator, note that P(E ∩ BT |BS\T ) ≤ P(E|BS\T ). By the definition of the p-

dependency (di)graph and the fact the S \ T is a subset of the non-neighbours of E in

D,

P(E|BS\T ) ≤ pE ≤ xE
∏

(E,F )∈E(G)

(1− xF ). (3.13)

Next, we look at the denominator. Suppose that |T | = t, we let ∅ = R0 ⊆ R1 ⊆ R2 ⊆

. . . ⊆ Rt = T be any sequence of subsets of T such that |Ri| = i for each i ∈ [t]. Define

Ei to be the unique event in Ri \Ri−1 for i ∈ [t]. Then, we have the telescoping product,

P(BT |BS\T ) =
P(BS)

P(BS\T )
=

t∏
i=1

P(BS\Ri−1
)

P(BS\Ri)

=
t∏
i=1

P(Ec
i |BS\Ri) ≥

t∏
i=1

(1− xEi) ≥
∏

(E,F )∈E(G)

(1− xF ) (3.14)

where the second last inequality follows by induction as |S\Ri| < r for each i. Combining

equations (3.13) and (3.14) yields claim (3.11).

Finally, to deduce (3.9) we simply apply a telescoping product over E applying (3.11)

to each term. �

3.4 Corollaries

The form of the p-lopsided Lovász local lemma as stated in Lemma 3.3 is often referred

to as the general form of the local lemma. The conditions we need to check can be

complicated and so it is often helpful to use simpler forms of the local lemma. In particular

when we have some knowledge about the relations between the events it is usually possible

to find a simpler condition to check than (3.8).

In this section we deduce a number of these simpler conditions. We will use these

conditions in various places throughout this thesis when applying the local lemma. We

start with the symmetric form which is designed for when all of the events “look the

19



same”.

Corollary 3.4 (Symmetric Form). Suppose that we are in the setting of Lemma 3.3 and

that pE ≤ p for each E ∈ E and furthermore that the dependency (di)graph has (out)

degree at most d. If 4pd ≤ 1 then,

P
( ⋂
E∈E

Ec

)
≥ (1− 2p)|E| > 0.

Proof. We take xE = 2p for each E ∈ E . We must then show that

p ≤ 2p(1− 2p)d. (3.15)

By assumption, 4pd ≤ 1 so it suffices to show for all d ∈ N that

(1− 1

2d
)d ≥ 1

2
. (3.16)

However this holds by the standard inequality (1 − x)d ≥ 1 − xd thus condition (3.8)

holds provided that 4pd ≤ 1. Therefore,

P
( ⋂
E∈E

Ec

)
≥ (1− 2p)|E| > 0

as required. �

The next form we look at is the bounded form which we will use when there are a

small number of types of events to control. The proof of this and the subsequent weighted

form are due to Molloy and Reed [90, Chapter 19].

Corollary 3.5 (Bounded Form). Suppose that we are in the setting of Lemma 3.3 and

that for each E ∈ E we have ∑
F :(E,F )∈E(G)

pF ≤
1

4
(3.17)
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then,

P
( ⋂
E∈E

Ec

)
> 0.

Proof. In this proof, we use the fact that 1 − x ≥ e−αx for x ≤ 1
2

and α = 2 log 2. Let

xE = 2pE for each E ∈ E . We now check that condition (3.8) holds with this choice. So,

note that

xE
∏

F :(E,F )∈E(G)

(1− xF ) = 2pE
∏

F :(E,F )∈E(G)

(1− 2pF )

≥ 2pE exp

(
− 2α

∑
F :(E,F )∈E(G)

pF

)
≥ 2pEe

−2α/4 = pE. (3.18)

So, condition (3.8) holds and

P
( ⋂
E∈E

Ec

)
> 0.

�

The final form we will use is the weighted form so called as we can assign weights to

each event. This form is useful for dealing with events which are very unlikely but which

depend on a large number of events which are more likely to occur.

Corollary 3.6 (Weighted Form). Suppose that we are in the setting of Lemma 3.3 and

that each E ∈ E is assigned a weight wE ∈ N and that there exists p ∈ [0, 1/4] such that

pE ≤ pwE and
∑

F :(E,F )∈E(G)

(2p)wF ≤ wE
2

(3.19)

for each E ∈ E. Then,

P
( ⋂
E∈E

Ec

)
> 0.

Proof. Again we will use the fact that 1 − x ≥ e−αx for x ≤ 1
2

and α = 2 log 2. Let

xE = (2pE)wE for each E ∈ E . To check that condition (3.8) holds with this choice
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observe,

xE
∏

F :(E,F )∈E(G)

(1− xF ) = (2p)wE
∏

F :(E,F )∈E(G)

(1− (2p)wF )

≥ (2p)wE exp

(
− α

∑
F :(E,F )∈E(G)

(2p)wF
)
≥ (2p)wEe−αwE/2 = pwE ≥ pE. (3.20)

So, condition (3.8) holds and

P
( ⋂
E∈E

Ec

)
> 0.

�

22



CHAPTER 4

RAINBOW PERFECT MATCHINGS

4.1 Introduction

An n×n array of symbols where each symbol occurs precisely once in each row and column

is called a Latin square of order n. A partial transversal of size k in a Latin square is a

set of cells, including at most one from each row and each column that contains k distinct

symbols. The question of finding the largest transversal in an arbitrary Latin square has

attracted considerable attention. There exist Latin squares, such as the addition table of

Zn for even n, whose largest transversal has size n− 1 [40, 116]. It has been conjectured

that this is the worst case.

Conjecture 4.1 (Ryser, Brualdi, Stein [17, 103, 109]). Every Latin square of order n

contains a partial transversal of size at least n− 1.

The best known lower bound is due to Hatami and Shor [53], who showed that every

Latin square of order n has a partial transversal of size n−O(log2(n)).

There is a one-to-one correspondence between Latin squares L = (Lij)i,j∈[n] of order

n and proper edge colourings of the complete bipartite graph Kn,n on 2n vertices; simply,

assign colour Lij to the edge aibj, where A = {a1, . . . , an} and B = {b1, . . . , bn} are

the parts of Kn,n. Given a graph G and an edge colouring χ : E(G) → N of G, the

subgraph H ⊆ G is rainbow if for every c ∈ N, |χ−1(c) ∩ E(H)| ≤ 1. Under the above
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correspondence, a partial transversal of size k in a Latin square is equivalent to a partial

rainbow matching of size k.

One can extend the problem to edge colourings of Kn,n that satisfy a milder condition.

An edge colouring is k-bounded if |χ−1(c)| ≤ k for every c ∈ N. Stein [109] conjectured

that Conjecture 4.1 still holds for n-bounded edge colourings. This was very recently

disproved by Pokrovskiy and Sudakov [100]. However, positive results can be obtained if

the size of each colour class is small enough.

Theorem 4.2 (Erdős, Spencer [39]). Let Kn,n be the complete bipartite graph on 2n

vertices, then any (n − 1)/16-bounded edge colouring of Kn,n contains a rainbow perfect

matching.

The goal of this chapter is to obtain a sparse version of Theorem 4.2. A balanced

bipartite graph G contains a perfect matching if and only if G satisfies Hall’s condition.

However, it is easy to see that Hall’s condition is not sufficient for the existence of a

rainbow perfect matching if colour classes have linear size. For example, consider a graph

consisting of a perfect matching which trivially satisfies Hall’s Condition but has no

rainbow perfect matching unless each colour class has size 1. Thus, we impose a stronger

condition concerning the minimum degree of G. A Dirac bipartite graph on 2n vertices

is a balanced bipartite graph with minimum degree at least n/2. The main result of this

chapter shows the existence of rainbow perfect matchings in Dirac bipartite graphs.

Theorem 4.3. There exist µ > 0 and n0 ∈ N such that if n ≥ n0 and G is a Dirac bi-

partite graph on 2n vertices, then any µn-bounded edge colouring of G contains a rainbow

perfect matching.

The proof of Theorem 4.3 combines probabilistic and extremal ingredients. The main

tool used to provide the existence of a rainbow matching is a lopsided version of the

Lovász Local Lemma, which is standard in this setting. One of the novelties of our

approach is the estimation of conditional probabilities in the uniform distribution on

the set of perfect matchings of a Dirac bipartite graph, via a switching argument (see
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Section 4.2). However, this probability space often exhibits strong dependencies which

limit the application of the local lemma.

In order to overcome this problem, in Section 4.3 we use a well-established dichotomy

for Dirac bipartite graphs; either the graph has good expansion properties (robust ex-

pander) or the graph consists of two (possibly unbalanced) very dense bipartite graphs

of order roughly n with few edges in-between (extremal graph). The notion of robust ex-

panders was first introduced by Kühn et al. [79] in the context of Hamiltonian digraphs

(see also [78]). A local lemma-based argument provides the existence of a rainbow perfect

matching in robust expanders (Section 4.4). However, this argument cannot be applied

directly to extremal graphs. In Section 4.5, we construct a rainbow perfect matching

by selecting a partial matching in-between the two dense bipartite graphs that balances

the remainder, followed by extending it into a rainbow perfect matching using similar

arguments to the ones displayed previously. In Section 4.6 we combine these two results,

concluding that any Dirac bipartite graph with a µn-bounded edge colouring contains a

rainbow perfect matching.

Our result can be extended to a more general setting by slightly strengthening the

minimum degree condition. A system of conflicts for E(G) is a set F of unordered pairs

of edges of G. If {e, f} ∈ F we say that e and f conflict and call {e, f} a conflict. A

system of conflicts F for E(G) is k-bounded if for each e ∈ E(G), there are at most k

conflicts that contain e.

Given a graph G and a system of conflicts F for E(G), the subgraph H ⊆ G is

F-conflict-free if for each distinct e, f ∈ E(H), we have {e, f} 6∈ F .

Rainbow subgraphs correspond to conflict-free subgraphs of transitive systems of con-

flicts. Given an edge colouring χ of G, we define the system of conflicts Fχ for E(G) as

follows

Fχ = {{e, f} : e, f ∈ E(G) and χ(e) = χ(f)}

Note that χ is k-bounded if and only Fχ is (k − 1)-bounded.
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We obtain an asymptotic version of Theorem 4.3 for bounded systems of conflicts.

Theorem 4.4. For all ε > 0 there exist µ > 0 and n0 ∈ N such that if n ≥ n0 and G is

a balanced bipartite graph on 2n vertices with minimum degree δ(G) ≥ (1/2 + ε)n, then

any µn-bounded system of conflicts F for E(G) contains a conflict-free perfect matching.

Theorem 4.4 follows as a corollary of the proof of Theorem 4.3 for robust expanders

(Section 4.6). Section 4.7 contains two applications of Theorem 4.3 and Theorem 4.4,

providing the existence of rainbow ∆-factors in Dirac graphs and of rainbow spanning

subgraphs with bounded maximum degree in graphs with large minimum degree. We

conclude the chapter in Section 4.8 with further remarks and some open questions.

4.2 Switching over 6-cycles

Our main tool to find conflict-free matchings is the p-Lopsided form of the Lovász Local

Lemma (Corollary 3.4.) We will use the following bound on the probability which we

may deduce from the choice of the xi in the proof of this corollary. If E is the family of

events which satisfy the assumptions of Corollary 3.4, then

P
( ⋂
E∈E

Ec

)
≥ (1− 2p)|E|.

The following notion will play a central role in showing the existence of conflict-free

perfect matchings.

Definition. Let G = (A ∪ B,E) be a balanced bipartite graph on 2n vertices with at

least one perfect matching. Suppose M is a perfect matching of G and let x = a1b1 ∈M .

An edge y = ab ∈ E(G) is (x,M)-switchable if y /∈ M and the 6-cycle a1b1a2bab2 is a

subgraph of G, where a2b, ab2 ∈M .

The existence of many switchable edges in every perfect matching suffices to find a

conflict-free perfect matching.
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Lemma 4.5. Suppose that 1/n � µ � γ ≤ 1 where n ∈ N. Let G = (A ∪ B,E) be a

balanced bipartite graph on 2n vertices with at least one perfect matching. Suppose that

for every perfect matching M of G and for every x = a1b1 ∈ M there are at least γn2

edges of G that are (x,M)-switchable. Given a µn-bounded system of conflicts for E(G),

the probability that a uniformly random perfect matching of G is conflict-free is at least

e−µ
1/2n.

Proof. Let Ω = Ω(G) be the set of perfect matchings of G equipped with the uniform

distribution. By assumption, note that Ω 6= ∅. Let M ∈ Ω be a perfect matching chosen

uniformly at random. Let F be a µn-bounded system of conflicts for E(G).

For each unordered pair of edges x, y ∈ E(G) let E(x, y) = {x, y ∈ M} be the event

that both x and y are simultaneously in M . Define

Q = {{x, y} ∈ F : x, y non-incident} ,

and let q = |Q|. Consider the collection of events E = {E(x, y) : {x, y} ∈ Q}.

Write E = {Ei : i ∈ [q]} and let H be the graph with vertex set [q] where i, j ∈ [q] are

adjacent if and only if the subgraph of G that is spanned by the set of edges {x, y, w, z}

is not a matching, where Ei = E(x, y) and Ej = E(w, z).

Observe that given {x, y} ∈ Q, there are at most 4n ways to choose an edge w ∈ E(G)

that is incident either to x or to y, and at most µn ways to choose an edge z ∈ E(G)

with {w, z} ∈ F . Hence, the maximum degree in H is at most d := 4µn2.

Our goal is to show that H is a p-dependency graph for E , for a suitably small p > 0.

Given i ∈ [q] and S ⊆ [q]\NH[i] with P(∩j∈SEjc) > 0, it suffices to show that (3.7) holds.

Let Ei = E(x, y). We say that a perfect matching is S-good if it belongs to ∩j∈SEc
j .

Since P(∩j∈SEjc) > 0, there is at least one S-good perfect matching. Let M = M(S)

be the set of S-good perfect matchings and let M0 ⊆ M be the set of S-good perfect

matchings that contain both x and y.

Construct an auxiliary bipartite graph G = (M0,M\M0, E(G)), where M0 ∈ M0
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and M ∈ M are adjacent (i.e. M0M ∈ E(G)) if there exist edges x1, x2, y1, y2 ∈ M0

and x3, x4, x5, y3, y4, y5 ∈M such that x, x3, x2, x5, x1, x4 and y, y3, y2, y5, y1, y4 are vertex

disjoint 6-cycles contained in G (see Figure 4.1).

By double-counting the edges of G, we obtain

δ(M0)|M0| ≤ |E(G)| ≤ ∆(M\M0)|M \M0| ,

from which we deduce,

P(Ei| ∩j∈S Ec
j ) =

|M0|
|M|

≤ |M0|
|M \M0|

≤ ∆(M\M0)

δ(M0)
. (4.1)

So, in order to prove (3.8) we need to bound ∆(M\M0) from above and δ(M0) from

below.

We first bound ∆(M \M0) from above. Fix M ∈ M \M0 and let us count the

number of 6-cycles of the form xx3x2x5x1x4, with x3, x4, x5 ∈ M . Since x5 ∈ M is not

incident with x, once we have chosen x5 the 6-cycle is completely determined, as the

edges x3 and x4 are the ones in M that are incident to both endpoints of x. There are

at most |M | = n choices for x5, so there are at most n 6-cycles containing x. Similarly

there are at most n 6-cycles containing y. It follows that ∆(M\M0) ≤ n2.

In order to bound δ(M0) from below, fix M0 ∈ M0. Note here that not all pairs of

disjoint 6-cycles containing x and y, respectively, will generate an edge in G as it may be

x

x2x1

x5

x4 x3

Figure 4.1: Switching for edge x.
x5 is (x,M)-switchable.
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that the perfect matching obtained by switching over the cycles is not S-good.

Define for z ∈M0,

FM0(z) = {z′ ∈ E(G) : z′ is (z,M0)-switchable and {w, z′} 6∈ Q for all w ∈ E(M0)} .

Let F ∗M0
(x) ⊆ FM0(x) be the subset of edges that are not incident with x or y.

By assumption, there are at least γn2 edges that are (x,M0)-switchable, from which

at most µn2 have conflicts with edges in M0 and at most 2n are incident to y, implying

|F ∗M0
(x)| ≥ γn2/2. Each edge x5 ∈ F ∗M0

(x) uniquely determines a 6-cycle whose switching

gives rise to a perfect matching. We claim that this matching is S-good. By adding x3, x4

and x5, we can only create conflicts which use one of these edges. By definition of S, if

j ∈ S, then the two edges defining Ej are not incident with x. Thus, x3 and x4 cannot

create any conflict. Moreover, by the properties of FM0(x), x5 does not conflict with

the edges in M0, so it cannot create any conflict. Given a choice of a 6-cycle of the

form xx3x2x5x1x4, let F ∗∗M0
(y) ⊆ FM0(y) be the subset of edges that are not incident to

the vertices of the fixed 6-cycle. Similarly as before, |F ∗∗M0
(y)| ≥ γn2/2 and each edge

y5 ∈ F ∗∗M0
(y) gives rise to a 6-cycle whose switching preserves the S-good condition. As

for every choice of 6-cycle to switch out x and each choice of 6-cycle to switch out y we

obtain an edge adjacent to M0, we conclude that δ(M0) ≥ γ2n4/4.

Substituting into (4.1), we obtain the desired bound

P(Ei| ∩j∈S Ec
j ) ≤

4

γ2n2
=: p .

Note that |E| ≤ µn3. Since, 4pd = 64µ
γ2 ≤ 1, by the symmetric form of the p-Lopsided

Lovász Local Lemma (Corollary 3.4), the probability that a uniformly random perfect

matching is conflict-free is

P(∩E∈EEc) ≥
(

1− 8

γ2n2

)µn3

≥ e−µ
1/2n ,
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and the lemma follows. �

4.3 Dichotomy

In order to apply Lemma 4.5, we need to show that for every edge and every perfect

matching containing it, there exist many switchable edges. However, this statement is not

true for every Dirac bipartite graph. For instance, consider the graph G where n = 2m+1,

A = A1 ∪A2 and B = B1 ∪B2 with |A1| = |B2| = m, and where G[A1, B1] and G[A2, B2]

induce complete bipartite graphs and G[A2, B1] induces a perfect matching. Clearly, G

is a Dirac bipartite graph. However, for every edge in x ∈ E(A2, B1), and independently

of the choice of M containing x, there are at most m edges that are (x,M)-switchable as

any such edge lies in E(A2, B1). That any such edge lies in E(A2, B1) follows from the

fact that every perfect matching of G must contain precisely one edge from E(A2, B1)

and so if we remove this unique edge in a switching we must add back a different A2−B1

edge such that the resulting subgraph is still a perfect matching of G.

Our proof proceeds by splitting the class of Dirac bipartite graphs into two cases:

Robust Expanders, where we show the existence of many switchable edges, and Extremal

Graphs, where we proceed carefully to handle the edges that produce a small number of

switchings.

For 0 < ν < 1 and X ⊆ V (G), the ν-robust neighbourhood of X in G is defined as

RNν(X) := {v ∈ V (G) : |NG(v) ∩X| ≥ νn} .

Definition. Let 0 < ν ≤ τ < 1. A balanced bipartite graph G = (A∪B,E) on 2n vertices

is a bipartite robust (ν, τ)-expander if for every set X ⊆ V (G) with τn ≤ |X| ≤ (1− τ)n

and either X ⊆ A or X ⊆ B, we have

|RNν(X)| ≥ |X|+ νn .
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For a bipartite graph G = (A ∪B,E) if X ⊆ A and Y ⊆ B, we let E(X, Y ) = {xy ∈

E(G) : x ∈ X, y ∈ Y } and e(X, Y ) = |E(X, Y )|.

Definition. Let 0 < ε < 1. A balanced bipartite graph G = (A ∪ B,E) on 2n vertices

is an ε-extremal graph if there exist partitions A = A1 ∪ A2 and B = B1 ∪ B2 such that

the following properties are satisfied:

(P1) ||A1| − |A2|| ≤ εn;

(P2) ||B1| − |B2|| ≤ εn;

(P3) e(A1, B2) ≤ εn2.

The following result establishes a dichotomy between these classes. Similar ideas have

already appeared in previous work on Dirac graphs [32, 72, 74]. The proof follows the

lines of the previous approaches but we include it here for the sake of completeness.

Theorem 4.6. Suppose that 1/n � ν � ε � τ � 1 where n ∈ N. Let G = (A ∪ B,E)

be a Dirac bipartite graph on 2n vertices. Then one of the following holds:

i) G is a bipartite robust (ν, τ)-expander;

ii) G is an ε-extremal graph.

Proof. Let 0 < δ < 1 be such that ν � δ � ε. Suppose that G is not a bipartite robust

(ν, τ)-expander. Thus, we may assume without loss of generality that there exists a set

X ⊆ A with τn ≤ |X| ≤ (1 − τ)n and such that |RNν(X)| < |X| + νn. We split the

argument into three possible cases:

Case 1: τn ≤ |X| ≤ n
2
− δn.

Since e(X,N(X)) ≥ |X|(n/2), we reach a contradiction:

e(X,N(X)) ≤ |X||RNν(X)|+ νn2 ≤ |X|
(n

2
− (δ − ν)n

)
+ νn2 < |X|n

2
≤ e(X,N(X)) ,

where the second last inequality holds because ν � δ, τ .
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Case 2: n
2
− δn ≤ |X| ≤ n

2
+ δn.

Define A1 = X, A2 = A\X, B1 = RNν(X), B2 = B\RNν(X). Note that e(A1, B2) ≤

νn|B2| ≤ εn2; thus, (P3) holds. Now, (P1) and (P2) follow immediately by the conditions

on |X| and |RNν(X)|. Hence G is an ε-extremal graph.

Case 3: n
2

+ δn ≤ |X| ≤ (1− τ)n.

Each vertex in B has at least δn neighbours in X. So RNν(X) = B. Hence,

|RNν(X)| = n ≥ |X|+ νn, a contradiction with the choice of X. �

4.4 Robust Expanders

As we will show below, the robust expansion property yields many (x,M)-switchable

edges independently of the choice of x and M . Thus, Lemma 4.5 can be directly applied

to obtain the existence of a conflict-free perfect matching in robust expanders.

Lemma 4.7. Suppose 1/n � γ � ν � τ � 1 where n ∈ N. Let G = (A ∪ B,E) be a

bipartite robust (ν, τ)-expander on 2n vertices with minimum degree at least n/2. Let M

be a perfect matching of G and let x ∈ M . Then, there are at least γn2 edges of G that

are (x,M)-switchable.

Proof. Let fM : A → B be a bijective map defined as f(a) = b if and only if ab ∈ M .

Given x = a1b1 ∈ M and an edge y 6∈ M not incident to x, there is at most one 6-

cycle in G that uses x, y and any two of the other edges in M . Also, note that y is

(x,M)-switchable if and only if there is such a 6-cycle. Therefore, to count the number

of (x,M)-switchable edges y, we count the number of 6-cycles containing x and any two

of the other edges in M .

We will construct the 6-cycle by the sequence of vertices a1b1a2b3a3b2, where we have

a2b3, a3b2 ∈ M . To bound from below the number of ways to choose the 6-cycle, we
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compute a lower bound on the number of choices for a3 and b3. Select,

a3 ∈ RNν(fM(N(b1))) ∩ f−1
M (N(a1) \ {b1}) ,

and then, b2 = fM(a3). Given the choice of a3, select

b3 ∈ fM(N(b1) \ {a1, a3}) ∩N(a3) ,

and let a2 = f−1
M (b3). Recall that the minimum degree is at least n/2. As G is a bipartite

robust (ν, τ)-expander, |RNν(fM(N(b1)))| ≥ n
2

+ νn, which implies that there are at

least νn − 1 choices for a3. Again, by the expansion properties of G, a3 has at least νn

neighbours in fM(N(b1)), so there are at least νn − 2 choices for b3. In total, there are

at least γn2 choices of 6-cycles, a1b1a2b3a3b2, or equivalently, γn2 edges y = a3b3 ∈ E(G)

that are (x,M)-switchable. �

We can combine Lemma 4.5 and Lemma 4.7 together to conclude.

Corollary 4.8. Suppose 1/n� µ� ν � τ � 1 where n ∈ N. Let G = (A ∪ B,E) be a

bipartite robust (ν, τ)-expander on 2n vertices with minimum degree at least n/2. Then,

any µn-bounded system of conflicts for E(G) contains a conflict-free perfect matching.

4.5 Extremal Graphs

In this section we study the existence of rainbow perfect matchings for extremal graphs.

The example displayed at the beginning of Section 4.3 suggests that extremal graphs

have special edges that are difficult to switch; namely, the ones between A1 and B2. Since

the partitions A = (A1, A2) and B = (B1, B2) can be unbalanced, it may be unavoidable

to select edges in E(A1, B2) in a perfect matching of G. In fact, we may have to choose

linearly many such edges.

A greedy approach for choosing the edges in E(A1, B2) is likely to fail. By the prop-
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erties of the edge colouring, the graph may contain vertices that only have a constant

number of colours in the edges incident to them. If one selects a partial matching M∗

in E(A1, B2) and removes all the edges that have a colour in M∗, vertices that have few

colours on their incident edges are likely to become isolated.

The way to handle this problem is given by Lemma 4.11, which shows that there is

a way to select a rainbow partial matching M∗ in E(A1, B2) such that |Ai \ V (M∗)| =

|Bi \ V (M∗)|, for i ∈ {1, 2}, and such that the degrees in the subgraph obtained after

removing the colours in M∗ are similar to the ones in the original graph.

4.5.1 A technical lemma

The core of the proof of Lemma 4.11 is a technical lemma that we present in this section.

We will be dealing both with multisets and with sets. We adopt the convention that

a multiset will be defined with double brackets ({{. . .}}) and a set with single brackets.

For a multiset C and k ∈ N, we denote by m(k, C) the multiplicity of k in C. We define

the operators ∩+ and \+ both taking a multiset and a set and returning a multiset as

follows: if A is a multiset and B is a set,

A ∩+ B := {{x ∈ A : x ∈ B}} A \+ B := A \ (A ∩+ B)

where \ is the standard multiset difference. That is, A∩+B and A\+B are the multisets

with multiplicity functions, m(k,A ∩+ B) = m(k,A)I(k ∈ B) and m(k,A \+ B) =

m(k,A)−m(k,A ∩+ B).

Lemma 4.9. Suppose that 1/N � µ � ν, 1/α � η ≤ 1 where N ∈ N. Let C1, . . . , CN

be multisets of elements of N such that:

(B1) νN ≤ |Ci| ≤ N , for every i ∈ [N ];

(B2)
∑N

i=1m(k, Ci) ≤ µN , for every k ∈ N.

34



Let ` ∈ N with 1 ≤ `� νN and α` ∈ N. Let U ⊆ N be a set with |U | = α`. Then, there

exists T ⊆ U such that:

(T1) |T | ≥ `;

(T2) |Ci \+ T | ≥ (1− η)|Ci|, for every i ∈ [N ].

Proof. If ` ≤ 2α, then let T be an arbitrary subset of U of size `. Since for every i ∈ [N ]

and as µ� η, ν, we have µN` ≤ 2µαN ≤ νηN ≤ η|Ci|, (T2) clearly holds. Throughout

the proof we will assume that ` ≥ 2α.

Let 0 < ε < 1 be such that µ � ε � ν, 1/α and let m∗ := ε
10α2 · N

logN
and let

s := log(µN/m∗). For every i ∈ [N ] and every j ∈ [s], define the (multi)sets

P j
i = {{k ∈ Ci : 2−jµN ≤ m(k, Ci) ≤ 2−(j−1)µN}},

Sji = {k ∈ P j
i }.

Further, define

Pi = ∪j∈[s]P
j
i ,

Si = ∪j∈[s]S
j
i ,

Qi = Ci \ Pi.

Note that for every k ∈ Qi, m(k, Ci) ≤ m∗. Let pji = |P j
i |, s

j
i = |Sji |, pi = |Pi|, si = |Si|,

qi = |Qi|, ci = |Ci|. Then, these parameters satisfy

2−jµNsji ≤ pji ≤ 2−(j−1)µNsji , (4.2)∑
j∈[s]

pji = pi, (4.3)

pi + qi = ci.

Let T0 ⊆ U be a random subset of U obtained by including each element of U indepen-
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dently at random with probability δ := 3α−1. Note that E(|T0|) = 3`.

Claim. With probability 1− oN(1), for every i ∈ [N ], |Qi \+ T0| ≥ (1− 4α−1)qi − εN .

Proof. Fix i ∈ [N ]. If qi ≤ εN the statement is clearly true. So we may assume that

qi ≥ εN . For each k ∈ Qi, define mk := m(k, Ci).

Then, ∑
k∈Qi

m2
k ≤ m∗

∑
k∈Qi

mk = m∗qi ≤
εN

10α2 logN
· qi. (4.4)

Let Xi = |Qi ∩+ T0| and note that E(Xi) ≤ δqi. By Azuma’s Inequality (see e.g. [90])

with mk satisfying (4.4) and the fact that qi ≥ εN ,

P(Xi − E(Xi) ≥ α−1qi) ≤ 2 exp

(
−q2

i

2α2
∑

k∈Qim
2
k

)
≤ 2 exp

(
− 5

qi logN

εN

)
≤ N−5 .

So, with probability 1− oN(1), for every i ∈ [N ], if qi ≥ εN , then

|Qi \+ T0| ≥ (1− α−1)qi − E(Xi) = (1− 4α−1)qi ≥ (1− 4α−1)qi − εN .

�

We now consider the sets Pi. For ρ > 0, a pair (i, j) is ρ-dense if sji ≥ 2(j−1)/2ρ. Let

Ri be the set of pairs (i, j) that are µ−1/2-dense. The contribution of non-dense pairs is

negligible; using (4.2), we have

∑
j 6∈Ri

pji ≤ µN
∑
j 6∈Ri

2−(j−1)sji ≤ µ1/2N
∑
j 6∈Ri

2−(j−1)/2 ≤ µ1/3N . (4.5)

We say that i ∈ [N ] is susceptible if |Ci∩+U | ≥ η|Ci|. Let D = {i ∈ [N ] : i is susceptible}.

Note that (T2) is satisfied for every i /∈ D, as we have

|Ci \+ T | ≥ |Ci \+ U | = |Ci| − |Ci ∩+ U | ≥ (1− η)|Ci| .
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Since |Ci| ≥ νN , we can bound the size of D as follows

|D| ≤ α` · µN/(ηνN) ≤ ` . (4.6)

Finally, for every S ⊆ N and j ∈ [s] we say that i ∈ [N ] is j-activated by S if |Sji ∩ S| ≥

2δsji .

Consider the set T ⊆ T0 defined as follows: we let T be a copy of T0 where for each

i ∈ D and j ∈ [s] we remove Sji if

i) i is j-activated by T0, and

ii) j ∈ Ri (i.e., (i, j) is µ−1/2-dense).

Observe that by removing elements from T0 we only increase the size of Qi \+ T0. From

the construction of T0 and using (4.2) twice, it follows that for each i ∈ D, j ∈ Ri, we

have

|P j
i ∩+ T | ≤ µN2−(j−1)|Sji ∩ T | ≤ µN2−(j−1) · 2δsji ≤ 4δpji .

By combining this with (4.5), we obtain

|Pi ∩+ T | =
∑
j∈[s]

|P j
i ∩+ T | =

∑
j∈Ri

|P j
i ∩+ T |+

∑
j 6∈Ri

|P j
i ∩+ T |

≤ 4δ
∑
j∈Ri

pji +
∑
j 6∈Ri

pji ≤ 4δpi + µ1/3N.

Therefore, with probability 1−oN(1), condition (T2) is satisfied; that is, for every i ∈ [N ],

|Ci \+ T | = |Pi \+ T |+ |Qi \+ T |

≥ |Pi \+ T |+ |Qi \+ T0|

≥ (1− 4δ)pi − µ1/3N + (1− 4α−1)qi − εN ≥ (1− η)|Ci|.

In order to conclude the proof of the lemma, it suffices to show that condition (T1) holds

with positive probability, from where we will deduce the existence of the desired set.
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Claim. With probability at least 9
10

, we have |T | ≥ |T0| − `.

Proof. Since |Sji ∩ T0| is stochastically dominated by a binomial random variable with

parameters sji and δ (there might be elements of Sji that are not in U), we can use

Chernoff’s inequality (see e.g. Corollary 2.3 in [58]) to show that

P(i is j-activated) ≤ 2e−
δs
j
i

3 .

If j ∈ Ri, then sji ≥ 2(j−1)/2µ−1/2. Thus, e−
δs
j
i

3 ≤ e
− δ2

(j−1)/2

3µ1/2 ≤ µ22−j. Hence, for j ∈ Ri

P(i is j-activated) ≤ µ22−j . (4.7)

Recall the following inequality which follows from (4.2) and (4.3),

∑
j∈[s]

2−jsji ≤ µ−1 . (4.8)

Define the following random variable

Y := |T0 \ T | ≤
∑
i∈D

∑
j∈Ri

sji1(i is j-activated) .

Note that the sets D and Ri are fully determined by C1, . . . , CN . Then using (4.6), (4.7)

and (4.8), it follows that

E(Y ) ≤
∑
i∈D

∑
j∈Ri

sjiP(i is j-activated) ≤ µ2
∑
i∈D

∑
j∈Ri

2−jsji

≤ µ2
∑
i∈D

∑
j∈[s]

2−jsji ≤ µ|D| ≤ `

10
.

So, by Markov’s inequality, P(Y ≥ `) ≤ 1/10. �

Recall that ` ≥ 2α. Since |T0| is distributed as a binomial random variable with

parameters α` and δ, Chernoff’s inequality implies that P(|T0| ≤ 2`) ≤ 2e−
`2

2α` = 2e−
`

2α ≤

38



2
e
. Thus, with positive probability, we have

|T | ≥ 2`− ` ≥ `. (4.9)

We conclude that there exists T ⊆ U satisfying (T1) and (T2), concluding the proof of

the lemma. �

4.5.2 Superextremal graphs

We will use Lemma 4.9 to control the effect of colour deletions in the degrees of G. If

degrees do not shrink significantly, the graphs Gi = G[Ai, Bi], i ∈ {1, 2}, will still be

fairly dense, and by applying Lemma 4.5 we will get the existence of a rainbow perfect

matching.

However, the ε-extremal condition does not ensure that the graphs Gi have large

minimum degree; that is, Gi is not necessarily Dirac. In this section we refine the notion

of extremality and we obtain a partition where the degrees of each vertex within its part

is controlled. Eventually, this will allow us to count the number of switchable edges.

Definition. Let 0 < ν1 ≤ ν2 < 1. A balanced bipartite graph G = (A ∪ B,E) on

2n vertices is a (ν1, ν2)-superextremal graph if there exist partitions A = A1 ∪ A2 and

B = B1 ∪B2 such that the following properties are satisfied for i ∈ {1, 2}:

(Q1) e(v,Bi) ≥ n
2
− ν1n, for all but at most ν1n vertices v ∈ Ai;

(Q2) e(v,Bi) ≥ ν2n, for every v ∈ Ai;

(Q3) e(v,Ai) ≥ n
2
− ν1n, for all but at most ν1n vertices v ∈ Bi;

(Q4) e(v,Ai) ≥ ν2n, for every v ∈ Bi;

(Q5) ||A1| − |B1||, ||A1| − |A2|| ≤ ν1n;

(Q6) e(v,B2) ≤ ν2n, for every v ∈ A1, unless |A1| = |B1|;
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(Q7) e(v,A1) ≤ ν2n, for every v ∈ B2, unless |A1| = |B1|;

(Q8) |A1| ≥ |B1|;

(Q9) one of the following holds for ` := |A1| − |B1|:

– e(v,B2) ≥ `/2, for every v ∈ A1;

– e(v,A1) ≥ `/2, for every v ∈ B2.

Lemma 4.10. Suppose 1/n � ε � ν1 � ν2 � 1 where n ∈ N. Let G = (A ∪ B,E) be

an ε-extremal Dirac bipartite graph on 2n vertices. Then, G is a (ν1, ν2)-superextremal

graph.

Proof. Since G is an ε-extremal graph, there exist partitions A = A1
1∪A1

2 and B = B1
1∪B1

2

satisfying (P1), (P2) and (P3). Let 0 < ν3 ≤ ν4 < 1 such that ε � ν3 � ν1 � ν4 � ν2

and define

X1
1 =

{
v ∈ A1

1 : e(v,B1
1) ≤ n

2
− ν3n

}
X2

1 =
{
v ∈ A1

1 : e(v,B1
1) ≤ n

4

}
X1

2 =
{
v ∈ A1

2 : e(v,B1
2) ≤ n

2
− ν3n

}
X2

2 =
{
v ∈ A1

2 : e(v,B1
2) ≤ n

4

}
Y 1

1 =
{
v ∈ B1

1 : e(v,A1
1) ≤ n

2
− ν3n

}
Y 2

1 =
{
v ∈ B1

1 : e(v, A1
1) ≤ n

4

}
Y 1

2 =
{
v ∈ B1

2 : e(v,A1
2) ≤ n

2
− ν3n

}
Y 2

2 =
{
v ∈ B1

2 : e(v, A1
2) ≤ n

4

}

We double count edges to bound the size of these sets. Note that e(A1
1, B

1
1) ≥ n

2
|A1

1|−εn2

by counting from A1
1. Alternately, we can also obtain that e(A1

1, B
1
1) ≤ |X1

1 |(n2 − ν3n) +

(|A1
1| − |X1

1 |)|B1
1 |. Combining these two inequalities yields

|X1
1 |
(
|B1

1 | −
n

2
+ ν3n

)
≤ |A1

1|
(
|B1

1 | −
n

2

)
+ εn2 ≤ 2εn2.

Observe that |B1
1 | ≥ n

2
−εn and so |B1

1 |− n
2

+ν3n ≥ ν3n
2

. Therefore |X1
1 | ≤ ν3n. Similarly,

one can deduce that |X2
1 | ≤ 9εn. Analogous computations lead to |X1

2 |, |Y 1
1 |, |Y 1

2 | ≤ ν3n

40



and to |X2
2 |, |Y 2

1 |, |Y 2
2 | ≤ 9εn. Now, we define

A2
1 = (A1

1 \X2
1 ) ∪X2

2 B2
1 = (B1

1 \ Y 2
1 ) ∪ Y 2

2

A2
2 = (A1

2 \X2
2 ) ∪X2

1 B2
2 = (B1

2 \ Y 2
2 ) ∪ Y 2

1

Without loss of generality, |A2
1| ≥ |B2

1 |; otherwise we swap the labels of A2
1 and A2

2, and

the labels of B2
1 and B2

2 . By swapping the labels we lose control of e(A2
1, B

2
2). However,

at this point, this condition is no longer needed, as we have a bound on the size of the

sets Xj
i and Y j

i , for i, j ∈ {1, 2}.

Let

X3
1 = {v ∈ A2

1 : e(v,B2
2) ≥ ν4n} Y 3

2 = {v ∈ B2
2 : e(v,A2

1) ≥ ν4n}

If |X3
1 | + |Y 3

2 | ≥ |A2
1| − |B2

1 |, choose X4
1 ⊆ X3

1 and Y 4
2 ⊆ Y 3

2 arbitrarily such that

|X4
1 |+ |Y 4

2 | = |A2
1| − |B2

1 |. Otherwise, let X4
1 = X3

1 and Y 4
2 = Y 3

2 . Recall that, since G is

ε-extremal, it satisfies n/2− εn ≤ |A1
1|, |B1

1 | ≤ n/2 + εn. Thus, we have

|X4
1 | ≤ |A2

1| − |B2
1 | ≤ |A1

1| − |B1
1 |+ 9εn+ ν3n ≤ 10εn+ ν3n .

and similarly for Y 4
2 .

We define

A1 = A2
1 \X4

1 A2 = A2
2 ∪X4

1 B1 = B2
1 ∪ Y 4

2 B2 = B2
2 \ Y 4

2

We claim that the partitions A = A1∪A2 and B = B1∪B2 satisfy properties (Q1)-(Q9),

and so, G is a (ν1, ν2)-superextremal graph.

Let us first check that property (Q1) is satisfied. Observe that all the vertices in A1
1,

excluding the ones in X1
1 , have degree at least n/2−ν3n. Since |X2

1 | ≤ 9εn, all the vertices

in A2
1 have degree at least n/2− ν3n− 9εn to B1, excluding the ones in X1

1 ∪X2
2 . Since
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|X4
1 | ≤ 10εn+ν3n, all the vertices in A1 have degree at least n/2−2ν3n−19εn ≥ n/2−ν1n,

excluding the ones in X1
1 ∪X2

2 . Moreover, |X1
1 ∪X2

2 | ≤ ν3n+ 9εn ≤ ν1n, so (Q1) follows.

Similar arguments yield to properties (Q2)-(Q4) and (Q6)-(Q7).

Property (Q8) follows from the choice of X4
1 and Y 4

2 , since |A1| = |A2
1| − |X4

1 | ≥

|B2
1 | + |Y 4

2 | = |B1|. Property (Q5) follows since |A1| − |B1| ≤ |A2
1| − |B2

1 | ≤ 20εn ≤ ν1n

(and since a similar computation bounds ||A1| − |A2||).

Finally, Property (Q9) follows by noting that if ` = |A1| − |B1| (and |A2| = |B2| − `),

then either |B1| or |A2| is at most n/2 − `/2 thus requiring minimum degree `/2 either

from A1 to B2 or from B2 to A1, respectively.

�

4.5.3 Selecting a rainbow partial matching between parts

Given a superextremal graph G with partitions A = A1 ∪ A2 and B = B1 ∪ B2, in this

section we will show the existence of a rainbow partial matching M∗ in G[A1, B2] of size

` = |A1| − |B1| such that the graph H resulting from removing all edges incident to M∗

and all edges with colours that appear in M∗, has similar degrees as the graph G.

Lemma 4.11. Suppose 1/n � µ � ν1 � ν2 � ν3 � η1 � 1 where n, ` ∈ N. Let

G = (A ∪ B,E) be a (ν1, ν3)-superextremal graph with partitions A = A1 ∪ A2 and

B = B1 ∪ B2. Then, any µn-bounded edge colouring χ of G admits a rainbow matching

M∗ of size ` = |A1| − |B1| such that the following holds. Let H = (AH ∪BH , EH) be the

graph where AH = A \ V (M∗), BH = B \ V (M∗) and

EH = {x = ab ∈ E(G) : a, b /∈ V (M∗), χ(x) /∈ χ(E(M∗))} .

Let nH := n − `. Then, there exist partitions AH = AH1 ∪ AH2 and BH = BH
1 ∪ BH

2 that

satisfy the following properties for i ∈ {1, 2}:

(R1) eH(v,BH
i ) ≥ (1− η1)nH

2
, for all but at most ν1n vertices v ∈ AHi ;

42



(R2) eH(v,BH
i ) ≥ ν2nH , for every v ∈ AHi ;

(R3) eH(v, AHi ) ≥ (1− η1)nH
2

, for all but at most ν1n vertices v ∈ BH
i ;

(R4) eH(v, AHi ) ≥ ν2nH , for every v ∈ BH
i ;

(R5) |AH1 | = |BH
1 |, |AH2 | = |BH

2 | and |AH1 | − |AH2 | ≤ ν1nH .

Proof. We first greedily select a large rainbow matching in G[A1, B2]. Let E0 = E(A1, B2)

and M0 = ∅. By (Q5) and (Q8), note that |E0| ≥ `
2
(n

2
− ν1n). For every i ≥ 1 and

while Ei−1 6= ∅, we arbitrarily choose xi = aibi ∈ Ei−1 and define the graph Mi with

V (Mi) = V (Mi−1) ∪ {ai, bi} and E(Mi) = E(Mi−1) ∪ {xi}. We let

Ei = {x = ab ∈ Ei−1 : a, b /∈ V (Mi), χ(x) /∈ χ(E(Mi))} .

Since χ is µn-bounded, |A1| − |B1| = ` ≥ 1 and using (Q6)-(Q7), we have |Ei| ≥

|Ei−1| − (2ν3 + µ)n. Let i∗ = b`/(10ν3)c. It follows that Ei 6= ∅, for every 0 ≤ i ≤ i∗.

We now apply Lemma 4.9 with parameters N = 2n, α = i∗/`, ν = ν3/2, η = η1/2

and U = {χ(x) : x ∈ Mi∗}. For every v ∈ A ∪ B, we choose Cv = {{χ(x) : v ∈ x}}

to be the multiset of colours on edges incident with vertex v. By (Q2) and (Q4), we

have νN ≤ |Cv| ≤ N , for each v ∈ A ∪ B. As each edge has two endpoints and χ is

µn-bounded, then
∑

v∈A∪Bm(k, Cv) ≤ 2µn = µN . Hence, (B1) and (B2) hold.

Lemma 4.9 implies the existence of a set of colours T ⊆ U of size ` satisfying (T1)

and (T2). Let M∗ be the subgraph of Mi∗ induced by the colours in T . Then, M∗ is

a rainbow matching of size `. It suffices to prove that H, as defined in the statement,

satisfies (R1)-(R5).

For each Z ∈ {A,B} and i ∈ {1, 2}, let ZH
i = Zi ∩V (H) and Z̄H

i be the other choice.

Property (R5) follows since |BH
1 | = |B1| = |A1| − ` = |AH1 | and using (Q5). Then, for
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every v ∈ ZH
i , we have

eH(v, Z̄H
i ) ≥ |Cv \+ T | − ` ≥ (1− η)|Cv| − ν1n ≥

(1− η)(n
2
− ν1n)− ν1n ≥ (1− η1)nH

2
if v satisfies (Q1) or (Q3)

(1− η)ν3n− ν1n ≥ ν2nH if v satisfies (Q2) or (Q4)

Thus H satisfies (R1)-(R4), completing the proof. �

4.5.4 Completing the rainbow perfect matching

Consider the rainbow partial matching M∗ and the graph H provided by Lemma 4.11.

Note that H is vertex disjoint from M∗ and has no edge with colour in χ(E(M∗)). Thus,

the union of any rainbow perfect matching of H and M∗ will provide a rainbow perfect

matching of G.

We will show that H satisfies the conditions of Lemma 4.5, to conclude the existence

of a rainbow perfect matching there.

Of course, in order to have a rainbow perfect matching in H we need to ensure the

existence of at least one perfect matching. We will use the Moon-Moser condition for the

existence of Hamiltonian cycles in bipartite graphs to guarantee we can find a perfect

matching.

Theorem 4.12. (Moon, Moser [93]) Let F = (R∪S,E) be a balanced bipartite graph on

2m vertices with R = {r1, . . . , rm} and S = {s1, . . . , sm} that satisfies d(r1) ≤ . . . ≤ d(rm)

and d(s1) ≤ . . . ≤ d(sm). Suppose that for every 1 ≤ k ≤ m/2, we have d(rk) > k and

d(sk) > k. Then F has a Hamiltonian cycle.

Lemma 4.13. Suppose 1/nH � µ � ε � ν1 � γ � ν2 � η � 1 where nH ∈ N. Let

H = (AH∪BH , EH) be a bipartite graph with |AH | = |BH | = nH and satisfying properties

(R1)-(R5). Consider the subgraph H∗ = (AH ∪BH , EH
∗ ) of H with EH

∗ = EH
∗,1∪EH

∗,2 and,
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for i ∈ {1, 2},

EH
∗,i = {x = ab ∈ E(H) : a ∈ Ai, b ∈ Bi and max{eH(a,Bi), eH(b, Ai)} ≥ (1− η)nH/2}

Then, H∗ has at least one perfect matching.

Moreover, if M∗ is a perfect matching of H∗ and x = a1b1 ∈ E(M∗), then there are at

least γn2
H edges of H∗ that are (x,M∗)-switchable.

Proof. It is easy to check that H∗ has only two connected components. We will show

that it is true in H1 = H∗[A
H
1 , B

H
1 ] and the same argument also applies to H∗[A

H
2 , B

H
2 ].

Note that H1 is a balanced bipartite graph on 2m vertices for some m ∈ (nH(1/2 −

ν1), nH(1/2 + ν1)).

We will use the Moon-Moser condition (Lemma 4.12) to show the existence of a

Hamiltonian cycle in H1. Let AH1 = {r1, . . . , rm} and BH
1 = {s1, . . . , sm} with d(r1) ≤

· · · ≤ d(rm) and d(s1) ≤ · · · ≤ d(sm).

If 1 ≤ k ≤ 2ν1nH < 5ν1m − 1, then, by (R2), d(rk) ≥ ν2nH ≥ 5ν1m > k, so there is

nothing to prove. If 2ν1nH ≤ k ≤ m/2, then, by (R1), d(rk) ≥ (1−η)m > k. An identical

argument works for sk using (R3) and (R4). Thus we satisfy the Moon-Moser condition.

So, H1 has a Hamiltonian cycle, which implies the existence of a perfect matching.

Let M∗ be a perfect matching of H∗. Consider the bijective map fM∗ : AH → BH

defined as f(a) = b if and only if ab ∈ M∗. Let x = a1b1 ∈ M∗, and, without loss of

generality, assume that a1 ∈ AH1 , so b1 ∈ BH
1 . In order to prove the second part of the

lemma, we need to show that there are many edges y = ab that are (x,M∗)-switchable.

Let 0 < δ < 1 such that γ � δ � ν2. Observe that the minimum degree in H∗ is at

least (ν2 − ν1)nH ≥ δm. By construction, there is no pair of vertices both of degree less

than (1− η)m that are connected by an edge in H∗. Thus, without loss of generality, we

may assume that eH∗(a1, B
H
1 ) ≥ δm and that eH∗(b1, A

H
1 ) ≥ (1− η)m.

Since |f−1
M∗

(NH∗(a1))| ≥ δm and since there are at most 2ν1m vertices of degree less

than (1 − η)m, there are at least δm/2 choices for a ∈ f−1
M∗

(NH∗(a1) \ {b1}) that satisfy
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eH∗(a,B
H
1 ) ≥ (1− η)m.

Fix such a vertex a and note that

eH∗
(
a,BH

1 \ fM∗(NH∗(b1) \ {a1, a})
)
≤ |BH

1 | − (1− η)m+ 2 ≤ ηm+ 2 .

Therefore,

eH∗ (a, fM∗(NH∗(b1) \ {a1, a})) = eH∗(a,B
H
1 )− eH∗

(
a,BH

1 \ fM∗(NH∗(b1) \ {a1, a})
)

≥ (1− η)m− (ηm+ 2)

≥ (1− 3η)m .

Thus, there are at least (1−3η)m choices for b ∈ fM∗(NH∗(b1)\{a1, a}) with ab ∈ E(H∗).

It follows that there are at least (δm/2)(1 − 3η)m ≥ γn2
H choices of an edge y = ab ∈

E(H∗) such that there exists a 6-cycle that contains x, y and two other edges of M∗. We

conclude that there are at least γn2
H edges of H∗ that are (x,M∗)-switchable.

�

An application of Lemma 4.5, Lemma 4.11 and Lemma 4.13 yields the following

immediate corollary.

Corollary 4.14. Suppose 1/n � µ � ε � 1 where n ∈ N. Let G = (A ∪ B,E) be an

ε-extremal Dirac bipartite graph on 2n vertices. Then, any µn-bounded edge colouring of

G contains a rainbow perfect matching.

4.6 Proofs of Theorem 4.3 and Theorem 4.4

We finally prove our main theorems.

Proof of Theorem 4.3. Let G be a Dirac bipartite graph on 2n vertices and suppose

1/n � µ � ε � ν � τ � 1. Consider a µn-bounded edge colouring χ of G. By
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Lemma 4.6, the graph G is either ε-extremal or a bipartite robust (ν, τ)-expander. If G

is a bipartite robust (ν, τ)-expander, then G has a rainbow perfect matching by Corol-

lary 4.8 with F = Fχ. If G is an ε-extremal graph, then G has a rainbow perfect matching

by Corollary 4.14. �

Proof of Theorem 4.4. Let G = (A ∪ B,E) be a balanced bipartite graph on 2n vertices

with minimum degree at least (1/2 + ε)n. Suppose that 1/n � µ � ε � 1. We will

show that G is a bipartite robust (ε/8, 1/4)-expander. Let X be a subset of either A or

B with n/4 ≤ |X| ≤ 3n/4; without loss of generality, we may assume that X ⊆ A. By

the minimum degree condition we have e(X,B) ≥ (1/2 + ε)n|X| and, by the definition

of robust neighbourhood, we have e(X,B) ≤ |X||RNε/8(X)| + εn(n − |RNε/8(X)|)/8.

Combining these inequalities yields |X||RNε/8(X)|+εn2/8 ≥ (1/2+ε)n|X| and, as |X| ≥

n/4, upon rearrangement, we have that |RNε/8(X)| ≥ (1/2 + ε/2)n. If n/4 ≤ |X| ≤ n/2,

then |RNε/8(X)| ≥ |X| + εn/8 and we are done. If n/2 ≤ |X| ≤ 3n/4, by the minimum

degree condition, each v ∈ B has at least εn neighbours in X. Thus RNε/8(X) = B

and |RNε/8(X)| = n ≥ |X| + εn/8. So G is a bipartite robust (ε/8, 1/4)-expander.

Corollary 4.8 completes the proof. �

The following proposition shows that µ ≤ 1/4 (see Section 4.8 for a discussion).

Proposition 4.15. For every t ∈ N, there exists a Dirac bipartite graph G on n = 4t(t+1)

vertices and a
(
t+1
4t
n
)
-bounded edge colouring of G such that G does not contain a rainbow

perfect matching.

Proof. Let m = 2t. Consider the bipartite graph G = (A ∪B,E) constructed as follows.

The vertex set is partitioned into A = A1 ∪ A2 and B = B1 ∪B2, with

A1 = {A1
1, . . . , A

m−1
1 }

A2 = {A1
2, . . . , A

m+1
2 }

B1 = {B1
1 , . . . , B

m+1
1 }

B2 = {B1
2 , . . . , B

m−1
2 } ,
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where |Aik| = |Bi
k| = t+ 1. The edge set of G is consists of two complete bipartite graphs

induced by G[A1, B1] and G[A2, B2], and of m + 1 smaller complete bipartite graphs

induced by G[Ai2, B
i
1], for i ∈ [m+ 1]. Note that G is a Dirac bipartite graph.

Consider the edge colouring that assigns colour ci,jk,` to the edges in G[Aik, B
j
` ]. Since

each set has size t+ 1, the colouring is (t+ 1)2 =
(
t+1
4t
n
)
-bounded.

Suppose that G admits a rainbow perfect matching M . Note that M contains at

most m+ 1 edges in G[A2, B1]. Otherwise there exists i ∈ [m+ 1] such that M contains

two edges in E[Ai2, B
i
1], contradicting the fact that it is rainbow, since both edges have

colour ci,i2,1. Since all the edges incident to A1 are also incident to B1, we must have

|A1| ≥ |B1| − (m+ 1). However

|A1| = (m− 1)(t+ 1) = (m+ 1)(t+ 1)− 2(t+ 1) = |B1| − (m+ 2),

a contradiction. We conclude that, G has no rainbow perfect matching.

�

4.7 Applications

In the following section we provide some applications of our main theorems on the exis-

tence of rainbow spanning subgraphs of graphs with large minimum degree that are not

necessarily bipartite.

We first discuss the existence of rainbow ∆-factors in Dirac graphs for a wide range

of ∆. Recall that a Dirac graph on n vertices is a graph with minimum degree at least

n/2. The existence of (n/2)-factors in Dirac graphs was proved by Katerinis [61]. Our

next result extends Theorem 4.3 to ∆-factors of Dirac graphs.

Theorem 4.16. There exist µ > 0 and n0 ∈ N such that if n ≥ n0 then for every

even 1 ≤ ∆ ≤ µn the following holds. Let G be a Dirac graph on n vertices, then any

(µn/∆)-bounded colouring of G contains a rainbow ∆-factor.
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Note that this theorem is tight in its dependence on n and ∆ as a ∆ factor contains

n∆/2 edges.

Proof. We construct an auxiliary bipartite graph Q = (V (Q), E(Q)) as follows. The

vertex set is V (Q) = A ∪ B, where A = {uv,i : v ∈ V (G), 1 ≤ i ≤ ∆/2} and B = {uv,i :

v ∈ V (G),∆/2 < i ≤ ∆}. The edge set is defined as

E(Q) = {uv,iuw,j : uv,i ∈ A, uw,j ∈ B and vw ∈ E(G)} .

Note that Q is a bipartite Dirac graph on 2N = ∆n vertices. Let χ : E(G) → N be a

µn-bounded edge colouring of G. Construct the edge colouring χQ : E(Q) → N defined

by χQ(uv,iuw,j) = χ(vw), for every uv,iuw,j ∈ E(Q). Since 2 · (∆/2)2 · µn/∆ = µN , the

colouring is µN -bounded. Thus, by Theorem 4.3, Q has a rainbow perfect matching M .

Consider the subgraph H = (V (H), E(H)) of G with V (H) = V (G) and edge set

E(H) = {vw ∈ E(G) : there exist 1 ≤ i ≤ ∆/2 < j ≤ ∆ such that uv,iuw,j ∈ E(M)} .

We claim that H is a rainbow ∆-factor of G. Since uv,i ∈ V (Q) for every i ∈ [∆] and M is

a perfect matching of Q, we have dH(v) = ∆. Since uv,iuv,j 6∈ E(Q) for every i, j ∈ [∆], H

has no self loops. Finally, since M is a rainbow perfect matching of Q, and by definition

of the colouring χ, H has no multiple edges and each colour in χ appears at most once

in M . Thus, H is a simple rainbow ∆-regular spanning subgraph of G. �

Our second corollary concerns bipartite subgraphs of graphs with large minimum

degree. Consider two graphs G and H on n vertices with ∆(H) ≤ ∆. The Bollobás-

Eldridge-Catlin conjecture [11, 19], states that if δ(G) ≥ (1− 1/(∆ + 1))n− 1/(∆ + 1),

then G contains a copy of H. Sauer and Spencer [104] showed that the conjecture holds

if δ(G) ≥ (1− 1/2∆)n−1. This result has been improved for large values of ∆ [62]. The

existence of rainbow copies of H in k-bounded edge colourings of Kn was studied in [14],

provided that k = O(n/∆2). In [111], it was observed that similar techniques allow to
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replace Kn by a graph G with δ(G) ≥ (1− c/∆)n, for a sufficiently small constant c > 0.

Our last result partially extends the result in [14] at the Sauer-Spencer minimum

degree threshold.

Theorem 4.17. For every γ > 0 there exists µ > 0 such that for every ∆ ∈ N there

exists n0 ∈ N such that for every even n ≥ n0 the following holds. Let G be a graph on

n vertices with δ(G) ≥ (1− 1/2∆ + γ)n and let H be a balanced bipartite graph on n

vertices with ∆(H) ≤ ∆, then any proper (µn/∆2)-bounded edge colouring of G contains

a rainbow copy of H.

Sudakov and Volec [111] showed that there exist a graph H with maximum degree at

most ∆ and a 3.9n/∆2-bounded edge colouring of Kn which does not contain a rainbow

copy of H. Therefore this theorem is also tight up to constant factors.

Proof. By Lemma 2.3 in [5] there is a balanced bipartite spanning subgraph G′ = (A ∪

B,E) of G with minimum degree δ(G′) ≥ (1 − 1/2∆ + γ/2)m, where 2m = n. By

Theorem 3.5 in [42], the minimum degree condition ensures the existence of a subgraph

J of G′ that is isomorphic to H. For each a ∈ A, let Na = {b ∈ B : ab ∈ E(J)} denote

the neighbourhood of a in J . Construct an auxiliary bipartite graph Q = (V (Q), E(Q)).

The vertex set is the multiset V (Q) = A ∪ Γ, where Γ = {{Na : a ∈ A}} as a multiset.

The edge set is defined as

E(Q) = {a1Na2 : Na2 ⊆ NG(a1)} .

Note that Q is a balanced bipartite graph on 2m vertices. We first show that δ(Q) ≥

(1/2 + ε)m, where ε = γ/2. For each a ∈ A, there at most (1/2∆ − ε)m vertices b ∈ B

such that ab /∈ E(G). Since ∆(J) ≤ ∆, for each b ∈ B there exist at most ∆ vertices

a′ ∈ A such that b ∈ Na′ . Thus, there are at most (1/2 − ε∆)m vertices a′ ∈ A such

that Na′ is not included in NG(a). In particular, we have dQ(a) ≥ (1/2 + ε)m. For each
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a ∈ A, we have NQ(Na) = ∩b∈NaNG(b). So, by inclusion-exclusion,

dQ(Na) = | ∩b∈Na NG(b)| ≥ m−
∑
b∈Na

(m− |NG(b)|) ≥ (1/2 + ε)m .

Hence, δ(Q) ≥ (1/2 + ε)n.

Let χ be a proper µn-bounded edge colouring of G. Consider the following system of

conflicts,

FQ = {{a1Na′1
, a2Na′2

} :∃x, y ∈ E(G) with χ(x) = χ(y)

and {x, y} ⊆ EG(a1, Na′1
) ∪ EG(a2, Na′2

)} .

Fix an edge a1Na′1
∈ E(Q). For each b1 ∈ Na′1

, there are at most µn/∆2 edges a2b2

with χ(a2b2) = χ(a1b1). Again, since ∆(J) ≤ J , b2 is in at most ∆ neighbourhoods Γa′2 .

So, for each b ∈ Na′1
, there are most µn/∆ edges a2Na′2

conflicting with a1Na′1
. Since

|Na′1
| ≤ ∆, the total number of conflicts involving edge a1Na′1

is at most µn = 2µm. So

F is 2µm-bounded.

We can apply Theorem 4.4 to the balanced bipartite graph Q and the system of

conflicts FQ to deduce the existence of a FQ-conflict-free perfect matching M in Q.

Define the subgraph R = (V (R), E(R)) of G as follows. The vertex set is V (R) = V (G)

and edge set is

E(R) = {ab ∈ E(G) : there exists a′ ∈ A such that aNa′ ∈ E(M) and b ∈ Na′} .

We claim that R is a rainbow subgraph of G isomorphic to H. Consider a bijective map

f : V (G) → V (G), such that f(u) = v if and only if uNv ∈ M for u ∈ A and f is the

identity map on B. We claim that f is an isomorphism from R to J . To see this, first

observe that f is an automorphism of V (G). Now, consider an edge ab ∈ E(R) and note

that f(a)f(b) = f(a)b where f(a) is such that aNf(a) ∈ M . As M is a matching, there

is only one choice Na′ such that aNa′ ∈ E(M), implying that a′ = f(a). By definition
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of E(R), we have that b ∈ Nf(a), so f(a)b = f(a)f(b) ∈ E(J). Similarly, one can show

that for all edges ab ∈ E(J), f−1(a)f−1(b) = f−1(a)b ∈ E(R). Thus f is an isomorphism

between R and J , and since J is isomorphic to H, so is R.

Finally, suppose for contradiction that there exist x, y ∈ E(R) with χ(x) = χ(y). If

x = a1b1 and y = a2b2, let a′1, a
′
2 ∈ A be such that a1Na′1

, a′2Na′2
∈ E(M). Then, as

x, y ∈ E(R), we have b1 ∈ Na′1
and b2 ∈ Na′2

, implying that a1Na′1
and a′2Na′2

conflict

under FQ. This is a contradiction as M is a FQ-conflict-free perfect matching. So R is

rainbow. �

4.8 Further remarks

We conclude this chapter with a number of remarks and open questions.

1) The condition on the minimum degree in Theorem 4.3 is best possible. However,

the value of µ that follows from our proof is far from being optimal. In Section 4.6,

we showed that the statement is not true if µ > 1/4. Obtaining the best possible

value for µ is a difficult problem, since it would imply a minimum degree version of

the Ryser-Brualdi-Stein conjecture, which is wide open.

2) We believe that the statement of Theorem 4.3 should also hold for system of con-

flicts. The only obstacle in our proof is Lemma 4.9, which, in its current form,

cannot be adapted to deal with conflicts instead of colours.

3) As shown in Section 4.7, the methods presented in this chapter are of potential

interest to embed other conflict-free spanning structures in graphs with large mini-

mum degree, beyond perfect matchings. We study H-factors and Hamilton cycles in

the following two chapters. Krivelevich et al. [72] proved the existence of F -conflict-

free Hamiltonian cycles in Dirac graphs, provided that the conflicts in F are local.

Their proof is substantially different from ours and relies on Pósa rotations.
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4) Lu and Székely [82] generalised the idea of system of conflicts to include, not only

unordered pairs of edges, but sets of edges of any size. Under some sparsity con-

ditions on the set of conflicts, they proved the existence of conflict-free perfect

matchings in Kn,n. Our results can be seen as a first step towards extending the

Lu-Székely framework to Dirac graphs.

5) Csaba [30] proved the Bollobás-Eldridge-Catlin conjecture for embedding bipartite

graphs of maximum degree ∆ into any graph G of minimum degree at least (1 −

β)(1 − 1/(∆ + 1))n for some β > 0. It would be of interest to determine whether

a form of Theorem 4.17 holds in this setting, since it does not follow as a direct

consequence of Theorem 4.3 nor indeed is it immediate from the rainbow blow-up

lemma of Glock and Joos [44].
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CHAPTER 5

RAINBOW H-FACTORS

5.1 Introduction

A fundamental question in Extremal Combinatorics is to determine conditions on a hy-

pergraph G that guarantee an embedded copy of some other hypergraph H. The Turán

problem for an r-graph H asks for the maximum number of edges in an H-free r-graph G

on n vertices; we usually think of H as fixed and n as large. For r = 2 (ordinary graphs)

this problem is fairly well understood (except when H is bipartite), but for general r and

general H we do not even have an asymptotic understanding of the Turán problem (see

the survey [63]). For example, a classical theorem of Mantel determines the maximum

number of edges in a triangle-free graph on n vertices (it is bn2/4c), but we do not know

even asymptotically the maximum number of edges in a tetrahedron-free 3-graph on n

vertices. On the other hand, if we seek to embed a spanning hypergraph then it is most

natural to consider minimum degree conditions. Such questions are known as Dirac-type

problems, after the classical theorem of Dirac that any graph on n ≥ 3 vertices with

minimum degree at least n/2 contains a Hamilton cycle. There is a large literature on

such problems for graphs and hypergraphs, surveyed in [78, 76, 102, 120].

One of these problems, finding hypergraph factors, will be our topic for the remainder

of this chapter. To describe it we introduce some notation and terminology. Let G be an

r-graph on [n] = {1, . . . , n}. For any L ⊆ V (G) the degree of L in G is the number of
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edges of G containing L. The minimum `-degree δ`(G) is the minimum degree in G over

all L ⊆ V (G) of size `. Let H be an r-graph with |V (H)| = h | n. A partial H-factor

F in G of size m is a set of m vertex-disjoint copies of H in G. If m = n/h we call F

an H-factor. We let δ`(H,n) be the minimum δ such that δ`(G) > δnr−` guarantees an

H-factor in G. Then we define the asymptotic `-degree threshold for H-factors as

δ∗` (H) := lim
m→∞

δ`(H,mh) . (5.1)

We refer to Section 2.1 in [120] for a summary of the known bounds on δ∗` (H) (using

different notation). As for the Turán problem, δ∗1(H) is well-understood for graphs [70,

77], but there are few results for hypergraphs. Even for perfect matchings (the case when

H is a single edge) there are many cases for which the problem remains open (this is

closely connected to the Erdős Matching Conjecture [36]).

Note that the limit in the definition of δ∗` (H) does indeed exist. The proof of this is a

relatively straightforward adaptation of the proof of our main theorem which we sketch

in Appendix A.

Let us now introduce colours on the edges of G and ask for conditions under which we

can embed a copy of H that is rainbow, meaning that its edges have distinct colours. Be-

sides being a natural problem in its own right, this general framework also encodes many

other combinatorial problems. Perhaps the most well-known of these is the Ryser-Brualdi-

Stein Conjecture (Conjecture 4.1) on transversals in Latin squares, which is equivalent to

saying that any proper edge-colouring of the complete bipartite graph Kn,n has a rainbow

matching of size n − 1. There are several other well-known open problems that can be

encoded as finding certain rainbow subgraphs in graphs with an edge-colouring that is

locally k-bounded for some k, meaning that each vertex is in at most k edges of any

given colour (so k = 1 is proper colouring). For example, a recent result of Montgomery,

Pokrovskiy and Sudakov [91] shows that any locally k-bounded edge-colouring of Kn con-

tains a rainbow copy of any tree of size at most n/k − o(n), and this implies asymptotic
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solutions to the conjectures of Ringel [101] on decompositions by trees and of Graham

and Sloane [47] on harmonious labellings of trees.

We now consider rainbow versions of the extremal problems discussed above. The

rainbow Turán problem for an r-graph H is to determine the maximum number of edges

in a properly edge-coloured r-graph G on n vertices with no rainbow H. This problem

was introduced by Keevash, Mubayi, Sudakov and Verstraëte [64], who were mainly

concerned with degenerate Turán problems (the case of even cycles encodes a problem

from Number Theory), but also observed that a simple supersaturation argument shows

that the threshold for non-degenerate rainbow Turán problems is asymptotically the

same as that for the usual Turán problem, even if we consider locally o(n)-bounded

edge-colourings.

For Dirac-type problems, it seems reasonable to make stronger assumptions on our

colourings, as we have already noted that even locally bounded colourings of complete

graphs encode many problems that are still open. For example, Erdős and Spencer [39]

showed the existence of a rainbow perfect matching in any edge-colouring of Kn,n that

is (n − 1)/16-bounded, meaning that are at most (n − 1)/16 edges of any given colour.

In the previos chapter we obtained a Dirac-type version of this result, showing that any

µn-bounded edge-colouring of a subgraph of Kn,n with minimum degree at least n/2 has

a rainbow perfect matching. One could consider this a ‘local resilience’ version (as in

[112]) of the Erdős-Spencer theorem. This is suggestive of a more general phenomenon,

namely that for any Dirac-type problem, the rainbow problem for bounded colourings

should have asymptotically the same degree threshold as the problem with no colours.

A result of Yuster [119] on H-factors in graphs adds further evidence (but only for the

weaker property of finding an H-factor in which each copy of H is rainbow). For graph

problems, the general phenomenon was recently confirmed in considerable generality by

Glock and Joos [44], who proved a rainbow version of the blow-up lemma of Komlós,

Sárközy and Szemerédi [68] and the Bandwidth Theorem of Böttcher, Schacht and Taraz

[15].
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Our main result establishes the same phenomenon for hypergraph factors. We will

use the following boundedness assumption for our colourings, in which we include the

natural r-graph generalisations of both the local boundedness and boundedness assump-

tions from above (for r = 2 boundedness implies local boundedness, but in general they

are incomparable assumptions).

Definition 5.1.1. An edge-colouring of an r-graph on n vertices is µ-bounded if for every

colour c:

i) there are at most µnr−1 edges of colour c,

ii) for any set I of r − 1 vertices, there are at most µn edges of colour c containing I.

Note that we cannot expect any result without some “global” condition as in Definition

5.1.1.i, since any H-factor contains linearly many edges. Similarly, some “local” condition

along the lines of Definition 5.1.1.ii is also needed. Indeed, consider the edge-colouring

of the complete r-graph Kr
n by

(
n
r−1

)
colours identified with (r − 1)-subsets of [n], where

each edge is coloured by its r − 1 smallest elements. Suppose H has the property that

every (r − 1)-subset of V (H) is contained in at least 2 edges of H (e.g. suppose H is

also complete). Then there are fewer than n edges of any given colour, but there is no

rainbow copy of H (let alone an H-factor), as in any embedding of H all edges containing

the r − 1 smallest elements have the same colour.

Theorem 5.1.2. Let 1/n � µ � ε � 1/h ≤ 1/r < 1/` ≤ 1 with h|n. Let H be an

r-graph on h vertices and G be an r-graph on n vertices with δ`(G) ≥ (δ∗` (H) + ε)nr−`.

Then any µ-bounded edge-colouring of G admits a rainbow H-factor.

Furthermore, we shall show that there are graphs H such that one cannot completely

remove the requirement for some ε in the above theorem.

Theorem 5.1.3. Let t ≥ 3 and H be Kt the clique on t vertices. Then for any fixed

k ≥ 2 and n sufficiently large there exists a graph G of minimum degree at least

δ(G) ≥ t− 1

t
n+ k − 2
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and a max{2,
(
k
2

)
}-bounded colouring of its edges which has no rainbow H-factor.

In particular, a rainbow Hajnal-Szemerédi theorem does not exist even for 2-bounded

colourings.

Throughout the remainder of this chapter we fix `, r, h, ε, µ, n, H and G as in the

statement of Theorem 5.1.2. We also fix an integer m with µ � 1/m � ε and define

γ = (mh)−m.

5.2 Proof modulo lemmas

The outline of the proof of Theorem 5.1.2 is the same as that given by Erdős and Spencer

[39] for the existence of Latin transversals: we consider a uniformly random H-factor H

in G (there is at least one by definition of δ∗` (H)) and apply the Lopsided Lovász Local

Lemma to show that H is rainbow with positive probability. We will show that the local

lemma hypotheses hold if there are many feasible switchings, defined as follows.

Definition 5.2.1. Let F0 be an H-factor in G and H0 ∈ F0. An (H0, F0)-switching is a

partial H-factor Y in G with V (H0) ⊆ V (Y ) such that

1. for each H ′ ∈ F0 we have V (H ′) ⊆ V (Y ) or V (H ′) ∩ V (Y ) = ∅, and

2. each H ′ ∈ Y shares at most one vertex with H0.

Let Y ′ be obtained from Y by deleting all vertices in V (H0) and their incident edges. We

call Y feasible if Y ′ is rainbow and does not share any colour with any H ′ ∈ F0 \ V (Y ).

The idea of the switching defined above is that we may replace a small number of

copies of H in the H-factor F0 with different copies in order to remove the “bad copy”

H0 which prevents F0 from being rainbow. See Figure 5.1 for an example of a switching.

The following lemma, proved in Section 5.4, reduces the proof of Theorem 5.1.2 to

showing the existence of many feasible switchings. For this lemma and the rest of the

chapter we shall define the size of a partial H-factor to be the number of copies of H

which it contains.
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Figure 5.1: The process of an (H0, F0)-switching of size 8. We start with a partial H-
factor of size 8 in the first line, produce a transverse partition as seen in the fourth line,
and pick a new partial H-factor within each part of the transverse partition in the fifth
line.

Lemma 5.1. Suppose that for every H-factor F0 of G and H0 ∈ F0 there are at least

γnm−1 feasible (H0, F0)-switchings of size m. Then G has a rainbow H-factor.

Note the exponent m − 1 in Lemma 5.1 comes from the fact that we use m − 1

additional copies of H in addition to H0 in order to perform an (H0, F0)-switching of

size m. That is Lemma 5.1 states that a constant fraction of candidate switchings being

feasible suffices to find a rainbow H-factor.

We will construct switchings by randomly choosing some copies of H from F0 and

considering a random transverse partition in the sense of the following definition.

Definition 5.2.2. Let F0 be an H-factor in G and H0 ∈ F0. Let X ⊆ F0 be a partial

H-factor in G with H0 ∈ X. We call S ⊆ V (X) transverse if |V (H ′) ∩ S| ≤ 1 for all

H ′ ∈ X. We call a partition of V (X) transverse if each part is transverse. For any edges

e and f let X(e, f) = {H ′ ∈ X : |V (H ′) ∩ (e ∪ f)| ≥ 2}. We call X suitable if

1. for any transverse I ⊆ V (X) \ V (H0) with |I| = r − 1 there are at most ε|X|/4
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vertices v ∈ V (X) such that I ∪ {v} ∈ E(G) shares a colour with some H ′ ∈ F0,

and

2. for any transverse edges e and f disjoint from V (H0) of the same colour we have

X(e, f) 6= ∅, and, furthermore, if e ∩ f = ∅, then |X(e, f)| ≥ 2.

The following lemma, proved in Section 5.5, shows that a suitable partial H-factor has

an associated feasible switching if it has a transverse partition whose parts each satisfy

the minimum degree condition for an H-factor.

Lemma 5.2. Let F0, H0 and X be as in Definition 5.2.2, suppose X is suitable and

|X| = m. Let P = (V1, . . . , Vh) be a transverse partition of V (X) (so |Vi| = m for each

i) and suppose δ`(G[Vi]) ≥ (δ∗` (H) + ε/2)mr−` for all i ∈ [h]. Then there is a partial

H-factor Y in G with V (Y ) = V (X) such that Y is a feasible (H0, F0)-switching.

The following lemma, proved in Section 5.6, gives a lower bound on the number of

partial H-factors X with some transverse partition P satisfying the conditions of the

previous lemma.

Lemma 5.3. Let F0 be an H-factor in G and H0 ∈ F0. Let X ⊆ F0 be a random

partial H-factor where H0 ∈ X and each H ′ ∈ F0 \ {H0} is included independently with

probability p = m
n/h−1

. Let P = (V1, . . . , Vh) be a uniformly random transverse partition

of V (X). Then with probability at least 1/m we have X suitable, |X| = m and all

δ`(G[Vi]) ≥ (δ∗` (H) + ε/2)mr−`.

We conclude this section by showing how Theorem 5.1.2 follows from the above lem-

mas.

Proof of Theorem 5.1.2. By Lemma 5.1, it suffices to show that for every H-factor F0 of

G and H0 ∈ F0 there are at least γnm−1 feasible (H0, F0)-switchings of size m. There are(
n/h−1
m−1

)
≥ (n/mh− 1)m−1 partial H-factors X of size m with H0 ∈ X ⊆ F0. By Lemma

5.3, at least m−1(n/mh − 1)m−1 > γnm−1 of these are suitable and have a transverse

partition P = (V1, . . . , Vh) with all δ`(G[Vi]) ≥ (δ∗` (H) + ε/2)mr−`. By Lemma 5.2, each

such X has an associated feasible (H0, F0)-switching. �
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5.3 Probabilistic methods

In this section we collect various probabilistic tools that will be used in the proofs of

the lemmas stated in the previous section. We will also use the bounded version of the

p-lopsided Lovász local lemma (Corollary 3.5.)

We start with Talagrand’s Inequality, see e.g. [90, page 81].

Theorem 5.4. Let c, r > 0 and let X ≥ 0 be a random variable determined by n inde-

pendent trials which is:

c-Lipschitz. Changing the outcome of any one trial can affect X by at most c.

r-certifiable. For each s ≥ 1, if X ≥ s then there is a set of at most rs trials whose

outcomes certify X ≥ s.

Then for any 0 ≤ t ≤ E[X],

P[|X − E[X]| > t+ 60c
√
rE[X]] ≤ 4e−t

2/(8c2rE[X]).

Next we state an inequality of Janson [56].

Definition 5.3.1. Let {Ii}i∈I be a finite family of indicator random variables. We call a

graph Γ on I a strong dependency graph if the families {Ii}i∈A and {Ii}i∈B are independent

whenever A and B are disjoint subsets of I with no edge of Γ between A and B.

Theorem 5.3.2. In the setting of Definition 5.3.1, let pj = E(Ij), S =
∑

i∈I Ii, µ = E[S],

δ = maxi∈I
∑

j:ij∈E(Γ) pj and ∆ =
∑

ij∈E(Γ) E[IiIj]. Then for any 0 < η < 1,

P[S < (1− η)µ] ≤ exp(−min{(ηµ)2/(8∆ + 2µ), ηµ/(6δ)}).

We conclude with a standard bound on the probability that a binomial is equal to its

mean.

Lemma 5.5. Let X be a binomial random variable with parameters n and p such that

np = m ∈ N and m2 = o(n). Then P[X = m] ≥ 1/(3
√
m).

61



Proof. The stated bound follows from P[X = m] =
(
n
m

)
pm(1 − p)n−m ≥ m!−1(n −

m)mpm(1 − p)n−m = m!−1mm(1 − p)n, (1 − p)n = e−np+O(np2) and m! ≤ e1−mmm+1/2.

�

5.4 Applying the local lemma

In this section we prove Lemma 5.1, which applies the local lemma to reduce the proof

of Theorem 5.1.2 to finding many feasible switchings.

Proof of Lemma 5.1. Suppose that for every H-factor F0 of G and H0 ∈ F0 there are at

least γnm−1 feasible (H0, F0)-switchings of size m. We need to show that G has a rainbow

H-factor.

We will apply Corollary 3.5 to a uniformly random H-factor H in G, where E = A∪B

consists of all events of the following two types. For every copy H0 of H in G and

any two edges e and f in H0 of the same colour we let A(e, f,H0) be the event that

H0 ∈ H; we let A = {A(e, f,H0) : P[A(e, f,H0)] > 0}. Note that A(e, f,H0) does

not actually depend on e, f , however their inclusion assists with counting how many of

these events we have (the same is also true of B(e, f,H1, H2) defined subsequently). For

every pair H1, H2 of vertex-disjoint copies of H in G and edges e1 of H1 and e2 of H2

of the same colour we let B(e1, e2, H1, H2) be the event that H1 ∈ H and H2 ∈ H; we

let B = {B(e1, e2, H1, H2) : P[B(e1, e2, H1, H2)] > 0}. Then H is rainbow iff none of the

events in E occur.

We define the supports of A = A(e, f,H0) to be supp(A) = V (H0) and also of

B = B(e1, e2, H1, H2) as supp(B) =V (H1) ∪ V (H2). Let Γ be the graph on A ∪ B

where E1, E2 ∈ V (Γ) are adjacent if and only if supp(E1) ∩ supp(E2) 6= ∅. Our goal is

to show that there exist suitably small pA, pB such that Γ is a p-dependency graph for

A ∪ B, where pA = pA for all A ∈ A and pB = pB for all B ∈ B. For X ∈ {A,B}, let

dX be the maximum over E ∈ V (Γ) of the number of neighbours of E in X . To apply

Corollary 3.5, it suffices to show pAdA + pBdB ≤ 1/4.
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To bound the degrees, we will first estimate the number of events in A and B whose

support contains any fixed vertex v ∈ V (G).

Claim. There are at most 2r+1h!µnh−1 events A(e, f,H0)∈ A with v ∈ V (H0).

Proof. To see this, first consider those events with v /∈ e ∪ f . For any s < r, as the

colouring is µ-bounded, the number of choices of e and f of the same colour with |e∩f | = s

is at most nr ·
(
r
s

)
µnr−s. For any such e and f with v /∈ e∪f , there are at most h!nh−(2r−s+1)

copies of H containing e∪ f ∪ {v}, so summing over s we obtain at most 2rh!µnh−1 such

events. Now we consider events A(e, f,H0) with v ∈ e ∪ f . The number of choices of e

and f of the same colour with |e ∩ f | = s and v ∈ e ∪ f is at most nr−1 ·
(
r
s

)
µnr−s. For

any such e and f there are at most h!nh−(2r−s) copies of H containing e ∪ f ∪ {v}, so

summing over s we obtain at most 2r+1h!µnh−1 such events. The claim follows. �

Claim. There are at most 2(h!)2µn2h−2 events B(e1, e2, H1, H2)∈ B with v ∈ V (H1) ∪

V (H2).

Proof. To see this, first consider those events with v ∈ e1∪e2. By definition of B, we may

consider only disjoint edges e1, e2. There are at most h!nh−r choices for each of H1 and H2

given e1 and e2. Also, the number of choices for e1 and e2 is at most nr−1 ·µnr−1 = µn2r−2.

Thus, we obtain at most (h!)2µn2h−2 such events. A similar argument applies to events

B(e1, e2, H1, H2) with v /∈ e1 ∪ e2, and the claim follows. �

In particular, these two claims allow us to deduce that there is some constant C =

C(r, h) so that

dA < Cµnh−1 and dB < Cµn2h−2. (5.2)

Now we will bound pA and pB using switchings. For pA we need to bound P[A |

∩E∈E ′E] for any A = A(e, f,H0) ∈ A and E ′ ⊆ E such that AE /∈ E(Γ) for all E ∈ E ′

and P[∩E∈E ′E] > 0. Let F be the set of H-factors of G that satisfy ∩E∈E ′E; then F 6= ∅

as P[∩E∈E ′E] > 0. Let F0 = {F0 ∈ F : H0 ∈ F0}. We consider the auxiliary bipartite
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multigraph GA with parts (F0,F \ F0), where for each F0 ∈ F0 and feasible (H0, F0)-

switching Y of size m we add an edge from F0 to F obtained by replacing F0[V (Y )] with

Y ; we note that F ∈ F \ F0 as Y is rainbow and shares no colours with H ′ ∈ F0 \ V (Y )

by Definition 5.2.1 hence F still satisfies ∩E∈E ′E. Let δA be the minimum degree in

GA of vertices in F0 and ∆A be the maximum degree in GA of vertices in F \ F0. By

double-counting the edges of GA we obtain P[A | ∩E∈E ′E] = |F0|/|F| ≤ ∆A/δA.

We therefore need an upper bound for ∆A and a lower bound for δA. By the hypotheses

of the lemma, we have δA ≥ γnm−1. To bound ∆A, we fix any F ∈ F \ F0 and bound

the number of pairs (F0, Y ) where F0 ∈ F0 and Y is a feasible (H0, F0)-switching of size

m that produces F . Each vertex of V (H0) must belong to a different copy of H in F ,

as otherwise there are no (H0, F0)-switchings that could produce F . Thus we identify h

copies of H in F whose vertex set must be included in V (Y ). There at most nm−h choices

for the other copies of H to include in V (Y ) and then at most (hm)! choices for Y , so

∆A ≤ (hm)!nm−h. We deduce

P[A| ∩E∈E ′ E] ≤ (hm)!γ−1n1−h =: pA . (5.3)

The argument to bound pB is very similar. This time we do a double switching: one to

remove each of the two copies of H which share a colour. We need to bound P[B | ∩E∈E ′E]

for any B = B(e1, e2, H1, H2) ∈ B and E ′ ⊆ E such that BE /∈ E(Γ) for all E ∈ E ′ and

P[∩E∈E ′E] > 0. Let F be the set of H-factors of G that satisfy ∩E∈E ′E; then F 6= ∅. Let

F ′ = {F ′ ∈ F : {H1, H2} ⊆ F ′}. We consider the auxiliary bipartite multigraph GB with

parts (F ′,F \ F ′), where there is an edge from F ′ ∈ F ′ to F for each pair (Y, Z), where

Y is a feasible (H1, F
′)-switching of size m producing some H-factor F ′′ containing H2

but not H1, and Z is a feasible (H2, F
′′)-switching of size m with V (Z) ∩ V (H1) = ∅

producing F ; note that then F ∈ F \ F ′.

We have P[B | ∩E∈E ′E] ≤ ∆B/δB, where ∆B and δB are defined analogously to ∆A

and δA. The condition V (Z) ∩ V (H1) = ∅ rules out at most hnm−2 choices of Z given
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H1, and similarly the condition that F ′′ contains H2 and not H1 rules out at most hnm−2

choices of Y given H2. So δB ≥ (γnm−1 − hnm−2)2 > 1
2
γ2n2m−2. Similarly to before we

have ∆B ≤ ((hm)!nm−h)2, so

P[B| ∩E∈E ′ E] ≤ 2(hm)!2γ−2n2−2h =: pB . (5.4)

Combining (5.2), (5.3) and (5.4) we have pAdA + pBdB ≤ 1/4, so the lemma follows from

Corollary 3.5. �

5.5 Switchings

In this section we prove Lemma 5.2, which shows how to obtain a feasible switching from a

suitable partial H-factor and transverse partition whose parts have high minimum degree.

Proof of Lemma 5.2. Let F0 be an H-factor in G and H0 ∈ F0. Let X ⊆ F0 be a suitable

partial H-factor in G of size m with H0 ∈ X. Let P = (V1, . . . , Vh) be a transverse

partition of V (X) such that all δ`(G[Vi]) ≥ (δ∗` (H) + ε/2)mr−`. We need to find a partial

H-factor Y in G with V (Y ) = V (X) such that Y is a feasible (H0, F0)-switching.

We construct Y by successively choosing H-factors Yi of G[Vi] for 1 ≤ i ≤ h. For each

i we let V ′i = Vi \ V (H0) and we will show that G[V ′i ] is rainbow by Definition 5.2.2.ii.

This is because every subset of V ′i is transverse by definition. However, if edges e and

f are both transverse and have the same colour then by Definition 5.2.2.ii their union is

not transverse. At step i, we let Gi be the r-graph obtained from G[Vi] by deleting all

edges disjoint from V (H0) that share a colour with any H ′ in F0 or ∪j<iYj. It suffices to

show that Gi has an H-factor Yi, as then Y = ∪hi=1Yi will be feasible.

By definition of δ∗` (H), it suffices to show that for each L ⊆ Vi with |L| = ` that

we delete at most ε
2
mr−` edges containing L. We can assume L is disjoint from V (H0),

as otherwise we do not delete any edges containing L. There are
(
m−`
r−1−`

)
choices of I of

size r − 1 with L ⊆ I ⊆ Vi. For each such I, by Definition 5.2.2.i, the number of edges
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containing I deleted due to sharing a colour with any H ′ ∈ F0 is at most εm/4. Thus we

delete at most ε
4
mr−` such edges containing L.

It remains to consider edges containing L that are deleted due to sharing a colour

with any H ′ in ∪j<iYj. As G[V ′i ] is rainbow, any colour in ∪j<iYj accounts for at most

one deleted edge. In the case ` ≤ r−2 we can crudely bound the number of deleted edges

by the total number of edges in ∪j<iYj, which is at most ie(H)m < mhr+1 < ε
4
mr−`.

Now we may suppose ` = r− 1. Consider any edge e containing L that is deleted due

to having the same colour as some edge f in some Yj with j < i. By Definition 5.2.2.ii

and |e \L| = 1 there is a copy H ′ of H in X that intersects both L and f . To bound the

number of choices for e, note that there are |L| = r − 1 choices for H ′ and i− 1 choices

for j. These choices determine a vertex in Vj, and so a copy of H in Yj, which contains at

most hr−1 choices for f . Then the colour of f determines at most one deleted edge in e.

Thus the number of such deleted edges e containing L is at most (r−1)(i−1)hr−1 < ε
4
m,

as required. �

5.6 Transverse partitions

To complete the proof of Theorem 5.1.2, it remains to prove Lemma 5.3, which bounds the

probability that a random partial H-factor and transverse partition satisfy the hypotheses

of Lemma 5.2.

Proof of Lemma 5.3. Let F0 be an H-factor in G and H0 ∈ F0. Let X ⊆ F0 be a random

partial H-factor where H0 ∈ X and each H ′ ∈ F0 \ {H0} is included independently

with probability p = m−1
n/h−1

≤ hm
n

. Let P = (V1, . . . , Vh) be a uniformly random transverse

partition of V (X). Note that each copy H ′ of H in X has one vertex in each Vi, according

to a uniformly random bijection between V (H ′) and [h], and that these bijections are
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independent for different choices of H ′. Consider the events

E1 = {|X| = m}, E2 = {X satisfies Definition 5.2.2.ii},

E3 = {X satisfies Definition 5.2.2.i}, E4 = ∩hi=1{δ`(G[Vi]) ≥ (δ∗` (H) + ε/2)mr−`}.

We need to show that P[∩4
i=1Ei] > 1/m. To do so, we first recall from Lemma 5.5 that

P[E1] ≥ 1/(4
√
m). To complete the proof, we will show that P[Ei] ≥ 1−1/m for i = 2, 3, 4.

Throughout, for I ⊆ V (G) we let FI ⊆ F0 be the partial H-factor consisting of all copies

of H in F0 that intersect I.

Bounding P[E2].

For s ∈ [r − 1] let Zs be the set of pairs (e, f) of transverse edges disjoint from

V (H0) of the same colour with |e ∩ f | = s and X(e, f) = ∅. As the colouring is µ-

bounded, we have |Zs| ≤ nr ·
(
r
s

)
µnr−s. For any (e, f) ∈ Zs we have |Fe∪f | = 2r − s, so

P[e ∪ f ⊆ V (X)] = p2r−s. By a union bound, the probability that any such event holds

is at most
∑r−1

s=1

(
r
s

)
µn2r−sp2r−s < (hm)r(hm+ 1)rµ < 1/2m.

Similarly, let Z0 be the set of pairs (e, f) of transverse edges disjoint from V (H0) of

the same colour with e ∩ f = ∅ and |X(e, f)| ≤ 1. As the colouring is µ-bounded, we

have |Z0| ≤ nr ·µnr−1. For any (e, f) ∈ Z0, |Fe∪f | ≥ 2r− 1 and P[e∪ f ⊆ V (X)] ≤ p2r−1.

Thus the probability that any such event holds is at most µ(hm)2r−1 < 1/2m.

Bounding P[E3].

For any transverse I ⊆ V (X) \ V (H0) with |I| = r − 1 we let BI be the set of

v ∈ V (G) \ (V (FI) ∪ V (H0)) such that I ∪ {v} is an edge sharing a colour with some

H ′ ∈ F0. Write YI = |V (X) ∩ BI |. It suffices to bound the probability that there is any

I ⊆ V (X) with YI > εm/5. Indeed, the number of v ∈ V (FI) ∪ V (H0) such that I ∪ {v}

is an edge is at most rh < εm/20.

First we show that X is unlikely to contain any I in B := {I : |BI | > εn/10h}. Indeed,

as the colouring is µ-bounded, there are at most e(F0)µnr−1 = µe(H)nr/h edges with

colours in F0, so |B| < µε−2nr−1. For each transverse I we have P[I ⊆ V (X)] = pr−1, so
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by a union bound, the probability that X contains any I in B is at most µε−2(hm)r−1 <

1/2m.

Now for each I /∈ B we bound YI by Talagrand’s inequality, where the independent

trials are the decisions for each H ′ ∈ F0\{H0} of whether to include H ′ in X. As I /∈ B we

have E[YI ] = p|BI | ≤ εm/10. Also, YI is clearly h-Lipschitz as |H| = h and 1-certifiable

as we can simply list the successful trials containing the vertices of V (X)∩BI . We apply

Theorem 5.4 to Y ′I = YI + εm/30, with t = εm/30 ≤ E[Y ′I ], c = h and r = 1 to deduce

P[YI > εm/5] ≤ 4e−10−4h−2ε2m < m−2r.

As we excluded V (FI) from BI , the events {I ⊆ V (X)} and YI > εm/5 are indepen-

dent, so both occur with probability at most pr−1m−2r. Taking a union bound over at

most nr−1 choices of I, we obtain P[E3] < 1/m.

Bounding P[E4].

For L ⊆ V (G) with |L| = ` and i ∈ [h] we define

JL = {J ⊆ V (G) \ V (H0) : FL ∩ FJ = ∅ and L ∪ J ∈ E(G) is transverse}.

We say L is i-bad if L ⊆ Vi and d′i(L) := |{J ∈ JL : J ⊆ Vi}| < (δ∗` (H) + ε/2)mr−`. We

will give an upper bound on the probability that there is any i-bad L.

First we note that the events {L ⊆ Vi} and {J ⊆ Vi} are independent for any

J ∈ JL. There are at most n` choices of L with L ∩ V (H0) = ∅, each of which has

P[L ⊆ Vi] = (p/h)`, and at most hn`−1 choices of L with |L ∩ V (H0)| = 1, each of which

has P[L ⊆ Vi] ≤ (p/h)`−1. By a union bound, it suffices to show for every transverse L

and i ∈ [h] that P[d′i(L) < (δ∗` (H) + ε/2)mr−`] < m−2r.

We also note that |JL| ≥ (δ∗` (H) + 0.9ε)nr−`, as there are at least (δ∗` (H) + ε)nr−`

choices of J with L ∪ J ∈ E(G), of which the number excluded due to J ∩ V (H0) 6= ∅,

FL ∩ FJ 6= ∅ or L ∪ J not being transverse is at most

hnr−`−1 + `hnr−`−1 + n
h

(
h
2

)
nr−`−2 < 0.1εnr−`.
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We will apply Janson’s inequality to d′i(L) =
∑

J∈JL IJ , where each IJ is the indicator

of {J ⊆ Vi}. As P[J ⊆ Vi] = (p/h)r−` for each J ∈ JL, we have µ = E[d′i(L)] >

(δ∗` (H)+0.9ε)mr−`. We use the dependency graph Γ where JJ ′ is an edge iff FJ∩FJ ′ 6= ∅.

Note that for any J ∈ JL and s ∈ [r − `] the number of choices of J ′ with |FJ ∩ FJ ′| = s

is at most
(
r−`
s

)
hsnr−`−s, and for each we have P[J ∪ J ′ ⊆ Vi] = (p/h)2(r−`)−s. Thus we

can bound the parameter ∆ in Theorem 5.3.2 as

∆ ≤ |JL|
r−∑̀
s=1

(
r−`
s

)
hsnr−`−s

(p
h

)2(r−`)−s ≤ mr−`
r−∑̀
s=1

(
r−`
s

)
hsmr−`−s < 2h(r − `)m2(r−`)−1.

We also have

δ ≤
r−∑̀
s=1

(
r−`
s

)
hsnr−`−s(p/h)r−`−s ≤

r−∑̀
s=1

(
r−`
s

)
hsmr−`−s < 2h(r − l)mr−`−1.

By Theorem 5.3.2, there is some constant c = c(r, ε, h) independent of m so that

P[d′i(L) < (δ∗` (H) + ε/2)mr−`] < e−cm < m−2r,

as required. �

5.7 Non Coincidence of Thresholds

In this section we prove Theorem 5.1.3. That is we construct coloured graphs with Kt-

factors and no rainbow Kt factor using as few as two copies of each colour.

Proof of Theorem 5.1.3. Choose m ∈ N such that k|m+ 1 and let n = tm. We construct

the graph G on n vertices as follows.

Let A and B be disjoint sets of (t − 1)m − 1 and m + 1 vertices respectively. Let

V (G) = A∪B. We shall make use of the fact that any Kt-factor in G must have at least

one copy of Kt which uses two or more vertices from B.

Let F be an arbitrary partition of B into k-sets (one exists as k|m+ 1).
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Then, the following shall be the edges of G.

E(G) = {xy|x ∈ A, y ∈ A ∪B, x 6= y} ∪ E(F )

It is easy to check that G has the claimed minimum degree.

We shall now colour the edges of G. First give each edge with both ends in A a unique

colour from N, and also give each k-clique in B an unique colour from N i.e. give all its

edges the same colour. For each edge ab such that a ∈ A and b ∈ B, we will give it the

colour {a, c(b)} where c(b) is the colour of the clique containing b. Then, the colours of

edges inside A, between A and B and inside B are disjoint. The colouring is 1-bounded

inside A, k-bounded between A and B and
(
k
2

)
-bounded inside B. Thus the colouring is

max{2,
(
k
2

)
}-bounded.

To prove that there is no rainbow Kt-factor, of G note that any Kt-factor must contain

at least one copy, say Q, of Kt with at least one edge inside B. If |V (Q) ∩ B| ≥ 3, then

Q[V (Q) ∩ B] is a subgraph of some element of F . Thus Q[V (Q) ∩ B] is monochromatic

with at least 3 edges so Q is not rainbow. Thus, Q contains at least one vertex a ∈ A (as

t ≥ 3). Suppose V (Q) ∩ B = {b1, b2}. Then, ab1 and ab2 both have colour {a, c(b1)} (as

b1 and b2 are in the same clique so c(b1) = c(b2). Hence Q is not monochromatic. So G

has no rainbow Kt-factor. �

5.8 Concluding remarks

Our result and those of [44] suggest that for any Dirac-type problem, the rainbow problem

for bounded colourings should have asymptotically the same degree threshold as the

problem with no colours. In particular, it may be interesting to establish this for Hamilton

cycles in hypergraphs (i.e. a Dirac-type generalisation of [34]) in the next chapter we study

this question in graphs suggesting that a hypergraph analogue is also likely to hold. The

local resilience perspective emphasises analogies with the recent literature on Dirac-type
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problems in the random setting (see the surveys [13, 110]), perhaps suggests looking for

common generalisations, e.g. a rainbow version of [80]: in the random graph G(n, p)

with p > C(log n)/n, must any o(pn)-bounded edge-colouring of any subgraph H with

minimum degree (1/2 + o(1))pn have a rainbow Hamilton cycle?

Furthermore, in light of the counterexample in section 5.7, it would be interesting to

understand which subgraphs have their “rainbow threshold” in the same place as their

extremal threshold. That is, consider a sequence H = Hn of graphs (where v(Hn) = n.)

Suppose that any graph G of minimum degree at least δH(n) on n vertices contains Hn

and there exists a graph on n vertices of minimum degree δH(n)−1 that does not contain

Hn. When is it the case that there exists µ > 0 such that any µn-bounded edge colouring

of any graph G with n vertices and minimum degree at least δH(n) contains a rainbow

copy of Hn?
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CHAPTER 6

RAINBOW HAMILTON CYCLES

6.1 Introduction

Recall from Chapter 4 the Ryser-Brualdi-Stein Conjecture.

Conjecture 6.1 (Ryser, Brualdi, Stein [17, 103, 109]). Every Latin square of order n

contains a partial transversal of size at least n− 1.

Recall further that Latin squares are in bijection with proper n-colourings of the edges

of the complete bipartite graph Kn,n. If G is an edge-coloured graph and H ⊆ G, we

say that H is rainbow if no two edges of H have the same colour. In the setting of edge-

coloured graphs, the Ryser-Brualdi-Stein conjecture states that any proper edge-colouring

of Kn,n using n colours has a rainbow matching of size at least n − 1. Looking instead

at symmetric Latin squares which can be seen to be in bijection with proper colourings

of Kn, the conjecture implies that any proper edge-colouring of Kn using n colours has a

rainbow subgraph with at least n− 2 edges and maximum degree 2. It is natural to ask

whether similar phenomena occur under weaker conditions on the colourings. Recall that

an edge-colouring of G such that no colour appears more than k times on its edges is a

k-bounded colouring of E(G). In this framework, Hahn gave the following conjecture:

Conjecture 6.2 (Hahn [49]). Any (n/2)-bounded colouring of E(Kn) contains a rainbow

Hamilton path.
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Hahn’s conjecture was disproved by Maamoun and Meyniel [87] who showed it was

not even true for even proper colourings of K2t for integers t ≥ 2 which disproves Hahn’s

conjecture as proper colourings are n/2-bounded.

Motivated by Hahn’s conjecture, one could ask for which k any k-bounded colouring

of Kn contains a rainbow Hamilton path (or cycle). Hahn and Thomassen [50] showed

that k = o(n1/3) is sufficient. This was subsequently improved by Albert, Frieze and

Reed [2] who used the local lemma to prove that one can take k = n/64. This ques-

tion has also been studied for Hamilton cycles in complete hypergraphs [34, 35] and

generalised to embedding rainbow copies of other spanning subgraphs H in complete

structures [14, 59, 111]. In addition, there has been recent progress on approximate

rainbow decompositions [65, 92].

Here we will be interested in embedding rainbow subgraphs into sparser graphs. Due

to the nature of the proofs, most of the previous results can be adapted to host graphs

G with minimum degree δ(G) = (1− O(1/∆))n, where ∆ is the maximum degree of H.

However, the bound obtained for the minimum degree seems far from being tight. Recent

work has shown that for certain spanning subgraphs H (including Hamilton cycles), the

minimum degree threshold for rainbowly embedding H is asymptotically the same as for

embedding H [18, 27, 44].

In this chapter we determine the exact minimum degree threshold at which rainbow

Hamilton cycles appear. In his famous theorem [33], Dirac showed that any graph G

on n vertices with minimum degree at least n/2 has a Hamilton cycle. We call such

graphs, Dirac graphs. Krivelevich, Lee and Sudakov [72] proved the existence of properly

coloured Hamilton cycles in edge-coloured Dirac graphs where each colour appears at

most k = o(n) times in the edges incident to each vertex. In fact, their result applies to

the more general setting of incompatibility systems, solving a conjecture of Häggkvist.

The main result of this chapter is a Dirac theorem for rainbow Hamilton cycles that

holds for o(n)-bounded colourings.

Theorem 6.3. There exist µ > 0 and n0 ∈ N such that if n ≥ n0 and G is a Dirac graph
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on n vertices, then any µn-bounded colouring of E(G) contains a rainbow Hamilton cycle.

Our theorem can also be seen as a rainbow analogue of the result of Krivelevich, Lee

and Sudakov.

Note that a linear bound on the number of occurrences of each colour is necessary

as otherwise we could have less than n colours in total and no rainbow Hamilton cycle

would exist. Our next result shows that we need µ ≤ 1/8.

Theorem 6.4. For every sufficiently large n ∈ N and every µ > 1/8, there exists a Dirac

graph G on n vertices and a µn-bounded colouring of E(G) such that G does not contain

a rainbow Hamilton cycle.

The proof of Theorem 6.3 extends the ideas introduced in Chapter 4 to deal with

perfect matchings in bipartite graphs. Firstly, we use a classification for Dirac graphs

observed by Kühn, Lapinskas and Osthus in [73]: either the graph has good expansion

properties (robust expander, see e.g. [79]) or the graph is extremal in some sense: it

either resembles a disjoint pair of cliques or a complete balanced bipartite graph. Similar

classifications for Dirac graphs have been used in the literature (see e.g. [69, 71]). For

extremal graphs, we fix a partial rainbow matching only using atypical edges and we

extend it to a rainbow Hamilton cycle with an application of the lopsided version of the

Lovász Local Lemma [39]. For robust expanders, we apply the recent Rainbow Blow-up

Lemma of Glock and Joos [44] to embed a rainbow Hamilton cycle. Here, we only require

the graph to have linear minimum degree. In both cases we use a key lemma that allows

us to fix a partial embedding of a cycle that has a negligible effect to the rest of the

graph. Finally, we combine these two results, to conclude that any Dirac graph with a

o(n)-bounded edge colouring contains a rainbow Hamilton cycle.

As an application of Theorem 6.3, we obtain the following corollary on the vertex-

degree threshold for the existence of Berge Hamilton cycles in hypergraphs. A Berge

cycle in a hypergraph H is a sequence v1, e1, v2, e2, v3, . . . , v`, e` where vi ∈ V (H) and

ei ∈ E(H) are pair-wise distinct, and {vi, vi+1} ⊂ ei (addition modulo `).
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Corollary 6.5. Let H be an r-uniform hypergraph on n vertices and suppose that r =

o(
√
n). If H has minimum vertex-degree δ1(H) >

(dn/2e−1
r−1

)
, then H contains a Berge

Hamilton cycle.

This result is best possible as for even n, the union of two complete r-uniform hy-

pergraphs of size n/2 has minimum degree
(
n/2−1
r−1

)
and no Berge Hamilton cycle. It also

improves the bound observed in [24].

For a graph G = (V,E) and A,B ⊆ V , we denote by G[A] the subgraph induced by

A in G and by G[A,B] the subgraph induced by the edges between A and B in G. We

use E(A) and E(A,B) to denote the set of edges of G[A] and G[A,B], respectively. We

denote by e(A) = |E(A)| and e(A,B) = |E(A,B)|. For v ∈ V , we use NG(x) to denote

the set of vertices in V adjacent to x, and dG(x) = |NG(x)|. We also use dG(x,A) for the

number of vertices in A that are adjacent to x. If the graph G is clear from the context,

we use N(x), d(x) and d(x,A) instead. Finally, we will use δ(G) and ∆(G) to denote the

minimum and maximum degree of G, respectively.

6.2 A trichotomy for Dirac graphs

Our proof proceeds by splitting the class of Dirac graphs into three families: robust

expanders, graphs that resemble a complete bipartite graph Kn/2,n/2 and graphs that

resemble the disjoint union of two complete graphs Kn/2, denoted by 2Kn/2. This tri-

chotomy was originally introduced by Kühn Lapinskas and Osthus [73]. We will state the

version of this lemma from [31]. Note that this definition is very similar to the definintion

of bipartite robust expanders in Chapter 4.

For 0 < ν < 1 and X ⊆ V (G), the ν-robust neighbourhood of X in G is defined as

RNν(X) := {v ∈ V (G) : |NG(v) ∩X| ≥ νn} .

Let 0 < ν ≤ τ < 1. A graph G = (V,E) on n vertices is a robust (ν, τ)-expander if for
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every set X ⊆ V (G) with τn ≤ |X| ≤ (1− τ)n, we have

|RNν(X)| ≥ |X|+ νn .

Let 0 < γ < 1. A graph G on n vertices is

- γ-close to Kn/2,n/2 if there exists A ⊆ V (G) with |A| = bn
2
c such that e(A) ≤ γn2.

- γ-close to 2Kn/2 if there exists A ⊆ V (G) with |A| = bn
2
c such that e(A, V (G)\A) ≤

γn2.

We will use the following classification of Dirac graphs.

Lemma 6.6 (Lemma 1.3.2 in [31] for Dirac graphs). Suppose that 0 < 1/n� ν � τ, γ <

1 where n ∈ N. Let G be a graph on n vertices with δ(G) ≥ n/2. Then G satisfies one of

the following properties:

i) G is γ-close to Kn/2,n/2;

ii) G is γ-close to 2Kn/2;

iii) G is a robust (ν, τ)-expander.

6.3 A Switching Lemma

In the previous two chapters, we introduced the connection between the existence of many

local operations (switchings) for a given perfect matching, and the existence of a rainbow

perfect matching. In this section, we adapt this idea to the Hamilton cycle case.

For the sake of convenience, we will define the switching operation on directed cycles.

A directed cycle ~H on a finite set V is a spanning cycle with an orientation of the edges

so every vertex has out-degree one. We denote by H the undirected cycle obtained by
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Figure 6.1

π(x)x

π(x′)

x′y′

π−1(y′)

π(x)x

π(x′)

x′y′

π−1(y′)

Switching s1( ~H, e, e′) Switching s2( ~H, e, e′)

removing the orientation of the edges in ~H. A directed cycle defines a successor function

π : V → V so (x, π(x)) is a directed edge of ~H for every x ∈ V . In this chapter, a

switching is a map s that given a directed cycle ~H on V and edges e ∈ E(H), e′ /∈ E(H),

assigns a directed cycle ~H0 := s( ~H; e, e′) of V such that e′ ∈ E(H0) and e /∈ E(H0).

We now define the switchings that we will use in the proofs.

Definition 6.3.1. Given a directed cycle ~H on V with successor function π, e = xπ(x) ∈

E(H) and e′ = x′y′ /∈ E(H) with x in the directed path from y′ to x′ induced by ~H,

we define ~H1 = s1( ~H; e, e′) and ~H2 = s2( ~H; e, e′) as the directed cycles that contain the

directed edge (x′, y′) and whose undirected cycles are, respectively,

H1 = (H − {e, x′π(x′), π−1(y′)y′}) + {e′, xπ(x′), π−1(y′)π(x)}

H2 = (H − {e, x′π(x′), π−1(y′)y′}) + {e′, xπ−1(y′), π(x)π(x′)} .

(See Fig. 6.1 for a diagram.)

Note that si( ~H; e, e′) always produces one single cycle and that there is a unique way

to orient its edges to obtain a directed cycle that contains (x′, y′). So si is a well-defined
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switching. Moreover, both switchings are involutions, that is to say:

~H = s1(s1( ~H; e, e′); e′, e)

~H = s2(s2( ~H; e, e′); e′, e) .

6.3.1 Using switchings to find rainbow Hamilton cycles

Given a graph G, a directed cycle ~H on V (G), e ∈ E(H) and e′ ∈ E(G) \ E(H), we say

that ~H0 = si( ~H; e, e′) is admissible if H0 is a subgraph of G. Under the assumption that

we have many admissible switchings for each directed Hamilton cycle of G and each edge

in the cycle, we can prove that G has a rainbow Hamilton cycle using the local lemma.

Here we will prove a stronger result: given a small set of edges, one can find a rainbow

Hamilton cycle that contains it.

Theorem 6.7. Suppose 1/n � µ � α � β ≤ 1/2 where n ∈ N. Let G be a graph on

n vertices and χ a µn-bounded colouring of E(G). Let Z ⊆ E(G) with |Z| ≤ αn such

that each colour of an edge in Z only appears once as the colour of an edge e ∈ E(G).

Suppose that G has at least one Hamilton cycle that contains Z. Suppose that for every

directed Hamilton cycle ~H of G with Z ⊆ E(H) and every edge e ∈ E(H) \ Z, there are

at least βn2 admissible switchings si( ~H; e, e′) for some e′ ∈ E(G) \ E(H) and i ∈ {1, 2}.

Then G has a rainbow Hamilton cycle that contains Z.

Proof. Let Ω = Ω(G,Z) be the set of undirected Hamilton cycles of G that contain Z,

equipped with the uniform distribution. By assumption, note that Ω 6= ∅. Let H be a

Hamilton cycle chosen uniformly at random from Ω.

For each unordered pair of edges e, f ∈ E(G) let E(e, f) = {e, f ∈ H} be the event

that both e and f are simultaneously in H. Let supp(E(e, f)) be set of vertices that are

incident to either e or f . Let Q ⊆
(
E(G)

2

)
be the set of unordered pairs of edges e, f with

χ(e) = χ(f), and let q = |Q|. Furthermore, define Q(e) = {f ∈ E(G) : {e, f} ∈ Q}.

Consider the collection of events E = {E(e, f) : {e, f} ∈ Q}.
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Write E = {Ei : i ∈ [q]} and let D be the graph with vertex set [q] where i, j ∈ [q] are

adjacent if and only if supp(Ei) ∩ supp(Ej) 6= ∅.

Given {e, f} ∈ Q there are at most 4n ways to choose an edge e′ ∈ E(G) that is

incident either to e or to f , and at most µn ways to choose an edge f ′ ∈ E(G) with

χ(f ′) = χ(e′). Hence, the maximum degree of D is at most d := 4µn2.

Our goal is to show that D is a p-dependency graph for E where p = (p, p, . . . , p) for

some suitably small p > 0. Given i ∈ [q] and S ⊆ [q]\ (ND(i)∪{i}) with P(∩j∈SEjc) > 0,

it suffices to show that (3.8) holds.

Fix Ei = E(ei, fi) and S ⊆ [q] \ (ND(i) ∪ {i}). A Hamilton cycle is S-good if it

belongs to ∩j∈SEc
j . Since P(∩j∈SEjc) > 0, there is at least one S-good Hamilton cycle

that contains Z. Let H ⊆ Ω be the set of S-good Hamilton cycles that contain Z and let

H0 ⊆ H be the ones that also contain ei and fi.

Construct an auxiliary bipartite multigraph G = (H0,H \ H0, E(G)), where we add

an edge between H0 ∈ H0 and H ∈ H \ H0 for every orientation ~H0 of H0 and ~H of H,

every k, ` ∈ {1, 2} and e′i, f
′
i such that

~H = sk(s`( ~H0; ei, e
′
i); fi, f

′
i) .

By double-counting the edges of G, we obtain

δ(H0)|H0| ≤ e(G) ≤ ∆(H \H0)|H \ H0| ,

from which we may deduce,

P(Ei| ∩j∈S Ec
j ) =

|H0|
|H|
≤ |H0|
|H \ H0|

≤ ∆(H \H0)

δ(H0)
. (6.1)

So, in order to prove (3.8) we need to bound ∆(H \ H0) from above and δ(H0) from

below.

We first bound ∆(H \ H0) from above. Fix H ∈ H \ H0. There are two choices for
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~H, at most n choices for e′i ∈ E(H) and at most 2 choices for ` that yield an admissible

switching and create an edge in G. The same argument applies to fi. It follows that

∆(H \H0) ≤ 16n2.

In order to bound δ(H0) from below, fix H0 ∈ H0 and choose one of the two orien-

tations ~H0. Note here that not all pairs of disjoint admissible switchings for ei and fi,

respectively, will generate an edge in G as it may be that the Hamilton cycle resulting

from the switchings is not S-good or does not contain Z.

For e ∈ {ei, fi}, define

FZ(e) = {e′ ∈ E(G) \ E(H0) : ∃` ∈ {1, 2} with s`( ~H0; e, e′) admissible containing Z};

F (e) = {e′ ∈ E(G) \ ∪f∈E(H0)Q(f) : supp(Ei) ∩ e′ = ∅} ∩ FZ(e) .

Every edge e′i ∈ FZ(ei) determines at least one choice of ` ∈ {1, 2} such that s`( ~H0; ei, e
′
i)

is admissible and contains Z. Moreover, if e′i ∈ F (ei), then s`( ~H0; ei, e
′
i) is S-good. The

key point is that S is the intersection of events that have support disjoint from supp(Ei),

so we only need to make sure that the colour of e′i is not in H0, as the other two new

edges in s`( ~H0; ei, e
′
i) are incident to supp(Ei).

Let us compute the size of F (ei). As the colours on edges of Z are unique amongst

colours of E(G), we have ei /∈ Z and there are at least βn2 choices of e′i and ` ∈ {1, 2} such

that s`( ~H0; ei, e
′
i) is admissible. From these, there are at most 8|Z|n ≤ 8αn2 switchings

that do not preserve Z, so |FZ(ei)| ≥ (β/2 − 8α)n2. There are at most µn2 edges in

∪f∈E(H0)Q(f) and at most 4n edges e′ with supp(Ei) ∩ e′ 6= ∅, so |F (ei)| ≥ βn2/4.

Fix e′i ∈ F (ei), let ~H∗ = s`( ~H0; ei, e
′
i) and let π be the successor function in ~H∗. If

ei = uv, let

F ′ = {e ∈ E(G) : e ∩ {u, π(u), π−1(u), v, π(v), π−1(v)} 6= ∅} ∪ {e ∈ E(G) : e ∈ Q(e′i)} .

Consider F ∗(fi) = F (fi) \ F ′ and note that for every f ′i ∈ F ∗(fi) there exists k ∈ {1, 2}

with ~H = sk( ~H∗; fi, f
′
i) admissible, containing Z, S-good and not containing ei and fi,
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so H ∈ H \ H0. Arguing as before and noting that |F ′| ≤ 8n, we have |F ∗(fi)| ≥ βn2/4.

As there are two possible orientations for H0, we conclude that δ(H0) ≥ β2n4/8.

Substituting into (6.1), we obtain the desired bound

P(Ei| ∩j∈S Ec
j ) ≤

128

β2n2
=: p .

As µ� β, 4pd ≤ 1 and by the lopsided version of the local lemma (Corollary 3.4) implies

that the probability that a uniformly random Hamilton cycle containing Z is rainbow is

positive, so there exists at least one. �

6.4 A technical lemma

In this section we prove a technical lemma that we will use in the proof of our main

theorem to fix a set of edges Z of the rainbow Hamilton cycle such that the graph obtained

after removing edges with the same colour as Z still has a large minimum degree.

For a multiset C of N and t ∈ N, we denote by mult(t, C) the multiplicity of t in C.

Given a set T , we use C \+ T to denote the multiset obtained by removing all elements

in T from C and C ∩+ T to denote the multiset obtained by removing all elements not

in T from C.

The following result is an extension of Lemma 4.9, although the proof is different.

Lemma 6.8. Let b,m ∈ N and suppose that 1/n � µ � ν � 1/a � η, 1/b ≤ 1 where

a, n ∈ N. Let C1, . . . , Cm be multisets of N such that:

(S1) νn ≤ |Ci| ≤ n, for every i ∈ [m];

(S2)
∑m

i=1 mult(t, Ci) ≤ µn, for every t ∈ N.

Let ` ∈ N and let Uk ⊆ N for k ∈ [`] be disjoint sets with |Uk| = a and U =
⊎`
k=1 Uk.

Then, there exists T ⊆ U such that:

(T1) |T ∩ Uk| ≥ b, for every k ∈ [`];
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(T2) |Ci \+ T | ≥ (1− η)|Ci|, for every i ∈ [m].

Proof. Let s := dlog(µn)e. For every i ∈ [m] and every j ∈ [s], define the (multi)sets

Cj
i = {{t ∈ Ci : 2−jµn ≤ mult(t, Ci) ≤ 2−(j−1)µn}},

Sji = {t ∈ Cj
i },

Si = ∪j∈[s]S
j
i .

Let cji = |Cj
i |, s

j
i = |Sji |, ci = |Ci| and si = |Si|. Then, these parameters satisfy

2−jµnsji ≤ cji ≤ 2−(j−1)µnsji , (6.2)∑
j∈[s]

cji = ci .

For every j ∈ [s] and u ∈ U , define nj(u) = |{i : u ∈ Sji }|. Note that

∑
j∈[s]

nj(u)2−j ≤ 1. (6.3)

Choose δ with 1/a � δ � η, 1/b. Let T be a random subset of U obtained by

including each element of U independently at random with probability δ.

A pair (i, j) is dense if sji ≥ 2(j−1)/2µ−1/2. Let Ri be the set of j ∈ [s] such that (i, j)

is dense. The contribution of non-dense pairs is negligible; using (6.2), we have

∑
j 6∈Ri

cji ≤ µn
∑
j 6∈Ri

2−(j−1)sji ≤ µ1/2n
∑
j 6∈Ri

2−(j−1)/2 ≤ µ1/3n . (6.4)

For every S ⊆ N and j ∈ [s] we say that i ∈ [m] is j-activated by S if |Sji ∩ S| ≥ 2δsji .

We define two event types that we would like T to avoid:

- Type A: for every k ∈ [`], Ak is the event that |T∩Uk| < b, with support, supp(Ak) =

Uk.

- Type B: for every i ∈ [m] and j ∈ [s] such that j ∈ Ri, B
j
i is the event that i is
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j-activated by T , with support, supp(Bj
i ) = Sji .

Denote by E = {E1, . . . , Eq} the collection of events of type A and B defined above. Let

D be the dependency graph of E , the graph with vertex set [q] constructed by adding an

edge between i, j ∈ [q] if and only if supp(Ei)∩supp(Ej) 6= ∅. We will apply the weighted

version of the local lemma (Corollary 3.6) to show that there exists a choice of T that

avoids all events in E .

Let p = e−2 ≤ 1/4. We first bound the probabilities of the events in E . Let w(Ak) :=

δa/8 and w(Bj
i ) := δsji/8. Let Xk = |T ∩ Uk|. Note that Xk is binomially distributed

with mean δa. By Chernoff inequality (see e.g. Corollary 2.3 in [58]) with t = 3/4, we

have

P(Ak) ≤ P(Xk ≤ δa/4) ≤ e−(9/32)δa ≤ e−δa/4 = pw(Ak) . (6.5)

Let Y j
i = |Sji ∩T |, which is stochastically dominated by a binomial random variable with

mean δsji . Recall that Bj
i = {Y j

i ≥ 2δsji}. Chernoff’s inequality with t = 1 implies

P(Bj
i ) ≤ P(Y j

i ≥ 2δsji ) ≤ e−δs
j
i/4 = pw(Bji ) . (6.6)

To apply the local lemma, it suffices to check that for every E ∈ E , we have

∑
Ak∼E

(2p)w(Ak) +
∑
Bji∼E

(2p)w(Bji ) ≤ w(E)

2
.

Since two events are adjacent only if their supports intersect, for each u ∈ U we will

compute the contribution of the events whose support contains u.

As the sets Uk are disjoint, there is only one event of Type A whose support intersects

u. Using 2p ≤ e−1 and (6.5), we have

∑
supp(Ak)3u

(2p)w(Ak) ≤ e−δa/8 .
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For events of Type B, j ∈ Ri implies sji ≥ 2(j−1)/2µ−1/2, and since µ� δ � 1, we obtain

(2p)w(Bji ) ≤ e−δs
j
i/8 ≤ e−δ2

(j−7)/2µ−1/2 ≤ µ2−j .

Recall that, for every j ∈ [s], u appears in nj(u) sets Sji . It follows from (6.3) and (6.6)

that

∑
supp(Bji )3u

(2p)w(Bji ) ≤
∑
j∈[s]

nj(u)(2p)min{w(Bji ): j∈Ri} ≤ µ
∑
j∈[s]

nj(u)2−j ≤ µ .

Observe that for any type of event E ∈ E , we have |supp(E)| = 8δ−1w(E). Thus,

∑
Ak∼E

(2p)w(Ak) +
∑
Bji∼E

(2p)w(Bji ) = 8δ−1w(E)(e−δa/8 + µ) ≤ w(E)

2
.

By the weighted form of the local lemma, we obtain the existence of a set T that avoids

all the events in E . The set T satisfies (T1) as it avoids Ak for k ∈ [`]. Let us show

that (T2) follows from the events of type B.

Using (6.2) twice, it follows that for each i ∈ [m], j ∈ Ri, we have

|Cj
i ∩+ T | ≤ µn2−(j−1)|Sji ∩ T | ≤ µn2−(j−1) · 2δsji ≤ 4δcji

By combining this with (6.4), for i ∈ [m] we obtain

|Ci ∩+ T | =
∑
j∈Ri

|Cj
i ∩+ T |+

∑
j 6∈Ri

|Cj
i ∩+ T | ≤ 4δ

∑
j∈Ri

cji +
∑
j 6∈Ri

cji ≤ 4δci + µ1/3n ≤ η|Ci| ,

where we used that |Ci| ≥ νn and µ� ν � δ � η � 1. Thus, (T2) is satisfied. �
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6.5 Graphs which are close to 2Kn/2

In this section, we prove Theorem 6.3 for graphs that resemble the disjoint union of two

complete graphs.

Theorem 6.9. Suppose 1/n� µ� γ � 1 where n ∈ N. Let G be a graph on n vertices

with δ(G) ≥ n/2 that is γ-close to 2Kn/2. Let χ be a µn-bounded colouring of E(G).

Then G has a rainbow Hamilton cycle.

6.5.1 ε-superextremal two-cliques

Note that in a graph which is γ-close to 2Kn/2 we have no real control of the minimum de-

gree within the partition. We can however make some small adjustments to the partition

of G to get large minimum degree.

Definition 6.5.1. A graph G on n vertices is an ε-superextremal two-clique if there

exists a partition V (G) = A ]B with the following properties:

(A1) ||A| − |B|| ≤ εn;

(A2) dG(a,A) ≥ (1/2− ε)n for all but at most εn vertices a ∈ A;

(A3) dG(a,A) ≥ (1/4− ε)n for all vertices a ∈ A;

(A4) dG(b, B) ≥ (1/2− ε)n for all but at most εn vertices b ∈ B;

(A5) dG(b, B) ≥ (1/4− ε)n for all vertices b ∈ B.

Lemma 6.10. Suppose 1/n� γ � ε� 1 where n ∈ N. Let G be a graph on n vertices

with δ(G) ≥ n/2 that is γ-close to 2Kn/2. Then, G is an ε-superextremal two-clique with

partition V (G) = A]B. Moreover, G[A,B] either has minimum degree at least 1 or the

minimum degree from either A or B is at least 2.
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Proof. As G is γ-close to 2Kn/2 there is a partition of V (G) into parts A0, B0 of size

bn/2c and dn/2e, respectively, such that e(A0, B0) ≤ γn2. Define the sets

XA = {v ∈ A0 : dG(v, A0) ≤ n/4} XB = {v ∈ B0 : dG(v,B0) ≤ n/4}

Choose γ � δ � ε. Note that as G has minimum degree at least n/2, 2e(A0) ≥ n|A0| −

γn2 ≥ n2/2− γn2, from which we deduce |XA|, |XB| ≤ δn. Define A = (A0 \XA) ∪XB,

B = (B0 \XB) ∪XA and (A1)-(A5) follow immediately.

If |A| = |B|, then G[A,B] has minimum degree at least 1, and otherwise, assuming

|A| < |B|, A has minimum degree to B at least 2. �

As G is γ-close to 2Kn/2, it is an ε-superextremal two-clique with partition V (G) =

A ]B. Consider a µn-bounded colouring χ of E(G) with 1/n� µ� ε. We now choose

a rainbow set of edges Z. By the second part of the previous lemma, we can find two

vertex-disjoint edges f and f ′ between A and B with distinct colours. Henceforth, we set

Z = {f, f ′}.

In order to find a rainbow Hamilton cycle containing Z using Theorem 6.7, it will be

more convenient to work with a spanning subgraph of G. Let Ĝ be the graph obtained

from G by deleting all the edges in E(A,B) \ Z and all the edges with the same colour

as an edge in Z. It is easy to see that Ĝ is a 2ε-superextremal two-clique and that

(C1) EĜ(A,B) = Z;

(C2) each edge in Z has a unique colour in E(Ĝ).

6.5.2 Finding the switchings

The next step is to show that Theorem 6.7 applies to the case of ε-superextremal two-

cliques with Z given in the previous section. First we show that there is at least one

Hamilton cycle. We will use the following sufficient condition for the existence of Hamilton

cycles.
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Theorem 6.11 (Chvátal [23]). Let G be a graph on m vertices with degree sequence

d1 ≤ d2 ≤ . . . ≤ dm. Suppose that for k ∈ {1, . . . ,m/2}, if dk ≤ k then dm−k ≥ m − k.

Then G has a Hamilton cycle.

The following result shows that there is at least one Hamilton cycle containing Z.

Lemma 6.12. Let G be an ε-superextremal two-clique with partition V (G) = A]B and

let f, f ′ be two vertex-disjoint edges between A and B. Then G has a Hamilton cycle

which includes f and f ′.

Proof. Suppose that f = ab and f ′ = a′b′ where a, a′ ∈ A. It suffices to show that there

is a spanning path in A from a to a′ and similarly in B.

To prove this consider the graph GA obtained from G by removing all vertices in B

and adding an auxiliary vertex x which we connect only to a and a′. Vertex x has degree

two, up to at most εn vertices have degree at least n/4 − εn and the remainder have

degree at least n/2− εn > |A|/2. So the degree sequence of GA satisfies dk > k for each

k ≤ v(GA)/2. Thus, we can use Theorem 6.11 on GA to obtain a cycle HA that spans

A ∪ {x}. Since x has degree two, HA contains a path PA spanning A with endpoints a

and a′. The same argument yields a spanning path PB for B. Hence, G has a Hamilton

cycle obtained by concatenating PA and PB using edges f, f ′. �

Let us show that there are many switchings in ε-superextremal two-cliques, for every

edge not in Z.

Lemma 6.13. Suppose 1/n � µ � ε � 1 where n ∈ N. Let Ĝ be an ε-superextremal

two-clique with partition V (G) = A ] B satisfying (C1), where Z = {f, f ′} is composed

by two vertex-disjoint edges between A and B. Let ~H be a directed Hamilton cycle of G.

For every e ∈ E(H) \ Z, there are at least n2/300 admissible switchings si( ~H; e, e′) for

some e′ ∈ E(G) \ E(H) and i ∈ {1, 2}.

Proof. Suppose that f = ab and f ′ = a′b′ where a, a′ ∈ A. As G satisfies (C1) and

e /∈ Z, without loss of generality, we may assume that e ∈ E(A) and that ~H[A] induces
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a directed path PA from a to a′. Let π be the successor function of ~H and consider the

total order < ~H on A that satisfies u < ~H π(u) for all u ∈ A \ {a′}. Write e = uπ(u) for

u ∈ A. Define X = N(u) \ {a, b, a′, b′} and Y = N(π(u)) \ {a, b, a′, b′}. Let X− be the

first b|X|/2c vertices in X with respect to < ~H and X+ = X \ X−. Define Y − and Y +

analogously. We split the proof in two cases:

Case 1: x < ~H y for all x ∈ X−, y ∈ Y +.

Define

X−− = {x ∈ X− : x ≤ ~H u} X−+ = {x ∈ X− : u < ~H x}

Y +− = {y ∈ Y + : y ≤ ~H u} Y ++ = {y ∈ Y + : u < ~H y}

Clearly, either |X−−| ≥ b|X|/4c or |X−+| ≥ b|X|/4c and let X∗ be the largest of the two

sets. Similarly, define Y ∗. By the hypothesis of the case and depending on the position

of u in PA, either X−+ = ∅ or Y +− = ∅, so (X∗, Y ∗) 6= (X−+, Y +−). This leaves the

following cases for (X∗, Y ∗):

- Case 1.1: If (X∗, Y ∗) = (X−−, Y ++), then we set X0 = π(X∗) and Y0 = π−1(Y ∗).

For a directed edge e′ from Y0 to X0, s2( ~H; e, e′) is admissible.

- Case 1.2: If (X∗, Y ∗) 6= (X−−, Y ++), then we set X0 = π−1(X∗) and Y0 = π(Y ∗).

For a directed edge e′ from X0 to Y0, s1( ~H; e, e′) is admissible.

It suffices to count the edges between X0 and Y0. Let X1 = {x ∈ X0 : dG(x,A) ≥

(1/2 − ε)n} and define Y1 analogously. By (A2) and (A3), |X1|, |Y1| ≥ (1/16 − 2ε)n.

Using (A1) and (A2) again, we may also deduce that each vertex in X1 is adjacent to all

but at most 2εn of the vertices in Y1. Hence, e(X0, Y0) ≥ e(X1, Y1) ≥ (1/16− 2ε)(1/16−

4ε)n2 ≥ n2/300.

Case 2: y < ~H x for all y ∈ Y −, x ∈ X+.
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The proof is almost identical to the one for Case 1, up to defining the sets X0 and Y0

properly in terms of most common ordering of x ∈ X+, y ∈ Y − and u, and choosing the

correct switching type in each case.

Hence, we obtain at least n2/300 admissible switchings si( ~H; e, e′). �

We finally prove the main theorem of this section.

Proof of Theorem 6.9. Let γ � ε � 1. By Lemma 6.10 and the discussion after it, G

has a subgraph Ĝ which is a 2ε-superextremal two-clique with partition V (Ĝ) = A ] B

that satisfies (C1)-(C2) for Z = {f, f ′}, where f, f ′ are two vertex-disjoint edges between

A and B. By Lemma 6.12, there exists at least one Hamilton cycle in Ĝ that contains

Z. Finally, Lemma 6.13 implies that for every directed Hamilton cycle H of Ĝ and

every e ∈ E(H) \ Z there are at least n2/300 admissible switchings. Thus we may apply

Theorem 6.7 to the graph Ĝ to obtain a rainbow Hamilton cycle (that contains Z). As

Ĝ is a spanning subgraph of G, the desired result follows. �

6.6 Graphs which are close to Kn/2,n/2

In this section, we prove Theorem 6.3 for graphs that resemble the complete bipartite

graph.

Theorem 6.14. Suppose 1/n� µ� γ � 1 where n ∈ N. Let G be graph on n vertices

with δ(G) ≥ n/2 that is γ-close to Kn/2,n/2. Let χ be a µn-bounded colouring of E(G).

Then G has a rainbow Hamilton cycle.

6.6.1 (α, ε, ν)-superextremal bicliques

Let G be a graph that is γ-close to Kn/2,n/2 with partition V (G) = A ] B. As in the

previous section, we could have vertices in A with no neighbours in B. We can make

small adjustments to the partition in order to guarantee a minimum degree condition.
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Definition 6.6.1. A graph G on n vertices is an (α, ε, ν)-superextremal biclique if there

exists a partition V (G) = A ]B with the following properties:

(B1) 0 ≤ |B| − |A| ≤ αn;

(B2) d(a,B) ≥ (1/2− ε)n for all but at most αn vertices a ∈ A;

(B3) d(a,B) ≥ νn for all vertices a ∈ A;

(B4) d(b, A) ≥ (1/2− ε)n for all but at most αn vertices b ∈ B;

(B5) d(b, A) ≥ (1/4− ε)n for all vertices b ∈ B;

(B6) d(b, B) ≤ 2νn for all vertices b ∈ B, unless |A| = bn/2c.

Lemma 6.15. Suppose 1/n � γ � α, ε � ν � 1 where n ∈ N. Let G be a graph on n

vertices with δ(G) ≥ n/2 that is γ-close to Kn/2,n/2. Then G is an (α, ε, ν)-superextremal

biclique.

Proof. Let V (G) = A0]B0 be the partition given by the fact that G is γ-close to Kn/2,n/2.

Define

XA = {a ∈ A0 : d(a,B0) ≤ (1/4− γ)n} XB = {b ∈ B0 : d(b, A0) ≤ (1/4− γ)n}.

Choose γ � δ � α, ε. If a ∈ XA, d(a,A0) ≥ (1/4 + γ)n and, as e(A0) ≤ γn2, |XA| ≤ δn.

As there are at least |A0|n/2 − γn2 edges from A0 to B0, we may similarly deduce that

|XB| ≤ δn. Now, let A1 = (A0 \ XA) ∪ XB and B1 = (B0 \ XB) ∪ XA. Assume that

|B1| ≥ |A1|. If not, we shall swap their labels. Let YB = {b ∈ B1 : d(b, B1) ≥ 2νn}.

Note that it is entirely possible for YB to be very large (it could even be all of B1 in some

cases), so in the case that |YB| ≥ (|B1| − |A1|)/2 select an arbitrary set Y ′B ⊆ YB of size

b(|B1| − |A1|)/2c and otherwise let Y ′B = YB. Define A = A1 ∪ Y ′B, B = B1 \ Y ′B.

We claim that this partition satisfies all the properties of a superextremal biclique

partition. Property (B1) follows from the fact that we swap sets of size at most δn

90



between A0 and B0 to obtain A1 and B1, that we assume |B1| ≥ |A1| and that |Y ′B| ≤

b(|B1| − |A1|)/2c. Properties (B2) and (B4) follow similarly to the bounds on the sizes

of XA and XB. Properties (B3), (B5) and (B6) can all be deduced similarly from the

definitions of XA, XB and Y ′B.

�

6.6.2 Finding the protected set Z

The main difference between this extremal case and the previous one, is that here we will

need to protect a set of edges Z of up to linear size in order to balance both parts of the

partition. If we choose Z greedily as before, when removing edges with the same colour

as edges in Z, we will be deleting up to a quadratic number of edges, and thus it will be

possible to isolate a vertex. We will use the technical lemma from Section 6.4 to ensure

that we can choose Z, so deleting edges with the same colour will not have a significant

effect on the degree of each vertex.

Lemma 6.16. Suppose 1/n � µ � α, ε � ν � 1 where n ∈ N. Let G be an (α, ε, ν)-

superextremal biclique with partition V (G) = A ] B and denote m = |B| − |A|. Let χ

be a µn-bounded colouring of E(G). Then G[B] has a rainbow matching of size at least

m/20ν.

Proof. We choose a matching M greedily. At each step, add an arbitrary edge of E(G[B])

to M which is not incident to M and has a colour which is not the same as the colour

of any edge in M . By (B3) and as α � ν, observe that d(b, B) ≥ m/2 for every b ∈ B,

so e(B) ≥ m|B|/2. If m = 1, then any edge in E(G[B]) forms the desired matching.

Otherwise |A| < bn/2c and by (B6), for each edge we add to M there are at most 4νn

edges incident to it in G[B] and at most µn edges with the same colour, including the

edge itself. Thus the choice of this edge removes at most 4νn+ µn edges which we could

have added to M in subsequent steps. As d(b, B) ≥ m/2 for each b ∈ B, there are at

least m|B|/4 edges in G[B]. Hence, when we can no longer add any more edges M has
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size at least

|M | ≥ m|B|/4
(4ν + µ)n

≥ m

20ν
.

�

We will use Lemma 6.8 to select a partial matching of size |B|−|A| from the matching

obtained in the previous lemma. The edges of the matching will form the protected set

Z.

Lemma 6.17. Suppose 1/n� µ� α, ε� ν � η � 1 where n ∈ N. Let G be a (α, ε, ν)-

superextremal biclique on n vertices with δ(G) ≥ n/2 and partition V (G) = A]B. Let χ

be a µn-bounded colouring of E(G). Then, there exist a matching M in B of size |B|−|A|

and a spanning subgraph Ĝ of G which is an (α, η, ν/2)-superextremal biclique with the

same partition as G satisfying

(D1) EĜ(A) = ∅ and EĜ(B) = E(M);

(D2) max{dĜ(a,B), dĜ(b, A)} ≥ (1/2− η)n for all a ∈ A, b ∈ B with ab ∈ E(Ĝ);

(D3) each edge in M has a unique colour in E(Ĝ).

Proof. Let M0 be the rainbow matching obtained from Lemma 6.16 and set U = {χ(e) :

e ∈ M0}. Let ν � 1/a � η. Assume that a divides |U | (otherwise we can delete

some elements from U so it holds) and let ` = |U |/a. Choose an arbitrary partition

U = U1 ] · · · ] U` with |Uk| = a for k ∈ [`]. For a vertex v ∈ V (G), let Cv be the

multiset of colours on the edges in E(A,B) incident to v. Properties (B2)-(B5) imply that

νn ≤ |Cv| ≤ n and the properties of the colouring imply that
∑

v∈V (G) mult(t, Cv) ≤ 2µn

for t ∈ N. We apply Lemma 6.8 to this setup with the parameters as in the following

table.

Use 2µ η/2 (|B| − |A|)/`

In place of µ η b

Let T0 be the set of colours in U given by the lemma and note that |T0| ≥ |B|−|A|. Select

an arbitrary subset T of T0 of size |B| − |A|. Define M as the matching with edge set
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{e ∈ E(M0) : χ(e) ∈ T} and note that M is rainbow as M0 was. Let Ĝ be the subgraph

obtained from G by deleting all the edges e /∈ E(M) with either e ∈ E(A) ∪ E(B) or

χ(e) ∈ T , so it satisfies (D1) and (D3), and after that, deleting all edges between vertices

of degree at most (1/2− η)n. As ε� ν � η � 1, Properties (B1)-(B6), (D1) and (T2),

imply that Ĝ is an (α, η, ν/2)-superextremal biclique. As we deleted edges between low

degree vertices, Ĝ also satisfies (D2).

�

6.6.3 Finding the switchings

In this section we will show that the graph Ĝ satisfies the hypothesis of Theorem 6.7

with Z = M . First, we show that there exists at least one Hamilton cycle that contains

Z. We will use the following sufficient condition for the existence of Hamilton cycles in

bipartite graphs:

Theorem 6.18. (Moon and Moser [93]) Let G = (R ∪ S,E) be a balanced bipartite

graph on 2m vertices with R = {r1, . . . , rm} and S = {s1, . . . , sm} that satisfies d(r1) ≤

. . . ≤ d(rm) and d(s1) ≤ . . . ≤ d(sm). Suppose that for every k ∈ {1, . . . ,m/2}, we have

d(rk) > k and d(sk) > k. Then G has a Hamilton cycle.

Lemma 6.19. Suppose 1/n � α � ν � η � 1 where n ∈ N. Let G be an (α, η, ν)-

superextremal biclique on n vertices with partition V (G) = A ] B and M a matching in

G[B] of size |B| − |A|. Let G be an (α, η, ν)-superextremal biclique on n vertices with

partition V (G) = A ] B and M a matching in G[B] of size |B| − |A|. Then G has a

Hamilton cycle that contains M .

Proof. First note that any pair of vertices in B can be connected in G by many paths

of length at most 4. As |E(M)| ≤ αn, we can connect the vertices of M with disjoint

paths of length at most 4, obtaining a path P of length at most 5|E(M)| ≤ 5αn which

contains E(M) and has endpoints b, b′ ∈ B. Note that P uses |E(M)|+ 1 more vertices

in B than in A. Let G̃ be the balanced bipartite graph obtained by deleting all the edges
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in E(A)∪E(B) and all the internal vertices of P , and adding an auxiliary vertex x to A

only adjacent to b and b′. Every vertex in G̃ different from x satisfies the properties (B2)-

(B5) of an (α, η+5α, ν−5α)-superextremal biclique, so we have control on the minimum

degrees. In particular, the hypothesis of Theorem 6.18 are satisfied and we deduce that

G̃ has a Hamilton cycle H̃. As w has degree two, H̃ contains the edges xb and xb′. The

subgraph H of G obtained by replacing the path bxb′ by P in H̃ is a Hamilton cycle of

G that contains M . �

Next lemma shows that in any Hamilton cycle H containing M , that there are a large

number of admissible switchings for any edge of H which is not in M .

Lemma 6.20. Suppose that 1/n� µ� α� β � ν � η � 1 where n ∈ N. Let Ĝ be an

(α, η, ν)-superextremal biclique on n vertices with partition V (G) = A ] B. Let M be a

matching in Ĝ[B] with |E(M)| ≤ αn and set Z = E(M). Suppose G and M satisfy (D1)-

(D2). Then for every directed Hamilton cycle ~H of Ĝ and every edge e ∈ E(H) \ Z,

there are at least βn2 admissible switchings si( ~H; e, e′) for some e′ ∈ E(G) \ E(H) and

i ∈ {1, 2}.

The proof of this lemma is very similar to the one of Lemma 6.13 and we will omit

some arguments that are analogous.

Proof. By (D1) and since e /∈ Z, we may assume that e = ab for some a ∈ A and

b ∈ B. As ab ∈ E(Ĝ), by (B3) and (D2) we will assume that dĜ(a,B) ≥ νn and

dĜ(b, A) ≥ (1/2− η)n, the symmetric case can be proved analogously.

Define X = N(a)\V (Z) and Y = N(b)\B. As in the proof of Lemma 6.13, we can find

X0 ⊆ X, Y0 ⊆ Y with |X0| ≥ b|X|/4c ≥ (ν−α)n/4 and |Y0| ≥ b|Y |/4c ≥ (1/8−η)n such

that for every directed e′ from X0 to Y0 (or from Y0 to X0), si( ~H; e, e′) is admissible for

some i ∈ {1, 2}. Letting X1 ⊆ X0 and Y1 ⊆ Y0 be the vertices of degree at least (1/2−η)n,

by (B3) and (B5) and since α � ν, we get |X1| ≥ (ν/8)n and |Y1| ≥ (1/8 − 2η)n. As

|A| ≤ n/2 by (B1), it follows that e(X1, Y1) ≥ (1/8− 3η)n|X1| ≥ βn2, as desired.

�
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We now have all the ingredients to prove the existence of a rainbow Hamilton cycle.

Proof of Theorem 6.14. Let µ� α, ε� γ � β � ν � η � 1. By Lemma 6.15, G is an

(α, ε, ν)-superextremal biclique with partition V = A]B. By Lemma 6.17, we can choose

a rainbow matching M in G[B] of size |B| − |A|, denote Z = E(M), and an (α, η, ν/2)-

superextremal subgraph Ĝ of G satisfying (D1)-(D3). Lemma 6.19 ensures that Ĝ has at

least one Hamilton cycle containing Z. Applying Theorem 6.20 to Ĝ, we obtain that the

hypothesis of Theorem 6.7 are satisfied. Thus Ĝ has a rainbow Hamiltonian cycle and so

does G. �

6.7 Robust expanders

In this section we prove our main theorem for robust expanders.

Theorem 6.21. Suppose 1/n� µ� ν � τ � γ < 1 with n ∈ N. Let G be graph on n

vertices with δ(G) ≥ γn that is a robust (ν, τ)-expander. Let χ be a µn-bounded colouring

of E(G). Then G has a rainbow Hamilton cycle.

6.7.1 Regularity Lemma and rainbow blow-up lemma

We first introduce the regularity concepts and tools we will use in the proof. For r ∈ N,

let [r]0 = [r]∪{0}. We will use the shorthand x = (a± b)c to mean x ∈ (ac− bc, ac+ bc).

For X, Y disjoint sets of vertices, we define their density as d(X, Y ) = e(X,Y )
|X||Y | . For X, Y

disjoint sets of vertices, we define their density as d(X, Y ) = e(X,Y )
|X||Y | . A bipartite graph

on A∪B with all edges between A and B is called a pair and we denote it by (A,B). A

pair (A,B) is ε-regular if for each X ⊆ A, Y ⊆ B such that |X| > ε|A| and |Y | > ε|B|,

we have |d(X, Y ) − d(A,B)| < ε. A pair (A,B) is (ε, d)-super-regular if it is ε-regular,

d(a) = (d ± ε)|B| for each a ∈ A and d(b) = (d ± ε)|A| for each b ∈ B where here d(a)

means the degree of a. We will use the following version of the regularity lemma.
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Theorem 6.22 (Szemerédi’s Regularity Lemma [113]). Let M,M ′, n ∈ N and suppose

1/n � 1/M � ε, 1/M ′ ≤ 1 and d > 0. For any graph G on n vertices, there exists a

partition (Vi)i∈[r]0 of V (G) with r ∈ (M ′,M) and a spanning subgraph G′ of G such that:

- |V0| ≤ εn;

- |Vi| = |Vj| for all i, j ∈ [r];

- dG′(v) ≥ dG(v)− (ε+ d)n for all v ∈ V (G);

- e(G′[Vi]) = 0 for all i ∈ [r];

- For all i 6= j ∈ [r], the pair (Vi, Vj) in G′ is either empty or ε-regular with density

at least d.

We call (Vi)i∈[r]0 an (ε, d)-regular partition of G. The sets V1, . . . , Vr are the clusters

and V0 is the exceptional set. The reduced graph R associated to (Vi)i∈[r]0 is the graph

with vertices V1, . . . , Vr in which ViVj is an edge if and only if the pair (Vi, Vj) is (ε, d)-

super-regular in G′.

A standard tool to embed bounded degree spanning subgraphs in G is the Blow-Up

Lemma of Komlós, Sárközy and Szemerédi [68]. This lemma has been recently extended

by Glock and Joos [44] to embed rainbow spanning subgraphs with bounded degrees in

bounded colourings. We first introduce some notation.

Definition 6.7.1. A tuple (H,G,R, (Xi)i∈[r]0 , (Vi)i∈[r]0) is a blow-up instance if the fol-

lowing hold:

- H and G are graphs, (Xi)i∈[r]0 is a partition of V (H) into independent sets, (Vi)i∈[r]0

is a partition of V (G) and |Xi| = |Vi| for all i ∈ [r]0;

- R is a graph with V (R) = {V1, . . . , Vr} and for i 6= j ∈ [r] the graph H[Xi, Xj] is

empty if ViVj 6∈ E(R).

Definition 6.7.2. The pair (A,B) is lower (ε, d)-super-regular if the following hold:
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- d(S, T ) ≥ d− ε, for all S ⊆ A, T ⊆ B with |S| ≥ ε|A|, |T | ≥ ε|B|;

- d(a) ≥ (d− ε)|B|, for each a ∈ A;

- d(b) ≥ (d− ε)|A|, for each b ∈ B.

A blow-up instance (H,G,R, (Xi)i∈[r]0 , (Vi)i∈[r]0) is lower (ε, d)-super-regular if for all

ij ∈ E(R), G[Vi, Vj] is lower (ε, d)-super-regular.

The blow-up lemma embeds H into G such that each Xi is embedded in Vi. In

applications, one may want to restrict the candidates in Vi for each vertex in Xi. We will

encode these restrictions using candidacy graphs.

Definition 6.7.3. For each i ∈ [r], a candidacy graph Ai is a pair (Xi, Vi). A blow-

up instance (H,G,R, (Xi)i∈[r]0 , (Vi)i∈[r]0) with candidacy graphs (Ai)r∈[r] is lower (ε, d)-

super-regular if (H,G,R, (Xi)i∈[r]0 , (Vi)i∈[r]0) is lower (ε, d)-super-regular and Ai is lower

(ε, d)-super-regular for each i ∈ [r].

The main idea of the rainbow blow-up lemma is that, given a pre-embedding of X0

into V0 satisfying certain conditions, one can extend it to V (H) to find a rainbow copy

of H in G.

Definition 6.7.4. Given a blow-up instance (H,G,R, (Xi)i∈[r]0 , (Vi)i∈[r]0) with candidacy

graphs (Ai)r∈[r] and a colouring χ of E(G), a bijection φ0 : X0 → V0 is feasible if the

following conditions hold:

(F1) for all x0 ∈ X0, j ∈ [r] and x ∈ NH(x0) ∩Xj, we have NAj(x) ⊆ NG(φ0(x0));

(F2) for all j ∈ [r], x ∈ Xj, v ∈ NAj(x) and distinct x0, x
′
0 ∈ NH(x) ∩ X0, we have

χ(φ0(x0)v) 6= χ(φ0(x′0)v).

Informally speaking, (F1) ensures that every candidate image for x is a neighbour

of φ0(x0) in G and (F2) ensures that the set of edges in the copy of H in G between a

candidate image for x and V0 is rainbow.

We are now able to state the rainbow blow-up lemma for bounded colourings:
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Theorem 6.23 (Rainbow Blow-Up Lemma (Lemma 5.1 in [44])). Let n,∆, r ∈ N and

suppose 1/n � µ, ε � d, 1/∆ and µ � 1/r. Suppose that (H,G,R, (Xi)i∈[r]0 , (Vi)i∈[r]0)

with candidacy graphs (Ai)i∈[r] is a lower (ε, d)-super-regular blow-up instance and assume

further that

(RB1) ∆(R),∆(H) ≤ ∆;

(RB2) |Vi| = (1± ε)n/r for all i ∈ [r]

(RB3) for all i ∈ [r], at most (2∆)−4|Xi| vertices in Xi have a neighbour in X0.

Let χ be a µn-bounded colouring of E(G). Suppose that there exists a feasible bijection

φ0 : X0 → V0. Then there exists a rainbow embedding φ of H into G which extends φ0

such that φ(x) ∈ NAi(x) for all i ∈ [r] and x ∈ Xi.

6.7.2 Collection of short paths

In order to apply the rainbow blow-up lemma, first we need to find a blow-up instance

for robust expanders. The following result states that the reduced graph of a robust

expander, is a also robust expander.

Lemma 6.24 (Lemma 14 in [79]). Suppose 1/n � ε � d � ν, τ, η ≤ 1 where n ∈ N.

Let G be a robust (ν, τ)-expander graph on n vertices with δ(G) ≥ ηn. Let R be the

reduced graph of G associated to an (ε, d)-super-regular partition of it. Then R is a

robust (ν/2, 2τ)-expander with δ(R) ≥ (η − d− 2ε)|R|.

We also use the following result on the existence of Hamilton cycles in robust ex-

panders.

Lemma 6.25 (Lemma 16 in [79]). Suppose 1/n� ν � τ � η ≤ 1 where n ∈ N. Let G

be a robust (ν, τ)-expander with δ(G) ≥ ηn. Then G has a Hamilton cycle.

Lemmas 6.24 and 6.25 are stated for directed graphs, but they can also be applied to

undirected graphs G by considering the digraph obtained from G by replacing each edge

by arcs in both directions.
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Henceforth, consider the hierarchy of parameters

1/n� ε1, 1/M
′ � ε2 � ε3 � d2 � d1 � ν � τ � η < 1

and let G be a robust (ν, τ)-expander with δ(G) ≥ ηn. Let (Vi)i∈[r]0 be an (ε1/4, d1 +2ε1)-

regular partition of G and R be its associated reduced graph, where r = |R| ≥ M ′. If

r = |R| is odd, we can add all vertices of Vr to the exceptional set V0, and the reduced

graph will still have the same properties with slightly different parameters. Thus, without

loss of generality we may assume that r is even. By Lemmas 6.24 and 6.25, R has a

Hamilton cycle. We may add at most (ε1/2)n vertices from each vertex class to V0 such

that the pairs defining edges in R are (ε1, d1)-super-regular. Relabel the clusters of the

super-regular partition so they follow the cyclic order. Let M be the matching of R

formed by the pairs V2i−1V2i for i ∈ [r/2]. Abusing notation, we also allow M to denote

the involution on V (R) defined by M(V2i−1) = V2i for i ∈ [r/2].

We will connect the vertices of V0 to the rest of the graph by short rainbow paths,

constructing a feasible pre-embedding φ0 : X0 → V0 so we can apply the rainbow blow-up

lemma. We select the paths in such a way that we maintain the balance between pairs of

clusters from M , so that upon removal of these paths, these pairs form balanced bipartite

graphs.

Definition 6.7.5. Let G be a graph and (Vi)i∈[r]0 a partition of V (G). Let M be the

matching formed by the pairs V2i−1V2i for i ∈ [r/2]. A balanced path for v ∈ V0 of length

2k is a path P = u−1u0u1 . . . u2k−1 such that,

- u0 = v and uj 6∈ V0 for all j ∈ {−1, 1, 2, . . . , 2k − 1};

- u−1 ∈ Vi and u2k−1 ∈M(Vi), for some i ∈ [r];

- |V (P ) ∩ V2i| = |V (P ) ∩ V2i−1|, for every i ∈ [r/2].

The next lemma shows that we can find a large number of balanced paths of length

2k that only intersect in V0 and that use different colours. This will allow us to obtain a
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partial embedding of a rainbow Hamilton cycle of G.

Lemma 6.26. Let n,M ′, t ∈ N and suppose

1/n� µ� ε1, 1/M
′ � ε2 � d2 � d1 � ν � τ, 1/t� η ≤ 1.

Let G, (Vi)i∈[r]0, R, M be as above with δ(G) ≥ ηn. Let χ be a µn-bounded colouring of

E(G). Then, there exists P = ∪v∈V0P(v), where P(v) = {P1(v), . . . , Pt(v)} is a collection

of t balanced paths of length 2k := 2d2/νe for v satisfying

(P1) |V (P) ∩ Vi| ≤ ε2n/r, for each i ∈ [r];

(P2) Pi(v) and Pj(v
′) are vertex-disjoint, unless v = v′, in which case V (Pi(v)) ∩

V (Pj(v
′)) = {v};

(P3) P is rainbow in χ.

Proof. LetG′ be the spanning subgraph ofG obtained from Lemma 6.22. By Lemma 6.24,

R and G′ are robust (ν/2, 2τ)-expanders. For v ∈ V0, we define N∗R(v) = {Vi ∈ V (R) :

dG′(v, Vi) ≥ d1n/r}. Note that |N∗R(v)| ≥ (η − 2d1 − 2ε1)r ≥ ηr/2 follows immediately

from the regularity lemma. For X ⊆ V (R), we define JR(X) := M(RNν/2(X)) and note

that |JR(X)| ≥ |X|+ (ν/2)r. Thus, JkR(M(N∗R(v))) = V (R).

Now to each v ∈ V0 we will assign sets U−1(v), U1(v), U2(v), . . . , U2k−1(v) with Uj(v) ∈

V (R) such that there are many balanced paths u−1, v, u1, u2, . . . , u2k−1 with uj ∈ Uj(v).

Among them, we will find the collection P of paths satisfying the conditions of the lemma,

via an application of the local lemma.

As |M(N∗R(v))| ≥ νr/2 and |V0| ≤ ε1n, we can find a partition (V i0
0 ) of V0 such

that Vi0 ∈ N∗R(v) for every v ∈ V i0
0 and |V i0

0 | ≤ (2ε1/ν)n/r. For each v ∈ V i0
0 , set

U−1(v) = Vi0 and U2k−1(v) = M(Vi0). Next, we inductively refine this partition. Since

U−1(v) ∈ JkR(M(N∗R(v))) then U2k−1(v) ∈ RNν/2(Jk−1
R (M(N∗R(v)))) and there are at least

νr/2 choices of U2k−2 ∈ Jk−1
R (M(N∗R(v))) such that U2k−2U2k−1(v) ∈ E(R). Hence, there

exists a partition (V i0,i1
0 ) that refines (V i0

0 ) satisfying |V i0,i1
0 | ≤

(
2
νr

)2
ε1n and we can set
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U2k−2(v) = Vi1 and U2k−3(v) = M(Vi1) for every v ∈ V i0,i1
0 . Similarly, we proceed to form a

partition, (V i
0 ) of V0 where i = (i0, i1, . . . , ik−1) such that ij ∈ [r] for each j. This partition

satisfies |V i
0 | ≤

(
2
νr

)k
ε1n and for each v ∈ V i

0 , Vi0 ∈ N∗R(v) and Vij ∈ J
k−j
R (M(N∗R(v)))

for 1 ≤ j ≤ k − 1.

Finally, for each v ∈ V i
0 , we define U−1(v) = Vi0 , U2k−1(v) = M(Vi0) and for j ≥ 1,

U2(k−j)(v) = Vij and U2(k−j)−1(v) = M(Vij). This choice of clusters satisfies

(i) (Uj(v), Uj+1(v)) are (ε1, d1)-regular pairs for each 1 ≤ j ≤ 2k − 2.

(ii) dG(v, U±1(v)) ≥ d1n/r;

(iii) any path P = u−1vu1u2 . . . u2k−1 with uj ∈ Uj(v) is balanced.

We can bound the multiplicity of each cluster Vi:

|{v ∈ V0 : Vi ∈ {U−1(v), U1(v), U2(v), . . . , U2k−1(v)}}| ≤ 2
k∑
i=1

ri−1

(
2

νr

)i
ε1n ≤

ε2

t

n

r

(6.7)

Consider the following weakening of (P3):

(P3’) P(v) is rainbow in χ, for every v ∈ V0.

We can greedily construct a collection of paths P satisfying (P1), (P2) and (P3’). For

each v ∈ V0, we will select t paths P for P(v) of the form P = u−1vu1u2 . . . u2k−1 with

uj ∈ Uj(v), so P is balanced of length 2k. By (6.7), P satisfies (P1). By (i) and (ii),

while constructing a new path, at any time, there are at least (d1 − 2ε1)n/r choices for

uj ∈ Uj(v) which has degree at least (d1−ε1)n/r to Uj+1(v), for 1 ≤ j ≤ 2k−2. By (P1),

at most ε2n/r of them have been already used in another path of P , and by the properties

of χ, at most 2ktµn of them would create an edge with a colour already used in another

path of P(v). Since ε2 � d1 and kµt� d1/r, we can select P satisfying (P2) and (P3’).

Given the sets U−1(v), U1(v), U2(v), . . . , U2k−1(v) for each v ∈ V0, let Ω be the uniform

probability space over all possible P = ∪v∈V0P(v), where P(v) = {P1(v), . . . , Pt(v)} and
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Pi(v) is a balanced path P of length 2k of the form P = u−1vu1u2 . . . u2k−1 and uj ∈ Uj(v),

that satisfies (P1), (P2) and (P3’). We will use the lopsided version of the local lemma

to find P ∈ Ω satisfying (P3). For the rest of the proof, P will be a collection of paths

chosen uniformly at random from Ω.

A pair (P1, P2) of paths is bad if their union is not rainbow. For every bad pair, define

the event E(P1, P2) = {P1, P2 ∈ P}. Two events E(P1, P2) and E(P3, P4) are dependent

if V (P1 ∪ P2) ∩ V (P3 ∪ P4) 6= ∅.

To bound how many events depend on E(P1, P2), we count the number of events

E(P3, P4) such that w ∈ V (P3 ∪ P4), for a given w ∈ V . Select first a pair of edges e, f

with χ(e) = χ(f) that belong to P3 ∪ P4, and note that they cannot both belong to the

same path by (P3’). If either e or f are incident to w, then there are at most µn2 choices

for them and we must pick at most 4k−2 additional vertices to form P3∪P4. Otherwise,

there are at most µn3 choices for e and f but we only need to choose at most 4k − 3

additional vertices. Hence in both cases there are at most µn4k choices for P3 ∪ P4. As

any event involves at most 4k + 2 vertices, there are at most D := 2(4k + 2)µn4k events

which depend on E(P1, P2).

Next we find p > 0 such that for every bad pair (P1, P2) we have

P(E(P1, P2)| ∩E∈S Ec) ≤ p

where S is any subset of events which do not depend on E(P1, P2) and P(∩E∈SEc) > 0.

We do this by a simple switching argument. Let F = {P ∈ Ω : P ∈ ∩E∈SEc} and

F0 = {P ∈ F : P ∈ E(P1, P2)}.

If P0 ∈ F0, we say that P ∈ F \ F0 is obtained by path-resampling if there exists

P ′1 6= P1 and P ′2 6= P2 such that P = (P0∪{P ′1, P ′2}) \ {P1, P2}. Note that P ′1 and P ′2 have

to be chosen so that P satisfies (P1), (P2) and (P3’).

Construct an auxiliary bipartite graph G with bipartition (F0,F \ F0). Add an edge

from P0 ∈ F0 to P ∈ F \ F0 for every path-resampling that transforms P0 into P . As in
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Theorem 6.7 we may deduce that

P(E(P1, P2)| ∩E∈S Ec) ≤ ∆(F \ F0)

δ(F0)
:= p .

Thus it suffices to bound the degrees in G. Denote by v1 ∈ V (P1)∩V0 and v2 ∈ V (P2)∩V0

the unique vertices in the intersection of the paths and the exceptional set.

Suppose first that P ∈ F \ F0. To add P1 and P2 by path-resampling, we need to

choose one path in P(v1) and one in P(v2) to remove. Hence, ∆(F \ F0) ≤ t2.

Suppose now that P0 ∈ F0 and let us count the number of choices for P ′1, P
′
2 that

give a collection P in F \ F0 by path-resampling. To form P ′1 = u−1v1u1 . . . u2k−1 we

must choose uj ∈ Uj(v1). By (ii), for each u−1 and u1 we have at least d1n/k choices.

By (i), for 1 ≤ j ≤ 2k − 3 and for each choice of uj, there are at least (d1 − 2ε1)n/r

choices for uj+1 with degree at least (d − ε1)n/r to Uj+2(v1). There are also at least

(d1 − ε1)n/r choices for u2k−1. Condition (P1) is clearly satisfied for any choice of P ′1.

To verify that we satisfy (P2), P ′1 must intersect P0 only in v1, and to satisfy (P3’) it

should avoid the colours in P0(v1). We have |V (P0)| ≤ (2k + 1)t|V0| ≤ (2k + 1)tε1n

and χ has at most 2kt different colours in P0(v1) forbidding a total of 2ktµn vertices for

each choice. As ε1, µ� d1/(krt), it follows that there are at least (d1n/2r)
2k choices for

P ′1. The argument for P ′2 is analogous. We chose P ′1 and P ′2 such that path-resampling

satisfies P ∈ Ω , but it also holds that P ∈ ∩E∈SEc, as all the paths participating in S

are vertex-disjoint with {v1, v2}, but P ′1 and P ′2 are not. So δ(F0) ≥ (d1n
2r

)4k.

We conclude that p ≤ t2( 2r
d1n

)4k and, as µ � 1/r, 1/t, d1, we have 4pD ≤ 1, and

Corollary 3.4 implies that there is collection P ∈ Ω satisfying (P3). �

6.7.3 Proof of Theorem 6.21

Lemma 6.26 provides a rainbow collection of paths that will allow us to attach vertices

in the exceptional set to the rest of the graph. However, by using an arbitrary set of

paths, we could be using all the colours incident to a vertex. As in the extremal case, we
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will select a subset of paths such that removing edges with the same colour will have a

negligible effect in the degrees of the graph.

With the quantifiers set above, let G be a robust (ν, τ)-expander on n vertices with

δ(G) ≥ ηn, (Vi)i∈[r]0 be an (ε1, d1)-regular partition which is lower (ε1, d1)-super-regular

for edges in M the matching (V2i−1, V2i) for i ∈ [r/2]. Let χ be a µn-bounded colouring

of E(G). For the clarity of exposition, we split the proof into a number of parts.

The collection of paths P∗: Let P = ∪v∈V0P(v) be the collection of balanced paths of

length 2k given by Lemma 6.26. Define a new colouring χ′ of E(G) by merging some of

the colour classes of χ as follows. For each v ∈ V0 and i ∈ [t], add a new colour c(i, v). If

e ∈ E(G) satisfies χ(e) ∈ χ(E(Pi(v))) for some v ∈ V0 and i ∈ [t], then χ′(e) = c(i, v);

otherwise, χ′(e) = χ(e). As P is rainbow, this gives a well-defined colouring which is

2kµn-bounded.

We will use Lemma 6.8 to select a set of paths P∗ from P , one for each v ∈ V0. For each

u ∈ V2i−1∪V2i, let Cu be the multiset of colours on edges incident to u in (V2i−1, V2i). Let

N = |V2i| = |V2i−1| and note that N ≥ (1− ε1)n/r. As (V2i−1, V2i) is lower (ε1, d1)-super-

regular, we have (d1/2)N ≤ |Cu| ≤ N . Moreover,
∑

u mult(c, Cu) ≤ 4kµn ≤ 8kµrN for

any colour c. For each v ∈ V0, let Uv = {c(i, v)}i∈[t] and note that |Uv| = t and that the

sets Uv are disjoint. Choose 1/t� η0 ≤ 1.

We apply Lemma 6.8 to this setup with the following parameters:

Use 8kµr d1/2 η0 |V0| ≤ 2ε1rN t 1 n N

In place of µ ν η ` a b m n

So we obtain a set T containing at least one element from each Uv and such that |Cu \+

T | ≥ (1−η0)|Cu| for each u ∈ V \V0. We may assume that T contains exactly one element

from each Uv, as by removing elements |Cu \+ T | will only increase. Thus, we obtain a

subcollection P∗ = {P ∗(v)}v∈V0 with P ∗(v) ∈ P(v) satisfying the following. Let G∗ be

the graph obtained from G by removing the edges e /∈ E(P∗) with χ(e) ∈ χ(E(P∗)).

Then δ(G∗[V2i−1, V2i]) ≥ (1− 2η)d1n/r for every i ∈ [r/2].
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The graph Ĝ: Let P∗ be a rainbow collection of edges in G∗, where for every i ∈ [r/2],

we select an arbitrary edge a2ib2i+1 from G∗[V2i, V2i+1] (working modulo r) with a2i, b2i+1 /∈

V (P∗). This is possible as there are at least (d1/2r
2)n2 edges in G[V2i, V2i+1], at most

4kε1µn
2 have been deleted in G∗ and, by (P1), at most (2ε2/r

2)n2 are incident to V (P∗).

Let Ĝ be the graph obtained from G∗ by removing all edges e /∈ E(P∗) with χ(e) ∈

χ(E(P∗)), which satisfies δ(Ĝ[V2i−1, V2i]) ≥ (1− 2η0− r2µ/2)d1n/r ≥ (d1/2− ε1)|V2i|. In

particular, (V2i−1, V2i) is lower (ε1, d1/2)-super-regular in Ĝ.

Constructing the Hamilton cycle: Let H be a Hamilton cycle on n vertices. We now

construct a partition (V̂i)i∈[r]0 of V (Ĝ) and a copy of H in Ĝ. Consider the exceptional

set V̂0 obtained from V0 by adding all the internal vertices in the paths in P∗. Note that

|V̂0| ≤ 2kε1n ≤ ε2n. Further, define V̂i = Vi \ V̂0.

The vertices in V (P∗) \ V̂0 come in pairs, corresponding to endpoints of the balanced

paths in consecutive sets V2i−1 and V2i. For i ∈ [r/2], let `i = |(V (P∗) \ V̂0) ∩ V2i|. For

j ∈ [`i], let aj2i−1, b
j
2i denote the endpoints of the j-th path with endpoints in V2i−1 and

V2i.

It is not difficult to check that the union of the paths in P̂ , P∗ and P∗ forms a copy

of H on Ĝ.

The blow-up instance (P̂ , Ĝ,M, (Xi)i∈[r]0 , (Ṽi)i∈[r]0) : Define a new exceptional set,

Ṽ0 = V̂0 ∪ {ai, bi, aji , b
j
i : i ∈ [r], j ∈ N}.

Further, define Ṽi = V̂i \ Ṽ0. All edges in P∗ ∪ P∗ are within the exceptional set Ṽ0 and,

by the way we have constructed each Pi, all edges of P̂ are either in one of the pairs

in M or between the exceptional set and one of the clusters. The partition (Ṽi)i∈[r]0 of

V (Ĝ) induces a partition (Xi)i∈[r0] of V (H) = V (P̂) and (P̂ , Ĝ,M, (Xi)i∈[r]0 , (Ṽi)i∈[r]0) is

a blow-up instance. Note that we consider P̂ instead of H as X0 is an independent set

in P̂ but not in H.

The blow-up instance is lower (ε3, d2)-super-regular: It is sufficient to show that the
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bipartite graphs Ĝ[Ṽ2i−1, Ṽ2i] are lower (ε3, d2)-super-regular. This is simply inherited

from the (ε1, d1/2)-super-regularity of Ĝ[V2i−1, V2i] by noting that |Vj \ Ṽj| ≤ |V (P∗ ∪

P∗) ∩ Vj| ≤ ε2n/r + 1, by (P1).

The pre-embedding φ0 and the candidacy graphs Ai: We consider the identity map

φ0 : X0 → V0 as the pre-embedding of the exceptional set for P̂ into Ĝ. Then we construct

the candidacy graphs in accordance with the pre-embedding. For x ∈ Xi, if x0x ∈ E(H)

for some x0 ∈ X0, we let NAi(x) = NĜ(φ0(x0)) ∩ Ṽi. Otherwise, let NAi(x) = Ṽi. As no

vertex in V (P̂) \ X0 has more than one neighbour in X0, Ai is well-defined. We check

that Ai is lower (ε3, d2)-super-regular. Note first that it has minimum degree at least

d2|Vi|. As |V (P) ∩ Vi| ≤ ε2n/r, in Ai we have deleted at most 2ε2|Ṽi|2 edges from the

complete bipartite graph with support in (Xi, Ṽi). For any S ⊆ Xi, T ⊆ Ṽi each of size

at least ε3|Ṽi|, we have

e(S, T ) ≥ |S||T | − 2ε2|Ṽi|2 ≥ |S||T | −
2ε2

(ε3)2
|S||T | ≥ (d2 − ε3)|S||T | .

Hence, the blow-up instance (P̂ , Ĝ,M, (Xi)i∈[r]0 , (Ṽi)i∈[r]0) with candidacy graphs Ai is

lower-(ε3, d2)-super-regular.

The pre-embedding is feasible: Property (F1) follows immediately from the definition

of φ0 and Ai. Property (F2) is also satisfied as no vertex in V (H) \ X0 has more than

one neighbour in X0.

Applying the rainbow blow-up lemma: We apply Theorem 6.23 with parameters µ,

∆ = 2, ε = ε3 and d = d2. Conditions (RB1) and (RB3) clearly hold and condition (RB2)

holds as |Vi| = (1± ε1)n/r and |Vi \ Ṽi| ≤ 2ε2|Vi|. Hence Ĝ has a rainbow copy of P̂ . By

construction of Ĝ, the colours in P∗ ∪ P∗ are disjoint from the colours used in E(Ĝ). It

follows that G contains a rainbow Hamilton cycle.
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6.8 Proof of Theorems 6.3 and 6.4 and Corollary 6.5

In this section we give a proof of Theorem 6.3.

Proof of Theorem 6.3. Let µ� ν � τ, γ < 1. By Lemma 6.6, G is either a robust (ν, τ)-

expander or is γ-close to either 2Kn/2 or to Kn/2,n/2. Combining Theorems 6.9, 6.14

and 6.21, G has a rainbow Hamilton cycle.

�

Proof of Theorem 6.4. Choose any integer function k = k(n) → ∞ such that k = o(n)

and k(n) is even. Consider G = (V,E) a graph on |V | = n vertices with V = A ∪ B

where |A| = bn/2c − k and |B| = dn/2e + k. The edge set E is constructed by adding

all edges between A and B and choosing any k-regular graph in G[B]. It is easy to check

that G is a Dirac graph.

Consider a colouring of E that assigns 2k − 1 colours to the edges in G[B], keeping

the size of the colour classes as similar as possible, and a distinct colour to each edge

in E(A,B). Note that any Hamilton cycle in G must use at least 2k edges from G[B],

therefore there is no rainbow Hamilton cycle in G. There are k(dn/2e + k)/2 edges in

G[B], so, the each colour class has size at most dk(dn/2e+k)
2(2k−1)

e < µn, for large enough n,

concluding the proof. �

Proof of Corollary 6.5. We construct a graph G on V (H) by adding an edge uv if and

only if there is an edge in H which contains both u and v. As δ1(H) >
(dn/2e−1

r−1

)
, then G

has minimum degree at least n/2 and hence is a Dirac graph. Construct a colouring χ of

E(G) by letting χ(uv) = e for some arbitrary edge e ∈ E(H) containing both u and v,

for each edge uv ∈ E(G). This colouring is clearly
(
r
2

)
= o(n)-bounded. We may apply

Theorem 6.3 and deduce that G has a rainbow Hamilton cycle v1, v2 . . . , vn. Then,

v1, e1 = χ(v1v2), v2, e2 = χ(v2v3), v3, . . . , vn, en = χ(vnv0) ,

is a Berge cycle, as the fact that the cycle is rainbow in G implies that all edges are

107



distinct and, by the definition of χ, {vi, vi+1} ⊆ ei. �

6.9 Concluding Remarks

Over the previous three chapters we have shown that at the minimum degree threshold

for containing certain subgraphs, we can in fact find rainbow copies of such subgraphs.

Furthermore, many other such results can be deduced from the rainbow blow-up lemma

of Glock and Joos [44]. However in all of these results, it is the case that the maximum

degree is essentially constant in comparison to the size of the host graph. (Our results

from Chapter 5 as well as [44] do allow the maximum degree to grow incredibly slowly

with the size of the host graph.)

A question of interest would be to ask whether there are any collections of graphs

with (quickly) growing maximum degree where we can find rainbow copies of these graphs

at their extremal threshold. This would allow one to generalise the work of Böttcher,

Kohayakawa and Procacci [14] away from the setting of a complete host graph.
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CHAPTER 7

STRONG COMPONENTS IN RANDOM
DIGRAPHS

7.1 Introduction

Consider the random digraph model D(n, p) where each of the n(n − 1) possible edges

is included with probability p independently of all others. This is analogous to the

Erdős-Renyi random graph G(n, p) in which each edge is again present with probability p

independently of all others. McDiarmid [89] showed that due to the similarity of the two

models, it is often possible to couple G(n, p) and D(n, p) to compare the probabilities of

certain properties.

In the random graph G(n, p) the component structure is well understood. In their

seminal paper [37], Erdős and Rényi proved that for p = c/n the largest component of

G(n, p) has size O(log(n)) if c < 1, is of order Θ(n2/3) if c = 1, and has linear size when

c > 1 (all with high probability). This threshold behaviour is known as the double jump.

If we zoom in further around the critical point, p = 1/n and consider p = (1 + ε(n))/n

such that ε(n) → 0 and |ε(n)|3n → ∞, Bollobás [10] proved the following theorem

for |ε| > (2 log(n))1/2n−1/3,which was extended to the whole range described above by

 Luczak [83].

Theorem 7.1 ([10, 83]). Let np = 1 + ε, such that ε = ε(n) → 0 but n|ε|3 → ∞, and

k0 = 2ε−2 log(n|ε|3).
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i) If nε3 → −∞ then a.a.s. G(n, p) contains no component of size greater than k0.

ii) If nε3 → ∞ then a.a.s. G(n, p) contains a unique component of size greater than

k0. This component has size 2εn(1 + o(1)).

Within the critical window itself i.e. p = n−1 + λn−4/3 with λ ∈ R, the size of the

largest component C1 is not tightly concentrated as it is for larger p. Instead, there exists

a random variable X1 = X1(λ) such that |C1|n−2/3 → X1 in distribution as n→∞. Much

is known about the distribution of X1, in fact the vector X = (X1, . . . , Xk) of normalised

sizes of the largest k components i.e. Xi = |Ci|n−2/3 converges in distribution to the

vector of longest excursion lengths of an inhomogeneous reflected Brownian motion by a

result of Aldous [3]. In a more quantitative setting where one is more interested about

behaviour for somewhat small n, Nachmias and Peres [94] proved the following (similar

results may be found in [98, 105]).

Theorem 7.2 ([94]). Suppose 0 < δ < 1/10, A > 8 and n is sufficiently large with respect

to A, δ. Then if C1 is the largest component of G(n, 1/n), we have

i) P(|C1| < bδn2/3c) ≤ 15δ3/5

ii) P(|C1| > An2/3) ≤ 4
A
e−

A2(A−4)
32

Note we have only stated the version of their theorem with p = n−1 for clarity but

it holds for the whole critical window. Of course, there are a vast number of other

interesting properties of C1, see [1, 57, 85] for a number of examples.

In the setting of D(n, p), one finds that analogues of many of the above theorems

still hold. When working with digraphs, we are interested in the strongly connected

components which we will often call the components. Note that the weak component

structure of D(n, p) is precisely the component structure of G(n, 2p − p2). For p = c/n,

Karp [60] and  Luckzak [84] independently showed that for c < 1 all components are

of size O(1) and when c > 1 there is a unique complex component of linear order and

every other component is of size O(1) (a component is complex if it has more edges than
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vertices). The range p = (1 + ε)/n was studied by  Luczak and Seierstad [86] who were

able to show the following result which can be viewed as a version of Theorem 7.1 for

D(n, p),

Theorem 7.3 ([86]). Let np = 1 + ε, such that ε = ε(n)→ 0.

i) If nε3 → −∞ then a.a.s. every component of D(n, p) is an isolated vertex or a

cycle of length O(1/|ε|).

ii) If nε3 → ∞ then a.a.s. D(n, p) contains a unique complex component of size

4ε2n(1 + o(1)) and every other component is an isolated vertex or a cycle of length

O(1/ε).

As a corollary  Luczak and Seierstad obtain a number of weaker results inside the crit-

ical window regarding complex components. They showed that there are Op(1) complex

components containing Op(n
1/3) vertices combined and that each has spread Ωp(n

1/3)

(the spread of a complex digraph is the length of its shortest path between vertices of

degree at least 3). For a sequence (Xn)n∈N of random variables with Xn defined on the

probability space (Ωn,Fn,Pn), the notation Xn = Op(g(n)) means that for any ε > 0

there exist constants C,N > 0 such that for all n ≥ N

Pn
(∣∣∣∣ Xn

g(n)

∣∣∣∣ ≥ C

)
≤ ε.

Furthermore, the notation Xn = op(g(n)) means that for any ε > 0,

Pn
(∣∣∣∣ Xn

g(n)

∣∣∣∣ ≥ ε

)
→ 0 as n→∞

and similarly we may define other asymptotic notation in probability ωp,Ωp etc.

Our main result is to give bounds on the tail probabilities of |C1| resembling those of

Nachmias and Peres for G(n, p).
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Theorem 7.4 (Lower Bound). Let 0 < δ < 1/800, λ ∈ R and n ∈ N. Let C1 be the

largest component of D(n, p) for p = n−1 + λn−4/3. Then if n is sufficiently large with

respect to δ, λ,

P(|C1| < δn1/3) ≤ 2eδ1/4, (7.1)

provided that δ ≤ min
(

(log 2)2

4|λ|2 ,
1

800

)
.

Note that the constants in the above theorem have been chosen for simplicity and it

is possible to give an expression for (7.1) depending on both λ and δ which imposes no

restriction on their relation to one another.

Theorem 7.5 (Upper Bound). Let C1 be the largest component of D(n, p) for p = n−1 +

λn−4/3. There exist constants, ζ, η > 0 such that for any A > 0, λ ∈ R the following

holds. Provided n is sufficiently large with respect to A, λ, and defining λ+ := max(λ, 0),

P(|C1| > An1/3) ≤ ζe−ηA
3/2+λ+A.

A simple corollary of these bounds is that the largest component has size Θ(n1/3)

with high probability. This follows by taking δ = o(1) in Theorem 7.4 and A = ω(1) in

Theorem 7.5.

Corollary 7.6. Let C1 be the largest component of D(n, p) for p = n−1 + λn−4/3. Then,

|C1| = Θp(n
1/3).

It should be noted that, in contrast to the undirected case, checking whether a set

W of vertices constitutes a strongly connected component of a digraph D requires much

more than checking only those edges with at least one end in W . In particular, in order

for W to be a strongly connected component, it must be strongly connected and there

must be no directed path starting and ending in W which contains vertices that are not

in W . This precludes us from using a number of methods which have often been used to

study G(n, p). We therefore develop novel methods for counting the number of strongly

connected components of D(n, p) based upon branching process arguments.
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The remainder of this chapter is organised as follows. In Section 7.2 we give a pair

of bounds on the number of strongly connected digraphs which have a given excess and

number of vertices. Sections 7.3 and 7.4 contain the proofs of Theorems 7.4 and 7.5

respectively in the case that p = n−1. The proof of Theorem 7.4 in Section 7.3 is a

relatively straightforward application of Janson’s inequality. The proof of Theorem 7.5

in Section 7.4 is much more involved. We use an exploration process to approximate

the probability that a given subdigraph of D(n, p) is also a component. Using this we

approximate the expected number of strongly connected components of size at least An1/3

and apply Markov’s inequality. The adaptations required to handle the critical window

p = n−1 + λn−4/3 are presented in Section 7.5. We conclude the chapter in Section 7.6

with some open questions and final remarks.

7.2 Enumeration of Digraphs by size and excess

For both the upper and lower bounds on the size of the largest component, we need good

bounds on the numbers of strongly connected digraphs with a given excess and number

of vertices, where the excess of a strongly connected digraph with v vertices and e edges

is e− v. Let Y (m, k) be the number of strongly connected digraphs with m vertices and

excess k. The study of Y (m, k) was initiated by Wright [117] who obtained recurrences

for the exact value of Y (m, k). However, these recurrences swiftly become intractable

as k grows. This has since been extended to asymptotic formulae when k = ω(1) and

O(m log(m)) [97, 99]. Note that when k = m log(m)+ω(m), the fact Y (m, k) ∼
(
m(m−1)
m+k

)
is a simple corollary of a result of Palásti [95]. In this section we give an universal bound

on Y (m, k) (Lemma 7.7) as well as a stronger bound for small excess (Lemma 7.9).

Lemma 7.7. For every m, k ≥ 1,

Y (m, k) ≤ (m+ k)km2k(m− 1)!

k!
.
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Proof. We will prove this by considering ear decompositions of the strongly connected

digraphs in question. An ear is a non-trivial directed path in which the endpoints may

coincide (i.e. it may be a cycle with a marked start/end vertex). The internal vertices

of an ear are those that are not endpoints. An ear decomposition of a digraph D is a

sequence, E0, E1, . . . , Ek of ears such that:

� E0 is a directed cycle.

� The endpoints of Ei belong to
⋃i−1
j=0Ej.

� The internal vertices of Ei are disjoint from
⋃i−1
j=0 Ej.

�

⋃k
i=0Ei = D.

We make use of the following fact.

Fact 7.8. A digraph D has an ear decomposition with k + 1 ears if and only if D is

strongly connected with excess k.

Thus we count strongly connected digraphs by a double counting of the number of

possible ear decompositions. We produce an ear decomposition with m vertices and k+1

ears as follows. First, pick an ordering π of the vertices. Then insert k bars between the

vertices such that the earliest the first bar may appear is after the second vertex in the

order; multiple bars may be inserted between a pair of consecutive vertices. Finally, for

each i ∈ [k], we choose an ordered pair of vertices (ui, vi) which appear in the ordering

before the ith bar.

This corresponds to a unique ear decomposition. The vertices in π before the first

bar are E0 with its endpoint being the first vertex. The internal vertices of Ei are the

vertices of π between the ith and i + 1st bar. Furthermore, Ei has endpoints ui and vi

and is directed from ui to vi. The orientation of every other edge follows the order π.

Hence, there are at most

(
m+ k − 2

k

)
m2km! ≤ (m+ k)km2km!

k!
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ear decompositions. Note that each vertex of a strongly connected digraph is contained

in a cycle. Therefore each vertex could be the endpoint of E0 and hence at least m ear

decompositions correspond to each strongly connected digraph. Hence the number of

strongly connected digraphs of excess k may be bounded by

Y (m, k) ≤ (m+ k)km2km!

k!m
=

(m+ k)km2k(m− 1)!

k!
,

as claimed. �

Lemma 7.9. There exists C > 0 such that for 1 ≤ k ≤
√
m/3 and m sufficiently large

we have,

Y (m, k) ≤ C
m!m3k−1

(2k − 1)!
. (7.2)

Note that the above lemma is true for any k = O(
√
m) and the proof remains the

same, only changing the final constant. The proof of the above lemma follows similar

lines to the proof of Theorem 1.1 in [97] to obtain a bound of a similar order. We then

prove that this bound implies the above which is much easier to work with.

First we introduce some definitions and notation from [97]. A random variable X has

the zero-truncated Poisson distribution with parameter λ > 0 denoted X ∼ TP (λ) if it

has probability mass function

P(X = i) =


λi

i!(eλ−1)
if i ≥ 1,

0 if i < 1.

Let D be the collection of all degree sequences d = (d+
1 , . . . , d

+
m, d

−
1 , . . . , d

−
m) such that

d+
i , d

−
i ≥ 1 for each 1 ≤ i ≤ m and furthermore,

m∑
i=1

d+
i =

m∑
i=1

d−i = m+ k.
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A preheart is a (not neccesarily simple) digraph with minimum semi-degree at least 1

and no cycle components. The heart of a preheart D is the multidigraph H(D) formed

by suppressing all vertices of D which have in and out degree precisely 1.

We define the preheart configuration model, a two stage variant of the configuration

model for digraphs which always produces a preheart, as follows. For d ∈ D, define

T = T (d) = {i ∈ [m] : d+
i + d−i ≥ 3}.

First we apply the configuration model to T to produce a heart H. That is, assign

each vertex i ∈ T d+
i out-stubs and d−i in-stubs and pick a uniformly random perfect

matching between in- and out-stubs. Next, given a heart configuration H, we construct

a preheart configuration Q by assigning [m] \ T to E(H) such that the vertices assigned

to each arc of H are given a linear order. Denote this assignment including the orderings

by q. Then the preheart configuration model, Q(d) is the probability space of random

preheart configurations formed by choosing H and q uniformly at random. Note that

each Q ∈ Q(d) corresponds to a (multi)digraph with m vertices m+ k edges and degree

sequence d.

As in the configuration model, each simple digraph with degree sequence d is produced

in precisely
∏m

i=1(d+
i !d−i !) ways. So if we restrict to simple preheart configurations, the

digraphs we generate in this way are uniformly distributed, where in this case, simple

means that there are no multiple edges or loops (however cycles of length 2 are allowed).

We now count the number of preheart configurations. Let m′ = m′(d) = |T (d)| be the

number of vertices of the heart. Then, we have the following

Lemma 7.10. Let d ∈ D. There are

m′(d) + k

m+ k
(m+ k)!

preheart configurations.
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Proof. We first generate the heart, and as we are simply working with the configuration

model for this part of the model, there are (m′+k)! heart configurations. The assignment

of vertices in [m] \ T to the arcs of the heart H may be done one vertex at a time by

subdividing any already present edge and maintaining orientation. In this way when we

add the ith vertex in this stage, there are m′+k+ i−1 choices for the edge we subdivide.

We must add m−m′ edges in this stage and so there are

m−m′∏
i=1

m′ + k + i− 1 =
(m+ k − 1)!

(m′ + k − 1)!

unique ways to create a preheart configuration from any given heart. Multiplying the

number of heart configurations by the number of ways to create a preheart configuration

from a given heart yields the desired result. �

The next stage is to pick the degree sequence, d ∈ D at random. We do this by

choosing the degrees to be independent and identically distributed zero-truncated Poisson

random variables with mean λ > 0. That is, d+
i ∼ TP (λ) and d−i ∼ TP (λ) such that the

family {d+
i , d

−
i : i ∈ [m]} is independent. Note that this may not give a degree sequence

at all, or it may be the degree sequence of a digraph with the wrong number of edges.

Thus we define the event Σ(λ) to be the event that

m∑
i=1

d+
i =

m∑
i=1

d−i = m+ k.

We shall now prove the following bound,

Lemma 7.11. For any λ > 0 we have

Y (m, k) ≤ 3k(m+ k − 1)!(eλ − 1)2m

λ2(m+k)
P(Σ(λ)). (7.3)
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Proof. Let D be the random degree sequence generated as above and d ∈ D, then

P(D = d) =
m∏
i=1

λd
+
i

d+
i !(eλ − 1)

λd
−
i

d−i !(eλ − 1)
=

λ2(m+k)

(eλ − 1)2m

m∏
i=1

1

d+
i !d−i !

. (7.4)

By definition of Σ(λ), we have

∑
d∈D

P(D = d) = P(Σ(λ)),

as all of the above events are disjoint. Thus, we may rearrange (7.4) to deduce that

∑
d∈D

m∏
i=1

1

d+
i !d−i !

=
(eλ − 1)2m

λ2(m+k)
P(Σ(λ)). (7.5)

Lemma 7.10 tells us that for a given degree sequence d, there are

m′(d) + k

m+ k
(m+ k)!

preheart configurations. As each simple digraph with degree sequence d comes from

precisely
∏m

i=1 d
+
i !d−i ! configurations, and m′(d) ≤ 2k as otherwise the excess would be

larger than k, we can deduce that the total number of prehearts with m vertices and

excess k is at most

∑
d∈D

m′(d) + k

m+ k
(m+ k)!

m∏
i=1

1

d+
i !d−i !

≤
∑
d∈D

(m+ k)!
3k

m+ k

m∏
i=1

1

d+
i !d−i !

. (7.6)

Note that any strongly connected digraph is a preheart and so (7.6) is also an upper

bound for Y (m, k). Finally, combining (7.5) and (7.6) yields the desired inequality. �

It remains to prove that (7.3) can be bounded from above by (7.2). To this end, we

prove the following upper bound on P(Σ(λ)).

Lemma 7.12. For λ < 1,

P(Σ(λ)) ≤ 147

λm
.
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For the proof of this lemma, we will use the Berry-Esseen inequality for normal ap-

proximation (see for example [115, Section XX.2].)

Lemma 7.13. Suppose X1, X2, . . . , Xn is a sequence of independent random variables

from a common distribution with zero mean, unit variance and third absolute moment

E|X|3 = γ <∞. Let Sn = X1 +X2 + . . .+Xn and let Gn be the cumulative distribution

function of Sn/
√
n. Then for each n we have

sup
t∈R
|Gn(t)− Φ(t)| ≤ γ

2
√
n
, (7.7)

where Φ is the cumulative distribution function of the standard Gaussian.

Here, the explicit constant 1/2 in equation (7.7) was obtained by Tyurin [114].

Proof of Lemma 7.12. The in-degrees of the random degree sequence are chosen inde-

pendently from a truncated poisson distribution with parameter λ. Thus, we want to

apply Lemma 7.13 to the sum Sm = Y1 + Y2 + . . . + Ym where the Yi are normalised

truncated Poisson random variables. So all we must compute are the first three central

moments of the truncated poisson distribution. Let Y ∼ TP (λ), one can easily compute

that E(Y ) = cλ = λeλ

eλ−1
and Var(Y ) = σ2

λ = cλ(1 + λ − cλ). Note that for λ < 1 as cλ is

increasing in λ, we have 1 < cλ ≤ c1 < 2 and so as Y only takes integer values which are

at least 1, E|Y − E(Y )|3 = E(Y − cλ)3 + 2(cλ − 1)3P(Y = 1). Computing this yields

E|Y −E(Y )|3 = λ+
2λ4 − 5λ3 + 3λ2 − λ

eλ − 1
+

3(2λ4 − 3λ3 + λ2)

(eλ − 1)2
+

2(3λ4 − 2λ3)

(eλ − 1)3
+

2λ4

(eλ − 1)4

One can check that this is bounded above by 2λ for λ < 1.

The normalised version of Y is X = (Y − cλ)/σλ. We have

E|X|3 = E
∣∣∣∣Y − cλσλ

∣∣∣∣3 =
1

σ3
λ

E|Y − cλ|3 ≤
2λ

σ3
λ

= γ.

For λ < 1 one can check cλ < 1 + 2λ/3, which allows us to deduce that σ2
λ > λ/3 (also
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using Y ≥ 1). Hence, E|X|3 ≤ 6
√

3λ−1/2. Substituting into Lemma 7.13 with Gm the

distribution function of Sm/
√
m,

sup
t∈R
|Gm(t)− Φ(t)| ≤ 3

√
3√

λm
.

The probability that the sum of the in-degrees is m+ k is precisely

Gm

(
m+ k −mcλ

σλ
√
m

)
−Gm

(
m+ k − 1−mcλ

σλ
√
m

)
.

Following an application of the triangle inequality, we see that this probability is bounded

above by

6
√

3√
λm

+
1√

2πmσλ
≤ 7
√

3√
λm

.

As the event that the in-degrees sum to m + k and the event that the out-degrees sum

to m+ k are independent and identically distributed events, we may deduce the bound,

P(Σ(λ)) ≤ 147

λm
.

�

Finally, we may prove Lemma 7.9.

Proof of Lemma 7.9. We choose λ = 2k/m < 1 by assumption, then P(Σ(λ)) ≤ 147/2k

by Lemma 7.12. Combining this with Lemma 7.11 yields

Y (m, k) ≤ 441(m+ k − 1)!

2
λ−2k

(
eλ − 1

λ

)2m

≤ 441m!m3k−1ek
2/m

(2k)2k

(
eλ − 1

λ

)2m

(7.8)

We use the inequality ex ≤ 1 + x + x2/2 + x3/4 which holds for all 0 ≤ x ≤ 1 to bound

(eλ − 1)/λ ≤ 1 + λ/2 + λ2/4. Thus,

((eλ − 1)/λ)2m ≤ (1 + λ/2 + λ2/4)2m ≤ emλ+mλ2/2 = e2k+2k2/m.
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Then, we can use Stirling’s inequality, e
√

2k − 1(2k − 1)2k−1e−2k+1 ≥ (2k − 1)!, so that

e2k

(2k)2k
≤ e2k

(2k − 1)2k−1/2
≤ e2

(2k − 1)!
,

allowing us to rewrite the bound on Y (m, k) as

Y (m, k) ≤ 441e3

2

m!m3k−1

(2k − 1)!
,

where we used ek
2/m ≤ e1/3. This proves the lemma with C = 441e3/2. �

7.3 Proof of Theorem 7.4

In this section we prove a lower bound on component sizes in D(n, p). We give the

proof for p = 1/n for simplicity. The proof when p = n−1 + λn−4/3 is very similar, with

more care taken in the approximation of terms involving (np)m. See Section 7.5 for more

details.

Theorem 7.14. Let 0 < δ < 1/800, then the probability that D(n, 1/n) has no component

of size at least δn1/3 is at most 2δ1/2.

To prove this we will bound from above the probability that there is no cycle of length

between δn1/3 and δ1/2n1/3. Let X be the random variable counting the number of cycles

in D(n, 1/n) of length between δn1/3 and δ1/2n1/3. Note that we may decompose X as a

sum of dependent Bernoulli random variables, and thus we may apply Janson’s Inequality

in the following form (see [58, Theorem 2.18 (i)]).

Theorem 7.15. Let S be a set and Sp ⊆ S chosen by including each element of S in

Sp independently with probability p. Suppose that S is a family of subsets of S and for

A ∈ S, we define IA to be the event {A ⊆ Sp}. Let µ = E(X) and

∆ =
1

2

∑∑
A 6=B,A∩B 6=∅

E(IAIB).
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Then,

P(X = 0) ≤ e−µ+∆.

To apply Theorem 7.15, we define S to be the set of edges of the complete digraph on

n vertices. Let A ∈ S if and only if A ⊆ S is the set of edges of a cycle of length between

δn1/3 and δ1/2n1/3. Define X(m) to be the number cycles in D(n, 1/n) of length m. We

start by approximating the first moment of X.

Lemma 7.16. E(X) ≥ log(1/δ)/2(1 + o(1))

Proof. Let a = δn1/3 and b = δ1/2n1/3. Then, we can write X as

X =
b∑

m=a

X(m).

Note that

E(X(m)) =

(
n

m

)
m!

m
pm ≥ 1

m
(1 + o(1)). (7.9)

So, we may bound the expectation of X as follows

E(X) =
b∑

m=a

E(X(m)) ≥ (1 + o(1))
b∑

m=a

1

m
≥ (1 + o(1))

∫ b

a

dx

x
= (1 + o(1))

log(1/δ)

2
.

�

Let Z(m, k) be the random variable counting the number of strongly connected graphs

with m vertices and excess k in D(n, 1/n). Directly computing ∆ is rather complicated

so we will instead compute an upper bound on ∆ that is a linear combination of the

first moments of the random variables Z(m, k) for m ≥ a and k ≥ 1. To move from the

computation of ∆ to the first moments of Z(m, k) we use the following lemma,

Lemma 7.17. Each strongly connected digraph D with excess k may be formed in at

most 27k ways as the union of a pair of directed cycles C1 and C2.
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Proof. Consider the heart H(D) of D. Recall that H(D) is the (multi)-digraph formed

by suppressing the degree 2 vertices of D and retaining orientations. As D has excess

k, H(D) has at most 2k vertices. Furthermore, the excess of H(D) is the same as the

excess of D as we only suppress vertices of degree 2. Thus H(D) has at most 3k edges.

Then, each edge of H(D) must be a subdigraph of either C1, C2 or both. So there

are 33k = 27k choices for the pair C1, C2 as claimed. �

We are now in a position to give a bound on ∆.

Lemma 7.18. ∆ ≤ log(2) for any δ ∈ (0, 1/800]

Proof. Let

Γ(k) := {E(C)|C ⊆
−→
Kn, C ∼=

−→
Ck},

where
−→
Kn is the complete digraph on [n] and

−→
Ck is the directed cycle of length k. For

α ∈ Γ(k) let Iα be the indicator function of the event that all edges of α are present in a

given realisation of D(n, 1/n). Also, define

Γ =
b⋃

k=a

Γ(k).

Then, by definition,

∆ =
1

2

∑∑
α 6=β,α∩β 6=∅

E(IαIβ)

Let Γm,kα (t) be the set of β ∈ Γ(t) such that α∪ β is a collection of m+ k edges spanning

m vertices. Then,

2∆ =
b∑

s=a

b∑
t=a

∑
α∈Γ(s)

∞∑
m=s

∞∑
k=1

∑
β∈Γm,kα (t)

pm+k

≤
2b∑
m=a

∞∑
k=1

m∑
s=a

m∑
t=a

∑
α∈Γ(s)

∑
β∈Γm,kα (t)

pm+k

≤
2b∑
m=a

∞∑
k=1

27kE(Z(m, k)), (7.10)
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where the last inequality follows from Lemma 7.17. Note that

E(Z(m, k)) =

(
n

m

)
pm+kY (m, k)

by definition. We will use the following two bounds on Y (m, k) which follow immediately

from Lemma 7.7.

� If k ≤ m, then Y (m, k) ≤ 2km3km!
k!m

� If k > m, then Y (m, k) ≤ (2e)km2km!
m

This allows us to split the sum in (7.10) based upon whether k ≤ m or k > m to obtain

2∆ ≤
2b∑
m=a

m∑
k=1

27k
(
n

m

)
2km3km!

k!m
pm+k +

2b∑
m=a

∞∑
k=m+1

27k
(
n

m

)
(2e)km2km!

m
pm+k

≤
2b∑
m=a

1

m

∞∑
k=1

(54pm3)k

k!
+

2b∑
m=a

1

m

∞∑
k=m+1

(54em2p)k

≤ log(4/δ)

2
(e432δ3/2 − 1 + 23328e2δ2), (7.11)

where the 23328e2δ2 term comes from noting k ≥ 2 in the range k ≥ m+ 1 and that for

x ≤ 1/2,
∞∑
k=2

xk ≤ 2x2.

As (7.11) is increasing in δ, we simply need to check that the Lemma holds for δ = 1/800

which may be done numerically.

�

Finally, to prove Theorem 7.14 we substitute the values obtained for µ and ∆ in

Lemmas 7.16 and 7.18 respectively into Theorem 7.15. That is,

P(X = 0) ≤ e−µ+∆ ≤ e− log(1/δ)/2+log(2) = 2δ1/2

So the probability there is no directed cycle of length at least δn1/3 is at most 2δ1/2 and,
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as cycles are strongly connected, this is also an upper bound on the probability there is

no strongly connected component of size at least δn1/3.

7.4 Proof of Theorem 7.5

In this section we prove an upper bound on the component sizes in D(n, p). Again, we

only consider the case when p = 1/n to simplify notation and calculations. The reader

is referred to Section 7.5 for a sketch of the adaptations to extend the result to the full

critical window. The following is a restatement of Theorem 7.5 for p = 1/n.

Theorem 7.19. There exist constants ζ, η > 0 such that for any A > 0 if n is sufficiently

large with respect to A, then the probability that D(n, 1/n) contains any component of size

at least An1/3 is at most ζe−ηA
3/2
.

We will use the first moment method to prove this theorem and calculate the expected

number of large strongly connected components in D(n, 1/n). Note that it is important

to count components and not strongly connected subgraphs as the expected number of

strongly connected subgraphs in D(n, 1/n) blows up as n → ∞. Thus for each strongly

connected subgraph, we will use an exploration process to determine whether or not it is

a component.

The exploration process we will use was initially developed independently by Martin-

Löf [88] and Karp [60]. During this process, vertices will be in one of three classes: active,

explored or unexplored. At time t ∈ N, we let Xt be the number of active vertices, At the

set of active vertices, Et the set of explored vertices and Ut the set of unexplored vertices.

We will start from a set A0 of vertices of size X0 and fix an ordering of the vertices,

starting with A0. For step t ≥ 1, if Xt−1 > 0 let wt be the first active vertex. Otherwise,

let wt be the first unexplored vertex. Define ηt to be the number of unexplored out-

neighbours of wt in D(n, 1/n). Change the class of each of these vertices to active and

set wt to explored. This means that |Et| = t and furthermore, |Ut| = n − Xt − t. Let
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Nt = n − Xt − t − 1(Xt = 0) be the number of potential unexplored out-neighbours of

wt+1 i.e. the number of unexplored vertices which are not wt+1. Then, given the history

of the process, ηt is distributed as a binomial random variable with parameters Nt−1 and

1/n. Furthermore, the following recurrence relation holds.

Xt =


Xt−1 + ηt − 1 if Xt−1 > 0,

ηt otherwise

(7.12)

Let τ1 = min{t ≥ 1 : Xt = 0}. Note that this is a stopping time and at time τ1 the

set Eτ1 of explored vertices is precisely the out-component of A0. If A0 spans a strongly

connected subdigraph D0 of D(n, 1/n), then D0 is a strongly connected component if and

only if there are no edges from Eτ1 \ A0 to A0. The key idea will be to show that if X0

is sufficiently large, then it is very unlikely for τ1 to be small, and consequently it is also

very unlikely that there are no edges from Eτ1 \ A0 to A0. This is encapsulated in the

following lemma.

Lemma 7.20. Let Xt be the exploration process defined above with starting set of vertices

A0 of size X0 = m. Suppose 0 < c <
√

2 is a fixed constant. Then,

P(τ1 < cm1/2n1/2) ≤ 2e−
(2−c2)2

8c
m3/2n−1/2+O(m2n−1).

Proof. Define ξ = cm1/2n1/2 and consider the auxiliary process, X ′t which we define

recursively by

X ′0 = m,

X ′t = X ′t−1 − 1 +Wt for t ≥ 1,

where Wt ∼ Bin(n− t− 10m, p). Let τ2 be the stopping time,

τ2 = inf{t : Xt > 10m}
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We note that X ′t stochastically dominated by Xt for 0 ≤ t < τ2. That is, there exists

a coupling the processes as (X̂t, X̂
′
t) on the same probability space where X̂t has the

same distribution as Xt and X̂ ′t has the same distribution as Xt such that X̂ ′t ≤ X̂t

with probability 1 for 0 ≤ t < τ2. The coupling may be explicitly defined by setting

η̂t = Ŵt + Ŵ ′
t with Ŵ ′

t ∼ Bin(10m − X̂t−1, p) where η̂t, Ŵt are versions of ηt,Wt but for

the random variables X̂t, X̂
′
t instead of Xt and X ′t.

Define another stopping time, τ ′1 = min{t ≥ 1 : X ′t = 0} and consider the following

events

E1 = {τ1 < cm1/2n1/2},

E2 = {τ ′1 < cm1/2n1/2},

E3 = {τ2 < cm1/2n1/2}.

And note that P(E1) ≤ P(E2) + P(E3) by our choice of coupling and a union bound (as

the coupling guarantees E1 ⊆ E2 ∪ E3). Thus we only need to bound the probabilities of

the simpler events E2 and E3. We begin by considering E3. To bound its probability we

consider the upper bound process Mt defined by

M0 = m,

Mt = Mt−1 − 1 +Bt for t ≥ 1,

where Bt ∼ Bin(n, 1/n). It is straightforward to couple (Xt,Mt) such that Mt stochasti-

cally dominates Xt. Furthermore, Mt is a martingale. Hence, P(E3) ≤ P(τ ′2 < cm1/2n1/2)

where τ ′2 is the stopping time, τ ′2 = min{t : Mt > 10m}. To bound the probability of E2

consider the process Yt defined as Yt = m−X ′t. One can check that Yt is a submartingale.

As x 7→ eαx is a convex non-decreasing function for any α > 0, we may apply Jensen’s

inequality to deduce that Z−t = eαYt and Z+
t = eαMt are submartingales. Also, Z−t , Z

+
t >

0 for any i ∈ N. Starting with Z−t , we may apply Doob’s maximal inequality [48,
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Section 12.6] and deduce that

P
(

min
0≤t≤ξ

X ′i ≤ 0

)
= P

(
max
0≤t≤ξ

Z−t ≥ eαm
)
≤

E(Z−ξ )

eαm
. (7.13)

We may rewrite this by noting that

Yt = m−X ′t = t−
t∑
i=1

Wi = t−Rt.

where Rt is binomially distributed and in particular Rξ ∼ Bin(lξ, p) for

lξ = cm1/2n3/2 − c2mn

2
− 10cm3/2n1/2 +

cm1/2n1/2

2
.

Also, we choose x such that xlξ = ξ−m. Then (7.13) may be rewritten as e−αmE(Z−ξ ) =

eαxlξE(e−αRξ). The next stage is to rearrange this into a form which resembles the usual

Chernoff bounds (for x < p). So, let

f(α) = eαxlξE(e−αRξ) =

[
eαx(pe−α + 1− p)

]lξ
.

Then, we choose α∗ to minimise f . Solving f ′(α) = 0, we obtain the solution

e−α
∗

=
x(1− p)
p(1− x)

.

Note x < p so, e−α
∗
< 1 and α∗ > 0 as desired. Thus,

f(α∗) = =

[(
p(1− x)

x(1− p)

)x(
x

1− p
1− x

+ 1− p
)]mt

=

[(
x

1− p
1− x

+ 1− p
)(

p

x

)x(
1− p
1− x

)x]mt
=

[(
p

x

)x(
1− p
1− x

)1−x]mt
.

Which is the usual expression found in Chernoff bounds. As usual, we bound this by
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writing

f(α∗) = e−g(x)lξ

and bound g, where

g(x) = x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
.

Computing the Taylor expansion of g we find that g(p) = g′(p) = 0. So, if g′′(x) ≥ β for

all x between p and p− h, then g(p− h) ≥ βh2/2. Furthermore,

g′′(x) =
1

x
+

1

1− x
.

As 0 < x < p, we have g′′(x) ≥ 1/x ≥ 1/p. So, we deduce that g(x) ≥ δ2p/2 where

δ = 1− x/p. All that remains is to compute δ. As defined earlier, we have xlξ = ξ −m

which for convenience we will write as

xlξ = ξ

(
1− m1/2

cn1/2

)
. (7.14)

Also, as p = n−1, and recalling the definition of lξ from earlier,

plξ = cm1/2n1/2 − c2m

2
+O(m3/2n−1/2)

= ξ

(
1− cm1/2

2n1/2
+O(mn−1)

)
. (7.15)

We divide (7.14) by (7.15) and as the Taylor expansion of 1/(1− w) is
∑

i≥0w
i,

x

p
=

1− m1/2

cn1/2

1− cm1/2

2n1/2 +O(mn−1)
= 1− m1/2

cn1/2
+
cm1/2

2n1/2
+O(mn−1). (7.16)

From which we may deduce

δ =
(2− c2)m1/2

2cn1/2
+O(mn−1). (7.17)
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So,

P(E2) ≤ e−
δ2p
2
lξ = e−

(2−c2)2

8c
m3/2n−1/2+O(m2n−1). (7.18)

We may proceed similarly for Z+
t , in particular we must still appeal to Doob’s maximal

inequality as we seek a bound over the entire process. In this case we end up with a

Bin(nξ, p) distribution and are looking at the upper tail rather than the lower. We find

pnξ = ξ and

xnξ = ξ + 9m = ξ

(
1 +

9m1/2

cn1/2

)
.

Thus,

δ =
x

p
− 1 =

9m1/2

cn1/2
.

Substituting into the analogous bound,

P(E3) ≤ e−
δ2p
3
nξ ≤ e

− 27m3/2

cn1/2 . (7.19)

Observe that P(E2) ≥ P(E3)eO(m2n−1) for 0 < c <
√

2(1 + 3
√

6). Thus, in the range we

are interested in, we may use 2P(E2) as an upper bound for P(E2) +P(E3) and this proves

the lemma. �

We now compute the probability that any given strongly connected subgraph of

D(n, 1/n) is a component. To do so, we use the simple observation that a strongly

connected subgraph is a component if it is not contained in a larger strongly connected

subgraph.

Lemma 7.21. There exist β, γ > 0 such that if H is any strongly connected subgraph of

D(n, 1/n) with m vertices, then the conditional probability that H is a strongly connected

component of D(n, 1/n) is at most βe−(1+γ)m3/2n−1/2+O(m2n−1).

Proof. We compute the probability that H is a component of D(n, 1/n) by running the

exploration process Xt starting from A0 = V (H). So, X0 = m. Once the exploration

process dies at time τ1, any backward edge from Eτ1 \A0 to A0 gives a strongly connected
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subgraph of D(n, 1/n) which contains H. Let Yt be the random variable which counts

the number of edges from Et \ A0 to A0. Note that for t ≥ m, Yt ∼ Bin(m(t −m), p).

Furthermore, H is a strongly connected component of D(n, 1/n) if and only if Yτ1 = 0.

Let ε > 0 and define the events Ai for i = 1, . . . , r (where r ∼ c/ε for some c > 1) to

be

Ai = {(i− 1)εm1/2n1/2 ≤ τ1 < iεm1/2n1/2},

Ar+1 = {rεm1/2n1/2 ≤ τ1}.

Clearly the family {Ai : i = 1, . . . , r + 1} forms a partition of the sample space. So, by

the law of total probability,

P(Yτ1 = 0) =
r+1∑
i=1

P(Yτ1 = 0|Ai)P(Ai). (7.20)

By applying Lemma 7.20 when 1 ≤ i ≤ r we find

P(Ai) ≤ 2e−
(2−i2ε2)2

8iε
m3/2n−1/2+O(m2n−1).

Note that Yτ1 conditioned onAi stochastically dominates a Bin(m((i−1)εm1/2n1/2−m), p)

distribution. Therefore,

P(Yτ1 = 0|Ai) ≤ (1− p)m((i−1)εm1/2n1/2−m) ≤ e−(i−1)εm3/2n−1/2+O(m2n−1).

Combining the above and substituting into (7.20) yields

P(Yτ1 = 0) ≤ 2
r∑
i=1

e−((i−1)ε+
(2−i2ε2)2

8iε
)m3/2n−1/2+O(m2n−1) + e−rεm

m/2n−1/2+O(m2n−1), (7.21)

≤ (2r + 1)e−(1+γ)m3/2n−1/2+O(m2n−1), (7.22)

for some γ > 0 provided that ε is sufficiently small. The second term in (7.21) is a result
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of the fact P(Ar+1) ≤ 1. This proves the lemma and if one wishes for explicit constants,

taking ε = 0.025, r = 45 works and gives β < 100, γ > 0.06. �

The next stage in our proof is to show that a typical instance of D(n, 1/n) has no

component of large excess and no exceptionally large components. This will allow us

to use the bound from Lemma 7.9 to compute the expected number of large strongly

connected components of D(n, 1/n). The first result in this direction is an immediate

corollary of a result of  Luczak and Seierstad [86].

Lemma 7.22 ([86]). The probability that D(n, 1/n) contains a strongly connected com-

ponent of size at least n1/3 log log n is o(1).

The next lemma ensures that there are not too many cycles which enables us to prove

that the total excess is relatively small.

Lemma 7.23. The probability that D(n, p) contains more than n1/6 cycles of length at

most n1/3 log log(n) is o(1).

Proof. In this proof and subsequently we will use the convention that log(k) x is the

logarithm function composed with itself k times, while (log x)k is its kth power. We shall

show that the expected number of cycles of length at most n1/3 log(2) n is o(n1/6) at which

point we may apply Markov’s inequality. So let C be the random variable which counts

the number of cycles of length at most n1/3 log(2) n in D(n, 1/n). We can calculate its

expectation as

E(C) =

n1/3 log(2) n∑
k=1

(
n

k

)
k!

k
pk ≤

n1/3 log(2) n∑
k=1

1

k
. (7.23)

We use the upper bound on the kth harmonic number Hk ≤ log k + 1, which allows us

to deduce that

E(C) ≤ Hn1/3 log(2) n ≤
1

3
log n+ log(3) n+ 1 ≤ log n = o(n1/6). (7.24)

Thus the lemma follows by Markov’s inequality. �

132



Corollary 7.24. The probability that D(n, 1/n) contains a component of excess at least

n1/6 and size at most n1/3 log log n is o(1).

Proof. If D is any strongly connected digraph with m vertices and excess k, then note

that it must have at least k+1 cycles of length at most m. This can be seen by considering

the ear decomposition of D. The first ear must be a cycle, and each subsequent ear adds

a path which must be contained in a cycle as D is strongly connected. So as we build the

ear decomposition, each additional ear adds at least one cycle. As any ear decomposition

of a strongly connected digraph of excess k has k + 1 ears, then D must have at least

k + 1 cycles.

Thus, if D has k cycles, it must have excess at most k − 1. So applying Lemma 7.23

completes the proof. �

Finally, we prove the main theorem of this section.

Proof of Theorem 7.19. Let C1 be the largest strongly connected component of D(n, 1/n)

and L1 = |C1|. We want to compute P(L1 ≥ An1/3). Define the following three events,

E1 = {L1 ≥ An1/3},

E2 = {An1/3 ≤ L1 ≤ n1/3 log log(n)},

E3 = {L1 ≥ n1/3 log log(n)}.

Clearly, E1 ⊆ E2 ∪ E3 and by Lemma 7.22, P(E3) = on(1). If F is the event that C1 has

excess at least n1/6 then by Corollary 7.24, P(E2 ∩ F) = on(1). All that remains is to

give a bound on P(E2 ∩ F c). To this end let N(A) be random variable which counts the

number of strongly connected components of D(n, 1/n) which have size between An1/3

and n1/3 log log n and excess bounded above by n1/6. By Markov’s inequality, we may

deduce that P(E2 ∩ F c) ≤ E(N(A)). Computing the expectation of N(A),

E(N(A)) =

n1/3 log2(n)∑
m=An1/3

n1/6∑
k=0

(
n

m

)
pm+kY (m, k)P(Yτ1 = 0|X0 = m). (7.25)
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In Lemma 7.21 we showed that P(Yτ1 = 0|X0 = m) ≤ βe−(1+γ)m3/2n−1/2+O(m2n−1). Also,

using Lemma 7.9 we can check that

n1/6∑
k=0

Y (m, k)pk ≤ (m− 1)!

1 + C

n1/6∑
k=1

m3kpk

(2k − 1)!


≤ (m− 1)!

(
1 + C

∞∑
k=1

m3kpk

(2k − 1)!

)

= (m− 1)!
(
1 + C(m3p)1/2 sinh((m3p)1/2)

)
(7.26)

where the first term on the right hand side of (7.26) comes from the directed cycles and

C is the same constant as in Lemma 7.9. As sinh(x) ≤ ex we can bound (7.26) by

n1/6∑
k=0

Y (m, k)pk ≤ (m− 1)!(1 + Cm3/2n−1/2em
3/2n−1/2

)

≤ 2(m− 1)!Cm3/2n−1/2em
3/2n−1/2

.

Combining these bounds and using
(
n
m

)
≤ nm/m! we deduce

E(N(A)) ≤
n1/3 log2(n)∑
m=An1/3

(np)m

m!
· 2(m− 1)!Cm3/2n−1/2em

3/2n−1/2 · βe−(1+γ)m3/2n−1/2+O(m2n−1)

=

n1/3 log2(n)∑
m=An1/3

2βCm1/2

n1/2
e−γm

3/2n−1/2+O(m2n−1)

≤
∫ n1/3 log2(n)+1

An1/3

2βCm1/2

n1/2
e−

γ
2
m3/2n−1/2

dm, (7.27)

where (7.27) holds for all sufficiently large n. Now making the substitution x = mn−1/3
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we can remove the dependence of (7.27) on both m and n so that

E(N(A)) ≤ 2βC

∫ log2(n)+n−1/3

A

x1/2e−
γ
2
x3/2

dx

≤ 2βC

∫ ∞
A

x1/2e−
γ
2
x3/2

dx

=
8βC

3γ

∫ ∞
γA3/2

2

e−tdt =
8βC

3γ
e−

γA3/2

2 . (7.28)

So, by Markov’s inequality P(E2 ∩ F c) ≤ ζe−ηA
3/2

where ζ and η are the corresponding

constants found in (7.28). So,

P(L1 ≥ An1/3) ≤ P(E2 ∩ F c) + P(E2 ∩ F) + P(E3) = ζe−ηA
3/2

+ on(1).

Calculating ζ and γ using the values for C, β and γ in Lemmas 7.9 and 7.21 yields

ζ < 2× 107 and η > 0.03. �

7.5 Adaptations for the Critical Window

In this section we sketch the adaptations one must make to the proofs of Theorems 7.14

and 7.19 such that they hold in the whole critical window, p = n−1 +λn−4/3 where λ ∈ R.

7.5.1 Lower Bound

For Theorem 7.14, the adaptation is rather simple. We will still apply Janson’s inequality

and so we only need to recompute µ and ∆. Furthermore, the only difference in these

calculations comes from replacing the term n−m−k by pm+k, and in fact the pk in this

turns out to make negligible changes. In this light, Lemma 7.16 changes to

Lemma 7.25.

E(X) ≥


−eλδ2 log(δ)/2 if λ ≥ 0

−e2δ1/2λ log(δ)/2 otherwise.
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The only difference in the proof is to bound (1+λn−1/3)m by its lowest value depending

on whether λ ≥ 0 or λ < 0. We bound this via

1 + x ≥


e
x
2 if 0 ≤ x ≤ 2

e2x if − 1
2
≤ x ≤ 0.

Furthermore, Lemma 7.18 changes to

Lemma 7.26. For all sufficiently large n and small enough δ,

∆ ≤


e2δ1/2λ log(2) if λ ≥ 0

eδλ log(2) otherwise.

The proof again is almost identical with the only change being to approximate the

(np)m term. This time we seek an upper bound so use the approximation 1 + x ≤ ex

which is valid for any x. We still need to split depending upon the sign of λ as for

the above constants we upper bound (np)m by its largest possible value over the range

δn ≤ m ≤ 2δ1/2n. Combining Lemmas 7.25 and 7.26 with the relevant constraints on δ

in relation to λ yields Theorem 7.4.

7.5.2 Upper Bound

There is no significant (i.e. of order eλA) improvement which can be made with our

current method of proof when λ < 0. This is because the gains we make computing the

expectation in the proof of Theorem 7.19 are cancelled out by losses in the branching

process considerations of Lemma 7.20.

When λ > 0 we cannot simply use our bound for p = n−1 and thus an adaptation is

necessary. Note that by monotonicity in p, the results of Lemmas 7.20 and 7.21 remain

true for p = n−1 + λn−4/3 with λ > 0. The next adaptation which must be made is in

136



equation (7.23) where now, the expectation becomes

E(C) ≤
n1/3 log(2) n∑

k=1

ekλn
−1/3

k
≤

n1/3 log(2) n∑
k=1

(log n)λ

k
≤ 2(log n)λ+1 = o(n1/6).

Thus allowing us to deduce the result of Corollary 7.24 as before. Finally all that remains

is to conclude the proof of Theorem 7.5. Ignoring lower order terms, the only difference

to the proof compared to that of Theorem 7.19 is in the computation of E(N(A)) where

we must change the term (np)m. Thus the integral in (7.27) becomes

∫ n1/3 log(2) n+1

An1/3

2βCm1/2

n1/2
e−

γ
2
m3/2n−1/2+λmn−1/3

dm. (7.29)

This is much more complex than before due to the extra term in the exponent. However

we are still able to give a bound after making the obvious substitution t = γ
2
m3/2n−1/2−

λmn−1/3, we obtain

E(N(A)) ≤ 8βC

3γ

∫ ∞
γ
2
A3/2−λA

m1/2n−1/2

m1/2n−1/2 − 4λn−1/3

3γ

e−tdt

≤ 10βC

3γ

∫ ∞
γ
2
A3/2−λA

e−tdt =
10βC

3γ
e−

γ
2
A3/2+λA (7.30)

which is of the claimed form. Note the second inequality holds for A sufficiently large

compared to λ.

7.6 Concluding Remarks

We have proven that inside the critical window, p = n−1 +λn−4/3, the largest component

of D(n, p) has size Θp(n
1/3). Furthermore, we have given bounds on the tail probabilities

of the distribution of the size of the largest component. Combining this result with

previous work of Karp [60] and  Luczak [84] allows us to deduce that D(n, p) exhibits a

“double-jump” phenomenon at the point p = n−1. However, there are still a large number
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of open questions regarding the giant component in D(n, p). Perhaps the most obvious

such question is to ask for an exact distribution for the size of the giant component.

Question 1. What is the limiting distribution of n−1/3|C1(D(n, p))| when p = n−1 +

λn−4/3?

Of course, this has recently been answered by Goldschmidt and Stephenson [46] who

in fact showed more. They showed that the sequence of strong components of D(n, p)

when rescaled by n−1/3 converges to a sequence of distributions on directed multigraphs

with edge lengths which are either 3-regular or cycles. However, their limit object is not

particularly amenable to computations and given the strong connection between G(n, p)

and D(n, p), it seems likely that the limit distributions, Xλ = n−2/3|C1(G(n, p))| and

Y λ = n−1/3|C1(D(n, p))| (where p = n−1 + λn−4/3) are closely related. For larger p,

previous work [60, 85] has found that the size of the giant strongly connected component

in D(n, p) is related to the size of the square of the giant component in G(n, p). That

is, if |C1(G(n, p)| ∼ α(n)n, then |C1(D(n, p)| ∼ α(n)2n. Note that the result found in

Theorem 7.5 is consistent with this pattern as here we have an exponent of order A3/2

while for G(n, p) a similar result is true with exponent A3 implying that the probability

we find a component of size Bn2/3 in G(n, p) is similar to the probability of finding a

component of size B2n1/3 in D(n, p) (assuming both bounds are close to tight). As such,

we make the following conjecture to explain this pattern.

Conjecture 7.27. If Xλ and Y λ are the distributions defined above and Xλ
1 , X

λ
2 are

independent copies of Xλ then, Y λ = Xλ
1X

λ
2 .

Furthermore, let us consider the transitive closure of random digraphs. The transitive

closure of a digraph D is cl(D) a digraph on the same vertex set as D and such that uv

is an edge of cl(D) if and only if there is a directed path from u to v in D. Equivalently,

cl(D) is the smallest digraph containing D such that the relation R defined by uRv if

and only if uv is an edge is transitive. Karp [60] gave a linear time algorithm to compute

the transitive closure of a digraph from the model D(n, p) provided that p ≤ (1− ε)n−1
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or p ≥ (1 + ε)n−1. For all other p this algorithm runs in time O(f(n)(n log n)4/3) where

f(n) is any ω(1) function. Now that we know more about the structure of D(n, p) for

p close to n−1, it may be possible to adapt Karp’s algorithm and obtain a better time

complexity.

Question 2. Does there exist a linear time algorithm to compute the transitive closure

of D(n, p) when (1− ε)n−1 ≤ p ≤ (1 + ε)n−1?
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CHAPTER 8

ZERO-FREE REGIONS IN THE
FERROMAGNETIC POTTS MODEL

8.1 Introduction

In statistical physics the Potts model is used to study interacting spins on a graph-like

structure. The Potts model is a natural generalisation of both Ising model and bond

percolation.

For a graph G we define the partition function of the Potts model on G as follows.

Let k ∈ N this will be the number of possible spins (or colours). With each edge of G we

associate a variable we ∈ C. The k-state partition function of the Potts model is then

Z(G; k, (we)e∈E(G)) =
∑

φ:V (G)→[k]

∏
uv∈E

φ(u)=φ(v)

wuv.

In this chapter we will only be concerned with the univariate case in which we = w for

all e ∈ E(G). In this case the partition function is

Z(G; k, w) :=
∑

φ:V→[k]

∏
uv∈E

φ(u)=φ(v)

w.

If we consider only w ∈ R, the partition function can be viewed as the normalising

constant for a family of probability distributions on spin systems over G. That is we
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define the family of distributions

µG;w(φ) = Z(G; k, w)−1
∏
uv∈E

φ(u)=φ(v)

w. (8.1)

This distribution is interesting in a number of places. In particular the points w = 0,

w = 1 and w → ∞. The distribution µG;0 is the uniform distribution over proper

k-colourings of G while µG;1 is the uniform distribution over all colourings of G and

µG;w→∞ converges to the uniform distribution on kc(G) elements where c(G) is the number

of components of G (corresponding to the colourings with monochromatic components).

There are two general regimes for w which are studied separately. These are w > 1

and w < 1 which are referred to as the ferromagnetic and anti-ferromagnetic Potts model

respectively. The names originate from the comparison to magnetism in which particles

with the same spin are attracted to one-another. Clearly this is the case if w > 1 in 8.1

where states which have many neighbours of the same spin have the greatest weight.

The locations of the complex zeros of partition functions can be related to the existence

of phase transitions in the underlying model by a seminal result of Lee and Yang [118]. In

particular their work tells us that if there is no complex zero in some domain, then there

will also be no phase transition there. Inspired by this Barvinok [8] was able to design

efficient approximation algorithms in such domains. This contrasts with the fact that it

is usually #P-hard to evaluate the partition function of the Potts model [55]. This has

recently been improved from a quasi-polynomial time approximation scheme (QPTAS)

to a fully polynomial time approximation scheme (FPTAS) by Patel and Regts [96] for

bounded degree graphs.

The main result of this chapter is a zero-free region for the ferromagnetic Potts model.

For this we will make a couple of definitions, first we define N≥k to be the set of integers

which are at least k. We also define for z ∈ C and d ∈ R, the neighbourhood of z to be

N (z, d) := {w ∈ C : |w − z| ≤ d}. Also, if instead of z we consider a subset of D ⊆ C,

we define the neighbourhood of D to be N (D, d) := ∪z∈DN (z, d).
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Theorem 8.1. Let k,∆ ∈ N≥2 then there exist η > 0 and c = ck such that for any

w ∈ N
([

1, 1 +
c

∆

]
, η
)

and any graph G = (V,E) of maximum degree at most ∆, Z(G; k, w) 6= 0.

Note that by applying the method of Patel and Regts discussed above yields a FPTAS

to approximate the partition function Z(G; k, w) in the interval [1, 1 + c/∆]. Bencs et

al. [9] gave a similar corollary in the antiferromagnetic case and the algorithm we would

obtain and the analysis would be essentially identical. As such we shall omit this detail.

When k is large in Theorem 8.1 we will take ck = log(k) − 1. For smaller choices of

k (roughly k ≤ 100) we can make some improvements to this value. See Table 8.1 for ck

when k ≤ 12 as well as a parameter αk which we introduce later and Appendix B for the

adjustments to the proof. As we make no improvements to the work of Liu, Sinclair and

Srivastava on the Ising model [81] we omit the case k = 2

k 3 4 5 6 7 8 9 10 11 12
αk 1.767 1.803 1.849 1.896 1.944 1.990 2.034 2.076 2.116 2.154
ck 2.171 2.330 2.472 2.600 2.716 2.820 2.916 3.003 3.084 3.160

Table 8.1: Lower bounds on ck for small k.

Theorem 8.1 adds to a large body of literature on zero-free regions for the Potts model

partition function. In particular there are a number of results for zeros of the partition

function on lattice graphs [7, 20, 21, 22, 106] as well as for arbitrary graphs [8, 9, 41, 107].

Most of the results for arbitrary bounded degree graphs require a sufficiently large number

of colours and are for the anti-ferromagnetic regime. For example, Sokal [107] proved that

for any graph of maximum degree ∆ there exists a constant C < 7.97 such that if |w| ≤ 1,

then for any k ≥ C∆, Z(G; k, w) 6= 0. This was subsequently improved to C < 6.91 by

Procacci and Fernández [41] and the condition that w lie in the unit disk was loosened

in [54].

Our main result may be viewed as removing the requirement for sufficiently many
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colours in a slightly different domain, where we take an ν-neighbourhood of a real interval

as our domain. This is similar to the approach taken by Bencs et al. [9] who looked at the

interval [0, 1]. Our proof method is also similar to theirs which is based upon a method

of Barvinok [8]. This method involves considering a restricted partition function, where

we fix some spins. This gives us a “graph with bounded maximum degree and boundary

conditions” which the restricted partition function is the partition function of.

We now define the restricted partition function for the Potts model. For a list W =

w1 . . . wm of distinct vertices of V and a list L = `1 . . . `m of pre-assigned colours in [k]

for the vertices in W which need not be distinct the restricted partition function ZW
L (G)

is defined by

ZW
L (G) :=

∑
φ:V→[k]

φ respects (W,L)

∏
uv∈E

φ(u)=φ(v)

wuv,

where we say that φ respects (W,L) if for all i = 1 . . . ,m we have φ(wi) = `i. We say

the vertices w1, . . . , wm are fixed and refer to the remaining vertices in V as free vertices.

The length of W (respectively L), written |W | (respectively |L|) is the length of the list.

Given a list of distinct vertices W ′ = w1 . . . wm, and a vertex u (distinct from w1, . . . , wm)

we write W = W ′u for the concatenated list W = w1 . . . wmu and we use similar notation

L′` for concatenation of lists of colours.

The remainder of this chapter is organised as follows. In Section 8.2 we collect some

preliminary lemmas which will be useful in our proof of Theorem 8.1. Following this we

prove a generalisation of our main theorem for restricted partition functions in Section 8.3

modulo one technical lemma about the ratios of very similar restricted partition functions

which is proved in Section 8.4. Finally we conclude in Section 8.5 with some remarks and

open questions.
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8.2 Preliminaries

In this section we will gather a few tools which will come in useful in the proofs during

Sections 8.3 and 8.4. First, we state a lemma of Barvinok which is useful for evaluating

sums of restricted partition functions.

Lemma 8.2 (Barvinok [8, Lemma 3.6.3]). Let u1, . . . , un ∈ R2 be non-zero vectors such

that the angle between any two vectors ui and uj is at most α for some α ∈ [0, 2π/3).

Then the ui all lie in a cone of angle at most α and

∣∣∣∣ n∑
i=1

ui

∣∣∣∣ ≥ cos(α/2)
n∑
i=1

|ui|.

Furthermore the following simple corollary of the cosine rule will come in handy.

Lemma 8.3. Let z, z′ be two complex numbers at an angle of at most π/3, then |z−z′| ≤

max{|z|, |z′|}.

Proof. Recall the cosine rule, for a triangle with sides a, b and c; and angles A, B and C

where side a is not adjacent to angle A, then

|a|2 = |b|2 + |c|2 − 2|b||c| cos(A)

where |a| is the length of side a. Now consider the triangle with vertices in C at the

origin, z and z′. The sides have length |z|, |z′| and |z − z′| and the angle at the origin is

the angle θ ≤ π/3 between z and z′. As cos(x) ≥ 0.5 for x ≤ π/3,

|z − z′|2 ≤ |z|2 + |z′|2 − |z||z′| ≤ max{|z|, |z′|}.

�
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8.3 An induction for k Colours

In this section we prove a generalisation of Theorem 8.1. To see that it implies Theo-

rem 8.1, take W = L = ∅ in 1.

Lemma 8.4. Let ∆ ∈ N≥3 and let k ∈ N≥4 such that log k ≤ ∆. Then there exist

constants π/(3∆) > θ > ε > 0 and 0 < α < c such that for any w ∈ [1, 1 + c/∆], there

exists η > 0 such that for any w′ ∈ C satisfying |w − w′| ≤ η and |w′| ≤ |w| and any

graph G of maximum degree at most ∆ the following hold for Z(G) = Z(G; k, w′).

1. For all lists W of distinct vertices of G and all lists of pre-assigned colours L of

length |W |, ZW
L (G) 6= 0.

2. For all lists W = W ′u of distinct vertices of G such that u is a leaf and any two

lists L′l,L′l′ of length |W |

(a) If the unique neighbour v of u is free,

i. The angle between vectors ZW ′u
L′ l (G) and ZW ′ u

L′ l′(G) is at most θ.

ii.

|ZW ′u
L′ l (G)|

|ZW ′ u
L′ l′(G)|

≤ 1 +
α

∆
.

(b) If the unique neighbour v of u is fixed,

i. The angle between vectors ZW ′u
L′ l (G) and ZW ′ u

L′ l′(G) is at most ε.

ii.

|ZW ′u
L′ l (G)|

|ZW ′ u
L′ l′(G)|

≤ 1 +
c

∆
.

3. For all lists W = W ′u of distinct vertices of G and for all lists of pre-assigned

colours L′ of length |W ′|. Let d be the number of free neighbours of u and let

b = ∆− d. Then for any pair of colours l, l′,

(a) The angle between vectors ZW ′u
L′ l (G) and ZW ′ u

L′ l′(G) is at most dθ + bε.
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(b)

|ZW ′u
L′ l (G)|

|ZW ′ u
L′ l′(G)|

≤ (1 + α/∆)d(1 + c/∆)∆−d

To prove this result we need some definitions and an auxiliary lemma.

We define rational functions in two variables z0, z and respectively k − 1 variables

z0, . . . , zk−2 by

R(z0, z;w, k) =
wz0 + (k − 2)z + 1

z0 + (k − 2)z + w
,

Rk(z0, z1, . . . , zk−2;w) =
wz0 + z1 + . . .+ zk−2 + 1

z0 + z1 + . . .+ zk−2 + w
.

Consider the cone

C(θ) := {z = reiϑ | r ≥ 0 and |ϑ| ≤ θ},

and define for d = 0, . . . ,∆ and c ≥ 0,

K(θ, d, α, c, ε) := C(dθ + (∆− d)ε)

∩
{
z | (1 + c/∆)d−∆(1 + α/∆)−d ≤ |z| ≤ (1 + c/∆)∆−d(1 + α/∆)d

}
.

Lemma 8.5. Let ∆ ∈ N≥3 and let k ∈ N such that log(k) ≤ ∆. Suppose that α =

log(k)/2 − 1 and c = log(k) − 1. Then there exist 1 > θ > ε > η > 0 such that for

each d = 0, . . . ,∆, and any z0, . . . , zk−2 ∈ Kd := K(θ, d, α, c, ε) such that for each i, j,

zi/zj ∈ Kd and any w ∈ [1, 1+c/∆] and any w′ ∈ C such that |w−w′| ≤ η and |w′| ≤ |w|

the ratio R = Rk(z0, z1, . . . , zk−2;w′) satisfies

(1 + α/∆)−1 < |R| < 1 + α/∆ and | arg(R)| < θ. (8.2)

We will prove this lemma in the next section. We first utilize it to prove Lemma 8.4.

Proof of Lemma 8.4. We prove this theorem by induction on the number of free vertices

of G. For the base case, we have no free vertices and so every vertex is fixed. Therefore

ZW
L (G) is a product of non-zero terms, hence is non-zero, proving 1. Statement 2.(a) is
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vacuous as there are no free vertices. Statement 2.(b) follows as the products ZW ′u
L′ ` (G)

and ZW ′ u
L′ `′(G) differ in at most one term. Thus their ratio is either 1, w or w−1. Similarly

we deduce Statement 3. from the fact that the products ZW ′u
L′ ` (G) and ZW ′ u

L′ `′(G) differ in

at most ∆ terms.

Now, we assume that Statements 1., 2. and 3. hold for graphs with r ≥ 0 free vertices.

We prove the statements for r + 1 free vertices. First, we shall prove 1.

Suppose that u is a free vertex. Note that ZW
L (G) =

∑k
j=1 ZWu

L j (G). As each term

in the sum on the right hand side of this expression has one fewer free vertex, we may

apply induction to deduce that all of these terms are non-zero by 1. Furthermore, by 3.

each pair has angle at most dθ+ (∆− d)ε where d is the number of free neighbours of u.

Lemma 8.2 tells us that the ZWu
L j all lie in a cone of angle at most dθ + (∆− d)ε and

|ZW
L (G)| =

∣∣∣∣ k∑
j=1

ZWu
L j (G)

∣∣∣∣ ≥ cos(dθ/2 + (∆− d)ε/2)
k∑
j=1

|ZWu
L j (G)| 6= 0.

Next, we shall prove 2.(a) so consider the ratios,

Rj,`(G) =
ZW ′u
L′ j (G)

ZW ′u
L′ ` (G)

, Rv
j,`(G) =

ZW ′ v
L′ j (G− u)

ZW ′ v
L′ `(G− u)

.

As v is the unique neighbour of u and is free, we may write,

Rj,`(G) =

∑
i Z

Wuv
L j i (G)∑

i Z
Wuv
L ` i (G)

=
wZW v

L j (G− u) +
∑

i/∈{j,`} Z
W v
L i (G− u) + ZW v

L `(G− u)

ZW v
L j (G− u) +

∑
i/∈{j,`} Z

W v
L i (G− u) + wZW v

L `(G− u)
.

Dividing both the numerator and denominator by ZW v
L `(G − u) (which by the inductive

hypothesis is non-zero) we obtain,

wRv
j∗,`∗(G) +

∑
i 6=j∗,`∗ R

v
i,`∗(G) + 1

Rv
j∗,`∗(G) +

∑
i 6=j∗,`∗ R

v
i,l(G) + w

= Rk(R
v
j∗,`∗(G), Rv

1,`∗(G), . . . , Rv
k,`∗(G);w). (8.3)

where the function Rk in (8.3) takes as arguments all Rv
i,`∗(G) for i 6= `∗ precisely once

(and so takes precisely k − 1 arguments as expected.)
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Suppose that v has d free neighbours that are not u. Since G− u has one fewer free

vertex than G, we may apply the inductive hypothesis. By 3. we find that for any i 6= `∗,

we have Rv
i,`(G) ∈ K(θ, d, α, c, ε). However, we also have that for any i, j 6= `∗, that

Rv
i,`∗(G)

Rv
j,`∗(G)

=
ZW ′ v
L′ i (G− u)

ZW ′ v
L′ j (G− u)

= Rv
i,j(G) ∈ K(θ, d, α, c, ε).

To prove 2.(a)i. observe that the angle between ZW ′u
L′ j and ZW ′u

L′ ` is precisely the angle of

Rj,`(G) from the real axis in C and so is bounded by the absolute value of the argument

of Rj,`(G), which by Lemma 8.5 bounded by θ as desired. Statement 2.(a)ii. also follows

immediately from Lemma 8.5.

For the proof of 2.(b), we note that as v is fixed, then

ZW ′u
L′ j (G) ∈ {w−1ZW ′u

L′ j (G),ZW ′u
L′ j (G), wZW ′u

L′ j (G)}

from which both i. and ii. follow.

Finally, we prove 3.. To do so we consider the graph G?u which is formed as follows.

Let v1, . . . , vr be the neighbours of u ordered arbitrarily. Let u1, . . . , ur be r new vertices

which will be copies of u. Then G?u is the graph obtained by deleting u and its incident

edges, adding the vertices u1, . . . , ur and edges u1v1, . . . , urvr. Furthermore, G?u inherits

any colouring of G and if u is coloured, all of the new vertices inherit this colour. Note

that if u is coloured, then the graph G ? u has the same partition function as G. Also,

in this case G ? u has the same number of free vertices as G. This allows us to prove 3.

from 2. by changing the colour of one copy of u at a time. That is,

ZW ′u
L′ j (G)

ZW ′u
L′ l (G)

=
ZW ′ u1 ...ur
L′ j ... j (G ? u)

ZW ′ u1 ...ur
L′ l ... l (G ? u)

=
r∏
i=1

Z
W ′ u1 ... ui−1 ui ...ur
L′ j ... j l ... l (G ? u)

Z
W ′ u1 ...ui ui+1 ...ur
L′ j ... j l ... l (G ? u)

(8.4)

By 2. each of the terms in the product in (8.4) has angle at most θ and absolute value at

most 1 + α/∆ (if ui is free) or angle at most ε and absolute value at most 1 + c/∆ (if ui

is fixed). As u has d free neighbours and at most ∆− d fixed neighbours, this allows us
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to conclude 3.(a) and 3.(b) completing the induction. �

8.4 Proof of Lemma 8.5

To prove the lemma, we first note that c and α satisfy the following inequality,

cec

ec + k − 1
< α. (8.5)

We will also require a technical lemma concerning the real and imaginary parts of the

ratios R(z1, z2;w, k).

Lemma 8.6. Let z1, z2 ∈ C be defined as z1 = xeiθx, z2 = yeiθy with x, y ∈ R+ and

θx, θy ∈ [0, 2π) and suppose w ∈ [1, 1 + c
∆

] is real. Then, the real and imaginary parts of

R(z1, z2;w, k) are as follows where N is a non-zero constant,

<(R(z1, z2;w, k)) =N(wx2 + (w + 1)(k − 2)xy cos(θx − θy) + (k − 2)2y2 (8.6)

+ (w2 + 1)x cos(θx) + (w + 1)(k − 2)y cos(θy) + w),

=(R(z1, z2;w, k)) =N(w − 1)((k − 2)xy sin(θx − θy) (8.7)

+ (1 + w)x sin(θx) + (k − 2)y sin(θy)).

Hence, provided that θx and θy are small and setting θ = max(|θx|, |θy|, |θx − θy|),

∣∣∣∣=(R(z1, z2;w, k))

<(R(z1, z2;w, k))

∣∣∣∣ ≤ c
∆

(
(k − 2)xy|θx − θy|+ (2 + c

∆
)x|θx|+ (k − 2)y|θy|

)
(x+ (k − 2)y + 1 + c

∆
)(x+ (k − 2)y + 1 + x c

∆
)−O(θ2)

. (8.8)

Where one can compute the O(θ2) term to be θ2((w + 1)(k − 2)(x+ 1)y + (w2 + 1)x)/2.
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Proof. We may write z1 = x cos(θx) + ix sin(θx) and z2 = y cos(θy) + iy sin(θy). Hence,

R(z1, z2;w, k) =
w(x cos(θx) + ix sin(θx)) + (k − 2)(y cos(θy) + iy sin(θy)) + 1

x cos(θx) + ix sin(θx) + (k − 2)(y cos(θy) + iy sin(θy)) + w

=
wx cos(θx) + (k − 2)y cos(θy) + 1 + i(wx sin(θx) + (k − 2)y sin(θy))

x cos(θx) + (k − 2)y cos(θy) + w + i(x sin(θx) + (k − 2)y sin(θy))
.

(8.9)

Rationalising the denominator in (8.9), we obtain the following in which we write cx for

cos(θx) and similarly define cy, sx and sy to simplify notation.

R(z1, z2;w, k) =N−1 (wxcx + (k − 2)ycy + 1 + i(wxsx + (k − 2)ysy))

× (xcx + (k − 2)ycy + w − i(xsx + (k − 2)ysy)) (8.10)

where N = |xcx + (k − 2)ycy + w + i(xsx + (k − 2)ysy)|2. Expanding the expression

in (8.10), the real and imaginary parts are given by the following expressions.

<(R(z1, z2;w, k)) =N−1(wx2c2
x + (w + 1)(k − 2)xycxcy + (k − 2)2c2

y

+ wx2s2
x + (w + 1)(k − 2)xysxsy + (k − 2)2s2

y

+ (w2 + 1)xcx + (w + 1)(k − 2)ycy + w)

=(R(z1, z2;w, k)) =N−1((k − 2)xy(cxsy + wsxcy)− (k − 2)xy(wcxsy + sxcy)

+ (w2 − 1)xsx + (w − 1)(k − 2)ysy).

Combining these expressions with the trigonometric identities

cos2(ϑ) + sin2(ϑ) = 1

sin(α− β) = sin(α) cos(β)− sin(β) cos(β)

cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

yields the expressions (8.6) and (8.7) as claimed.
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By an application of the triangle law combined with an application of the approxima-

tions | sin(θ)| ≤ |θ| and cos(θ) ≥ 1− θ2/2, we obtain

|=(R(z1, z2;w, k))| ≤N−1(w − 1) ((k − 2)xy|θx − θy|+ (1 + w)x|θx|+ (k − 2)y|θy|) ,

(8.11)

<(R(z1, z2;w, k)) ≥N−1 ((wx+ (k − 2)y + 1)(x+ (k − 2)y + w)

− ((w + 1)(k − 2)(x+ 1)y + (w2 + 1)x)θ2/2
)
. (8.12)

Dividing (8.11) by (8.12), noting that when θ → 0 this is maximised when w = 1 + c
∆

and regrouping some terms yields the bound (8.8). �

We can now give a proof of Lemma 8.5

Proof of Lemma 8.5. It suffices to prove the lemma for w′ real. Indeed if it holds for these

w′, then by continuity and since the inequalities are strict it follows that there exists a

small enough η > 0 such that the lemma still holds for w′ in an η-neighbourhood of any

real w′ ∈ [1, 1 + c/∆] for some small enough η > 0.

Fix d ∈ {0, . . . ,∆}. First we observe that we may assume that |R| ≥ 1. Indeed, if

|R| < 1, then

1/R =
z0 +

∑k−2
i=1 zi + w

wz0 +
∑k−2

i=1 zi + 1
=

1 +
∑k−2

i=1 zi/z0 + w/z0

w +
∑k−2

i=1 zi/z0 + 1/z0

and |1/R| > 1. Since for each i, j ≥ 0, the pairs zi/z0 and zj/z0 also satisfy our assump-

tions this shows our claim.

Next define z = 1
k−2

∑k−2
i=1 zj. Then by construction note that Rk(z0, z1, . . . , zk−2;w) =

R(z0, z;w, k). We will therefore analyse R(z0, z;w, k). Note that z ∈ C(dθ + (∆ − d)ε)

and by Barvinok’s lemma (Lemma 8.2) we have

cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤ |z| ≤ (1 + c/∆)∆−d(1 + α/∆)d.

151



Next we observe that

|R(z0, z;w, k)| =
∣∣∣∣1 +

(w − 1)z0 + (1− w)

z0 + (k − 2)z + w

∣∣∣∣ ≤ 1 +
c
∆
|z0 − 1|

|z0 + (k − 2)z + w|
. (8.13)

Lower bounding the denominator of (8.13) may be done with another application of

Barvinok’s lemma. For the numerator we apply Lemma 8.3 as the angle between z0 and

1 may be assumed to be less than π/3. This allows us to deduce that

|R(z0, z;w, k)| ≤ 1 +
c
∆

max{|z0|, 1}
cos(dθ/2 + (∆− d)ε/2))(|z0|+ (k − 2)|z|+ 1)

.

To maximize the above quantity clearly one should take |z| as small as possible, so if

|z0| < 1, we take |z| = cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 +α/∆)−d and rearrange to

deduce that |R(z0, z;w, k)| < 1 + α/∆ as θ is small and applying (8.5).

Otherwise, we take |z| = cos(dθ/2 + (∆ − d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d|z0| and

conclude similarly. Note that the fact |z| ≥ cos(dθ/2 + (∆ − d)ε/2)(1 + c/∆)d−∆(1 +

α/∆)−d|z0| follows by applying Barvinok’s lemma to the terms zi/z0 for i = 1, . . . , k− 2.

To prove the bound on the argument of R(z0, z;w, k) we use the inequality, |β| ≤

| tan(β)|. It therefore suffices to bound the ratio |=R(z0,z;w,k)|
|<R(z0,z;w,k)| = tan(arg(R(z0, z;w, k))),

which by Lemma 8.6 is bounded by,

c
∆

(
(k − 2)|z0z||θ0 − θz|+ (2 + c

∆
)|z0θ0|+ (k − 2)|zθz|

)
(|z0|+ (k − 2)|z|+ 1 + c

∆
)(|z0|+ (k − 2)|z|+ 1 + |z0| c∆)− θ2

2
f(w, k, z0, z)

. (8.14)

Here we have f(w, k, z0, z) = (w+ 1)(k− 2)(|z0|+ 1)|z|+ (w2 + 1)|z0|. Now suppose that

we can prove that

(
(k − 2)|z0z||θ0 − θz|+ (2 + c

∆
)|z0θ0|+ (k − 2)|zθz|

)
(|z0|+ (k − 2)|z|+ 1 + c

∆
)(|z0|+ (k − 2)|z|+ 1 + |z0| c∆)

≤ ∆θ

c
− τ, (8.15)

for some fixed constant τ . Then in the bound (8.14) the influence of the term θ2

2
f(w, k, z0, z)

in the denominator will decrease as θ → 0 (and hence ε → 0) while maintaining the in-
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equality (8.15). So for θ small enough, we have that (8.14) is at most θ and hence

| arg(R(z0, z;w, k))| ≤ θ, as desired.

We will now show that (8.15) holds. So, first note that

(
(k − 2)|z0z||θ0 − θz|+ (2 + c

∆
)|z0θ0|+ (k − 2)|zθz|

)
(|z0|+ (k − 2)|z|+ 1 + c

∆
)(|z0|+ (k − 2)|z|+ 1 + |z0| c∆)

≤ ((k − 2)|z0z||θ0 − θz|+ 2|z0θ0|+ (k − 2)|zθz|)
(|z0|+ (k − 2)|z|+ 1)2

, (8.16)

which can be observed by computing the derivative of the left hand side of (8.15) with

respect to c
∆

and noting it is strictly negative. Now, we maximize (8.16) so first we

show that there is a maximum point where exactly two of |θ0−θz|, |θ0|, |θz| are as large as

possible and one is zero. To see this, first note that clearly at least one of |θ0−θz|, |θ0|, |θz|

must be as large as possible i.e. equal to dθ + (∆ − d)ε. In fact exactly two of these

must be maximised as the maximisation with respect to the θ terms only is of the form

g(θ0, θz) = a|θ0− θz|+ b|θ0|+ c|θz| for constants a, b, c > 0. So if |θ0− θz| = dθ+ (∆− d)ε

for example, then if b ≥ c we may set θ0 = dθ + (∆ − d)ε, θz = 0 increasing g(θ0, θz).

Similar logic allows one to conclude that two of |θ0−θz|, |θ0|, |θz| are equal to dθ+(∆−d)ε

and one is 0 in every other case.

This leaves us with three maximisation problems over Rd ⊆ R2 defined by

Rd = {(x, y)|(1 + c/∆)d−∆(1 + α/∆)−d ≤x ≤ (1 + c/∆)∆−d(1 + α/∆)d,

cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤y ≤ (1 + c/∆)∆−d(1 + α/∆)d,

cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤y/x ≤ (1 + c/∆)∆−d(1 + α/∆)d}.

We enlarge the region slightly obtaining the region R̃d ⊆ R2 defined by

R̃d =

{
(x, y)

∣∣∣∣ exp

(
−(

d

∆
α + (1− d

∆
)c)

)
≤ x, y, y/x ≤ exp

(
d

∆
α + (1− d

∆
)c

)}
= {(x, y)|ek

d
2∆
−1 ≤ x, y, y/x ≤ k1− d

2∆/e}.
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The functions to maximise are,

f1(x, y) =
(k − 2)(xy + y)

(x+ (k − 2)y + 1)2
,

f2(x, y) =
(k − 2)xy + 2x

(x+ (k − 2)y + 1)2
,

f3(x, y) =
2x+ (k − 2)y

(x+ (k − 2)y + 1)2
.

First we look at f1, it has critical points along the line x+ 1 = (k − 2)y where it attains

its maximum value of 1/4. However, note that due to our choice of c and α, this line

does not lie inside of R̃d, hence the maximum must be attained at a boundary point.

Furthermore both f2 and f3 have no critical points strictly inside the first quadrant, so

again their maxima must be attained at a boundary point. This allows us to reduce the

problem to 18 univariate maximisation problems, each of which has maximum at most

3k−
d

2∆/e over R̃d (see Appendix B for details).

Provided that d ≥ 1 and ε < θ/6∆, it is always the case that dθ+ (∆− d)ε ≤ 7dθ/6.

Substituting this back in, we find that (8.16) is upper bounded by

7dθ

2e
k−

d
2∆ . (8.17)

We divide (8.17) by ∆, write x = d
∆

and maximise the resulting expression for x > 0.

The maximum is attained at x = 2/ log(k) and is equal to 7θ
e2 log(k)

< θ
log(k)−1

. If d = 0,

then as f1, f2 and f3 are all bounded above by 1, provided ε < θ
log(k)

, the left hand side

of (8.15) at most ε∆ < θ∆/c. This completes the proof of (8.15) and hence of the lemma.

�

8.5 Concluding Remarks

We have proven that in any graph with maximum degree ∆ the partition function of the

ferromagnetic Potts model with k colours is zero-free in an open set in C containing the
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interval [1, 1+ log(k)−1
∆

]. This is approximately half way to a hardness threshold [43] which

can be found at the point

Bo =
k − 2

(k − 1)1−2/∆ − 1
= 1 +

2(k − 1) log(k − 1)

k − 2
· 1

∆
+O

(
1

∆2

)
. (8.18)

It would be interesting to know if it is possible to get closer to this threshold in general.

For k very large compared to ∆ (roughly k ≥ ∆Ω(∆)) a very recent preprint of Borgs

et al. [12, Theorem 2.4] manages to get further and gives a zero-free region when the

parameter is at most 1 + 3 log(k)
2∆

. Of course this is a very large choice of k whereas our

results hold for any k ≥ 3. It would be of interest to investigate whether the dependence

of k on ∆ in this theorem could be reduced or removed. Of course if it were possible to

completely remove this dependence then this would also improve our result.

Finally, note that in our proof we look at a graph vertex by vertex and look at their

neighbourhoods. Possibly exploring further and looking at second or third neighbour-

hoods would be able to improve the results which we obtained.
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APPENDIX A

PROOF OF EXISTENCE FOR δ∗` (H)

Lemma A.1. The limit, δ∗` = limm→∞ δ`(H,mh) exists.

Proof. To prove the existence of this limit, we show convergence to the lim inf. So, let

δ−` = lim infm→∞ δ`(H,mh). Let ε > 0, by definition of the lim inf there exists mε such

that δ`(H,mεh) ≤ δ−` + ε. That is every graph with mεh vertices and minimum `-degree

at least (δ−` + ε)(mεh)r−` has an H-factor. Without loss of generality, we may assume

that mε is large enough that random subgraphs picked as in Lemma 5.3 lose at most

ε|Vi|r−` from their minimum degree. Now, pick n � mεh
2 such that h|n and let G be

any r-graph on n vertices with minimum `-degree at least (δ−` + 2ε)nr−`. We shall show

that G has an H-factor.

If G has an H-factor, then we are done. So suppose for a contradiction that G has no

H-factor. Let F0 be a largest H-factor of G. Extend F0 to F ∗0 in G by arbitrarily adding

vertex disjoint copies of any graph on h vertices such that F ∗0 spans V (G). Let H0 be

any H ′ ∈ F ∗0 which is not a copy of H. Let P = (V1, . . . , Vh) be the random transverse

partition obtained from Lemma 5.3 with m = mεh. With positive probability, for all

i ∈ [h] we have |Vi| = m and δ`(G[Vi]) ≥ (δ−` + ε)mr−`. So there exists a set X with

|X| = m whose corresponding partition satisfies these properties. By definition of mε,

we may pick an H-factor in each G[Vi]. By removing X from F0 and adding these new

H-factors we obtain an H-factor that is strictly larger than F0, as H0 was not a copy of

H. This is a contradiction with the maximality of F0. Hence G has an H-factor.

156



Thus, for all ε > 0 we have δ`(H,mh) ≤ δ−` + 2ε provided that m is sufficiently large.

In particular, lim supm→∞ δ`(H,mh) ≤ δ−` + 2ε for any ε > 0. Taking ε→ 0 allows us to

deduce that the lim inf and lim sup are both the same and hence the limit in (5.1) exists.

�
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APPENDIX B

OPTIMISING PARAMETERS IN THE POTTS
MODEL

B.1 18 Maximisation Problems

We look at the maximisation problems coming from 8.4 and claim that each has an

upper bound of at most 3k−
d

2∆/e. We find 18 of them, one for each of the 3 functions

with either x, y or y/x fixed to one of the two corresponding boundary values. This allows

us to reduce to the univariate maximisation problems detailed below. To simplify the

expressions we will let k − 2 = r, ek
d

2∆
−1 = s and k1− d

2∆/e = t.

f1 f2 f3

x = s p1(y) = ry(1+s)
(s+ry+1)2 p2(y) = rsy+2s

(s+ry+1)2 p3(y) = 2s+ry
(s+ry+1)2

x = t p4(y) = ry(1+t)
(t+ry+1)2 p5(y) = rty+2t

(t+ry+1)2 p6(y) = 2t+ry
(t+ry+1)2

y = s p7(x) = rs(1+x)
(x+rs+1)2 p8(x) = rxs+2x

(x+rs+1)2 p9(x) = 2x+rs
(x+rs+1)2

y = t p10(x) = rt(1+x)
(x+rt+1)2 p11(x) = rxt+2x

(x+rt+1)2 p12(x) = 2x+rt
(x+rt+1)2

y/x = s p13(x) = rs(1+x−1)
(x−1+rs+1)2 p14(x) = rs+2x−1

(x−1+rs+1)2 p15(x) = 2x−1+rx−1s
(x−1+rs+1)2

y/x = t p16(x) = rt(1+x−1)
(x−1+rt+1)2 p17(x) = rt+2x−1

(x−1+rt+1)2 p18(x) = 2x−1+rx−1t
(x−1+rt+1)2

To begin the maximisation, first observe that under the map x 7→ x−1, each of the

functions pj(x) is the same as some function pl(x) for some 13 ≤ j ≤ 18 and 7 ≤ l ≤ 12.

Furthermore, y = s yields the bounds s ≤ x ≤ 1 and y/x = s gives 1 ≤ x ≤ t. Similarly
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we may compare y = t and y/x = t. Thus the ranges for x are identical after inverting

x. Hence we may ignore p13 through p18 leaving us with 12 problems.

Next, consider p10, p11 and p12, each of which can be bounded above by

2rtx

(x+ rt+ 1)2
≤ 2rtx

r2t2
≤ 2

r

where the final inequality follows as x ≤ t.

Similarly, we can bound p4, p5 and p6. As it must be the case that y ≥ 1, the

numerator of each is bounded above by 2try. Thus an upper bound for all three is 2t/ry.

Furthermore, r ≥ 2k/3 so we are left with an upper bound of 3k−
d

2∆/e.

The remaining problems are similar. The numerators may all be bounded above by

rs(1 + x) ≤ 2rs (or for p1, p2 and p3 by 2ry.) The denominators are all bounded from

below by r2s2 and r2y2 respectively. Thus all six of these are upper bounded by 2/rs

which is at most 3k−
d

2∆/e.

Hence an upper bound on all of the problems p1 through p18 is 3k−
d

2∆/e as claimed.

B.2 Small k

When k is small, then the parameter c = log(k)− 1 is also very small. In fact we do not

obtain a better constant than for the Ising model until k ≥ 21. However it is possible to

do better, we can choose different values for α and c which work better in these cases. In

this section we will show how to derive the vales in table 8.1.

First, we note that we may do the the analysis in an identical way until we find

ourselves with the maximisation problems f1, f2 and f3. Now we maximise these more

carefully than in section B.1. First, for f1 we apply AM-GM to the denominator to

deduce that f1(x, y) ≤ 1
4

for any x, y. This allows us to take any c < 4 and as k is small

this is all we need and so we may ignore this constraint. This leaves us to maximise f2

and f3. A similar argument to the one in the proof of Lemma 8.5 allows us to deduce that
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the maxima are on the boundary of Rd and hence we need only consider the boundary

of R̃d.

Now, we proceed as in section B.1 with different choices of s and t where this time we

will take t = ed/∆α+(1−d/∆)c and s = t−1. We start with 12 maximisation problems which

we reduce to 8 by symmetry as before. Furthermore, f2 > f3 if and only if x > 1 which

allows us to half the number of problems left to consider leaving us with 4 problems. That

is, we are left with p3, p5, p9 and p11. All of these are of the form f(x) = (ax+ b)(x+d)−2

which has a maximum at x = d − 2b/a. See the following table for the maximisation of

these 4 functions.

Function a b c x∗ f(x∗)

p3
1

k−2
2s

(k−2)2
s+1
k−2

1−3s
k−2

1
4(1−s)

p5
t

k−2
2t

(k−2)2
t+1
k−2

t−3
k−2
≤ 1 kt

(t+k−1)2

p9 2 (k − 2)s 1 + (k − 2)s 1 1
(2+(k−2)s)

p11 2 + (k − 2)t 0 1 + (k − 2)t 1 + (k − 2)t > t (k−2)t2+2t
((k−1)t+1)2

Note that in the cases of p5 and p11 the maximum value x∗ is outside the domain which

we are maximising over and thus we maximise at the endpoints of the domain instead.

Now, recall that the maximum values obtained above must also satisfy (8.5). Also,

when s = e−α it must be the case that (2+(k−2)e−α)−1 < 1 (from p9). Combining these

after rearrangement yields the inequity

cec

ec + k − 1
≤ α ≤ log

(
k − 2

c− 2

)
(B.1)

We may solve this inequality computationally for c, and deduce that there is a choice

of α, c which satisfies (B.1) provided that c ≤ ck for some ck which can be found in the

following table. The corresponding value of αk is also provided. We give both ck and αk

rounded to three decimal places.
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k 3 4 5 6 7 8 9 10 11 12

αk 1.767 1.803 1.849 1.896 1.944 1.990 2.034 2.076 2.116 2.154

ck 2.171 2.330 2.472 2.600 2.716 2.820 2.916 3.003 3.084 3.160

Now, we check that these are indeed the maximum values. To do this, we first note

that we have p3 ≤ 1/4 and applying AM-GM to the denominator of the maximum for

p5 similarly yields a result which is smaller than the values from p9. Finally, for p11, the

denominator is at least (k − 1)(k − 2)t2 + 2t(k − 1). Thus, after cancellations we are

left with p11 ≤ 1/(k − 1) which suffices for k ≥ 4. For k = 3 we can easily check that

(t2 + 2t)(2t+ 1)−2 is maximised when t = 1 and hence is certainly at most 1/3 < 1/2.17.

Recall when computing the maximum of p9, we took s as large as possible where one

would expect that we should do the opposite to maximise p9. We now justify this choice.

So recall that we must ensure dθp9(x) ≤ ∆θ/c. Furthermore, s may be considered as a

function of d and as such is equal to exp(−d/∆α − (1 − d/∆)c). Thus we must ensure

that

g(d) =
dc/∆

2 + (k − 2)s
≤ 1.

Writing λ for d/∆ gives the function with domain [0, 1]

G(λ) =
λc

2 + (k − 2)e−λα−(1−λ)c
≤ 1.

Differentiating this with respect to λ, we see that either c − α < 1 and G is increasing

on [0, 1] or there is a maximum with λ > 1 which is not inside the domain. Thus, we

maximise G at one of its boundary points and it is easy to see that λ = 1 is the maximum

point rather than λ = 0 where G(λ) = 0.
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[32] L. DeBiasio, D. Kühn, T. Molla, D. Osthus, and A. Taylor. Arbitrary orientations of
Hamilton cycles in digraphs. SIAM Journal on Discrete Mathematics, 29(3):1553–
1584, 2015.

[33] G.A. Dirac. Some theorems on abstract graphs. Proceedings of the London Mathe-
matical Society, 3(1):69–81, 1952.

164



[34] A. Dudek and M. Ferrara. Extensions of results on rainbow Hamilton cycles in
uniform hypergraphs. Graphs and Combinatorics, 31(3):577–583, 2015.
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[82] L. Lu and L. Székely. Using Lovász local lemma in the space of random injections.
the electronic journal of combinatorics, 14(1):R63, 2007.

[83] T.  Luczak. Component behavior near the critical point of the random graph process.
Random Structures & Algorithms, 1(3):287–310, 1990.

[84] T.  Luczak. The phase transition in the evolution of random digraphs. Journal of
Graph Theory, 14(2):217–223, 1990.

[85] T.  Luczak, B. Pittel, and J.C. Wierman. The structure of a random graph at the
point of the phase transition. Transactions of the American Mathematical Society,
341(2):721–748, 1994.

[86] T.  Luczak and T. Seierstad. The critical behavior of random digraphs. Random
Structures & Algorithms, 35(3):271–293, 2009.

[87] M. Maamoun and H. Meyniel. On a problem of G. Hahn about coloured Hamilto-
nian paths in K2t. Discrete Mathematics, 51(2):213–214, 1984.
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