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Chemists and material scientists would 
ultimately like to be able to “design” new 
materials, with fine control and the ability 
to tune the properties for specific applica-
tions (Figure  1). There are three key hur-
dles facing us, blocking our ability to do 
“inverse design,” where we first come 
up with a wishlist of materials, and then 
go backward to design a molecule that 
fits all the necessary criteria. There is no 
equivalent to the process of retrosynthesis 
that can be applied to design a route to a 
desired organic molecular structure. The 
first challenge for material design comes 
from the vastness of the search space for 
potential precursors to organic materials; 
the number of potential small organic 
molecules that can be used is mind-bog-
gling large. Most organic materials are 
composed of a combination of precursors, 
creating a further combinatorial explosion 
in possibilities. It would never be possible 
to enumerate all these possibilities, let 

alone synthesize them, so how do we efficiently identify which 
precursors to use to get new materials with novel functions? The 
second challenge comes from the fact that it is rarely, if ever, 
possible to examine an isolated molecule and predict the way 
in which it will assemble in the solid state. This is a problem 
because the solid-state arrangement of molecules influences, 
if not completely determines, the properties of the materials. 
The third challenge is that we will always be targeting materials 
with a desired combination of multiple different properties, and 
while it may be easy to optimize a single property, that too often 
comes at the cost of failing to meet criteria for multiple other 
properties. This task of multiobjective optimization is complex 
and inevitably a massive hurdle given the intricacy of the rela-
tionship between properties in multifunctional materials.

As a result of these challenges, current synthetic discovery 
programmes can tend to be relatively conservative, with small 
incremental chemical modifications to known materials typi-
cally carried out, where a synthetic chemist can be confident of 
synthetic success, even if not likely to get large leaps forward in 
property performance. Alternatively, preexisting known materials 
are often “reinvestigated” and screened for new applications. 
Occasionally, serendipity can play a role in unexpected property 
outcomes or the discovery of a new material class, but this is 
rare, and we must challenge ourselves to accelerate such events.

Given the vast organic material search space, we would 
ideally like to synthesize and test extremely large numbers 
of materials. With automation and robotics, we can hope 

Organic materials find application in a range of areas, including optoelec-
tronics, sensing, encapsulation, molecular separations, and photocatalysis. 
The discovery of materials is frustratingly slow however, particularly when 
contrasted to the vast chemical space of possibilities based on the near limit-
less options for organic molecular precursors. The difficulty in predicting the 
material assembly, and consequent properties, of any molecule is another 
significant roadblock to targeted materials design. There has been significant 
progress in the development of computational approaches to screen large 
numbers of materials, for both their structure and properties, helping guide 
synthetic researchers toward promising materials. In particular, artificial 
intelligence techniques have the potential to make significant impact in many 
elements of the discovery process. Alongside this, automation and robotics 
are increasing the scale and speed with which materials synthesis can be 
realized. Herein, the focus is on demonstrating the power of integrating com-
putational and experimental materials discovery programmes, including both 
a summary of key situations where approaches can be combined and a series 
of case studies that demonstrate recent successes.

1. Introduction

Organic materials have shown potential in a wide range of 
applications, including gas uptake, molecular separations, as 
chemical sensors, in catalysis, optoelectronics, and energy 
storage. There is, however, an ever-increasing demand for the 
rapid discovery of new and improved functional materials to 
address societal challenges such as the capture of greenhouse 
gases and new catalysts for sustainable living. Arguably, these 
challenges are ramping up at a rate that exceeds our current 
ability to address them scientifically. This is because the dis-
covery process is slow, typically taking several years to develop 
and understand a single new system.
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to increase the number of materials that can be realized and 
tested, by several orders of magnitude in many cases. However, 
there are multiple bottlenecks in the experimental screening 
of materials. Firstly, there is the issue that for every material 
that is synthesized, the material precursors, small organic 
molecules, must be either purchased or synthesized. Relying 
on commercially available precursors can severely limit the 
available search space, whereas some custom precursors may 
have challenging multi-step syntheses, meaning it could take 
many months to isolate the precursors in sufficient purity and 
quantity to create a material from it. Precursor synthesis can 
become a limiting factor when using automation for materials 
discovery, as the precursor feedstocks need to keep pace with 
the required throughput. Additionally, significant time invest-
ment is typically required in determining the required reac-
tion conditions in order to synthetically realize the material, 
which can often significantly differ between materials classes. 
Once synthesized, another significant challenge is the prop-
erty testing of the materials. Depending on the application and 
properties sought, this may or may not be suited to any kind of 
high-throughput approach. For example, some properties will 

require specialist, expensive, equipment that can only run sam-
ples sequentially rather than in parallel. Many applications, for 
instance in optoelectronics, may first require time-consuming 
device assembly, severely limiting the number of materials that 
can be tested.

From a computational perspective, we would ideally be able 
to successfully perform “inverse design,” where we design a 
molecule that meets a set of criteria for a functional material. 
However, as outlined above there are significant roadblocks 
to this capability, originating mostly from the unpredictability 
of the solid-state arrangement and hence properties. There is 
also the danger that computational programmes design a mate-
rial without consideration of the stability of the system and a 
viable synthetic route to the material and device assembly. The 
above type of approach was termed by Jansen and Schön as 
“putting the cart before the horse,” and they instead put for-
ward that computational materials programmes must focus 
first on exploring the energy landscape of a material system to 
find the thermodynamically stable materials, and then screen 
them for properties to identify the stable, viable, materials that 
have desired properties.[1] In other words, computation cannot 
be used to “design” materials, but rather to use computational 
screening to discover them instead.

Herein, we will focus on the potential of integrated mate-
rials discovery programmes that leverage the power of com-
bined experimental and computational workflows in a variety 
of ways. We will outline the various steps to materials discovery 
(Figure 2), exploring the potential contributions that computa-
tion and experiments can play in each of them, which is inevi-
tably dependent on the material class and function. Increas-
ingly, as approaches mature, and as computational predictions 
become trusted to be more reliable, discovery programmes 
combine several components, for example, both computa-
tional structure prediction and property screening as well as 

Figure 1. Comparison of conventional materials discovery, where mate-
rials are synthesized and then their properties are investigated, to “inverse 
design” where a material is designed based on a desired target applica-
tion prior to synthesis. Approximate time cost for each step is indicated 
(1 clock  =  quick; 3 clocks  =  time-intensive).

Figure 2. Overall workflow highlighting some of the key discovery steps for new materials, and the key opportunities for combining experiment, whether 
it be conventional or automated, and computation in a highly cooperative feedback loop to accelerate the discovery process. Approximate time cost 
for each step is indicated (1 clock  =  quick; 3 clocks  =  time-intensive).
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experimental validation. With a series of recent case studies, 
we will explore examples of how combined computational and 
experimental programmes have been successful in accelerating 
organic material discovery, demonstrating progress in various 
elements of the discovery progress. Finally, we will explore the 
future outlook for the field, as new approaches including artifi-
cial intelligence (AI) and robotics are increasingly applied.

2. Steps to Materials Discovery

2.1. Material Precursor Selection

The obvious first stage in materials discovery is the selection 
of the building blocks for the material; in the case of organic 
materials, the material precursors are (small) organic mole-
cules. Typically, these precursors will require their own mul-
tistep syntheses, and most organic materials and devices will 
include several different organic precursors, and thus the syn-
thesis of the precursors themselves can be a time-consuming, if 
not costly, part of the assembly process. Already, this motivates 
experimental chemists toward a “safe” selection of material 
precursors, where selected precursors are molecules that can 
be purchased commercially, ideally cheaply, or molecules with 
reported syntheses in the literature, or molecules that are close 
analogues of those previously reported. The unpredictability of 
material assembly and resultant properties is another barrier; 
no chemist wants to spend many months synthesizing a costly 
precursor if the resultant material either does not form or does 
not have the sought-after properties. This does however neces-
sarily reduce the chances that a large leap forward in terms of 
the resultant materials properties can be achieved.

The above limitations are set against a context of a near 
infinite search space of possible organic material precursors. 
It is estimated that a combinatorial enumeration of the pos-
sible arrangements of organic molecules consisting of 30 or 
less light atoms reaches ≈1060 possibilities.[2] This is an incred-
ibly large number, exceeding what could even be enumerated 
on a computer. Once the fact that most materials and devices 
would consist of combinations of molecules is considered, the 
combinatorial explosion in possibilities is, in essence, immeas-
urable. Here, computational methods have an advantage over 
synthesis, in that, at least the generation of individual building 
blocks on a computer is trivial, not the effort of days, weeks, 
or months. Therefore, if there is the availability to calculate 
some sort of figure of merit for a molecule, which is effec-
tive at identifying promising precursors, many thousands or  
millions of molecular precursors, dependent on the computa-
tional cost of the assessment, can be screened to help identify 
the most promising molecules, or regions of chemical space, for 
synthetic targeting. Such computational filtering schemes prior 
to synthesis are common. As we move toward exascale com-
puting, with massively enhanced computing power speeding 
up calculations by at least a couple of orders of magnitude, we 
will be able to screen even larger databases, including at the 
quantum chemical level, and speed up ML predictions.

While a synthetic chemist may be naturally inclined to make 
relatively conservative selections of precursors to synthesize, 
this will typically limit their search to local regions of chemical 

space, close to precursors similar to those of materials previ-
ously synthesized, or previously reported organic molecules. 
Given the vastness of the chemical space of possibilities, there 
must undoubtedly be missed opportunities—molecular pre-
cursors that lie in different regions of chemical space, that if 
synthesized would form materials with truly novel properties, 
for instance by forming a new class of material. While large-
scale computational screening can help us push out into bigger 
regions of chemical space, methods that enumerate hypo-
thetical molecules based on very small-scale building block 
libraries (<100) are not really facilitating greater exploration of 
the chemical space. Instead however, AI techniques hold some 
hope in achieving molecular generation by suggesting mole-
cules that truly break out of the local chemical space to generate 
“wild card” suggestions for materials precursors. Generative AI 
models have been reported in the field of drug discovery, but 
little reported in the field of materials, often limited by the lack 
of availability of sufficiently large databases of molecules with 
known properties. We have recently demonstrated the applica-
tion of a recurrent neural network (RNN) and transfer learning 
to perform molecular generation for donor–acceptor molecules 
with targeted properties.[3] The generative model was able to 
generate novel donor–acceptor molecules, both rediscovering 
experimentally known design rules, with atomic substitutions 
such as halogenation, and via more novel molecular features.

The issue with computational generation of suggested 
organic molecules as material precursors, whether using AI or 
not, is that it is highly likely that many structures are not chem-
ically feasible, either due to instability or the fact that there are 
no viable, or at least known, synthesis routes for their experi-
mental realization. This can be a particular problem when com-
putational discovery programmes are carried out in isolation, 
without the guidance or insight of experimental chemists—
another benefit of integrated computational-experimental pro-
grammes. There are well-established algorithms that can score 
organic molecules by their ease of synthesis, for example, the 
“synthetic accessibility” score developed by Ertl and Schuffen-
hauerp.[4] However, scoring molecules remains challenging, 
given that when compared to experimental chemists’ rankings, 
it is common for their to be a large disparity in the rankings 
of different chemists. Furthermore, these algorithms have not 
been developed with the synthesis of organic molecules as 
material precursors in mind. For materials, there are specific 
requirements, typically that a molecule can be produced at 
low cost and in a multigram quantity suitable for subsequent 
material synthesis. One common route to circumvent this is 
for promising molecules identified by computational screening 
to then be inspected and selected by experimental chemists 
for synthesis. However, this does have the problem that it will 
tend to lead to molecules being selected that are more similar 
to those previously synthesized, negating the greater potential 
audacity of computationally generated molecules.

2.2. Precursor Synthesis

In order to investigate more of the available chemical space and 
make more imaginative leaps in discovery, it is important not 
to have an over-reliance on commercially available precursors. 
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However, typically the synthesis of custom precursors for 
use in subsequent materials synthesis is costly and time con-
suming, especially if multiple steps are required. Depending on 
whether or not there is a known route to the desired precursor 
can also exacerbate both of these demands. For example, if a 
precursor is deemed “synthetically viable” based on analogous 
compounds, but is novel, a new synthetic route needs to be 
designed and there is no guarantee this will work first time, 
meaning multiple alternative routes may need to be investi-
gated. Even when a successful route to the precursor has been 
realized, it may still take considerable effort and time to synthe-
size enough material of high enough purity for use in realizing 
and optimizing the subsequent materials synthesis.

If the synthesis of the precursors involves long and labor-
intensive multi-step synthetic routes, a number of approaches 
can be used to minimize the risk while also potentially reducing 
the timescale in which they are accessed. For example, rather 
than relying on a high-risk linear synthesis, where each step is 
carried out sequentially and therefore the synthesis is reliant 
on every step working as expected, if possible, a convergent 
synthetic route could be designed. By splitting the route into 
two parallel synthetic approaches, the risk is limited, the overall 
yield potentially improved, and steps can be carried out in par-
allel reducing the overall time required to access the desired 
precursor. Alternatively, a divergent approach could be utilized 
to rapidly access a family of structurally analogous precursors 
that could be screened for materials synthesis, reducing the 
risk by not solely relying on a single precursor.

During route development, there might also be a point 
where new synthetic steps need to be developed, or the reaction 
conditions of low yielding transformations optimized. Here, 
automation can potentially be used to streamline and accelerate 
this process. For example, high-throughput screening can be 
used to investigate a large number of experiments in parallel, 
screening a range of conditions aimed at optimizing a par-
ticular transformation, such as different catalysts and solvents. 
Alternatively, rather than screening every possible permutation 
of conditions, if design of experiments (DOE) is also incorpo-
rated in the optimization of particular reactions, this can aid in 
reducing the number of reactions that need to be carried out, 
potentially saving significant time and costs. Another option 
is to use an optimization algorithm[5] in combination with a 

continuous-flow platform for the automated optimization of a 
specific chemical transformation, which can then be expanded 
to expand the substrate scope.[6] Machine learning (ML) can 
also be used here to aid in the synthesis of small organic 
molecules,[7] for example, by automating the self-optimization 
of chemical reactions,[8] including those that involve multiple 
steps,[9] and searching for new chemical reactivity.[10]

So far, these approaches have mostly been applied to small 
organic molecules that are pharmaceutically relevant, although 
there is no reason that these techniques cannot be used to syn-
thesize new materials precursors. Additionally, the use of auto-
mation and high-throughput screening to expand the substrate 
scope and synthesize families of precursors suitable for use in 
materials synthesis means that it would be possible to produce 
custom feedstocks that can keep pace with high-throughput 
materials screening, reducing the reliance on commercially 
available precursors. However, this would require robust and 
process-friendly routes to be developed for the precursors, 
alongside methods for rapid purification which often ham-
strings high-throughput approaches.

2.3. Forming Desired Products

Once precursors are obtained, the next step is to synthesize the 
actual material. There remain many possible hurdles to a spe-
cific desired material being successfully obtained. First, organic 
precursors can potentially react to form many different prod-
ucts, both molecules of different molecular weights, with dif-
ferent connectivities of the building blocks, or into polymeric, 
extended structures (Figure  3). For example, in the field of 
molecular cages, for a given pair of precursors with a specific 
topicity, there are a whole family of topologies that could form, 
with different multiples of molecular mass (Figure 4), or a reac-
tion could get “stuck” at an oligomeric intermediate. At the 
same time, a reaction could be unsuccessful, or form a polymer 
rather than a discrete product. It is also possible that product 
mixtures could form or that a desired material could be difficult 
to isolate or to purify.

Given the large number of possible assemblies for many 
organic materials, and the vast precursor search space, it 
is important to be able to automate the assembly of the 

Figure 3. A range of different possible products can be formed from the combination of two organic precursors, including both molecular and extended 
network structures. Not all possible products are shown.
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 hypothetical possibilities. We have developed the open-source 
supramolecular toolkit (stk), which takes input precursors in a 
range of formats, including 2D SMILES strings, and assem-
bles them into a range of material classes, including cages, 
 polymers, and frameworks, and predicts their low-energy con-
formations.[12] Even with the possibility to assemble 100  000s 
of molecules in minutes, determining which is most prom-
ising is too computationally expensive to extend to very large 
search spaces. We therefore recently extended stk to include an 
evolutionary algorithm, mimicking “survival of the fittest in 
nature,” to more efficiently sample the chemical space of pre-
cursor molecules in order to target materials with specific com-
binations of properties.[13] This software has been successfully 
applied across a range of porous molecular materials[14–16] and 
polymers,[17–19] with a variety of targeted properties.

In our previous work on the automated synthesis of porous 
organic cages, out of a set of 78 precursor combinations that 
were designed by synthetic chemists to be suitable for forming 
cages, there was a successful “hit” rate of only 42%, with 33 new 
cages being produced cleanly.[20] In this case, a single set of reac-
tion conditions was used, based on a successful setup for one 
system. One of the “failed reactions” in that study was however 
found to be successful by Mastalerz et al. on the lab-bench, using 
different reaction conditions.[21] This demonstrates one reason 
that a material synthesis reaction can fail—because the correct 
reaction conditions, such as solvent, concentration, temperature, 
or reaction length, were not used. Other reasons that you might 
not form a desired material include that your targeted product 
is not thermodynamically stable, especially since many organic 
materials are synthesized with reversible chemical mechanisms, 
such as dynamic covalent chemistry, where given sufficient time 
one should stand a reasonable chance of reaching the thermo-
dynamic product. However, there can also be kinetic trapping of 
an intermediate, or solubility issues, whereby either one of the 
reagents or one of the reaction intermediates is not soluble and 
thus the reaction does not proceed to completion.

While automation can obviously assist in finding the optimal 
experimental conditions under which a targeted product will 
form, effectively by mapping out phase diagrams for the syn-
thesis of the single material, this is a time-consuming and 
costly way to realize a material. It also results in the true poten-
tial of automation and robotics not being realized in mate-
rials discovery; the robot is just exploring how to optimize the  
conditions for a single synthesis, potentially carrying out hun-
dreds of experiments to do so. If we could reliably predict the 
optimal reaction conditions, the robot could instead be testing  

hundreds of different materials, exploring material not reaction 
phase space.

We do not generally have the capability to predict the optimal 
reaction conditions for the synthesis of a targeted product across 
different material classes. Although, in one case study later, we 
explore how AI can be used to predict the optimal reaction con-
ditions to optimize the material synthesis and hence properties 
in metal–organic frameworks. Again, it comes back to the fact 
that “design” is more challenging than to instead screen for likely 
assemblies and then select them for synthesis. Here computa-
tional prediction can be of more use. For example, porous organic 
cages, typically synthesized by imine condensation, a reversible 
reaction, will often form a thermodynamic product. That means 
that we are able to assemble computer models for each of the pos-
sible assemblies, search for their individual low energy conforma-
tions and then compare the relative energies of their assemblies, 
typically using density functional theory (DFT) to get reliable 
energies.[11] These approaches are simplifications, only consid-
ering isolated, gas phase molecules, and not the known potential 
influence of solvent.[22] However, there can be considerable suc-
cess in the reaction outcome prediction, certainly compared to 
human guesswork, in these systems that can be highly sensitive 
to small changes. For example, the addition of only a single CH2 
group to a precursor can double the mass of the resultant cage, 
and completely change the resultant material properties.[23]

When the solid-state material is isolated, it is almost always 
important that the material is produced and able to be processed 
into a desired form, as the properties of the material will almost 
certainly be dependent on the molecular assembly. Computa-
tion can assist with the prediction of molecular assembly, as 
will be discussed in the following section. It is typically possible 
to control, for example, by choice of synthesis route or drying 
procedure, whether the material is crystalline or amorphous, 
although precise control of crystallinity, purity, and defects is 
more challenging, and again, can heavily influence properties. 
For example, for organic cages, the porosity of a “crystalline” 
sample can almost double depending on the drying proce-
dure used.[24] Defects, grain boundaries, and the structure of 
interfaces in devices will also heavily influence properties, for 
example, charge mobilities in optoelectronic devices.

2.4. Structure Prediction

For organic materials, the structure formed in the solid or 
solution-state is likely to have a significant influence on the 

Figure 4. The family of cage topologies that could potentially form from the combination of a tritopic (Tri, blue) and ditopic (Di, purple) precursor. 
The superscripts in the labels correspond to the number of each precursor type that is included. Reproduced under the terms of the CC-BY Creative 
Commons Attribution 3.0 Unported license (https://creativecommons.org/licenses/by/3.0/).[11] Copyright 2017, The Royal Society of Chemistry.
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properties or performance of the material. The first element 
of structure prediction for a molecular material is to correctly 
predict the molecular conformation(s) adopted. This can be 
part of the process for predicting the reaction outcome, as dis-
cussed above. Molecular prediction should be relatively straight-
forward, depending on the size and flexibility of the molecular 
system, as it would typically require finding the global, or low 
energy conformation(s) of the system. This is a common task 
in computational chemistry and there are many conformer 
searching algorithms and approaches that can be applied, either 
in combination with molecular mechanics if there is an accu-
rate forcefield, or with electronic structure methods. A repre-
sentative molecular conformation is typically important even for 
molecular level screening of properties, as it can influence fea-
tures such as charge mobility, molecular shape, and cavity size.

In the Introduction, we discussed the inherent unpredicta-
bility of molecular self-assembly. This is true for a chemist exam-
ining a molecule and predicting the detail of its solid-state struc-
ture. However, there has been much progress in recent decades 
with the development of crystal structure prediction (CSP) tech-
niques that can take a molecular structure as input and predict 
the crystal packing.[25] These approaches were originally devel-
oped for the prediction of pharmaceutical polymorphs, and in 
blind tests have had increasing success, including effective pre-
dictions of large flexible molecules, salts, and hydrates.[26] CSP 
works on the premise that the crystal packing of materials is 
thermodynamically driven, such that we can expect that experi-
mentally observed polymorphs are either the global minimum 
polymorph, or a polymorph lying within a few kJ mol−1 of the 
global minimum. Most CSP methods rely upon first conducting 
a global search for possible polymorphs and ranking their rela-
tive energies—at this stage typically 100  000s of packings are 
tested. A crucial part of the increasing success of CSP has come 
from the possibility, due to enhanced computational power, of 
then applying an energetic ranking of low-energy polymorphs 
using electronic structure methods, typically DFT calculations 
with a good description of dispersion forces.

Although the development of CSP methods was driven by 
the pharmaceutical industry, in the last decade these approaches 
have begun to be applied in the field of materials science.[27] This 
includes success in predicting the observed crystal structure and 
preference for enantiopure or racemic packings in porous mole-
cular materials,[28,29] which heavily influences the porosity of the 
materials, as well as the prediction of the packing of organic 
semiconductors.[30,31] These approaches have begun to be inte-
grated with experiment, most notably by Pulido et  al., who 
carried out CSP on a series of small molecules, and the hypo-
thetical polymorphs were then tested for their methane storage 
capacity to generate “energy–structure–function” maps.[32] The 
identified low density molecular structure was then synthesized, 
many months of work, and the computational predictions vali-
dated. By identifying which of the nine molecules computation-
ally screened had the most promising properties, many years of 
experimental effort on molecular synthesis and crystallization 
were not wasted on the less promising systems.

By virtue of the fact that many thousands of polymorphs 
need to be tested and reliably energetically ranked, CSP is cur-
rently computationally expensive. This, combined with the 
expense of many property calculations, inherently limits the 

number of molecules that can be “screened” for their crystal 
packings and accurate solid-state properties. For example, in 
the largest scale screen to date, 28 molecules, with ≈20 nonhy-
drogen atoms in each, were screened for their crystal packing 
and electronic properties.[30] Thus, CSP currently represents 
a bottleneck in the computational discovery process for mate-
rials, and to truly screen materials on a larger scale, needs to 
be implemented within a tiered strategy that considers much 
larger numbers of materials at a molecular level before a fine 
assessment of assembly for a few systems. Integrated directly 
prior to experimental syntheses, as discussed, it can have great 
value in selecting the most promising molecules for synthesis 
from a handful. There is considerable promise in the future for 
accelerating CSP approaches, particularly via the application of 
ML models, as shall be discussed later.

Not all materials are molecular, or crystalline, in nature. A 
lack of long-range order makes the prediction of a material’s 
structure particularly challenging, although the lack of ability to 
experimentally determine the structure, for example, through 
X-ray diffraction, also makes computationally predicted struc-
tural models additionally valuable. We have previously applied 
computational algorithms that simulate polymerization pro-
cesses, although do not try to directly emulate them, to generate 
models of polymeric membranes.[33,34] Comparing amorphous 
polymer models generated from different monomer combina-
tions allows one to rationalize or identify which membrane has 
pore networks with permeance or selectivity most suited to a 
particular application, including in membranes for flow bat-
teries or in molecular separations.

Structure prediction is a valuable computational tool, poten-
tially to be combined with other computational approaches as 
part of a filtering approach. Structure prediction can also be 
integrated with experiment in a variety of ways, in identifying 
promising systems, or also, should you have an initial experi-
mental hit on a small number of systems, structure prediction, 
followed by property prediction can narrow down which of the 
“hits” it is worth going to the effort and expense of scaling up 
on the lab-bench for experimental validation.

2.5. Property Prediction

The most substantial application of computation in materials 
discovery to date is in the area of property prediction, which 
can almost always be accomplished on a much faster timescale 
than experimental characterization. Obviously, it is critical for 
the predictions to be accurate, or even if qualitative, to be suf-
ficient for filtering large numbers of hypothetical materials 
to the most promising for material synthesis. Experimental 
characterization of materials is slow, even beyond the time to 
synthesize precursors and materials, and potential device fabri-
cation, it may be that specialist equipment is required to assess 
properties such as charge mobility, guest separation, or cata-
lytic activity. Testing each property may be time-consuming and 
labor intensive, removing the possibility of high-throughput 
property screening, even if the material synthesis is automat-
able. In some cases however, it may be that while a property 
cannot be accurately measured in a high-throughput manner, it 
is possible to measure a related property, or series of properties, 
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that is indicative of the material’s performance. For example, 
for materials for photocatalytic water-splitting, high-throughput 
characterization (including powder X-ray diffraction, Fourier-
transform infrared spectroscopy, fluorescence spectroscopy, and 
time resolved single-photon counting), and property screening 
(including porosity) can be carried out, and correlated with 
the hydrogen evolution rate which can be tested using a high-
throughput photoreactor and gas chromatography.[35]

The type of calculations applied to property prediction is 
dependent on the properties or, more commonly, combina-
tion of properties being sought, ranging from simple struc-
tural assessments to electronic structure calculations. Beyond 
a single property, a figure of merit from a combination of 
properties may be targeted, for example, the power conversion 
efficiency of a bulk heterojunction solar cell material, which 
depends on the open-circuit voltage, the short-circuit current 
density, and the fill factor. To speed up electronic structure 
calculations, semiempirical calculations are increasingly used, 
either calibrated to experimental data, where available, or to 
higher-level calculations. Another approach to faster property 
assessment, which we have frequently used for porous mole-
cular materials, is to assess the individual molecular compo-
nents of the material, rather than the solid-state structure, 
which would take weeks to predict computationally. This “mole-
cular approximation” is possible for many porosity-related 
features of porous molecular materials, as these are typically 
controlled by the molecular structure. For example, automated 
structural assessment of the windows and cavity size of a 
porous cage[36] can determine bulk performance in encapsula-
tions and separation.[37,38] Where molecular simplifications are 
not possible, calculations on solid-state properties from hypo-
thetical polymorphs from CSP can be carried out, as done so 
far for gas storage,[32] separation,[39] and charge mobility.[30,31]

AI is well suited to the types of forward predictions that are 
involved in making property predictions based on training 
supervised ML models, or exploring structure–property rela-
tionships with unsupervised ML. Supervised ML allows prop-
erty predictions to be made in the order of seconds for a 
system, rather than minutes, hours, or days. Examples of the 
application of supervised ML for rapid property prediction span 
the range of organic materials, including random forest models 
for prediction of porosity in 66 000 porous organic cages[15] and 
neural networks for optoelectronic properties, such as ioniza-
tion potential, electron affinity, and optical gap.[19] There are a 
couple of key requirements for successful ML predictions, first, 
training data for the model is required in sufficient quantity 
and quality. The exact quantity required is dependent on the 
type of model being applied, with regression and decision-
tree models having lower requirements than neural networks. 
Second, a descriptor for the material is required, to represent 
the key features of the model in a numeric, often vector-based, 
representation.

With regards to databases containing properties, these are 
comparably sparse in the field of organic materials, certainly 
compared to inorganic materials, where there are large-scale 
databases such as NOMAD[40] and the Materials Project.[41] 
One difficulty is the lack of a uniform way to represent the 
structures of organic materials and potentially complex device 
architectures, and the fact that large numbers of materials 

have not been synthesized and characterized, certainly not in a 
consistent fashion suitable for training data. Specific databases 
with experimental data often only contain a few hundred data 
points, thus the majority of organic material databases instead 
contain computed data, where there are 10 000s of data points 
for a specific application, for example, the electronic band 
structures in the Organic Materials Database.[42] This means 
computational studies that aim to use ML to predict properties 
typically have to start by building their own training data first, 
taking care to have a diversity of systems such that the scope 
of the model is as broad as possible. With regards to the repre-
sentations of the materials, these need to capture key chemical 
features of the material, which will often include solid-state 
structural arrangements. The representation required will be 
dependent on the properties being predicted, in some cases a 
2D graph representation will be sufficient, but this is unlikely 
in the case of electronic properties that depend on molecular 
conformation, or even crystal packing. The development of 
improved descriptors for molecular packing is required for 
many systems to be adequately modeled by ML, for example, 
the SOAP kernel includes how similar the 3D arrangement of a 
system is.[43] Deep learning (DL) algorithms can generate their 
new representations of structures through automated feature 
extraction.[44] DL has thus far been mostly applied for the pre-
diction of molecular properties, such as energies, but is likely to 
see increasing use in organic materials.

Computational property prediction is extremely valuable at nar-
rowing down large search spaces for organic materials, to target 
experimental testing upon the most promising regions, especially 
when these are materials that would not otherwise have been con-
sidered or designed based on intuition alone. This allows automa-
tion to be focused upon a smaller range of possibilities.

2.6. Feedback Loops and Experimental Input into Computation

Integrated feedback loops in the materials discovery process 
can help to streamline and accelerate the overall process. In 
particular, this can aid in refining the computational models, 
and trends discovered during experimental screening of mate-
rials synthesis and properties can feedback into the selection of 
new precursors. For example, if there are families of particular 
precursors that do not successfully form the desired organic 
materials, even after screening a wide variety of reaction condi-
tions, these can be removed from any subsequent iterations of 
the workflow.

Experimental insight can provide guidance into which sys-
tems are synthesizable, allowing selection of materials, but, fur-
ther, experimental data are incredibly important both for valida-
tion of predictions, and revisiting of approaches, and to build 
databases of materials and their properties for training by ML 
models. Here, automation and robotics provides the potential to 
vastly increase the scale, and decrease the timescale, with which 
data are collected. Integrated programmes can best utilize this 
opportunity, ensuring that data are collated and archived in a 
consistent fashion, including the recording of the system, the 
synthesis conditions, and any known details of the structure 
and properties. Very often, this information is not recorded elec-
tronically and certainly not made open-source. Computational 
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researchers can provide guidance on the scope and diversity 
of systems they would like to be experimentally characterized, 
emphasizing the need for the inclusion of failed or unsuccessful 
experiments as well, which may well be the majority of attempts 
in materials chemistry. Large open-source libraries of material 
properties hold enormous promise for the development of more 
ML models for rapid property prediction, vastly increasing the 
scale of systems that can be computationally screened.

Another potential source of materials data that is effectively 
unharnessed at present is the body of historic chemical litera-
ture. A combination of supervised and unsupervised ML can 
be used to mine both the text and images of reports of material 
synthesis and characterizations, to create databases of known 
materials and their properties. One example of this, which 
is discussed further in the case studies, is the chemical data 
extractor (CDE),[45] which makes use of natural language pro-
cessing and named entity recognition, and has already been 
used in the field of materials science for discovering organic 
dyes for solar cells in a combined computational-experimental 
study.[46] Recently, Terayama et al. demonstrated the use of ML 
to search for promising optical properties for potential mate-
rials application in a preexisting database of drug candidates, 
finding several promising candidates.[47] Not only is this an 
example of mining known structures, it also demonstrates an 
example of missed opportunities when systems are only consid-
ered for one application and never screened for other functions.

Material databases can be explored to construct and under-
stand structure–property relationships, to assist in the develop-
ment of design rules. With material compositions in a database, 
and more ML models for property prediction, materials can be 
revisited for completely different properties to those which they 
were originally intended or characterized for. For example, a 
database of porous molecular materials could be computation-
ally screened for optical or magnetic properties and promising 
materials identified for synthesis. This could help deal with 
the undoubtable “missed opportunities,” where a material is 
only ever tested for a single function, and so some alternative 
“wonder” property that it possesses might not be discovered 
even when the material itself is in-hand.

3. Case Studies

We will now discuss a set of case studies that highlight the 
value of combined computational and experimental work-
flows to accelerate the discovery of functional organic mate-
rials. These case studies are not selected to be exhaustive, but 
rather to exemplify recent successes that have been applied to 
different components of the above outlined discovery steps for 
materials discovery.

3.1. Computationally Driven Discovery of a Porous Organic Cage 
Using a Nonintuitive Precursor

Computation can be used to guide the discovery of porous 
organic cages,[11,48,49] by predicting the molecular topology that 
is likely to form and whether it will be shape persistent or col-
lapse. Typically, these studies have focused on a small number 

of molecules, using commercially available or simple precur-
sors provided by experimental researchers, and have often 
been used for a posteriori rationalization. However, Berardo 
et  al. used the “Supramolecular Toolkit (STK)”[12] to automate 
the computational assembly and screening of 10  000 possible 
combinations of precursors, sourced from the Reaxys database, 
into organic cages, with the aim of discovering promising and 
synthetically viable precursors.[14] While the vast majority of 
combinations formed cages that lacked shape persistence, a 
promising tritopic precursor was identified that was predicted 
to form a number of shape-persistent cages. Perhaps most 
importantly, by using a database of molecules that are known to 
be synthetically viable, and therefore removing the bias based 
on chemical intuition on what makes a good cage precursor, in 
this case that the building block should have the same degree 
of symmetry relative to its topicity, a precursor that would not 
have been designed or selected based on existing chemical 
knowledge was selected for experimental investigation.

Inspired by the computational identification of a tritopic pre-
cursor with C2v symmetry, a high-throughput automated screen 
was then carried out with a range of linkers and the formation 
of a Tri4Di6 cage species that lacked any symmetry elements was 
discovered, which was both porous and highly soluble. Due to 
the use of the tritopic C2v precursor, and the formed cage stoi-
chiometry, the cage could have been one of 162 different possible 
structural isomers, and experimental analysis techniques alone 
could not identify the cage isomer. Therefore, computation was 
used for the challenging task of narrowing down the possible 
structural isomers to the most plausible candidate. A combina-
tion of DFT calculations to determine the relative stabilities of the 
isomers, pore size calculation, and consideration of the number 
of unique imine environments (i.e., only isomers with 12 unique 
imine environments were carried forward), was used to reduce 
the number plausible candidates to 4 (Figure 5). For this reduced 
number of structural isomers, NMR shifts were then calculated, 
which when combined with the experimental data, led to a single 
isomer being proposed as the most plausible structure.

Overall, this combined computational and experimental 
study removed selection bias based on prior chemical knowl-
edge and inspired the choice of precursor, therefore enabling 
the discovery of an unsymmetrical organic cage which would 
not have been discovered based on intuition alone. In addi-
tion, Berardo et al. also studied the origin of porosity and solid-
state structure of the amorphous solid, which is not possible 
by experiment alone, further highlighting how combined com-
putational-experimental programmes can provide additional 
insight into organic materials.

3.2. Combined AI Route Prediction with Robotics for Small 
Organic Molecule Synthesis

The ability to make the entire process, from design through to 
synthetic realization of a target organic molecule, autonomous, 
would be a new paradigm for chemical synthesis. Coley et  al. 
took a major step toward this ambitious aim by using AI to 
automate both the retrosynthetic analysis and planning of an 
experimentally viable forward synthetic route of an organic 
molecule, which was then executed using robotics.[50]
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The integration of computer-aided synthesis planning (CASP) 
with automated chemical synthesis is challenging, not least 
because it is difficult to predict specific and feasible reaction con-
ditions for a forward reaction without human intuition, and the 
range of chemical reactions that can be carried out on a specifically 
configured automated platform can be limited. In order to over-
come these hurdles, Coley et al. developed open-source CASP soft-
ware, trained using Reaxys and patents, that could retrosyntheti-
cally analyses compounds, identify forward reaction conditions, 
and also evaluate the likelihood of success. These synthetic routes 
were then carried out using a modular robotic flow platform that 
is reconfigurable, providing the flexibility required for different 
reactions. Unlike most conventional automated platforms that are 
configured manually by the user, the required configuration was 
setup using a robotic arm. However, the AI proposed synthetic 
routes still require input from an experienced chemist to define 
certain reaction parameters, such as the residence times and con-
centration, to ensure the process is “flow-friendly.” Overall, the 
synthesis of a range of different small organic molecules was suc-
cessfully predicted and automated using this combined workflow, 
and while known routes were available for all of the target mole-
cules, the software was prevented from simply selecting these so 
that all routes had to be discovered based on the learnt transfor-
mations and patterns of chemical reactivities.

Although the small organic molecules targeted were pre-
dominantly pharmaceutically relevant molecules, and “human-
refined chemical recipe files,” which included adjustments to 
the AI-proposed route where required, this study successfully 
demonstrated that is possible to go from the target molecule 
to an AI planned route through to automated synthesis, and 
is a significant milestone toward fully autonomous synthesis. 
While this approach has not yet been applied to materials 
precursors, given the potential opportunities for investigating 
more novel organic materials space and making more drastic 
leaps in materials properties by using custom precursors, the 
use of AI to plan a viable synthetic route to a target precursor, 
combined with robotics to execute said route, would mean that 
materials chemists, who do not always have a background in 
organic synthesis, have the opportunity and capability to access 
novel building blocks, revolutionizing the field.

3.3. Computational Outcome Prediction and Robotic Synthesis 
of Organic Cages

As discussed above, the topologies and shape-persistence 
of porous organic cages can be investigated using com-
putational modeling. However, the extent to which the 

Figure 5. (Left) Computational pipeline for generating and screening potential structural isomers, which in combination with experimental data filtered 
down to four plausible candidate isomers. (Right) Comparison of the 36 unique isomers taking into account the relative DFT energy, the number of 
unique imine environments, and the mean absolute error (MAE) between the experimental and calculated 1H NMR spectra. The final four candidate 
isomers are labeled, with the structure of the proposed isomer having the lowest relative energy and the lowest MAE of the 1H NMR shifts, shown. 
Reproduced with permission.[14] Copyright 2018, The Royal Society of Chemistry.
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outcome can be reliably predicted was investigated recently 
by Greenaway et  al., who screened a broad array of 78 dif-
ferent precursor combinations using computation prior to 
investigating the synthetic outcome using an automated 
platform.[20] Uniquely, this study presented both the limita-
tions of the predictive strategy as well as its successes, and 
included all of the reactions outcomes, even those that did 
not lead to the targeted assembly or led to no cage being 
formed. This resulted in a hybrid computational-experi-
mental workflow being proposed to streamline the discovery 
of supramolecular assemblies (Figure 6).

First, computational modeling was used to investigate the 
topological preferences for each representative family of pre-
cursor combinations—for two of the families, the topological 
preference was more clear-cut based on comparison of the 
relative energies, but all three were experimentally confirmed. 
Then the formation energies were calculated for all of the pre-
cursor combinations based on these topology preferences, and 
their synthesis attempted using high-throughput automation, 
before the results from each were compared.

Overall, the success rate from the experimental screen was 
42%, but it was clear that it was not possible to unambiguously 
predict the outcome of each precursor combination, or indeed 

predict the likelihood that a cage would form. However, com-
parison of the calculations with the experimental outcomes 
showed that in future iterations and design cycles, computation 
could be used to focus experimental efforts. For example, com-
parison of the formation energies clearly indicated that one par-
ticular building block was less likely to be favored in the cage 
formations, which was then confirmed experimentally, and the 
most failed reactions occurred in the family where the topo-
logical preference was less clear-cut. Therefore, this approach 
could be used in future integrated studies to narrow down the 
search space by ruling out costly and time-consuming syn-
theses which are less likely to work, and perhaps more impor-
tantly, coupled over many cycles could yield a large database of 
both successful and failed reactions that could fuel machine 
learning approaches in the future.

Finally, this study also led to the serendipitous discovery of a 
new cage topology which would not have been computationally 
predicted—a doubly bridged triply interlocked catenane, but 
its formation could be rationalized with it being found to be 
more stable than the initially formed hit. However, developing 
a combined computational-experimental strategy that does not 
miss serendipitous discoveries, and instead accelerates them, is 
nontrivial.

Figure 6. (Left) Hybrid workflow fusing high-throughput automated synthesis with computation for the accelerated discovery of supramolecular mate-
rials. Experimental stages are shown in red and computational stages are shown in blue. (Right) Examples of the different organic cages discovered using 
computational screening fused with robotic synthesis. Capsular cages incorporating five precursors shown in yellow, tetrahedral cages incorporating ten 
precursors shown in maroon, and tetrapods incorporating eight precursors shown in teal. Reproduced under the terms of the CC-BY Creative Commons 
Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0).[20] Copyright 2018, The Authors, published by Springer Nature.
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3.4. Data-Driven Prediction of Optimal Material Synthesis 
Conditions

In recent work by Moosavi et al., experimental data on successful 
and failed syntheses of metal–organic frameworks (MOFs) were 
collected and then used to train an ML model to predict the optimal 
synthesis conditions to maximize surface area in the materials.[51] 
Although MOFs are obviously not wholly organic materials, this is 
an interesting case of modeling being used to guide and accelerate 
successful synthesis of materials to a desired outcome, that would 
otherwise rely on trial-and-error or an experimental chemist’s 
“chemical intuition” from years of experience in MOF synthesis. 
MOF synthesis involves the self-assembly of metal and organic 
components into a 3D periodic network, and features such as the 
crystallinity, degree of defects, and consequentially the properties, 
such as surface area and gas uptake, are known to be dependent 
on the synthesis conditions for a given system. The search space 
in a MOF synthesis includes the chemical composition, precursor 
choice, temperature, solvent, and reaction time. When a new MOF 
is being synthesized for the first time, this would therefore require 
between dozens and thousands of experiments to adequately 
sample the reaction phase space to be confident that the optimal 
synthesis conditions had been discovered. This is costly and time-
consuming, even with the application of automated synthesis.

The first challenge to trying to apply a data-driven approach 
to MOF synthesis is the absence of abundant data on the effect 
of different synthesis conditions on the reaction outcome. In 
particular, while successful reaction conditions are reported 
in the scientific literature, failed experiments, or those that 
resulted in the material but with suboptimal properties, are not 
reported. This absence of the “failed data” is a common issue 
in chemical problems, where indeed the successful, desired, 
event is likely to be the exception to the experimental attempts, 
but is the only event typically recorded in the literature. We can 

hope that an increase in uptake of electronic laboratory note-
books can help with this missing data in the future. To fill this 
gap in the data, Moosavi et al. used robotic synthesis to collect 
data on 120 different syntheses of a Cu-based MOF, HKUST-1, 
which can have a Brunauer–Emmett–Teller (BET) surface area 
ranging from 300 to 2000 m2 g−1 depending on the solvent com-
position, reaction temperature, and synthesis method, despite 
all powder diffraction patterns appearing identical.[51]

With this synthetic data in hand, Moosavi et al. then used a 
random decision forest method to determine the relative impact 
of the different experimental conditions on the synthesis out-
come. This uncovered that temperature changes were three 
times as important as the reactant composition on influencing 
crystallinity, providing insight that could be applied to future 
searches. This learning was taken forward to the synthesis of a 
related Zn-based MOF, and only 20 samples of the search space 
were required to find optimal synthesis conditions, compared 
to an expectation of thousands of samples without the prior 
insight. Future application of this approach relies upon the 
availability of databases where successful and failed material 
syntheses are reported in a common format. Driving uptake of 
such databases and data-sharing by the broader community is a 
significant hurdle to be overcome.

3.5. Outcome and Structure Prediction of Multicomponent  
Self-Sorted Assemblies

The ability to go from design and precursor selection all the 
way through to the molecular assembly, solid-state structure 
and property prediction, of molecular organic materials, prior to 
experimental realization, would enable integrated workflows for 
the in silico design of materials to be realized (Figure 7). Unlike 
the case studies on organic cages already discussed, which used 

Figure 7. (Top) Proposed general scheme for the de novo structure and property prediction of functional materials by Day and Cooper.[27] (Bottom) 
Outcome prediction of self-assembled organic cage pot using three precursor building blocks, followed by structure prediction of the crystal packing 
in the solid state (CSP energy landscape shown for the homochiral derivative, with window-to-window packed structures shown in blue and inset of 
the lowest energy predicted structure), and the available pore space in the global minimum structure. Top: Reproduced with permission.[27] Copyright 
2017, Wiley-VCH. Bottom: Adapted with permission.[52] Copyright 2019, Wiley-VCH.
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computational predictions for different stages in the process 
separately, for example, to identify promising precursors or to 
predict the most likely molecular outcome from a range of pos-
sible topologies, Greenaway et al. recently reported the forma-
tion of a multicomponent self-sorted organic assembly which 
accomplished this complete workflow.[52] That is, the assembly 
was predicted from the building blocks through to the solid-
state assembly, before being experimentally realized.

First, the molecular space was predicted, which was made 
more challenging by the use of three building blocks—while 
the use of two precursors can lead to different topological out-
comes, the use of three precursors can also lead to different 
types of self-sorting. Computational predictions and compar-
ison of the DFT calculated formation energies for a range of 
precursor combinations suggested that the formation of socially 
self-sorted three-component organic cage pots was syntheti-
cally viable, although the self-sorted two-component organic 
cages were similar in energy. Therefore, based on this predic-
tion alone, it was unclear what species would form experimen-
tally. However, taking into account the entropic contributions 
to the free energy difference, it was found that certain socially 
self-sorted organic cage pots were thermodynamically favored, 
with the entropic advantage outweighing the formation energy 
difference. This was then experimentally confirmed using a 
high-throughput synthetic screen and an organic cage pot, a 
new topology in the family of imine-derived organic cages, was 
isolated confirming the molecular prediction.

CSP was then carried out to predict the low-energy solid-
state packing, and while no single structure was dominant, sug-
gesting the system could be highly polymorphic, it indicated that 
chiral recognition could be expected and that window-to-window 
packings were less preferred in the homochiral structures. Sub-
sequent void analysis to probe the porosity of the crystal struc-
ture landscapes suggested that most of the structures would not 
contain any interconnected pore structures. However, the crystal 
structures were still investigated experimentally in an attempt 
to validate the conclusions from the CSP. Unfortunately, only 
solvated crystal structures were obtained preventing a direct 
comparison to the predicted landscape. While several of the 
overall predictions were validated by experiment, such as the 
crystal structure confirming the molecular assembly and the for-
mation of racemic cocrystals confirming chiral recognition, this 
highlights that even when the entire workflow can be predicted, 
there can still be difficulties in experimentally realizing the sys-
tems to fully validate the computational results.

3.6. Hybrid Experimental-Computational Approach to Discover 
Hidden Polymorphs

For organic materials, an ultimate goal is to have the ability to 
control the solid-state arrangement of the organic molecules, 
to allow design of properties. However, crystal engineering 
remains an ongoing challenge due to the unpredictability of 
the assembly of a molecule from its molecular structure alone. 
Cui et al. used a fusion of CSP and high-throughput crystalliza-
tion screening to discover new, lower density, polymorphs for 
two organic molecules that had already been studied over mul-
tiple decades.[53] Organic molecules that pack with low-density, 

open pore structures are a rare exception, as typically molecules 
will pack efficiently so as to minimize open void space. Thus, 
the ability to predict the solid-state structure of these types of 
molecules to identify those with potential low density packings 
through computation is powerful.

Trimesic acid was first reported in the solid-state in 1969 by 
Duchamp and Marsh,[54] with several further crystal structures 
being reported in the following decades. The CSP study con-
ducted by Cui et  al. revealed, however, that there were multiple 
lower density hypothetical structures with hexagonal hydrogen 
bonded sheets containing hexagonal pores that should potentially 
be accessible if supported by the right solvent or solvent combina-
tion. This prediction motivated a high-throughput screen of more 
than 280 solvent combinations, of which only 6% gave a crystal-
line structure. Just six new phases of trimesic acid were found, 
including the predicted one, highlighting the value of the compu-
tational screen motivating a search for such rare, “hidden” poly-
morphs, in a system that had already been extensively studied.

Building on their success with trimesic acid, Cui et  al. car-
ried out CSP for adamantane-1,3,5,7-tetracarboxylic acid 
(ADTA), which had previously only been synthesized in a dense 
fivefold interpenetrated structure. Again, the CSP identified 
lower density structures that were low-energy spikes in the 
energy-density landscape of hypothetical polymorphs, although 
higher energy than the previously reported structure (Figure 8). 
These lower density structures had lower-fold interpenetra-
tion, including one non-interpenetrated diamondoid structure. 
This CSP motivated a high-throughput crystallization screen, 
which uncovered the conditions for the synthesis of lower-fold 
interpenetrated ADTA structures. This study highlights the 
value of hybrid studies combining computational screening 
via structure prediction with high-throughput experimental 
searches. The CSP had motivated the experimental search, 
a clear advantage over “blind screening” of systems, and in 
this case discovering hidden systems that had not been found 
despite multiple decades of research on those systems. There is 
thus the potential for such hybrid workflows to accelerate the 
discovery of organic materials with targeted properties, even 
beyond simple structural features such as open-pore frame-
works, such as optoelectronic performance.

3.7. Navigating the Structure–Property Space of Organic 
Polymer Photocatalysts

One potential application of organic materials is as photo-
catalysts for generating hydrogen sustainably through water-
splitting. The photocatalyst needs to absorb light and generate 
charge carriers that can reduce protons to hydrogen and oxidize 
water, potentially achieving the latter through a sacrificial donor. 
While the majority of materials studied as potential photocata-
lysts are inorganic, some organic materials have been shown 
to have potential for water-splitting, or at least for hydrogen 
evolution, including carbon nitride.[55] Since then, a range of 
organic photocatalysts, including conjugated microporous poly-
mers (CMPs), covalent triazine-based frameworks (CTFs), and 
covalent–organic frameworks (COFs) have been reported as 
organic photocatalysts.[56] One potential advantage of organic 
materials as photocatalysts for water-splitting is their potential 
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for tunability of properties given the vast potential diversity of 
the building blocks for these materials. In this context however, 
only a tiny fraction of the potential organic photocatalysts has 
ever been tested.

In 2019, Bai et  al. reported a tiered strategy involving first 
computation and then automation to study a much larger range 
of potential conjugated polymer photocatalysts, likely studying a 
larger set of materials than previous studies combined.[35] They 
considered a library of commercially available dibrominated 
arene building blocks that could be combined with diboronic 
acids or esters via Suzuki–Miyuara couplings to form copoly-
mers. The search space included 6354 candidates, which were 
first screened computationally using automated assembly of the 
materials, followed by calibrated semiempirical tight-binding 
calculations that provided similar accuracy to DFT calculations, 
but at a fraction of the cost (Figure  9). The calculations iden-
tified a promising subset of 126 copolymers that were selected 
for synthesis. The synthesis was carried out using a robotic plat-
form for weighing and loading a microwave reactor with the 
monomers and reagents, followed by testing for hydrogen evo-
lution on a high-throughput photoreactor. Several new polymers 
with high sacrificial hydrogen evolution rates were identified.

This tiered strategy, on a larger scale than previous studies, 
also produced the data to drill down into the structure–property 
relationships of this class of organic photocatalysts. No single 
property was found to correlate with performance, and so a gra-
dient-boosting machine learning model was built from the col-
lected data. This model was able to capture 68% of the variation 
in hydrogen evolution rate in the conjugated polymers from 
four descriptors; the computed electron affinity, computed ioni-
zation potential, the computed optical gap, and the experimen-
tally determined transmittance values. This was a considerably 
better performance than from looking at single factors alone; 
this and the fact that only 68% of the variance was captured 
demonstrate how clearly many independent factors influence 
the photocatalytic performance of organic materials. Overall, the 
study of Bai et al. demonstrates several points; first, the power 
of combined high-throughput computational and experimental 

automated synthesis, beyond what could be achieved by either 
approach alone given the vast search space of organic materials. 
Second, the potential for computational screening to narrow 
down search spaces to promising regions, pushing research 
into untested areas and finally, that automation and robotics can 
assist in the general of the larger datasets that are required for 
building accelerated data-driven predictions in the future.

3.8. Large-Scale Computational-Experimental Discovery 
of Organic Light-Emitting Diodes (OLEDs)

OLEDs are devices that are made up of molecules that emit light 
under an applied electric current, and they have application in 
display units. While there are advantages in synthetic diversity 
and properties such as flexibility, there are issues with OLEDs 
requiring higher efficiency, stability, and lower cost. One approach 
to reduce the cost of phosphorescent OLEDs, which typically rely 
on low-abundancy iridium, is thermally activated delayed fluo-
rescence (TADF), where non-emissive triplet states are harvested 
via thermal fluctuations that repopulate the emissive single state. 
In a collaborative study by Gómez-Bombarelli et al., a large-scale 
search for blue TADF emitters for OLED devices was carried out, 
integrating quantum chemistry calculations, machine learning, 
synthesis, and device fabrication and testing.[57]

First, Gómez-Bombarelli et  al. needed to construct a large 
library of potential OLED candidates. An OLED with TADF 
needs both donor and acceptor moieties, and so DFT calcula-
tions were carried out on a small fragment library to classify 
them as donors or acceptors. This identified 110 donors, 105 
acceptors, and 7 bridges. A combinatorial enumeration algo-
rithm was then used to combine those fragments into all pos-
sible candidate OLED molecules, with the synthetic accessibility 
checked by the algorithm of Ertl and Schuffenhauer,[4] to ensure 
reasonable feasibility of the organic molecules. This resulted 
in a large library of 1.6 million candidate TADF molecules. 
Experimentally calibrated quantum chemical calculations were 
used to assess key properties of the organic  molecules, for 

Figure 8. CSP map for ADTA. The different colors highlight the number of unique hydrogen-bond networks interpenetrated within each structure: blue 
are fivefold, yellow are fourfold, green are threefold, red are twofold interpenetrated. Charcoal are non-interpenetrated diamondoid hydrogen bonded 
networks and light gray dots show structures that do not contain the diamondoid hydrogen bonding. Reproduced with permission.[53] Copyright 2019, 
The Royal Society of Chemistry.
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example, time-dependent DFT (TDDFT) for emission color. A 
single figure of merit, an upper bound on the delayed fluores-
cence rate constant, was used to assess the TADF character of 
the molecules. However, quantum chemical calculations are too  
computationally expensive to apply to a library of 1.6 million 
molecules, and thus instead a machine learning model was 
built to allow prescreening of the molecules. Using data from 
previous studies and chemical fingerprints of the molecules, 
a neural network was used to predict the performance of the 
molecules. Highly ranked molecules were then run in TDDFT 
calculations, with continual retraining of the neural network.

900 particularly promising TADF molecules were identified 
from the 1.6 million candidates, emphasizing the relative rarity of 
the properties required and the value of high-throughput compu-
tational screening for properties. The identified subset of mole-
cules also included well-known TADF-emitters, a promising sign 
for the effectiveness of the calculations. The large dataset collected 
also uncovered structure–property relationships in the materials, 
as with the previous case study, as well as revealing upper bounds 
on the properties of the organic molecules. To select which of the 
900 identified molecules to attempt to experimentally validate, a 
custom web tool was developed by Gómez-Bombarelli et  al. to 
allow humans to vote on which molecules to synthesize and fab-
ricate into devices. The selected molecules were then produced, 
with the computational predictions agreeing well with the experi-
mental performance. The discovered molecules had encouraging 
external quantum efficiencies (EQE) of up to 22%. Again, this 
study highlights the value of tiered computational-experimental 
strategies that use high-throughput computational screening to 
filter candidate libraries that are many orders of magnitude larger 
than anything that could feasibly be attempted synthetically, even 
with advances in automation and robotics.

3.9. Literature-Mining to Discover Dye-Sensitized Solar  
Cells (DSSCs)

DSSCs are a type of photovoltaic solar cells where the photo-
active component of the solar cell is an organic dye. DSSCs 
have potential in wearable devices and textiles due to their 
flexibility, low cost, and scalable processing procedures. As 

with all-organic materials, the large number of potential com-
ponents, in this case light-harvesting chromophores, is both a 
blessing and a curse—how does one effectively find optimal 
candidates when design of the materials with targeted proper-
ties is fundamentally not possible? Cooper et al. used an alter-
native approach to the manual collation of candidate libraries 
described in the previous two case studies.[46] They used the 
ChemDataExtractor (CDE), previously developed by Swain and 
Cole for the automated extraction of chemical information from 
the literature, to data-mine for potential dye candidates.[45]

CDE works to text-mine chemical literature by automated 
extraction of chemical entities, and their associated reported 
properties, to autogenerate databases of known materials.[45] 
The approach applies machine learning, including unsuper-
vised learning, to tokenize text, based on training from a corpus 
of chemical literature. The software is extendible to training 
to text-mine new properties of chemicals. Cooper et  al. used 
CDE to create a database of 9431 dye molecules, including 
their chemical structure, molar extinction coefficients, and 
maximum absorption wavelengths. They conducted an initial 
screen of the library to remove dyes containing metals, small 
molecules, and those without absorbance in the solar spectrum, 
resulting in a filtered database of 3053 organic dyes (Figure 10). 
Next, they filtered out dyes that did not contain a carboxylic acid 
group (to anchor it to the surface of titania in a DSSC device), 
and those with a small dipole moment, insufficient for intra-
molecular charge transfer upon photoexcitation. There were 
309 molecules in the remaining subset.

In the following stage, Cooper et al. came up with a figure of 
merit for the candidate dyes that considered their likely perfor-
mance based on their optical absorption properties, selecting 33 
promising dyes. For these dyes, they calculated the HOMO and 
LUMO levels with DFT calculations, to confirm they were con-
sistent with device integration with titania. From the remaining 29 
candidates, 5 were selected for experimental validation based upon 
the ease of synthesis. The experimental device performance was 
promising, with high power conversion efficiencies, comparable to 
the industry standard, particularly when two of the five candidates 
were combined. This case study highlights the value of examining 
again the chemical literature, in an efficient, automated fashion, to 
uncover molecules with hidden, unrealized, capabilities.

Figure 9. (Left) Predicted optoelectronic properties (ionization potential (IP), electron affinity (EA), and optical gap) of the entire copolymer library 
(6354 copolymers) of Bai et al.[35]; (right) Equivalent plot where marker size is proportional to the experimentally observed hydrogen evolution rate, 
measured for a synthesizable subset of 43 copolymers obtained by combining six dibromide compounds. Different colored points represent sys-
tems with different building blocks. Reproduced with permission.[35] Copyright 2019, American Chemical Society. (https://pubs.acs.org/doi/10.1021/
jacs.9b03591; further permissions related to the material excerpted should be directed to the ACS)
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3.10. Autonomous Exploration and Automated Synthesis 
of Metal–Organic Architectures

In the majority of the case studies discussed so far, a human has 
been involved in either the precursor selection or in narrowing 
down and selecting which computationally predicted materials 
to target. However, this can introduce bias and may reduce the 
chance of accessing truly novel and serendipitous discoveries. 
One approach is to screen and analyses every single possible 

variation for a particular materials class, but as highlighted 
in the other studies, this is not viable even with automated 
approaches. This could, however, be overcome by combining 
automated screening led by autonomous decision making, with 
a focus on finding new areas of reactivity.

Recently, Porwol et al. used such an approach to explore the 
area of coordination architectures.[58] By combining closed-loop 
automated flow screening with a search algorithm that was not 
trained with a dataset, the authors investigated the available 

Figure 10. Data-mining the literature for potential dye candidates for DSSCs; A) A starting database of 9431 dye candidates from the scientific literature 
was generated using the text-mining tool, ChemDataExtractor. B) Initial screens remove small molecules, organometallic dyes, and chemicals not 
absorbing in the solar spectrum. C) Molecules lacking a carboxylic acid or reasonable dipole moment are removed. D) Optical properties of the dyes 
are assessed. E) HOMO and LUMO energy levels of each dye are checked using DFT to ensure proper integration into a DSSC. F) A final set of five 
dyes is selected for experimental verification. G) Experimental validation. Reproduced with permission.[46] Copyright 2018, Wiley-VCH.
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chemical space for metal–organic supramolecular species 
formed from the self-assembly of three chemical inputs (organic 
azides, aminoalkynes, and aldehydes) and two different coor-
dination metals. In addition, the reaction conditions including 
the volume, stoichiometric ratio, reaction time, and tempera-
ture, were not predetermined or preset. Overall, even with this 
initially small selection of precursors, this therefore adds up to 
millions of possible reactions—screening all of these combina-
tions is clearly not experimentally viable. The use of an algo-
rithm to autonomously make decisions and search the chemical 
space was reliant on the initial choice of chemical inputs rather 
than a training set, and did not build a model of the space or 
optimize the reactivity during its exploration. Instead, the algo-
rithm determined the degree of change from the chemical 
inputs, to the organic ligand, to the metal–organic assembly, 
using a combination of UV–vis measurements, mass spectrom-
etry, and pH changes. Using this as an exploration factor, the 
algorithm then determined whether to continue investigating a 
similar region of chemical space as it had identified an area of 
high reactivity, or to search further away to find enhanced reac-
tivity. Overall, this method autonomously discovered a range of 
ligands and metal–organic architectures in solution, and high-
lighted the benefits of using a closed-loop autonomous system 
to actively investigate the reactivity space of a specific system. 
One current limitation is that the precursors were still selected 
by an experienced chemist, and while the ligand system targeted 
was unknown, it could be argued that the target assemblies 
were based on prior chemical knowledge of other known ligand 
binding motifs. However, this is still a significant advance in the 
area of integrating computation and automated screening in 
a closed feedback loop for the discovery of materials, without 
direct human involvement during the screening process.

4. Future Outlook

The future is bright for integrated computational–experimental 
organic materials discovery. We have an increasingly computer 
literate generation of materials chemists, with many experi-
mental chemists proficient in coding in at least one language, 
commonly Python. This combines with a move toward more 
open-source software, the availability of which has contributed to 
the explosion of studies in AI, and the increasing move toward 
the creation of open-source materials databases and electronic 
laboratory notebooks. The use of automation to streamline 
and reduce the experimental timescale has also seen increased 
interest, although arguably the uptake is slow due to the typi-
cally associated high cost of such systems. As the development 
of low-cost and open-source automation becomes more wide-
spread, and when combined with increased computational pro-
ficiency, these approaches and systems will hopefully become 
more common place in research labs and be applied to different 
research programmes to streamline and accelerate discovery. 
Further to this, there is also a need for accessible application 
programming interfaces (API) in laboratory equipment to allow 
device modification and facilitate data collection, or for the inte-
gration of open-source and repurposed robotic arms and sen-
sors with standard equipment to overcome the need to modify 
certain devices. For example, in recent work by Burger et al., a 

commercially available mobile robotic arm was programmed to 
interact with typical equipment found in a laboratory.[59] There 
are also exciting developments in terms of integrating experi-
ment and computation, allowing human interaction during a 
workflow, such as the ChemVox software of Martínez and co-
workers which can perform computations based on natural lan-
guage processing from a voice command[60] or via virtual reality 
and calculations responding to human movements.[61]

We can hope AI algorithms can provide new ways to explore 
the chemical space of precursors, so that we can uncover “wild 
cards” that would not otherwise be suggested by humans alone. 
In this area, a particularly influential paper by Gómez-Bom-
barelli et al. made use of a deep neural network (DNN) as part 
of a variational autoencoder (VAE).[62] In this case, the approach 
was applied to molecular properties such as solubility, rather 
than material properties, but it will be interesting to see how 
successfully it can be applied to organic materials. The DNN 
encodes the molecular SMILES-based representations into a 
latent space, then the chemical space can be explored, before 
converting, via a decoder, back to the molecular representation. 
As property predictions can be performed in the latent space, 
this opens up the possibility for inverse design. One potential 
issue is that many of the new molecules may not be syntheti-
cally accessible, so workflows will need to consider this point. 
So while, in the above discussion of accelerated property pre-
diction, these were all examples of forward prediction, these 
types of algorithms can help to open up the possibility for truly 
performing “inverse design” of materials based on designing a 
material with optimal properties. The challenge of multiobjec-
tive optimization of multiple properties remains.

Improvements in the automation of precursor synthesis can 
help us to reduce that bottleneck in the materials discovery pro-
cess. This would facilitate a large number of materials being 
experimentally tested. An interesting development in the use of 
AI in chemistry are algorithms that, for a given organic mole-
cule, can perform a “computational retrosynthesis” to predict the 
most effective, and even cheapest, synthesis route to that mole-
cule.[63–65] These approaches typically use deep learning or rein-
forcement learning and have typically been trained on known 
reaction data, but have more recently been trained only based 
on known reaction classes. While currently focused in organic 
chemistry, such algorithms also hold promise in helping guide 
materials discovery, by aiding in the identification of which 
promising molecular building blocks for materials are syntheti-
cally reachable. This will hopefully help embolden experimental 
chemists to make precursor choices that are less similar to 
previously reported molecules and thus help us explore more 
chemical space beyond small, unimaginative starting libraries.

The next stage, material synthesis, can hopefully be guided 
in the future by predictions of the reaction outcomes, or, even 
better, for the required reaction and processing conditions to 
be predicted a priori, saving vast amounts of time exploring the 
reaction phase space experimentally. There are recent reports of 
reaction condition prediction for small molecule organic reac-
tions,[66] as well as for zeolite synthesis,[67] and, as discussed in 
the case studies, MOF synthesis. These studies have used lit-
erature data, or collected their own data. The diversity and scale 
of reaction data for organic material synthesis is not currently 
available, but this can now be remedied for specific reaction 
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classes by the high-throughput collection of data through auto-
mated synthesis. Again, it is critical that data for both suc-
cessful and failed reactions are collected and shared.

CSP for solid-state molecular packing of materials has the 
potential to be vastly accelerated by ML, extending the scale at 
which it can be applied to materials discovery, and hopefully 
improving the accuracy of property predictions. Of particular 
promise is the use of ML targeted at the bottleneck of the CSP 
process, the accurate energetic ranking of the hypothetical 
polymorphs. One recent example is in the use of ML-based 
fragment energies, shown to improve the relative energies of 
hypothetical polymorphs.[68] Accelerated CSP, combined with 
ML-based property predictions would massively accelerate the 
computational screening of organic materials. ML-based prop-
erty prediction, already a very popular field, will be increas-
ingly used and successful as new algorithms become avail-
able, and as the quantity of data openly available increases.

Finally, the use of closed feedback loops and autonomous 
workflows combining both computational prediction and high-
throughput experiment is already starting to emerge as a pow-
erful tool for the discovery of materials, particularly in the area 
of optimization. For example, Langer et al. recently reported the 
autonomous optimization of multicomponent polymer blends 
for organic photovoltaics by combining an automated platform 
that can rapidly fabricate films, with a Bayesian optimization.[69] 
Burger et  al. took this approach even further, by combining a 
mobile robot and a Bayesian search algorithm to autonomously 
search for photocatalysts with improved hydrogen production 
performance.[59] Overall, this area of research will open up the 
next generation of self-driving autonomous laboratories, and 
hopefully lead to more imaginative and accelerated leaps in the 
design and discovery of new materials.

5. Conclusions

We have discussed the state-of-the-art in integrating computational 
and experimental materials discovery programmes for organic 
materials with application in guest storage, separations, optoelec-
tronics, and (photo)catalysis. Integrated workflows can use com-
putation to perform molecular design, and to screen vast libraries 
of possible materials, many orders of magnitude larger than any-
thing that can be experimentally synthesized, even with automa-
tion. The likely products and structures of the materials formed 
are now beginning to be able to be predicted, so that we can target 
material synthesis toward materials that are synthetically achiev-
able. Artificial intelligence will continue to impact the field, and 
has already shown much promise in accelerating property pre-
dictions, something that will only increase as larger databases of 
materials and their properties become available. High-throughput 
automation can be used to accelerate the experimental timescale 
for screening for the optimal conditions required for a particular 
materials synthesis, or to screen for a range of materials. While 
not currently widely utilized, as more automated platforms 
become available and low-cost systems developed, the use of auto-
mation will surely be adopted by other researchers. For the future, 
automation and artificial intelligence will continue to accelerate 
both experimental and computational programmes, especially 
when they are integrated to feed into each other.

Acknowledgements
The authors thank the Royal Society for University Research Fellowships. 
K.E.J. acknowledges the ERC for funding through Grant Agreement No. 
758370 (ERC-StG-PE5-CoMMaD).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
automation, high-throughput screening, materials discovery, prediction

Received: July 14, 2020
Revised: September 28, 2020

Published online: February 9, 2021

[1] M. Jansen, J. C. Schön, Nat. Mater. 2004, 3, 838.
[2] P. G. Polishchuk, T. I. Madzhidov, A. Varnek, J. Comput.-Aided Mol. 

Des. 2013, 27, 675.
[3] Q.  Yuan, A.  Santana-Bonilla, M. A.  Zwijnenburg, K. E.  Jelfs, 

Nanoscale 2020, 12, 6744.
[4] P. Ertl, A. Schuffenhauer, J. Cheminf. 2009, 1, 8.
[5] W. Huyer, A. Neumaier, ACM Trans. Math. Softw. 2008, 35, 1.
[6] A.-C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell, A. A. Bedermann, 

J. Torosian, B. Yue, K. F. Jensen, T. F. Jamison, Science 2018, 361, 1220.
[7] A. D. Clayton, J. A. Manson, C. J. Taylor, T. W. Chamberlain, B. A. Taylor, 

G. Clemens, R. A. Bourne, React. Chem. Eng. 2019, 4, 1545.
[8] Z. Zhou, X. Li, R. N. Zare, ACS Cent. Sci. 2017, 3, 1337.
[9] A. D.  Clayton, A. M.  Schweidtmann, G.  Clemens, J. A.  Manson, 

C. J. Taylor, C. G. Niño, T. W. Chamberlain, N. Kapur, A. J. Blacker, 
A. A. Lapkin, R. A. Bourne, Chem. Eng. J. 2020, 384, 123340.

[10] J. M. Granda, L. Donina, V. Dragone, D.-L. Long, L. Cronin, Nature 
2018, 559, 377.

[11] V.  Santolini, M.  Miklitz, E.  Berardo, K. E.  Jelfs, Nanoscale 2017, 9, 
5280.

[12] L. Turcani, E. Berardo, K. E. Jelfs, J. Comput. Chem. 2018, 39, 1931.
[13] E. Berardo, L. Turcani, M. Miklitz, K. E. Jelfs, Chem. Sci. 2018, 9, 8513.
[14] E.  Berardo, R. L.  Greenaway, L.  Turcani, B. M.  Alston, 

M. J.  Bennison, M.  Miklitz, R.  Clowes, M. E.  Briggs, A. I.  Cooper, 
K. E. Jelfs, Nanoscale 2018, 10, 22381.

[15] L. Turcani, R. L. Greenaway, K. E. Jelfs, Chem. Mater. 2019, 31, 714.
[16] M. Miklitz, L. Turcani, R. L. Greenaway, K. E. Jelfs, Commun. Chem. 

2020, 3, 10.
[17] L. Wilbraham, E. Berardo, L. Turcani, K. E. Jelfs, M. A. Zwijnenburg, 

J. Chem. Inf. Model. 2018, 58, 2450.
[18] R. S. Sprick, C. M. Aitchison, E. Berardo, L. Turcani, L. Wilbraham, 

B. M. Alston, K. E.  Jelfs, M. A. Zwijnenburg, A. I. Cooper, J. Mater. 
Chem. A 2018, 6, 11994.

[19] L. Wilbraham, R. S. Sprick, K. E. Jelfs, M. A. Zwijnenburg, Chem. Sci. 
2019, 10, 4973.

[20] R. L.  Greenaway, V.  Santolini, M. J.  Bennison, B. M.  Alston, 
C. J. Pugh, M. A. Little, M. Miklitz, E. G. B. Eden-Rump, R. Clowes, 
A. Shakil, H. J. Cuthbertson, H. Armstrong, M. E. Briggs, K. E. Jelfs, 
A. I. Cooper, Nat. Commun. 2018, 9, 2849.

[21] M.  Mastalerz, J.  Lauer, W. S.  Zhang, F.  Rominger, R.  Schroder, 
Chem. - Eur. J. 2018, 24, 1816.

[22] X. Liu, R. Warmuth, J. Am. Chem. Soc. 2006, 128, 14120.
[23] K. E.  Jelfs, X.  Wu, M.  Schmidtmann, J. T. A.  Jones, J. E.  Warren, 

D. J. Adams, A. I. Cooper, Angew. Chem., Int. Ed. 2011, 50, 10653.

Adv. Mater. 2021, 33, 2004831



www.advmat.dewww.advancedsciencenews.com

2004831 (18 of 19) © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

[24] T. Hasell, S. Y. Chong, K. E. Jelfs, D. J. Adams, A. I. Cooper, J. Am. 
Chem. Soc. 2012, 134, 588.

[25] S. L. Price, Chem. Soc. Rev. 2014, 43, 2098.
[26] A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya, A. D. Boese, 

J. G.  Brandenburg, P. J.  Bygrave, R.  Bylsma, J. E.  Campbell, R.  Car, 
D. H.  Case, R.  Chadha, J. C.  Cole, K.  Cosburn, H. M.  Cuppen, 
F. Curtis, G. M. Day, R. A. DiStasio Jr., A. Dzyabchenko, B. P. van Eijck, 
D. M.  Elking, J. A.  van  den Ende, J. C.  Facelli, M. B.  Ferraro,  
L.  Fusti-Molnar, C.-A.  Gatsiou, T. S.  Gee, R.  de  Gelder, 
L. M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D. W. M. Hofmann, 
J.  Hoja, R. K.  Hylton, L.  Iuzzolino, W.  Jankiewicz, D. T.  de  Jong, 
J.  Kendrick, N. J. J.  de  Klerk, H.-Y.  Ko, L. N.  Kuleshova, X.  Li, 
S.  Lohani, F. J. J.  Leusen, A. M.  Lund, J.  Lv, Y.  Ma, N.  Marom, 
A. E.  Masunov, P.  McCabe, D. P.  McMahon, H.  Meekes, 
M. P. Metz, A. J. Misquitta, S. Mohamed, B. Monserrat, R. J. Needs, 
M. A. Neumann, J. Nyman, S. Obata, H. Oberhofer, A. R. Oganov, 
A. M.  Orendt, G. I.  Pagola, C. C.  Pantelides, C. J.  Pickard, 
R. Podeszwa, L. S. Price, S. L. Price, A. Pulido, M. G. Read, K. Reuter, 
E.  Schneider, C.  Schober, G. P.  Shields, P.  Singh, I. J.  Sugden, 
K.  Szalewicz, C. R.  Taylor, A.  Tkatchenko, M. E.  Tuckerman, 
F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, 
R. E.  Watson, G. A.  de  Wijs, J.  Yang, Q.  Zhu, C. R.  Groom, Acta 
Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 439.

[27] G. M. Day, A. I. Cooper, Adv. Mater. 2018, 30, 1704944.
[28] J. T. A. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, 

S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, 
A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367.

[29] E. O.  Pyzer-Knapp, H. P. G.  Thompson, F.  Schiffmann, K. E.  Jelfs, 
S. Y. Chong, M. A. Little, A. I. Cooper, G. M. Day, Chem. Sci. 2014, 5, 2235.

[30] J. Yang, S. De, J. E. Campbell, S. Li, M. Ceriotti, G. M. Day, Chem. 
Mater. 2018, 30, 4361.

[31] B.  Rice, L. M.  LeBlanc, A.  Otero-de-la-Roza, M. J.  Fuchter, 
E. R. Johnson, J. Nelson, K. E. Jelfs, Nanoscale 2018, 10, 1865.

[32] A.  Pulido, L.  Chen, T.  Kaczorowski, D.  Holden, M. A.  Little, 
S. Y. Chong, B. J. Slater, D. P. McMahon, B. Bonillo, C. J. Stackhouse, 
A.  Stephenson, C. M.  Kane, R.  Clowes, T.  Hasell, A. I.  Cooper, 
G. M. Day, Nature 2017, 543, 657.

[33] L. J. Abbott, K. E. Hart, C. M. Colina, Theor. Chem. Acc. 2013, 132, 1334.
[34] R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E. W. Zhao, T. Liu, 

C. Ye, X. Zhou, B. P. Darwich, Z. Fan, L. Turcani, E. Jackson, L. Chen, 
S. Y. Chong, T. Li, K. E. Jelfs, A. I. Cooper, N. P. Brandon, C. P. Grey, 
N. B. McKeown, Q. Song, Nat. Mater. 2020, 19, 195.

[35] Y.  Bai, L.  Wilbraham, B. J.  Slater, M. A.  Zwijnenburg, R. S.  Sprick, 
A. I. Cooper, J. Am. Chem. Soc. 2019, 141, 9063.

[36] M. Miklitz, K. E. Jelfs, J. Chem. Inf. Model. 2018, 58, 2387.
[37] M. Miklitz, S. Jiang, R. Clowes, M. E. Briggs, A. I. Cooper, K. E. Jelfs, 

J. Phys. Chem. C 2017, 121, 15211.
[38] A. Sturluson, M. T. Huynh, A. H. P. York, C. M. Simon, ACS Cent. 

Sci. 2018, 4, 1663.
[39] M. Bernabei, R. Pérez Soto, I. Gómez García, M. Haranczyk, Mol. 

Syst. Des. Eng. 2019, 4, 912.
[40] NOMAD Repository, https://nomad-repository.eu/ (accessed: May 

2020).
[41] A.  Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, 

S.  Cholia, D.  Gunter, D.  Skinner, G.  Ceder, K. A.  Persson, APL 
Mater. 2013, 1, 011002.

[42] S. S.  Borysov, R. M.  Geilhufe, A. V.  Balatsky, PLoS One 2017, 12, 
e0171501.

[43] S. De, A. P. Bartók, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 
2016, 18, 13754.

[44] D.  Duvenaud, D.  Maclaurin, J.  Aguilera-Iparraguirre,  
R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, R. P. Adams, in Advances 
in Neural Information Processing Systems,  2015, pp. 2224–2232.

[45] M. C. Swain, J. M. Cole, J. Chem. Inf. Model. 2016, 56, 1894.

[46] C. B.  Cooper, E. J.  Beard, Á.  Vázquez-Mayagoitia, L.  Stan, 
G. B. G.  Stenning, D. W.  Nye, J. A.  Vigil, T.  Tomar, J.  Jia, 
G. B.  Bodedla, S.  Chen, L.  Gallego, S.  Franco, A.  Carella, 
K. R. J. Thomas, S. Xue, X. Zhu, J. M. Cole, Adv. Energy Mater. 2019, 
9, 1802820.

[47] K.  Terayama, M.  Sumita, R.  Tamura, D. T.  Payne, M. K.  Chahal, 
S. Ishihara, K. Tsuda, Chem. Sci. 2020, 11, 5959.

[48] J. D.  Evans, K. E.  Jelfs, G. M.  Day, C. J.  Doonan, Chem. Soc. Rev. 
2017, 46, 3286.

[49] K. E. Jelfs, E. G. B. Eden, J. L. Culshaw, S. Shakespeare, E. O. Pyzer-
Knapp, H. P. G.  Thompson, J.  Bacsa, G. M.  Day, D. J.  Adams, 
A. I. Cooper, J. Am. Chem. Soc. 2013, 135, 9307.

[50] C. W.  Coley, D. A.  Thomas, J. A. M.  Lummiss, J. N.  Jaworski, 
C. P.  Breen, V.  Schultz, T.  Hart, J. S.  Fishman, L.  Rogers, H.  Gao, 
R. W.  Hicklin, P. P.  Plehiers, J.  Byington, J. S.  Piotti, W. H.  Green, 
A. J. Hart, T. F. Jamison, K. F. Jensen, Science 2019, 365, eaax1566.

[51] S. M.  Moosavi, A.  Chidambaram, L.  Talirz, M.  Haranczyk, 
K. C. Stylianou, B. Smit, Nat. Commun. 2019, 10, 539.

[52] R. L. Greenaway, V. Santolini, A. Pulido, M. A. Little, B. M. Alston, 
M. E. Briggs, G. M. Day, A. I. Cooper, K. E. Jelfs, Angew. Chem., Int. 
Ed. 2019, 58, 16275.

[53] P. Cui, D. P. McMahon, P. R. Spackman, B. M. Alston, M. A. Little, 
G. M. Day, A. I. Cooper, Chem. Sci. 2019, 10, 9988; https://pubs.rsc.
org/en/content/articlelanding/2019/SC/C9SC02832C.

[54] D. J. Duchamp, R. E. Marsh, Acta Crystallogr., Sect. B: Struct. Crystal-
logr. Cryst. Chem. 1969, 25, 5.

[55] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, 
K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.

[56] Y.  Wang, A.  Vogel, M.  Sachs, R. S.  Sprick, L.  Wilbraham, 
S. J. A.  Moniz, R.  Godin, M. A.  Zwijnenburg, J. R.  Durrant, 
A. I. Cooper, J. Tang, Nat. Energy 2019, 4, 746.

[57] R.  Gómez-Bombarelli, J.  Aguilera-Iparraguirre, T. D.  Hirzel, 
D.  Duvenaud, D.  Maclaurin, M. A.  Blood-Forsythe, H. S.  Chae, 
M. Einzinger, D. G. Ha, T. Wu, G. Markopoulos, S.  Jeon, H. Kang, 
H. Miyazaki, M. Numata, S. Kim, W. Huang, S. I. Hong, M. Baldo, 
R. P. Adams, A. Aspuru-Guzik, Nat. Mater. 2016, 15, 1120.

[58] L. Porwol, D. J. Kowalski, A. Henson, D. Long, N. L. Bell, L. Cronin, 
Angew. Chem., Int. Ed. 2020, 59, 11256.

[59] B.  Burger, P. M.  Maffettone, V. V.  Gusev, C. M.  Aitchison, Y.  Bai, 
X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes, N. Rankin, B. Harris, 
R. S. Sprick, A. I. Cooper, Nature 2020, 583, 237.

[60] ChemVox, https://www.amazon.com/dp/B08G1C97J5 (accessed: 
September 2020).

[61] M. B.  O’Connor, S. J.  Bennie, H. M.  Deeks, A.  Jamieson-Binnie, 
A. J. Jones, R. J. Shannon, R. Walters, T. J. Mitchell, A. J. Mulholland, 
D. R. Glowacki, J. Chem. Phys. 2019, 150, 220901.

[62] R.  Gómez-Bombarelli, J. N.  Wei, D.  Duvenaud, J. M.  Hernández-
Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, 
T. D.  Hirzel, R. P.  Adams, A.  Aspuru-Guzik, ACS Cent. Sci. 2018,  
4, 268.

[63] C. W. Coley, W. H. Green, K. F. Jensen, Acc. Chem. Res. 2018, 51, 1281.
[64] M. H. S. Segler, M. Preuss, M. P. Waller, Nature 2018, 555, 604.
[65] S.  Szymkuć, E. P.  Gajewska, T.  Klucznik, K.  Molga, P.  Dittwald, 

M.  Startek, M.  Bajczyk, B. A.  Grzybowski, Angew. Chem., Int. Ed. 
2016, 55, 5904.

[66] H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green, K. F. Jensen, 
ACS Cent. Sci. 2018, 4, 1465.

[67] Z.  Jensen, E.  Kim, S.  Kwon, T. Z. H.  Gani, Y.  Román-Leshkov, 
M. Moliner, A. Corma, E. Olivetti, ACS Cent. Sci. 2019, 5, 892.

[68] D.  McDonagh, C.-K.  Skylaris, G. M.  Day, J. Chem. Theory Comput. 
2019, 15, 2743.

[69] S. Langner, F. Häse, J. D. Perea, T. Stubhan, J. Hauch, L. M. Roch, 
T. Heumueller, A. Aspuru-Guzik, C. J. Brabec, Adv. Mater. 2020, 32, 
1907801.

Adv. Mater. 2021, 33, 2004831

https://nomad-repository.eu/
https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02832C
https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC02832C
https://www.amazon.com/dp/B08G1C97J5


www.advmat.dewww.advancedsciencenews.com

2004831 (19 of 19) © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

Rebecca Greenaway is a Royal Society University Research Fellow at the Department of Chemistry 
at Imperial College London, UK. Becky carried out her Ph.D. on developing palladium-catalyzed 
cascade cyclizations at the University of Oxford, before joining the University of Liverpool as a 
postdoctoral researcher with Prof. Andy Cooper FRS. She began her independent research in 2019, 
and joined Imperial College London in 2020. Becky’s current research interests include the use of 
high-throughput automation for the synthesis of molecular organic materials and porous liquids.

Kim Jelfs is a senior lecturer and Royal Society University Research Fellow at the Department of 
Chemistry at Imperial College London, UK. Kim carried out her Ph.D. modeling zeolite crystal 
growth at UCL, before working as a postdoctoral researcher at the University of Liverpool with 
Prof. Andy Cooper FRS. Kim began her independent research at Imperial College in 2013 and her 
research focuses upon the use of computer simulations to assist in the discovery of supramo-
lecular materials.

Adv. Mater. 2021, 33, 2004831


