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Abstract 
 

 
The ‘Molecular Imaging of Neurodegenerative Disease: Mitochondria, Associated Proteins & 

Synapses’ (MIND-MAPS) Consortium was formed to investigate three potential molecular 

markers of the mitochondrial/endoplasmic reticulum/synaptic axis dysfunction associated with 

neurodegeneration using positron emission tomography (PET) in the healthy human brain as 

well as across a number of neurodegenerative diseases. 

 

Mitochondrial complex-I (MC-I), sigma 1 receptor (S1R) and synaptic vesicle protein 2A 

(SV2A) can be quantified using PET radioligands 18F-BCPP-EF, 11C-SA-4503 and 11C-UCB-J, 

respectively, provided these ligands are selective for their targets, have suitable kinetics and 

produce a signal that can be analysed using an appropriate tracer kinetic model. The main 

contribution of this thesis was the identification and development of a set of optimal tracer 

kinetic models and PET image derived outcome measures for each of these radioligands to be 

implemented across the MIND-MAPS cohorts. 

 

The work presented on 18F-BCPP-EF (Chapter 4) was the first published quantification of this 

ligand in the human brain, and showed that the volume of distribution (VT), the VT normalised 

by the free plasma fraction (fp) and the distribution volume ratio (DVR) derived using either 

multilinear analysis 1 (MA1) or the two-tissue compartment model (2TC) can be reliably used 

to quantify MC-I with good reproducibility. The work presented on 11C-SA-4503 (Chapter 5) 

established MA1 as the optimal kinetic model for the quantification of S1R in the healthy 

human brain using either VT or VT/fp as outcome measures. Some of the drawbacks of the ligand 

including unreliable metabolite measurements and associated high intersubject variability of 

the outcome measures were elucidated and improvements suggested. The characterisation of 
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11C-UCB-J (Chapter 6) supported previous literature results by showing that the 1TC model is 

the optimal compartmental model to estimate VT with time stability results showing that scan 

time could be reduced to 60 minutes. VT/fp, DVR-1 (BPND=binding potential) and 

semiquantitative outcome measure SUVr-1 derived from a 20 minute static PET scan were also 

established as reliable outcome measures, adding confidence to the excellence of 11C-UCB-J as 

a tool for quantifying SV2A, and its suitability for regular use in clinical settings. 

 

In addition to establishing the appropriate tracer quantification methods, an investigation on 

the effects of healthy ageing on MC-I, S1R and SV2A (Chapter 7) demonstrated that there is 

age-related reduction of MC-I in the caudate as well in SV2A in both the caudate and thalamus 

regions, while S1R is mostly stable with age in healthy individuals. 

 

Altogether, the work presented in this thesis generated the optimal set of tracer kinetic 

modelling pipelines and outcome measures for the quantification of 18F-BCPP-EF, 11C-SA-4503 

and 11C-UCB-J in humans, allowing for the implementation of consistent analytical methods 

across MIND-MAPS cohorts to enable the study of changes in the mitochondrial/endoplasmic 

reticulum/synaptic axis in ageing and neurodegeneration. 
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*This list only includes abbreviations that are used frequently in this document.  

CT Computerised Tomography 
MRI Magnetic Resonance Imaging 
PET Positron Emission Tomography 
SUV Standardised Uptake Value 
SUVr Standardised Uptake Value ratio 
TAC Time Activity Curve 
ROI Region of Interest 
RF Radio Frequency 
FID Free Induction Decay 
BBB Blood Brain Barrier 
1TC One-Tissue Compartment 
2TC Two-Tissue Compartment 
SRTM Simplified Reference Tissue Model 
MA1 Multilinear Analysis 1 
RSS Residual Sum of squares 
AIC Akaike Information Criterion 
PPF Plasma Parent Fraction 
POB Plasma Over Blood 
S1R Sigma 1 Receptor 
MC-I Mitochondrial Complex I 
SV2A Synaptic Vesicle Protein 2A 
NDD Neurodegenerative Disease 
ER Endoplasmic Reticulum 
OXPHOS Oxidative Phosphorylation 
ETC Electron Transport Chain 
ROS Reactive Oxygen Species 
ATP Adenosine Triphosphate 
MAM Mitochondria-Associated Membrane 
UPR Unfolded Protein Response 
AD Alzheimer’s Disease 
PD Parkinson’s Disease 
Aβ Amyloid-β 
NHP Nonhuman Primate 
TRV Test-Retest Variability 
aTRV Absolute Test-Retest Variability 
ICC Interclass Correlation 
PSF Point Spread Function 
PVC Partial Volume Correction 
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1 Neuroimaging 
 
Since the emergence of molecular imaging towards the end of the 20th century, a number of 

non-invasive neuroimaging modalities have been developed to study the structure and function 

of the human brain. Neuroimaging techniques can be divided along the lines of whether they 

measure structure or function. Structural imaging techniques including computerised-

tomography (CT) and magnetic resonance imaging (MRI) enable the study of brain structure 

and anatomy, whereas functional imaging methods such as functional MRI and positron 

emission tomography (PET) allow for the direct measurement of biological targets and neural 

activity. Often structural and functional imaging modalities are used in complement to make 

use of their respective strengths and compensate for each other’s weaknesses (Hirsch, Bauer, 

& Merabet, 2015; M. Wu & Shu, 2018). 

 
The work presented here utilises both PET and MRI to study molecular targets and processes 

of the brain with high sensitivity. This chapter outlines the principles underlying PET (Section 

1.1) and MRI imaging (Section 1.2) and describes the ways in which they can be used to 

quantify specific molecular targets (Section 1.3). The chapter is concluded with a summary of 

the ideal characteristics to look for when evaluating the suitability of a brain PET tracer 

(Section 1.4). 
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1.1 Positron Emission Tomography 
 
 
PET is a nuclear imaging modality that allows for the visualization and measurement of 

physiological and pathological processes in vivo. The acquisition of a PET scan of the brain 

involves injecting a subject with a radioactively labelled tracer, or ‘radiotracer’, designed to 

bind to a specific target of interest. The local concentration of a tracer in a target region can be 

quantified with the use of tracer kinetic modelling methods (Morris, Endres, Schmidt, et al., 

2004). This allows PET to be employed in evaluating the distribution of novel PET imaging 

agents, studying the effectiveness of new therapies and potential applications in detecting 

disease status and characterising disease severity. 

 
This section provides a basic overview of some of the physical principles behind the generation 

and detection of a PET signal, followed by an explanation of the steps leading to the 

construction of a PET image. The mathematical methods used to extract spatiotemporal 

information pertaining to a tracer in a subject’s brain are explained.  

 
1.1.1 PET Signal Generation and Detection 
 
 
In order to acquire a PET scan, a subject is horizontally placed into a PET scanner which consists 

of multiple rings of photon detectors surrounding a bore. As mentioned earlier, as a first step, 

a positron emitting tracer is injected into the bloodstream of the subject. The unstable nature 

of the radioisotope (commonly 18Fluorine, 13Nitrogen, 11Carbon or 15Oxygen) used to label the 

tracer causes it to undergo radioactive decay, specifically positron (b+) decay. As depicted in 

Figure 1.1 A, the radioisotope undergoing b+ decay results in the conversion of the nucleus’ 

proton into a neutron to reach a more stable state, in turn emitting a positron and a neutrino 

(Saha, 2016). The positron (e+) then interacts with a nearby electron (e-) of an atom inside the 

subject’s body leading to an annihilation process that produces two 511 keV photons, or gamma 

rays (𝛾), which lie approximately 180o apart (Saha, 2016). 
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When a pair of gamma rays originating from the same annihilation arrive simultaneously at 

two detectors (D1 and D2 in Figure 1.1 B), a ‘coincidence event’ occurs. Coincidence events that 

result from annihilation processes along a straight line connecting two detectors, i.e., the line 

of response (LOR – represented by the red dotted line in Figure 1.1 B), are considered ‘true’ 

coincidence events if they are recorded within a certain coincidence timing window. 

Coincidence events that do not fit this criterion do not provide the information necessary to 

Figure 1.1 A An unstable radioisotope nucleus undergoes b+ decay releasing a positron which 
annihilates with a nearby electron resulting in the production of two antiparallel 𝛾 photons. B  Two 𝛾 
photons originating from the same annihilation event are detected by a pair of opposite ring detectors 
(D1, D2) within a certain ‘coincidence’ window. 
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localize the annihilation process and need to be corrected for in the case that they do get 

detected (Saha, 2016). 

 
1.1.2 Data Acquisition, Corrections and Image Reconstruction 
 
 
In most modern scanners, raw PET data are recorded as list mode data (a list of individual 

coincidence events), which are then sorted and stored in two-dimensional (2D) datasets known 

as a sinogram. Briefly, each coincidence event detected lies along a LOR whose location in the 

x-y plane can be redefined in terms of a set of (r,f) coordinates where r is the distance of the 

LOR from the centre of the scan field and f is the angle between r and the scan field’s vertical 

axis (Figure 1.1 B). The 2D mapping of LORs from all detector pairs with different r distances 

and f angles form a sinogram such that in its final form, each LOR corresponds to a pixel in 

the sinogram where the total number of counts in each pixel represents the number of 

coincidence events detected during the chosen frame time along that LOR (Saha, 2016). The 

final sinograms are then used to generate images through the process of PET image 

reconstruction. 

 
Various sources of measurement error come into play both during the generation of a PET 

signal as well as during the construction of a sinogram. These should be corrected prior to the 

images being reconstructed from the sinogram in order maximise signal to noise and minimise 

any impact on the accuracy of measurements derived from PET images. The sources of error to 

be corrected for include physical variation in detectors that result in nonuniform raw data, 

photon attenuation, random and scattered coincidence detection (events that are not ‘true’ 

coincidence events) and dead time loss (Saha, 2016). The attenuation of photons occurs due 

to their absorption in body tissue, with photons in the centre of the body undergoing the most 

attenuation. Attenuation correction is typically done by performing a computed tomography 

(CT) scan prior to the PET scan from which an attenuation factor for each pixel can be 
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calculated and later applied to the PET data.  Scattering, which occurs when either one or both 

annihilation photons change direction and lose energy after interacting with matter, also needs 

to be corrected for as it reduces image contrast and resolution. There are various methodologies 

used for scatter correction (reviewed in Zaidi and Montandon 2007), and most modern 

scanners have these correction methods built in.  

 
Another important source of error attributed to the poor spatial resolution of PET cameras are 

partial volume effects which result in blurred images and a reduction in the apparent 

radioactivity in a region (Erlandsson, Buvat, Pretorius, et al., 2012; Hoffman, Huang, & Phelps, 

1979). The reader is referred to Jomaa et al. for a detailed review of post-reconstruction partial 

volume correction (PCV) methods (Jomaa, Mabrouk, & Khlifa, 2018). 

 
Once the necessary corrections pertaining to the sources of measurement error mentioned 

above have been applied to the sinogram data, the sinogram is sampled and reconstructed back 

into a 2D image using analytical algorithms such as filtered back-projection or iterative 

reconstruction (Saha, 2016). Modern PET scanners consist of multiple stacked detector rings 

to increase sensitivity and enable sampling from many angles. The 2D images reconstructed 

for each detector ring are stacked together to create a 3D image that represents the full spatial 

distribution of radioactivity concentration in a single frame.   

Finally, voxel intensities of a reconstructed PET image are calibrated to reflect absolute units 

of radioactivity concentration (e.g. kBq/ml). Calibration procedures involve scanning a 

phantom containing a known amount of activity to derive a scanner specific calibration factor 

(Meikle & Badawi, 2006). It is also necessary to derive an accurate calibration factor for the 

well counters that count the amount of radioactivity in the blood samples acquired during a 

PET scan (Meikle & Badawi, 2006), so that these may be related to the PET image values.  
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Together with the aforementioned corrections, calibration provides PET with the ability to 

accurately and precisely map the radiotracer concentration, making it a truly quantitative 

technique. 

1.1.3 Dynamic vs. Static PET Scans 
 
 
PET scans can be acquired to generate either static or dynamic data. Static scans are acquired 

over one time frame from which a single 3D image is generated as described in the previous 

section. A static scan represents the average radioactivity over the course of the acquisition, 

providing a single estimate of tracer uptake and is usually quantified in terms of the standard 

uptake value (SUV), which is a semi-quantitative measure of uptake normalised to injected 

activity and body weight and is calculated as  

  𝑆𝑈𝑉 = &'(
)&

*+,
      Equation 1.1 

 
where, Act is the measured radioactivity concentration (kBq/ml), IA is the injected radioactivity 

(MBq) and BW is the subject’s bodyweight (kg), resulting in SUV having units of g/ml. 

 

 

Figure 1.2 Representative dynamic PET series demonstrating time course of tracer uptake 
over a 90 minute acquisition. The numbers under the images correspond to the frame number 
(for clarity 9 out of 26 frames shown).   
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In the case of a dynamic PET scan, multiple frames of varying lengths are sequentially collected 

to generate time-activity curves (TACs) of radioactivity concentration, with early time frames 

reflecting tracer delivery and later frames reflecting tracer interaction with biological targets. 

Information on how tracer uptake varies over time (i.e. the tracer kinetics) can only be derived 

from a dynamic PET data series. A representative dynamic PET scan is depicted in Figure 1.2. 

All PET scans acquired and analysed for the thesis were acquired dynamically. Detailed 

information on the dynamic PET scan acquisition and processing pipelines are covered in 

Chapter 3. Dynamic PET images provide physiological information about the specific brain 

tissue being targeted in the form of spatiotemporal distribution of a tracer in the region. 

However, the spatial resolution of PET is fundamentally limited due to positron range, 

noncollinearity of annihilation photons, detector size, as well as noise introduced by the sources 

of measurement error described previously (Saha, 2016). Augmenting PET data with 

information from a spatially co-registered structural MRI image that has high anatomical detail 

enables enhanced quantification of PET images with more accurate anatomical localisation of 

the PET signal. 

 
1.2 Magnetic Resonance Imaging 
 
 
This section covers the basic principles that govern MRI physics and provides a short 

introduction to the T1 weighted MRI image. 

 
1.2.1 MRI Physics 
 
 
The fundamental physical principle behind MRI is the alignment of nuclear “spin” with an 

external magnetic field (Grover, Tognarelli, Crossey, et al., 2015). The protons belonging to 

atomic nuclei in the body have a net magnetic moment and direction due to the protons’ spin 

(Shung, Smith, & Tsui, 1992). When a subject is placed in an external magnetic field (B0) such 
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as an MRI scanner, the majority of the spins line up in the same direction as B0 lowering their 

state of energy, while some increase their energy state going in the opposite direction to B0 

(Plewes & Kucharczyk, 2012). This results in a net longitudinal magnetization M in the z 

direction causing the atomic nuclei to rotate around their axes at a velocity equivalent to the 

Larmor Frequency (Figure 1.3 A, left)(Westbrook, Roth, & Talbot, 2011). During an MRI scan, 

the nuclei absorb energy upon the application of a radiofrequency (RF) pulse which alters the 

spins’ state of energy (Figure 1.3 A, middle).  Subsequently, shutting off the RF pulse relaxes 

the spins to their original state of equilibrium, giving off energy (Figure 1.3 A, right). The 

change in energy induces a voltage that is detected and amplified by the coils of an MRI 

scanner, in turn producing an electrical signal called free induction decay (FID) (Hendee, 

Ritenour, & Hoffmann, 2003). 

Figure 1.3 A The application of an RF pulse alters the protons’ spin energy, resulting in the 
net magnetization (M) to switch from the z axis to the x-y axis. Subsequently shutting off the 
RF pulse relaxes the spins to their original state. The resulting change in energy is detected 
by the MRI coils and produces an electrical signal (FID). B Axial cross-section of a T1-
weighted MRI image. 



 21 

The localization of a FID signal requires the application of spatially variant gradients in the 

magnetic field strength of B0, which results in faster or slower nuclear precession around the 

field and therefore higher or lower FID signal. This allows for the detection of multiple FIDs at 

different positions in space, enabling the reconstruction of a 3D MRI image (Figure 1.3 B) 

(Grover, Tognarelli, Crossey, et al., 2015; Hendee, Ritenour, & Hoffmann, 2003).  

 
1.2.2 T1 weighted MRI images 
 
 
As mentioned above, nuclear spins undergo relaxation after they absorb RF energy. The loss of 

energy in the z direction during this process is described as longitudinal (T1) relaxation, where 

T1 is a time constant that describes the time it takes for the system to return to 63% of thermal 

equilibrium following excitation by an RF pulse. T1 depends on the structure and composition 

of the surroundings of the relaxing protons and can be manipulated by varying the repetition 

time between RF pulses. Different T1s produce different FID signals which manifest in different 

intensities in an MRI image. For example, fat has a short T1 value (260 ms) appearing bright, 

whereas water and cerebrospinal fluid (CSF) have longer T1 values (3000-5000 ms) appearing 

darker (Möllenhoff, Oros-Peusquens, & Shah, 2012). A T1 weighted image such as the example 

shown in Figure 1.3 B is an image where the difference in signal intensity in tissues (tissue 

contrast) is mainly due to the differences in T1 across tissues. 

 
This strong tissue contrast of T1 weighted MRI sequences is the reason it is often used to 

provide additional neuroanatomical information to aid the analysis of PET scans. All of the PET 

images acquired in this project were registered to a three-dimensional, T1 weighted, gradient-

echo sequence known as MPRAGE in order to define predetermined regions of interest (ROI) 

and report radiotracer concentrations in those regions. 

 

 



 22 

1.3 Quantification Methods in PET 
 
 
There are a number of spatial processing steps applied to both a subject’s T1 weighted MRI 

scan and their reconstructed dynamic PET data before any physiologically meaningful 

parameters can be derived. These include inter-modality image registration, tissue 

segmentation and motion correction, all of which are covered in the image analysis workflow 

described in Chapter 3.  

 
This section focuses on the final two steps of PET quantification which are regional TAC 

generation and the tracer kinetic modelling methods used to derive the final quantitative 

outcome measures. First TAC and ROI generation are discussed, followed by a basic 

introduction into some of the pharmacokinetic concepts involved in tracer uptake from blood 

into brain tissue. Finally, commonly used tracer kinetic modelling methods are introduced and 

the process of selecting the appropriate model for a given tracer is discussed.  

 
1.3.1 Time-Activity Curve and Region of Interest Generation 
 
 
The generation of a PET signal and its subsequent reconstruction into a PET image was 

explained in section 1.1. The radioactivity concentration of a tracer derived from a PET image 

can be reported either on a voxel-wise or regional basis. A TAC is the radioactivity 

concentration in tissue over time and is generated using intensities of the voxels (3D pixel) in 

a given ROI. ROIs are either defined on the subject’s structural image manually, or semi-

automatically using a standardised brain atlas image. The Hammer’s, Clinical Imaging Centre 

(CIC) and Automated Anatomical Labelling (AAL) brain atlases are three of the most frequently 

used atlases in the field (Hammers, Allom, Koepp, et al., 2003; Tziortzi, Searle, Tzimopoulou, 

et al., 2011; Tzourio-Mazoyer, Landeau, Papathanassiou, et al., 2002). The chosen atlas needs 

to be spatially aligned with the subject’s PET image before ROIs can be defined. This is 
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accomplished using non-linear image registration techniques that use mathematical 

transformations to bring different data sets into the same coordinate system. The types of image 

registration methods specific to the MRI and PET processing pipelines employed in this thesis 

are detailed in Chapter 3 sections 3.1-3.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A regional TAC is generated by calculating the mean intensity of the voxels in a given ROI in 

each frame and are plotted against the midframe time for display purposes (some 

representative TACs are shown in Figure 1.4). Regional radioactivity is reconstructed in 

quantitative units of kBq/ml and so TACs can be displayed in these units or alternatively 

converted into standardised uptake values (SUV) by using Equation 1.1.  

 

 

 

Figure 1.4 TACs for four ROIs representing changing regional radioactivity 
throughout the course of a 90 minute dynamic PET scan. 
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1.3.2 Basic Pharmacokinetics 
 
 
The source of radioactivity taken up by the brain during a PET scan is considered to be the 

concentration of radioactivity in the plasma portion of blood. A tracer entering brain tissue 

from plasma is required to cross the blood-brain barrier (BBB), which is a selective 

semipermeable barrier consisting of tightly arranged capillary endothelial cells separating 

circulating blood from the brain and cerebrospinal fluid (Daneman & Prat, 2015). The delivery 

of tracer from the capillary into brain tissue is governed by local perfusion (f) and the fraction 

of the radioligand that is extracted into tissue during a single capillary passage, i.e., extraction 

fraction (E). Some key pharmacokinetic parameters used to quantify tracer uptake into brain 

tissue are summarised in Table 1.1. 

 
The rate constant describing delivery from blood into tissue is referred to as 𝐾.	and is given by 

𝐾. = 𝑓. E    Equation 1.2 

By considering the capillary as a solid cylinder, 𝑓, E, P and S can be related using the Renkin-

Crone Equation (Crone 1963; Renkin 1954) 

E = 1 − e
678
9     Equation 1.3 

which states that the extraction of a tracer into the brain depends on perfusion, the tracer’s 

permeability across a capillary membrane (P) and the capillary surface area (S).  For tracers 

with a high PS product such as 15O-water, 15O-butanol and 11C-Flumazenil, PS	 ≫ 𝑓, in which 

Table 1.1 List of key pharmacokinetic parameters 

Parameter Abbreviation Unit Definition 

Perfusion f 
ml.100g-

1.min-1 or 
min-1 

Blood flow per unit tissue 

Extraction E Unitless Fraction of tracer moving from blood to tissue 
during a single capillary passage 

Plasma to tissue rate 
constant K1 ml.g-1.min-1 

or min-1 Rate constant for transfer from blood to tissue 

Permeability P cm.min-1 Permeability of tracer across capillary 
membrane 

Surface area S cm2.g-1 Capillary surface area per unit mass of tissue 
Permeability surface 
area product PS ml.100g-

1.min-1 - 
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case E will approach 1 resulting in 100% extraction. Substituting this into Equation 1.2 yields 

K. ≅ 𝑓, meaning K. will mainly be governed by perfusion. Conversely, for tracers such as 18F-

Fluorodopa which have low PS	products, i.e. PS	 ≪ 	𝑓,  E ≅ 	 @A
B
	and therefore K. ≅ PS. 

1.3.3 Compartmental Models 
 
 
The distribution of a tracer is often described using a compartmental model. The compartments 

in the model represent the different states in which the tracer exists (for example free or bound 

to a target), and thus may not be spatially separated. Deriving physiological parameters of 

interest such as tracer uptake, blood flow, metabolism or receptor concentration requires 

differentiating between these compartments. Compartmental modelling uses mathematical 

models to relate the dynamics of a tracer in each compartment to the final composite signal 

(CD) observed in a PET image (Carson, 2003).  

 
 
 
 
 
 
 
 

 

 

Figure 1.5 demonstrates a n-compartmental model configuration, where C.(t),	CH(t), 

CI(t)…	CK(t) describe the radioactivity concentration in each compartment at time 𝑡. The rate 

of transfer of tracer between the compartments is described by rate constants 

(microparameters) k., kH .. kK, where n represents the number of compartments. Tracers can 

be described as reversible or irreversible, depending on their binding characteristics.  

Irreversible tracers are effectively trapped in a particular compartment via binding that does 

not dissociate during the timescale of the scanning procedure. There are disadvantages 

Figure 1.5 Compartmental model configuration for a system with n 
compartments. Each box represents a compartment and the arrow represent the 
exchange of radiotracer between compartments. 
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associated with using irreversible tracers to measure target density in the brain such as they 

may be limited by blood flow into the brain. Unlike irreversible tracers, reversible tracers do 

not get trapped, and all compartments have non-zero rates of outward flow (Gunn, Gunn, & 

Cunningham, 2001). A typical example of a tracer with reversible kinetics is 11C-Raclopride, 

which binds to dopamine receptors (Farde, Eriksson, Blomquist, et al., 1989). All subsequent 

discussion is limited to reversible tracers. 

 
The two main assumptions that underlie compartmental modelling are that for a given 

compartment there is no gradient in tracer concentration and that the physiological processes 

being measured are at ‘steady state’, i.e., the rate constants of the system are unchanged 

throughout the duration of the study (Morris, Endres, Schmidt, et al., 2004). These 

assumptions allow for the transfer rates between compartments to be linearly related to the 

differences in their radioactivity concentrations (Kety 1951). A compartmental model can 

therefore be expressed as a system of linear and differential equations that describe the rate of 

change of tissue radioactivity concentration. Solving for these differential equations allows for 

the calculation of radioactivity concentration in a given compartment, CO(t). 

 

Figure 1.6 A  A sigmoid parent fraction model fitted to metabolite data where each data point represents 
the fraction of parent radioligand over the course of a PET scan. B A linear plasma over blood model 
fitted to the ratio of plasma to blood radioactivity over the course of a PET scan. C A PPF  and POB 
corrected arterial input function. 
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Arterial Input Function 

Over the course of a PET scan, there is a constant supply of tracer into a subject’s bloodstream 

that is referred to as the arterial input function (AIF). The AIF describes the concentration of 

tracer available to cross the BBB into brain tissue. Although it is not strictly a compartment of 

the model in the mathematical sense because it is measured and not solved for, the AIF is often 

depicted as a separate compartment (CP). Most tracers get metabolized and produce 

radiometabolites which can either cross the BBB, in which case they need to be incorporated 

into a compartmental model or stay trapped in the blood compartment. The fraction of free 

parent radiotracer (PPF) that contributes to CP is calculated and accounted for during the 

kinetic modelling process. Another correction that is applied to the AIF accounts for the ratio 

between free tracer that is in plasma to that in whole blood, referred to as the plasma over 

blood (POB) ratio. This is done to enable the generation of a total plasma activity curve from 

the measured blood data which includes both red blood cells and plasma. During a dynamic 

PET scan acquisition, blood samples are withdrawn and used to estimate PPF and POB. 

Empirical models can be fitted to these discrete data samples to obtain continuous and smooth 

PPF and POB curves as shown in Figure 1.6 A and B. The final PPF and POB corrected input 

function, shown in Figure 1.6 C, can then be used as input for the tissue kinetic modelling steps 

to follow. The choice of PPF model requires careful attention as it can have an impact on 

outcome parameters derived from tissue kinetic modelling (Tonietto, Veronese, Rizzo, et al., 

2015). 

 
Once 𝐶&		has been corrected for PPF and POB, the tissue activity in a given compartment 𝒊 can 

be described by  

𝐶S(𝑡) = 	ℎS(𝑡) ⨂	𝐶&(𝑡)    Equation 1.4 

where hO(t) is the impulse response function describing the response of compartment 𝑖 to a 

single bolus input of magnitude of 1, and CO is the tracer concentration in each compartment. 
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Equation 1.4 describes the convolution (⨂) of CP(t) with impulse response function hO(t) which 

is a sum of exponentials.   

 

One-Tissue Compartment Model 

The one-tissue compartment (1TC) model is the simplest form of compartmental model 

consisting of one tissue compartment C. which for a radioligand represents a combination of 

tracer that is free, non-specifically and specifically bound in tissue as shown in Figure 1.7 A. As 

mentioned in section 1.3.2, the rate constant of tracer delivery from plasma CP into tissue C. 

is called K.. The second rate constant kH describes the rate of clearance from tissue back into 

plasma. This system can be described by the following equations 

 
XYZ(()
X(

= 𝐾.	𝐶&(𝑡) −	𝑘H𝐶.(𝑡)    Equation 1.5 

 𝐶\(𝑡) = (1 − 𝑉*)𝐶.(𝑡) + 𝑉*𝐶*(𝑡)    Equation 1.6 

 
where CD is the sum of the concentrations in C. and in whole blood (C^), and V^ is the fractional 

blood volume which is included to account for intra-vascular radioactivity in the ROI. It should 

be noted that the blood terms V^ and C^, though accounted for in the kinetic modelling process, 

are omitted from all subsequent equations for the sake of clarity. 

 
It follows from equation 1.4 that the solution to the system of equations 1.5 and 1.6 is given 

by 

𝐶\(𝑡) = 	𝐾.		𝑒𝑥 𝑝(−𝑘H𝑡)⨂	𝐶&(𝑡)    Equation 1.7 

 
The main parameter of interest derived from the 1TC model is the volume of distribution, VT,  

defined as the ratio of the concentration of radiotracer in the tissue (CD) to that in the plasma 

(CP)	at equilibrium (Innis et al., 2007). The calculation of VT from this model is provided in 

section 1.3.6 (Equation 1.16). 
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Two-Tissue Compartment Model 

Often, the kinetics observed do not fit the 1TC model, in which case a two-tissue compartment 

(2TC) model is required. The two compartments in this case represent tracer that is non-

displaceable (ND) (free + non-specifically bound), and tracer that is specifically bound to the 

target of interest. As depicted in figure 1.7 B, the 2TC system consists of the blood compartment 

CP and two tissue compartments C. and CH, where C. represent the non-displaceable 

component of the PET signal, and CH the concentration of tracer that is specifically bound in 

tissue, which is often the main compartment of interest (Carson, 2003). The 2TC model 

requires the estimation of four rate constants K.	, kH, kI and kd. This is accomplished by solving 

for the following system of equations 

XYZ
X(
= 𝐾.	𝐶&(𝑡) −	(𝑘H + 𝑘I)𝐶.(𝑡) + 𝑘d𝐶H(𝑡)  Equation 1.8 

XYe
X(
= 𝑘I𝐶.(𝑡) −	𝑘d𝐶H(𝑡)    Equation 1.9 

		𝐶\(𝑡) = 𝐶.(𝑡) + 𝐶H(𝑡)     Equation 1.10 

where kI	and kd are the rates of transfer between C.	and CH. The solution to this set of 

equations is given by  

𝐶\(𝑡) = (𝛼.𝑒𝑥 𝑝(𝛽.𝑡) +𝛼H𝑒𝑥 𝑝(𝛽H𝑡))⨂	𝐶&(𝑡)	  Equation 1.11 
 

where 𝛼. and 𝛽. are combinations of rate constants connecting the different compartments 

(Gunn, Gunn, & Cunningham, 2001). The full solution of the 2TC model is outside the scope 

of this thesis but can be found in Phelps et al 1979 (Phelps, Huang, Hoffman, et al., 1979). 

 
As with the 1TC model, one of the main parameters of interest that can be derived using this 

model is VT (see section 1.3.6 Equation 1.17 for details on calculation). A second parameter of 

interest that can be directly derived from the 2TC model is K1, which is the rate constant for 

transfer from arterial plasma to tissue and is especially important when assessing a new tracer  

(Innis & Carson, 2007). 



 30 

1.3.4 Simplified Reference Tissue Model 
 
 
First introduced by Lammertsma and Hume in 1996 (Adriaan A. Lammertsma & Hume, 1996), 

the simplified reference tissue model (SRTM) depicted in Figure 1.7 C is a widely used model 

which relies on the existence of a reference region Chij that is devoid of specific binding and 

is used as input instead of an AIF. This model assumes that the kinetics of both the reference 

and target tissues can be described by a 1TC model, that the contribution of signal from whole 

blood is negligible and that the non-displaceable component of the signal (VND) in the reference 

and target tissues are equal. 

The total signal in target tissue is given by 

𝐶\(𝑡) = 	𝑅.𝐶lmB(𝑡) + n𝑘H −
lZoe
*pqr

s 𝐶lmB(𝑡)⨂𝑒𝑥𝑝 n−
oe

.t*pqr
𝑡s				  Equation 1.12 

where 𝑅. represents the ratio of K. to tracer delivery to reference region (K.u ), and binding 

potential (BPwx) is the ratio of specifically bound tracer to nondisplaceable tracer in tissue at 

equilibrium (Innis et al, 2007). This model obviates the need for arterial blood sampling, 

therefore reducing the cost and patient discomfort associated with a dynamic PET scan with 

arterial blood sampling. It is important to make sure that all assumptions of SRTM are met 

before removing arterial blood acquisition from a study protocol, as violations of the reference 

region assumptions can lead to biased estimates of the true BPwx (Salinas, Searle, & Gunn, 

2015). 
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1.3.5 Graphical Analysis 
 
 
An alternative method to compartmental modelling is graphical analysis which is based on the 

concept that measured time activity data that describe CP and CD can be mathematically 

transformed into linear equations whose intercept and slopes carry physiological meaning ( 

Carson, 2003). Unlike compartmental models, graphical models do not require a priori 

knowledge of the underlying model and have the advantage that they can be easily applied on 

a voxel-by-voxel basis making the generation of parametric images easier. 

 

Figure 1.7 A 1TC model configuration. B 2TC model configuration. C SRTM 
model configuration. 
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A widely used graphical method for reversible tracers is the Logan Plot (Logan, Fowler, Volkow, 

et al., 1990). This method makes use of the state of secular equilibrium reached between 

plasma and the reversible components of a system after a certain amount of time, t*. Using a 

non-iterative linear estimator, the Logan method allows for the derivation of VT using Equation 

1.13 

   ∫ Yz(t)Xt
{
|
Yz(()

= 𝑉\ ×
∫ Y~(t)Xt
{
|
Yz(()

+ 𝑏   Equation 1.13 

where the slope of the linear portion of the resulting transformed data is VT. T* must be chosen 

carefully as it can have an effect on final parameter estimates (Bertoldo, Rizzo, & Veronese, 

2014). 

 
It has been shown that statistical noise innate to PET imaging can cause systematic 

underestimation of VT by the Logan plot (Carson, 1993; Slifstein & Laruelle, 2000). The process 

of transforming the data during the generation of a Logan plot introduces statistical error in 

both the dependent (y) and independent (x) variables. Moreover, the noise in the two variables 

can become correlated with each other, resulting in further underestimation of VT when the 

data are noisy. 

 
A number of strategies have been devised to reduce noise induced bias in graphical analysis. 

One of such method, multilinear analysis 1 (MA1), is a rearrangement of Equation 1.13 and is 

more suitable for  ordinary least squares regression estimation of VT (Ichise, Toyama, Innis, et 

al., 2002). The operational equation for MA1 is given as  

𝐶\(𝑡) = 	−
�z
� ∫ 𝐶&(t)𝑑t+

.
� ∫ 𝐶\(t)𝑑t

(
�

(
� , 𝑡 > 𝑡�  Equation 1.14 

 
1.3.6 PET Outcome Measures 
 
 
𝑉\ and 𝐵𝑃�� are two primary parameters of interest in PET quantification. In a PET experiment, 

the total rate of efflux of tracer in each reversible compartment is equal to the total rate of 
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tracer influx when the system is at equilibrium. As discussed in the previous section, BPwx	is 

the ratio of specifically bound radiotracer to that of nondisplaceable tracer in tissue under these 

conditions, and can be calculated directly for a reversible 2TC model as  

𝐵𝑃�� =
o�
o�
= 𝑓��

*���
��

    Equation 1.15 

where kI and kd are rate constants describing the exchange of tracer between the 

nondisplaceable and specific binding compartments (see figure 1.7 B). It is important to note 

that the direct estimation of kI and kd is not always reliable, particularly for  tracers where the 

kinetics between the nondisplaceable and specific binding compartments are fast (A. A. 

Lammertsma, 2012). In in vitro receptor binding terms, BPwx is equivalent to the product of 

the free fraction of ligand in non-displaceable tissue (𝑓wx), receptor density (𝐵���), and 

receptor affinity ( .
��

).  

 
Estimating BPwx directly is not always possible or desirable for these reasons and it is preferable 

to derive outcome measures from VD. Solving for the differential equations for the reversible 

one compartment models (Equation 1.5) at equilibrium, it follows that  

𝑉\ = 	
Yz
Y~

 = �Z
oe

    Equation 1.16 

Similarly, for the 2TC model under equilibrium conditions, solving for Equations 1.8 and 1.9 

yields  

𝑉\ = 	 n
�Z
oe
s n1 + o�

o�
s    Equation 1.17 

In the case that there is a valid reference region, VD can be used to estimate BPwx	indirectly 

(A A Lammertsma, Bench, Hume, et al., 1996) as 

 𝐵𝑃�� =
�z
z����{

�z
��9 − 1	   Equation 1.18  

where ��
������

��
 �¡ , or	DVR, is the distribution volume ratio and can be used as an outcome measure 

in its own right (see Figure 1.7 C for graphical representation of target and reference tissues in 
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SRTM). The indirect calculation of BPND has been shown to be more robust than the direct 

calculation given in Equation 1.15 (Parsey, Oquendo, Ogden, et al., 2006). In the absence of a 

true reference region devoid of specific binding, it may be possible to use a region with low 

specific binding for normalisation. In this case the  region used in the denominator of Equation 

1.18 would be referred to as a ‘pseudo reference region’ and the outcome measure would be 

reported as DVR – 1 instead of BPND, as the small amount of specific binding in the pseudo-

reference region will result in biased estimates of the estimated BPND (Salinas, Searle, & Gunn, 

2015). 

 
Another VD related outcome measure of note is VD/𝑓¥, which is VD corrected for the free fraction 

of tracer in plasma (fp). VD/𝑓p is an important outcome measure to consider in studies where 

there may be cross sectional differences in fp. 

 
Finally, one needs to consider semi-quantitative PET measures that can be used to quantify 

tracer uptake in the brain. Standardized uptake value (SUV) and standardized uptake value 

ratio (SUVr) are two such measures frequently used in clinical studies as they benefit from the 

practicality of shorter scan time and a lack of blood sampling. The use of SUV as a quantitative 

measure in brain PET studies is not encouraged as it is vulnerable to sources of variability 

including blood perfusion, tracer uptake time and physical imaging factors such as attenuation 

correction and inaccuracies in cross-calibration of PET instrument which become especially 

relevant for larger multi-centre PET studies (Boellaard, 2009; Hamberg, Hunter, Alpert, et al., 

1994; Laffon, Cazeau, Monet, et al., 2008). SUVr is a way of eliminating some of the variability 

associated with SUV and involves normalising SUV in a target ROI by that of a ‘reference’ region 

(see Equation 1.19), provided a true reference region exists for the tracer. 

𝑆𝑈𝑉𝑟 = 	 §¨��©ª
§¨��«¬

    Equation 1.19 

SUVr is calculated over a predetermined time window during which the activity in both the 

target and reference tissues is relatively constant over time. Semiquantitative measures like 
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SUVr should be evaluated against full kinetic modelling derived outcome measures before a 

scanning protocol can be simplified to exclude blood sampling and have shortened scan times. 

 
1.3.7 Parametric images 
 
 
All of the kinetic analysis methods described so far have discussed quantifying tissue uptake of 

tracer on a ROI basis. Alternatively, kinetic models can be applied to all of the voxels in a PET 

image to generate parametric maps of the outcome parameters of interest. Most models that 

are used in individual TAC analysis can be applied on a voxel basis. For example, for a tracer 

whose kinetics are well-described by the 1TC model, parametric images of both K1 and k2 can 

be easily generated using basis functions, which can in turn be used to generate a VT map. 

Similarly, parametric maps of BPND, R1(=K./K.u ) and k2 can be obtained using SRTM. For 

simplified linear analysis methods such as Logan and MA1, it is possible to generate parametric 

VT images with great computational efficiency. 

 
There are several advantages to parametric imaging compared to ROI-based analysis. The use 

of parametric images allows for whole-image statistical analyses to be performed without any 

a priori hypotheses regarding the specific location of expected differences or changes, which is 

important for reducing bias in analysing novel tracer data (Gallezot, Lu, Naganawa, et al., 

2019). Another key advantage of parametric images especially relevant for multi-modality 

imaging studies is the ability to perform statistical analyses combining PET results with other 

modalities such as fMRI (Gallezot, Lu, Naganawa, et al., 2019). Despite its many advantages, 

parametric images still require that the appropriate corrections are applied to the original 

dynamic imaging data from which they were derived (e.g. motion correction), and the 

measurement of an input function if there is no reference region. Additionally, parametric 

images often need to undergo some form of noise-reduction due to the high-level noise 

associated with single-voxel TACs. Parametric imaging can be slow due to the large number of 
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voxels to fit, thus limiting its application to model forms that can be fitted very quickly (e.g. 

via linear regression or basis function approaches). Parametrically derived outcome measures 

should therefore be compared to those estimated using full kinetic modelling for any given 

tracer. 

 
1.3.8 Parameter Estimation and Model Selection 
 
 
The optimum estimates of model parameters such as VT and BPND are determined by minimising 

the weighted residual sum of squares (WRSS) between the predicted data and the measured 

TAC data, referred to in mathematical modelling as the least-squares problem. Iterative 

algorithms developed to solve nonlinear least-squares problems start by providing initial values 

of the parameters to be estimated. For each iteration, the change in the WRSS for a given 

change in model variables is calculated and a new best estimate of a parameter is determined. 

The process is repeated by updating the estimated parameters at each iteration until no further 

improvement can be achieved.   

 
An important consideration for solving nonlinear least-squares problems is that reaching the 

optimal solution is not guaranteed as there is a risk that the algorithm reaches a local solution. 

Models that are linear in their parameters and have a solution that is in closed form such as 

MA1 do not run the risk of hitting local minima and are therefore sometimes preferable to 

compartmental models.  

 
The process of selecting the optimum kinetic model for a tracer involves an initial visual 

inspection of the model fits which can be used to narrow down the number of models being 

investigated. The final set of candidate models are then compared on a TAC by TAC basis using 

statistical tests. Two commonly used methods of model comparison in PET kinetic modelling  

are the Bayesian information criteria (BIC), also known as the Schwartz method (Schwarz, 

1978) and the Akaike information Criteria (AIC)(Akaike, 1973), both of which are information 
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criteria based on the goodness of fit determined by RSS, and the number of parameters being 

fitted which increases with increasing model complexity. 

 
Introduced in 1973 by Hirotugu Akaike, AIC attempts to find the model that describes the data 

with the minimum number of parameters, and is defined as 

𝐴𝐼𝐶 = 	2𝑘 + 𝑛[𝑙𝑛(𝑅𝑆𝑆)]	   Equation 1.20 

where 𝑘 is the number of parameters, 𝑛 is the number of observations (data points) and RSS 

is the residual sum of squares. A frequently used variation of AIC is 𝐴𝐼𝐶' ,which is AIC with a 

correction included for a small number of samples (Equation 1.21), and is the version used to 

compare models in this thesis (Wagenmakers & Farrell, 2004). 

𝐴𝐼𝐶' = 𝐴𝐼𝐶 +	Ho(ot.)
´µoµ.

    Equation 1.21 

BIC is closely related to AIC in and is given by  

𝐵𝐼𝐶 = 	𝑙𝑛 nl§§
´
s + 2𝑙𝑛(𝑘)    Equation 1.22 

where the term that penalizes for the number of parameters is larger compared to that of AIC.  

For both AIC and BIC, the method with the lowest number is considered to be the most 

parsimonious and therefore the best fit. Importantly, identifying the optimal kinetic model 

cannot solely rely on these information criteria. Additional investigations such as the test-retest 

reproducibility of outcome measures and data from cross-sectional studies are also needed to 

make the most informed choice regarding a method that best describes the kinetics of a given 

tracer.  

 
1.4 Characteristics of Ideal PET Tracers 
 
 
Finally, it is important to consider whether a tracer possesses the characteristics that make it 

useful for quantitative imaging of targets in the brain. An ideal PET tracer should be amenable 

to labelling with 18F or 11C and have suitably fast brain uptake and washout kinetics. Ideally, 

the peak uptake in the brain should occur early to enable shorter scanning sessions (W. Pike, 
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2016). In addition, the tracer should bind to its target reversibly, and possess high enough 

affinity to provide adequate signal-to-noise and low enough affinity that a secular equilibrium 

is still be reached within the duration of the scan. The selectivity of the tracer for the target 

should be high and its binding should be specific, with non-specific binding being kept to a 

minimum. Further, the metabolism of the tracer should not produce any radiolabelled 

metabolites that might enter the brain. Very fast tracer metabolism may cause issues both for 

quantification of the input function (low counts in parent plasma samples especially towards 

the end of a scan for a C11 tracer), and may also limit the distribution of the tracer into the 

brain tissue, and hence increase noise in the brain TACs. Perhaps most fundamentally, a tracer 

must be able to penetrate the BBB, which requires a certain level of lipophilicity, a low 

molecular weight and the absence of efflux transporters for the tracer (Laruelle, Slifstein, & 

Huang, 2003).  

 
These criteria should be fully evaluated both pre-clinically prior to translation to human 

studies, as well as clinically in human disease states to guarantee high pathological versus 

normal (baseline) signal and prove useful in a clinical setting (Narayanaswami, Dahl, Bernard-

Gauthier, et al., 2018). 

 
1.5 Conclusion 
 
 
This chapter introduced the physical principles that underlie PET & MRI imaging, outlining the 

steps from PET signal generation to the derivation of meaningful outcome measures used in 

PET studies of the brain. The pharmacokinetic basis of kinetic modelling was discussed, the 

mathematical modelling methods used to derive outcome measures were explained, and the 

process of model selection discussed. Finally, the set of criteria that determines a tracer’s 

eligibility for use in human brain PET studies were outlined.  
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The next chapter provides an introduction to the neurobiology of neurodegeneration and 

ageing, and reviews a few of the existing PET biomarkers used in the diagnosis and staging of 

neurodegenerative diseases. The three PET targets that are the focus of this thesis, 

mitochondrial complex 1 (MC-I), the sigma-1 receptor (S1R) and synaptic vesicle protein 2A 

(SV2A) and their corresponding tracers 18F-BCPP-EF, 11C-SA-4503 and 11C-UCB-J are 

introduced, and their potential utility as PET biomarkers of neurodegeneration discussed. 
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2  PET Biomarkers of Neurodegeneration 
 
The focus of this thesis was to characterise the quantification of 3 PET radiotracers 18F-BCPP-

EF, 11C-SA-4503 and 11C-UCB-J in the human brain, to enable their evaluation as potential 

biomarkers of ageing and neurodegeneration. This chapter provides an overview of the roles 

of the mitochondria and endoplasmic reticulum (ER), their functions in mediating cellular 

stress responses, and evidence of their involvement in both ageing and the development of 

various neurodegenerative disease (NDDs). A brief review of current PET biomarkers of 

neurodegeneration is given, followed by an introduction to the MIND-MAPS consortium and 

overview of the 3 tracers in question. The chapter concludes with an outline of the overall aims 

of this project. 
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2.1 Pathophysiology of Neurodegeneration 
 
 
Neurodegeneration can be described as the progressive loss of function and eventual death of 

neurons in the nervous system. Although the major pathological hallmark of NDDs is the 

selective loss of synapses and neurons associated with the deposition of altered variants of 

proteins (Kovacs, 2019), the pathophysiology of neurodegeneration is multifaceted and 

involves numerous other processes including immune activation and neuroinflammation, 

activation of the cellular stress responses, mitochondrial and endoplasmic reticulum (ER) 

dysfunction and synaptic abnormalities. These features and processes (summarised in Figure 

2.1) are in large part interdependent and common to a number of NDDs, resulting in clinical 

manifestations that are both distinct and overlapping depending on the neural pathways 

affected. Although the precise order in which these phenomena arise is not clear, increasing 

evidence suggests that mitochondrial, ER and synaptic dysfunction induced by cellular stress is 

a common denominator across all NDDs. 

 
 

 

Figure 2.1 Diagram of processes involved in NDD pathophysiology that are linked to dysregulated 
cellular stress responses. Of these processes, mitochondrial, ER and synaptic axis dysfunction linked 
to cellular stress (red boxes) are common across all NDDs. 
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2.1.1 Mitochondrion, endoplasmic reticulum and cellular stress response in NDD 
 
 
The mitochondrion is a double-membraned organelle found in most eukaryotic cells. Its 

primary role is to produce energy in the form of adenosine triphosphate (ATP) via oxidative 

phosphorylation (OXPHOS). OXPHOS involves the flow of electrons through the electron 

transport chain (ETC) coupled to the pumping of hydrogen atoms across the inner 

mitochondrial membrane to create an electrochemical gradient used to synthesise ATP (Devine 

& Kittler, 2018). Neurons carry out a number of high energy demanding processes such as 

maintaining an electrochemical gradient across their membrane via Ca+2 dependent signalling 

as well as the releasing and recycling of synaptic vesicles, requiring high levels of OXPHOS to 

produce ATP (Devine & Kittler, 2018). In addition to ATP production, mitochondria also 

modulate redox signalling. Reactive oxygen species (ROS) produced during OXPHOS, serve as 

important intracellular signalling molecules at low levels, but can be detrimental at high levels 

by causing oxidative stress and activating pathways that can result in cell death (Finkel, 2012; 

Trewin, Berry, & Wojtovich, 2018). 

 
The ER is an intracellular organelle that is physically and biologically associated with the 

mitochondrion and is mainly responsible for the synthesis, folding, assembly and modification 

of proteins. A subdomain of the ER, the mitochondria-associated ER membrane (MAM) is 

critical to functions that occur at the interface of the two organelles including, lipid metabolism, 

Ca+2 transport and apoptosis (Teruo Hayashi, Rizzuto, Hajnoczky, et al., 2009; Saito & 

Imaizumi, 2018). The ER maintains Ca+2 homeostasis together with the mitochondrion and is 

also involved in promoting the release of synaptic vesicles (Devine & Kittler, 2018; Van Laar & 

Berman, 2013). 

 
In order to provide the optimal conditions for cellular homeostasis and ultimately neuronal 

survival, the ER facilitates the activation of coping mechanisms in response to cellular stress.  
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One such cellular stress response is the unfolded protein response (UPR), which occurs in 

response to abnormal cellular conditions such as Ca2+ depletion, oxidative stress and protein 

misfolding (Saito & Imaizumi, 2018). In UPR, the accumulation of unfolded and/or misfolded 

proteins activates stress transducers which signal the induction of protein translation, unfolded 

protein degradation and chaperone protein expression in an effort to restore homeostasis (Saito 

& Imaizumi, 2018). 

 
 
Though typically considered an adaptive process, the chronic activation of cellular stress 

pathways due to prolonged stress can be destructive and lead to programmed cell death 

Figure 2.2 Cross-talk between mitochondrion and ER regulates cellular stress response 
pathways. Ca2+ from the ER is released through inositol 1,4,5-trisphosphate receptors (IP3R) 
of the MAM and enters the mitochondrion through channels such as the voltage dependent 
anion chanes (VDAC). At high levels, Ca2+ can stimulate mitohcondirial complexes I and III 
activity, in turn increasing ROS production. Increased Ca2+ and ROS in the mitochondria can 
open the mitochondiral permeability transition pore (mPTP) and induce apoptotic signallnig. 
ROS can also target Ca2+ channels of the ER, increasing Ca2+ release and contributing to ER 
stress. The activation of ER stress pathways activates UPR which can further increase ROS and 
Ca2+ in the ER, resulting in apoptosis. 
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(apoptosis). The MAM houses numerous regulators of apoptosis with continuous cross-talk 

between the two organelles maintaining a delicate balance between cell survival and death 

(reviewed by S. Grimm, 2012). As demonstrated in Figure 2.2, the detection of increased Ca2+ 

in mitochondria activates the ETC where mitochondrial complexes I and III produce ROS. 

Increased ROS levels can trigger pro-apoptotic signalling via the mitochondria, and induce ER 

stress signalling by targeting ER-based Ca2+ channels which can activate the UPR, leading to 

more ROS production and eventual apoptosis (reviewed in Görlach et al. 2015). 

 
Unlike other cells in the body, the majority of neurons are post-mitotic and are therefore 

especially vulnerable to the detrimental effects of maladaptive stress responses. The prolonged 

activation of stress pathways has been shown to contribute to neurodegenerative phenotypes 

such as neuronal death, memory impairment, neuroinflammation and altered amyloidogenic 

processing (Bond, Lopez-Lloreda, Gannon, et al., 2020).  Over the past two decades, there have 

been numerous findings linking mitochondrial and ER attrition with altered synaptic 

transmission in Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) (Cheng, Ulane, & 

Burke, 2010; Scheff, Price, Schmitt, et al., 2007). There has also been an increased focus on 

the bidirectional and mutually exacerbating relationships between cellular distress signalling 

and misfolded proteins in NDDs (Gazit, Vertkin, Shapira, et al., 2016; Hedskog, Pinho, Filadi, 

et al., 2013; Hsu, Sagara, Arroyo, et al., 2000), making stress responses both the cause and 

consequence of NDD (Sweeney, Park, Baumann, et al., 2017). Interestingly, the mitochondrial-

ER and synaptic events that appear dysregulated both upstream and downstream of unfolded 

protein accumulation in NDDs such as AD and PD (summarised in Figure 2.3), are also among 

the key features of ageing.  
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2.1.2 Mitochondrion, Endoplasmic reticulum and Cellular Stress Response in 

Ageing 
 
Compromised mitochondrial function and impaired cellular stress response systems are 

considered amongst the primary biological hallmarks of brain ageing (reviewed by Hou et al. 

2019; Mattson and Arumugam 2018), while ageing itself is a main risk factor for the 

development of NDDs (Niccoli & Partridge, 2012). Developing successful interventions for 

NDDs requires understanding the basic mechanisms that govern ageing and their role in NDD 

onset and development. 

 
The role of mitochondrial disturbances in ageing has been widely studied, with bioenergetic 

impairments and disturbances in redox homeostasis shown to increase with age. Age-related 

reductions in ETC activity were also seen in the hippocampus and frontal cortex in humans 

Figure 2.3  Core ageing processes including mitochondrial dysfunction, Ca2+ dysregulation, 
neuron death, oxidative protein modifications and lysosome dysfunction act both downstream 
and upstream of  the accumulation of primary pathological protein aggregates in AD (left) and 
PD (right). Figure adapted from (Mattson & Arumugam, 2018) 
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post-mortem (Pandya, Grondin, Yonutas, et al., 2015; Venkateshappa, Harish, Mahadevan, et 

al., 2012). According to the mitochondrial free radical theory of ageing, first proposed in the 

1950s, free radicals produced by mitochondrial activity damage cellular components leading 

to ageing (D. Harman 1956; Denham Harman 1972). The notion of mitochondrial involvement 

in the ageing process has been extended to propose that abnormal protein aggregation 

observed in normal aging is due to reduced energy production as a result of mitochondrial 

exhaustion (Boccardi, Comanducci, Baroni, et al., 2017). Studies in animals have associated 

increased age with reduced antioxidant defences, increased oxidative stress and deficits in the 

mitochondrial OXPHOS system, which culminate in eventual cell death (A. Grimm & Eckert, 

2017). Age-related changes are also evident in the ER, with key enzymes required for protein 

folding being impaired with advancing age (Nuss, Choksi, DeFord, et al., 2008). Furthermore, 

responses such as UPR and pro-apoptotic signalling which occur in response to ER stress switch 

from being protective to maladaptive during ageing, resulting in the dampening of responses 

that are integral to maintaining cellular homeostasis (Brown & Naidoo, 2012). 

 
2.1.3  Synapses in Neurodegeneration and Ageing 
 
 
The brain is a high energy demanding organ and a disproportionate amount of this energy is 

used by synapses which are the sites of neurotransmission (Harris, Jolivet, & Attwell, 2012). 

The releasing and recycling of synaptic vesicles to enable neurotransmission is highly 

metabolically demanding, requiring  high levels of energy in the form of ATP (Devine & Kittler, 

2018). It is thus unsurprising that disruptions to the synaptic energy supply leads to 

neuropathology. 

 
For many NDDs, loss of synapses is the first pathological event that occurs, for example synaptic 

impairment is evident at presymptomatic stages of AD (Coleman, Federoff, & Kurlan, 2004; 

Wishart, Parson, & Gillingwater, 2006). There is ample evidence of structural and functional 
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alterations at the synapse across NDDs including AD, Huntington’s disease (HD), Amyotrophic 

lateral sclerosis (ALS) and PD (Bae & Kim, 2017). Synaptic loss and dysfunction also contribute 

to the cognitive decline seen in both NDDs and normal ageing (Uylings & de Brabander, 2002; 

Zhou, Miller, McDaniel, et al., 1998).  

 
Given the importance of the complex interplay between mitochondria, ER and synapses in 

maintaining a healthy neuron population in the face of both age and disease related brain 

attrition, studying the molecules involved in these mechanisms could help with the discovery 

of biomarkers useful for early diagnosis, therapeutic intervention and staging of NDDs. The 

remainder of this chapter provides an overview of a few existing PET biomarkers for NDDs, 

followed by a discussion of three promising targets of the mitochondrial-ER-synaptic axis for 

biomarker research. 

 
2.2 Current PET Biomarkers of Neurodegenerative Disease 
 
 
Over the past few decades tremendous efforts have been put towards the discovery of 

biomarkers to enable early detection and in turn early intervention of NDDs. However, there 

has been minimal success in the use of PET biomarkers molecularly specific enough to improve 

diagnostic accuracy and tracking of disease progression that would allow quicker screening of 

drug candidates (Beach, 2017). This section summarises a few of the PET biomarkers that are 

successfully used as either biomarkers in diagnostic criteria or are considered supportive 

biomarkers of clinical diagnosis and research. 

 
2.2.1 FDG-PET 
 
 
PET imaging with 18F-FDG is used as a marker of tissue glucose uptake and glycolysis closely 

correlated with metabolism. In the brain, FDG-PET scans have been considered to provide 

indirect correlates of synaptic loss (Márquez & Yassa, 2019). Hypofunction and 
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hypometabolism of the occipital lobe and parietal cortex derived from an 18F-FDG scan is 

considered to be a supportive biomarker for Lewy body dementia (McKeith, Boeve, DIckson, et 

al., 2017; Shimizu, Hirose, Hatanaka, et al., 2018), while frontal hypometabolism is used as a 

supportive biomarker in the early diagnosis of progressive nuclear palsy (Höglinger, 

Respondek, Stamelou, et al., 2017). Importantly, a number of studies have indicated the 

accuracy of FDG-PET for differential diagnosis of AD from other dementias (Tripathi, Tripathi, 

Damle, et al., 2014). 

 
2.2.2 Amyloid PET 
 
 
According to the National Institute on Aging and National Institute on Aging and Alzheimer's 

Association diagnostic guidelines for AD, a positive amyloid PET scan is considered a biomarker 

of Ab protein deposition (Shimizu, Hirose, Hatanaka, et al., 2018) and early diagnosis of AD 

(Klunk, Engler, Nordberg, et al., 2004; Rowe, Ng, Ackermann, et al., 2007). Amyloid PET has 

enabled the discovery of increased Ab deposition in cognitively normal elderly individuals 

being linked to abnormal entorhinal activity, and associated with cortical thinning in the 

frontoparietal brain (Huijbers, Mormino, Wigman, et al., 2014; Villeneuve, Reed, Wirth, et al., 

2014). Importantly, amyloid PET imaging has been instrumental in the selection of participants 

for clinical trials during the asymptomatic phase of AD (Márquez & Yassa, 2019). Currently 

there are three amyloid PET tracers approved for clinical use: 18F-Florbetapir, 18F-Florbetaben 

and 18F-Flutametamol. 

 
2.2.3 Tau PET 
 
 
Tau is another protein which can accumulate pathologically in cells. Tau deposition as 

measured by the density of neurofibrillary tangles (NFT) correlates with neurodegeneration 

and cognitive impairment (Braak & Braak, 1997; Duyckaerts, Brion, Hauw, et al., 1987). Tau 

PET has made some progress in demonstrating tau deposition being linked to disease 
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progression in a number of tauopathies including AD, progressive supranuclear palsy and 

corticobasal degeneration (R. Harada, Okamura, Furumoto, et al., 2018; Sepulcre, Schultz, 

Sabuncu, et al., 2016). However, a major setback in the development of the first generation of 

tau PET tracers including 18F-THK5351, 18F-Flortaucipir and 11C-PBB3, has been the presence 

of off-target binding (Okamura, Harada, Ishiki, et al., 2018). Although the second generation 

of ligands such as 18F-MK6240 are more selective and have enabled the reliable assessment of 

tau burden in AD, the long term utility of these agents outside of AD is yet to be demonstrated 

(Okamura, Harada, Ishiki, et al., 2018). 

The development of PET radioligands for other common misfolded proteins including alpha-

synuclein, huntingtin and TDP-43 remains a challenge. This is mainly due to the density of 

these proteins in diseased brains being significantly lower than that of  Ab and tau in AD brains, 

which has made it harder to develop ligands that are sufficiently selective (R. Harada, 

Okamura, Furumoto, et al., 2018). 

2.2.4 TSPO Imaging 
 
 
Besides misfolded proteins, neuroinflammation is also a common feature of a range of NDDs 

including AD, PD, ALS, and FTD (Werry, Bright, Piguet, et al., 2019). Neuroinflammatory 

responses involve the activation of microglia which survey their surroundings and react to 

perturbations in their environment by changing their morphology and migrating to the site of 

injury to initiate tissue repair and further engage the immune system (Werry, Bright, Piguet, 

et al., 2019). Microglial activation is therefore a valuable target for detecting 

neuroinflammation. Translocator protein (TSPO) is implicated in functions relevant to 

neurodegeneration, and its upregulation has been shown to accompany neuroinflammation in 

the brain (Banati, 2002; Rojas, Martín, Arranz, et al., 2007). Increases in TSPO PET signal in 

disease-relevant regions have been shown across a number of NDDs  (reviewed by Werry et al. 
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2019). Although TSPO PET using tracers such as 11C-Ro5-4864, 11C-(R)-PK11195, 11C-PBR28 

and 18F-FEPPA has the potential to serve as a clinically useful tool to monitor response to 

disease modifying therapeutics, the biology of TSPO and its relationship to microglial activation 

in inflammatory responses is complex and not well understood. Thus, despite the availability 

of multiple PET radioligands to quantify TSPO density the value of TSPO PET in monitoring 

NDDs has yet to be demonstrated. 

 
2.2.5 DAT imaging 
 
 
The dopamine transporter (DAT) is expressed in the terminals of nigrostriatal dopaminergic 

neurons and enables the re-uptake of dopamine from the synaptic cleft into presynaptic 

terminals, thus regulating the amount of dopamine available for dopamine stimulation. DAT is 

involved in a number of brain disorders, making its imaging key for early and differential 

diagnoses. PET tracers that have been developed for imaging of DAT include 11C-PE2I, 18F-FE-

PE2I and more recently, 18F-LBT-999 (Chalon, Vercouillie, Payoux, et al., 2019). So far, DAT 

imaging has proven most useful in supporting differential diagnosis of PD and other 

degenerative parkinsonism from vascular and drug-induced parkinsonism, as well as essential 

tremor (Ikeda, Ebina, Kawabe, et al., 2019). 

 
Despite the wealth of technology and resources that have been put into PET biomarker 

discovery, the number of robust biomarkers suitable for the detection of disease progression 

and monitoring the results of disease modifying intervention, is disappointing. Recent 

discoveries on the role of mitochondrial-ER-synaptic axis pathways in healthy ageing and NDD 

pathology has opened up a new avenue to pursue in biomarker research. The following section 

describes the set of three molecular targets identified by the MIND-MAPS consortium as 

potential markers of ageing and neurodegenerative pathology, as well as the PET tracers that 

are available to quantify them in vivo. 
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2.3 MIND-MAPS Consortium 
 
 
The ‘Molecular Imaging of Neurodegenerative Disease: Mitochondria, Associated Proteins & 

Synapses’ (MIND-MAPS) Consortium is a collaborative project formed to investigate three 

molecular targets of the mitochondrial/ER/synaptic axis, namely mitochondrial complex-I 

(MC-I), sigma 1 receptor (S1R) and synaptic vesicle protein 2A (SV2A) (depicted in Figure 2.4) 

across NDDs in an effort to find markers of disease progression. The functional significance of 

MC-I, S1R and SV2A are discussed in this section.  

 
 

 
 

Figure 2.4 The mitochondrial/ER/synaptic axis. MC-I of the ETC enables OXPHOS which 
results in ATP production, in turn maintaining cellular Ca2+ homeostasis, ROS production 
and apoptosis. S1R of the MAM enables Ca2+ flow from the ER to the mitochondrion during 
OXPHOS, in addition to regulating ER functions critical to neuronal survival. SV2A 
regulates Ca2+mediated neurotransmitter release and is essential to neurotransmission. 
Figure adapted from Mansur et al., 2019. 
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2.3.1 Mitochondrial complex-I (MC-I) 
 
 
MC-I is an ETC super-complex where the first step of OXPHOS takes place, and has chief roles 

in maintaining cellular Ca2+ homeostasis, producing reactive oxygen and nitrogen species and 

regulating apoptosis (A. Grimm & Eckert, 2017; Sazanov, 2015). Altered MC-I function has 

been associated with cell toxicity, ageing and NDD pathogenesis across diseases (A. Grimm & 

Eckert, 2017). 

 
Altered MC-I function has been shown in post-mortem analyses of transgenic AD mouse brains 

which showed impaired MC-I composition that predates the appearance of Ab plaques 

(Gillardon, Rist, Kussmaul, et al., 2007). Similarly, transgenic mice overexpressing Tau show 

MC-I impairment as well as resulting OXPHOS dysfunction assessed in vivo through 

measurements of mitochondrial membrane potential (Rhein, Song, Wiesner, et al., 2009). MC-

I deficiency is also evident post-mortem in the brains of PD patients (Keeney, 2006; Schapira, 

Cooper, Clark, et al., 1990).  

 
MC-I can be quantified in vivo using the PET radioligand 18F-BCPP-EF, developed by Tsukada 

and colleagues (N. Harada, Nishiyama, Kanazawa, et al., 2013; Hideo Tsukada, 2014). The 

tracer kinetics of 18F-BCPP-EF have been characterised in the non-human primate (NHP) brain 

and its suitability for human evaluation confirmed (Hideo Tsukada, 2014; Hideo Tsukada, 

Ohba, Kanazawa, et al., 2014). A PET study in NHPs has revealed correlations between 18F-

BCPP-EF signal and dopamine synthesis in PD, further supporting the potential for this 

radioligand as useful biomarker of NDD (H. Tsukada, Kanazawa, Ohba, et al., 2016). 

 
2.3.2 Sigma-1 Receptor (S1R) 
 
 
The sigma 1 receptor (S1R) is a non-opioid receptor located on the MAM. As demonstrated in 

Figure 2.4, a critical function of S1R is its action as a chaperone protein that stabilises the 
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inositol 1,4,5-trisphosphate receptor 3 (IP3) in its interaction with the voltage dependent anion 

channel (VDAC) situated on the outer mitochondrial membrane, to create a channel between 

the ER and the mitochondrion. (Cárdenas, Miller, Smith, et al., 2010; T Hayashi & Su, 2007). 

This channel increases Ca2+ flow into the mitochondria, enhancing OXPHOS. S1Rs are also 

involved in ER functions critical to cell survival such as protein sorting and folding, 

inflammation, lipid synthesis, neuronal plasticity and neuroprotection against oxidative stress 

induced cell damage and cell death (Giorgi, Missiroli, Patergnani, et al., 2015; T Hayashi & Su, 

2007; Matsuno, Nakazawa, Okamoto, et al., 1996; Meunier & Hayashi, 2010; Nguyen, Lucke-

Wold, Mookerjee, et al., 2015; Tuerxun, Numakawa, Adachi, et al., 2010).  

 
Altered S1R expression is implicated in an increasing number of NDDs. Immunoblot data 

obtained from a mouse model of AD has shown increases in S1R predating the appearance of 

Ab plaques (Hedskog, Pinho, Filadi, et al., 2013), highlighting the potential of S1R as an early 

marker of NDD. Post-mortem data from human patients with various NDDs also demonstrate 

S1R accumulation in the nuclear inclusions of their neurons (Miki, Mori, Kon, et al., 2014). 

The in vivo quantification of S1R was first made possible by Matsuno et al, who produced a 

selective PET ligand 11C-SA-4503, which was then used to map S1Rs in the human brain for 

the first time by Sakata and colleagues (Matsuno, Nakazawa, Okamoto, et al., 1996; Sakata, 

Kimura, Naganawa, et al., 2007). Preclinical imaging studies have suggested that S1R regulates 

neuro-restorative mechanisms in a rodent model of PD (Francardo, Bez, Wieloch, et al., 2014), 

while human PET imaging with 11C-SA-4503 has revealed altered S1R expression in the brains 

of PD patients (Mishina, Ishiwata, Ishii, et al., 2005). 

 
2.3.3 Synaptic Vesicle protein 2A (SV2A) 
 
 
The third and final molecular marker, synaptic vesicle protein 2A (SV2A) is a transmembrane 

glycoprotein expressed ubiquitously throughout the brain on synaptic vesicles (see Figure 2.4) 
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(Bajjalieh, Frantz, Weimann, et al., 1994). SV2A regulates Ca2+ mediated neurotransmitter 

release and thus is essential to neurotransmission (Chang & Sudhof, 2009; Wan, Zhou, Thakur, 

et al., 2010). SV2A expression is highly correlated with the expression of established pre-

synaptic markers synaptophysin and synaptotagmin, making it an ideal target for monitoring 

synaptic density (Nowack, Yao, Custer, et al., 2010). SV2A dysfunction has long been 

associated with abnormal neurotransmission, with post-mortem studies showing reduced 

synaptic vesicles in AD, PD and HD (Hansen, Daniel, Wilcock, et al., 1998; Honer, Dickson, 

Gleeson, et al., 1992; Lassmann, Weiler, Fischer, et al., 1992; Sze, Bi, Kleinschmidt-Demasters, 

et al., 2000). 

 
Synaptic loss is  central to all NDDs, with changes to presynaptic structure and function evident 

in presymptomatic stages of diseases (Milnerwood & Raymond, 2010; Reddy, Tripathi, Troung, 

et al., 2012; Selkoe, 2002),  raising interest in the use of SV2A markers such as 11C-UCB-J which 

was used to quantify synapses in vivo for the first time in the NHP (Nabulsi, Mercier, Holden, 

et al., 2016). 11C-UCB-J has demonstrated sensitivity to synaptic loss and is a valid alternative 

to synaptophysin (Finnema, Nabulsi, Eid, et al., 2016). The first in vivo quantification of SV2A 

by 11C-UCB-J in humans was performed by Finnema et al. who characterised 11C-UCB-J as 

binding specifically to SV2A and possessing ideal PET tracer characteristics with excellent test-

retest reproducibility (Finnema, Nabulsi, Mercier, et al., 2017). 11C-UCB-J has since been used 

to study synaptic loss in NDDs, with recent evidence of reduced 11C-UCB-J signal in both AD 

and PD (M.-K. Chen, Mecca, Naganawa, et al., 2018; Matuskey, Tinaz, Wilcox, et al., 2020). 

 
 
2.4 Aims and Outline 
 
 
The aforementioned findings highlight the potential of MC-I, S1R and SV2A as biomarkers of 

NDD. Given the complicated interplay between components of the mitochondrial/ER/synaptic 

axis, studying these molecules in isolation could prove insufficient to elucidate underlying 
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mechanisms of neurodegeneration. The availability of PET radioligands that enable the 

quantification of MC1, S1R and SV2A, allows for these molecules to be studied in combination 

which is a potentially more useful index of mitochondrial/ER/synapse axis function. The 

MIND-MAPS Consortium has provided the platform to quantify all three targets in disease 

cohorts with AD, PD, FTD, HD and ALS, as well as in healthy ageing using 18F-BCPP-EF, 11C-

SA-4503 and 11C-UCB-J. 

 
11C-SA-4503 and 11C-UCB-J have been evaluated in human studies, but 18F-BCPP-EF imaging 

has thus far not been conducted in humans, and the tracer kinetics of the ligand in the human 

brain are not established. 11C-UCB-J kinetics have been successfully validated in humans, 

however a fully validated kinetic modelling pipeline has yet to be established for human 

scanning with 11C -SA-4503. 

 
The primary aim of this thesis project was to identify and develop the optimal set of tracer 

kinetic models and PET image derived outcome measures for each of these radioligands to be 

implemented across MIND-MAPS cohorts to ensure consistency across analyses (Chapters 3-6) 

The PET measures derived from the healthy cohort will serve as control data for the cross-

sectional studies. A secondary aim was to explore the effects of age and gender on MC-I, S1R 

and SV2A quantification in humans (Chapter 7).  

 
The following chapter lays out the methodology that was used to develop standardised analysis 

pipelines for 18F-BCPP-EF, 11C-SA-4503 and 11C-UCB-J.  
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3 Data Processing Pipelines and Datasets 
 
The first part of this chapter details the pre-processing and analysis workflows that were 

applied in common to 18F-BCPP-EF, 11C-SA-4403 and 11C-UCB-J scans included in the 

establishment of standardized analysis pipelines. Any further tracer-specific developmental 

work has been detailed in chapters 4, 5 and 6 which have been allocated to 18F-BCPP-EF, 11C-

SA-4403 and 11C-UCB-J, respectively.  

 
All imaging and ancillary data were processed using Invicro London’s in-house PET data 

quantification tool, MIAKATTM (version 4.3.7) which is implemented in MALTAB (version 

R2016a; MathWorks Inc.) and uses additional functions from SPM12 (Wellcome Trust Centre 

for Neuroimaging). The first section of this chapter covers the MRI and PET processing 

pipelines and their optimisation for each ligand. Tables of subject demographics and ancillary 

data associated with each scan are provided in the second section of this chapter. 
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3.1 MRI Data 
 
 
3.1.1 Image Acquisition and Processing 
 
 
All subjects received a comprehensive MRI battery including MPRAGE, Fast Grey Matter 

Acquisition T1 Inversion Recovery, neuromelanin, pulsed arterial spin labelling, diffusion 

tensor imaging, and resting state fMRI. The scope of this report is limited to the analysis of the 

T1-weighted structural MRI sequence, MPRAGE, which was used in the analysis of 

subsequently acquired PET data. This section will summarize the analysis workflow applied to 

each MRI scan as shown in Figure 3.1. 

 
Each subject received a T1 weighted structural MRI scan acquired on a Siemens 3T Trio clinical 

MRI scanner (Siemens Healthineers, Erlangen, Germany) with a 32-channel phased-array head 

coil using a 3D MPRAGE sequence (TE = 2.98 ms, TR = 2300 ms , flip angle of 9o, voxel size 

= 1.0 mm x 1.0 mm x 1.0 mm).   

 
MRI images were rigid-body aligned to a standard brain template in Montreal Neurological 

Institute 152 (MNI152) space to create images in Talairach orientation (Grabner, Janke, 

Budge, et al., 2006; Talairach & Szikla, 1980) and were segmented into grey and white matter 

probability maps using a unified segmentation algorithm implemented in SMP12 (Ashburner 

& Friston, 2005). The resulting maps were nonlinearly registered to a standard brain template 

in MNI152 space using the diffeomorphic nonlinear registration (DARTEL) algorithm, in turn 

producing a subject specific warp flow-field containing a spatial mapping from subject (T1) 

space to MNI152 space (Ashburner, 2007). The inverse of the DARTEL flow-fields were then 

applied to the CIC atlas to produce atlas images in final subject space (Tziortzi, Searle, 

Tzimopoulou, et al., 2011). As a final step, grey, white and whole structural brain images were 

resliced to create isotropic versions with a voxel size of 2.0 mm x 2.0 mm x 2.0 mm to be used 
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in the PET analysis pipeline. Representative images of inputs and outputs of the MRI processing 

pipeline are provided in Figure 3.1. 

 
The following regions of interest (ROIs) were defined on the structural MRI images: brainstem 

(BST), substantia nigra (SN), thalamus (THA), ventral striatum (VST), caudate (CAU), 

putamen (PUT), hippocampus (HIP), insular cortex (INS), temporal lobe (TL), parietal lobe 

(PL) and frontal cortex (FTCX). The centrum semiovale (CS) region was provided by Takuya 

Toyonaga and Dr. Richard Carson from the PET Center Department of Radiology and 

Biomedical Imaging, which was defined in AAL space (Tzourio-Mazoyer, Landeau, 

Figure 3.1 MRI data processing pipeline. Each subject’s T1-weighted MRI scan was brough into 
Talariach space and segmented into grey matter, white matter and cerebrospinal fluid (CSF). The 
segmented images were nonlinearly registered to the MNI standard template to generate 
DARTEL flow fields. All images were were resliced to create isotropic images with 2 mm x 2 
mm x 2mm voxel size in final subject space. The inverse of the DARTEL flow fields derived 
from the nonlinear registration step was applied to the CIC atlas to generate atlas images in final 
subject space (not shown). 
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Papathanassiou, et al., 2002) and brought into subject space using the nonlinear registration 

parameters derived from previous spatial processing steps. 

 

3.2 PET Data 
 
 
3.2.1 Image acquisition  
 
All PET scans were acquired on either a Siemens Hi-Rez Biograph 6 (FWHM: 7.35 mm, 7.35 

mm, 14.4 mm) or Biograph 6 TruePoint PET/CT scanner (FWHM: 7.0 mm, 7.0 mm, 14.4 mm) 

(Siemens Healthcare, Erlangen, Germany). Although the two scanners used are similar models, 

the same scanner was used for each subject in order to remove any possibility of scanner 

differences affecting the test-retest results discussed in Chapter 4. A low-dose CT scan (30 mAs, 

130 KeV, 0.55 pitch) was performed immediately before each PET scan in order to estimate 

attenuation. An intravenous cannula was inserted into a cubital or forearm vein of the subject 

for radioligand administration, and a second cannula was inserted into the radial artery to 

enable the collection of arterial blood samples. The radiotracers were administered as a slow 

bolus (over 20 seconds) in a volume of 20 mL at the start of the PET scan. Injection doses were 

prepared such that the injected activities would not exceed the maximum recommended 

injected activity (100 MBq 18F-BCPP-EF, 300 MBq 11C-SA-4503 and 300 MBq 11C-UCB-J). The 

minimum injected dose was at the physician’s discretion. Dynamic emission data were acquired 

over 90 minutes following radiotracer administration and were reconstructed into 26 frames 

(frame durations: 8 x 15 s, 3 x 60 s, 5 x 120 s, 5 x 300 s, 5 x 600 s). Corrections were applied 

to the raw data for attenuation, randoms and scatter. 

 
3.2.2 Image processing 
 
 
The PET data processing workflow implemented as part of the standard PET analysis pipeline 

is summarised in Figure 3.2. Following in-scanner pre-processing steps, attenuation corrected 
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dynamic PET data underwent a standard frame-by-frame motion correction process to account 

for between-frame motion and improve quantification. Each frame was registered to a 

reference frame (frame 16 of 26), using rigid body registration (SPM12). The level of motion 

during a scan was assessed visually as well as via plots of the registration parameters derived 

from this step. The two registration parameters assessed were translations in the x, y, and z 

directions and rotations in pitch, roll and yaw (see Figure 3.3 A for a demonstration of 

translational and rotational parameters assessed).  Between-frame changes exceeding 10 mm 

or 10 degrees in translation and rotation respectively were flagged as ‘severe motion’, resulting 

in either the removal of the frame in question, or re-reconstruction. Re-reconstruction consisted 

of first manually dividing the scanning period into segments such that with-in segment motion 

was minimised, and then moving CT data into the corresponding positions by software 

registration.  

 

 

 

A B 

yaw 

roll 

z 

pitch y 

x 

Figure 3.2 Motion correction of PET data. A Diagram depicting translational motion in x, y 
and z directions and rotational motion in pitch, roll and yaw directions. B Motion parameters 
of a subject who exhibited excessive translation motion (top panel), failed QC and whose 
PET data was subsequently re-reconstructed. 
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The adjusted CT data was then used to reconstruct the PET data into sections which could 

subsequently be joined together and analysed as normal. Figure 3.3B shows an example of a 

subject for which there was excessive translational motion between frames 23 and 26 that had 

to be re-reconstructed. Finally, motion-corrected dynamic images were rigid body-registered to 

the subjects’ T1-weighted MRI resulting in a motion corrected dynamic image in T1 space 

(voxel size 2 mm x 2 mm x 2 mm).  

 
Motion corrected dynamic PET images were used to create summed static SUV images (top 

right Figure 3.2) to enable visualization of tracer distribution over 0-10 minute, 10-30 minute, 

30-90 min and 10-90 minute time periods, and enable generation of SUVr data (see Chapter 4 

section 4.4.2). Finally, the dynamic motion corrected PET images were used to create regional 

time activity curves (TACs, process described in Section 1.3.1) for all 125 regions in the CIC 

atlas. The grey and white tissue probability maps generated from the MRI segmentation step 

were used to generate TACs for both grey matter and white matter masked ROIs by taking a 

weighted mean of the voxel intensities for a given ROI and using the tissue probability maps 

Figure 3.3 PET data processing pipeline. Attenuation corrected (AC) and non-attenuation corrected 
(NAC) dynamic PET series underwent frame-by-frame motion correction. Upon passing quality control 
(QC), motion corrected series were co-registered to subjects’ MRI image.  The final motion-corrected 
and registered dynamic AC series was used to created 3 sets of TACs (grey, white and no-mask) for 
each region of the CIC atlas, and used to derived summed images. 
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as a weighting factor. The final set of TACs were generated for non-masked, grey masked and 

white masked ROIs, which were then used for tracer kinetic modelling along with the arterial 

input function described in the following section. 

 
3.2.3 Blood data acquisition and arterial input function modelling 
 
 
As described in Chapter 1, quantification with full kinetic modelling first requires determining 

an accurate arterial plasma input function. For this, whole blood activity was measured using 

a continuous automatic blood sampling system (ABSS, Allogg AB, Marlefred,Sweden) for the 

first 15 minutes of each scan, which was acquired at a rate of 5 mL/min. Additional discrete 

blood samples were taken manually at 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 and 90 minutes 

after scan start and total radioactivity concentration was evaluated in both blood and plasma 

in a Perkin Elmer 1470 10-well gamma counter. For each scan, arterial blood samples taken 

prior to tracer injection were centrifuged and the plasma free fraction (fp) was measured by 

ultrafiltration in triplicate using an arterial blood sample taken prior to tracer injection.   

 
For each ligand, 6 subjects were used to determine the appropriate plasma over blood and 

parent fraction models to create the optimum metabolite corrected arterial plasma input 

function. These models were applied to all subsequently acquired scans. Figure 3.4 summarises 

the steps involved in modelling the arterial input function which are detailed in the following 

sections. 
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Plasma over blood (POB) model selection 

Discrete blood sample data were fitted with four empirical POB models (see Appendix A for 

full list of models) to determine the ratio of tracer concentration in plasma to that in blood. 

Akaike Information Criterion (Equation 1.20) was used to select the best model where the 

lowest AIC value was chosen as the model with the most parsimonious fit. The POB ratio 

resulting from the chosen model fit was applied to the measured whole blood activity curve 

CB(t) to generate a total plasma activity curve, CTOTAL(t). 

Figure 3.4 Derivation of arterial input function and PET outcome measures. Continuous 
samples were measured for their radioactivity using a gamma-counter scaled (i.e. 
calibrated) to match overlapping discrete whole blood samples measured at 5, 10 and 15 
minutes, and then merged with the remaining discrete whole blood data to form a whole 
blood activity curve covering the duration of the scan CB(t). Activity measurements from 
the discrete plasma samples were divided by the corresponding whole blood data to form 
plasma-over-blood (POB) data which was fitted with a POB model.  The resulting fitted 
POB was multiplied with CB(t) to give a total plasma activity curve, CTOTAL(t). The 
radioactivity in the plasma was fitted with a PPF model to generate a parent fraction curve, 
which was multiplied by CTOTAL, and smoothed post peak to generate the final metabolite-
corrected arterial plasma input function, CP(t). A time delay was fitted and applied to the 
input function to account for the separation between blood sample and tissue (not depicted). 
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Parent fraction (PPF) model selection 

Seven discrete blood samples were used to determine the fraction of plasma radioactivity 

constituted by unchanged parent radioligand (PPF) using HPLC analysis. Radiometabolite 

peaks from chromatogram data were used to calculate the PPF for each sample 𝑖 

 

       Equation 3.1 

 
where	cpm is counts per minute, µ	is the average, 𝑏𝑘𝑔 is the background window, 𝑝𝑎𝑟 is the 

parent metabolite window and 𝑚𝑒𝑡 is the metabolite window. Figure 3.5 shows an example of 

chromatograms generated from the first (5 minute) and last (90 minute) metabolite samples 

acquired during dynamic PET scan, where for illustrative purposes, the parent and metabolite 

windows have been marked with red and black arrows, respectively. These windows were 

defined for each ligand based on initial visual inspection of chromatograms from 4-5 PET scans, 

and cross-checked against elution times defined in the literature, where available.   

 
Background activity was defined as the average of the counts per minute in the background 

window. The background window was either set individually for each sample by a blood lab 

technician resulting in windows of varying lengths across scans (referred to in Chapter 5 as the 

‘original model’) or defined as part of the analysis process from the average cpm in a wider 

window fixed to include all non-parent and non-metabolite retention times (referred to in 

Chapter 5 as the  ‘modified model). PPF data were defined using only the parent and metabolite 

windows under the assumption that with proper background correction, the sum of counts in 

the background window would sum up to zero.  

𝑃𝑃𝐹S = 	
∑¿cpmÀ�Á − 𝜇Ãcpm�oÄÅÆ

∑¿cpmÀ�Át�m( − 𝜇Ãcpm�oÄÅÆ
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PPF data defined using Equation 3.1 were used to generate a parent fraction curve describing 

tracer metabolism in plasma over the duration of the scan. The resulting PPF curve was 

subsequently fitted with 7 empirical PPF models (see Appendix B for full list of models used), 

and AIC was used to select the optimum model. In the case where there was a second or third 

potential PPF model, separate arterial input functions were calculated with each PPF model 

and the remaining modelling steps were run in parallel to obtain PET outcome measures for 

each case (see Chapter 5, SA4503 metabolite analysis). As a final step, the radioactivity in the 

plasma was multiplied by the parent fraction estimated from the optimum PPF model, PPF(t),  

𝐶p(𝑡) = 	𝐶\Ç\&È(𝑡)	. 𝑃𝑃𝐹(𝑡)	   Equation 3.2 

resulting in a metabolite-corrected arterial plasma input function ready to be used as input for 

tracer kinetic modelling in the brain. 

 
3.2.4 Kinetic Analysis and Model Selection 
 
 
As an initial assessment of appropriate kinetic models, the TAC data from 6 subjects were fitted 

with fixed (blood volume = 5%) and fitted blood volume variants of the one and two-tissue 

compartmental models (1TC & 2TC), the performance of which were assessed using AIC and 

parameter identifiability based on the percentage standard error (SE) derived from the 

covariance matrix. TACs were also fitted with graphical method multilinear analysis 1 (MA1) 

with fitted and fixed blood volume variants as well as varying temporal windows (t* = 20, 30 

Figure 3.5 Example chromatogram data showing parent and radiometabolite radioactivity 
measured by HPLC at 5 minutes (left) and 90 minutes (right) post tracer administration. The red 
and black arrows indicate parent and metabolite windows, respectively. 
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and 40 min). Prior to fitting, whole blood radioactivity was subtracted from the TAC data. 

Linear regression coefficient of determinations (r2) were used to compare performance between 

the graphical method MA1 and the compartmental models.  

 
The tissue kinetic model selection process described in this section was repeated for all three 

radioligands. The main outcome measures assessed in common for all three radioligands were 

volume of distribution (VT), distribution volume ratio (DVR) and VT normalised to fp (VT/fp). VT 

/fp was reported to explore its utility in studies where cross-sectional differences in fp may arise. 

VT estimates that were poorly estimated (SE%>10) were excluded from model comparisons. 

Semi-quantitative outcome measure SUVr was also reported for 18F-BCPP-EF and 11C-UCB-J.  

 
3.2.5 Time stability analysis 
 
 
In order to assess the stability of each radiotracer over time, the performance of tracer kinetic 

models was assessed over varying scan lengths (from a full 90 minute acquisition to 10 

minutes) by re-estimating regional VT for each scan duration.  The re-estimated VT values were 

expressed as percentages of the VT estimate derived from the full scan (VT
90min). The distribution 

of VT across all subjects and regions was assessed for each scan duration and used as a measure 

of time stability of the radiotracers in the population.   

 
3.2.6 Parametric map generation 
 
 
Parametric VT maps were generated for each ligand in order to generate population mean and 

standard deviation images. The basis function implementation of 1TC was used to generate 

parametric images for 11C-UCB-J. MA1 graphical analysis were used to generate individual 

parametric images for 18F-BCPP-EF and 11C-SA-4503. Individual parametric images were 

spatially normalized to MNI152 using nonlinear registration to enable the generation of a mean 
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parametric image for each ligand. Parametrically derived VT values were compared against 

those generated from full kinetic modelling using correlation analysis. 

 

3.3 Datasets 
 
 
This section provides information on the datasets used for the various analyses included in this 

thesis. The reader is referred to the tables presented here throughout chapters 4-7. 

 
3.3.1 MIND-MAPS Healthy Volunteer Cohort 
 
 
This cohort consisted of 14 male and 11 female subjects between the ages of 22 and 79 who 

successfully completed the MIND-MAPS MRI battery and dynamic 18F-BCPP-EF, 11C-SA-4503 

and 11C-UCB-J scans with full arterials. One subject withdrew before having their 11C-UCB-J 

scan (subject 104), reducing the total number of 11C-UCB-J scans to 24. Two subject’s 11C-SA-

4503 scans were unusable; one of which was due to excessive motion (subject 101) and the 

other due to a lack of arterial blood samples (subject 120). Both subjects were excluded from 

the final 11C-SA-4503 analysis. Table 3.1 includes the gender, age, weight, height and body-

mass index (BMI) information of the full cohort, all of which were included in the healthy aging 

analysis (Chapter 7). Table 3.2 includes details of injection parameters and fp measurements 

for each scan. All injected activities were under the maximum limit stated in the study protocol. 

Subjects 101 and 102 were injected with low doses of 11C-UCB-J compared to the mean due to 

low yield production on the day. The 12 subjects highlighted in grey were included in the 

quantification of 18F-BCPP-EF, 11C-SA-4503 and 11C-UCB-J in chapters 4, 5 and 6, respectively. 

The 6 subjects highlighted in bold were used in the preliminary investigations of which arterial 

plasma input function models and tissue kinetic models to include in the main analysis. 
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Table 3.1 Demographic Information – MINDMAPS healthy cohort (n=25) 

Subject ID Gender Age (yrs) Weight (kg) Height (cm) BMI (kg/m2) 
101* male 29 86.6 180 26.7 
102 male 28 80.5 184 23.8 
103 male 56 69.9 174 23.1 
104† female 22 59.8 174 19.8 
105 male 23 50.1 169 17.5 
106 male 75 84.0 176 27.1 
107 female 67 62.2 154 26.2 
108 female 65 45.0 160 17.6 
109 male 46 58.1 176 18.8 
110 female 78 55.7 154 23.5 
111 male 69 86.1 182 26.0 
112 male 68 73.2 180 22.6 
113 female 50 87.1 161 33.6 
114 female 69 51.1 167 18.3 
115 female 75 64.1 154 27.0 
116 female 33 69.8 160 27.3 
117 male 73 91.8 182 27.7 
118 male 64 83.5 182 25.2 
119 female 52 67.9 158 27.2 
120‡ female 24 79.9 168 28.3 
121 male 47 77.9 178 24.6 
122 male 74 78.7 177 25.1 
123 female 73 88.4 164 32.9 
124 male 41 101.0 192 27.4 
125 male 36 93.9 178 29.6 

Mean ± SD n/a 53 ± 19 73.9 ± 15.1 171 ± 10 25.1 ± 4.3 
* Subject 101 11C-SA-4503 scan excluded from analysis due to excessive motion 
†Subject 104 did not receive a 11C-UCB-J scan 
‡ Subject 120 did not receive a 11C-SA-4503 scan 
BMI: Body mass index 
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Table 3.2 Injection parameters and fp measurements of MIND-MAPS healthy 
cohort 

Subject 
ID 

18F-BCPP-EF 11C-SA-4503   11C-UCB-J 
Injected 
Activity 
(MBq) 

Injected 
Mass 
(µg) 

fp 
Injected 
Activity 
(MBq) 

Injected 
Mass 
(µg) 

 fp 
Injected 
Activity 
(MBq) 

Injected 
Mass 
(µg) 

fp 

101* 81 0.02 0.091 267 3.86 0.111 90 4.33 0.228 
102 86 0.02 0.080 239 1.94 0.094 92 4.48 0.238 
103 87 0.03 0.075 257 3.10 0.070 250 3.43 0.273 
104† 91 0.06 0.120 249 4.58 0.079 N/A N/A N/A 
105 89 0.07 0.064 250 2.51 0.071 168 1.22 0.264 
106 94 0.04 0.056 281 2.82 0.052 234 1.85 0.205 
107 89 0.04 0.086 267 2.29 0.051 176 1.61 0.185 
108 97 0.13 0.087 277 5.23 0.072 113 1.45 0.215 
109 91 0.07 0.069 244 2.41 0.059 191 2.05 0.247 
110 86 0.16 0.083 237 2.58 0.042 182 1.80 0.226 
111 87 0.06 0.074 221 2.86 0.058 261 6.26 0.248 
112 91 0.05 0.074 234 1.82 0.060 234 1.82 0.208 
113 91 0.05 0.061 255 2.01 0.051 230 2.12 0.214 
114 96 0.11 0.096 236 1.47 0.064 278 2.23 0.238 
115 82 0.09 0.065 268 1.59 0.062 247 2.52 0.253 
116 85 0.04 0.074 219 5.43 0.054 249 2.60 0.264 
117 82 0.09 0.082 252 3.28 0.099 245 3.53 0.232 
118 88 0.12 0.082 277 3.10 0.103 152 2.54 0.249 
119 85 0.06 0.125 270 4.77 0.058 282 1.92 0.323 
120‡ 86 0.15 0.121 n/a n/a N/A 208 1.93 0.296 
121 88 0.04 0.075 283 7.23 0.044 240 2.85 0.231 
122 91 0.07 0.078 271 4.95 0.056 119 0.82 0.230 
123 88 0.09 0.072 236 7.78 0.054 141 2.56 0.238 
124 92 0.09 0.082 275 2.34 0.069 261 2.30 0.349 
125 92 0.12 0.072 269 2.71 0.053 241 2.20 0.230 

Mean 
± SD 89 ± 4 0.08 ± 

0.04 
0.082 ± 
0.018 

256 ± 19 3.44 ± 
1.70 

0.066 ± 
0.019 

203 ± 59 2.52 ± 
1.19 

0.245 ± 
0.037 

* Subject 101 11C-SA-4503 scan excluded from analysis due to excessive motion 
†Subject 104 did not receive a 11C-UCB-J scan 
‡ Subject 120 did not receive a 11C-SA-4503 scan 

 
 

 
3.3.2 18F-BCPP-EF Test-retest cohort 
 
 
6 subjects (3 males, 3 females, ages: 24-54) were enrolled in the test-retest variability analysis 

for 18F-BCPP-EF, only 5 of which completed both test and retest scans. Subject 002 withdrew 

following the test visit and was not included the final test-retest analysis. The subject’s test scan 

was, however, included in the assessment of SUVr as a suitable outcome measure for 18F-BCPP-
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EF (see Chapter 4 section 4.4.2 for analysis). The demographic details of this cohort are 

provided in Table 3.3, while injection parameters and fp measurements are given in Table 3.4. 

 
Table 3.3 Demographic Information – 18F-BCPP-EF test-retest cohort (n=6) 

Subject ID Gender Age (yrs) Weight (kg) Height (cm) 
001 male 26 81.6 174 
002* male 24 77.8 176 
003 female 29 69.7 179 
004 female 54 67.3 146 
005 female 25 52.3 160 
006 male 49 71.0 173 

Mean ± SD n/a 35 ± 13 70.0 ± 10.2 168 ± 13 
*Subject 002 did not receive a retest scan. 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3.4 Injection parameters and fp measurements of 18F-BCPP-EF test-retest cohort 

Subject ID Group 
18F-BCPP-EF 

Injected 
Activity (MBq) 

Injected 
Mass (µg) fp 

001 

Test 

91 0.04 0.068 
002* 90 0.07 0.065 
003 98 0.05 0.085 
004 90 0.12 0.057 
005 93 0.08 0.083 
006 90 0.1 0.066 

Mean ± SD  92 ± 3† 0.08 ± 0.03† 0.072 ± 0.012† 
001 

Retest 

92 0.11 0.067 
003 95 0.08 0.071 
004 88 0.05 0.05 
005 89 0.09 0.075 
006 89 0.09 0.062 

Mean ± SD  91 ± 3 0.08 ± 0.02 0.065 ± 0.010 
*Subject 002 did not receive a retest scan. 
† Subject 002 not included in mean calculation 
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4 Quantification and kinetic modelling of 18F-BCPP-EF 
 
 
Chapter 3 provided an overview of the MRI and dynamic PET processing steps used to generate 

time activity data for 18F-BCPP-EF, 11C-SA4503 and 11C-UCB-J, as well as blood and tissue 

kinetic modelling pipelines that were implemented to characterise the three radioligands. In 

this chapter, the results of the various kinetic modelling approaches evaluated for 18F-BCPP-EF 

are presented and the optimum tracer kinetic quantification models and outcome measures for 

this radioligand are established. 
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4.1 Background and Study Overview 
 
 
As detailed in Chapter 2, 18F-BCPP-EF is a PET radioligand that targets MC-I in the brain. In 

their work in NHPs, Tsukada and colleagues demonstrated that 18F-BCPP-EF possessed good 

lipophilicity and moderate affinity allowing it to readily enter the brain where it displays 

reversible kinetics (Hideo Tsukada, Ohba, Kanazawa, et al., 2014). 18F-BCPP-EF showed rapid 

uptake and metabolism in the NHP brain,  with polar metabolites that do not cross the BBB 

(Hideo Tsukada, 2014; Hideo Tsukada, Ohba, Kanazawa, et al., 2014). These findings, along 

with the specificity of 18F-BCPP-EF for MC-I have paved the way for its successful transition 

from animal into human studies. 

 
The first part of this study aimed to establish the optimal blood plasma and tissue tracer kinetic 

quantification approaches and outcome measures for 18F-BCPP-EF in the human brain using 

data from 12 healthy subjects (Table 3.1, highlighted cohort) (sections 4.2 – 4.3). The second 

part of the study explored potential reference region approaches to simplify the quantification 

of 18F-BCPP-EF in clinical studies and included a time stability analysis of the tracer using the 

full cohort of 30 18F-BCPP-EF subjects (section 4.4 – 4.5). Finally, the test-retest reproducibility 

of 18F-BCPP-EF derived binding parameters was assessed (section 4.6). 

 
4.2 Tracer uptake and distribution  
 
 
18F-BCPP-EF entered the brain readily and demonstrated a heterogeneous distribution (Figure 

4.1). Uptake into the brain was fast and peaked at ~5 – 12 minutes post-injection, similar to the 

time peak tracer uptake was observed in the NHP (~10 minutes post-injection). Peak uptake 

values ranged from 2.7 g/ml in the centrum semiovale to 6.4 g/ml in the putamen. The high 

uptake observed in striatal regions was consistent with previously published NHP data (Hideo 
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Tsukada, Ohba, Kanazawa, et al., 2014). SUV values derived from the centrum semiovale were 

approximately 50% lower compared to all grey matter regions investigated. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
4.3 Determining the optimum arterial plasma input function  
 
 
The protocol for the acquisition and processing of arterial blood data acquired during a 

dynamic PET scan was presented in Chapter 3 (see Figure 3.4). This section includes the results 

of the modelling process of the concentration of radioligand in plasma over blood (POB) and 

the fraction of parent radioligand free to enter brain tissue (PPF), both of which are necessary 

to create an accurate input function. The models established here were applied to blood data 

acquired during all subsequent 18F-BCPP-EF scans.  

 

 

Figure 4.1 Orthogonal cross sections of co-registered 18F-BCPP-EF PET and MR images from a 
representative subject. PET images are shown as SUV summed from 10-90 minutes. 
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4.3.1 Modelling the plasma over blood (POB) data 
 
 
An initial visual inspection of model fits showed that the ratio of 18F-BCPP-EF concentration in 

plasma to that in blood (POB) was constant over the course of the PET scan (Figure 4.2). 

Further comparison of 4 empirical POB models (see Appendix A for full list of equations) using 

the AIC confirmed that the ‘constant’ model produced the lowest AIC values and therefore best 

described the POB ratio of 18F-BCPP-EF, 

𝑃𝑂𝐵(𝑡) = 𝑐    Equation 4.1 

where 𝑐 is the plasma over blood ratio at time 𝑡.  As seen in Figure 4.2, the POB data fitted 

with the ‘constant’ model produced good fits in all subjects, resulting in a POB ratio in the range 

of 1.25 – 1.40.  

 
4.3.2 Modelling the plasma parent fraction (PPF) data 
 
 
18F-BCPP-EF metabolised fairly rapidly in plasma, with ~20% of unmetabolized radioligand 

measured at 90 minutes post injection. High pressure liquid chromatography (HPLC) data 

showed one highly polar radiometabolite with an elution time of 2 minutes and a second one 

with a longer elution time and less radioactivity eluting between 5-7 minutes.  

Of the 7 PPF models investigated, the most parsimonious fits to the parent fraction data were 

provided by a sigmoid function with 3 parameters a, b, and g, 

  𝑃𝑃𝐹(𝑡) = 	
Ë.µ {�

{�ÌZ|aÍ
b	
tÎ

.tg
   Equation 4.2 

where PPF(t) is the estimated fraction of intact parent radioligand in plasma at time t. The 

sigmoid model selected produced good fits for all subjects included in the study (Figure 4.3). 

The PPF derived from these fits was estimated at 20 ± 8 % at 90 minutes post injection (n=12). 
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Figure 4.2 Fits of the ‘constant’ POB model to the blood data from 12 18F-
BCPP-EF scans 
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Figure 4.3 Fits of the ‘sigmoid’ PPF model to the metabolite data from 12 18F-BCPP-EF scans 
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4.4 Determining the optimum tissue kinetic model for 18F-BCPP-EF 
 
 
In the comparison of fixed vs. fitted blood volume variants of the kinetic models tested, the 

fixed variant where blood volume was fixed to 5% produced lower AIC values for all three 

models. The comparison of the 3 temporal variants of MA1 (t* 20, 30 and 40 min) to 2TC 

showed that a t* of both 20 and 30 minutes produced VT estimates that were highly correlated 

with 2TC derived results (t* = 20 min, r2=0.99; t* = 30min, r2=0.99). The final set of models 

to be investigated for 18F-BCPP-EF was narrowed down to the following 3; 1TC (fixed BV), 2TC 

(fixed BV) and MA1 (fixed BV, t* = 30 min). 

Figure 4.4 18F-BCPP-EF regional TACs and model fits for a representative subject derived 
with A 1TC, B 2TC and C MA1.  D Linear regression plot showing comparison of MA1 vs 
2TC derived 18F-BCPP-EF VT (n=12). 
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18F-BCPP-EF displayed reversible kinetics with all three kinetic models reaching convergence 

in the regional TAC data (Figure 4.4 A-C). Regional mean VT, DVR and VT/fp estimates derived 

from the 1TC, 2TC and MA1 are summarised in table 4.1. VT was robustly estimated in all ROIs 

explored using both 1TC and 2TC (SE < 10%). AIC values were lower for 2TC over 1TC in all 

156/156 cases tested (13 regions x 12 subjects). 2TC and MA1 derived VT were in excellent 

agreement (r2= 0.99) (Figure 4.4 D) and were therefore both chosen as suitable modelling 

methods for this ligand.  

Table 4.1 18F-BCPP-EF derived regional PET outcome measures 
Outcome 
Measure 

Kinetic 
Model 

 CS BST SN THA VSTR CAU PUT HIP INS TL PL FTCX CER 

VT 
(ml.cm-3) 

1TC 
Mean 10.8 16.2 19.2 21 29.6 19.2 31.9 19.6 24.9 23.1 24.5 23.3 28.5 
COV 19% 17% 14% 21% 21% 32% 20% 19% 18% 18% 21% 19% 17% 

2TC 
Mean 11.9 17.5 20.9 22.8 31.6 20.4 34.1 21.6 26.5 24.7 26 24.7 30.6 
COV 17% 17% 14% 20% 20% 32% 18% 18% 17% 17% 20% 18% 16% 

MA1 
Mean 11.9 17.5 20.9 22.9 31.6 20.4 34 21.7 26.6 24.8 26.1 24.8 30.6 
COV 17% 17% 14% 20% 20% 32% 19% 18% 17% 17% 20% 19% 16% 

VT/fp 
(ml.cm-3) 

1TC 
Mean 143 214 254 278 391 255 422 259 329 306 323 309 377 
COV 16% 17% 14% 21% 20% 35% 18% 18% 17% 17% 18% 18% 15% 

2TC 
Mean 157 232 277 302 418 271 451 286 351 328 343 327 405 
COV 15% 18% 14% 20% 19% 35% 17% 17% 17% 17% 17% 18% 15% 

MA1 
Mean 157 232 277 303 419 271 450 287 352 329 344 329 405 
COV 16% 18% 14% 20% 20% 35% 17% 17% 17% 17% 18% 18% 15% 

DVR 

1TC 
Mean 

n/a 
1.51 1.79 1.95 2.73 1.77 2.96 1.82 2.31 2.15 2.27 2.17 2.65 

COV 10% 9% 12% 10% 27% 9% 11% 9% 10% 10% 9% 8% 

2TC 
Mean 

n/a 
1.47 1.76 1.92 2.65 1.71 2.86 1.82 2.23 2.08 2.17 2.07 2.58 

COV 12% 8% 13% 11% 28% 9% 11% 9% 10% 9% 8% 10% 

MA1 
Mean 

n/a 
1.58 1.78 1.93 2.67 1.71 2.87 1.83 2.25 2.10 2.19 2.09 2.59 

COV 12% 10% 14% 12% 29% 10% 11% 10% 10% 10% 9% 10% 
 
VT values ranged from 11.9 ± 2.0 ml.cm-3 in the centrum semiovale to 34.0 ± 6.6 ml.cm-3 in the 

putamen. The intersubject variability of regional VT estimates across all regions investigated 

was calculated as 18 ± 3%. The intersubject variability in DVR results derived using the 

centrum semiovale as a reference region was reduced, while correcting VT by fp had no 

significant effect on intersubject variability. 
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4.5 Investigation of the centrum semiovale as a pseudo reference 
region 

 
MC-I is present in all mitochondria in the human body, making it unfeasible to find a region 

completely devoid of specific signal. The CS, demonstrated in Figure 4.5,  is a small subsection 

of the white matter which has previously been investigated as a reference region for various 

radioligands that have shown low or negligible signal in this region compared to grey matter 

regions (Finnema, Nabulsi, Eid, et al., 2016). Recently, the definition of the region has been 

optimised such that the risk of signal contamination by partial volume effects from surrounding 

grey matter have been minimised, therefore offsetting any noise that may arise from the low 

signal and small size of the region (Finnema, Nabulsi, Eid, et al., 2016). As stated earlier, 18F-

BCPP-EF showed ~50% lower uptake in the CS compared to grey matter ROIs in this dataset. 

Energy consumption in the white matter is approximately 20-25% of that in the grey matter as 

a result of the markedly high energy cost associated with neuronal signalling which is 

consistent with the low MC-I related signal seen in this region (Harris & Attwell, 2012; Yu, 

Herman, Rothman, et al., 2018). Together these suggest that the CS is a good candidate for 

investigation as a pseudo reference region.  

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Demonstration of centrum semiovale (CS) placement 
within a white matter mask. CS region kindly provided by Takuya 
Toyonaga and Dr. Richard Carson from the Yale PET Center.  
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The validation of a region as a reference region typically requires carrying out a homologous 

competition study using a target specific blocking agent. However, due to the potentially lethal 

effects fully blocking MC-I can have on cardiac function, there is no suitable blocking agent 

available to be used in human studies. In this absence of human blocking data, the suitability 

of the CS as a possible pseudo reference region was assessed based on previously acquired data 

provided to us by Professor Hideo Tsukada and colleagues from a study conducted in 4 healthy 

male rhesus monkeys (Macaca mulatta) (age: 3-5 years) scanned with 18F-BCPP-EF at baseline 

and following pre-administration of 0.1 mg/kg of rotenone (MC-I inhibitor). Although a full 

dose-escalation was not possible, baseline and post-rotenone competition VT data was provided 

for a set of 10 ROIs (Table 4.2). Full details on scanning procedures, rotenone administration 

and study protocol are provided in the manuscript by Tsukada et al (Hideo Tsukada, Ohba, 

Kanazawa, et al., 2014).  

 
 
4.5.1 Estimation of 18F-BCPP-EF VND from NHP data 
 
 
Regional VT

baseline - VT
rotenone  data  were plotted against VT

baseline data to create an occupancy plot, 

from which an estimate for the non-displaceable volume of distribution (VND) in NHP was 

derived (Cunningham, Rabiner, Slifstein, et al., 2010; Lassen, Bartenstein, Lammertsma, et al., 

Table 4.2  VT data from baseline/ post-rotenone monkey and baseline human 18F-BCPP-EF scans 

ROI 
MONKEY (n=4) HUMAN (n=30) 

Baseline Post-block - 
Centrum semiovale N/A N/A 10.9 ± 1.9 

Cerebral WM 13.4 ± 3.0 10.6 ± 2 15.5 ± 3.0 
Cerebellum 26.2 ± 3.0 16.2 ± 1.4 28.1 ± 4.9 

Frontal cortex 26.0 ± 1.0 17.0 ± 0.9 23.6 ± 4.2 
Temporal cortex 26.7 ± 1.9 17.1 ± 0.9 23.4 ± 3.8 
Occipital cortex 34.4 ± 4.8 20.6 ± 2.7 26.2 ± 4.6 

Striatum 30.6 ± 1.9 19.3 ± 3.3 27.4 ± 5.2 
Hippocampus 23.4 ± 1.0 15.0 ± 1.2 20.4 ± 3.5 
Parietal cortex 28.5 ± 1.7 17.4 ± 0.8 24.4 ± 4.7 

Cingulate 27.7 ± 1.8 18.3 ± 0.09 25.4 ± 4.5 

Data are mean ± SD with units of ml.cm-3. Centrum semiovale data was not available for the monkey dataset. 
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1995)(Figure 4.6). A nonlinear least-squares estimator was used to derive fractional brain 

occupancy of MC-I by rotenone for each monkey, with a shared VND across all four monkeys. 

Given the assumption that BPND is conserved between NHP and human species (𝐵𝑃���Ðp ≅

𝐵𝑃��ÐÑ��´), the following equation holds true,    

 �z
ÒÓ��Ô

�z
qÒÕ = �qr

ÒÓ��Ô

�qr
qÒÕ 	    Equation 4.3 

This in turn allows for the translation of  𝑉���Ðp to 	𝑉��ÐÑ��´ by creating an interspecies scaling 

factor. To do this, the ratio of regional  𝑉\�Ðp derived from baseline 18F-BCPP-EF scans to 

regional 𝑉\ÐÑ��´ derived from the current 18F-BCPP-EF data set was calculated for the cerebral 

white matter, cerebellum, frontal cortex, cingulate cortex, temporal cortex, parietal cortex, 

occipital cortex, striatum and hippocampus. The regional ratios were averaged to create a 

scaling factor which was applied to the estimated 𝑉���Ðpto predict	𝑉��ÐÑ��´. The human BPND in 

the cerebral white matter was predicted from the following equation 

 𝐵𝑃��Y+Ö = �z
×ØÙ

�qr
  - 1   Equation 4.4 

The shared VND in NHP was estimated as 8.78 mL.cm-3 from the intercept of the occupancy plots 

shown in Figure 4.6. The fractional occupancies estimated from these plots were 55.7%, 55.1%, 

50.2% and 55.8%, for monkeys 1, 2, 3 and 4, respectively. Dividing average baseline NHP VT 

values by corresponding human baseline values produced an interspecies scaling factor of 1.07 

± 0.14, resulting in an estimated VND
HUMAN of 8.2 mL.cm-3, which is similar to the mean VT 

estimate in the human CS of 10.9 ± 1.9 mL.cm-3. Human and NHP baseline VT data used to 

derive the interspecies scaling factor are plotted in Figure 4.7. Using Equation 4.4,	𝐵𝑃���Ðpin 

cerebral white matter was calculated as 0.54, which is indicative of a small amount of specific 

binding.  

 



 82 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 Occupancy plots of monkeys 1-4, where VND is given by 
the x intercept. (n=4, 9 ROIs). Figure modified from Mansur et al., 
2020. 

Figure 4.7.  Boxplot showing human baseline VT data (blue, n = 30) and 
NHP (red, N = 4) VT data 
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4.5.2 Assessment of SUVr-1 as an outcome measure 
 
 
Having established the CS as a useful pseudo reference region for 18F-BCCP-EF, data from 30 

healthy subjects were used to derive semiquantitative standardised uptake value ratios (SUVr) 

to assess a simplified outcome measure and enable comparison to measures derived from full 

kinetic analysis. All 12 grey matter regions were included in the analysis. 

 
SUVr-1 values were obtained by normalizing the average standardized uptake value (SUV) in 

a target ROI derived from a 20 minute static image to that of the average SUV in the CS and 

subtracting 1. The optimum time window to generate SUVr-1 was determined by creating SUVr 

images for 8 different 20 minute time windows ranging from 0-20 minutes to 70-90 minutes, 

and evaluating the strength of their correlation with DVR-1 across subjects using least-squares 

linear regression. 

 
 
 
 
 
 
 
 
 
 
 

 
Regional DVR-1 values ranged from 0.51 in the brainstem to 1.95 in the putamen, while 

similarly SUVr-1 values ranged from 0.50 in the brainstem to 1.90 in the putamen (Table 4.3). 

SUVr-1 computed over later time windows between 50 - 90 minutes post injection was in good 

agreement with DVR-1 (n= 30, Table 4.4). The strongest correlation was found for the 70-90 

time window, for which the gradient of correlation obtained from the slope of the linear 

regression line, was also close to 1 (Figure 4.8).  

 

Table 4.3 Summary or regional DVR – 1, SUVr – 1 and K1 values  for 18F-BCCP-EF  (n=30) 
Outcome 
Measure BST SN THA VSTR CAU PUT HIP INS TL PL FTCX CER 

DVR - 1 
mean 0.52 0.82 1.01 1.79 0.89 1.91 0.87 1.34 1.15 1.25 1.17 1.58 
COV 29% 19% 23% 15% 51% 13% 20% 15% 14% 17% 16% 12% 

SUVr - 1 
mean 0.59 0.86 1.08 1.71 0.88 1.90 0.89 1.42 1.19 1.33 1.27 1.61 
COV 24% 17% 23% 17% 55% 14% 20% 16% 15% 19% 19% 12% 

K1 

(ml.cm-3.min-1) 
mean 0.36 0.43 0.46 0.44 0.49 0.33 0.54 0.58 0.51 0.49 0.51 0.40 
COV 22% 23% 23% 28% 39% 25% 23% 26% 23% 24% 26% 22% 

The centrum semiovale was used as a reference region in the derivation of DVR – 1 and SUVr – 1 
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These results showed that 18F-BCPP-EF SUVr values obtained between 70 and 90 minutes 

following ligand administration are in good agreement with DVR derived estimates. It is 

important to note that the stability of the quantitative outcome measures discussed so far across 

a 90 minute scan should also come into play in the selection of an optimum time window, as 

selecting a time window that is earlier than when the system reaches secular equilibrium will 

affect quantification. 

Table 4.4 Results from linear correlation of SUVr -1 values with DVR – 1 derived for 8 SUVR time 
windows (12 ROIs, 30 subjects) 

SUVr time window (minutes) r2 gradient 
0-20 0.01 0.92 

10-30 0.72 0.90 
20-40 0.77 0.92 
30-50 0.81 0.94 
40-60 0.86 0.96 
50-70 0.90 0.97 
60-80 0.92 0.96 
70-90 0.94 0.95 

Figure 4.8 Correlation between SUVr-1 and DVR-1 for 30 
subjects and 12 ROIs using CS as a pseudo reference region 
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4.5.3 Assessment of tracer delivery effects on SUVr and DVR 
 
 
The potential sensitivity of binding parameters to tracer delivery is an important factor to 

consider in the early stages of a new radiotracer. The relationship between changes in tracer 

delivery rate (K1) estimates derived under test and retest conditions (∆K1) was correlated to 

that of DVR (∆DVR) and SUVR (∆SUVR) to assess if SUVR or DVR were affected by radioligand 

delivery. K1 values (provided in Table 4.3) were also compared with DVR and SUVR values 

directly. K1 had no effect on either outcome measure when looking at ∆ relationships, and the 

relationship between SUVR and K1 was very similar to that of DVR and K1, increasing confidence 

that tracer delivery is not a limitation for 18F-BCPP-EF. 

 

4.6 Time stability analysis 
 
 
In order to assess the stability of 18F-BCPP-EF over time, the performance of both MA1 derived 

VT and image-derived SUVr-1 was evaluated for varying scan lengths. For VT, the values 

estimated for the different scan lengths were expressed as a percentage of the VT estimated 

from the full 90 min acquisition (VT
90min), aggregated together over 30 subjects and plotted 

against time to allow for a population level assessment of time stability, as described previously 

in Chapter 3. 

 

 

 

 

 

 

 

 

A B 

Figure 4.9 Time stability plots of A %VT
90min and B SUVr – 1 where each data point 

represents the mean across 360  data points (30 subjects x 12 ROIs).  (Data prior to 50 
minutes excluded for visual clarity in plot A.) 
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To assess the stability of SUVr-1, regional values obtained from the time windows specified in 

section 4.4 were averaged across subjects and plotted against time.  

 

Figure 4.10 Regional time stability plots for 18F-BCPP-EF VT where each data point 
represents the mean %VT

90min of 30 subjects and the error bars represent standard deviation 
(SD) 
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As seen in Figure 4.9 A, 70 minutes of PET data provided good stability of VT where the 

resulting VT was 98.4(6.7)% of the final VT. The time stability of VT did not vary greatly across 

regions (see Figure 4.10 for regional plots). 

 
Though SUVr – 1 values started to stabilize as early as 20 minute post ligand administration 

(Figure 4.9 B), taking into account the excellent correlation between SUVr-1[70-90] and DVR-

1, 70-90 minutes was selected as the optimum time window from which to reliably estimate 

SUVr based measures with the increased confidence that the tracer had reached a secular 

equilibrium. SUVr -1 has the potential to be a non-invasive and simpler measure for 18F-BCPP-

EF scans for which a long dynamic scan with full arterials is not feasible. In the case of dynamic 

18F-BCPP-EF scans, scan time can reliably be shortened to 70 minutes to confidently quantify 

VT in the brain.  

 
4.7 Evaluating the test-retest reliability of 18F-BCPP-EF 
 
 
In order to further characterise 18F-BCPP-EF signal in the human brain, the test-retest (TRT) 

reliability of both MA1 and 2TC derived kinetic outcome measures and simplified outcome 

measure SUVr-1 was evaluated. Relative and absolute test-retest variability (TRV, aTRV) and 

intraclass correlation coefficient (ICC; one-way random effects ANOVA) was calculated for each 

ROI for 5 subjects (see Table 3.3 for demographic information). 

          Equation 4.5 

 

Equation 4.6 

 

        Equation 4.7 

where BSMSS is between-subject mean sum of squares and WSMSS is within-subject mean sum 

of squares. Two-tailed paired t-tests were used in the statistical analysis of test and retest 

TRV(%) = 200 ×
retest	value − test	value
(retest	value + test	value) 

aTRV(%) = 200 ×
|retest	value − test	value|
(retest	value + test	value) 

ICC =
BSMSS −WSMSS
BSMSS +WSMSS 
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conditions and linear regression was used to compare outcome measures derived from the two 

conditions. There were no statistically significant differences between average regional uptake 

or injection parameters between test and retest conditions (see Table 3.4 for individual 

radiotracer injection parameters). 

 
Individual SUV images derived from the test and retest conditions and corresponding structural 

MRI images are shown in Figure 4.11. Peak uptake values (SUV) measured between 5-20 

minutes post injection were similar between test and retest conditions. The TRV and aTRV of 

fp were -9.7 ± 6% and 9.7%, respectively, with an ICC of 0.74. PPF measurements were slightly 

lower for the retest condition than the test condition at the end of the scan (p < 0.05).  

 
Test and retest derived VT values were well correlated (r2 = 0.81), with Bland-Altmann plot 

showing a positive bias of 9% ± 2% towards the retest condition (Figure 4.12 A). The raw 

regional test retest VT, VT/fp, DVR-1 and SUVR-1 values are provided in Table 4.5. The mean 

regional TRV and aTRV for VT were 9% ± 2% and 13% ± 2%, respectively (Table 4.6). VT/fp 

values derived from test and retest scans were moderately correlated (r2=0.75), with as a 

negative mean bias of 18% for the retest condition (Figure 4.12 B). VT/fp had poorer TRT 

variability compared to VT, with TRV and aTRV of 17% ± 2% and 21% ± 2%, respectively.   

 
Test and retest derived DVR-1 values were well correlated (r2 = 0.92) and showed a negative 

bias of ~7% for the retest condition (Figure 4.12 C). The global mean TRV and aTRV for DVR-

1 were -9% ± 4% and 11% ± 4%, respectively. As shown in Section 4.4.2, SUVr-1 computed 

over 70-90 minutes was in good agreement with DVR-1 (r2= 0.94), with a Bland-Altman plot 

showing a consistent negative mean bias of ~7% for the retest condition (Figure 4.12 D). SUVr-

1 had a global mean TRV of -8% ± 3% and aTRV of 9% ± 3%.  
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The global mean ICC for VT, VT/fp and DVR-1 remained above 0.60 while for SUVr-1 was 

calculated as 0.89 ± 0.05. It should be noted that the lowest ICC for VT was in the CS which 

overall reduced the reliability of DVR-1 estimates. There were no statistically significant 

differences between test and retest derived results for any of the outcome measures. 

 

 

Figure 4.11 Individual MR and SUV Add-images (10-90 min) of 18F-BCPP-EF during 
test and retest condition. Figure modified from Mansur et al., 2020. 
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Table 4.5. 18F- BCPP-EF derived regional test-retest PET outcome measures 
Outcome 
Measure 

Kinetic 
Model CS BS SN THA STR GP VSTR CAU PUT PC AC FL INS HIP AMY TL PL CER 

VT 

(ml.cm-3) 

test 
mean 9.1 13.7 16.7 18.7 23.9 22.5 25.8 19.2 28.3 22.2 21.0 19.5 21.7 17.4 18.6 19.8 20.0 22.3 
COV 16 15 15 20 21 16 17 28 17 21 20 19 17 18 18 15 21 14 

retest 
mean 10.3 15.0 18.2 20.3 25.8 24.9 29.0 20.4 30.8 24.7 22.8 21.2 23.5 18.5 19.9 21.6 22.0 24.2 
COV 15 19 20 21 21 17 19 29 17 20 19 19 18 18 17 17 19 19 

VT/fp 

(ml.cm-3) 

test 
mean 127 192 234 261 334 315 361 267 397 310 294 274 304 243 260 278 280 314 
COV 15 13 15 16 18 10 13 27 14 19 17 18 14 15 14 13 18 13 

retest 
mean 159 230 281 311 396 382 446 311 474 380 350 326 362 284 307 332 339 373 
COV 14 13 15 15 15 9 13 23 12 16 13 14 12 11 12 12 15 14 

DVR-1 

test 
mean 

NAN 
0.51 0.84 1.06 1.63 1.50 1.84 1.10 2.13 1.43 1.30 1.15 1.39 0.92 1.05 1.19 1.20 1.47 

COV 12 7 22 20 18 10 40 13 13 10 17 9 21 11 8 20 12 

retest 
mean 

NAN 
0.45 0.77 0.97 1.50 1.42 1.82 0.96 1.99 1.39 1.22 1.06 1.29 0.80 0.94 1.10 1.14 1.35 

COV 24 19 23 21 17 17 40 12 14 19 19 16 25 18 14 14 13 

SUVr-1 

test 
mean NAN 0.55 0.85 1.11 1.60 1.43 1.76 1.08 2.09 1.53 1.37 1.23 1.45 0.93 1.01 1.22 1.27 1.51 
COV 19 13 28 28 22 16 51 19 19 17 23 15 28 15 13 26 16 

retest 
mean NAN 0.49 0.80 1.02 1.44 1.31 1.65 0.93 1.93 1.51 1.29 1.14 1.34 0.84 0.92 1.14 1.21 1.40 
COV 27 20 26 26 21 20 48 18 17 21 24 17 27 20 15 20 16 

COV is expressed as %, n=5 test, 5 retest  

Table 4.6 Test-retest reproducibility of 18F-BCPP-EF  outcome measures 

ROI 
VT  (mL.cm-3) VT/fp ( mL.cm-3) DVR-1 SUVr-1 

TRV 
(%) 

aTRV 
(%) ICC TRV 

(%) 
aTRV 
(%) ICC TRV 

(%) 
aTRV 
(%) ICC TRV 

(%) 
aTRV 
(%) ICC 

CS 13 ± 16 18 0.30 21 ± 21 26 0.39 - - - - - - 
BS 9 ± 12 13 0.64 17 ± 16 21 0.64 -13 ± 25 18 0.31 -12 ± 14 12 0.83 
SN 9 ± 13 12 0.61 17 ± 16 20 0.62 -10 ± 19 17 0.15 -6 ± 9 8 0.86 

THA 8 ±12 13 0.78 16 ± 17 17 0.74 -9 ±9 11 0.84 -7 ± 5 7 0.94 

STR 8 ± 12 13 0.79 16 ± 17 21 0.72 -8 ± 8 9 0.87 -10 ± 5 10 0.91 

GP 10 ± 13 14 0.57 18 ± 18 22 0.64 -5 ± 10 9 0.83 -8 ± 6 8 0.89 
VSTR 11 ± 14 15 0.54 20 ± 18 23 0.59 -2 ± 9 8 0.81 -7 ± 7 7 0.89 
CAU 6 ± 13 12 0.91 14 ± 19 20 0.83 -15 ± 8 15 0.94 -16 ± 7 6 0.94 
PUT 8 ± 12 13 0.71 16 ± 18 21 0.69 -7 ± 10 9 0.75 -9 ± 4 9 0.89 
PC 11 ± 15 17 0.66 19 ± 20 25 0.58 -2 + 2 3 0.97 -1 ± 3 3 0.98 
AC 8 ± 13 13 0.72 17 ± 17 21 0.64 -8 ± 10 10 0.78 -7 ± 5 7 0.94 

FTCX 8 ± 14 14 0.69 16 ± 19 22 0.63 -9 ± 6 9 0.86 -8 ± 2 8 0.94 
INS 8 ± 11 12 0.71 16 ± 15 20 0.67 -8 ± 12 11 0.51 -8 ± 6 8 0.86 
HIP 6 ± 9 10 0.83 14 ± 14 18 0.77 -15 ± 16 19 0.63 -10 ± 9 11 0.89 

AMY 7 ± 12 12 0.71 15 ± 17 20 0.66 -11 ± 12 13 0.57 -10 ± 8 11 0.79 
TL 8 ± 11 11 0.67 16 ± 15 19 0.65 -9 ± 15 13 0.16 -7 ± 7 8 0.81 
PL 10 ± 15 16 0.67 18 ± 21 24 0.64 -5 ± 6 5 0.88 -3 ± 8 7 0.94 

CER 8 ± 11 11 0.71 16 ± 15 20 0.70 -9 ± 14 12 0.31 -8 ± 6 8 0.82 
Mean 9 13 0.68 17 21 0.66 -9 11 0.66 -8 9 0.89 

SD 2 2 0.13 2 2 0.09 4 4 0.37 3 3 0.05 
TRV: Test-retest variability, aTRV: absolute test-retest variability, ICC: intra-class correlation.  Data are mean± 
SD.CS 
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A B 

C D 

Figure 4.12. Bland-Altman plots for A VT, B VT/fp, C DVR-1, and D SUVr-1 derived under test 
and retest conditions. Values are colour coded by region of interest. Solid line indicates mean and 
dotted lines indicate ± 1.9 SD. All regions and subjects are included in the plots. 
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4.8 Parametric VT Images  
 
 
In addition to generating TAC based 18F-BCPP-EF VT values, parametric VT maps were generated 

for all 18F-BCPP-EF scans acquired by fitting MA1 (fixed BV, t* = 30 min) on a voxel level.  The 

regional averages of parametric VT s were calculated to enable comparison to the original TAC 

derived estimates. As can be seen in Figure 4.13, there was an excellent correlation between 

the two (r2=0.99).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Of the parametrically derived VT estimates, 0.06 % ± 0.09 % of the voxels produced negative 

values while the percentage of voxels with nonphysiologically high estimates (VT >80) was 

0.008 % ± 0.01 %. Further investigation of the time activity curves extracted for these specific 

voxels revealed that they were very noisy, resulting in poor fits.  

Figure 4.13. Correlation between TAC derived and 
parametrically derived 18F-BCPP-EF VT for 30 subjects and 12 
ROIs. 
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VT images that were initially created in subject space were spatially normalised to MNI52 space 

by applying the DARTEL flow fields derived previously (see Chapter 3). Flow fields were 

applied to the parametric VT images and smoothed using a 4mm x 4mm x 4mm gaussian 

smoothing kernel. Mean and standard deviation VT images of 18F-BCPP-EF were created from 

the 30 healthy subjects by averaging the distribution of intensities in the corresponding voxels 

(excluding non-physiological estimates) across all subjects (shown in Figure 4.14). As evident 

from the mean image, the high VT in the putamen and ventral striatum was consistent across 

the population, corresponding to average VT estimates of 33.0  ± 5.2 mL.cm-3 and 31.7± 5.5 

mL.cm-3 respectively.   

Figure 4.14 Orthogonal cross-sections of MRI (left), mean (middle) and standard deviation 
(SD) (right) VT images of 18F-BCPP-EF (n=30). 
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4.9 Conclusion 
 
The work in this chapter characterised 18F-BCPP-EF for the first time in the human brain.18F-

BCPP-EF kinetics were well described using both MA1 and 2TC models, with all outcome 

measures investigated showing suitable test-retest variability. Time stability analysis showed 

that at least 70 minutes of dynamic scanning with 18F-BCPP-EF is sufficient to reliably estimate 

VT. 

 
Simplified outcome measure SUVr-1 showed very good correlation with DVR-1 results derived 

from kinetic modelling, indicating that a static acquisition of 20 minutes acquired between 70-

90 minutes post ligand administration could be sufficient to quantify 18F-BCPP-EF. This could 

prove especially beneficial in larger studies where scan time is limited or in disease cohorts 

where minimizing patient discomfort needs to be prioritized. 

 
VND derived from monkey data suggested that the CS could be a useful pseudo reference region 

for 18F-BCPP-EF, increasing confidence in the suitability of DVR-1 and SUVR-1 as outcome 

measures for quantifying specific 18F-BCPP-EF signal. It is important to keep in mind that the 

CS is not a real reference region (not devoid of MC-I) and in the absence of a blocking study 

in humans there is not sufficient evidence to obviate the need for arterial blood acquisition in 

a 18F-BCPP-EF scan. Careful consideration should be given when using CS derived outcome 

measures in cross sectional studies where there could be disease related changes in 

mitochondria/MC-I function, or where the integrity of the white matter may be compromised. 

Similarly, caution should be taken before using VT/fp as an outcome measure, as this will only 

likely be appropriate given that there are cross sectional differences in fp values. 

 
In conclusion, 18F-BCPP-EF possesses suitable characteristics for quantifying MC-I in the human 

brain.  
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5 Quantification and kinetic modelling of 11C-SA-4503 
 
 
Outside of the initial human work performed by Sakata et al., 2007, a reliable and fully 

validated kinetic modelling pipeline for 11C-SA-4503 has not been fully developed. This chapter 

evaluates the performance of the kinetic modelling approaches set out in Chapter 3 for 11C-SA-

4503 and establishes the optimum tracer kinetic quantification models and outcome measures 

for this radioligand.  
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5.1 Background and Study Overview 
 
 
As reviewed in Chapter 2, the mapping of S1R in the healthy human brain using 11C-SA-4503 

was first performed by Sakata and colleagues, whose work showed that 11C-SA-4503 uptake is 

widespread in the brain, has relatively slow kinetics that are well-described by the 2TC and 

Logan methods (Sakata, Kimura, Naganawa, et al., 2007), and shows minimal metabolism in 

plasma.  

 
 The work presented here aimed to determine the optimum kinetic methods and suitable 

outcome measures for quantifying 11C-SA-4503 across the MIND-MAPS cohorts. The 

distribution of ligand uptake is presented in section 5.2. The process of establishing appropriate 

blood and plasma models to create a reliable arterial plasma input function are covered in 

section 5.3, followed by the testing of various tissue kinetic models in section 5.4.  Time stability 

analysis results are presented in section 5.5, and lastly, the performance of voxel-level kinetic 

modelling is discussed in section 5.6. 

Figure 5.1 Orthogonal cross sections of co-registered 11C-SA-4503 PET and MR images from a 
representative subject. PET images are shown as SUV summed from 10-90 minutes. 
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5.2 Tracer uptake and distribution  
 
 
11C-SA-4503 uptake was slow and reached peak uptake at ~50-60 minutes post-injection in 

line with previous work in humans (Sakata, Kimura, Naganawa, et al., 2007). Uptake was 

heterogeneous throughout the brain (Figure 5.1) with the highest SUV values observed in the 

cerebellum (5 g/ml), followed by the putamen (4.8 g/ml) and insular cortex (4.5) g/ml, and 

was lowest in the brainstem, caudate and centrum semiovale with SUV values of 3.5 g/ml, 2.9 

g/ml and 2.1 g/ml, respectively.  

 
5.3 Determining the optimum arterial plasma input function 
 
 
The process for the acquisition of arterial blood samples was described in Chapter 3 (Figure 

3.4). This section covers the process of selecting the optimum POB and PPF models. The 

optimum models established here were then applied to blood data acquired during all 

subsequent 11C-SA-4503 scans. 

 
5.3.1 Modelling the plasma over blood (POB) data 
 
 
An initial visual inspection of model fits revealed that the ratio of the 11C-SA-4503 

concentration in plasma to that in blood (POB) started off as an exponential before reaching 

constant levels over the course of the PET scan (Figure 5.2). Of the 4 POB models tested (see 

Appendix A for full list of models), AIC confirmed that the ‘exponential approach to constant’ 

(exp-constant) model with 3 parameters 𝑎, 𝑏	and	𝑐 produced the most parsimonious fits to the 

ratio of 11C-SA-4503 activity in plasma to blood. 

𝑃𝑂𝐵(𝑡) = 𝑎 + 𝑏(1 − 𝑒µ'()    Equation 5.1 

The POB data fitted with this model produced acceptable fits in all 12 subjects, resulting in a 

POB ratio in the range of 0.64 – 0.94 (Figure 5.2). 
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Figure 5.2  Fits of the ‘exponential approach to constant’ POB  model to the blood data from 12 
11C-SA-4503 scans 
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5.3.2 Modelling the plasma parent fraction (PPF) data 
 
 
11C-SA-4503 metabolism in plasma was slow in line with what has been previously shown by 

Sakata et al (Sakata, Kimura, Naganawa, et al., 2007). HPLC analysis revealed a single 

metabolite eluting at between 1st and 7th retention times, and the parent eluting at between 

22nd - 27th retention times.   

In an initial comparison of 7 PPF models, AIC favoured and ‘exponential + constant’ model 

given by   

Equation 5.2 

The initial application of this PPF model involved the manual definition of background windows 

by a blood lab technician (referred to in Chapter 3 and throughout the rest of this chapter as 

the ‘original model’). This resulted in highly variable parent fraction estimates of between 20% 

and 70% unmetabolized radioligand remaining intact at 60 minutes most injection (Figure 5.3 

𝑃𝑃𝐹(𝑡) = 𝑒µè( + 𝑐 

Figure 5.3 PPF model fits derived from fitting the A ‘original model’, B the ‘modified model’. C 
Inter-subject variability in VT estimates derived using an input function corrected for metabolites 
using the ‘original model’ (blue bars) and the ‘modified model’ (red bars) (n=8). 
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A), which is significantly lower than the literature value of 89%. The intersubject variability in 

parent fraction estimates resulted in up to 50% variability in VT estimates derived using the 

associated input functions (see Figure 5.3 C blue bars). 

 
Modified parent fraction model 

As discussed in Section 3.2.3, the background windows used to define the metabolite data in 

the ‘original model’ were selected manually, sometimes resulting in windows consisting of as 

little as 1 or 2 retention time points. Moreover, the 70th and 90th minute samples were often 

excluded from the parent fraction data set due to the high background noise. In order to 

increase the signal to noise ratio and reduce intersubject variability in PPF and VT estimates, 

the definition of the PPF was modified to include a wider background window including all 

non-parent and non-metabolite retention times. For each sample	𝑖, the impact of the 

background variability on PPF definition was calculated as      

∆𝑃𝑝𝑓S = 𝑃𝑝𝑓S − 𝑃𝑝𝑓.    Equation 5.3 

 

where 

Equation 5.4 

and used to calculate the relative variance σSH 

σSH	~	(∆𝑃𝑃𝑓O	)H    Equation 5.5 

The model fitting was further modified to include a weighting factor equivalent to the inverse 

of the relative sample variance, which was particularly high in the later time points as 

demonstrated in Figure 5.4. The fits produced from this modified model are shown in Figure 

5.3 B. The new PPF estimate at 60 minutes post- injection was 90% ± 7% (range 73% – 100%), 

and 87% ± 10% (range 59% – 100%) at 90 minutes post-injection. 

 
PPF data from 8 subjects was used to compare the performance of the modified PPF model to 

the original PPF model. As can be seen in Figure 5.3, the inter-subject variability in both the 

 

𝑃𝑝𝑓. = 	
∑ ìcpmÀ�Á − n𝜇Ãcpm�oÄÅ + 𝑆𝐷Ãcpm�oÄÅsî

∑ ìcpmÀ�Át�m( − n𝜇Ãcpm�oÄÅ + 𝑆𝐷Ãcpm�oÄÅsî
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fraction fits and in VT estimates were reduced using the modified PPF model. As such, the 

modified PPF model was used to derive all subsequent 11C-SA-4503 arterial plasma input 

function curves. 

 

 

B 

A 

Figure 5.4 A 11C-SA-4503 chromatogram data used to calculate PPF and B the effect of background noise 
on the variance of PPF estimates derived from the ‘exponential + constant’ model for one example subject. 
Data points in plot B represent PPF esimates and error bars represent the variance of PPF estimates 
associated with varying the background measurement by one standard deviation.  
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5.4 Determining the optimum tissue kinetic model for 11C-SA-4503 
 
 
As described in Chapter 3, TAC data were fitted with fixed and fit blood volume variants of the 

1TC and 2TC models, as well as 3 MA1 models of varying temporal windows (t* 20, 30 and 40 

min). VT estimates derived using t* values of 30 and 40 minutes correlated well with 2TC 

derived values (MA130 vs 2TC r2 = 0.98, slope = 0.92; MA140 vs 2TC r2= 0.98, slope = 1.00). 

MA1 with a t* of 30 minutes was chosen as the variant to proceed with. In addition to MA1, 

1TC (fixed BV) and 2TC (fixed BV) were also assessed.  

 
11C-SA-4503 mean VT, and VT/fp values and the inter-subject coefficient of variation (COV) 

values derived from the 1TC, 2TC and MA1 models are summarised in Table 5.1. DVR using 

the CS was not explored as the VT in this region was not the lowest despite the relatively low 

uptake in this region. The model fits for 5 representative regions are depicted in Figure 5.5A-

C. According to AIC, 2TC produced the most parsimonious fits to TACs in 142/156 of the cases 

when compared to 1TC; however, 12% of 2TC derived VT estimates were poorly estimated. 

This was mainly due to the poor estimation (SE > 10%) of the microparameter k4 in striatal 

regions, hippocampus, substantia nigra and the centrum semiovale. MA1 produced good fits to 

Table 5.1 11C-SA-4503 derived regional PET outcome measures 

Outcome 
Measure Kinetic  Model CS BST SN THA VSTR CAU PUT HIP INS TL PL FTCX CER 

VT 

(ml.cm-3) 

1TC 
mean 22.4 30.7 29.5 27.7 32.9 21.2 36.3 31.4 38.1 34.5 32.1 33.4 40.3 

COV 24% 18% 17% 21% 21% 28% 19% 17% 16% 17% 20% 21% 19% 

2TC 
mean 26.6 36.6 34.2 31.7 36.4 28.3 43.2 37.4 45.3 40.5 37.1 38.4 46.8 
COV 27% 21% 19% 22% 18% 22% 20% 16% 19% 16% 22% 24% 20% 

MA1 
mean 29.1 36.6 34.6 31.9 37.9 25.1 42.1 37.0 44.7 40.4 36.8 38.5 46.6 
COV 29% 21% 21% 22% 21% 28% 17% 14% 17% 16% 19% 24% 19% 

VT/fp 

(ml.cm-3) 

1TC 
mean 372 509 488 455 543 354 596 518 630 572 526 553 668 

COV 30% 27% 26% 27% 27% 37% 25% 24% 26% 26% 26% 29% 27% 

2TC 
mean 456 611 544 520 605 476 698 608 736 664 598 628 765 
COV 28% 30% 20% 27% 30% 27% 25% 24% 27% 26% 25% 29% 27% 

MA1 
mean 465 588 553 508 604 405 671 590 714 647 584 614 747 
COV 36% 29% 29% 28% 27% 35% 25% 23% 26% 26% 26% 30% 27% 

27 values for 2TC estimation were excluded based on VT of SE% > 10 (n=12) 
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the TAC data and VT estimates were in close agreement with those reliably estimated using the 

2TC model (r2=0.97) (Figure 5.5 D). Thus, MA1 was chosen as the final model used in all 

subsequent analyses. 

 

 

Figure 5.5 11C-SA-4503 regional TACs and model fits for a representative subject derived with 
A 1TC, B 2TC and C MA1. D Linear regression plot showing comparison of MA1 vs 2TC 
derived 11C-SA-4503 VT (n=12). 
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VT values derived from MA1 ranged from 25.0 ± 7 ml.cm-3 in the caudate to 45.9± 7.6 ml.cm-3 

in the cerebellum. The intersubject variability of regional VT estimates across all regions 

investigated was calculated as 20± 4%. Correcting VT by fp increased intersubject variability to 

28 ± 4%. 

 
5.4.1 Comparison of metabolite corrected vs. uncorrected results 
 
 
Different PPF models can lead to different PET outcome measure estimates (Tonietto, Veronese, 

Rizzo, et al., 2015). The accurate description of the parent metabolite fraction via analytical 

functions is therefore a crucial step for kinetic modelling and subsequent radioligand 

quantification in tissue.  

 
In their work published in 2007, Sakata et al. estimated a PPF of 89% at 60 minutes post-

injection in their dataset of 12 healthy volunteers. Based on this result, they explored the 

potential obviation of metabolite correction, and found a difference of 13% in 2TC-derived 

binding potentials derived from metabolite corrected and uncorrected input functions. Notably, 

the binding potentials reported in their study were derived directly from microparameters k3 

and k4 which has since been shown to be not as robust as indirect estimation from 2TC (Parsey, 

Oquendo, Ogden, et al., 2006).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6 Correlation between 11C-SA-4503 VT estimates derived from metabolite 
corrected and uncorrected arterial input functions  
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In order to investigate the impact of metabolite correction on a more robust outcome measure 

VT in our dataset, MA1 was rerun with an input function without accounting for metabolites 

and the results compared to the metabolite-corrected results. The full cohort of 23 healthy 

volunteers were used in this analysis. The average difference between VT values derived from 

metabolite corrected and uncorrected arterial input functions was ~9%, which is similar to the 

difference reported by Sakata et al. However, as shown in Figure 5.6, VT values derived using 

the two methods were less correlated (r2 = 0.90) compared to the r2 of 0.98 reported by Sakata 

et al. Taken together with the fact that some of the PPF estimates for the 60 and 90 minute 

samples were as low as 60% in our dataset (Figure 5.3B), this suggests that the peripheral 

metabolism of 11C-SA-4503 is slow but significant enough that correcting for it should not be 

easily dismissed. 

 
5.5 Time stability analysis of 11C-SA-4503 
 
 
The performance of MA1 derived VT was evaluated for varying scan lengths following the time 

stability methodology laid out in Chapter 3. Time stability data from 23 scans was used to 

assess time stability of 11C-SA-4503 at a population level.  

 
The minimum time required to produce stable estimates of VT varied across regions (Figure 

5.7), with smaller ROIs such as the hippocampus, substantia nigra, and caudate requiring up 

to 80 minutes of scan time whereas larger cortical regions reached stability as early as 50 

minutes.  As shown in Figure 5.8, on average, a minimum of 80 minutes acquisition with 11C-

SA-4503 produced reliable VT estimates that were 98.2(1.2)% of the VT
90min. This gave 

confidence that despite the slow kinetics of the tracer, scan time can be reliably shortened to 

80 minutes. 
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Figure 5.7 Regional time stability plots for 11C-SA-4503 VT where each data point represents 
the mean %VT

90min of 23 subjects and the error bars represent standard deviation (SD). 
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5.6 Parametric VT Images  
 
5.6.1 MA1 
 
 Parametric VT maps were generated for all  23 11C-SA4503 scans acquired by fitting MA1 at 

the voxel level.  The regional averages of parametric VT s were correlated with ROI TAC derived 

estimates, resulting in a moderate correlation (r2= 0.81), and gradient of 0.74 (Figure 5.9).  

Of the parametrically derived VT estimates, 0.52% ± 0.41% of the voxels produced negative 

Figure 5.9 Correlation between TAC derived and parametrically derived 11C-SA-4503 VT for 23 
subjects and 12 ROIs. 

 

Figure 5.8 Time stability plot of 11C-SA-4503 %VT
90min where each data point represents the mean 

across 256 data points (23 subjects x 12 ROIs). Data prior to 50 minutes excluded for visual clarity.  
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values while the percentage of voxels with nonphysiologically high estimates (VT > 100) was 

0.97% ± 0.83%. 

 
Parametric VT images that were initially created in subject space were spatially normalised to 

MNI52 space by applying the DARTEL flow fields derived previously (see chapter 3 section 

3.5). Flow fields were applied to the images using a 4mm x 4mm x 4mm smoothing gaussian 

kernel. Mean and standard deviation VT images of 11C-SA-4503 were created from the 23 

healthy subjects by averaging the distribution of intensities in the corresponding voxels 

(excluding non-physiological estimates) across all subjects (shown in Figure 5.10). Mean and 

SD images were further smoothed using a smoothing kernel of 6 mm x 6 mm x 6 mm for display 

Figure 5.10 Orthogonal cross-sections of MRI (left), mean (middle) and standard deviation (SD) 
(right) VT images of 11C-SA-4503 (n=23). 
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purposes. The high VT observed in the cerebellum and insular cortex was consistent across the 

population. 
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5.6.2 One TC 
 
 
As mentioned above, a portion of the voxel-level VT estimates generated using MA1 were non-

physiologically high and needed to be excluded from the correlation with TAC derived results. 

We therefore explored 1TC to generate more robust parametric11C-SA-4503 VT images. 10 11C-

SA-4503 scans were used to generate parametric VT images using the basis function 

implementation of 1TC with a range of k2 min constraints (k2 min: 0.0008, 0.0009, 0.001, 

0.002, 0.003, 0.004, 0.005, 0.006). The resulting sets of VT estimates were compared in terms 

of percentage of voxels with non-physiological VT values, and were correlated with ROI derived 

MA1 results on a subject by subject basis.   

 
The results of the analysis are summarised in Table 5.2. The percentage of total voxels with VT 

> 100 was reduced with increasing (faster) k2 min, reaching nearly 0% at k2 min=0.004. The 

comparison of parametrically derived 1TC results with ROI derived MA1 results showed 

relatively constant r2 values across the different k2 min values that were assessed. There was an 

increase in bias (gradient further away from 1) with increasing k2 min values, while the group 

variance decreased and stabilised at k2 min=0.004. Choosing larger bias over larger variance, 

I ultimately decided on k2 min=0.004 as the optimum value for k2 min and this also allowed 

for the minimization of voxel loss due to non-physiologically high VTs. 

 
As a final step, 1TC with k2 min=0.004 was applied to the whole cohort including 23 11C-SA-

4503 scans. 1TC parametric VT values were reasonably correlated with TAC derived estimates, 

with an r2= 0.66, and gradient of 0.80 (Figure 5.11).  This showed that it is feasible to generate 

parametric images for 11C-SA-4503 using the basis function implementation of 1TC with k2 min 

constrained to be 0.004 without having to remove a large number of voxels and sacrificing 

from image quality, with the caveat that bias correction would be needed. 
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5.7  Conclusion 
 
 
This chapter sought to further characterise 11C-SA-4503 in the human brain by determining the 

optimum kinetic methods and outcome measures for its quantification across MIND-MAPS 

cohorts. 11C-SA-4503 uptake into the brain was slow and its kinetics were well described by the 

graphical analysis method MA1. Kinetic analysis can also be performed on voxel-wise level 

using MA1 provided non-physiological outliers are removed, and 1TC with the appropriate bias 

correction. Despite the slow kinetics, a minimum of 80 minute scan time was shown to be 

sufficient to obtain reliable estimates of VT.  

 
Despite the successful initial translation of 11C-SA-4503 PET imaging from primate to human 

and numerous human studies published between 2000-2010, the last decade has been notably 

lacking in studies with this ligand. The reasons for this stems from some of the limitations of 

11C-SA-4503. As shown previously by Sakata and colleagues, there was no region devoid of 

specific 11C-SA-4503, making the need for arterial blood acquisition unavoidable. The slow 

Figure 5.11 Correlation between MA1 TAC derived and 1TC parametrically derived 11C-
SA-4503 VT for 23 subjects and 12 ROIs 
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kinetics of the tracer combined with the short half-life of 11C pose limitations on its use in 

clinical setting as well as cross-sectional studies where certain disease cohorts may be unable 

to tolerate 80 minutes of dynamic scanning. Importantly, the poor estimation of k4 

microparameters in some regions suggests that 11C-SA-4503 kinetics might approach 

irreversibility in these regions. Moreover, since the initial translation of 11C-SA-4503 into 

humans, studies have revealed that 11C-SA-4503 has significant affinity for sigma 2 receptors 

as well as to vesicular acetylcholine transporters, and lower selectivity to S1R than originally 

thought (Lan, Bai, Chen, et al., 2019; Shen, James, Andrews, et al., 2015). 11C-SA-4503 

therefore fails to meet three of the key requirements of an ideal tracer (reviewed in Chapter 

1), i.e. that it has fast tissue kinetics, displays reversible binding and has high affinity and 

selectivity for its target.  

 
In conclusion, although it does not possess all of the properties of an ideal brain PET 

radioligand, 11C-SA-4503 has been sufficiently characterised in the healthy human brain and 

can be applied across the MIND-MAPS consortium to provide an index of S1R concentration. 
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6 Quantification and kinetic modelling of 11C-UCB-J 
 
 
The kinetics of 11C-UCB-J have been well-characterised in the rodent, NHP and the human brain 

(Finnema, Nabulsi, Eid, et al., 2016; Nabulsi, Mercier, Holden, et al., 2016). The work 

presented in this chapter builds on the existing literature of 11C-UCB-J quantification in humans 

and sets out to determine an optimal analysis workflow for 11C-UCB-J quantification in to be 

applied to all MIND-MAPS cohorts. 
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6.1 Background and Study Overview 
 
 
11C-UCB-J is a PET radioligand that targets synaptic vesicle protein A (SV2A) which is a 

transmembrane glycoprotein expressed ubiquitously throughout the brain. Since its discovery 

in 2014, there has been an ever-increasing effort to demonstrate correlations between 11C-UCB-

J signal change and disease progression across a number of neurodegenerative and psychiatric 

diseases (reviewed in Chapter 2). The popularity of this tracer is in large part due to its 

favourable imaging characteristics including excellent correlation with the synaptic density 

marker synaptophysin, high affinity for SV2A, high uptake and fast kinetics (Finnema, Nabulsi, 

Eid, et al., 2016).  

 
This chapter starts with a brief overview of the literature on 11C-UCB-J quantification methods 

(section 6.2). The distribution of ligand uptake is presented in section 6.3. The process of 

establishing appropriate blood and plasma models to create a reliable arterial plasma input 

function is covered in section 6.4. The optimal tissue kinetic model is established in section 6.5, 

followed by an assessment of SUVr-1 as an outcome measure and time stability analyses in 

sections 6.6 and 6.7, respectively. Finally, in section 6.8, voxel-level kinetic modelling results 

are presented. 

 
6.2 Literature Review of 11C-UCB-J Quantification  
 
 
Since its first application to humans, 11C-UCB-J kinetics have been studied rigorously. Initial in 

vitro and in vivo 11C-UCB-J data confirmed  that  the tracer is displaceable by SV2A-selective 

anticonvulsant levetiracetam, displays high uptake and fast kinetics displayed in all grey matter 

regions and low uptake in white matter regions (Finnema, Nabulsi, Eid, et al., 2016; Nabulsi, 

Mercier, Holden, et al., 2016). The authors also showed that 11C-UCB-J imaging of SV2A was 

sensitive to temporal lobe epilepsy induced synaptic loss (Finnema, Nabulsi, Eid, et al., 2016). 

The same group conducted a further evaluation of 11C-UCB-J  kinetics including time stability 
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analysis and test-retest reproducibility of  outcome measures where they showed that the 1TC 

model is most suitable for estimating the primary outcome measure VT when applied both on 

a regional and voxel-wise level with exceptional reproducibility (Finnema, Nabulsi, Mercier, et 

al., 2017). From their time stability analysis of VT and K1 assessed across 120 minutes, scan 

time was proposed to be shortened to 60 minutes. In 2018, two independent blocking studies 

by Koole et al and Rossano et al attempted to validate subcortical white matter region centrum 

semiovale (CS) as a reference tissue 11C-UCB-J (Koole, van Aalst, Devrome, et al., 2018; 

Rossano, Toyonaga, Finnema, et al., 2019). The first study found no significant effects of 

blocking on CS binding, while the latter found that CS VT overestimated VND by 35–40%. The 

potential impact of improving CS definition and increasing the number of iterations during 

iterative reconstruction on the difference between CS VT and blocking derived VND have also 

been investigated and shown to have no significant effect (Rossano, Toyonaga, Finnema, et al., 

2019). 

 
Based on the findings that CS may be a biased yet useful estimate of nondisplaceable uptake, 

an SRTM approach (Y. Wu & Carson, 2002) was also investigated as a potential reference 

region method for quantifying SV2A (M.-K. Chen, Mecca, Naganawa, et al., 2018; Koole, van 

Aalst, Devrome, et al., 2018; Mertens, Maguire, Serdons, et al., 2020; Rossano, Toyonaga, 

Finnema, et al., 2019). The bias of the SRTM approach on SV2A occupancy and density has 

been shown to be negligible (Koole, van Aalst, Devrome, et al., 2018), and  SRTM2 has been 

used to show significant reductions (41%) in BPND in the hippocampus of subjects with AD 

when compared to healthy subjects (M.-K. Chen, Mecca, Naganawa, et al., 2018). The CS has 

also been used to derive the simplified outcome measure SUVr, which correlates well with both 

TAC-based and parametric results derived from full kinetic modelling with 1TC (Koole, van 

Aalst, Devrome, et al., 2018; Mertens, Maguire, Serdons, et al., 2020).  
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The remainder of this chapter summarises the results of the kinetic modelling methods that 

were applied to the 11C-UCB-J scans acquired as part of the MIND-MAPS Consortium. The 

results are discussed within the context of the published 11C-UCB-J quantification approaches 

summarised above.  

 

6.3 Tracer Uptake and distribution 
 
 
11C-UCB-J uptake was heterogeneous and widespread in the brains of 12 healthy volunteers 

(Table 3.1, highlighted cohort), consistent with the expression of the SV2A in the brain (Figure 

6.1). Tracer kinetics were fast, reaching peak values at ~7-21 minutes post injection after 

which it steadily declined, consistent with previous reports by Finnema and colleagues 

(Finnema, Nabulsi, Eid, et al., 2016). Uptake values ranged from 3.4 g/ml in the centrum 

semiovale to highest of 9.6 g/ml in the putamen. 

 

Figure 6.1 Orthogonal cross sections of co-registered 11C-UCB-J PET and MR images from a 
representative subject. PET images are shown as SUV summed from 10-90 minutes. 
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6.4 Determining the optimum arterial plasma input function  
 
 
This section summarises the results of the plasma over blood (POB) and parent fraction (PPF) 

models applied to 11C-UCB-J arterial blood data. The models that produced the best fits were 

in turn applied to blood data acquired during all subsequent 11C-UCB-J scans. 

 
6.4.1 Modelling plasma over blood (POB) data 
 
 
The ratio of 11C-UCB-J concentration in plasma to that in blood stayed at a constant level 

throughout the 90 minute scan. A comparison of the 4 POB models using AIC confirmed that a 

‘constant’ model (see Equation 4.1) produced the most parsimonious fits to the POB data for 

11C-UCB-J. The model produced good fits to all 12 subjects’ data, as can be seen from the model 

fits shown in Figure 6.2.  

Figure 6.2  Fits of the ‘constant’ POB model to the blood data from 12 11C-UCB-J scans 
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6.4.2 Modelling plasma parent fraction (PPF) data 
 
 
11C-UCB-J metabolised quickly in the plasma, with 25 ± 5 % intact tracer remaining at 90 

minutes post-injection. HPLC analysis revealed 3 metabolites eluting between 6 and 9 minutes 

(fractions 18-26), in line with what has been reported previously (Finnema, Nabulsi, Eid, et 

al., 2016). According to AIC, a sigmoid model with 3 parameters a, b, and g (Equation 4.2), 

best described the shape of the parent fraction data over time. This model produced good fits 

to the parent fraction data of all twelve 11C-UCB-J scans (Figure 6.3). 

 

 

Figure 6.3 Fits of the ‘sigmoid’ PPF model to the metabolite data from 12 11C-UCB-J scans 
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6.5 Determining the optimum tissue kinetic model for 11C-UCB-J 
 
 
MA1 (t* = 30 min), 2TC and 1TC models all produced visually acceptable fits to the regional 

11C-UCB-J derived TAC data (Figure 6.4 A. B and C). 2TC performed better than 1TC in 10/156 

cases according to AIC, however 2TC derived VT estimates had poorer identifiability (SE>10%) 

in 5/156 cases (regional AIC and SE summarised in Table 6.1), which is in agreement with 

what has been reported in the literature (Finnema, Nabulsi, Eid, et al., 2016). MA1 results were 

in excellent agreement with 1TC results (r2 = 0.99). Given the very good agreement between 

1TC and gold standard 2TC derived VT estimates (r2=0.99, Figure 6.4 D), and the ease with 

which parametric images can be generated using 1TC, this method was chosen as the model of 

choice to derive final outcome measures.  

 
As covered in section 6.2, the centrum semiovale has been verified as a suitable reference 

region for 11C-UCB-J and was therefore used to derive DVR and in turn BPND (DVR-1) as a 

measure of specific binding. VT/fp and K1 were also assessed as outcome measures for 11C-UCB-

J.  All outcome measures derived using the 1TC model  are provided in Table 6.2. 

 
VT estimates ranged from 5.7 ±  0.7 ml.cm-3 in the CS to 20.9 ± 2.1 ml.cm-3 in the putamen, 

with a mean inter-subject variability across regions at 13% ± 5%. DVR was highest in the 

putamen (3.54 ± 0.21) and lowest in the brainstem (1.26 ± 0.21), with intersubject variability 

slightly reduced to 10% ± 5% across regions. Consequently, BPND was highest in the putamen 

and lowest in the brainstem. Correction of VT by fp had no significant effect on inter-subject 

variability except for in the centrum semiovale where variability was increased to 18%. Mean 

Table 6.1 Regional breakdown of model selection based on AIC and identifiability 
ROI CS BST SN THA VSTR CAU PUT HIP INS TL PL FTCX CER Total 

AIC 
1TC 3 0 0 0 0 6 0 0 0 0 0 1 0 10 
2TC 9 12 12 12 12 6 12 12 12 12 12 11 12 146 

SE>10% 
1TC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2TC 2 0 1 0 1 0 0 0 0 0 0 0 0 5 

The numbers in the top two rows represent the number of times 1TC or 2TC were chosen as the preferred model as 
assessed by AIC. The numbers in the bottom two rows represent the number of cases for which standard error (SE) 
associated with 1TC and 2TC derived VT was larger than 10% . 
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K1 values ranged from 0.147 ± 0.019 ml.cm-3.min-1 in the CS to 0.382 ± 0.070 ml.cm-3.min-1 in 

the putamen which was in line with values previously reported in the literature (Finnema, 

Nabulsi, Mercier, et al., 2017).  

 
 
 

 

Figure 6.4 11C-UCB-J regional TACs and model fits for a representative subject derived with A 
1TC, B 2TC and C MA1.  D Linear regression plot showing comparison of 1TC vs 2TC derived 
1C-UCB-J VT (n=12). 
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6.6 Assessment of SUVr-1 as an outcome measure  
 
 
Data from 24 healthy subjects was used to assess SUVr–1 as a simplified outcome measure and 

enable comparison to BPND (DVR-1). SUVr values were obtained by normalising SUV values in 

target ROIs derived from a 20 minute static images to that in the CS. SUVr-1 data was generated 

for 8 time windows (given in Table 6.3) and compared to BPND using least-squares linear 

regression.  

 

 
As previously demonstrated by Mertens and colleagues (Mertens, Maguire, Serdons, et al., 

2020), highly significant correlations were observed between BPND and SUVr-1 values for 40 - 

60, 50 - 70, 60 – 80 and 70 - 90 min post-injection, with 40-60 and 50-70 time intervals showing 

increased bias compared to the later time intervals where the slope was close to zero (Figure 

6.5A-B). 

Table 6.2 11C-UCB-J derived regional PET outcome measures 

Outcome Measure Kinetic 
Model CS BST SN THA VSTR CAU PUT HIP INS TL PL FTCX CER 

VT 
(mL.cm-3) 1TC 

5.7 7.2 8.5 11.2 20.9 12.4 20.9 13.4 20.5 17.6 15.5 14 15.9 
12% 12% 10% 16% 13% 28% 11% 13% 10% 10% 14% 14% 10% 

VT / fp 
(mL.cm-3) 1TC 

25 31 37 49 91 54 91 62 90 83 77 76 69 
18% 13% 12% 15% 15% 28% 14% 12% 12% 11% 13% 13% 12% 

DVR 1TC n/a 
1.26 1.50 1.96 3.66 2.17 3.67 2.50 3.63 3.34 3.11 3.07 2.80 
7% 8% 13% 8% 24% 7% 10% 9% 8% 11% 10% 8% 

K1 
(mL.cm-3.min-1) 1TC 

0.147 0.252 0.279 0.309 0.351 0.251 0.397 0.259 0.364 0.312 0.353 0.359 0.368 
14% 15% 14% 19% 20% 32% 18% 18% 20% 17% 18% 20% 16% 

BPND 1TC n/a 
0.26 0.50 0.96 2.66 1.17 2.67 1.50 2.63 2.34 2.12 2.07 1.80 
33% 23% 27% 11% 45% 10% 16% 12% 12% 16% 15% 12% 

Data are mean and COV. 5 values for 2TC estimation were excluded based on  VT  of SE% > 10.  (n=12) 

Table 6.3  Results from linear correlation of SUVr -1 values with DVR – 1 derived for 8 SUVr time 
windows (12 ROIs, 24 subjects) 

SUVr time window (minutes) r2 gradient 
0-20 0.19 0.34 

10-30 0.73 0.55 
20-40 0.86 0.67 
30-50 0.90 0.78 
40-60 0.95 0.85 
50-70 0.97 0.90 
60-80 0.97 0.95 
70-90 0.96 0.97 
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6.7 Time stability analysis 
 
 
The time stability of 11C-UCB-J was evaluated by exploring the performance of 1TC derived VT 

and K1 as well as SUVr-1 derived from the 8 time intervals provided in Table 6.3. The VT and 

K1 values estimated for the different scan lengths were expressed as a percentage of VT and K1 

estimated from the full 90 min acquisition (VT 90min, K1
90min), aggregated together over 24 

subjects and plotted against time as described in Chapter 3. 

 
11C-UCB-J VT estimates stabilised as early as 60 minutes, yielding a VT 98.0 ± 1.8 % of VT

90min  

(Figure 6.6 A). Similarly, K1 estimates reached stability at 60 minutes post injection at a value 

101.1 ± 1.1% of K1
90min (Figure 6.6 B). There were no significant differences in time stability 

across regions for either VT or K1 (regional plots not included). SUVr – 1 values started to 

stabilise after 60 minutes (Figure 6.6C), reaching a final mean value of 1.74 ± 0.80 at 70 

minutes post-injection. 

Figure 6.5 Correlation between A SUVr-1 (60-80) and DVR-1, and B SUVr-1 (70-90) and DVR-1 
for 24 subjects and 12 ROIs 
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The time stability results reported here are in agreement with what has been reported by  

Finnema and colleagues, who  suggested that scan time can be shortened to 60 minutes for 

both TAC-level and voxel-level quantification of 11C-UCB-J VT and K1 (Finnema, Nabulsi, 

Mercier, et al., 2017). Our assessment of SUVr-1 as an outcome measure suggests the SUVr 

images generated from a 20 minute static 11C-UCB-J acquisition at least 60 minutes post-

injection may serve as a good proxy for BPND. This result supports recent findings by both Koole 

Figure 6.6 Time stability plots of A % VT
90min  and B % K1

90min   and C SUVr – 1 where each data 
point represents the mean across 288 data points (24 subjects x 12 ROIs).   
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et al and Mertens et al who showed that SUVr -1 values derived from 30 minutes static PET 

scan acquired between 50 and 90 minutes post-injection are highly correlated with DVR – 1 

(Koole, van Aalst, Devrome, et al., 2018; Mertens, Maguire, Serdons, et al., 2020). 

 
6.8 Parametric VT Images 
 
 
Voxel-based parametric maps of VT and K1 were generated for 24 11C-UCB-J scans using a basis 

function implementation of 1TC. Parametric VT images that were initially created in subject 

space were spatially normalised to MNI52 space by applying the DARTEL flow fields derived 

previously (see chapter 3 section 3.5). Flow fields were applied to the images using a 4mm x 

4mm x 4mm smoothing gaussian kernel. 

 
Parametrically derived VT and K1 estimates were in excellent agreement with TAC derived 

results (Figure 6.7), with r2 values 0.99 and 0.96 obtained for K1 and VT, respectively. 

 

Figure 6.7 Correlation between A TAC derived and parametric K1 B TAC derived and parametric VT 
for 24 subjects and 12 ROIs 
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Following the normalisation of parametric images from subject space to MNI152 space as 

described in chapter 3 section 3.5, voxel intensities were averaged across subjects (n=24) to 

create the mean and standard deviation VT images shown in figure 6.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.9 Conclusion 
 
 
11C-UCB-J uptake was widespread and displayed fast kinetics. The 1TC method was chosen as 

the optimal model to estimate VT and K1, with time stability results showing that at least 60 

minutes of dynamic scanning is required to reliably estimate both these outcome measures. 

 
SUVr-1 obtained from a 20 minute static scan acquired at least 60 minutes post-injection 

produced results that were highly correlated with 1TC derived BPND results, thus can be reliably 

Figure 6.8 Orthogonal cross-sections of MRI (left), mean (middle) and standard 
deviation (SD) (right) VT images of 11C-UCB-J (n=24). 



 126 

used as a non-invasive measure of binding in situations where arterial blood sampling is not 

possible and scan time needs to be shortened to accommodate patient comfort. Although a 

simplified reference region approach such as SRTM2 was not applied to this particular dataset, 

recently published data suggests it may be used, provided centrum semiovale physiology and 

kinetics are unchanged due to disease and any potential bias in BPND that is expected to arise 

when compared with 1TC results is sufficiently accounted for. 

 
All of the results derived for this particular healthy cohort were in line with what has been 

previously reported in the literature, adding further confidence that 11C-UCB-J imaging is an 

excellent method for quantifying SV2A in vivo and will prove useful in the diagnosis and 

monitoring of brain diseases involving loss of synapses. 
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7 Assessment of Healthy Ageing Effects on MC-I, S1R 

and SV2A quantification  

 
The analysis pipelines for quantifying MC-I, S1R and SV2A using 18F-BCPP-EF, 11C-SA-4503 and 

11C-UCB-J, respectively, were established in the last 3 chapters. The work in this chapter utilises 

these pipelines to generate quantitative outcome measures for the full MIND-MAPS healthy 

volunteer cohort and investigates their relationship with age and gender. 
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7.1 Background 
  
As detailed in Chapter 2 section 2.12, mitochondrial and ER related dysfunction and related 

synaptic loss are key aspects of ageing and are thought to contribute to the pathology of NDDs. 

The mitochondrial theory of ageing associates increasing age with decreased mitochondrial 

functionality, where the ETC and in particular MC-I are impaired (Pollard, Craig, & 

Chakrabarti, 2016). Decreased MC-I activity and ROS production correlate with increased age 

in rats, and MC-I density as measured by 18F-BCPP-EF is reduced with age in monkeys in all 

brain regions (Hideo Tsukada, 2014). Interestingly, the age dependant reduction in 18F-BCPP-

EF signal in healthy aged monkeys has been shown to correlate negatively with Ab deposition 

(Hideo Tsukada, 2014). Human post-mortem data has also shown decreased MC-I activity with 

age, where the greatest reductions are found in the frontal cortex, temporal cortex cerebellum 

and putamen (Ojaimi, Masters, Opeskin, et al., 1999). 

 
The involvement of increased ER stress in ageing and the criticality of S1Rs to ER function 

and neuronal protection have prompted the evaluation of the effect of age on S1Rs in the brain. 

However, in vitro and in vivo experiments have produced somewhat conflicting results. S1R 

expression was preserved in aged rats and mice as measured using immunohistochemistry 

(Phan, Urani, Sandillon, et al., 2003), whereas human post-mortem autoradiography showed 

decreased S1R in the frontal cortex in the aged brain PET studies also provide mixed results, 

with evidence of reduced 11C-SA-4503 binding with increasing age in selective brain regions 

of rodents (Ramakrishnan, Visser, Rybczynska, et al., 2016), as well increases in11C-SA-4503 

binding with age in the rodent and NHP brain (Ishiwata, Kobayashi, Kawamura, et al., 2003; 

Kawamura, Kimura, Tsukada, et al., 2003; Wallace, Mactutus, & Booze, 2000). Upregulation 

of S1R binding sites in response to age-related reductions in endogenous S1R agonists (e.g. 

neurosteroids) and reduced dopaminergic and glutamatergic signalling, known to be modulated 
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by S1R, has been proposed as an explanation for increased S1R signal. Evidence of ER stress 

induced upregulation of S1Rs provides a further mechanism for the age-related increases seen 

(Mitsuda, Omi, Tanimukai, et al., 2011). 

 
Normal brain ageing is characterized by the selective loss of discrete populations of dendritic 

spines and synapses (Graham, Naldrett, Kohama, et al., 2019). Age-related functional 

impairments are likely to be linked to disturbed synaptic maintenance, with hippocampal 

synapses appearing to be especially vulnerable to age related loss (Canas, Duarte, Rodrigues, 

et al., 2009; Hof & Morrison, 2004). In humans,  an early post-mortem study by Masliah et al 

showed a reduced number of presynaptic terminals in aged dementia-free subjects compared 

to younger subjects (Masliah, Mallory, Hansen, et al., 1993). Reduced synaptic density with 

age in the human brain, particularly in the caudate and thalamus, is also consistent with the 

preliminary work using 11C-UCB-J PET (Carson, Naganawa, Matuskey, et al., 2018). 

 
Gender is increasingly recognised as a contributing factor to the risk of developing of NDD”s. 

Several studies have suggested two-fold increase in the risk of developing PD in men compared 

to women (Gillies et al., 2014; Labandeira-Garcia et al., 2016), whereas the prevalence of AD 

in women is significantly higher than in men (Niu, Álvarez-Álvarez, Guillén-Grima, et al., 2017; 

Wortmann, 2015). There is therefore an increasing urgency to understand sexual dimorphisms 

in the healthy as well as injured brain to develop therapies that work for both genders. 

 
Differences in energy metabolism and mitochondrial function are thought to underlie some of 

the gender differences in vulnerabilities to developing neurodegenerative disease. In vitro data 

from mice has shown female mice to have higher levels of antioxidant enzymes, and be more 

resistant to MC-I inhibition by ROS compared to males (Demarest & McCarthy, 2014; Kander, 

Cui, & Liu, 2017). MC-1 activity measured by metabolic imaging of the brain has been shown 
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to be higher in the female human brain compared to males (Silaidos, Pilatus, Grewal, et al., 

2018).  

 
7.2 Study Overview 
 
 
Based on the above evidence, the effect of healthy ageing on MC-I, S1R and SV2A binding was 

investigated. The effect of gender on PET outcome measures was also explored.  MC-I, S1R and 

SV2A were quantified using the kinetic methods established in Chapters 4, 5 and 6, 

respectively. A preliminary analysis of age effects on MC-I, S1R and SV2A assessed by 18F-BCPP-

EF, 11C-SA-4503 and 11C-UCB-J has been published using data from a subset (n=12) of the 

cohort presented here (Mansur, Rabiner, Comley, et al., 2019). This chapter builds on the 

published work by including the full cohort of subjects and accounting for partial volume 

effects. 

 
7.2.1 Hypotheses 
 
 
In light of the mitochondrial theory of ageing, post-mortem evidence of decreased MC-I in 

ageing humans and findings of reduced 18F-BCPP-EF signal in nonhuman primates, we 

hypothesised that 18F-BCPP-EF signal would be reduced with age in humans. The involvement 

of age-related reductions of endogenous S1 agonists and the link between increased ER stress 

in S1R upregulation, combined with in vivo evidence of increased 11C-SA-4503 signal  in rats 

and monkeys led to the hypothesis that 11C-SA-4503 will increase with age in humans. Lastly, 

because the loss of synapses is a natural consequence of age-related neurodegeneration along 

with post-mortem and in vivo evidence of reduced SV2A in the brain, we hypothesised that 11C-

UCB-J signal will be reduced with healthy ageing. 

 
Based on preclinical work showing increased vulnerability of males to oxidative stress induced 

MC-I damage as well as more recent evidence of increased MC-I function in the healthy human 
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brains of females compared to males, we hypothesised that there would be higher 18F-BCPP-EF 

signal in females compared to males. Given the shortage of literature on gender differences in 

S1R and SV2A expression, no specific hypotheses were formed with regards to the relationship 

between gender and 11C-SA-4503 and 11C-UCB-J signal. 

 
7.3 Methods 
 
 
The full MIND-MAPS healthy volunteer cohort was included in this study, resulting in data 

from a total of 30 18F-BCPP-EF (25 scans from MIN-DMAPS healthy volunteer cohort + 5 

baseline scans from test-retest cohort), 23 11C-SA-4503 and 24 11C-UCB-J dynamic PET scans 

with arterial lines being included in the assessment of the effect of age and gender on MC1, 

S1R and SV2A density. The age range of subjects included in this study was 22 - 78 for 18F-

BCPP-EF,  23 – 78 for 11C-SA-4503 and 22 – 78 for 11C-UCB-J. A summary of demographic 

information and injection parameters is provided in Table 7.1, whilst demographic information 

and injection parameters for individual subjects can be found in Tables 3.1 – 3.4. The reader is 

referred to Chapter 3 sections 3.1 - 3.2 for the scanning protocols and image processing 

pipelines used. 

 
Table 7.1 MINDMAPS Healthy Ageing Cohort – Summary of Demographic Information, 
Injection Parameters and fp 

Ligand Age 
(yrs) 

Weight 
(kg) 

Height 
(cm) 

BMI 
(kg/m2) 

Injected 
Activity 
(MBq) 

Injected 
Mass 
(µg) 

fp 

18F-BCPP-EF 
(n = 30 

16M/14F) 
51 ± 19 72.9 ± 14.4 171 ± 11 25.0 ± 4.2 89 ± 4 0.08 ± 0.04 0.080 ± 

0.017 

11C-SA-4503 
(n = 23 

13M/10F) 
56 ± 18 73.0 ± 15.4 171 ± 11 24.9 ± 4.4 255 ± 19 3.43 ± 1.74 0.064 ± 

0.016 

11C-UCB-J 
(n = 24 

14M/10F) 
55 ± 18 74.4 ± 15.1 171 ± 11 25.3 ± 4.2 204 ± 59 2.52 ± 1.19 0.245 ± 

0.037 

Data are mean ± SD. M: Male, F: Females, BMI, Body-mass Index 
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7.3.1 Derivation of PET outcome measures 
 
 
The decision of which outcome measures to assess for each tracer was based on the work 

presented in chapters 4, 5 and 6 where the appropriate parameters for quantifying 18F-BCPP-

EF, 11C-SA-4503 and 11C-UCB-J in the healthy brain were established. 

 
30 18F-BCPP-EF scans were used to generate parametric VT maps using MA1 (fixed BV, t* = 30 

min). VT/fp and DVR were calculated from the parametric VT estimates. 23 11C-SA-4503 scans 

were analysed to obtain regional VT and VT/fp estimates. Due to the low signal to noise ratio of 

the 11C-SA-4503 derived parametric images, VT and VT /fp were estimated from regional TACs 

using MA1 (fixed BV, t* = 30 min). VT, VT/fp and BPND (DVR -1) were used as outcome measures 

for 24 11C-UCB-J scans and were derived by applying a 1TC model on a voxel-wise basis. The 

term BPND is used throughout the rest of this chapter instead of DVR-1 despite the small amount 

of specific binding in the centrum semiovale region in order to be consistent with previous 11C-

UCB-J literature. The input function generation steps for 18F-BCPP-EF, 11C-SA-4503 and 11C-

UCB-J, have been detailed in chapters 4, 5 and 6, respectively. The ROIs included in the analysis 

were the centrum semiovale, brainstem, substantia nigra thalamus, globus pallidus, ventral 

striatum, caudate, putamen, frontal lobe, hippocampus, amygdala, insular cortex, temporal 

lobe, parietal lobe and cerebellum. These ROIs were chosen to represent major brain areas and 

were defined as described in Chapter 3, Section 3.3. 

 
7.3.2 Evaluation of age and gender effects 
 
 
Age effects were evaluated by performing regional Pearson’s correlations between age and PET 

outcome measures as well as between age and regional volumes (𝑉𝑜𝑙ÁðS)	that have been 

normalised to whole brain volumes as 

%𝑉𝑜𝑙ÁðS = 100	 ×	 �ðñ�òó
�ðñô��óÔ

    Equation 7.1 
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where 𝑉𝑜𝑙ÁðS is the grey matter volume for a given ROI and 𝑉𝑜𝑙�Á�S´ is the whole brain volume. 

The age vs. volume and age vs. PET outcome measure data were fitted with a linear regression 

as there was no evidence that a higher dimensional curve was required to describe the data. 

Percent rates of change per year in outcome parameters were then calculated as, 

%change year	 =⁄ 100	 × n∆@øùøúûüûù
∆Pýû

s ParameterúûøK,   Equation 7.2 

Pearson’s correlation coefficient, r, and the associated p values were used to assess the strength 

of the relationship between age and outcome measures. The statistical significance of Pearson’s 

correlations were tested against a Bonferroni-adjusted p value of 0.003 (0.05/16 regions). 

 
The effect of gender was assessed for VT estimates derived for each ligand in an exploratory 

analysis by separating the males and females into two groups and running unpaired t-tests.  No 

corrections for multiple comparisons were applied. 

 
7.3.3 Correcting for partial volume effects 
 
In order to separate the effects of age on MC-I, S1R and SV2A density from the effects of age 

related volume loss, a partial volume correction (PVC) algorithm (Müller-Gärtner, Links, 

Prince, et al., 1992) was applied to all three datasets. For 18F-BCPP-EF and 11C-UCB-J, the 

correction was applied to parametric VT images, while for 11C-SA-4503, PVC was applied to the 

dynamic images on a frame by frame basis. The Müller-Gärtner PVC method relies on grey 

matter (GM) and white matter (WM) segmentations of an MRI image. As demonstrated in the 

simplified depiction in Figure 7.1, a binary WM map is scaled to an estimate of the true mean 

WM value, is convolved with the scanner’s point-spread function (PSF) and subtracted from 

the measured PET data (original PET image). The resulting image is then divided by the GM 

map convolved with the PSF to correct for spill-out effects from grey matter. PVC was not 
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applied to the substantia nigra as the Müller-Gärtner method has yet to be validated for such 

small regions. 

 

 

7.4 Results 
 
 
The mean and coefficient of variation (COV) of PET outcome measures derived for the full 

cohort of MIND-MAPS healthy volunteer subjects for all three ligands and the regional volume 

data that were used in the linear regressions with age are provided in Table 7.2. The results of 

the correlation analyses between age and PET outcome measures is limited to VT, VT/fp and 

DVR for 18F-BCPP-EF, VT, VT/fp for 11C-SA-4503 and VT, VT/fp and BPND for 11C-UCB-J. Gender 

effects are discussed for VT only. 

 

Figure 7.1 Application of the Muller-Gartner PVC method to PET data. A binary WM mask 
was convolved with the scanner’s PSF and scaled to the true white matter activity. This was 
they subtracted from the activity measured by the PET scanner and divided by a GM map 
which had been convolved with the scanner’s PSF.  
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7.4.1 Age effects on volume 
 
 
Regional volumes decreased significantly with age in all regions investigated except for in the 

brainstem and thalamus. The greatest loss of volume was observed in the caudate, insular 

cortex, frontal cortex, and parietal lobe with yearly reductions of 0.45%, 0.41%, 0.40% and 

0.40%, respectively (correlation results provided in Table 7.3). There were no gender 

differences in regional volumes in any of the regions examined. 

 

 

 

 

 

 

Table 7.2. Summary of regional volumetric and PET outcome measures 

Radioligand Outcome 
measures 

ROI 

CS BS SN THA GP VSTR CAU PUT FL INS HIP AMY PL TL CER 

18F-BCPP-EF 

VT 
(mL.cm-3) 

11.5 16.5 19.8 21.8 27.0 31.0 22.3 33.7 23.5 25.3 20.3 21.6 24.5 23.3 28.1 

17% 17% 16% 18% 18% 18% 22% 17% 18% 16% 17% 17% 19% 16% 18% 
VT /fp 

(mL.cm-3)  
140 210 252 278 345 395 284 431 300 323 259 275 311 298 358 
18% 18% 16% 19% 19% 18% 24% 19% 19% 17% 19% 18% 19% 18% 18% 

DVR NAN 
1.5 1.8 1.9 2.4 2.7 1.9 2.8 1.9 2.2 1.8 1.9 2.0 2.0 2.3 

10% 9% 11% 9% 19% 18% 9% 7% 8% 9% 8% 7% 8% 8% 

11C-SA-4503 
VT 

29.7 37.8 38.0 33.7 38.7 39.2 28.0 44.7 40.6 46.1 40.7 45.6 38.4 41.8 48.0 

36% 18% 26% 19% 19% 18% 21% 20% 20% 16% 31% 17% 16% 14% 20% 

VT / fp  486 623 619 552 633 642 459 732 666 756 667 750 630 688 792 
39% 27% 30% 27% 25% 25% 27% 26% 27% 25% 35% 26% 25% 24% 29% 

11C-UCB-J 

VT 
(mL.cm-3) 

5.7 7.4 8.8 11.5 15.3 21.7 14.5 22.4 17.9 21.0 14.3 17.4 18.0 19.3 16.2 
11% 12% 12% 15% 11% 11% 19% 10% 12% 11% 12% 10% 13% 11% 10% 

VT /fp 
(mL.cm-3) 

24 31 36 48 63 90 60 93 74 87 59 72 74 80 67 
17% 15% 14% 17% 15% 16% 20% 15% 15% 14% 15% 14% 15% 15% 15% 

DVR NAN 1.55 2.02 2.69 3.81 2.53 3.94 3.57 3.69 2.52 3.07 3.16 3.39 2.84 1.30 
9% 12% 10% 8% 15% 8% 9% 9% 10% 9% 10% 8% 8% 7% 

BPND NAN 0.55 1.02 1.69 2.81 1.53 2.94 2.57 2.69 1.52 2.07 2.16 2.39 1.84 0.30 
24% 24% 15% 11% 25% 11% 12% 12% 17% 13% 15% 12% 12% 30% 

Volume (%)  0.12 2.31 0.06 1.37 0.23 0.14 0.33 0.45 5.73 0.87 0.52 0.25 6.60 8.28 6.67 
10% 5% 7% 5% 6% 9% 13% 11% 10% 10% 8% 8% 10% 8% 7% 

Data are mean and COV. nBCPP-EF = 30, nSA-4503 = 23, nUCB-J = 24 
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*Statistically significant following Bonferroni correction (p < 0.003) 
 

*Statistically significant following Bonferroni correction (p < 0.003) 
 

7.4.2 Age and gender effects on 18F-BCPP-EF 
 
 
The results of the correlation analysis between age and 18F-BCPP-EF PET measures from 30 

subjects (16 M, 14 F) are summarised in Table 7.4. Regional VT was mostly unchanged with 

age. The only noteworthy change with age was observed in the caudate where there was a 

0.46% yearly reduction in VT though the correlation did not survive following Bonferroni 

correction (Figure 7.2 A, r= -0.39, p = 0.03, shown in black). PVC further dampened the 

Table 7.3. Age effect on regional volumes (VolROI) 
ROI r p ∆/yr 
CS -0.22 0.23 -0.12 
BS 0.38 0.04 0.09 
SN -0.20 0.29 -0.07 

THA 0.20 0.29 0.05 
GP -0.25 0.19 -0.08 

VSTR -0.67 0.0001* -0.31 
CAU -0.69 < 0.0001* -0.45 
PUT -0.62 < 0.0001* -0.34 
FL -0.76 < 0.0001* -0.40 

INS -0.76 < 0.0001* -0.41 
HIP -0.56 0.001 -0.24 

AMY -0.57 0.001 -0.24 
PL -0.84 < 0.0001* -0.41 
TL -0.84 < 0.0001* -0.34 

CER -0.58 0.001 -0.22 

Table 7.4.  Age effect on 18F-BCPP-EF PET outcome measures 

ROIS 
VT VT/fp  DVR 

r p ∆/yr r p ∆/yr r p ∆/yr 
CS 0.20 0.30 0.17 0.46 0.01 0.43 NAN NAN NAN 
BS 0.04 0.83 0.04 0.22 0.25 0.20 -0.30 0.11 -0.15 
SN 0.07 0.71 0.06 0.34 0.06 0.27 -0.27 0.15 -0.13 

THA -0.12 0.53 -0.11 0.04 0.83 0.04 -0.55 0.001 -0.30 
GP 0.23 0.23 0.21 0.38 0.04 0.37 0.02 0.93 0.01 

VSTR -0.06 0.75 -0.06 0.16 0.41 0.15 -0.49 0.01 -0.25 
CAU -0.39 0.03 -0.46 -0.21 0.27 -0.27 -0.68 0.0003* -0.65 
PUT 0.11 0.55 0.11 0.29 0.12 0.28 -0.21 0.26 -0.10 
FL 0.06 0.75 0.06 0.25 0.19 0.24 -0.36 0.05 -0.13 

INS -0.08 0.67 -0.07 0.15 0.42 0.13 -0.59 0.001 -0.26 
HIP -0.01 0.95 -0.01 0.18 0.33 0.17 -0.42 0.02 -0.21 

AMY 0.08 0.68 0.07 0.29 0.12 0.27 -0.30 0.11 -0.12 
PL 0.06 0.74 0.05 0.27 0.14 0.25 -0.36 0.05 -0.14 
TL 0.04 0.83 0.04 0.23 0.23 0.22 -0.37 0.04 -0.15 

CER 0.19 0.32 0.17 0.42 0.02 0.38 -0.06 0.77 -0.02 
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negative trend between age and VT in the caudate (Figure 7.2 A , r= -0.16, p > 0.05 shown in 

red). 

 
There were no significant correlations between age and VT/fp, while DVR was reduced in a 

number of grey matter regions including in the thalamus, ventral striatum, caudate, insular 

cortex and hippocampus. The only statistically significant reduction in DVR was observed in 

the caudate (Figure 7.2B, r =-0.68, p < 0.003) at 0.65% per year; however, this effect was 

eliminated following the application of PVC (shown in red in Figure 7.2B). 

 
The results of the comparison of VT estimates in males (n = 16) with that in females (n = 14) 

are summarised in Table 7.5 Overall, 18F-BCPP-EF VT estimates were on average 7.9% ± 1.9% 

higher in females compared to males though none of the differences reached statistical 

significance. The largest difference between genders was found in the ventral striatum (∆ (%) 

= 12, p = 0.08).  

 

 

Figure 7.2 Correlation between 18F-BCPP-EF outcome measures and age. A VT and age were 
negatively correlated in the caudate, B DVR and age were negatively correlated in the caudate. Neither 
of these correlations remained statistically significant following PVC. 

B 
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Given the overall decreasing trend seen in caudate for all three outcome measures with age, 

the effect of age in this region was also investigated separately in males and females. As shown 

in Figure 7.3, the effect of age on caudate VT was more marked in males (Figure 7.3 A) than in 

females (Figure 7.3 B), with the male with a yearly reduction rate of 0.7 % per year (PVC 

uncorrected, p<0.05).  

 

Table 7.5  Gender differences in 18F-BCPP-EF PET outcome measures 

Gender 
 Age 

(yrs) 
ROI VT (ml.cm-3) 

 CS BS SN THA GP VSTR CAU PUT FL INS HIP AMY PL TL CER 
MALE 
(n=16) 

Mean 50 11.3 15.9 19.5 21.1 25.8 29.3 21.3 32.3 22.8 24.6 19.5 20.6 23.5 22.4 27.0 
COV 37% 13% 13% 10% 14% 13% 13% 22% 12% 13% 11% 12% 12% 12% 11% 12% 

FEMALE 
(n=14) 

Mean 51 11.7 17.2 20.2 22.6 28.4 32.9 23.4 35.3 24.4 26.2 21.3 22.6 25.5 24.4 29.4 
COV 41% 21% 20% 20% 22% 21% 21% 23% 21% 22% 20% 20% 20% 24% 20% 21% 

 ∆ (%) 2 4 7 4 7 10 12 9 9 7 7 9 9 8 8 8 
 p value 0.90 0.59 0.25 0.54 0.29 0.15 0.08 0.27 0.17 0.30 0.27 0.15 0.14 0.25 0.16 0.21 
Male age range:  23 – 75; Female age range: 22 - 78 

Figure 7.3 Gender differences in age effect on 18F-BCPP-EF VT  in the caudate. A VT and 
age were negatively correlated in the male caudate. B There was no corrleation between VT 
and age in the female caudate.  

A B 
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7.4.3 Age and gender effects on 11C-SA-4503 
 
 
11C-SA-4503 VT was unchanged with age in the brain (Table 7.6), with the exception of the 

substantia nigra where there was a yearly reduction rate of 0.69 % (r = -0.47, p = 0.03) (Figure 

7.4). Following normalisation of VT by fp, the effect of age in the nigra was suppressed to 0.33% 

per year (r = -0.20, p = 0.36). None of the correlations were statistically significant following 

correction for multiple comparisons. 

Table 7.6.  Age effects on 11C-SA-4503 PET outcome measures 

ROI 
VT VT /fp 

r p ∆/yr r p ∆/yr 

CS 0.21 0.35 0.42 0.32 0.15 0.69 
BS -0.28 0.21 -0.29 -0.01 0.96 -0.02 
SN -0.47 0.03 -0.69 -0.24 0.27 -0.41 

THA -0.10 0.67 -0.10 0.10 0.66 0.15 
GP 0.13 0.58 0.13 0.27 0.23 0.37 

VSTR -0.09 0.69 -0.09 0.11 0.63 0.15 
CAU -0.20 0.37 -0.24 0.03 0.89 0.05 
PUT -0.04 0.87 -0.04 0.15 0.51 0.21 
FL -0.19 0.40 -0.21 0.04 0.85 0.06 

INS -0.26 0.25 -0.22 0.04 0.87 0.05 
HIP 0.17 0.45 0.29 0.28 0.21 0.55 

AMY -0.36 0.10 -0.33 -0.01 0.97 -0.01 
PL -0.15 0.50 -0.14 0.09 0.70 0.12 
TL -0.29 0.20 -0.22 0.04 0.87 0.05 

CER -0.26 0.24 -0.29 -0.01 0.95 -0.02 
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The effect of gender on VT was varied across regions with the largest difference observed in 

the substantia nigra where the mean VT in females was 6.2% lower in females compared to 

males. None of the differences reached statistical significance. Group statistics are presented 

in Table 7.7.  

 
 
7.4.4 Age and gender effects on 11C-UCB-J 
 
 
VT was reduced in all grey matter regions and in the CS, with the highest reductions seen in 

caudate and thalamus, followed by the brainstem, substantia nigra, frontal lobe and parietal 

lobe (summarised in Table 7.8). The reductions in VT were statistically significant in the nigra, 

thalamus, caudate and insular cortex (p < 0.003). The only region to survive PVC was the 

Table 7.7 Gender differences in 11C-SA-4503 PET outcome measures 

Gender  Age 
(yrs) 

ROI  VT (ml.cm-3) 
 CS BS SN THA GP VSTR CAU PUT FL INS HIP AMY PL TL CER 

MALE 
(n=12) 

Mean 51.7 29.4 37.3 39.0 33.2 39.2 39.1 28.5 45.1 40.0 46.2 38.4 44.9 37.6 41.8 47.9 
COV 35% 36% 21% 32% 24% 21% 19% 26% 23% 25% 19% 16% 19% 19% 16% 22% 

FEMALE 
(n=11) 

Mean 49.9 30.0 38.4 36.7 34.2 38.0 39.3 27.3 44.2 41.4 45.9 38.2* 46.6 39.5 41.9 48.2 
COV 40% 37% 14% 15% 12% 17% 16% 15% 16% 14% 11% 11% 16% 12% 12% 17% 

 ∆ (%) -3.5 1.8 2.9 -6.2 3.0 -3.2 0.8 -4.4 -1.2 3.5 -0.7 -0.7 3.7 4.8 0.2 0.6 
 p value 0.80 0.91 0.72 0.59 0.72 0.71 0.95 0.65 0.83 0.69 0.91 0.91 0.62 0.49 0.98 0.94 
Male age range: 23 – 75; Female age range: 22 – 78  *subject 115 hippocampus  VT  outlier -  excluded. 

Figure 7.4 Correlation between 11C-SA-4503 VT and age 



 141 

caudate showing 0.37% yearly reduction (r = -0.43, p = 0.04). Thalamic VT was still reduced 

with age, but the correlation was no longer statistically significant following PVC. 

 
The reductions with age in the thalamus, caudate, brainstem and insular cortex were 

statistically significant for non-PVC corrected BPND (DVR-1) (p < 0.003). Following the 

application of PVC, only caudate BPND remained reduced with age (p < 0.05) but did not 

survive Bonferroni correction. Figure 7.5 includes the correlation plots for VT and BPND in the 

brainstem, thalamus and caudate with and without PVC applied. 

 

 

 

 

 

Table  7.8. Age effects on 11C-UCB-J PET outcome measures 

ROIS 
VT VT/fp  BPND 

r p ∆/yr r p ∆/yr r p ∆/yr 
CS -0.40 0.01 -0.28 0.05 0.81 0.05 NAN NAN NAN 

BS -0.65 0.001 -0.49 -0.21 0.33 -0.17 -0.65 0.0006* -1.2  

SN -0.70 0.0001* -0.44 -0.17 0.44 -0.13 -0.35 0.09 -0.46 

THA -0.72 0.0001* -0.57 -0.35 0.09 -0.33 -0.72 0.0001* -1.02 

GP -0.16 0.46 -0.09 0.21 0.32 0.17 -0.16 0.46 -0.15 

VSTR -0.58 0.003 -0.38 -0.09 0.69 -0.08 -0.58 0.003 -0.50 

CAU -0.71 0.0001* -0.84 -0.45 0.03 -0.54 -0.71 0.0001* -1.65 

PUT -0.30 0.15 -0.17 0.16 0.45 0.13 -0.30 0.15 -0.24 

FL -0.50 0.01 -0.32 -0.02 0.92 -0.02 -0.50 0.01 -0.49 

INS -0.64 0.0007* -0.39 -0.12 0.58 -0.09 -0.64 0.0007* -0.52 

HIP -0.50 0.01 -0.34 -0.05 0.82 -0.04 -0.50 0.01 -0.53 

AMY -0.47 0.02 -0.26 0.06 0.80 0.04 -0.47 0.02 -0.43 

PL -0.58 0.003 -0.32 -0.03 0.89 -0.02 -0.58 0.003* -0.44 

TL -0.44 0.03 -0.29 0.01 0.99 0.201 -0.44 0.03 -0.46 

CER -0.52 0.01 -0.29 0.01 0.97 0.01 -0.52 0.01 -0.48 

*Statistically significant following Bonferroni correction (p < 0.003) 
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As summarised in Table 7.9, there was no obvious effect of gender on 11C-UCB-J VT estimates. 
 
 
7.5 Discussion 
 
The work presented here assessed the effect of healthy ageing and gender on PET outcome 

measures derived from 18F-BCPP-EF, 11C-SA-4503 and 11C-UCB-J scans in a healthy volunteer 

cohort aged between 22 and 78.  

 

Table 7.9 Gender differences in 11C-UCB-J outcome PET outcome measures 

Gender  Age 
(yrs) 

ROI  VT (ml.cm-3) 
 CS BS SN THA GP VSTR CAU PUT FL INS HIP AMY PL TL CER 

MALE 
(n=12) 

Mean 50 5.6 7.4 8.9 11.5 15.1 21.4 14.3 22.2 17.9 21.2 14.1 17.2 17.8 19.3 16.2 
COV 37% 10% 14% 13% 18% 11% 14% 24% 11% 15% 13% 14% 12% 15% 13% 12% 

FEMALE 
(n=11) 

Mean 53 5.9 7.4 8.8 11.6 15.6 22.2 14.7 22.7 17.8 20.7 14.6 17.8 18.3 19.2 16.2 
COV 37% 12% 10% 10% 11% 10% 6% 9% 8% 8% 7% 8% 8% 10% 7% 8% 

 ∆ (%) 6 5.0 0.3 -0.8 0.4 3.5 3.3 3.2 2.0 -0.6 -2.1 3.3 3.2 3.0 -0.7 -0.3 
 p value 0.66 0.26 0.95 0.87 0.95 0.44 0.48 0.68 0.63 0.91 0.65 0.51 0.45 0.58 0.87 0.94 
Male age range:  23 – 75; Female age range: 22 – 78 n = 24 

Figure 7.5  Correlation of 11C-UCB-J  VT and BPND with age. A VT and B BPND were negatively 
correlated with age in the brainstem, thalamus and caudate.  
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7.5.1 Choice of outcome parameters  
 
 
A number of different outcome measures were assessed in relation to age, each of which have 

their own assumptions built in. VT assumes the fraction of free tracer in plasma (fp) that is 

available to enter the brain is constant across subjects. VT/fp corrects for this, however, 

introduces further variability due to measurement variability associated with fp. In the absence 

of a true reference region, as is the case with both 11C-UCB-J  and 81F-BCPP-EF, the use of DVR 

instead of VT eliminates the variability associated with arterial input functions, but also 

introduces bias if there is a specific binding component present  in the pseudo-reference region.  

 
Using different outcome measures allows us to test the various assumptions inherent in them 

– so a result that is consistent across all methods is likely to be most robust. 

 
7.5.2 Age Effects 
 
 
Regional 18F-BCPP-EF VT estimates were mostly unaffected by age except for in the caudate 

where there was a decrease of ~0.46% per year with age (p = 0.03); however, this reduction 

was minimal and not significant following the application of PVC. Though reductions in 18F-

BCPP-EF VT have been shown in the non-human primate cerebellum, frontal and temporal 

cortex, striatum, hippocampus and most significantly occipital and parietal lobe (Hideo 

Tsukada, 2014), the only reduction seen in human VT was in the caudate, which could be 

explained by the lack of PVC application to the NHP data, as well as by  interspecies differences 

in age-related changes to MC-I function.  VT/fp was unchanged with age in all regions including 

the caudate, likely as a result of a 0.24% reduction per year in fp. Age had an effect on 18F-

BCPP-EF derived DVR values, with reductions observed in a number of grey matter regions (p 

< 0.05, non-PVC corrected). The only statistically significant reduction following the 

application of Bonferroni correction was observed for DVR in the caudate, however this did not 

hold true for the PVC-corrected data. The loss of statistical significance in the relationship 
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between age and both VT and DVR in the caudate could be the result of increased variability of 

in VT and DVR estimates following PVC. Given that the caudate has been shown to be 

particularly vulnerable to age related atrophy (Gunning-Dixon, Head, McQuain, et al., 1998; 

Raz, Rodrigue, Kennedy, et al., 2003), it is not clear whether the reductions observed in DVR 

and VT was the result of age or volume loss. Nevertheless, the significant reduction seen in non-

PVC corrected 18F-BCPP-EF DVR in the caudate with increasing age is supportive of age-related 

decrease in MC-I in this region.  

 
Despite preclinical reports of age-related increases in 11C-SA-4503 signal, no such increases 

were observed in this human cohort in any of the regions investigated. Contrary to the initial 

hypothesis, deceases in VT with age were observed in one brain region, with other regions 

showing little or no change. VT/fp was unchanged in all regions, which was not due to any age-

related change in fp. The only significant finding for this ligand was the 0.64% yearly reduction 

rate in VT in the substantia nigra; however this correlation did not survive correction for 

multiple comparisons. Although PVC was not applied to the SN, the lack of substantial 

volumetric loss in this region gives confidence that the reduction in this region may be a real 

effect. This result is in agreement with the age related reductions in 11C-SA-4503 signal 

reported in the aged rodent midbrain compared to young animals (Ramakrishnan 2016). The 

same study also reported significant reductions in the pons, medulla thalamus and 

hypothalamus in aged rodents. Although the pons, medulla and hypothalamus were not 

included in the original set of ROIs, post-hoc analysis of age of effects in these regions showed 

yearly reductions with age of 19% (r = -0.19, p >0.1), 0.59 % (r = -0.41, p = 0.05) and 0.49 

% (r = -0.37, p = 0.08), respectively. However, the reductions with age in these three regions 

were not preserved following the application of PVC.  

 
Reductions in 11C-SA-4503 signal have been found in the brains of PD patients (Mishina, 

Ohyama, Ishii, et al., 2008). The reduced density and activity of S1Rs has been associated with 
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increased sensitivity to apoptotic signalling and reduced viability of neurons (Hedskog, Pinho, 

Filadi, et al., 2013). S1R stimulation by agonists has been shown to  recover dopaminergic fibre 

density and causes overall neuro-restoration in the nigrostriatal pathway in an animal model 

of PD (Francardo, Bez, Wieloch, et al., 2014). Considering the role of S1R in promoting cell 

survival and neuroprotection, age induced decreases in nigral S1R could potentially increase 

the vulnerability of this region to age-related neurodegenerative diseases where the nigra is 

particularly affected.  

 
Consistent with recent reports of age effects on 11C-UCB-J binding, we observed age-related 

reductions in 11C-UCB-J VT and BPND in nearly all grey matter regions tested, with significant 

reductions in the caudate and thalamus (p < 0.003). These negative correlations with age did 

not remain statistically significant following the application of PVC which substantially 

weakened the effect of age induced reductions in 11C-UCB-J signal in all regions. Interestingly, 

the thalamus and brainstem were among the few regions for which there was no significant 

loss of volume with age; therefore the lack of reduced age effect in the partial volume corrected 

results for these regions could be explained by the increased noise in the post-PVC data that is 

an inherent consequence of PVC. Our results in the caudate and thalamus agreed with the 

recent preliminary findings by Toyonaga and colleagues (Toyonaga, Lu, Naganawa, et al., 

2019); however our results did not survive PVC.  One reason for this discrepancy could be the 

different PVC method employed, as the choice of PVC method has also been shown to lead to 

different conclusions in PET studies of ageing in the brain due to different sensitivities to 

scanner PSF, brain mask size, PET reconstruction algorithms and thresholding parameters 

(Greve, Salat, Bowen, et al., 2016). Although the functional significance of the largest 

reduction in SV2A being observed in the caudate is not clear, the combined reductions in the 

caudate and thalamus is suggestive of these regions being particularly vulnerable to synaptic 

loss. 
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Interestingly, brain regions where moderate negative linear correlations (-0.36 < r < -0.68, p 

< 0.05) were observed between age and non-PVC corrected 18F-BCPP-EF DVR also showed 

moderate negative linear correlations between age and non-PVC corrected 11C-UCB-J BPND. 

Similarly, the regions unaffected by age including the putamen, pallidum, cerebellum and nigra 

were conserved across these two ligands. The fact that the two ligands showed a similar pattern 

of regional loss with age was not unexpected. The pre-synaptic terminals are known to be very 

rich in mitochondria, hence a loss of these terminals can be expected to result in a loss of MC1 

as well. Conversely, a disruption in energy production due to reduced MC-I would cause 

reduced synaptic transmission and  synaptic loss, manifesting as decreased11C-UCB-J signal. 

 
Finally, it is important to acknowledge some of the caveats associated with this study.  Firstly, 

the upper end of the age range of subjects included was 78, which may be considered too low 

given that approximately 32% of individuals aged 85 or older suffer from age-related dementia, 

(L.E., J., P.A., et al., 2013). A second caveat to address is that given the present subject numbers 

and associated within group variability, linear regression was identified as the most viable 

model to assess age-related changes, although a more complex relationship is biologically more 

plausible. Future studies with greater subject numbers may able to explore this further. Lastly, 

the method used to correct for multiple comparisons was the Bonferroni correction, which is 

acknowledged as being conservative, especially when hypotheses are highly correlated (S. Y. 

Chen, Feng, & Yi, 2017). The Bonferroni corrected results should therefore be interpreted with 

caution. Future analyses of the effect of age on these ligands could use a more lenient correction 

method such as a false discovery rate. 
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7.5.3 Gender Effects 
 
 
There were no statistically significant gender differences observed for regional VT for any of the 

ligands, 18F-BCPP-EF derived VT estimates were globally higher in females compared to males, 

with female estimates being nearly twice as variable across subjects. Ageing also affected VT 

differentially between females and males in the caudate, with this particular cohort of females 

not showing any reduction in caudate VT as opposed to the significant reduction seen in males. 

It is thought that females might be better equipped for dealing with oxidative stress under 

physiological conditions (Kander, Cui, & Liu, 2017). Female mice have been shown to be 

resistant to ROS induced inhibition of MC-I activity (Diwakar et al. 2007; Kenchappa et al. 

2004), and show higher levels of antioxidant enzymes (Vina, Gambini, Lopez-Grueso, et al., 

2012). Additionally, oestrogen is thought to provide women with additional neuroprotection 

which increases their energetic capacity (Demarest & McCarthy, 2014). These findings 

combined could partially explain the suppression of age effects in female 18F-BCPP-EF signal in 

caudate.   

 

7.6 Conclusion 
 
 
All three ligands analysed showed reductions in signal with age, although the extent and 

regional distribution of reductions differed depending on the radiotracer. 18F-BCPP-EF signal 

was reduced with age in the caudate when assessed by VT and DVR as an outcome measure, 

though this could be indicative of volumetric loss rather than reduced MC-I activity. 

Interestingly, the effect of age in the caudate was mostly driven by males, with females showing 

no changes with age. 18F-BCPP-EF was more significantly and globally decreased with age when 

assessed using DVR as an outcome measure. It is important that all the age effects we observed  

for this ligand be interpreted with caution given loss of statistical significant correlations 

following the application of PVC. 11C-SA-4503 signal was mostly unchanged in the regions 
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analysed, except for in the substantia nigra where there was a yearly reduction in VT. However, 

the result in the nigra should be interpreted with caution due to the lack of suitable PVC method 

to apply to this region. Lastly, non-PVC corrected 11C-UCB-J signal was most strikingly reduced 

in the caudate and thalamus, confirming recent reports of these regions being particularly 

susceptible to age-related synaptic loss. 

 
There were no prominent gender differences in 11C-SA-4503 or 11C-UCB-J VT, while 18F-BCPP-

EF signal was between 4% - 12% higher in females compared to males across all regions 

investigated. Although the differences were not statistically significant, these results may 

indicate increased vulnerability of males to MC-I loss and resultant dysfunction that is 

potentially exacerbated with age. 

 
Altogether, the results presented here are indicative of loss of MC-I and SV2A in healthy ageing. 

The picture with S1R is less clear and its expression may well be stable over age in a healthy 

population. Further work is needed to uncover the exact nature and functional relevance of 

any changes mentioned above before MC-I, S1R and SV2A can be considered useful biomarkers 

of the ageing mitochondrial/ER/synaptic axis. 
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8 Conclusions, Limitations and Future Work 
 
 
The identification of molecular targets that are altered early on in neurodegenerative diseases 

and the existence of PET tracers to accurately quantify these targets allows for the discovery of 

robust and sensitive outcome measures to be used as biomarkers that are critical to the 

development of disease modifying therapeutics and preventative strategies. The work in this 

thesis culminated in the characterisation of three PET tracers, 18F-BCPP-EF, 11C-SA-4503 and 

11C-UCB-J, in the healthy human brain, and in the establishment of the optimal kinetic 

modelling pipelines and outcome measures (summarised in Table 8.1) that will enable their 

evaluation as biomarkers across neurodegenerative diseases for potential early diagnosis, 

patient stratification and monitoring disease progression. 

Table 8.1 Optimal blood and tissue kinetic modelling methods and outcome measures 

Analysis 
Methods 

18F-BCPP-EF 11C-SA-4503 11C-UCB-J 

PPF Model Sigmoid Exponential 
plus constant Sigmoid 

POB Model Constant 
Exponential 
approaches 
to constant 

Constant 

Tissue Kinetic 
Model 

2TC (fixed BV) 
MA1 (fixed BV, t*: 30 min) 

MA1 (fixed BV, t*: 30 
min) 1TC (fixed BV) 

Outcome 
Measure 

VT, VT/fp† 
DVR/DVR-1* 

SUVr-1* 
VT, VT/fp† 

VT, VT/fp† 
DVR/DVR-1* 

SUVr-1* 

Scan Time 70 min 80 min 60 min 

*Use of reference region based outcome measures requires caution for both 18F-BCPP-EF and 11C-UCB-J as 
centrum semiovale is not devoid of specific binding and cross-sectional differences in centrum semiovale 
anatomy and/or binding may occur.  
† VT/fp is a suitable outcome measure provided there are cross-sectional differences in fp. 
-Blood volume (BV) fixed to 5% 

 
 
The tracer kinetics of 18F-BCPP-EF were characterised in the human brain for the first time in 

Chapter 4. It was concluded that 18F-BCPP-EF can be characterised using VT derived either from 

the MA1 or 2TC model applied regionally or MA1 applied on a voxel-wise basis. Future studies 
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using this ligand may reduce their scan time to 70 minutes and still reliably estimate VT. 

Importantly, the successful derivation of VND from the blocking data in monkeys supports the 

use of the centrum semiovale as a pseudo reference region for this ligand, increasing confidence 

in the use of reference based outcome measure DVR-1 in cases where arterial blood sampling 

is not possible. Additionally, SUVr-1 derived from a 20 minute static acquisition at 70 minutes 

following injection may be used as a proxy for DVR-1 in situations where blood sampling is not 

possible and scan time is limited. Importantly, the work presented here is not sufficient to 

conclude that the centrum semiovale is a good enough reference region to obviate the need for 

arterial blood acquisition 18F-BCPP-EF scan. Centrum semiovale derived outcome measures 

should therefore be used and interpreted with caution, particularly in cross-sectional studies 

where changes in white matter may arise due to disease. Similar caution is advised before using 

VT/fp as an outcome measure, as there may be cross sectional difference in fp values.  

 
The work presented in Chapter 5 showed that 11C-SA-4503 can be quantified on region-wise or 

voxel-wise level using MA1 as a model. The quality of the parametric images generated was 

not ideal and post-smoothing as well as removal of a large number of noisy voxels may be 

necessary to derive meaningful VT estimates. Despite the relatively slow kinetics, a reduced scan 

time of 80 minutes still allowed for the reliable estimation of VT. 11C-SA-4503 VT was 

significantly variable across subjects, in part due to the large variability in metabolite profiles 

across subjects. A drawback of 11C-SA-4503 appeared to be the reliability of metabolite 

measurements due to high background noise, as well variability in metabolite profile across 

subjects ranging from negligible metabolism to up to 60% metabolism. Given these mixed 

results it is hard to draw any solid general conclusion with regards to metabolite correction of 

11C-SA-4503; however, an arterial input function that has been corrected for metabolites with 

a weighting factor that accounts for measurement error reduced the variability in the results of 

this particular cohort. Although the lack of a potential reference region, difficulty in metabolite 

measurements and slow kinetics make this ligand less amenable for regular use in a clinical 
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setting as a future biomarker,  I believe the work sufficiently characterised 11C-SA-4503  kinetics 

in the healthy human brain and produced an analysis pipeline that can be applied across the 

MIND-MAPS consortium to explore potential changes in S1R with neurodegeneration. 

 
The work presented in Chapter 6 on the characterisation of 11C-UCB-J confirmed what has been 

shown in recent literature, namely that it possesses excellent imaging characteristics including 

high uptake and fast kinetics. The 1TC model was the optimal compartmental model to 

estimate VT with time stability results raising the possibility of scan time to be reduced to 60 

minutes. The results showed that SUVr-1 obtained from a 20 minute static scan acquired at 

least 60 minutes post-injection can be reliably used as a non-invasive measure of binding in 

situations where arterial blood sampling is not possible and scan time needs to be shortened to 

accommodate patient comfort. Given the existence of human blocking data in the literature, 

the centrum semiovale derived outcome measure DVR-1 (BPND) can be used to quantify 11C-

UCB-J, provided there are no disease related cross sectional or longitudinal changes in the 

centrum semiovale. Altogether, this work added further confidence to the excellence of 11C-

UCB-J as a method for quantifying SV2A. 

 
The application of the optimised analysis pipelines to the larger MIND-MAPS cohort in Chapter 

7 allowed for the investigation of the three tracers as potential biomarkers of healthy ageing. 

Despite observations of reduced signal with age in all three tracers, following the application 

of a PVC algorithm to the data the only definitive result was a reduction of 11C-UCB-J VT and 

BPND with age in the caudate and thalamus, emphasising the impact PVC can have on studies 

of the effects age related changes in the brain. Another interesting preliminary finding was the 

gender difference in the relationship between age and 18F-BCPP-EF VT in the caudate. Given the 

known role of sex steroids in gender differences in mitochondrial function (Demarest & 

McCarthy, 2014; Gaignard, Savouroux, Liere, et al., 2015), future work should compare 18F-
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BCPP-EF in both pre- and postmenopausal women with men of the same ages to draw any 

reliable conclusions.  

These results summarised above provide some initial evidence for the effects of age on MC-I 

and SV2A. The data here can be used to generate hypotheses to be tested in future fully 

powered studies. In particular, it would be important to investigate whether a combination of 

ligands can provide more robust markers of clinical relevance than single measures. Future 

longitudinal studies that investigate changes in PET signal combined with clinical measures 

such as MMSE scores will be necessary to elucidate the biomarker potential of these tracers in 

normal and pathological aging. 18F-BCPP-EF lacks a valid reference region combined with the 

unfeasibility of conducting a full blockade of the target due to the toxicity of compounds 

targeting the ubiquinone binding site on MC-I,  presents certain challenges for widespread use 

of this ligand. Although the simplified pseudo-reference region derived measure SUVr-1 

explored holds promise as a practical marker of target density, more work  is will be necessary 

to evaluate its appropriateness in various disease cohorts. The structural and neurochemical  

integrity of the centrum semiovale in various disease conditions, as well any changes in 

peripheral metabolism of 18F-BCPP-EF have to be elucidated. Another point that needs 

investigation, is whether change in 18F-BCPP-EF signal correlates to loss of MC-I density or 

alterations in MC-I function. One way to address this issue would be for future studies to 

combine 18F-BCPP-EF signal quantification with in vivo measurements of MC-I function such 

measurements of respiration and activity such as MC-I and ATP levels in peripheral bloods cells 

and quantification of brain energy metabolites using H-magnetic resonance spectroscopy (MRS) 

as recently implemented by Silaidos and colleagues (Silaidos, Pilatus, Grewal, et al., 2018). 

. 
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11C-UCB-J derived PET measures hold promise as useful biomarkers that may be sensitive to 

age-related changes in SV2A density. Recent evidence of altered BPND in brain regions of 

interest in cognitively normal AD subjects underscores the potential of 11C-UCB-J PET as a 

biomarker for clinical trials of disease-modifying therapies targeting the restoration of synaptic 

loss (M.-K. Chen, Mecca, Naganawa, et al., 2018). The work done in characterising the centrum 

semiovale as a useful reference region should help to obviate the need for arterial blood 

sampling, although this needs to be confirmed for all new disease cohorts. Evidence of the 

suitability of SUVr-1 derived from a short static image as a good proxy for 11C-UCB-J BPND makes 

the tracer all the more likely to succeed in the world of clinical biomarker development, where 

the requirement for complex kinetic modelling to derive outcome measures is often a hindrance 

to a tracer’s routine use in clinical trials. As is true for any PET tracer being investigated as a 

potential biomarker, any changes in 11C-UCB-J signal that may arise in future cross sectional 

studies in disease cohorts will have to have a large enough effect size and outcome measures 

specific and sensitive enough to be able to accurately detect the presence of disease on an 

individual level, which has remained a challenging aspect of clinically useful PET biomarkers 

development(First, Drevets, Carter, et al., 2018). 

 
Future cross-sectional studies using disease cohorts and the current healthy volunteer dataset 

may provide some clue as to whether 11C-SA4503 has the potential to be a biomarker of disease 

related changes in S1R; however, given the caveats discussed earlier, these studies may benefit 

more from replacing the tracer with one possessing more favourable imaging properties. 11C-

HCC0929 has been proposed as an improved candidate, though this ligand has not yet  been 

quantified in humans (Lan, Bai, Chen, et al., 2019). 

 
Finally, this work did not make use of the multi-tracer nature of the dataset which would allow 

for the application of more complex multidimensional analyses of how MC-I, S1R and SV2A 

might interact in healthy individuals as well as in ageing. Future work should leverage this to 
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explore the integrity of the mitochondrial/ER/synaptic axis as a whole, potentially elucidating 

information that might not be apparent from studying the three targets in isolation.  

 
Despite its limitations, this thesis produced an optimal set of analytical pipelines and outcome 

measures for 18F-BCPP-EF, 11C-SA-4503 and 11C-UCB-J, that can now be implemented across 

the MIND-MAPS disease cohorts, ensuring consistency in methodology and enabling the robust 

study of potential changes to the mitochondrial/ER/synaptic axis across neurodegenerative 

diseases. 
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Appendix A 
 
 

POB Models 
 
 
 
 

• 𝑦	 = 	𝛼𝑥 + 𝛽   (Linear) 
 
 
 

• 𝑦	 = 	𝛼 + 𝛽(1 − 𝑒µÎ�)  (Exponential approaches to constant) 
 
 
 

• 𝑦	 = 	𝛼 + 𝛽(1 − 𝑒µÎ�)  (Exponential approaches to constant 
𝛼, 𝛽, 𝛾	constrained) 

 
• 𝑦	 = 	𝛼    (Constant) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 177 

Appendix B 
 
 

PPF Models 
 
 
 

• 𝑦 = 	 𝑒µè�    (One exponential 𝛼 = 1) 
 
 

• 𝑦 = 	𝛼𝑒µè�    (One exponential) 
 
 
 

• 𝑦 = 	𝛼𝑒µè� + 1 − 𝛼  (Exponential + constant) 
 
 

• 𝑦 = 	𝛼𝑒µè� + (1 − 𝛼)𝑒µÎ� (Two exponential 𝛼 = 1) 
 
 

• 𝑦 = 	𝛼𝑒µè� + 𝛾𝑒µÿ�  (Two exponential) 
 
 

• 𝑦 = 	n1 − ��

��t.�!
s 𝛽 + 𝛾H (Sigmoid 1) 

 
 

• 𝑦 =
Ë.µ ��

��ÌZ|!
Í
"
	t	Î	

.	tÎ
   (Sigmoid 2) 
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