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Abstract

In this thesis, we focus our investigations around the novel software defined net-

working (SDN) paradigm. The central goal of SDN is to smoothly introduce cen-

tralised control capabilities to the otherwise distributed computer networks. This is

achieved by abstracting and concentrating network control functionalities in a log-

ically centralised control unit, which is referred to as the SDN controller. To fur-

ther balance between centralised control, scalability and reliability considerations,

distributed SDN is introduced to enable the coexistence of multiple physical SDN

controllers. For distributed SDN, networking elements are grouped together to form

various domains, with each domain managed by an SDN controller. In such a dis-

tributed SDN setting, SDN controllers of all domains synchronise with each other to

maintain logically centralised network views, which is referred to as controller syn-

chronisation. Centred on the problem of SDN controller synchronisation, this thesis

specifically aims at addressing two aspects of the subject as follows. First, we model

and analyse the performance enhancements brought by controller synchronisation

in distributed SDN from a theoretical perspective. Second, we design intelligent

controller synchronisation policies by leveraging existing and creating new Rein-

forcement Learning (RL) and Deep Learning (DL)-based approaches.

In order to understand the performance gains of SDN controller synchronisa-

tion from a fundamental and analytical perspective, we propose a two-layer network

model based on graphs to capture various characteristics of distributed SDN net-

works. Then, we develop two families of analytical methods to investigate the per-

formance of distributed SDN in relationship to network structure and the level of

SDN controller synchronisation. The significance of our analytical results is that
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they can be used to quantify the contribution of controller synchronisation level, in

improving the network performance under different network parameters. Therefore,

they serve as fundamental guidelines for future SDN performance analyses and pro-

tocol designs.

For the designs of SDN controller synchronisation policies, most existing works

focus on the engineering-centred system design aspect of the problem for ensur-

ing anomaly-free synchronisation. Instead, we emphasise on the performance im-

provements with respect to (w.r.t.) various networking tasks for designing controller

synchronisation policies. Specifically, we investigate various scenarios with diverse

control objectives, which range from routing related performance metric to other

more sophisticated optimisation goals involving communication and computation

resources in networks. We also take into consideration factors such as the scalability

and robustness of the policies developed. For this goal, we employ machine learning

techniques to assist our policy designs. In particular, we model the SDN controller

synchronisation policy as serial decision-making processes and resort to RL-based

techniques for developing the synchronisation policy. To this end, we leverage a

combination of various RL and DL methods, which are tailored for handling the spe-

cific characteristics and requirements in different scenarios. Evaluation results show

that our designed policies consistently outperform some already in-use controller

synchronisation policies, in certain cases by considerable margins. While exploring

existing RL algorithms for solving our problems, we identify some critical issues

embedded within these algorithms, such as the enormity of the state-action space,

which can cause inefficiency in learning. As such, we propose a novel RL algorithm

to address these issues, which is named state action separable reinforcement learn-

ing (sasRL). Therefore, the sasRL approach constitutes another major contribution

of this thesis in the field of RL research.
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CHAPTER 1

Introduction

1.1 Overview and Motivations

1.1.1 Software-Defined Networking (SDN) and the Controller Syn-

chronisation Problem

Software-Defined Networking (SDN) [1], a newly-deployed networking architecture

[2, 3], significantly improves the network performance due to its programmable net-

work management, easy reconfiguration, and on-demand resource allocation, which

has therefore attracted considerable research interests. One key attribute that differ-

entiates SDN from classic networks is the separation of the SDN’s data and control

planes. Specifically, in SDN, all control functionalities are implemented and ab-

stracted on the control plane for operational decision making, e.g., flow construction

and resource allocation, while the data plane only passively executes the instructions

received from the control plane. For a canonical SDN architecture, all network con-

trol decisions are made in the control plane by a logically centralised control entity,

called SDN controller. Since the logically centralised SDN controller has the full

knowledge of network status, it is able to make globally optimal decisions. Yet,

such centralised control suffers from major scalability issues. In particular, as net-

works grow, the number of flow requests and operational constraints are likely to

increase drasticly. The high requirement on computation and communication may

impose substantial burden on the SDN controller, potentially resulting in significant
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performance degradation (e.g., delays) or even network failures [4].

In this regard, distributed SDN is proposed [5, 6, 7, 8, 9] to balance the cen-

tralised and distributed controls. Specifically, a distributed SDN network is com-

posed of a set of subnetworks, referred to as domains, each managed by an inde-

pendent SDN controller. Moreover, each domain contains several gateways con-

necting to some other domains; such inter-connected domains then form the dis-

tributed SDN architecture. In the distributed SDN, if controllers do not communi-

cate with each other regarding the network status of their own domains, then, the

distributed SDN can be regarded as reduced to the classical multi-AS (Autonomous

Systems) network, where the network flows are managed by distributed protocols,

such as the Interior Gateway Protocol (IGP) and Border Gateway Protocol (BGP)

protocols. Nevertheless, to take advantage of centralised network in the distributed

SDN architecture, controllers are expected to exchange information via proactive

probing or passive listening. Such additional status information at each controller,

called the synchronised information, can assist in enhancing decision making for

inter-domain tasks. In distributed SDN, network performance relies heavily on the

inter-controller synchronisation level, which refers to the amount of information

controllers exchange with each other and the frequency of such exchanges. Since

complete synchronisation among controllers, i.e., each controller knows the network

status in all other domains, will incur high synchronisation overheads especially in

large networks, practical distributed SDN networks can only afford partial inter-

domain synchronisation and allow temporary inconsistency in controllers’ network

views, which is known as the eventual consistency model [10].

1.1.2 Limitation of Existing Work and Our Motivation

For partial synchronisation under the eventual consistency model, this thesis aims

at addressing two subjects which are largely lacking in existing literatures. First,
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we realise that most existing works focus on engineering-based system designs and

implementations for distributed SDN. For instance, information sharing algorithms

are proposed in [6, 7] for implementing common traffic policies among various do-

mains. Similarly, frameworks are designed in [8, 9], aiming to enable inter-domain

routing selection via network status exchanges. However, one fundamental question

regarding the distributed SDN architecture has generally been ignored: How does the

network performance in distributed SDN relate to controller synchronisation levels

and network structural properties? It is possible that under certain network condi-

tions, the benefits of increasing the synchronisation level is only marginal. With-

out such fundamental understandings, it is difficult to justify the existing proposals

for controller synchronisation policy design in distributed SDN, which may involve

complicated mechanisms and protocols. We, therefore, exploit analytical methods to

investigate this unsolved yet critical problem in the distributed SDN paradigm, aim-

ing at quantifying the performance metric and its relationship with various network

parameters and controller synchronisation levels.

Second, regarding the eventual consistency model, existing works have identified

and addressed some serious anomalies arising from controllers’ inconsistent network

views, such as loopholes [11], blackholes [12], and other problems caused by policy

inconsistencies [13]. Yet, despite these efforts aimed at eliminating inconsistency-

caused anomalies, we have not seen any notable proposals on fine-grained controller

synchronisation policy designs, which are tailored for SDN applications with specific

performance metrics. The urgency to fill this gap is especially pronounced when

SDN technologies are discussed in a wider range of contexts, where advanced ap-

plications are developed on top of SDN-enabled 5G, smart grid, and ISP networks;

all these cases require the support of new and finer-grained controller synchronisa-

tion models [14]. In this regard, we approach the controller synchronisation prob-

lem with the aim of developing fine-grained controller synchronisation policies for
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enhancing given performance metrics. Complementary to the existing works that

eliminate critical errors in the controller synchronisation process; our work in this

thesis is performance-focused, for which we look at how controller(s) should syn-

chronise with each other at certain time steps, so that the given performance metric

is maximised.

To this end, we leverage a combination of RL [15] and DL [16] techniques to

design control and management strategies for distributed SDN. Based on our expe-

riences, harnessing the power of artificial intelligence (AI) for network control and

management in SDN is especially appealing for the reasons as follows. First, the

abundance of network data made available by SDN switches through the OpenFlow

protocol [17] builds up a pool of past experiences which are the ideal "trial-and-

error" data, upon which RL algorithms learn. Second, distributed SDN domains

can be highly heterogeneous; as such, SDN networks are complex systems. There-

fore, accurately modelling such systems becomes extremely challenging, as we shall

show in the first part of the thesis. In addition, due to the modelling challenges and

potentially stringent assumptions required, coupled with the fact that network con-

ditions are constantly evolving, traditional optimisation techniques are less suitable

for optimising control and management policies in distributed SDN. In light of this,

the model-free RL-based approaches are especially attractive, as they come without

any constraints on network’s structure or its dynamicity, thus adaptable for handling

real-world SDN networks.
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1.2 Research Objectives and Methodologies

1.2.1 Theoretical Performance Quantification for SDN Controller

Synchronisation

To quantify the performance of distributed SDN and understand how it relates to

controller synchronisation levels and network structural properties, we first propose

a graph based network topological model to capture the intra-/inter-domain con-

nections in distributed SDN. Based on this network topological model, we further

associate preference levels to links, which, in practice, reflects the quality of the

link with respect to (w.r.t) the networking applications. Such graph based network

model is generic in that it only requires node degree/link preference distributions

and the number of gateways in each domain as the input parameters, i.e., they are

independent of any specific graph models. Using this network model, we then derive

analytical expressions of the network performance focusing on the average cost of

the constructed paths, i.e. average path cost (APC), w.r.t. random flow requests. The

concept of APC is a generalisation, which captures a wide range of additive perfor-

mance metrics, see Section 2.3 for more discussions. In particular, we develop two

families of analytical methods to quantify the performance metric as a function of

controller synchronisation levels and other network structural properties.

For the first family of analytical methods (Approach I), we define four canoni-

cal controller synchronisation scenarios, i.e., Minimum synchronisation (MS), Self-

domain synchronisation (SS), Partial synchronisation (PS), and Complete synchro-

nisation, for quantising the levels of controller synchronisation to assist our analysis.

Then, we base our main analysis on the Randomised Degree-Preserving Network

(RDPN), which is a special surrogate network generated by combining various net-

work domains to make our analysis tractable. In addition, to capture different levels

of granularity of network information, we also define two families of networks, i.e.,



1.2. Research Objectives and Methodologies 6

network with uniform and non-uniform link preferences. The main difference be-

tween them is the dynamicity of link preference, where in the former case controllers

do not specify any preference for links due to the lack of network status information,

thus all links have equal link preferences; in the latter case, however, controllers

assign preferences to links to achieve control objectives based on up-to-date net-

work status information collected. Based on the preparatory definitions mentioned

above, our analysis first establishes an asymptotic expression to highlight the rela-

tionship between the performance metric and dominant parameters. Then, detailed

analyses are conducted to derive fine-grained characterisations of the performance

metric for the two families of networks under the four canonical synchronisation

levels. Analytical results reveal the relative contributions of different parameters to

the performance metric. For instance, we conclude that controller synchronisation

plays key role in improving inter-domain routing when there are moderate amount

of inter-domain connections, and the benefit of controller synchronisation dwindles

as synchronisation level increases.

For the second family of analytical methods (Approach II), we aim at achieving

the same goal as Approach I does. However, the main differences here lie in the

methods used and the granularities of the results obtained. In particular, instead of

defining four canonical controller synchronisation levels, in Approach II we develop

analytical methods that can deal with arbitrary controller synchronisation levels. The

trade-off here is that the results obtained with Approach II are coarser-grained, which

are in the form of bounds on the performance metric, compared to the finer-grained

but complex expressions developed with Approach I. Specifically, Approach II de-

velops the analytical lower bounds for the performance metric, i.e., the APC. We

further quantify the tightness of the developed APC lower bound expressions, which

shows that it can approach the actual APC value under some conditions. Then, based

on the analytical results, again we draw some revelations that relate the quality of
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the constructed paths to various network structural parameters and the controller syn-

chronisation levels. By all these theoretical results, we prove that the contribution

of network synchronisation levels depends on specific network parameter settings,

which therefore provides insights into real network protocol design. Finally, to val-

idate the accuracy of the derived analytical expressions, they are compared against

evaluation results obtained using simulation networks constructed using both real

and synthetic network datasets.

1.2.2 Reinforcement Learning-based Control and Management

in SDN

The second half of this thesis is dedicated to developing control and management

policies in the distributed SDN networks by employing DL and RL techniques. In-

deed, our work in this thesis confirm that the RL-based approaches are suitable can-

didates for designing control and management policies for SDN, which includes

problems ranging from relatively simple inter-domain routing task to scheduling

controller synchronisations for optimising communication, and/or computation re-

sources, as illustrated as follows.

First, we start our investigation by exploring how RL-based controller synchro-

nisation policy design can assist inter-domain routing tasks. To this end, we design

Deep-Q (DQ) Scheduler, an RL-based algorithm implemented using deep neural

networks (DNN), whose goal is to generate controller synchronisation schedules for

enhancing inter-domain routing performance.

Although evaluations show that DQ Scheduler renders promising results com-

pared to other schemes which do not involve learning, there are several simplifying

assumptions which limit its applicability in more complex tasks. As a follow-up to

DQ Scheduler, we then develop multi-armed cooperative synchronisation (MACS),

to address the limitations of DQ Scheduler. Compared to the former, MACS’s capa-
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bilities improve significantly in the following aspects. First, MACS allows synchro-

nisation of finer-grained information among controllers. Second, instead of only

focusing on inter-domain routing tasks, MACS enables more networking applica-

tions to take advantage of controller synchronisation. As the name suggested, the

improvements brought by MACS is achieved by the specially designed neural net-

work structure, which is able to handle the increased complexity in training data.

The MACS operates on the assumption that a central node (one of the controllers

or an independent control unit) in the SDN network is responsible for learning the

synchronisation policy based on necessary information gathered from all controllers

in the network. It is also assumed that the central node can always obtain needed

information for the RL task. However, such a centralised learning scheme can be

vulnerable since it creates a single point of failure. On the other hand, it is possi-

ble that the central node may not be able to receive all information required from

other controllers, due to network constraints or anomalies. Therefore, in the follow-

up work we address these two vulnerabilities and further improve MACS’s scala-

bility and robustness. In this regard, we propose an upgraded system of MACS,

named synchronisation via multi-agent reinforcement-learning and temporal-data-

enhancement (SMART). For SMART, we conduct a theoretical analysis to identify

the conditions upon which a decentralised policy can perform comparably as the

centralised counterpart does. Moreover, to counter unstable network environments

under which the loss of data may occur, we employ deep learning techniques for

data enhancement, which is used in conjunction with our designed deep reinforce-

ment learning networks for policy generations.

Finally, although the aforementioned work suggests that RL techniques are very

suitable and useful for developing SDN control and management policies, we iden-

tify several issues that are embedded in existing DRL algorithms. Specifically, for

conventional RL formulations, Markov decision process (MDP) and state-action-
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value (SAV) function are the basis for problem modelling and policy evaluation.

With such a formulation, a major challenge we face is that the enormity of state/action

space causes inefficiency and difficulties for the neural network in accurately ap-

proximating the SAV function. We, therefore, propose a new learning paradigm,

State Action Separable Reinforcement Learning (sasRL), wherein the action space

is decoupled from the value function learning process for higher efficiency. Then,

a light-weight transition model is learned to assist the agent to determine the action

that triggers the associated state transition. In the high-level, sasRL is designed to

improve learning efficiency by breaking down a complicated model-free RL problem

into a simpler model-free RL problem and a supervised learning problem. sasRL is

a generic RL paradigm, which can work with several RL problem beyond the con-

troller synchronisation problem we investigated in SDN.

1.3 Summary of Contributions

To the best of our knowledge, for the two focused research areas of this thesis, i.e.,

theoretical performance quantifications w.r.t. controller synchronisation and the RL-

based control and management policy designs for distributed SDN, our work con-

tributes novel approaches and ideas in the respective fields. Specifically, our contri-

butions are summarised as follows.

1) We propose a generic two-layer network model to capture intra-/inter-domain

connections, link preference, and other properties of the distributed SDN networks.

On top of the network model, we use the APC of the constructed paths as the per-

formance metric to develop the asymptotic expression of the APC under any given

synchronisation levels. Then, for each of the four canonical controller synchronisa-

tion scenarios defined, we integrate dynamic link preference levels and develop the

corresponding fine-grained analytical expression of the APC.
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2) In addition to the fine-grained but complex analytical expressions of APC

which we derive, we also develop the analytical lower bounds of the APC, which are

linear or even logarithmic functions of network structural or synchronisation-related

parameters. Moreover, we quantify the tightness of the APC lower bound expres-

sions developed, which shows that the APC lower bound can approach the actual

APC value under some conditions. Based on the analytical results, we draw revela-

tions that relate the qualities of the constructed paths to various network structural

parameters and the controller synchronisation levels. Insights for protocol design are

also provided.

3) We design Deep-Q (DQ) Scheduler, a DRL-based algorithm to determine con-

troller synchronisation schedules for enhancing inter-domain routing performance in

distributed SDN.

4) To address the limitation of DQ Scheduler, we design customised DRL struc-

ture tailored to enable and support finer-grained controller synchronisation applica-

tions, which is called MACS.

5) For higher scalability and robustness of the controller synchronisation policies

developed by RL-based approaches, we conduct a theoretical analysis to identify the

conditions upon which a distributed policy can perform as well as the centralised

counterpart does. We also propose to employ deep learning techniques for data en-

hancement, to counter unstable network environments under which the loss of train-

ing data may occur. Based on these considerations, we further propose a controller

synchronisation policy derivation framework for distributed SDN, which is named

SMART.

6) We design a new generic RL paradigm, named state action separable rein-

forcement learning (sasRL), to address the issue of learning inefficiency with exist-

ing RL algorithms. We conduct experiments on real-world scenarios to compare the

performance of sasRL to other state-of-the-art RL algorithms, which demonstrate its



1.4. Thesis Organisation 11

superior performance.

1.4 Thesis Organisation

The organisation of the rest of the thesis is as follows.

In Chapter 2, we propose a graph-based network model for modelling the dis-

tributed SDN architecture. Chapters 3-4 present our analytical results on quantifying

the network performance of SDN and its relationship to controller synchronisation

levels and network structural properties. Starting from Chapter 5, the focus shifts to

control and management of distributed SDN via RL and DL techniques. In partic-

ular, Chapters 5-7 centre on the designs of controller synchronisation policies with

various control and management objectives. In Chapter 8, we propose a new RL

paradigm for addressing the learning inefficiency issues commonly seen in existing

RL algorithms. Finally, Chapter 9 concludes the thesis and discusses plans for future

work.

The proofs for lemmas, theorems, and corollaries in Chapter 3, Chapter 4 and

Chapter 8 are documented in Appendix A.1, Appendix A.2, and Appendix A.3, re-

spectively. Appendix B provides details on the experiments in Chapter 8. Note that

the numbers at the end of each reference item in the Bibliography are the page num-

bers of the pages where the reference is cited.



CHAPTER 2

The Modelling and Formulation of

Distributed SDN

2.1 Centralised and Distributed SDN

In the high-level, the central idea of the SDN paradigm is to introduce centralised

control over distributed networks, to enable flexible network management and sup-

port novel networking applications. This is achieved by adding central control unit

to the network, called the SDN controller, which can interact with all networking

elements in the network. With such a setting, SDN controller collects status infor-

mation from networking elements in the network, which is then used to assist the

controller in making control decisions. In a fully centralised SDN network, the only

physical SDN controller is responsible for managing all networking elements in the

network, which scales poorly and creates a single node of failure. Fig. 2.1 is an

example of a centralised SDN with one physical SDN controller.

To address the scalability issue created by the centralised SDN paradigm, dis-

tributed SDN is therefore proposed. Instead of having only one physical SDN con-

troller in the network, distributed SDN pools networking elements into different

groups, with each group managed by one physical SDN controller. The network-

ing elements that are managed by the same physical SDN controller together form a

domain. All SDN domains then constitute the data plane, whereas all domain con-

trollers constitute the control plane. For instance, Fig. 2.2 shows an distributed SDN
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with four domains in the data plane and four domain controllers in the control plane.

See Section 3.2.2 for more discussions on related work for distributed SDN.

Under the distributed SDN architecture, the physically distributed controllers

synchronise with each other to maintain a logically centralised network view, which

is referred to as controller synchronisation. Since complete synchronisation among

controllers, i.e., all controllers always maintain the same global view, incurs high

costs especially in large networks[18, 19], most practical distributed SDN networks

can only afford partial inter-controller synchronisations and allow temporary incon-

sistency in controllers’ network view, which is known as the eventual consistency

model [10]. In this thesis, except for the analysis of full synchronisation among

SDN controllers (i.e., CS in Chapter 3), our investigations assume the eventual con-

sistency model.

The types of information being synchronised among domain controllers depend

on the requirements of networking tasks and applications. Due to SDN’s exceptional

ability in fine-grained control and information gathering, potentially many types of

network status information can be synchronised among controllers. In the following

chapters, we specifically define how controllers synchronise with each other to assist

the corresponding networking tasks.

Data
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Control
Plane

controller

8

Centralised SDN

Figure 2.1: Centralised SDN
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bottom-layer
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Figure 2.3: Two-layer network model: Top-/bottom-layers abstract domain-wise
topology/all physical connections, respectively.

2.2 Network Model for Distributed SDN

This section describes the network model we employ for modelling and constructing

the distributed SDN, which lays the foundation for the analyses in Chapter 3 and

Chapter 4.

We formulate the distributed SDN network as an undirected graph according to a

two-layer network model (Fig. 2.3), where (i) the top-layer abstracts the inter-domain

connections, and (ii) the bottom-layer characterises physical connections among all

network elements under the inter-domain connection constraint in the top-layer.

First, each domain is characterised by an undirected graph with n nodes in the

bottom-layer; these n nodes are connected following a given intra-domain degree

distribution, which is the distribution of the number of neighbouring nodes of an

arbitrary node within the same domain. 1 We also assume that such intra-domain

degrees across all domains are independently and identically distributed (i.i.d.). The

graph of each domain is referred to as intra-domain topology.

Then, the top-layer, which characterises the connections among domains in dis-

tributed SDN network, is a graph Gd = (Vd, Ed) (Vd/Ed: set of vertices/edges): (i)
1In one domain, some nodes may have connections to other domains; such external connections

are not considered in the concept of intra-domain degree.
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each vertex in Vd represents a domain, (ii) two vertices are connected by an edge if

and only if their corresponding domains are directly connected by communication

links. We refer to Gd as the domain-wise topology in the sequence. Similar to the

model for intra-domain topology, it is assumed that the domain-wise topology, i.e.,

the top-layer graph, is formed following a given domain-wise degree distribution.

A domain-wise path from a vertex to another vertex is the sequence of vertices tra-

versed in the top-layer graph during the routing process. The existence of an edge in

Ed connecting two vertices v1, v2 2 Vd in the domain-wise topology implies that the

two network domains corresponding to v1 and v2 are connected.

Next, we describe how inter-domain connections are established under our net-

work model. In particular, for each e 2 Ed with end-points corresponding to do-

mains Ai and Aj , we (i) uniformly randomly select two nodes w1 from Ai and w2

from Aj and connect these two nodes if link w1w2 does not exist, and (ii) repeat such

link construction process between Ai and Aj � times. By this link construction pro-

cess, the bottom-layer network topology G = (V,E) is therefore formed (V/E: set

of nodes/links in G, |V | = n|Vd|) (Fig. 2.3). Without loss of generality, we assume

that all inter/intra-domain topologies are connected graphs.

Note that the above process indicates that the i-th selected link may overlap with

existing links (i.e., the same end-points); therefore, parameter � represents the max-

imum number of links between any two domains. In each domain, nodes having

connections to other domains are called gateways. Hence, if domains Ai and Aj

are connected in the domain-wise topology, then the expected number of gateways

in Ai connecting to Aj is denoted by �. According to the inter-domain connection

method described above, the probability that a node is not selected after � selections

is (1�1/n)� . Therefore, the expectation of the number of gateway nodes connecting

to the other domain is approximated by � ⇡ n(1� (1� 1/n)�).

Remark: Our two-layer network model is generic in that the input can be any
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domain-wise topology and node degree distribution, empirical or extracted from real

networks. Note that in practice, gateways are a fixed set of nodes in a domain; our

random gateway selection only indicates that the gateway locations can be anywhere

in the context of network graphs.

2.2.1 Data Plane

We exploit graph G generated by the two-layer network model in Section 2.2 to rep-

resent the data plane of the distributed SDN. Specifically, a node/link exists in G

if and only if it can be used for data transmission in the network. In addition to

the ability to transmit data, a data plane node can also be a general purpose server

with computation and storage capabilities to provide virtualised network services.

Under the SDN paradigm, the networking elements in the data plane have two ba-

sic functions. First, they communicate with their corresponding domain controller

for reporting their status information to assist the latter in making control decisions.

This can be achieved by SDN’s northbound APIs (e.g., via the OpenFlow proto-

col [20]). Second, they receive and passively execute the instructions given by the

corresponding domain controller, which is facilitated by the controller’s southbound

interface.

2.2.2 Control Plane

As discussed in Section 2.1, each domain contains one logical SDN controller, re-

ferred to as the domain controller, which carries out control operations and facil-

itates information sharing. Each domain controller can be one or a collection of

existing nodes inside domains that are equipped with the controlling functionality

(i.e., in-band control [21]) or external controlling entities operating on top of a net-

work domain. (i.e., out-of-band control [1]). All domain controllers together with

inter/intra-domain controlling channels form the control plane. For our analytical
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studies in Chapter 3 and Chapter 4, it is assumed that under the distributed SDN

architecture, to construct a path between a pair of source and destination nodes for

the given networking task, the corresponding routing path is logically determined

by the domain controllers in the source, the destination, and all intermediate do-

mains collectively, using the synchronised information among them. However, the

performance of the constructed paths may vary, depending on the network status

information at each involved controller. Next, we discuss the performance metric

employed for our analytical studies.

2.3 Link Preference and Path Cost for Routing in SDN

In the distributed SDN architecture, a routing path construction between a pair of

nodes is determined by all involved controllers. To reach an optimised routing

decision, controllers take into account the traffic status, load balancing, and other

policy-related factors. To this end, controllers can proactively assign a weight to

each link to indicate the link preference based on the collected network information,

i.e., the smaller the link weight, the better the link is for path construction, so that

the end-to-end accumulated weight of any path matches its corresponding path con-

struction preference. Therefore, the goal for constructing an optimised end-to-end

inter-domain path under a given network status is reduced to finding the end-to-end

path with the minimum accumulated weight under the given link weight assignment.

We refer to such accumulated path weight as the path cost. In real networks, the per-

formance of routing can be measured by many metrics, such as delay and congestion

level, depending on the goal of network management. In order to make our analytical

work sufficiently generalised to capture the performance metric that is important to

most network management tasks, we employ the average path cost (APC), measured

by the average accumulated link weight of the constructed path, as the performance
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metric for our analyses and evaluations in Chapter 3 and Chapter 4, and Chapter 5.

Remark: Under distributed SDN, link preference assignment is adjusted dynam-

ically by the domain controller according to the current network status and the rout-

ing performance metric used. For example, when routing performance is delay (ad-

ditive metric), the domain controller simply assigns as link weights the delays of

intra-domain links under the given traffic levels. In another example, if the routing

objective is to find the least congested path (non-additive metric), then the weight

assignments should reflect the preference for links with low load levels. We assume

that controllers assign such link preferences according to their control objectives;

the exact mechanism of link preference assignment subject to different routing ob-

jectives is beyond the scope of this thesis, and thus not discussed.

Since the link preference (weight) can be dynamic, in this thesis, we conduct our

analysis in two types of networks which we call network with uniform link preference

(Type-1 Network) and network with non-uniform link preference (Type-2 Network).

For Type-1 Networks, all link preferences are static and equal; therefore, without

loss of generality, all link weights in Type-1 Networks are set to 1. By contrast,

in Type-2 Networks, random variables are used to capture the dynamicity of link

preference. Specifically, for Type-2 Networks, we assume that intra-domain link

preferences across all domains are at least 1 and are independent and identically

distributed (i.i.d.). Furthermore, in real distributed SDN environments, unlike the

intra-domain links which are potentially wireless, inter-domain gateway-to-gateway

links are likely to be wired with high bandwidth, thus more stable. In this regard,

we characterise all inter-domain link weights by a non-negative constant. Without

loss of generality, we assume that the link preference levels for all inter-domain links

are 1; all our theoretical results can be easily extended to other policy-based inter-

domain setups, if the behaviours of such policy-based setups can be captured by

random variables with certain distributions.
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2.4 Capability Requirements for Distributed SDN

In this section, we briefly discuss the practical SDN capability requirements in order

to meet the assumptions and problem scenarios in later chapters of the thesis.

For the distributed SDN paradigm, there are generally two types of logical com-

munication interfaces, i.e., east-west interface and north-south interface. The former

enables the communication among SDN controllers, whereas the latter abstracts the

interactions between SDN controller in the control plane and networking elements

in the data plane.

In this thesis, the east-west interface is used for controller synchronisation and

for coordinating inter-domain networking tasks. For example, the controller syn-

chronisation process in Chapter 3 and Chapter 4, as defined in Definition 1, involves

the exchange of minimum path costs between intra-domain node pairs by the corre-

sponding SDN controllers. In addition, the implementation of inter-domain routing

mechanism, such as the RCPC defined in Section 3.4, requires similar capability to

enable the first domain controller within an routing cluster (RC) to communicate the

path construction decision to all other controllers within the RC. In practice, this

type of inter-controller communication is realised through the east-west interfaces

of distributed SDN’s control plane. Due to the high programmability and agility of

SDN, this can be easily implemented as software-based communication interfaces

on controllers. For instance, one protocol named Communication Interface for Dis-

tributed Control plane (CIDC), which is proposed in [22], can handle all east-west

communication discussed in this thesis.

On the other hand, the north-south interface is mainly used for implementing

controller’s control policies (southbound) and gathering status information from net-

working elements in the data plane (northbound). Specifically, in the context of inter-

domain routing tasks discussed in Chapter 3-5, controller installs routing rules in

SDN switches for directing packets routing. For the service path construction tasks
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discussed in Chapter 6 and Chapter 7, controller installs service request forwarding

rules in SDN switches in a similar manner. In addition, the RL-based network con-

trol tasks (Chapter 5-Chapter 7) also use SDN’s northbound interface for collecting

status information of networking elements in the data plane to assist the controller

in learning network control policies. Currently, there is no unified standard on the

implementation of SDN’s northbound interface [23], various controller architectures

provide their own high-level Application Programmable Interfaces (APIs). For ex-

ample, the intent-based [23] northbound API of the ONOS [24] controller supports

a wide range of communication modes between data plane elements and controller,

which enables the status data collection process in Chapter 5-Chapter 7.



CHAPTER 3

Analysis of Performance

Enhancements by Controller

Synchronisation - Approach I

3.1 Introduction

This chapter presents the first family of analytical methods we develop (Approach

I), which renders fine-grained analytical results revealing the performance of inter-

domain routing tasks in SDN and its relationships to controller synchronisation lev-

els and other network structural parameters. Based on the network model presented

in Section 2.2, we derive analytical expressions of the network performance focus-

ing on the APC of the constructed paths w.r.t. random flow requests. In particular,

we first establish an asymptotic expression to highlight the relationship between the

performance metric and dominant parameters. Then, such a performance metric is

investigated under four canonical synchronisation levels, ranging from the minimum

to the maximum level of synchronisation (see Section 3.3.1), i.e., between Minimum

Synchronisation (MS) and Complete Synchronisation (CS). If a given synchronisa-

tion scenario cannot be described by any of these four cases, then its performance

can be bounded by our analytical results corresponding to the two extreme cases

(i.e., maximum/minimum synchronisation).

Analytical results reveal the relative contributions of different parameters to the
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performance metric. For example, the performance metric scales linearly with the

average domain-wise distance; whereas it scales logarithmically with the number of

nodes in each domain. Moreover, the performance gain declines with the increasing

synchronisation level and the number of gateways. To validate the accuracy of the

derived analytical expressions, they are compared against evaluation results using

both real and synthetic networks. Note that the proofs for lemmas, theorems, and

corollaries in Chapter 3 are documented in Appendix A.1.

3.2 Related Work

3.2.1 Information Sharing for Routing Quality Improvement

Researchers have looked into better understanding the performance of hierarchical

routing where the internal structure of each domain is not revealed to outside nodes.

For example, [25] shows that hierarchical routing where the topologies of the clus-

ters are hidden can lead to suboptimal routing, and forwarding loops; [26] proposes

solutions to aggregate topologies with theoretical bounds. Moreover, [27] analy-

ses the effectiveness of hierarchical routing (e.g., ATM PNNI [28], Nimrod [29]).

However, most of these early works are either driven by simulations or with differ-

ent focuses from ours. In contrast, we conduct a rigorous mathematical analysis to

understand the benefits of controller synchronisation in distributed SDN. It should

be noted that although some of the theoretical results presented in this thesis could

be applied to the analysis of legacy networks under certain conditions, our work is

SDN-focused because many of the assumptions we have for modelling can only be

realised through fine-grained control under SDN. For example, SDN’s state update

process enables fine-grained domain information exchange, which is crucial in our

definition of controller synchronisation. On the other hand, SDN also makes it pos-

sible for joint-decision making and implementation of routing policies, which is in
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the core of our analysis.

3.2.2 Distributed SDN

The distributed SDN architecture, which integrates the advantages in early hierar-

chical networks, have stimulated many research efforts in this area. Specifically,

the feasibility of deploying SDN-based mechanisms incrementally to the current

BGP-glued Internet is considered in [5], where routing control planes of multiple

domains are outsourced to form centralised control planes for optimizing routing

decisions. Similarly, [30] investigates the problem of SDN upgrade in ISP (Inter-

net Service Provider) networks under the constraint of migration costs. In addition,

protocols and systems, such as HyperFlow [31], DISCO [32], and ONOS [24], are

proposed to realise logically centralised but physically distributed SDN architecture.

Devoflow [33] and Kandoo [34] are designed to reduce the overheads introduced

by the interaction between the control and data planes; while DIFANE [35] and

Fibbing [36] are conceived for limiting the level of centralisation and addressing

robustness issues, respectively.

Moreover, Google’s B4 [2] and Espresso [37], and Facebook’s Edge Fabric [38]

are the examples of tackling real-world network control problems, such as data cen-

tre management, traffic engineering, using SDN-based techniques. However, again,

most of these works are experiment-based. By contrast, our goal is to investigate

distributed SDN from the perspective of fundamental analytics.

3.2.3 Performance Analytics

Since all theoretical results in this thesis are obtained based on a graph model, our

work is related to the area of graphical analysis of complex networks. Most works

in this area are dedicated to the study of specific graph properties, e.g., small-world

effect [39], network motif [40], scale-free [41], etc. On the other hand, models



3.3. Problem Formulation 24

in [42, 39, 43, 44] are purely randomised, which cannot differentiate intra-/inter-

domain links in the context of distributed SDN. Thus, they are substantially different

from our work. Our approach is also comparable to [45] as they also consider a

layered-network model for the study of communication networks. However, the

authors are mainly concerned with modelling the co-existing connectivity.

3.3 Problem Formulation

3.3.1 Synchronisation Among SDN Controllers

Recall that we associate link preference level (weight) (see Section 2.3) to links in the

network model developed (see Section 2.2). Since for inter-domain routing path con-

struction tasks, link preference (weight) captures the controller’s view of the current

domain, i.e., network status information, the process of controller synchronisation

involves the exchange of such information, which we formally define below.

Definition 1. Domain Ai is synchronised with domain Aj if and only if the SDN

controller in Ai knows the minimum path cost between any two nodes in Aj .

By Definition 1, clearly there exist a significant number of synchronisation cases.

Moreover, in real networks, it is usually the case that synchronisation difficulty is

high when two SDN controllers are far apart. In this thesis, we therefore categorise

inter-domain synchronisations into the following cases, sorted by their correspond-

ing synchronisation difficulties.

a) Minimum Synchronisation (MS): Under MS, no domains synchronise with any

other domains. As a result, each controller only knows its own intra-domain topol-

ogy and the domain-wise topology, but the controller does not assign link preference

levels (all links have an equal link preference of 1) due to the lack of network status

information. This scenario captures IGP routing protocols that do not take into ac-

count any link weights but select routes purely based on the hop count (e.g., Routing
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Information Protocol (RIPv2)). Note that MS corresponds to the minimum network

knowledge that is always available, including scenarios in b)–d) ;

b) Self-domain Synchronisation (SS): In addition to the information under MS,

each controller under SS knows its intra-domain and out-going inter-domain link

preference levels. With this additional information, one controller can find the opti-

mal intra-domain path for any intra-domain flow requests, within its own domain;

c) Partial Synchronisation (PS): PS refers to any synchronisation levels between

SS and the following complete synchronisation (CS), where some controllers ex-

change the views of their own domains gained through SS. See an example of PS

in Fig. 3.1 where there are five domains, among which domain pairs {A1, A2},

and {A3, A4} are respectively synchronised; A5 is not synchronised with the other

four domains. Under PS, SDN and legacy routing policies could coexist, e.g., those

synchronised domains may operate on SDN routing utilising the synchronised in-

formation (see Section 3.4 for details), whereas those not synchronised operate on

a fully distributed inter-domain routing protocol such as BGP. PS is the most real-

istic scenario in distributed SDN, as it balances the benefits and costs of controller

synchronisation;

d) Complete Synchronisation (CS): Under CS, every pair of domains Ai and Aj

synchronise with each other. As such, there is effectively one logically centralised

controller, which can make globally optimal decisions. Among all these synchroni-

sation scenarios, CS experiences the highest synchronisation difficulty.

3.3.2 Problem Statement and Objective

Given the distributed SDN network model in Chapter 2, our goal is to study the

performance of the paths constructed by a basic and representative path construction

mechanism (see Section 3.4 for details) under various synchronisation scenarios. To

this end, we use the APC defined in Section 2.3 as the performance metric. Here
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APC is a natural generalised performance metric, as link weights are dynamically

adjusted by controllers based on the current network status to reflect time-varying

link preference. Formally, our research objective is:

Objective: Suppose (i) each network realisation under the two-layer network

model exists with the same probability, and (ii) the source-destination node pair

belonging to two different domains in a given network realisation also exists with

the same probability. Our goal is to derive mathematical expressions of APC under

each of the four synchronisation scenarios, i.e., MS, SS, PS, and CS, in both Type-

1/Type-2 Networks (networks with uniform/non-uniform link preference).

Remark: In this thesis, we are only interested in studying the cross-domain rout-

ing, since controllers can easily find the optimal intra-domain paths without relying

on inter-controller synchronisations. Note that our two-layer network model is a ran-

dom graph model, i.e., there exist multiple network realisations satisfying the same

set of input parameters. Therefore, APC is an expected value over not only random

source/destination node pairs but also random network realisations. All our theo-

retical results on APC are based on the given network parameters (e.g., degree and

weight distributions) rather than a specific network realisation.

3.4 Path Construction Mechanism

We describe a path construction mechanism for 4 synchronisation scenarios intro-

duced in Section 3.3.1. The intuition behind the path construction mechanism is

that given a particular synchronisation level, the synchronised controllers attempt to

use the synchronised information and make joint decision to minimise the overall

accumulated cost of the constructed path in their domains. Then the selected path

segments in all participating domains between the source/destination nodes concate-

nate into a cross-domain, end-to-end path. Before presenting the path construction
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mechanism, we first introduce several definitions as follows.

Definition 2. a) In the domain-wise topology Gd, the vertex corresponding to domain

A in G is denoted by #(A). Given a pair of source and destination nodes v1 and v2

with1 v1 2 A1, v2 2 A2, and A1 6= A2, the domain-wise path w.r.t. v1 and v2 is a

path in Gd starting at vertex #(A1) and terminating at vertex #(A2);

b) The domain-wise distance w.r.t. domains A1 and A2 is the length of the short-

est path from the vertex corresponding to A1 to the vertex corresponding to A2 in

the domain-wise topology Gd.

Based on Definition 2, we then define synchronisation radius to capture different

levels of synchronisations as follows.

Definition 3. The synchronisation radius ⌧ (⌧ � 1) is an integer such that (i) any two

domains with their domain-wise distance less than or equal to ⌧�1 are synchronised,

and (ii) no two domains with their domain-wise distance greater than ⌧ � 1 are

synchronised.

According to the definition of synchronisation radius, ⌧ = 1 for MS or SS, de-

pending on link preference status; ⌧ = � for CS, where � is the maximum domain-

wise distance between any two domains in the network. Any value of ⌧ between 1

and � falls in the category of PS. As such, we use a given ⌧ to capture the PS sce-

nario. Under a specified synchronisation level, the synchronised controllers leverage

the shared information to jointly make routing decisions on any domain-wise paths

between source/destination nodes. Formally, we have the following definition.

Definition 4. The group of domain(s) on the domain-wise path where routing deci-

sions are jointly made by their synchronised controller(s) is referred to as a routing

cluster (RC). Specifically, given a domain-wise path between the source and desti-

nation nodes, for all domains on this domain-wise path:
1In this thesis, for graph G = (V,E), by abusing graph theory notations, we use vertex v 2 G to

denote v 2 V and edge e 2 G to denote e 2 E.
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Figure 3.1: Path construction w.r.t. v1 and v2, whose shortest domain-wise path
traverses A1, A2, A3, A4, and A5.

a) Under MS or SS (⌧ = 1), each domain constitutes an RC;

b) Under PS (1 < ⌧ < �), starting from the source domain, every ⌧ domains

form an RC such that each domain belongs to one and only one RC, and only the RC

including the destination domain may have less than ⌧ domains;

c) Under CS (⌧ = �), all domains on the domain-wise path form an RC, where

� is the maximum domain-wise distance between any two domains in the network.

According to Definition 3 and 4, for any domain pairs inside an RC, there must be

at least one domain-wise path connecting them s.t. all intermediate domains on the

domain-wise path between them are within the same RC; otherwise, jointly optimal

routing decisions cannot be guaranteed between any two nodes within the RC, due to

the presence of external domain(s) en route, whose information is not known to RC

domains. Based on Definition 4, let q and µ denote the number of domains and the

number of RCs on the domain-wise path, respectively. For PS with synchronisation

radius ⌧ , the RC that includes the destination domain has q � ⌧(µ � 1) domains,

whereas all other RCs have ⌧ domains. Now, we are ready to introduce the path

construction mechanism between two arbitrary nodes v1 and v2 in the following

steps:

Step 1) Select the shortest domain-wise path w.r.t. v1 and v2, which consists of q

domains, with ties (if any) broken arbitrarily. That is, no domain-wise path w.r.t. v1

and v2 traverses less than q domains.



3.4. Path Construction Mechanism 29

Step 2) Based on the given synchronisation status of all involved domains on the

above domain-wise path, partition these domains into µ RCs (µ = q for MS and SS,

µ = 1 for CS, and µ = dq/⌧e for PS);

Step 3) For each RCi (RCs are sequentially labelled from the source to the destina-

tion, i = 1, 2, . . . , µ), a path segment starting from the entering node (which is v1 if

i = 1, or is specified by RCi�1) and terminating at one of the exiting nodes (which

are gateways connecting to RCi+1, or node v2 if i = µ) with the minimum cost is

constructed.2 Such path segment is denoted by Pi in RCi. Also let ei,i+1 be the edge

leading from Pi in RCi to connect to the entering node in RCi+1 if i  µ� 1;

Step 4) The final v1-to-v2 path P is

P = P1 + e1,2 + P2 + e2,3 + . . .+ Pµ�1 + eµ�1,µ + Pµ. (3.1)

Remark: Step 1) is similar to the BGP protocol used for inter-domain routing in

the Internet.3. We further justify the selection of the shortest domain-wise path in

Theorem 3.6 and Corollary 3.7. The path construction mechanism described above

relies on routing clusters as the basic routing unit, it is therefore referred to as routing

cluster-based path construction (RCPC) in the sequel. Fig. 3.1 shows a PS example

with q = 5 and ⌧ = 2 under RCPC. After the selection of a domain-wise path which

consists of domains A1 � A5, the domains are partitioned into 3 RCs according to

Step 2), as shown in the figure. Then, by Step 3), routing decision is made jointly

by controllers in each RC to minimise the corresponding path cost. For example,

assume that all link preferences are 1 in Fig. 3.1, the controllers of A1 and A2 jointly

choose node a as the exit point and thus construct a path segment between v1 and a in

RC1. The core of RCPC is that the synchronised SDN controllers jointly decide the
2Note that ECMP or similar schemes could be applied within RCs, since equal intra-RC costs

would be incurred.
3For mathematical tractability, we do not consider some uncontrollable random factors, such as

the LOCAL PREFERENCE attribute in BGP.
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routing policies according to the link preferences in their domains, i.e., to minimise

accumulated end-to-end link weights. For mathematical tractability, other routing-

related factors, such as the LOCAL PREFERENCE in BGP, are reflected in the

controller-assigned link weights.

Note that the intention in this thesis is not to design a new routing mechanism;

instead, the goal is to use a basic routing mechanism, RCPC, to understand the

network performance in distributed SDN. For improved routing mechanisms, our

RCPC-based analytical results serve as performance bounds.

3.5 Asymptotic APC for Various Synchronisation Lev-

els

Before the discussion of fine-grained analytical results on APC, we first present the

asymptotic analysis of APC (called asymptotic APC) under various synchronisation

scenarios in this section. The basic idea here is that we highlight, in the form of

directly observable expressions, the interactions among different parameters in de-

termining the overall APC.

The basic intuition behind the derivation of the asymptotic APC is that we first

compute the average domain-wise distance w.r.t. two arbitrary source/destination

nodes. Then, with the given synchronisation level (⌧ ), the domains on the domain-

wise path form RCs according to RCPC. Finally, we calculate the APC inside in-

dividual RCs and add up these APCs to obtain the accumulated end-to-end APC.

When the number of domains inside an RC is more than one, we employ a special

graph, called the randomised Degree-Preserving Network (RDPN), to help us derive

its APC. In essence, RDPN is obtained by aggregating the topologies of all domains

inside an RC to a single graph, for which the aim is to make the derivation of APC

tractable (see Definition 6 for details).
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Table 3.1: Main Notations and Abbreviation

Notation Meaning

m number of domains in the network

n number of nodes in each domain

� inter-domain connection parameter

�
� = n(1� (1� 1/n)�), average number of gateways in a domain
connecting to a neighbouring domain

z1, z2
average number of nodes that are 1-/2-hop away from a randomly
chosen node within a domain

z01, z02
average number of domains that are 1-/2-hop away from a ran-
domly chosen domain in the domain-wise topology

⌧ synchronisation radius

⇣i
average number of vertices which are i-hop away from a random
vertex in a RDPN (Definition 6)

�
� = log(m/z01)

log(z02/z
0
1)
+ 1 is the average domain-wise distance w.r.t. two

arbitrary domains (Section 3.6)

MS minimum synchronisation

SS self-domain synchronisation

PS partial synchronisation

CS complete synchronisation

Let m and n be the number of domains and the number of nodes in each domain

in the network, and � the average number of gateways connecting two neighbouring

domains (� = n(1�(1�1/n)�)). Next, within a domain A, let zi denote the average

number of vertices that are i-hop away from a random vertex within A. Similarly, in

the top-layer Gd of our two-layer model, let z0i denote the average number of vertices

(here each vertex represents a domain) that are i-hop away from a random vertex in

Gd (Refer to Section 3.6 for details of z01, z02, and �). In addition, let ⇣i be the average

number of vertices which are i-hop away from a random vertex in an RDPN. Main

notations and abbreviations used in this thesis are summarised in Table 3.1. Under

all above definitions and path construction mechanisms, we present the asymptotic

APC in the following theorem.
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Theorem 3.1. Given the synchronisation radius ⌧ , the asymptotic APC (denoted by

L) in the two-layer network model is

L =

8
>><

>>:

O
⇣

(��1) log( n⌧ 0
⇣1�

)

⌧ log(⇣2/⇣1)
+ log(n⌧ 0/⇣1)

log(⇣2/⇣1)

⌘
if �  n⌧ 0+1

⇣1+1 ,

O
⇣

��1
⌧ + log(n⌧ 0/⇣1)

log(⇣2/⇣1)

⌘
otherwise,

(3.2)

where ⌧ 0 = min{⌧,�+ 1}; see Table 3.1 for other notations.

Theorem 3.1 directly shows how the synchronisation level (⌧ ) affects the APC.

Specifically, when ⌧ is small, there are two dominant terms, which are both log-

arithmic functions, in (3.2). However, with the increase of ⌧ , when the network

achieves CS, only the second logarithmic function is dominant, and the two cases

under different values of � in (3.2) are merged into one unified expression, i.e.,

L = O
⇣

log(n⌧ 0/⇣1)
log(⇣2/⇣1)

⌘
, with ⌧ 0 ⇡ �+ 1. To better observe these trends, we consider a

sample two-layer network with the Erdös-Rényi (ER) model (see Section 3.14.1.2)

as the graph model in each layer with the following parameters: m = 200, n = 500,

p = 2/199 for the domain-wise topology, and p = 3/499 for the intra-domain

topology (see Section 3.14.1.2 for parameter p) and visualise the corresponding ex-

pression of (3.2) in Fig. 3.2. Clearly, L steadily descends with a diminishing amount

every time ⌧ increases by 1, thus implying the declining benefit of the increased syn-

chronisation level. In addition, we also observe that having more gateways (larger

�) results in a smaller L. However, the performance gain of larger � also gradually

diminishes as the synchronisation level grows. Thus, there is a cost/benefit trade-

off that needs to be considered in practical network design. The asymptotic APC’s

ability to reveal the relationship between APC and other parameters are validated in

Section 3.14.
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Figure 3.2: L in (3.2) in a sample network with varying ⌧ and �.

3.6 APC under MS in Type-1 Networks

In this section, we study the APC under MS in Type-1 Networks (all links are of

equal preference, i.e., link preference levels are 1 for all links) based on the path

constructions mechanism RCPC introduced in Section 3.4.

To this end, we first present the results in the existing work [44] to assist our

mathematical analysis.

Proposition 3.2. [44] In an undirected connected graph H with n0 vertices and the

vertex degree satisfying a given distribution, let xi be the average number of vertices

that are i-hop away from a random vertex in H. Suppose all edge weights are 1, and

x2 � x1
4. Then a)

xi = (x2/x1)
i�1x1; (3.3)

b) APC in H is
log(n0/x1)

log(x2/x1)
+ 1. (3.4)

In our two-layer model, the top-layer graph Gd (domain-wise topology with m

vertices) itself is a random graph following a given domain-wise degree distribution.
4This is a valid assumption because, according to our observations of real network datasets, the

number of two-hops nodes is (exponentially) larger than the number of immediate neighbour nodes
in most cases, i.e., x2 > x2

1, in both intra-domain and domain-wise topologies.
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Therefore, similar to [44], let z0i denote the average number of vertices that are i-hop

away from a random vertex in Gd. For two arbitrary nodes v1 and v2 with v1 2 A1,

v2 2 Aq, and A1 6= Aq, let � denote the average distance of the shortest domain-

wise path from domain A1 to domain Aq. Assuming z02 � z01, then according to

(A.7), we have

� =
log(m/z01)

log(z02/z
0
1)

+ 1. (3.5)

With (3.5), we know that the average number of domains for MS under RCPC

is � + 1. If we further know the average cost of Pi associated with the traversed

domain Ai, then we can estimate the average cost of P . To this end, let |P| denote

the number of hops on path P . Then, |P| = |P1|+ |P2|+ . . .+ |P�+1|+� according

to (3.1), where |Pi| is a r.v. The expectation of |P| is:

E[|P|] = E[|P1|+ |P2|+ . . .+ |P�+1|] +�

= E[|P1|] + E[|P2|] + . . .+ E[|P�+1|] +�.
(3.6)

According to the path construction procedure for MS, E[|P1|] = E[|P2|] = . . . =

E[|P�|] for two reasons. First, all domains have the same statistical properties. Sec-

ond, in each domain Ai (i  �), the routing mechanism selects a gateway (from a

set of gateway options) that is closest to the ingress node. By contrast, in domain

A�+1, the routing mechanism only selects the minimum-cost path from the ingress

node to the destination node v2. Thus, (3.6) is simplified as

E[|P|] = � · E[|P1|] + E[|P�+1|] +�. (3.7)

In a domain A with n nodes, let zi denote the average number of intra-domain nodes
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that are i-hop away from an arbitrary node v (v 2 A). Then again by (A.7), we have

E[|P�+1|] =
log(n/z1)

log(z2/z1)
+ 1, (3.8)

assuming z2 � z1. Hence, to compute E[|P|] in (3.7), it suffices to consider only

E[|P1|] associated with domain A1.

In A1, on average, there are � = n(1� (1� 1/n)�) gateways connecting to A2.

Suppose A1 contains exactly � gateways, denoted by set S. Then regarding path P1

from the starting point v1 in A1 to set S, there are two cases. First, v1 2 S, then P1 is

a degenerate path containing only one node v1, i.e., |P1| = 0. Second, v1 /2 S, which

complicates the computation of |P1|. For the second case, let l := E[|P1| |v1 /2 S],

i.e., the expectation of |P1| conditioned on v1 /2 S. Regarding the gateway set S,

there are up to �zi non-gateways that are i-hop away from the closest gateways.

Let lmax := argmaxi zi s.t. � +
P

ji zj  n. According to (A.6), zi increases

exponentially with i. In other words, the majority of non-gateways are lmax-hop

away from the closest gateways; therefore, we use lmax to approximate l. Thus,

zl ⇡ zlmax ⇡ n � � ⇡ n + 1 � � when n is large. By solving zl = n + 1 � �, we

obtain

l =
log(n+1��

z1�
)

log(z2/z1)
+ 1, (3.9)

where � = n(1 � (1 � 1/n)�). By close examination of (3.9), we notice that it is

also needed to guarantee l � 1. Hence, (3.9) can be calibrated as follows.

l =

8
><

>:

log(n+1��
z1�

)

log(z2/z1)
+ 1 if �  n+1

z1+1 ,

1 otherwise.
(3.10)

We can verify that when � = 1, (3.10) reduces to (3.8) as expected. A key threshold

�0 = (n + 1)/(z1 + 1) is revealed in (3.10). When �  �0, the distance from an

arbitrary non-gateway to the closest gateway is relatively large; when � > �0, there
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are sufficiently many gateways randomly distributed in one domain, causing each

non-gateway to have a gateway neighbour with high probability. Hence,

E[|P1|] = E[|P1| |v1 /2 S]Pr(v1 /2 S)

+ E[|P1| |v1 2 S]Pr(v1 2 S) + 1 = (
n� �

n
)l + 1,

(3.11)

where n��
n is the percentage of non-gateway nodes in a domain. Putting (3.5), (3.8),

and (3.11) into (3.7), the final expression of APC under MS is summarised in the

following theorem.

Theorem 3.3. The APC in Type-1 Networks under MS (denoted by LType-1
MS ) is

LType-1
MS =

8
>>>>><

>>>>>:

�
⇣�

n��
n

�� log(n+1��
z1�

)

log(z2/z1)
+ 1

�
+ 2

⌘

+ log(n/z1)
log(z2/z1)

+ 1 if �  n+1
z1+1 ,

�(n��n + 2) + log(n/z1)
log(z2/z1)

+ 1 otherwise,

(3.12)

see Table 3.1 for notations.

It can be observed that the domain-wise distance (�) and the number of gateways

(�) in domains are the most influential factors in shaping the APC for MS. Specifi-

cally, LType-1
MS is logarithmic in domain structural parameters n, �, z1, and z2, and it is

near linear in �.

Since SS coincides with MS in Type-1 Networks, we therefore discuss synchro-

nisation scenario PS in the next section.
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3.7 APC under PS in Type-1 Networks

In this section, we consider the partial synchronisation (PS) model5 as defined in

Definition 3. RCs are created as basic routing units according to Definition 4 under

PS. Note that the network graph of an RC is no longer a random graph, because mul-

tiple domains are connected via inter-domain connections in a specific way as dic-

tated by the network model. As such, we cannot directly apply the results obtained

in Section 3.6 for the APC expression under MS in Type-1 Networks. Regarding

such difficulties, in this section, we instead derive the APC lower bound for PS with

the assistance of an auxiliary network called the randomised Degree-Preserving Net-

work (RDPN) (see Definition 5). Here is the sketch of our methodology.

Sketch of Analytical Methodology:

a) Given a domain-wise path, we identify all RCs along the path according to

Definition 4;

b) We construct the RDPN associated with each RC;

c) We compute the path cost incurred in RDPNs, and prove it is a lower bound

of the actual path cost incurred in its original RC;

d) Adding up RDPN path costs and the number of inter-RC connections, we get

the lower bound of APC under PS.

Based on this methodology, we next describe the details on how the APC lower

bound under PS is derived.
5Such PS model enables an efficient analytical method for understanding the routing performance

under different partial synchronisation levels (quantified by the synchronisation radius). Other PS
models are left for future work.
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3.7.1 The Line Network and its Randomised Degree-Preserving

Network (RDPN)

We first formally define the following terms: (i) the line network that generalises

RCs; and (ii) the randomised Degree-Preserving Network (RDPN) of a line network.

These concepts are also used in the analysis of Type-2 Networks.

Definition 5. A line network with k domains is a special graph generated via the

two-layer network model, consists of k domains, where its domain-wise topology is

a connected linear graph (i.e., a connected tree where no vertex has degree 3 or more

). The domains with inter-domain degree being 1 and 2 in a line network are called

end-domains and transit-domains, respectively.

Definition 6. For a line network (denoted by F) with k domains and n nodes in each

domain, the corresponding randomised Degree-Preserving Network (RDPN) of F ,

denoted by FR, is a randomly generated network with kn nodes such that FR and F

have the same degree distribution.

Remark: Although F and FR have the same degree distribution and the number

of nodes, they differ significantly from the perspective of randomness. In particular,

F , as a line network, is constrained to certain structural properties, i.e., the domain-

wise topology must be a linear graph with k vertices. The RDPN FR, however, is

purely random without such constrains. Thus, let SF and SFR be the sets of all graph

instances of F and FR, respectively. Then, SF ✓ SFR .

3.7.2 Path Cost in RDPN

With the concept of RDPN, we now show the relationships between path costs in

the line network and its corresponding RDPN. Specifically, we discuss the minimum

path cost between a randomly chosen vertex and a vertex set in a line network and

its corresponding RDPN. To this end, we first derive the following theorem.
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Theorem 3.4. For a line network (denoted by F) consisting of k domains sequen-

tially labelled as A1,A2, . . . ,Ak, let FR denote the RDPN of F . Let ⇢ be the av-

erage path cost of the minimum-cost path between a random node µ (µ 2 A1) and

a random node set M (µ /2 M,M ✓ Ak), and ⇢R the average path cost of the

minimum-cost path between a random node µR (µR 2 FR) and a random node set

MR (µR /2MR,MR ✓ FR) such that |M | = |MR|. Then, ⇢R  ⇢ holds.

With Theorem 3.4, the APC lower bound under PS can be obtained by combining

the path costs of RDPNs of all associated RCs. Therefore, we only need to focus on

the computation of path cost in each RDPN. Viewing each RDPN of RCs as a random

graph following a certain degree distribution, we reapply the results in Section 3.6.

Specifically, the first step of path cost calculation in a random network is to determine

the number of 1-hop and 2-hop vertices from a randomly selected vertex. As such,

we present the following lemma.

Lemma 3.5. In the RDPN of a line network F with k domains and the inter-domain

connection parameter �, let ⇣1 and ⇣2 denote the number of vertices that are 1-hop

and 2-hop away from a random vertex, respectively. Then, the following holds:⇣1 ⇡

z1 +
2�(k�1)

nk , ⇣2 ⇡ z2 + z1
4�(k�1)

nk , if � ⌧ n, where z1 and z2 are the average number

of 1-hop and 2-hop nodes from a randomly chosen node within a domain in F ,

respectively.

By applying (3.8), which gives an estimation of the path cost between two ran-

dom nodes within a domain, and substituting relevant parameters of the RDPN, we

can express the path cost between two random nodes in an RDPN as g(k), a function

of the number of domains (k) in the RDPN :

g(k) =
log(nk/⇣1)

log(⇣2/⇣1)
+ 1, (3.13)

where ⇣1 and ⇣2 are defined in Lemma 3.5. Equation (3.13) estimates the path
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cost between two random nodes. However, as discussed in Section 3.6, path con-

struction needs to consider the gateway selection in domains that are not the desti-

nation domain. Similarly, in an RC that does not contain the destination node, the

constructed path in its RDPN is the minimum-cost path from a random vertex to a

random vertex set with the cardinality �. Therefore, by applying (3.10) and consid-

ering the probability of a random vertex not belonging to the random vertex set, the

path cost in an RDPN that does not include the destination node is

h(k) =

8
><

>:

nk��
nk

⇣
log(nk+1��

⇣1�
)

log(⇣2/⇣1)
+ 1

⌘
if �  nk+1

⇣1+1 ,

nk��
nk otherwise.

(3.14)

where k is the number of domains in this RDPN.

3.7.3 APC lower bound for PS

For PS of the synchronisation radius ⌧ , again, we use a line network with � + 1

domains to compute the APC lower bound under PS. Such line network is divided

into ⌘1 + 1 (when (� + 1) mod ⌧ 0 = 0) or ⌘1 + 2 (when (� + 1) mod ⌧ 0 > 0)

RCs, where ⌧ 0 = min{⌧,� + 1} and ⌘1 = b�+1
⌧ 0 c � 1. Moreover, the number of

domains in the RC that does not include the destination node is always ⌧ 0, whereas

the number of domains in the RC that includes the destination node is ⌘0 = (�+ 1)

mod ⌧ 0 when ⌘0 6= 0, or ⌧ 0 when ⌘0 = 0.

In a line network, the path cost in all RCs, excluding the one with the destina-

tion node, is estimated by (3.14), whereas the path cost in the RC that includes the

destination node is estimated by (3.13). Thus, the APC lower bound under PS is

Llower
PS =

8
>>>>>><

>>>>>>:

⌘1(h(⌧ 0) + 1) + g(⌧ 0) if ⌘0 = 0,

(⌘1 + 1)(h(⌧ 0) + 1) + g(⌘0) if ⌘0 > 0.

(3.15)
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Hence, when ⌘0 = 0,

Llower
PS

⌘0=0
=

8
>>>>><

>>>>>:

⌘1
⇣
⇠ log(n⌧ 0+1��

⇣1�
)

log(⇣2/⇣1)
+ ⇠ + 1

⌘

+ log(n⌧ 0/⇣1)
log(⇣2/⇣1)

+ 1 if �  n⌧+1
⇣1+1 ,

⌘1(⇠ + 1) + log(n⌧ 0/⇣1)
log(⇣2/⇣1)

+ 1 otherwise,

(3.16)

where ⇠ = 1� �
n⌧ 0 . When ⌘0 > 0, we have ⌘2 = (�+ 1) mod ⌧ 0 = ⌘0; therefore,

Llower
PS

⌘0>0
=

8
>>>>>><

>>>>>>:

(⌘1 + 1)
⇣
⇠ log(n⌧ 0+1��

⇣1�
)

log(⇣2/⇣1)
+ ⇠ + 1

⌘

+ log(n⌘0/⇣1)
log(⇣2/⇣1)

+ 1 if �  n⌧+1
⇣1+1 ,

(⌘1 + 1)(⇠ + 1) + log(n⌘0/⇣1)
log(⇣2/⇣1)

+ 1 otherwise.

(3.17)

Clearly, Llower
PS is linear in the number of RCs, and is logarithmic in network structural

parameters such as n and �. This suggests that enlarging the synchronisation radius

to reduce the number of RCs on the domain-wise path results in near linear reduction

in APC.

3.8 APC for CS in Type-1 Networks

For complete synchronisation (CS), since all SDN domains are synchronised, con-

trollers can make the global optimal decisions that generate the end-to-end path with

minimum path cost. In this regard, we first study whether RCPC can construct such

a global optimal path, and then establish the APC expression under CS in Type-1

Networks.

Given two arbitrary nodes v1 and v2, suppose the shortest domain-wise path P
⇤

w.r.t. v1 and v2 contains k vertices in the domain-wise topology. If P⇤ (selected

by RCPC) corresponds to the minimum-cost path between v1 and v2, then the APC

lower bound under CS can be easily obtained by calculating the APC between two
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random nodes in the end-domains of a line network consisting of k domains. How-

ever, the global minimum-cost path may visit more than k domains to yield the

minimum end-to-end path cost. We, therefore, examine how the domain-wise short-

est path P
⇤ is related to the global minimum-cost path between v1 and v2 in the

following.

Theorem 3.6. Let Lk(�) be the APC between two random nodes in the two end-

domains of a line network, which consists of k domains and all inter-domain con-

nections are governed by parameter �. Then, Lk(�) < Lk+1(�) when k � 3.

Theorem 3.6 reveals an important property of Lk(�), i.e., a longer domain-wise

path incurs higher end-to-end path cost if the shortest domain-wise path between

two nodes contains at least three vertices. See analysis and discussions on the two

uncovered cases (k = 1, 2) in Appendix A.1.

An implicit assumption for Theorem 3.6 is that the domain-wise path associated

with the constructed path is a simple path, i.e., a path without repeated vertices. To

show that visiting more domains cannot construct a shorter end-to-end path, we still

need to prove that visiting one domain more than once is also disadvantageous. To

this end, we define L0
k(�) which is the same as Lk(�) except that the corresponding

domain-wise path contains repeated vertices.

Corollary 3.7. For the two-layer network model, Lk(�) < L0
k0(�) for 3  k  k0.

Theorem 3.6 together with Corollary 3.7 suggest the following corollary.

Corollary 3.8. For any source-destination node pair residing in different domains,

on average, the optimal path between them traverses the minimum number of do-

mains.

Recall that the average number of domains on the shortest domain-wise path

between two random domains is �+ 1 = log(m/z01)
log(z02/z

0
1)
+ 2. Therefore, we compute the
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APC under CS based on a domain-wise path traversing � + 1 domains. Under CS,

the path construction in each domain is independent of other domains’ structures,

thus complicating the mathematical analysis. We, therefore, leverage RDPN of a

line network with � + 1 domains to estimate the APC for CS, which is a lower

bound according to Theorem 3.4. Thus, reapplying (3.13) with � + 1 as the input,

we obtain the APC lower bound for CS, denoted by Llower
CS :

Llower
CS = g(�+ 1) =

log
� n log(m/z01)
⇣1 log(z02/z

0
1)
+ 2n

⇣1

�

log(⇣2/⇣1)
+ 1. (3.18)

The expression of Llower
CS shows a function that bounds the APC under the best-case

scenario, i.e., CS, which therefore is also a lower bound under other synchronisation

scenarios. Since (3.18) is a logarithmic function of a logarithmic function, it sug-

gests that the routing efficiency can be significant if CS is achieved in the network.

Moreover, under CS, (3.18) is of the form of log(n log(m)), showing that the num-

ber of nodes n has a stronger impact than the number of domains m on the value of

Llower
CS , i.e., intra-domain routing is more critical.

3.9 Universal APC Lower Bound

In this section, we present the Universal APC lower bound, which provides an es-

timation of APC under any synchronisation levels for both Type-1 and Type-2 Net-

works. The phrase lower bound carries two separate meanings. First, it summarises

the APC obtained for MS and the APC lower bounds obtained for PS and CS in

Type-1 Networks. Second, since link preference is at least 1 for Type-2 Networks,

this universal lower bound derived for Type-1 Networks also applies to Type-2 Net-

works.

Theorem 3.9. Universal APC lower bound: Given the synchronisation radius ⌧ , the
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lower bound of APC (denoted by Llower) in the two-layer network model is

Llower =

8
>>>>><

>>>>>:

⌘1⇠ log(
n⌧ 0+1��

⇣1�
)

log(⇣2/⇣1)
+ log(n⌘2/⇣1)

log(⇣2/⇣1)

+⌘1(⇠ + 1) + 1 if �  n⌧ 0+1
⇣1+1 ,

log(n⌘2/⇣1)
log(⇣2/⇣1)

+ ⌘1(⇠ + 1) + 1 otherwise,

(3.19)

where ⌧ 0 = min{⌧,� + 1}, ⌘1 = b(�+ 1)/⌧ 0c � 1, ⌘2 = (� mod ⌧ 0) + 1, and

⇠ = 1� �
n⌧ 0 .

In (3.19), Llower, requiring the network topologies and synchronisation levels as

inputs, is a logarithmic function non-increasing with ⌧ . Moreover, when the number

of gateways in each domain is sufficiently large (i.e., large �), the expression of Llower

is significantly simplified due to easier inter-domain routing. In addition, the syn-

chronisation radius ⌧ , representing different levels of inter-domain synchronisations,

is instrumental in determining the APC lower bound Llower. For example, (3.19) re-

duces to (3.12) for MS in Type-1 Networks when ⌧ = 1; (3.19) reduces to (3.16) for

PS when ⌘0 = 0.

Remark: Since all link preference levels in Type-2 Networks are at least 1, this

universal APC lower bound still holds in Type-2 Networks, thus providing insights

into the routing performance under any synchronisation and network scenarios. In

Sections 3.10–3.13, we derive fine-grained APC expressions under different syn-

chronisation scenarios in Type-2 Networks. More importantly, these fine-grained

APC expressions can also be applied to Type-1 Networks by setting all edge weights

to 1.

3.10 APC for MS in Type-2 Networks

In this section, we present the APC expression under MS in Type-2 Networks, de-

noted by LType-2
MS . Though edges in Type-2 Networks exhibit various edge weights,
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such weight information is not available to any controllers under MS. Thus, the path

construction from the source to the destination is independent of the edge weight dis-

tributions. Recall that in our two-layer network model, all intra-domain link weights

are modelled as a given i.i.d. r.v., denoted by W , and all inter-domain edges are of

weight 1. Hence,

LType-2
MS = � · (E[|P1|] · E[W ] + 1) + E[|P�+1|] · E[W ] +�

=

✓
(n� �)l�

n
+

log(n/z1)

log(z2/z1)
+ 1

◆
E[W ] +�,

(3.20)

where Pi and l are defined in (3.1) and (3.10), respectively. Substituting the expres-

sions of l and � into (3.20), we obtain the full expression of LType-2
MS under MS in

Type-2 Networks:

LType-2
MS =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

✓
n��
n

� log(n+1��
z1�

)

log(z2/z1)
+ 1

�� log(m/z01)
log(z02/z

0
1)

+1
�
+ log(n/z1)

log(z2/z1)
+ 1

◆
E[W ]

+ log(m/z01)
log(z02/z

0
1)
+ 1 if �  n+1

z1+1 ,
✓

n��
n

� log(m/z01)
log(z02/z

0
1)
+ 1

�
+ log(n/z1)

log(z2/z1)

+1

◆
E[W ] + log(m/z01)

log(z02/z
0
1)
+ 1 otherwise.

(3.21)

It is verifiable that (3.21) is same as (3.12) when E[W ] = 1, i.e., the Type-2

Network is reduced to the Type-1 Network.

3.11 APC for SS in Type-2 Networks

SS is a special synchronisation scenario that only exists in Type-2 Networks. Sim-

ilar to MS, under SS, no two domains synchronise. To analyse APC under SS, we

first introduce a new concept, named path cost distribution, as the basis for further
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analysis. Here is the sketch of our analytical methodology.

Sketch of Analytical Methodology:

a) We compute the distribution of the path cost (in terms of accumulated link

preferences) between two random intra-domain nodes, called intra-domain path cost

distribution;

b) By (3.1), we need to determine the average cost of Pi for i = 1, 2, . . . , µ.

Since the total number of RCs is the same as MS, we have that the expected value of

µ in (3.1) is �+ 1;

c) As all controllers involved in the path construction process follow the same

procedure, similar to (3.7), it suffices to only quantify the average cost of P1 and

P�+1 using the intra-domain distance distribution derived in a).

3.11.1 Intra-Domain Path Cost Distribution

In one domain, consider a path with � links. Let W1,W2, . . . ,W� be i.i.d. r.v. of

link weights on this path with the probability density functions (pdf) being fW1(x) =

fW2(x) = . . . = fW�
(x). Define r.v. W� :=

P�
i=1 Wi as the accumulated weight on

this path. Then the pdf of W� is the convolution of the pdfs of W1,W2, . . . ,W�, i.e.,

fW�
(x) = fW1(x) ⇤ fW2(x) ⇤ . . . ⇤ fW�

(x). By the principle in mixture distribution

[46], we still need to know the probability pW�
that the minimum-cost path between

two random nodes contains � links. By the concept of zi defined in the analysis of

MS (Section 3.6), we know that pW�
is determined by z�, i.e., pW�

= z�/n (since

link weights are i.i.d.). Note that when � = 0, z0 = 1 and the cumulative distribution

function (cdf) of W0 is a unit step function. Let r.v. D be the minimum path cost

(in term of accumulated link weights) between two random nodes in one domain,

with the pdf being fD(x), i.e., intra-domain distance distribution. Then by mixture

distribution, fD(x) can be estimated as follows
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fD(x) =
hmaxX

i=0

pWifWi(x) =
hmaxX

i=0

zi
n
· fWi(x), (3.22)

where hmax := argmaxi zi s.t.
Phmax

i=0 zi  n. Hence, the APC between two nodes

in one domain E[D] can be computed using (3.22).

3.11.2 Domain-wise Path

Though SS and MS represent different synchronisation levels, the corresponding

domain-wise paths are exactly the same w.r.t. a pair of source and destination nodes

in a given network. Thus, by (3.5), again, we have that µ in (3.1) equals � + 1. Let

L(P) be the end-to-end accumulated link preferential levels (i.e., cost) of path P ,

which is a random variable. Then the expectation of L(P), i.e., the APC for SS in

Type-2 Networks, denoted by LType-2
SS , is

LType-2
SS = E[L(P)]

= E[L(P1) + L(P2) + . . .+ L(P�+1)] +�

= � · E[L(P1)] + E[L(P�+1)] +�

= � · E[L(P1)] + E[D] +�.

(3.23)

The reason for the last row in (3.23) is that E[L(P�+1)] essentially is the path cost

between two nodes in one domain.

Thus, it suffices to determine E[L(P1)] next, i.e., the minimum path cost between

a random node and the closest gateway in one domain connecting to the next domain

on the domain-wise path.



3.11. APC for SS in Type-2 Networks 48

3.11.3 Minimum Path Cost Between An Arbitrary Node and Gate-

ways

Section 3.11.1 provides the estimation of path cost between two arbitrary nodes in

Type-2 Networks. Based on (3.22), we quantify the path cost between an arbitrary

node and the gateway that incurs the minimum path cost, which is formally presented

in the following theorem.

Theorem 3.10. Let r.v. M (�) denote the path cost between an arbitrary node and the

gateway in the candidate gateway set (established with parameter �) that incurs the

minimum path cost. Then, the pdf of M (�) is:

fM(�)(x) =

8
>>>>>>>>><

>>>>>>>>>:

(1� FD(x� 1))�

� (1� FD(x))
�

for x � 1,

1� (1� FD(0))� for x = 0.

(3.24)

With Theorem 3.10, we can derive E[L(P1)] = E[M (�)], using the pdf expression in

Theorem 3.10.

Then, substituting (3.5), E[L(P1)], and E[D] into (3.23), we get the expression

of the APC under SS in Type-2 Networks, denoted by LType-2
SS :

LType-2
SS = � ·

Z +1

x=0

xfM(�)(x) + 1 +

Z +1

x=0

xfD(x) +�. (3.25)

Comparing to LType-2
MS , the expression of LType-2

SS is more complicated as we do not

impose any constraint on the distributions of link preference levels. Nevertheless, it

is verifiable that LType-2
SS is smaller than LType-2

MS , thus bounded by LType-2
MS .
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3.12 APC for PS in Type-2 Networks

To compute the corresponding APC under PS in Type-2 Networks, denoted by LType-2
PS ,

we first present the APC w.r.t. two nodes with their shortest domain-wise path con-

taining exactly q vertices, denoted by Lq, in the following theorem.

Theorem 3.11. Let Lq denote the APC between two arbitrary nodes under PS with

synchronisation radius ⌧ in Type-2 Networks where there are q domains on the

domain-wise path. Then, we have

Lq =

8
>>>>>><

>>>>>>:

(q/⌧ � 1) · (E[M (�)
⌧ ] + 1) + E[D(�)

⌧ ] if ✓ = 0;

(bq/⌧c � 1) · (E[M (�)
⌧ ] + 1) + E[D(�)

✓ ] if ✓ > 0,

(3.26)

where ✓ = q mod ⌧ , M (�)
i is the r.v. of the minimum path cost incurred in an

RC with i non-destination domains, and D(�)
i is the r.v. of the minimum path cost

incurred in the RC with i� 1 non-destination domains and the destination domain.

Recall that the probability that two arbitrary nodes with their domain-wise path

containing q domains is z0q�1/(m � 1) ⇡ z0q�1/m. Therefore, the APC under PS in

Type-2 Networks, LType-2
PS , is

LType-2
PS =

h0
max+1X

q=2

Lqz
0
q�1/m, (3.27)

where h0
max := argmaxi z0i s.t. 1+

Phmax

i=1 z0i  m. The accuracy of LType-2
PS is evaluated

in Section 3.14.



3.13. APC for CS in Type-2 Networks 50

3.13 APC for CS in Type-2 Networks

For complete synchronisation (CS), globally optimal routing decisions are made in

Type-2 Networks. Here, let Lk(�) := E[D(�)
k ], where D(�)

k is the r.v. of the minimum

path cost incurred in the RC with k� 1 non-destination domains and the destination

domain. By close examination of Lk(�), some additional conclusions are made in

the following corollaries.

Corollary 3.12. For the two-layer network model, Lk+1(1)� Lk(1) = E[D] + 1.

Corollary 3.13. For the two-layer network model, lim�!1
�
Lk+1(�)�Lk(�)

�
= 1.

Note that Theorem 3.6 and Corollary 3.7 remain valid for the Type-2 Network

scenario, which suggest that for any source-destination node pair residing in different

domains, on average, the optimal path between them traverses the minimum number

of domains. Therefore, when the shortest domain-wise path between two nodes

contains k vertices, we can use Lk(�) to approximate the corresponding optimal

APC. Thus, let LType-2
CS denote the APC under CS in Type-2 Networks. We have

LType-2
CS ⇡

h0
max+1X

k=2

Lk(�)z
0
k�1/m =

h0
max+1X

k=2

E[D(�)
k ]z0k�1/m, (3.28)

where h0
max is defined in (3.27). Though experiencing high complexity due to global

cross-domain routing optimality, LType-2
CS is shown in Section 3.14 to have high accu-

racy in estimating APC under CS.

3.14 Evaluations of the Developed Analytical Results

To evaluate our analytical results of distributed SDN for various synchronisation sce-

narios, we conduct two sets of experiments (called Evaluation 1 and Evaluation 2),

with different focus, on network topologies generated from both real and synthetic
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datasets. In Evaluation 1, we test the accuracy of the asymptotic analysis presented

in Theorem 3.1, which, in its concise form, demonstrates the interplay of differ-

ent parameters in determining the overall APC. Second, we validate the accuracy

of the derived fine-grained expressions for LType-2
MS , LType-2

SS , LType-2
PS , and LType-2

CS in Type-

2 Networks in Evaluation 2. We compare these theoretical results with the actual

APCs collected from the above networks. Based on these evaluation results, we can

validate the accuracy of our theoretical results and observe to what extent synchro-

nisation levels and network structural properties affect APCs.
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Figure 3.3: APCs for vary-
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1 2 3 4 5

τ

0

10

20

30

40

A
ve

ra
g

e
 P

a
th

 C
o

st
 (

A
P

C
)

Simulation
Asymptotic analysis

Figure 3.4: APCs for vary-
ing ⌧ .
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Figure 3.5: APCs for vary-
ing n.
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respectively.
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3.14.1 Network Realisations

3.14.1.1 Network Topologies Based on Real Datasets

To generate network topologies based on real datasets, we need the degree distribu-

tions as the input. Specifically, we use the real datasets collected by the University of

Oregon Route Views Project (Routeview project) [47], the Rocketfuel project [48],

and the CAIDA project [49] for input degree distributions.

Given a specific degree distribution, one graph realisation is generated in the

following way: We assign each vertex (the total number of vertices is given) a target

degree according to the degree distribution. We then select two vertices randomly

and add an edge between them; the number of edges added w.r.t. each vertex is then

recorded. If the degree target w.r.t. a vertex is met, this vertex will not be selected

again to connect with other vertices. This process repeats until all vertices reach their

degree targets.

3.14.1.2 Network Topologies Based on Synthetic Models

We select Barabási-Albert [43] and Erdös-Rényi [42] models to generate network

topologies.

a) Barabási-Albert (BA) model: BA model starts with a small connected graph

of a few nodes/edges. Then, we sequentially add new nodes in the following way:

For each new node v, we connect v to % existing nodes such that the probability of

connecting to node w is proportional to the degree of w. If the number of existing

nodes is smaller than %, then v connects to all existing nodes. Vertex degree for the

BA model follows a near power-law distribution. BA graphs can be used to model

some naturally occurring networks, e.g., social networks.

b) Erdös-Rényi (ER) model: For the ER model, the graph is generated by inde-

pendently adding an edge between two nodes with a fixed probability p. The result is
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a purely random topology where all graphs with an equal number of links are equally

likely to be selected. Vertex degree under ER follows a binomial distribution.

Then, intra-/inter-domain topologies are generated based on the above network

realisation methods. Next, on top of the generated inter-domain topologies, gateway

connections are constructed according to parameter �, and intra-domain links are

associated with link preference no less than 1.

Remark: It should be noted that the above network realisations are only for the

evaluation purpose. Our developed analytical results are generic and do not require

specific topological conditions.

3.14.2 Evaluation Settings

3.14.2.1 Evaluation 1

We conduct three experiments in networks with varying gateway connection pa-

rameter �, varying synchronisation radius ⌧ , and varying number of nodes in each

domain n, respectively. The APCs collected from these simulated networks are com-

pared with the predictions made by the asymptotic expressions. Intra-domain degree

distributions for three experiments are all derived from Rocketfuel “AS 1239”, in

which z1 = 6.165, and z2 = 41.835. We configure the domain-wise topologies to

have an average domain-wise distance of 10, using statistics collected from CAIDA

“AS 27524". Unless otherwise specified, the default parameter settings for three

experiments are: � = 5, ⌧ = 2, and n = 200.

3.14.2.2 Evaluation 2

Three evaluation cases are studied to validate the derived fine-grained APC expres-

sions. In particular, Case 1 and 2 use topologies generated based on degree distri-

butions extracted from real network datasets downloaded from Stanford SNAP[50];
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their names can be found in captions of Fig. 3.6-3.8. As for Case 3, synthetic data are

used where all intra-domain topologies are BA graphs and the inter-domain topol-

ogy is a ER graph (we pick p = 0.015 for ER graphs, % = 1 for BA graphs). In

all three cases, the distribution of link preference levels (weight) is derived from

Rocketfuel topologies, i.e., the intra-domain link preference ranges from 1 to 16

with the expectation and variance being 3.2505 and 4.5779, respectively. For each

case, the two-layer network consists of 100 domains, each containing 200 nodes, i.e.,

m = 100 and n = 200.

In addition, for PS, two special cases, i.e., ⌧ = 2 and ⌧ = 3, are studied to com-

pare against other synchronisation scenarios. It should be noted that these settings

are determined arbitrarily, as our analytical model does not require the input degree

distributions to have any patterns/properties. In addition to the evaluation results

presented for the three cases above, we conduct extensive evaluations using other

randomly chosen datasets from Rocketfuel and CAIDA, for which similar results

are generated. Thus, we select the three cases as representatives; others are omitted

to save space and to avoid repetitive results.

3.14.3 Evaluation Results

The simulated APCs and the APCs estimated by the asymptotic analysis are pre-

sented in Fig. 3.3-3.5 for Evaluation 1. For Evaluation 2, the simulated APC aver-

aged over all network realisations and source-destination node pairs are reported in

Fig. 3.6-3.8, for the three simulation cases, respectively. It should be noted that the

plotted simulated APCs are the average results of multiple network graph realisa-

tions sharing the same given network settings, as the simulation results of a single

network instance cannot indicate the characteristics of the network with the given

set of settings. Specifically, every curve plotted is the average of results of 30 topol-

ogy realisations with 50 random source-destination pairs (in different domains) per
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topology realisation.

3.14.3.1 Accuracy of the Theoretical Results

The asymptotic analysis is conducted to enable direct and clear observations of the

relationships between APC and parameters related to synchronisation levels and net-

work structural properties. The asymptotic analysis’ ability to reveal these relation-

ships is confirmed in Evaluation 1. From three figures in Fig. 3.3-3.5, we can see

that the trends in APC changes with varying parameters are closely captured by the

curves obtained using expressions of the asymptotic analysis, as the simulation and

analysis curves have common shapes. The presence of the gap between two curves

is due to the fact that the asymptotic analysis is only intended to highlight the rela-

tive relationship among different parameters in simple expressions, and thus it is not

meant to be employed as an exact estimation. In comparison, the evaluations of vari-

ous real/synthetic networks in Evaluation 2 demonstrated in Fig. 3.6-3.8 confirm the

high accuracy of our fine-grained theoretical results in predicting the performance

metric APC in distributed SDN networks. Specifically, the simulation curves can be

closely approximated by the theoretical results for all values of � and synchronisa-

tion scenarios. Moreover, the theoretical results for PS and CS are obtained by an

efficient computation method, which reduces calculation complexity.

3.14.3.2 APC Variations for Different Synchronisation Levels and Structural

Parameters

Fig. 3.3-3.8 confirm that the APC in distributed SDN is related to the amount of

information available to the controllers, i.e., synchronisation levels. As expected,

higher synchronisation levels are superior in reducing APCs. This can be observed

in Fig. 3.4, where APC decreases when the synchronisation radius ⌧ gets larger. For

Evaluation 2, Fig. 3.6-3.8 show that APC for CS corresponds to the minimum APC
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that is achievable in all cases, i.e., a lower bound. By contrast, the results for MS act

as an upper bound due to the minimum intra-/inter-domain information availability.

Since the APC for MS is expressed as a logarithmic function (3.21), Fig. 3.6-3.8

show that even with the minimum synchronisation level, APC is still relatively small

given the network size (20, 000 nodes in total) when link preference levels are at

least 1.

Fig. 3.6-3.8 show that comparing to MS, the APC reduction for CS can be up

to 70%. Moreover, comparing to MS, only intra-domain link preference informa-

tion is available to SS. Nevertheless, such additional information is able to reduce

APC by up to 30%. However, when more synchronised information is available, the

reduction in APC starts to degrade (i.e., diminishing return). In particular, for PS,

comparing against the case of ⌧ = 2, the APC reduction for ⌧ = 3 is rather small,

especially when � is small. This observation is also confirmed by Fig. 3.4 where the

most significant decrease in APC takes place when ⌧ changes from 1 to 2. Conse-

quently, it is expected that with the increase of ⌧ , the benefit to cost ratio declines

sharply.

In addition, we observe that the network performance improves when � in-

creases. This is intuitive as a large � directly renders higher probability of finding

a shorter path, as there exist more inter-domain connections. In fact, Fig. 3.3 and

Fig. 3.4 show that on average, increasing � is more effective in reducing APC than

increasing the synchronisation radius.

Furthermore, Fig. 3.3 and Fig. 3.6-3.8 also demonstrate that APC converges to a

certain value when � is large, which can be explained by Corollaries 3.12–3.13.

Finally, Fig. 3.5 reveals that the size of the network does not have a significant

impact on APC. Specifically, when the number of nodes triples from 100 to 300 in

each domain, APC only marginally increases by 6. Moreover, given that in Eval-

uation 1 there are on average 10 domains on the domain-wise path, this gives an
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average increase of APC by 0.3 in each domain.

In summary, these evaluation results reveal that in distributed SDN, the perfor-

mance improvement space is only marginal when domains synchronise with other

domains in an increasingly larger radius, or when each domain adds more gateways

while the number of existing gateways is already large. Such constraints need to be

addressed in practical network design and optimisations.



CHAPTER 4

Analysis of Performance

Enhancements by Controller

Synchronisation - Approach II

4.1 Introduction

In this chapter, we continue with the theoretical quantification of performance en-

hancement brought by SDN controller synchronisations. Specifically, we introduce

here the second family of analytical methods (Approach II), which focuses on devel-

oping more interpretable results to provide guidelines for synchronisation protocol

designs. Therefore, compared to the fine-grained analytical results developed in

the previous chapter, the results here are more coarse-grained but they more explic-

itly revel the interplay of various factors in determining the efficacy of controller

synchronisation. The main differences between Chapter 3 and Chapter 4 are sum-

marised as follows. (i) The analyses conducted in Chapter 4 cannot accommodate

arbitrary synchronisation levels, which differs from the four canonical synchroni-

sation levels assumed in Chapter 3. (ii) To make use of synchronised information

from arbitrary synchronisation levels, the routing mechanism in Chapter 4 is up-

dated based on that employed in 3; see Section 4.2.3 for details. (iii) The analytical

methods used in Chapter 4 render results in the forms of performance bounds and

the tightness proofs of such bounds; this is in contrast to the finer-grained but more
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complex results obtained in 3. (iv) As the analytical results in Chapter 4 are more

interpretable, we have dedicated discussions on the analytical results after all major

theorems; see “Insights for protocol design” sections for details.

In addition, here we provide a brief summary to highlight the main results ob-

tained in this chapter. Specifically, our analytical results in this chapter reveal the

relative contributions of different parameters to the lower bound of the performance

metric. For example, the number of domains on constructed paths contributes lin-

early to the overall performance metric lower bound; while the number of gateway

nodes in domains contribute logarithmically (see Theorem 4.2). Moreover, this lower

bound shows that the performance metric is a linear function of the number of routing

units (called routing clusters; see Definition 8) that are used for path constructions,

but is independent of the detailed routing unit structures and distributions. Next, we

quantify the tightness of such lower bounds and reveal the interplay among different

parameters for various network scenarios. By all these theoretical results, we prove

that the contribution of network synchronisation levels depends on specific network

parameter settings, which therefore provides insights into real network protocol de-

sign. Finally, to validate the accuracy of the derived analytical expressions, they are

compared against evaluation results obtained using simulation networks constructed

using both real and synthetic network datasets.

As the technical contents in this chapter share the similar contexts as in Chapter 3,

refer to Section 3.2 for related work. In addition, the proofs of all theorems and

corollaries of this chapter can be found in Appendix A.2.
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4.2 Problem Formulation

4.2.1 Link Preference and Path Cost

The analytical methods proposed in this chapter are also based on the analysis of

routing performance of paths constructed between arbitrary node pairs in the dis-

tributed SDN network. Therefore, we again use the concept of path cost, which is

discussed in Section 2.3, to quantify the performance of constructed routing paths.

Since the link preference (weight) can be dynamic, we use random variables to cap-

ture its dynamicity. Specifically, we assume that intra-domain link weights across all

domains are at least 1 and i.i.d. Furthermore, in real distributed SDN environment,

unlike the intra-domain links which are potentially wireless, inter-domain gateway-

to-gateway links are likely to be wired with high bandwidth, thus more stable. In

this regard, we characterize all inter-domain link weights by a non-negative constant

C. Furthermore, without loss of generality, we assume C = 1; all our theoretical

results can be trivially extended to other values of C, if the weights of inter-domain

links can be captured by random variables with certain distributions.

4.2.2 Synchronisation Among SDN Controllers

Similar to the previous chapter, the controller synchronisation is defined in Defini-

tion 1 in Section 3.3.1. Note that for the analysis in this chapter, we do not have

any requirements on how controllers are synchronised with each other. Instead, we

assume that the synchronisation status, i.e., which domains are synchronised with

which other domains, is known to us for analysis. Moreover, we assume that each

controller always has the up-to-date complete view (i.e., any path cost) of its own do-

main by proactive polling or passive information collection. Moreover, we assume

that the domain-wise topology is always known to every controller irrespective of the

inter-domain synchronisation status. In real networks, such domain-wise topology
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can be identified by techniques such as the BGP protocol.

4.2.3 Routing Mechanisms

With the distributed SDN architecture and the given inter-controller synchronisation

status, we then need a routing mechanism to respond to a path construction request

between two arbitrary nodes (potentially in two different domains). The aim of the

routing mechanism is to minimise the associated path cost under the given network

synchronisation status. The general rule governing the routing mechanism is to first

determine which domains are involved by finding a domain-wise path, defined as

follows:

Definition 7.

a) In the domain-wise topology Gd, the top-layer vertex corresponding to domain

A in G is denoted by #(A);

b) Given a pair of source and destination nodes v1 and v2 with 1 v1 2 A1, v2 2

A2, and A1 6= A2, the domain-wise path w.r.t. v1 and v2 is a path (not necessarily

the shortest) in Gd starting at vertex #(A1) and terminating at vertex #(A2) without

containing any repeated vertices.

Note that although the information of the network domain-wise topology is al-

ways known, the domain-wise path is selected according to the given network poli-

cies (e.g., load balancing, security issues, etc.). The routing mechanism constructs a

path segment in each involved domain, and then concatenate all these segments into

one end-to-end path; see Section 4.3 for the details of the routing mechanism.
1In this thesis, for graph G = (V,E), by abusing graph theory notations, we use vertex v 2 G to

denote v 2 V and edge e 2 G to denote e 2 E.
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4.2.4 Problem Statement and Objective

Regarding a path construction request for two nodes, after the (policy-based) selec-

tion of a domain-wise path, the path construction quality depends on the synchro-

nisation status of the involved domains. For instance, if every two domains on this

domain-wise path are synchronised, then the minimum end-to-end path can be con-

structed; however, if no domains are synchronised, then the path construction falls

back to follow BGP-like protocols. To quantify the performance of the constructed

routing path in a selected domain-wise path under any given inter-domain synchro-

nisation status, we employ the APC, discussed and defined in Section 2.3, as the

performance metric. Here APC is a natural generalised performance metric, as link

weights are dynamically adjusted by controllers based on the current network status

to reflect time-varying link preference, and APC is equivalent to the number of hops

in unweighted networks. Formally, our research objective is:

Objective: Given the distributed SDN network model, suppose each network

instance following the two-layer network model exists with the same probability.

For an arbitrary source-destination node pair with their selected domain-wise path

containing m domains (m � 2), our goal is to derive the mathematical expression

of APC for these node pairs under any arbitrarily given network synchronisation

scenario.

Note that our two-layer network model is a random graph model, i.e., there exists

multiple network realisations satisfying the same set of input parameters. Therefore,

APC is an expected value over not only random source/destination node pairs (in a

domain-wise path containing a particular number of domains) but also random net-

work realisations. All our theoretical results on APC are based on the given network

parameters rather than a specific network realisation.

Example: Fig. 4.1 shows a sample domain-wise path consisting of 8 domains

(m = 8) w.r.t. a path construction request between two random nodes v1 2 A1
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Egress gateway set Ingress gateway set

Labels:

domain A1

v2
v1

A2 A3 A4 A5 A6 A7 A8

Figure 4.1: Sample domain-wise path between source/destination pair v1/v2; do-
mains with the same labels are synchronised.

and v2 2 A8, where all intra-/inter-domain connections are captured by the two-

layer model. Moreover, Fig. 4.1 also illustrates one sample synchronisation status

among these 8 domains. Since the number of synchronisation scenarios among these

8 domains can be up to 2(
8
2), it potentially affects the performance of the constructed

path. We therefore aim to quantify APC between v1 and v2 for any given m and

synchronisation scenario.

4.3 Routing Cluster-based Path Construction

The prerequisite for the analysis of APC between two random nodes is a routing

mechanism that leverages the given inter-domain synchronised information. To this

end, we describe a path construction mechanism called Routing Cluster-based Path

Construction (RCPC). It should be noted that our intention here is not to design an

optimal routing mechanism. Instead, our goal is to quantify APC under a basic and

representative routing mechanism. In cases where improved routing mechanisms are

applied to distributed SDN, our theoretical results can serve as a performance bound.

4.3.1 Routing Clusters

As the name suggests, RCPC is based on the concept of routing clusters, which is

defined below.

Definition 8. For a domain-wise path with all involved domains sequentially labeled
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as A1,A2, . . . ,Am, domains Ai+1,Ai+2, . . . ,Ai+c (0  i  m � c) that are pair-

wise synchronised form a Routing Cluster (RC) containing c domains.

The concept of RC provides a method to leverage the given inter-domain syn-

chronised information. Specifically, domains belonging to the same RC are all syn-

chronised. Therefore, every controller in this RC is able to determine the optimal

intra-RC path w.r.t. any two nodes within this RC, i.e., controllers within the same

RC can be regarded as one logical controller. On the other hand, to ensure the opti-

mality of the constructed intra-RC path, we also require the indices of the involved

domains be continuous. This can be explained by the example in Fig. 4.1, where al-

though A1, A2, and A4 are all synchronised, it is impossible for controllers in these

three domains to compute the minimum cost path for any node pairs within them,

because the path cost information in A3 is unknown.

Next, to efficiently utilise the synchronised information on the domain-wise path,

we also need to partition all involved domains into different RCs. Note that two RCs

may have overlapped domains. If this happens, then the controller in the overlapped

domain may have conflicts in determining path constructions under different RC

memberships. Therefore, we only consider non-overlapping RCs as follows.

Definition 9. RC partition of domains on a given domain-wise path is a set R of

RCs, such that (i) each domain on this domain-wise path belongs to one and only

one RC, and (ii) |R| is minimised.

In Definition 9, the first condition guarantees that RCs do not overlap, and the

second condition ensures there are as many domains as possible in each RC, so that

the optimal path traversing multiple domains (within the same RC) can be found.

For instance, in Fig. 4.1, one way for RC partition is RC1 = {A1,A2}, RC2 =

{A3,A4,A5}, and RC3 = {A6,A7,A8}. Note that the RC partition is not unique.

For example, another way for RC partition in Fig. 4.1 is RC1 = {A1,A2}, RC0
2 =



4.3. Routing Cluster-based Path Construction 65

{A3,A4}, and RC0
3 = {A5,A6,A7,A8}. In Section 4.4, we will show how different

RC partitions (e.g., the number of RCs and the size of each RC) affect the APC.

Based on the RC partition, we are now ready to present the routing mechanism -

RCPC.

4.3.2 Routing Cluster-based Path Construction (RCPC)

RCPC is described in the following steps:

Step 1) W.r.t. two nodes v1 and v2 on a selected domain-wise path containing m

domains, identify the domains on this domain-wise path;

Step 2) Based on the given synchronisation status of all involved domains, partition

these domains into the minimum number of µ (1  µ  m) RCs according to

Definition 9;

Step 3) For each RCi, a path segment starting from the entering node (which is v1 if

i = 1, or is specified by RCi�1) and terminating at one of the exiting nodes (which

are gateways connecting to RCi+1, or node v2 if i = µ) with the minimum cost is

constructed. Such path segment is denoted by Pi in RCi. Also let ei,i+1 be the edge

leading from Pi in RCi to connect to the entering node in RCi+1 if i  µ� 1;

Step 4) The final v1-to-v2 path P is P = P1+e1,2+P2+e2,3+. . .+Pµ�1+eµ�1,µ+Pµ.

In essence, RCPC intends to minimise the path cost at each RC. As such, ECMP

or similar schemes could be applied within RCs for traffic balancing or other control

objectives; since equal intra-RC costs would incur as the result, our analytical results

still hold. The fact that, instead of each domain making routing decisions based on

its view of the network, path construction inside one RC is agreed using commonly

synchronised information and carried out consistently in all domains within the RC

is to avoid routing loops and other anomalies which are likely to arise because of the

mixed centralised-distributed routing. This is analogous to the routing mechanism

in ONOS [24] and OpenDaylight [51] in the sense that, for these two controller ar-
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chitectures, the domains on a domain-wise path essentially form one RC and they

jointly install the same set of forwarding rules. However, the inter-domain synchro-

nised information may be out-of-date, thus inaccurate. By contrast, RCPC partitions

involved domains into multiple RCs with the most recent synchronised information

among controllers.

4.4 APC for Any Given Synchronisation Status

With RCPC, we are ready to analyse APC of the path constructed between source

and destination nodes, and investigate its relationship with various network structural

and synchronisation-related parameters. In particular, we first derive the expressions

of the lower bound of APC. These results explicitly show how different parameters

interact with each other in determining the overall APC. In addition, to guarantee

the tightness of our developed APC lower bounds, we also provide the maximum

gap between the actual APC and the derived APC lower bounds. The significance of

such APC lower bounds is that they provide insights into how the constructed path

quality relates to any given network parameters without assuming any inter-domain

synchronisation models.

The basic idea of our derivation is to explore how path construction behaviours

differ in different types of domains in each RC, and understand how such behaviours

are influenced by intrinsic topological properties and the synchronised information.

Specifically, we give a sketch of our methodology.

Sketch of Analytical Methodology:

1) Given the domain-wise path with m domains, and the corresponding RC par-

titions, identify different types of domains (see Definition 10) based on their relative

positions in RCs;

2) Derive the APC lower bound for different types of domains and add these
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lower bounds together to obtain the overall APC lower bound;

3) Quantify the maximum gap between the actual APC and APC lower bound

by comparing the APC lower bound with the APC incurred without synchronised

information.

Before discussing technical details, for ease of presentation, we first formally

introduce the following definitions.

Definition 10.

a) Source/destination domain: the domain where the source/destination node is

located;

b) Type-1 domain: the domain in an RC where the constructed path segment in

this RC starts; the source domain is also a Type-1 domain;

c) Type-2 domain: any domain that is not a Type-1 domain or the destination

domain;

d) Ingress and egress gateway sets: the sets of gateways in a domain through

which data packets can enter or leave this domain w.r.t. the domain-wise path se-

lected between the source and the destination node.

Examples: In Fig. 4.1, based on the RC partition RC1 = {A1,A2}, RC2 =

{A3,A4,A5}, and RC3 = {A6,A7,A8}, A1, A3 and A6 are Type-1 domains; A2,

A4, A5 and A7 are Type-2 domains. The ingress and egress gateway sets are illus-

trated in A5 and A2 in Fig. 4.1, respectively.

Remark: The difference between Type-1 and Type-2 domains is that the starting

nodes in Type-1 domains are not decided by controllers in their associated RCs,

since the starting node is either the source node or an ingress gateway chosen by

the previous RC. In contrast, both ingress and egress gateways in Type-2 domains

are jointly decided by controllers in their associated RCs, using the synchronised

information they all share. As for the destination domain, if it constitutes an RC

itself, then the ingress gateway is decided by the previous RC; otherwise, it is decided
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Table 4.1: Main Notations

Notation Meaning

m the number of domains on the domain-wise path

n the number of nodes in each domain

�
the average number of ingress or egress gateways in a do-
main w.r.t. a domain-wise path

z1, z2
average number of nodes within the same domain that are
1-hop and 2-hop away from a random chosen node

µ
the number of Routing Clusters (see Definition 8) on the
domain-wise path

� � = n/z1

⇠
the probability that the ingress node is not in the egress gate-
way set in a domain

⇣
the probability that the ingress and egress gateway sets in a
domain do not have common elements

! maximum link preference (weight) in the network

jointly by all controllers within its associated RC. Whether or not the starting node

of a domain can be manipulated determines the minimum APC achievable in this

domain. Specifically, we derive the minimum APC traversed in different types of

domains in Theorem 4.1, which then serves as the lower bound. Before presenting

Theorem 4.1, we first define the path cost between two sets of nodes as follows.

Definition 11. The path cost between node sets W and S is the minimum path

cost among all paths in set {Pws: minimum cost path between node w and node s,

w 2 W, s 2 S}.

Theorem 4.1. Let l1 denote the APC between the starting node and the egress gate-

way set for Type-1 domains, and let l2 denote the APC between the ingress and

egress gateway sets for Type-2 domains. Then, when ! = 1,

l1 �

8
><

>:

⇣
� log(�/�)
log(z2/z1)

+ 1
�

if �  �,

⇣ otherwise,
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and

l2 =

8
><

>:

⇣
� log(�/�2)
log(z2/z1)

+ 1
�

if � 
p
�,

⇣ otherwise,

where ⇣ is the probability that the ingress and egress gateway sets in a domain do

not have common elements, and other notations are defined in Table 4.1.

In Theorem 4.1, according to the definition of ⇣ , its value is ⇣ = ⇧��1
i=1 (1�

�
n�i)

if �  n/2, or ⇣ = 0 if � > n/2. Note that Theorem 4.1 is derived by setting all link

weights to 1 (i.e., equal link preference). In this way, the mathematical expression

of APC is simplified. More importantly, since link weights are at least 1 in the

distributed SDN model, all derived APC lower bounds are still valid in graphs with

dynamic weights. Theorem 4.1 tells us that the minimum APC exhibits different

behaviours, depending on the range of the number of ingress/egress gateways. As

such, we discuss the APC lower bound in the following three regimes of �: sparse

inter-domain connections (� 
p
�), medium inter-domain connections (

p
� < � 

�), and dense inter-domain connections (� > �), where � = n
z1

.

4.4.1 Sparse Inter-domain Connections (� 
p
�)

We present the APC lower bound when the number of gateways is relatively small,

i.e., � 
p
�.

Theorem 4.2. When � 
p
�, the APC lower bound in a domain-wise path with m

domains partitioned into µ RCs, denoted by LLB, is

LLB =
µ⇣ log(�) +m⇣ log(�z2/z1�2 )

log(z2/z1)
� 1.

Before we draw observations from the expression of LLB, we first show the tight-

ness of such lower bound to justify its close representation of the APC. The basic

idea behind the derivation of the gap between APC and APC lower bound is to find
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a tractable APC upper bound, and use the difference between this APC upper bound

and LLB to capture the maximum gap. Such APC upper bound is estimated by as-

suming that each domain is an RC, i.e., no inter-domain synchronised information

is available. Although this APC upper bound fails to capture controller synchronisa-

tions, it helps us quantify the tightness of derived APC lower-bound. The tightness

guarantee is provided in the following theorem.

Theorem 4.3. Let L denote the APC in a domain-wise path with m domains par-

titioned into µ RCs, and ! the maximum link weight in the network. Then, when

� 
p
�, the gap between L and LLB is bounded by

L� LLB

⇢ log(�) + ⌫ log(�)

log(z2/z1)
,

where ⇢ = !⇠(1�m) + ⇣(2m� µ), ⌫ = !(⇠(m� 1) + ⇣)� ⇣m.

From the expressions in Theorems 4.2-4.3, they show that neither APC lower

bound nor the APC tightness expression are affected by the specific number of do-

mains in each RC. That is to say, the quality of two paths constructed by RCPC are

similar, as long as they have the same number of domains and RCs. Furthermore,

the APC lower bound grows linearly in both µ and m. Nevertheless, as � increases,

the influence of µ becomes more dominant according to Theorem 4.2. In contrast,

m is more important when � is small. Intuitively, this is because when the number

of gateways is small, there are not many gateway options for inter-domain routing,

and thus controller synchronisations do not improve the quality of routing that much.

In other words, even a random selection of gateways has a relatively high probabil-

ity of hitting the best choice. This is also echoed by Theorem 4.3 where the upper

bound of L�LLB, which represents the gap between the actual APC and the derived

APC lower bound, increases when � gets larger, as the informed routing makes a

significant difference when there are more gateways to choose from. Moreover, by
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Theorem 4.3, in the extreme case where there is no inter-domain synchronisations

(i.e., m = µ) and all link weights are 1 (i.e., ! = 1), with small number of gateways,

we have L � LLB
 log(�)/ log(z2/z1) ⇡ 0. Therefore, LLB becomes the accurate

expression of APC.

Insights for protocol design: When inter-domain connections are sparse, hav-

ing more inter-domain connections enhances the benefit of improved inter-domain

synchronisations. On the other hand, when the number of inter-domain connections

is really small, efforts should be diverted to increase domain-wise topological con-

nectivity to reduce the length of domain-wise path m, which will contribute more in

reducing APC, due to the effect of the reduction of m is magnified by a relatively

large coefficient log(�z2/z1�2 ) of m.

4.4.2 Medium Inter-domain Connections (
p
� < �  �)

Similar to the previous case, we also provide the APC lower bound and its tightness

guarantee in the case of medium inter-domain connections.

Theorem 4.4. When
p
� < �  �, the APC lower-bound in a domain-wise path

with m domains partitioned into µ RCs, denoted by LLB, is

LLB =
µ⇣ log( �

�z2/z1
)

log(z2/z1)
+m(⇣ + 1)� 1.

Theorem 4.5. Let L denote the APC in a domain-wise path with m domains parti-

tioned into µ RCs. Then, when
p
� < �  �, the gap between L and LLB is bounded

by

L� LLB <
⌧ log(�/�) + ! log(�)

log(z2/z1)
� ⇣(m� µ),

where ⌧ = ⇠!(m� 1)� ⇣µ.

In the medium inter-domain connection regime (
p
� < �  �), although LLB
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still grows linearly in µ and m, one noticeable difference comparing to sparse inter-

domain connections is that the influence of µ diminishes when � is large, which is

the opposite of the case in Theorem 4.2. This suggests a weakening role of synchro-

nisation (i.e., µ) in reducing APC when � is large. By closer examinations, this can

be explained by the fact that the relative abundance in egress gateways significantly

reduces the APC between non-gateway nodes and gateways. One consequence of

this is that even most domains operate only on the knowledge of their own domains

without any inter-domain synchronised information, i.e., select the gateway that in-

curs the minimum path cost in each domain, the overall APC of paths constructed in

such way is not much worsened. This revelation is also confirmed by the fact that

the coefficient of m are only related to the intrinsic property of the network. Another

difference comparing to the sparse inter-domain connection case is that the parame-

ter � = n
z1

, which is an indicator of the intra-domain graph connectivity level, is now

part of the coefficient of µ. This suggests that high network connectivity also reduces

the impact of a small µ (i.e., richer synchronised information among controllers).

Insights for protocol design: In medium inter-domain connections, improving

controller synchronisations is still helpful in reducing APC. However, the effective-

ness of it is dwindling. Therefore, the synchronisation policy must consider the con-

nectivity level of domains. Specifically, when the intra-domain connectivity level is

relatively low, increasing the inter-controller synchronisation level is more reward-

ing.

4.4.3 Dense Inter-domain Connections (� > �)

When the number of inter-domain connections is significantly large, the contribu-

tion of the increased inter-controller synchronisation level continues diminishing, as

proved below.

Theorem 4.6. When � > �, the APC lower-bound in a domain-wise path with m
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domains partitioned into µ RCs, denoted by LLB, is

LLB = (1 + ⇣)m� 1.

Theorem 4.7. Let L denote the APC in a domain-wise path with m domains parti-

tioned into µ RCs. Then, when � > �, the gap between L and LLB is bounded by

L� LLB <
(! + �) log(�)� � log(�)

log(z2/z1)
+ ⇣

�
(m� 1)! �m

�
,

where � = !(⇠ � ⇣)(m� 1).

When � > �, µ (which represents the level of controller synchronisations) disap-

pears from the expressions in Theorems 4.6 and 4.7. This suggests that in the dense

inter-domain connection regime (� > �), the role of controller synchronisation mat-

ters little. This is the continuation of the trend observed in the medium inter-domain

connection regime (
p
� < �  �) where the influence of controller synchronisations

is discounted as � increases. Intuitively, this is because when � is considerably large,

every node inside a domain has a high probability to connect directly to nodes in its

neighbouring domains, thus yielding the high probability that the ingress and egress

gateways are the same in each domain.

Insights for protocol design: When the inter-domain connections are dense, the

synchronisation of controllers achieves little in reducing the APC. Without addi-

tional synchronisation cost, a distributed routing algorithm, such as BGP, becomes

a fair alternative in this case. Moreover, from Theorem 4.7, it is evident that the

performance gap between APC and the APC lower bound is approximately the APC

between two arbitrary nodes in the destination domain multiplied by the worst case

link weight when � is large (i.e., ⇠ ⇡ 0 and ⇣ ⇡ 0). This can be explained as follows:

For a domain-wise path, the destination domain is the only domain that has a spec-

ified ingress gateway and a destination node, i.e., the destination domain does not
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have gateway options which may incur lower cost. As such, the destination domain

becomes the bottleneck when � is large. Therefore, the destination domain should

be the focus of the synchronisation design when inter-domain connections are dense.

4.5 Evaluations of the Developed Analytical Results

A series of experiments based on network topologies generated from both real and

synthetic datasets are conducted in this section. The focus is two-fold. First, we

evaluate the developed analytical results’ abilities in predicting APC changes for

different network parameters. Second, we test the validity of insights our analytical

results reveal in simulated networks.

4.5.1 Network Realisations

4.5.1.1 Network Topologies Based on Real Datasets

To generate network topologies based on real datasets, we refer to the Rocketfuel

project [48] for the input node degree distribution to generate the network topology

for each domain.

Given a specific node degree distribution, one graph realisation is generated in

the following way: We assign each vertex a target degree according to the degree

distribution. We then select two vertices randomly and add an edge between them;

the number of edges added w.r.t. each vertex is then recorded. If the degree target

w.r.t. a vertex is met, this vertex will not be selected again to connect with other

vertices. Such process repeats until all vertices reach their degree targets.

4.5.1.2 Network Topologies Based on Synthetic Models

In our evaluations, we test the trend of APC changes with varying network param-

eters and compare them with our derived APC lower bounds. Since we are not
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Figure 4.2: Scenario 1: APCs of paths
constructed with different RC partitions
(m = 20, µ = 5).
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Figure 4.3: Scenario 2: APCs of paths
constructed with increasing number of
RCs (m = 20).
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always able to obtain real network datasets with desired varying network parameters

that meet our requirement, we also use network topologies generated by synthetic

datasets according to certain network models. Specifically, we select Erdös-Rényi

[42] model to generate network topologies for some evaluations.

Erdös-Rényi (ER) model: An ER graph is generated by adding an edge between

two nodes with a fixed probability p. The result is a purely random topology where

all graphs with an equal number of links are equally likely to be selected. Vertex

degree under ER model follows binomial distribution.

4.5.2 Evaluation Scenarios

We conduct our evaluations for the following scenarios, with different objectives: (i)

Scenario 1, where we test the APC against different RC partitions that have the same

total number of RCs on the domain-wise path; (ii) Scenario 2, where we test the APC

for different numbers of RCs on the domain-wise path; (iii) Scenario 3, where we

compare the APCs with different numbers of domains but the same number of RCs;

(iv) Scenario 4, where we test the influence of the number of gateways on the APC;

(v) Scenario 5, where we evaluate the APC for networks with different connectivity

levels.

4.5.3 Evaluation Settings

All evaluations are conducted on graphs with 300 nodes in each domain, where the

link preference (weight) of intra-domain links are i.i.d. random variable uniformly

distributed between 1 and 5. Except for Scenario 3 where the number of domains on

the domain-wise path is varied from 20 to 30, there are 20 domains on the domain-

wise path from the source to the destination domain in all other scenarios. Network

topologies of all domains for evaluation Scenarios 1 - 4 are generated using statistics

collected from the RocketFuel project, where we use AS “orange1010331" that has
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10, 670 nodes whose node degrees are distributed between 2 and 49. The average

number of 1-hop and 2-hop nodes from a random node in this AS are 3.16 and

13.31, respectively. All datasets used in our evaluations can be downloaded from the

Stanford SNAP project website [50].The network topology for evaluation Scenario 5

is generated using the ER network model, because we need a continuous variation

of the average node degree for the purpose of this evaluation.

For Scenarios 1, 3, and 5, the domain-wise path is partitioned into 5 RCs. More-

over, some evaluation scenarios require that the constructed path be partitioned into

certain number of RCs. Since there are potentially many partitions that result in the

same number of RCs, we randomly select 30 such partitions under the constraint of

the required number of RCs (for Scenarios 1 - 5) and use results averaged over these

partitions as evaluation results (for Scenarios 2 - 5). It should be noted that the plot-

ted simulated APCs are the average results of multiple network graph realisations

sharing the same given network settings, as the simulation results of a single net-

work instance cannot indicate the characteristics of the network with the given set of

settings. Specifically, for each evaluation scenario, 50 network graphs are realised,

and with each realisation, 50 source-destination pairs are randomly picked from the

source and destination domains for path constructions.

4.5.4 Evaluation Results

4.5.4.1 Accuracy of the APC prediction

In all evaluation scenarios, the derived APC lower bounds capture the trend of APC

changes against variations in different network structural or synchronisation-related

parameters. Specifically, Fig. 4.2 confirms our conclusions drawn from the derived

APC lower bound that the APC is not affected by how domain-wise paths are organ-

ised into RCs, as long as these paths share the same number of domains and the same
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number of RCs. Thus, in the following experiments, the lower-bound results stand

independent of the specific instantiations of RC partition, as per instance RC parti-

tions yield similar APC when they have the same number of RCs. Fig. 4.3 shows

that the APC increases in µ for sparse (� = 5) and medium (� = 40) inter-domain

connections, but stays relatively unchanged under dense inter-domain connections

(� = 170). This confirms our argument that controller synchronisations only exhibit

limited contributions when the number of gateways is large. Fig. 4.4 demonstrates

that the APC increases linearly in m under all inter-domain connection ranges. Fur-

thermore, Fig. 4.5 and Fig. 4.6 display the non-linear relationships between the APC

and the number of gateways and the average node degree, respectively. These rela-

tionships are anticipated by Theorems 4.2, 4.4, and 4.6. Finally, the gaps between

evaluation results and APC lower bounds are mainly caused by the various link pref-

erence that is used for path constructions.

4.5.4.2 Contributions of different controller synchronisation levels and net-

work structural parameters on the APC

The central question we aim to answer in this thesis is whether higher controller syn-

chronisation levels always deliver performance improvements, and whether a com-

plicated synchronisation protocol is needed. In addition, we also want to understand

the influence of other parameters on APC. On top of our analytical results, these eval-

uation results further offer us answers to these questions. Specifically, the slope of

the lines in Fig. 4.3 represents the rate of the APC increase when the number of RCs

increases, which signifies a worsening controller synchronisation level. We observe

that the slopes decrease when the number of gateways increases. This suggests that

the worsening controller synchronisation levels affect networks with less number of

gateways, thus showing the importance of having more gateways in situations where

controller synchronisations are limited. Despite its role in reducing the APC, Fig. 4.5
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shows the limit of having more gateways. This is demonstrated by the diminishing

decrease in APC when the number of gateways continues to grow from an already

significant amount. Fig. 4.6 reveals that the improved network connectivity level,

reflected by the average node degree of intra-domain topologies, also benefits the

reduction of the APC. Intuitively, this is because higher network connectivity levels

essentially offer more path construction options, from which more cost-saving paths

are likely to emerge. However, again such benefit becomes constrained when more

gateways are added. In contrast, the results shown in Fig. 4.4 demonstrate that the

influence on the APC from the number of domains on the domain-wise path is not

strongly coupled with the number of gateways present in domains. This observation

suggests that the effort invested in improving the connectivity of the domain-wise

topology, which brings down the average number of domains on a domain-wise path,

is always beneficial in reducing the APC.

4.6 Limitations of our Analytical Results

The analytical results obtained in Chapter 3 and Chapter 4 shed light on the benefits

of controller synchronisation in relationship to various network structural properties.

Although our work here is the first to investigate the subject from the graph theoreti-

cal perspective, we recognise the limitations of these results, which are discussed in

this section.

First, some of the underlying assumptions we make in order to enable mathe-

matically tractable analysis are not realistic in a practical distributed SDN network.

For example, in order to have generic and simplified expressions of the APC and

the APC bounds, we assume that the degree distribution in all domains are i.i.d.

However, real SDN networks are likely to be heterogeneous systems with domains

having varying structural properties. Therefore, the analytical results only serve as
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guidelines for analysing distributed SDN networks with diverse domain structures.

Second, based on the network model, we use degree distribution of domain

graph, which models the intra-domain topology, to characterise structural properties

of domain topology. From the perspective of random graph, the degree distribution

is the most important characteristic, which determines the statistic properties of the

graph. However, communication networks, such as the distributed SDN network,

may be described by other statistical models as well. For example, the clustering

phenomenon in some real-world networks are attributed to the preferential attach-

ment model [52]. Therefore, our results obtained based on this generic metric, i.e.,

degree distribution, capture the average behaviours of all graphs sharing the shame

degree distribution, but not tailored for certain type of networks.

Third, the way to use synchronised information and the corresponding path con-

struction mechanism employed in Chapter 3 and Chapter 4 are simple and repre-

sentative mechanisms to assist our analyses. Although these mechanism designs

are not our original intention nor focus in this thesis, they do impact the analyti-

cal results. Therefore, for real-world scenarios with different inter-domain routing

paradigm than ours, the analytical results presented are not directly applicable.

The limitations discussed in this section are the results of a series of necessary

trade-offs to balance among factors including the tractability of the problem, inter-

pretability of the results and compatibility with existing SDN controller architec-

tures. We recognise that these limitations constrain the applicability of our results;

they nevertheless serve as guidelines, which reveal the relative importance of various

factors in affecting the APC.



CHAPTER 5

DQ Scheduler: DRL-based

Controller Synchronisation for

Inter-domain Routing

5.1 Introduction

In this chapter, we explore DRL-based approaches for designing controller synchro-

nisation policies in distributed SDN. In particular, as a starting point, we focus on

the inter-domain routing task for which controller synchronisation helps improve the

quality of inter-domain routing decisions.

Recall that for distributed SDN, physically distributed controllers synchronise

with each other to maintain a logically centralised network view, which is referred

to as controller synchronisation. Since complete synchronisation among controllers,

i.e., all controllers always maintain the same global view, will incur high costs espe-

cially in large networks [18, 19], most practical distributed SDN networks can only

afford partial inter-controller synchronisations and allow temporary inconsistency in

controllers’ network view, which is known as the eventual consistency model [10].

The eventual consistency model permits temporarily inconsistent network views

among physical distributed controllers in the hope that all controllers will eventually

be mutually updated. In the mean time, higher network availability, i.e., the ability to

provide network services, is realised at the cost of temporary inconsistency according
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to the CAP theorem [10], which states that it is not possible to provide consistency,

availability and partition tolerance at the same time for distributed systems. Despite

the fact that existing works recognize the problems caused by inconsistent network

views [53], one crucial question that has been largely overlooked is precisely how

controllers should synchronise with each other, under limited synchronisation bud-

get, to minimise the performance degradation caused by such inconsistency. For

example, ONOS [24], which is a state-of-the-art SDN controller, employs the anti-

entropy protocol to realise the eventual consistency [54]. The gist of the anti-entropy

protocol is that controllers use a simple gossip algorithm to randomly synchronise

with each other. Although this protocol can achieve eventual consistency, is it a wise

and efficient way?

Motivated by this question and inspired by recent success in applying RL tech-

niques to solve complicated problems, we approach this controller synchronisation

problem by formulating it as a MDP problem. Then, we design the DRL based

Deep-Q (DQ) Scheduler, for which the goal is to maximise the long-term benefits of

controller synchronisations. Evaluations show that DQ Scheduler outperforms the

aforementioned anti-entropy protocol by up to 95.2% for the inter-domain routing

task.

5.2 Related Work

5.2.1 Distributed SDN

Many research efforts are directed to the design of distributed SDN controller ar-

chitecture. Specifically, OpenDaylight [51] and ONOS [24] are two state-of-the-art

SDN control platforms proposed to realise logically centralised but physically dis-

tributed SDN architecture. In addition, controllers such as Devoflow [33] and Kan-

doo [34] are designed with their specific aims. However, most of these controller
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architectures do not emphasise or justify detailed controller synchronisation proto-

cols they employ.

5.2.2 Controller Synchronisations

Most existing works on controller synchronisation assume either strong or eventual

consistency models [55], for which our work uses the latter. The authors in [53]

show that certain network applications can rely on the eventual consistency to de-

liver acceptable performance. This work [56] shows how to avoid network anomalies

such as forwarding loops and black holes under the eventual consistency assumption.

Similar to our approach, the works [57, 58] propose dynamic adaptation of synchro-

nisation rate among controllers. Compared to these works, DQ Scheduler is more

versatile in that there is no assumptions on the network and the policy learning pro-

cess is automated given any network conditions.

5.2.3 Reinforcement Learning in SDN

Some recent high-profile successes [59, 60] attract enormous interests in applying

RL techniques to solve complicated decision making problems. In the context of

SDN, our previous work in [61] apply RL-based algorithms to solve service place-

ment problem on SDN switches. This work [62] also discusses the routing prob-

lem in SDN using RL techniques. However, the discussion is only limited to intra-

domain routing under strong assumptions on the network topology. In addition,

tabular settings are used in this work without generalisations. In contrast, as we

shall demonstrate in this chapter, DQ-Scheduler does not have any assumptions on

network structures or other parameters.
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5.3 Problem Formulation

We formulate the controller synchronisation problem with inter-domain routing as

an application of interest. We first describe the generalised routing path construction

mechanism under distributed SDN with eventual consistency model (Section 5.3.1)

and then introduce the performance metric (Section 5.3.2). Next, we discuss the syn-

chronisation of SDN controllers and introduce its formal definition in Section 5.3.3.

We then state in Section 5.3.5 the objective of the controller synchronisation prob-

lem. Finally, the problem is formulated as an MDP in Section 5.3.6.

5.3.1 Generalised Path Construction Mechanism in SDN

Under distributed SDN paradigm, inter-domain routing, like any other network task,

is carried out by matching the packet’s header with entries in switches’ flow tables

that store the forwarding rules installed by the controllers. Due to the flexibility

and programmability of the SDN, there are potentially many ways in which routing

can be conducted. In this section, we describe a simple routing path construction

mechanism which is generalised based on principles of BGP-like protocol [63] in

the Internet, and routing mechanisms employed by some state-of-the-art controllers

such as the ONOS controller. Note that it is not our intention to design any routing

mechanisms; we use this simple and representative mechanism as it takes advantage

of the synchronised information among controllers for enhancing inter-domain rout-

ing. Specifically, the path construction mechanism consists of the following steps.

Step 1: The controller of the domain where the source node sits (source con-

troller in the sequel) decides the sequence of domains that the packet will traverse

between the source and the destination domains (called the domain-wise path), ac-

cording to certain control objectives of the controller;

Step 2: Based on its view of the topologies of the domains on the domain-wise
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path, the source controller constructs the path from the source node to the destination

node that optimises the control objective;

Step 3: The source controller communicates the path construction decision to

the involving domains’ controllers and they install the forwarding rule on switches

in the form of ingress and egress gateway IP addresses.

An illustrative example is presented in Fig. 5.1 to demonstrate how the routing

mechanism works. The example shows the selected domain-wise path between the

source node v1 and the destination node v2, in which domains A1–A4 are involved.

The topology of these domains are the views of the source controller, which therefore

constructs the path (red lines) that minimises the hop counts (other performance

metrics can also be used; see Section 5.3.2 for details) between v1 and v2. Then

the source controller instructs the controller of A2 and A3 that the packet whose

destination is v2 should egress their domains at node b and c, respectively. Note that

such constructed path may be suboptimal, as the view is incomplete or out of date

(see Section 5.3.3 for further explanations).

5.3.2 Performance Metric

To quantify the performance of the constructed routing path in a selected domain-

wise path under the given inter-domain synchronisation status, we employ the APC,

which is discussed and defined in Section 2.3, as the performance metric.

5.3.3 Synchronisation Among SDN Controllers

Under the eventual consistency model in distributed SDN, the quality of constructed

routing paths is directly affected by the controller synchronisation levels. We use an

example to demonstrate the benefits of controller synchronisation for path construc-

tion. In Fig. 5.1 and Fig. 5.2, suppose the source node v1 in A1 sends packets to

the destination node v2 in A4. The topology in Fig. 5.1 represents A1’s controller’s
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Figure 5.1: Controller A1’s network view.
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Figure 5.2: Actual network topology.

view of the network, which was obtained during synchronisations between A1 and

A2–A4 in the past. However, due to the dynamicity of the networks, the actual

topology evolves into the one in Fig. 5.2, which is not promptly synchronised to the

source controller. As a result, the source controller, with the outdated view of the

network, still uses the old flow table entries which direct packets sent to v2 to gate-

ways a, b, and c, respectively. In comparison, the source controller would select a

shorter route (green lines) that involves b0 and c0 as egress gateways in domains A2,

and A3, should it obtain the most up-to-date network topology through synchroni-

sations. This example highlights the important role of controller synchronisation in

dynamic networks, which is formally defined below.

Definition 12. Domain Ai is synchronised with domain Aj if and only if the SDN

controller in Ai knows the minimum path cost between any two nodes in Aj .

Furthermore, we also define the synchronisation budget which limits the amount

of controller synchronisations.

Definition 13. The synchronisation budget of an SDN controller is defined as the

maximum number of other controllers that it can synchronise with at any time slot.
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5.3.4 Scenario

In this chapter, the controller synchronisation scenario we consider is generalised

from the example discussed in Fig. 5.1 and Fig. 5.2. Specifically, we consider

the inter-domain routing tasks between node pairs in the given source and desti-

nation domains. The routing path is established between the source/destination node

pairs based on the path construction mechanism described in Section 5.3.1 using

the source controller’s views of other domains on the domain-wise path. Therefore,

the source controller synchronises (Definition 17) with other domain controllers on

the domain-wise path, subject to the given synchronisation budget for the source

controller (Definition 18).

To model network dynamicity, the scenario considered employs a simple edge

rewire model. Specifically, at each time slot, ei new edges are added randomly be-

tween nodes in domain i before ei existing edges are randomly selected and removed.

Note that we consider a time-slotted system for making the problem tractable.

Specifically, at the start of the time slot, the source domain controller synchronises

with other domain controllers according the synchronisation policy and budget. The

synchronised information remain up-to-date during the current time slot, i.e., it is

assumed that network topology changes (by the rewire model above) actuates right

before controller synchronisation at each time slot.

5.3.5 Objective

Two questions motivate our definition of problem objective. First, how does the

source controller make synchronisation decisions that most efficiently utilise the

limited synchronisation budget? Second, how to maximise the benefit of synchroni-

sation over time? With these questions in mind, we formally state the objective of

the controller synchronisation problem.
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Objective: In dynamic networks whose topologies evolve over time, given the

controller synchronisation budget and for a set of source and destination nodes lo-

cated in different domains that send/receive data packages (i.e., the scenario detailed

in Section 5.3.4), how does the source controller synchronise with other controllers

on the domain-wise path at each time slot, to maximise the benefit of controller

synchronisation (i.e., to minimise the average APC) over a period of time?

Formally, let n and T denote the number of source/destination node pairs, and

the time horizon (i.e., the number of time slots) considered for the inter-domain

routing problem. Then, the goal of the controller synchronisation problem is stated

as follows

min
vt

1

nT
E
 TX

t=1

nX

i=1

lt(pi)|vt(bt)

�

s.t. bt  �t for t = 1, 2, · · · , T

(5.1)

where lt(pi) denotes the the APC for the path between node pair pi at time slot t, and

vt(bt) represents the network view of the controller after synchronising with bt other

controllers at time slot t. Note that bt is bounded by the synchronisation budget at t,

which is denoted by �t.

5.3.6 MDP Formulation

Markov Decision Process (MDP) [64] offers a mathematical framework for mod-

elling serial decision-making problems. Here, we formulate the controller synchro-

nisation problem as an MDP, in which 3-tuple (S,A, R) is used to characterise it.

• S is the state space. In our problem, a state corresponds to the counts of time

slots since the source controller was last synchronised with other controllers

on the domain-wise path.

• A is the finite action space. An action w.r.t. a state is defined as the decision to
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• State (s): the number of time slots since A1 last synchronized 
with the corresponding controllers

• Action (a): the domain to synchronize with

domain A1 A2 A3 A4 A5 A6

5 10 15 5 35

0 0 0 1 0 1

v1 v2

A2

A2

A3

A3

A4

A4

A5

A5

A6

A6

Figure 5.3: A state-action example for the MDP formulation.

synchronise with the selected domain(s), subject to the given synchronisation

budget.

• R represents the immediate reward associated with state-action pairs, denoted

by R(s, a), where s 2 S and a 2 A. R(s, a) is calculated as the average

reductions in APC associated with an (s, a) tuple.

The MDP formulation is demonstrated in an example in Fig. 5.3, where there

are 6 domains on the domain-wise path between the source and destination nodes.

The first entry in the state vector indicates that the last synchronisation between the

source controller and the controller of A2 took place 5 time slots ago. The action

vector consists of binary entries where 1 indicates that the source controller will syn-

chronise with the corresponding domain at current time slot and 0 the opposite. The

action vector in the above example indicates that under the synchronisation budget

of 1, the source controller will synchronise with A5 only.

The optimal action at each state is defined as the action that yields the maximum

long-term reward, which is defined as the discounted sum of the expected immediate

reward of all future state-action pairs from the current state. The reward for the

state-action pair �t steps ahead of the current state is discounted by ��t, where � is
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called the discount factor and 0 < � < 1. Here, � trades off the importance between

the current and the future reward. Therefore, starting from an initial state s0, the

problem is formulated to maximise the long-term accumulated reward expressed in

the following Bellman equation by selecting a sequence of actions {at}
T
t=0:

V (s0) = E
 TX

t=0

�tR(st, at)|s0

�
, (5.2)

where st and at constitute the state-action pair at time t, and T is the time horizon of

the synchronisation optimisation problem.

5.4 DQ Scheduler

To solve the formulated MDP, we use RL techniques to find the sequence of actions

that maximise the Bellman equation in (5.2). For RL, imagine an agent who jumps

from state to state in the formulated MDP by taking some actions associated with cer-

tain rewards. The agent’s goal is to discover a sequence of state-action pairs, called a

policy, that maximise the accumulated time-discounted rewards. By interacting with

the MDP, the agent’s experiences build up which finally lead to the discovery of the

optimal policy. For this problem, one important aspect is how the agent memorizes

its experiences. Traditionally, the storage of experiences in tabular fashion is used.

However, this approach is impractical in many RL tasks because of the lack of gen-

eralisation for large state-action space. Indeed, the state-action space is enormous in

our controller synchronisation problem. Consider the example in Fig. 5.3 assuming

the time horizon is 300 time slots and the synchronisation budget is 1, there are as

many as 3005 states and 5 actions associated with each state. In light of this, func-

tion approximators [65] have been proposed, among which DNN [66] is a suitable

candidate which finds its successes in many recent applications [59, 60]. Motivated

by this, we therefore use DNN as the value function approximator in our DQ Sched-
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uler, see Section 5.4.2 for details. Finally, we present the training algorithm for DQ

Scheduler in Section 5.4.3.

5.4.1 Q-learning with Parameterised Value Function

Q-learning [67] is a classic RL algorithm with performance guarantees under certain

conditions [68]. Q- learning uses the Q-function to estimate the quality of a state-

action pair:

S ⇥A! R.

In particular, the optimal Q-function for a state-action pair in Q-placement is defined

as:

Q⇤(s, a) = E[R(s, a) + � max
a02As0

Q⇤(s0, a0)], (5.3)

where s0 and a0 is the state-action pair at the next time slot, As0 is the set of actions

available at the next state s0.

Since we use DNN as the function approximator of the agent’s Q-function Q(s, a),

it is parameterised by the set of adjustable parameters ✓ representing the weights

of the DNN. The parameterised Q-function and optimal Q-function are denoted

by Q✓(s, a) and Q⇤
✓(s, a), respectively. The value iteration update [67] of the Q-

function is based on (5.3), which uses the best estimation of the future reward of

the next state to update current Q-function, thus approximating the optimal Q⇤
✓(s, a).

During the update, ✓ is adjusted to reduce the gap between the estimated and the op-

timal values. In particular, the following loss function using the mean-squared error

measurement is defined for adjusting ✓:

L(✓) = E[
�
y �Q✓(s, a)

�2
], (5.4)
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where

y = R(s, a) + � max
a02As0

Q✓(s
0, a0) (5.5)

is the estimation of the maximum accumulated future reward.

Then, by differentiating L(✓) w.r.t. ✓, we have the following gradient:

r✓L(✓) = �2E[
�
R(s, a) + � max

a02As0
Q✓(s

0, a0) � Q✓(s, a)
�
r✓Q✓(s, a)]. (5.6)

Then, weights of the DNN are updated for the next iteration:

✓  ✓ � ↵r✓L(✓), (5.7)

where ↵ is the step size. Note that the gradient descent update iterations of ✓ is dif-

ferent from canonical supervised learning because the training target y = R(s, a) +

�maxa02As0 Q✓(s0, a0) is generated by the same parameterised Q-function Q✓(s, a)

that is being trained. Therefore, to improve stability and performance of the training

process, we improve the training algorithm in the following ways.

1) We maintain a delayed version of the Q-function, Q✓0 (s, a), for the estimation

of the maximum next state reward, which was proposed in [59] to improve the sta-

bility of their DQN for playing Atari games. As such, the target function in (7.22) is

updated to

y = R(s, a) + � max
a02As0

Q✓0 (s
0, a0). (5.8)

The delayed Q-function is updated with the newest weights every C steps by setting

✓
0
= ✓.

2) To overcome the overestimation of action values, we implement Double Q-

learning [69] to address the positive bias in estimation introduced when the maxi-

mum expected action values are instead approximated by the maximum action values

in Q-learning. Specifically, we use the up-to-date Q-function Q✓(s0, a0) to determine
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a0⇤ = argmaxa0 Q✓(s0, a0), and the accumulated reward of the returned action a0⇤ is

estimated by the delayed Q-function using (5.8).

3) We implement the "replay memory" [70] in which some of the agent’s past

experiences in (s, a, r) tuples are stored and maybe used more than once for training.

In particular, a matrix D is created that can store up to N (s, a, r) tuples. At each

training iteration where Q-learning update takes place, samples of experiences are

pulled randomly from D for training.

5.4.2 The Design of the DDN

The parameterised Q-function is implemented by a Multilayer Perceptron (MLP)

[71] consisting of input/output and three hidden layers. Let m denote the number of

domains on the domain-wise path. The input to the MLP is of dimension 2(m�1)⇥

1. The first m�1 entries store the state of the MDP, and the rest m�1 binary entries

store the action. The output of the MLP is the maximum predicted accumulated

time-discounted reward given the state-action input. The three hidden layers consist

of 128, 64, and 32 hidden neurons, respectively. The MLP is realised using Keras

[72] model with TensorFlow [73], in which Adam is chosen as the optimiser and

Rectified Linear Unit (ReLU) [74] is employed as activation functions for all neurons

except for the output layer.

5.4.3 The Training Algorithm

To train the DNN that represents the parameterised Q-function, we need to first

initialize the matrix D, i.e., the agent’s “reply memory". This is different from tra-

ditional online Q-learning where the update of Q-matrix relies only on the current

(s, a, r) tuple. Instead, history data are used for the training of the DNN for stability

reasons. In particular, D is initially filled up with several (s, a, r) tuples for training.

As time proceeds, more (s, a, r) tuples are generated and recorded in matrix D for
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training. Since we limit the number of entries of D to N , old (s, a, r) tuples are

gradually replaced by new entries; see Section 5.5 for the simulation settings that

generate the training data. There are many ways in which actions can be selected.

Traditionally, "-greedy algorithm [75] is used in Q-learning; there are also new ex-

ploration strategies proposed which are tailored for the DNN settings, such as boot-

strapped DQN [76] and UCB [77]. According to [78], the exploration strategy that

generates all state-action pairs uniformly at random is better for training. Therefore,

our training algorithm takes in data generated by random exploration. The training

process is summarised in Algorithm 1. After the training algorithm terminates, the

returned parameterised Q-function will be able to estimate the best action to take at

each state, thus approximating the optimal.

5.5 Evaluation

In this section we present the performance evaluation of the proposed DQ Scheduler

comparing to other two default controller synchronisation schemes. Specifically, we

first introduce the network and its dynamicity model used for building simulation

networks in Section 5.5.1. Then, the settings and datasets used are described in

Section 5.5.2. Finally, we present the evaluation results and analysis in Section 5.5.3.

5.5.1 Network and Dynamicty Model

Network Model: The topology of domain i with ni nodes is modeled as an undi-

rected graph, where ni nodes are connected following a given intra-domain degree

distribution, i.e., the distribution of the number of neighbouring nodes of an arbitrary

node. Then for any two neighbouring domains Ai and Aj , we (i) randomly select

two nodes w1 from Ai and w2 from Aj and connect these two nodes if link w1w2

does not exist, and (ii) repeat such link construction process between Ai and Aj �i,j
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Algorithm 1: Training algorithm for DQ Scheduler
input : DNN model settings; distributed SDN settings; simulation program

for generating rewards; delay C of the delayed Q-function.
output: Trained parameterised Q-function.

1 Initialize the Q-function Q✓(s, a) by instantiating the DNN with random
initial weights and biases settings;

2 Initialize matrix D with history (s, a, r) tuples;
3 Initialize the delayed Q-function Q✓0 (s, a) = Q✓(s, a) ;
4 Set initial state s0; t = 0;
5 while t  T do

6 foreach time instant t do

7 Select an action at randomly;
8 Pass on the (st, at) to the simulation program and get return rt;
9 Store (st, at, rt) in D;

10 Pull random minibatch Dt of (si, ai, ri) from D;
11 foreach (s, a, r) in Dt do

12 a⇤j+1 = argmaxaj+1 Q✓(sj+1, aj+1);
13 yj = rj + �Q✓0 (sj+1, a⇤j+1);
14 Calculate the gradient:

r✓L(✓) = �2(yj �Q✓(sj, aj))r✓Q✓(sj, aj);
15 Update weights: ✓  ✓ � ↵r✓L(✓);
16 end

17 if t mod C = 0 then

18 Q✓0 (s, a) = Q✓(s, a).
19 end

20 end

21 end

times. By this link construction process, network topology G = (V,E) is therefore

formed (V/E: set of nodes/links in G, |V | =
Pq

i=1 ni, where q is the number of

domains).

Dynamicity of the network: The dynamic pattern of intra-domain topologies

is modelled by the rewiring model described in Section 5.3.4. If the random edge

rewire procedure results in a fragmented network topology, we randomly add the

minimum number of edges to connect all components to make it a connected graph

again. The edge weights of all newly added edges are generated by the given edge

weight distribution. It should be noted that our DQ Scheduler does not have any

requirement on the dynamicity model of the network, the rewire model we propose
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only serves as a simple and representative example.

Figure 5.4: Accumulated
APC reduction, m = 6.

Figure 5.5: Accumulated
APC reduction, m = 10.

Figure 5.6: Accumulated
APC reduction, m = 12.

Figure 5.7: Immediate
APC, m = 6.

Figure 5.8: Immediate
APC, m = 10.

Figure 5.9: Immediate
APC, m = 12.

5.5.2 Network Settings

According to the path construction mechanism described in Section 5.3.1, the domain-

wise paths extracted w.r.t. source/destination node pairs are always in a linear fashion

such as the example in Fig. 5.3. Let m be the number of domains on the domain-

wise path with the indices of domains sequentially labelled from 1 (source domain)

to m (destination domain). Our evaluation considers three scenarios where m = 6,

m = 10, and m = 12. The degree distributions used is extracted from the Rock-

etFuel Project [48], where we use data from“AS1239". The weights of edges are

randomly drawn from the set {1, 2, 5, 8, 10, 12} with the corresponding probabil-

ity being 10%, 10%, 10%, 30%, 20%, and 20%, respectively. In addition, the syn-

chronisation budget is set to 1 for all evaluations. This limitation is in place to

allow simple policy derivation from the learned valued function. In particular, DQ

Scheduler derives synchronisation policy by calculating the returns of all possible

actions with the given state, and it selects the action with the highest return estima-
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Table 5.1: Evaluation Parameters

m Nm Em Bm

6
[100, 300, 550,
150, 210, 420]

[5, 1, 40, 60, 2, 120] [5, 20, 8, 20, 12]

10
[100, 300, 550, 150,

210, 420, 380,
520, 120, 340]

[5, 1, 160, 1, 180,
150, 40, 150, 1, 40]

[5, 30, 50, 20,
15, 20, 20, 30, 10]

12
[130, 50, 550, 150,
80, 420, 380, 330,
250, 150, 80, 100]

[10, 1, 100, 1, 1, 120,
1, 180, 130, 1, 1, 1]

[12, 30, 25, 5, 15,
10, 20, 5, 8, 15, 20]

tion. Clearly , the increase of synchronisation budget results in the combinatorial

increase of possible state action combinations. In Chapter 6, we address this lim-

itation by customising the design of the DNN function approximator. In addtion,

let Nm = [n1, n2, . . . , nm], and Em = [e1, e2, . . . , em] be the vectors of the number

of nodes, and the number of edge rewires at each time slot for the m domains on

the domain-wise path, respectively. In addition, Bm = [�1,2, �2,3, . . . , �m�1,m] is the

vector of the gateway connection parameters between all pairs of directly connected

domains on the domain-wise path with m domains. The parameters used for three

evaluation scenarios are listed in Table 5.1. Note that DQ Scheduler does not have

any requirements for aforementioned parameters.

The anti-entropy [54] and fixed-frequency synchronisation [57] schemes are em-

ployed as benchmarks for evaluating the performance of DQ Scheduler. The core of

anti-entropy protocol, which is implemented in the ONOS controller, is based on a

simple gossip algorithm that each controller randomly chooses another controller to

synchronise. In comparison, the fixed-frequency algorithms synchronise controller

pairs at constant rates, which may vary for different controller pairs subject to vari-

ous objectives. For this evaluation, all controllers synchronise at the same rate.
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5.5.3 Evaluation Results

The evaluation results of the DQ Scheduler for three scenarios are presented in

Fig. 5.4-5.9, where Fig. 5.4–Fig. 5.6 show the performance in terms of the objec-

tive stated in Section 5.3.5. Fig. 5.7–Fig. 5.9 show the APC of packets delivered

under three controller synchronisation schemes.

1) Superiority of DQ Scheduler for long-term routing quality: Recall that our

objective is aimed at overall routing quality over a period of time, i.e., to maximise

V = E
PT

t=0 �
tR(st, at)

�
. The evaluation results in Fig. 5.4–Fig. 5.6 confirm the

superiority of DQ Scheduler in achieving this goal. In particular, during the test-

ing period of 300 time slots, DQ scheduler outperforms the anti-entropy algorithm

by 31.2%, 58.3%, and 95.2%; the algorithm with constant synchronisation rate by

90.9%, 90%, and 173.3%, for three scenarios, respectively.

2) Superiority of DQ Scheduler for immediate routing quality: Although DQ

Scheduler is trained to maximise the accumulated APC reduction over time, surpris-

ingly, its synchronisation decisions also lead to the lowest APC in real-time among

three algorithms tested, as shown in Fig. 5.7–Fig. 5.9. This means that the DQ sched-

uler optimises the accumulated APC reduction in a way that the immediate and long-

term performance are balanced, since there is not a period in which the immediate

performance is worsened for better future performance according to these results.

In these evaluations, the APCs are also compared to the “optimal" case where the

source domain is always synchronised with all other domains on the domain-wise

path,s and to the “worst" case when there is no synchronisation (“no sync") between

any controllers.

3) Other findings: Compared to the other benchmark algorithms, DQ Scheduler’s

performance is more stable when the domain-wise path involves more domains. In

contrast, two benchmark algorithms’ performance first improves and then becomes

worse when the number of domains on the domain-wise path increases from 6 to 10,
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and then to 12. In addition, we realise that the performance degradation of no con-

troller synchronisation is more concerning when there are more domains involved

on the domain-wise path, as “no sync" performance are worsened by 37.5%, 59.1%,

and 61% in three scenarios, comparing to the optimal cases. This highlights the

important role of controller synchronisations.

5.6 Limitations of the DQ Scheduler

The main limitations of the DQ Scheduler stem from the simple implementation of

the DNN approximator for the value function. Recall that since the inputs to the

value function are state-action pairs, the size of input vector space grows combina-

torially in both the state and action space sizes. In particular, let n and t denote the

number of domains on the domain-wise path and the time step of the problem. Then,

the number of state-action pairs can be up to (2t)n at time t. For DRL problems

with relatively small action spaces, there exists value function-based DRL solutions,

which render reasonable performance. For example, Google’s DQN [59] can handle

8 canonical actions. The DNN-based value function approximator employed by DQ

Scheduler is realised by ordinary MLP without customised design. Therefore, sev-

eral compromises are made to reduce the state-action space size, in order to ensure

the value function can be properly approximated. These limitations are discussed as

follows.

DQ Scheduler maintains a coarse-grained description of network status informa-

tion. Specifically, recall that the basic piece of network status information defined

in DQ Scheduler is the time of last synchronisation between two SDN controllers,

which does not account for the status information of specific networking elements in

SDN domains. The lack of the ability to support fine-grained synchronisation of sta-

tus information prevents its application to a wider range of control tasks. Therefore,
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DQ Scheduler is designed to only assist inter-domain routing tasks in this Chapter.

In summary, the DL architecture employed by the DQ Scheduler is simplistic for

faster prototyping, which is also the main source of its limitations.



CHAPTER 6

MACS: DRL-based Controller

Synchronisation for Fine-grained

Control

6.1 Introduction

In the previous chapter, we present DQ Scheduler, a simple controller synchronisa-

tion scheduler that generates synchronisation schedules for SDN controllers, which

lead to enhanced inter-domain routing performance. However, there are several limi-

tations associated with DQ Scheduler, which are discussed in Section 5.6. To further

support SDN applications that require the capability for finer-grained controller syn-

chronisation policy, we introduce MACS, which is a much improved DRL-based

controller synchronisation policy generation framework compared to DQ Scheduler.

The main advantage of MACS lies in its ability to produce finer-grained controller

synchronisation policy, which is enabled by the customised DRL-network designed

to handle larger state-action space for the controller synchronisation-induced RL

problem.

To this end, this chapter is organised as follows. Section 6.2 describes the SDN

application we consider in this chapter, which requires finer-grained controller syn-

chronisation compared to the inter-domain routing application with DQ Scheduler.

Section 7.3 formally formulates the controller synchronisation problem and states
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the objective. Then, MACS and its design and training algorithm are detailed in Sec-

tion 6.4. Finally, we conduct evaluations on MACS and present evaluation results in

Section 6.5.

6.2 System Description

6.2.1 Controller Synchronisation Application

To materialise potential performance gains controller synchronisation can bring un-

der distributed SDN, we focus on an application where find-grained information

about communication and computation resources are essential for its operation. There-

fore, we choose service path construction as the application of interest. In the

Network-as-a-Service (NaaS) SDN environment, QoS-aware service path construc-

tion is a crucial problem in the context where network services are virtualised in

servers [79]. Specifically, we investigate the problem where several network ser-

vices, e.g., wireless access admission, firewall, etc., are installed on servers across

all SDN domains. Requests for services are submitted by users to domain con-

trollers, who construct service paths for requests submitted, based on their network

views. Note that the process of finding a service path is an anycast problem [80], as

a service can have multiple installations in different domains. In order to calculate

the best service path w.r.t. the given performance metric, domain controllers rely

on up-to-date information about other domains (e.g., traffic levels, network delay,

available computation and services, etc.) gained through controller synchronisation.

6.2.2 Network Model

We formulate the distributed SDN network as a directed graph, where m vertices

are connected via directed links. Let the graph representing the SDN network be
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denoted by G = (V,E) (V /E: set of vertices/edges in G, |V | = m), which is re-

ferred to as the domain-wise topology. The existence of two edges in e1,2, e2,1 2 E

connecting two vertices v1, v2 2 V in the domain-wise topology implies that the two

network domains corresponding to v1 and v2 are connected. Then, we further as-

sociate weights for the directed inter-domain links, which represent gateway delays

(see Section 6.3.1). We use Li to denote the set of outgoing edge weights from the

vertex of domain Ai in the network. For instance, let A1 and A2 denote the network

domains corresponding to vertices v1 and v2 in the graph; then the weight of edge

e1,2, denoted by l1,2 2 L1, represents the estimation of latency a packet going thor-

ough domain A1 and entering domain A2 should expect to experience in A1 (i.e., the

gateway delay); similarly, l2,1 2 L2 is the latency a packet going thorough domain

A2 and entering domain A1 would experience in A2.

Let C be the set of all installed services on servers located across different do-

mains in the SDN network. Let c(i)j denote service i installed in domain Aj . Note that

we do not differentiate two identical services installed in the same domain. Then, Dj

is the set of server delays of all service installations in domain Aj , and d(i)j 2 Dj de-

notes the waiting time before a request for service i starts being processed in domain

j (i.e., the server delay, see Section 6.3.1).

Remark: Note that due to network dynamicity, e.g., traffic levels, user demand

for service patterns, etc., the values of li,j and d(i)j are time-varying. With the SDN

settings described in this section, domain controllers always have the up-to-date sta-

tus views of network elements residing in their domains; in other words, the con-

troller of domain Ai always knows the newest Li and Di. The controller of domain

Ai relies on synchronisations with other domain controllers (see Section 6.3.2) to

learn up-to-date Lj(j 6= i) and Dj(j 6= i).
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6.3 Problem Formulation

In this section, we first define the performance metric, controller synchronisations

and the synchronisation budget. Then, we discuss the service path construction

mechanism employed, which is followed by the MDP formulation of our controller

synchronisation problem.

6.3.1 Performance Metric

Once the user submits a service request, the sooner the request gets served, the bet-

ter. Therefore, the gap in time between the submission of a service request and the

server starting processing the request is a natural performance metric of qualities of

constructed service paths, which we call the request latency.

Request latencies consist of two parts: transit latency and the waiting time at the

server. Many factors, such as the link congestion levels, the number of hops, may

contribute to the overall transit latency for the inter-domain routing of a service re-

quest from the user domain to the domain of the chosen server. For easier modelling,

we use the delays incurred at egress gateway routers of SDN domains (referred to

as gateway delays), which are usually the bottlenecks [81], to abstract the transit la-

tency incurred traversing through SDN domains. If a service request is submitted to

a server located in the same domain as the user, transit latency incurred is assumed

to be negligible.

On the other hand, delays incurred at the server are the waiting times in the server

before available computation resources can be assigned for processing the submit-

ted requests, which we refer to as the server delay. Based on the network model

described in Section 6.2.2, li,j and d(i)j correspond to gateway and server delays,

respectively.

Therefore, we define the performance metric w.r.t. a constructed service path
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Figure 6.1: A service path construction example.

as the accumulated gateway delays en route the service path and server delay at the

chosen server, which is referred to as request latency in the sequence.

6.3.2 Synchronisation Among SDN Controllers

W.r.t. the application of interest introduced in Section 6.2.1, controller synchronisa-

tion levels directly affect the quality of constructed service paths. We use an example

to demonstrate this. In Fig.6.1, suppose the user located in domain A1 submits a ser-

vice request for service 2. The domain controller for A1 is aware that the request can

be forwarded to the server hosting c(2)2 in domain A2 or the server hosting c(2)3 in do-

main A3. The domain controller uses its view of the network conditions in domains

A2 and A3 to decide the service path which it thinks would minimise the request la-

tency before the request can be served. However, the domain controller’s view could

be stale. Specifically, domain A1 controller’s view of the gateway delay between

A1�A2, A2�A3 are 2 and 1, respectively. A1’s view of the gateway delay between

A1 � A2 is always accurate and up-to-date, since the gateway router is within do-

main A1; while the up-to-date gateway delay between A2�A3 is actually 3. On the

other hand, A1’s view and the up-to-date server delays of the servers hosting c(2)2 and

c(2)3 are 4 and 2, 1 and 3, respectively. Therefore, the domain controller of A1 would

forward the service request to domain A3 rather than A2 since the request latencies

are estimated to be 2 + 1 + 2 = 5 in the former and 2 + 4 = 6 in the latter based on
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its view of the network. However, if A1’s domain controller holds up-to-date view

of the network condition in domains A2 and A3, it would send the request to domain

A2 instead.

This example highlights the important role of controller synchronisation that dis-

tributes up-to-date network information among domain controllers. Here, we for-

mally define controller synchronisation w.r.t. our service path construction problem

in this subsection. First, we define the unit that quantises the synchronisable domain

information.

Definition 14. The gateway delay between a pair of domains, or the server delay of

a service is referred to as a Basic Information of synchronisation (BIS).

A BIS corresponds to the most fundamental piece of information that can be syn-

chronised to domain controllers. Note that in existing distributed controller imple-

mentations such as ONOS, when two controllers synchronise, they exchange their

entire state information. In this thesis, we propose a more fine-grained synchro-

nisation policy where only selected state information is exchanged. According to

the above definition, an SDN network G, with the set of installed service C, has

N = |E| + |C| number of BISes in total (see Section 6.2.2). With the concept of

BIS, we then formally define controller synchronisation in the following definition.

Definition 15. Controller synchronisation is the process of domain controllers broad-

casting/receiving up-to-date BISes originated in their domains/received from other

domain controllers.

Definition 17 implies that controllers synchronise with each other in the way

that selected up-to-date BIS(es) are broadcasted to all domain controllers via control

plane messages. Then, all domain controllers update their network views by in-

corporating the received up-to-date BIS(es) from other controllers and BIS changes

reported in their own domains.
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As discussed in previous chapters, frequent dissemination of inter-controller syn-

chronisation messages introduce prohibitively large overheads [18, 19]. Moreover,

excessive status updates can potentially lead to network performance degradation

caused by instability [82]. Indeed, we show in Section 6.5.3 that excessive syn-

chronisations cause performance deterioration for MACS. Therefore, the number of

synchronisation messages that can be exchanged at a time is limited, for which we

introduce the synchronisation budget.

Definition 16. The synchronisation budget at a time is the maximum number of

BISes that can be broadcasted simultaneously.

Remark: Note that in addition to the synchronisable BIS, all domain controllers

always have knowledge of the correct domain-wise topology (without edge weights)

and the available services in every other domains.

6.3.3 Service Path Construction using BIS Information

Due to the flexibility and programmability of the SDN, there are potentially many

ways in which domain controllers calculate service paths. In this section, we de-

scribe a simple service path construction mechanism that uses BISes and aims at

minimising the overall request latency. Note that in this thesis, it is not our intention

to design any new such mechanisms; we use this simple and representative mecha-

nism for the sake of problem formulation. Specifically, the service path construction

mechanism consists of the following steps.

Step 1: The domain controller that receives a service request (source controller

in the sequence) calculates the minimum accumulated gateway delay(s) of service

path(s) leading to all possible server(s) that host the requested service (recall that the

process of finding a server is an anycast problem).

Step 2: The domain controller calculates the request latency (latencies) for the
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requested service for all potential service path(s) in Step 1 by combining their accu-

mulated gateway delays and the corresponding server delays. The source controller

chooses the service path that incurs the lowest request latency based on its calcula-

tion results.

Step 3: The forwarding rule of the service request is installed on involved SDN

switches in forms of flow table entries.

Applying the above service path construction mechanism, only the source con-

troller decides the domain-wise service path based on its view of the network status.

Other domain controllers are deliberately left out in calculating service paths to avoid

forwarding anomalies, e.g., routing loops and black holes, which could arise if differ-

ent domain controllers with heterogeneous network views attempt to independently

calculate service path for a packet transiting through their domains.

6.3.4 The Objective of Controller Synchronisation Policy

Two questions motivate our definition of the objective of controller synchronisation.

First, how does the central controller develop the synchronisation policy that max-

imises the performance metric, given the limited synchronisation budget? Second,

since a synchronisation decision has lasting effects, how does the synchronisation

policy maximise the performance enhancement of controller synchronisation over

time? Here, a synchronisation policy refers to a series of synchronisation decisions

(i.e., which up-to-date BIS(es) to broadcast, subject to the available synchronisation

budget) over a period of time. With this in mind, we state the objective below.

Objective: In dynamic networks where gateway and server delays are time-

varying, given the controller synchronisation budget, how do domain controllers

synchronise with each other by broadcasting up-to-date BISes, to maximise the per-

formance improvements brought by controller synchronisations (i.e., reductions in

average request latency due to the availability of accurate BISes via synchronisa-
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tions) over a period of time?

6.3.5 Markov Decision Process (MDP) Formulation

Our controller synchronisation policy can be modelled as an MDP with the 3-tuple

(S,A, R) as follows.

• S is the finite state space. In particular, a state corresponds to the collection of

the respective counts of time slots elapsed since the last broadcasts of up-to-

date values of each BIS. As such, a state of the MDP represents the staleness

of status information of network components. The size of a state is N , which

is the total number of BISes.

• A is the finite action space. An action w.r.t. a state is defined as whether each

up-to-date BIS should be broadcasted (indicated by 1) or not (indicated by 0),

i.e., A 2 {1, 0}N . As such, the size of an action is also N .

• R represents the immediate reward associated with state-action pairs, denoted

by R(s, a), where s 2 S and a 2 A are the state and action vectors. R(s, a) is

calculated as the reductions in average request latency of all service requests

in the network after taking action a in state s.

With this MDP formulation, S and R are collected by domain controllers from

data planes through SDN’s northbound interface [83] and are supplied to the central

controller.

Fig. 6.2 demonstrates the (S,A) pair in the formulated MDP in a simple exam-

ple. The first entry in the state vector indicates that the last synchronisation broadcast

of the up-to-date value of gateway delay from A1 to A2 took place 5 time slots ago.

An action consisting of binary entries indicates that the up-to-date value of gateway

delay from A2 to A1 and the server delay of service 1 installed in domain A2 are to

be broadcasted to all domain controllers at the current time slot.
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Figure 6.2: An SDN network with 2 domains A1 and A2, where service 1 is available
in both domains and service 2 is only available in A1. Two domains are connected
by a pair of gateway routers. There are in total 5 BISes in the network.

The optimal action at each state is defined as the action that yields the maxi-

mum long-term reward, which reflects the fact that the synchronisation decision at a

time slot has lasting effects. In particular, the long-term reward is defined as the dis-

counted sum of the expected immediate reward of all future state-action pairs from

the current state. The reward for the state-action pair �t steps ahead of the current

state is discounted by ��t, where � is called the discount factor and 0 < � < 1. Here,

� trades off the importance between the current and the future reward. Therefore,

starting from an initial state s0, the problem is formulated as finding a policy ⇡ (i.e.,

the selection of a sequence of actions {at}
T
t=0) such that the long-term accumulated

reward expressed in the Bellman equation below is maximised

V ⇡(s0) = E⇡
 TX

t=1

�tR(st, at)|s0

�
, (6.1)

where st and at are the state-action pair at time t, and T is the total time horizon of

the problem.

Time Scale of the MDP: The basic unit of time in the defined MDP include a

series of events, which are jointly referred to as a synchronisation time slot (time slot
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for short) in the sequence. Specifically, synchronisation broadcastings take place

at the start of a time slot. After all domain controllers finish broadcasting and re-

ceiving up-to-date BIS, they recalculate service paths for requests originated from

their respective domains, based on the updated network views. Then, actual service

latencies en route for new service paths are recorded for the calculation of R. For

modelling tractability, we assume that newly broadcasted BIS values remain accu-

rate until actual service latencies are recorded. This is true in practical SDN net-

works where periodical synchronisation means that the collection of latest network

information takes place at certain time. The collected information is considered to

be “up-to-date" for a short while, as “real time" is a relative concept. It should be

stressed that the concept of “times slot” in the formulated MDP is very different to

the performance metric, i.e., service latency. The former is defined as a full cycle

of controller synchronisation after which the MDP shifts from one state to another

state. In contrast, the latter, which is coupled with time, is the actual length of a

request waiting time. Since domain controllers need to record the actual service la-

tency before the end of an MDP time slot, the length of a time slot is determined

by the latency incurred en route the most delayed service path constructed at the

beginning of the time slot.

Remark: Note that our MDP formulation is not only specific to the service path

construction application defined in Section 6.2.1. In essence, the definition of the

state space here represents a staleness measure of status information about various

network components in the distributed SDN. In our problem, these components are

gateway routers and servers. For other controller synchronisation problems, as long

as networking elements can be itemised to fit in the state definition, such problems

can be modelled by the formulated MDP.
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6.4 The MACS

To solve the formulated MDP, we use RL techniques to find the sequence of actions

that maximises the Bellman equation in (6.1). For RL, imagine an agent who jumps

from state to state in the formulated MDP by taking some actions associated with

certain rewards. The agent’s goal is to discover a sequence of state-action pairs, i.e.,

a policy, that maximises the accumulated time-discounted rewards. By interacting

with the environment modelled by the MDP, the agent’s experiences build up through

“trial-and-error" where good decisions are positively enforced by positive rewards,

and bad ones the opposite.

During training, the most important aspect is how the agent generalises and mem-

orises what it has learned. Traditionally, the agent’s estimations of future reward

following state-action pairs are kept in tabular fashion. However, this approach soon

becomes impractical in most RL tasks because of large state-action space sizes. In-

deed, the state-action space is enormous in our controller synchronisation problem.

Consider a scenario with N number of BIS and a time horizon of T time slots, then

there are as many as TN states and 2N actions associated with each state. In light of

this, function approximators [65] have been proposed to approximate the Q-function,

which represents the agent past experiences as it estimates the potential value of a

given state-action pair (see Section 6.4.3). Among these approximators, DNN [66]

stands out due to its exceptional ability in capturing latent and complicated relation-

ships from input data. Therefore, we also employ DNN in MACS to help the agent

make sense of and generalise past experiences.

In this section, we first discuss design challenges and the MACS architecture in

Section 6.4.1 and Section 6.4.2, respectively. Then, mathematical details of how

policies are estimated and the weights update process for the DNN in MACS are

discussed in Section 6.4.3. Finally, we present the training algorithm for MACS in

Section 6.4.5.
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6.4.1 Challenges

From our experiences leveraging several RL techniques to solve the formulated

MDP, we identify some non-trivial challenges arising mainly from the two following

aspects. First, the problem is a discrete control problem. This prevents the applica-

tion of a number of well-established and relatively mature actor-critic approaches

[84] based on the policy gradient theorem [85]. For example, DeepMind’s recent

work on the deep deterministic policy gradient (DDPG) agent [86] is the state-of-

the-art for continuous control problems. Second, our formulated MDP has a high-

dimensional state-action space. In particular, there are up to 2N number of possible

actions for any state. Thus, the size of the action space increases exponentially with

the number of BISes in the network. It has been shown that such large action space is

very difficult to explore and generalise from [86]. Indeed, classic RL techniques [67]

and their variations [87], which work well in scenarios with relatively small discrete

action spaces, are not suitable solutions for our problem.

6.4.2 The MACS Architecture

Considering the challenges discussed in the previous section, we need a DRL solu-

tion that is designed for discrete problems and can perform well in the presence of

enormous state-action spaces. To this end, we build our learning architecture based

on proposals in [88, 89], which have design features suitable for the nature of our

formulated MDP.

DeepMind’s dueling network architecture [88] explicitly separates the training

for estimations of state-values and the advantages for individual actions, i.e., these

values can be obtained separately. This is in contrast to most existing DRL architec-

tures where the output of the DNN is conventionally a single value, i.e., the estimated

Q-value for the input state-action pair. The dueling network architecture is particu-
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Figure 6.3: The MACS network based on the example in Fig. 6.2. State inputs are
first fed to the hidden layer, which is shared by the state layer and all action arms.
The state layer is responsible for estimating the shared state value, whereas all action
arms are responsible for estimating advantages of their 2 sub-actions.

larly helpful in situations where there are many similar-valued actions.

The action branching architecture (ABA) [89] takes the dueling network a step

further by categorising all actions as belonging to an action dimension. Moreover,

a separate action advantage estimator is assigned to each action dimension (referred

to as an action arm in the neural network) to estimate the advantage of all actions

belonging to the action dimension (referred to as sub-actions). Under such arrange-

ments, the Q-value estimation for each action is obtained by combining (i) the state

value estimation, which is shared by all possible actions given the state; and (ii) the

sub-action advantage estimated by the assigned action arm. A key characteristic of

the action branching architecture is that a degree of freedom is given to each action

dimension by dedicating a separate arm in the network for advantage estimations

of sub-actions belonging to that action dimension. This design greatly improves

learning efficiency and reduces complexity which arises from the combinatorial in-

crease of the total number of action dimensions. Therefore, the design principles in

the ABA are suitable for approximating the Q-function in our formulated MDP, as

they address the challenges discussed in Section 6.4.1. In the following, we use the

example in Fig. 6.2 to demonstrate how these design principles work in MACS.
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The diagram of the DNN constructed for MACS shown in Fig. 6.3 is based on the

example scenario in Fig. 6.2, where there are 5 BISes. In Fig. 6.3, there are 5 action

arms, each corresponds to a BIS. Moreover, there are two sub-actions in every action

dimension, i.e., 0: not to broadcast the corresponding up-to-date BIS value; and 1:

to broadcast the corresponding up-to-date BIS value. An action arm outputs the

estimation of action advantages of the two sub-actions under that action dimension.

Furthermore, there is a separate state layer which outputs the estimation of the state

value given the state inputs. Both the state layer and all semi-independent action

arms are preceded by the input layer, which is designed for coordination. Based on

the estimated Q-values, which are obtained by combining the estimated state value

(output of the state layer) and action advantages (outputs of action arms), the sub-

action with the highest Q-value is selected for each action arm. Finally, the outputs

of all action arms concatenate and form the chosen action w.r.t. the state input.

In the following section, we give further details on how state values, action ad-

vantages, and Q-values are calculated and their relationships in MACS.

6.4.3 Design Details of MACS

Q-function, which originates from the classic Q-learning algorithm [67], is com-

monly used to estimate the quality (i.e. potential value) of a state-action pair, i.e.,

S ⇥ A ! R. In particular, the Q-function for a state-action pair following a policy

⇡ is defined as

Q⇡(s, a) = Es0
⇥
R(s, a) + �Ea0⇠⇡(s0)[Q

⇡(s0, a0)]
⇤
, (6.2)

where (s0, a0) is the state-action pair at the next step. Q⇡(s, a) estimates the long-

term value of a particular state-action pair following policy ⇡; whereas the state
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value, denoted by V ⇡(s), estimates the expected long-term value of the state s

V ⇡(s) = Ea⇠⇡(s)[Q
⇡(s, a)]. (6.3)

Furthermore, to better distinguish the relative qualities of all possible actions

under a given state s, we define the advantage of an action a following policy ⇡,

denoted by A⇡(s, a), as

A⇡(s, a) = Q⇡(s, a)� V ⇡(s). (6.4)

W.r.t. the action branching architecture we employ, let ai 2 ⌦i, i 2 {1, . . . , N} de-

note a sub-action belonging to action arm i, where ⌦i is the set of all sub-actions

of action arm i. Then, the Q-value and the action advantage of ai are denoted

by Q⇡
i (s, ai) and A⇡

i (s, ai), respectively. A straightforward way to combine the

state value and action advantages for Q-values is to follow (6.4), i.e., Q⇡
i (s, ai) =

V ⇡(s) + A⇡
i (s, ai). However, as suggested by authors in [89], normalising the ac-

tion advantage by the mean of action advantages before combining it with the shared

state value yields better performance. Thus, the following aggregation method is

used instead

Q⇡
i (s, ai) = V ⇡(s) +

�
A⇡

i (s, ai)�
1

|⌦i|

X

ai2⌦i

A⇡
i (s, ai)

�
. (6.5)

For action arm i, since we use DNN as the function approximator of its sub-

action’s Q-function Q⇡
i (s, ai), it is parametrised by the set of adjustable parameters

✓i which are weights of the DNN. Then, the parametrised Q-function is denoted

by Q⇡
i (s, ai;✓i). The value iteration update [67] of the Q-function uses the esti-

mation of future rewards at the next state to update current Q-function, with the

reasoning that estimations at the next state are more accurate, hence increasingly-
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more-accurate Qi(s, ai;✓i) is eventually able to converge to the optimal policy ⇡⇤

after enough rounds of iterations. During weight update, ✓i is adjusted to reduce the

gap between current prediction (i.e., current Qi(s, ai;✓i)) and the next state estimate.

Specifically, we define the target for arm i as

yi = R(s, a) + � max
a0i2⌦i

Qi(s
0, a0i;✓i). (6.6)

Then, the following loss function using the mean-squared error measurement is

defined for adjusting ✓i

L(✓i) = E[
�
yi �Qi(s, ai;✓i)

�2
]. (6.7)

Before the weight update process takes place, the total loss is calculated as the the

mean across all arms

L(✓) = E

1

N

NX

i=1

L(✓i)

�
. (6.8)

Then, by differentiating L(✓) w.r.t. ✓, weights of the DNN are updated for the

next iteration, where ↵ is the earning rate.

✓  ✓ � ↵r✓L(✓). (6.9)

Since the gradient descent updates of ✓ is different from canonical supervised

learnings because the training target yi = R(s, a) + �maxa0i2⌦i Qi(s0, a0i;✓i) is gen-

erated by the same Q-function Qi(s, ai;✓i) that is being trained. Therefore, to im-

prove stability and performance of the training process, we improve the training

algorithm in the following three ways.

1). We maintain a delayed version of the Q-function, Qi(s0, a0i;✓
0
i), for the esti-
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mation of the maximum next state reward, which was proposed [59] to improve the

stability of their DQN. As such, the target function in (6.6) is updated to

yi = R(s, a) + � max
a0i2⌦i

Qi(s
0, a0i;✓

0
i). (6.10)

The delayed Q-function is updated with the newest weights every C (“target sync

gaps") steps by setting ✓0
i  ✓i.

2). To overcome the overestimation of action values, we implement Double Q-

learning [69] to address the positive bias in estimation introduced when the maxi-

mum expected action values are instead approximated by the maximum action values

in Q-learning. Specifically, we use the up-to-date Q-function Qi(s, ai;✓i) to deter-

mine the optimal sub-actions, i.e.,

a0⇤i = arg max
a0i2⌦i

Qi(s
0, a0i;✓i). (6.11)

The accumulated reward of the returned action a0⇤i is estimated by the delayed Q-

function using (6.10). Therefore, the target in (6.6) is further improved to be

yi = R(s, a) + �Qi(s
0, arg max

a0i2⌦i

Qi(s
0, a0i;✓i);✓

0
i). (6.12)

3). We implement the “replay memory" [70] where the agent’s past experiences

are stored (matrix D) and might be used more than once for training. See Sec-

tion 6.4.5 for details.

6.4.4 Details of the DNN

The structure of MACS is demonstrated in the example in Fig. 6.3, which can be

categorised as a Multilayer Perceptron (MLP) [71]. The input to the MLP is of di-

mension N , which corresponds to a state of the formulated MDP (see Section 6.3.5).
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The input layer, which precedes and is fully connected to all action arms and the

state layer, consists of 2 hidden fully connected layers with 512 and 256 neurons,

respectively. Every action arm contains a hidden layer of 128 neurons which is fol-

lowed by an output layer with 2 neurons that output the advantage estimations for

2 sub-actions, respectively. The state layer has a hidden layer of 128 neurons fol-

lowed by a single neuron in its output layer, which gives the estimation of state value.

Overall, the output of the MLP is a vector of Q-values whose dimension is 2N . Note

that the state value (output of the state layer) and the advantages of all sub-actions

(outputs of the all action arms) are combined according to (6.5). When the trained

MLP is used for making action predictions, the chosen sub-action for each action

arm is decided by comparing Q-values of its two sub-actions, whichever is greater

gets picked, as demonstrated in Fig. 6.3. In cases where the number of arms giving

“1" output is larger than the given synchronisation budget, those sub-actions with the

greater Q-values get picked first until the budget is reached.

The MLP is realised using Keras [72] model with TensorFlow [73], in which

Adam is chosen as the optimiser with initial learning rate of 0.0001 and Rectified

Linear Unit (ReLU) [74] is employed as activation functions for all neurons except

for the outputs. The discount factor is set to � = 0.99; while the target network is

updated every 20 steps (i.e., C = 20).

6.4.5 The Training Algorithm

So far, the design of immediate reward only takes into account the average reduction

in service latency after synchronisation broadcastings. Since most broadcastings of

up-to-date BIS bring positive rewards, this makes the agent think that it is always

better to broadcast as many as possible. However, as we have the synchronisation

budget constraint, we need to make this realisable to the agent during training. To

this end, we offset the immediate reward defined in the MDP by a small value for the
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sub-actions where up-to-date BISes are broadcasted (i.e., sub-actions indicated by 1,

referred to as positive sub-actions). In particular, let ◆ denote the unit offset for each

positive sub-action, and ⇢ be the number of positive sub-actions for the state-action

pair (s, a); then, the 4-tuple stored is (s, a, r, s0), where r = R(s, a)� ⇢◆.

MACS is first pre-trained on past (s, a, r, s0) tuples already stored in fixed-size

matrix D (i.e., the agent’s “reply memory"). Then, MACS starts making synchroni-

sation decisions, while keeps being trained in a semi-online fashion in the sense that

new (s, a, r, s0) tuples gradually replace old entries in matrix D on a first-in-first-

out basis. At each training iteration where Q-learning update takes place, minibatch

samples of stored experience tuples are pulled randomly from D for training.

The training process is summarised in Algorithm 3.

6.5 Evaluation

This section starts by introducing the evaluation scenarios and benchmarks in Sec-

tion 6.5.1. Then, network settings for evaluation scenarios are described in Sec-

tion 6.5.2. Finally, we present evaluation results and analysis in Section 6.5.3.

6.5.1 Evaluation Scenarios and Performance Benchmarks

Three scenarios are considered for evaluations, where Scenario 1 serves as the base-

line where the overall performance of MACS is compared against other benchmarks.

In addition, under the settings of Scenario 1, we also evaluate the performance of

MACS in a fully online manner, for which no pre-training on history data is per-

formed. Then, Scenario 2 and Scenario 3 evaluate the sensitivity of MACS perfor-

mance under different network settings. Specifically, we compare the performance

of MACS alongside other benchmarks under varying BIS value distributions in Sce-

nario 2 and varying synchronisation budget in Scenario 3. In the following, we
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briefly discuss the benchmarks used for comparing the performance of MACS.

The Full/Worst Controller Synchronisation Levels correspond to the case where

all up-to-date BISes are broadcast to domain controllers at every time slot; and the

case where there is no broadcasting of any up-to-date BIS at any time slot, respec-

tively. We can see that the full synchronisation level is identical to having one logical

central controller and that it incurs the maximum synchronisation overheads. Note

that these two cases serve as the lower and upper bounds of our performance metric

and they are not subject to the given synchronisation budgets.

The Greedy (MinMax) Algorithm is a simple controller synchronisation scheme

that aims at reducing the staleness of controller-perceived BIS values by minimising

the maximum state value of the defined MDP. Specifically, with the given synchro-

nisation budget at a time slot, the up-to-date values of those BISes that have not been

synchronised to all domain controllers the longest get broadcasted first.

The Anti-entropy [54] Algorithm, which is implemented in the ONOS controller

[24], is based on a simple gossip algorithm that controllers randomly synchronise

with each other [54]. W.r.t. the definition of controller synchronisation in our prob-

lem (Definition 17) and the given synchronisation budget, controller synchronisation

with the anti-entropy algorithm is carried out such that up-to-date values of BIS are

randomly selected for synchronisation broadcastings.

6.5.2 Network Settings

6.5.2.1 Network topology of the simulated SDN network

For our evaluations, all domain-wise topologies, i.e., how domains are connected

to each other, are constructed according to a real dataset. Specifically, there are 8

domains connected according to the degree distribution extracted from the “CAIDA

AS-27524" dataset [50], which refers to the distribution of the number of neighbour-
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Figure 6.4: Scenario 1:
Average request latency of
all constructed paths at all
time slots.

Figure 6.5: Scenario 1:
Box plot of average re-
quest latency over all times
slots.

Figure 6.6: Scenario 1:
Accumulated average re-
quest latency reductions
over time slots.

Figure 6.7: Scenario 1:
Average request latency at
all time slots with online
MACS.

Figure 6.8: Scenario 2:
Average request latency
with different BIS value
distributions.

Figure 6.9: Scenario 3:
Average request latency
with different sync’ budget
distributions.

ing domains of an arbitrary domain.

6.5.2.2 Server distribution in domains and user request pattern

10 unique services are considered in all scenarios, with two installations in two

different domains for each service. Moreover, domains are divided randomly and

equally into two groups, service installations are more likely to be inside the first

group (with 70% probability) than the second one (with 30% probability). In ad-

dition, service request patterns follow Zipf-Mandelbrot distribution [90], which is

widely used to model the content popularity in content delivery networks (CDN).

Specifically, the popularity of i-th most popular service is proportional to (q + i)�� ,

where q = 5 and � = 0.8.
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6.5.2.3 Network dynamicity pattern

The distribution of available synchronisation budget for different time slots is mod-

elled by Poisson process with mean � = 3 in Scenario 1 and Scenario 2; whereas

in Scenario 3, three experiments are conducted with � = 1, � = 3, and � = 5 to

evaluate the impacts of the level of available budget. As for BIS values, they are uni-

formed distributed in Scenario 1 and Scenario 3.1 In order to evaluate the impact of

BIS value distribution on the performance of MACS, we conduct three experiments

where the BIS values are Gaussian distributed with mean µ = 10 and standard devi-

ation (STD) being � = 5, � = 8, and � = 11, respectively. All evaluation settings

are summarised in Table 6.1.

Remark: It should be noted that the network settings described are only for the

sake of evaluations, there are no assumptions on any of the parameters used above.

6.5.3 Evaluation Results

All evaluation results are presented in Fig. 6.4-Fig. 6.9. In particular, Fig. 6.4 shows

plots of average request latencies of all constructed service paths in each time slot.

Fig. 6.5 shows the box plots of average request latencies resulted from different

synchronisation algorithms. Fig. 6.6 contains plots of accumulated latency reduc-

tion defined in (6.1), which is the maximisation objective of the MDP. Fig. 6.7 is

similar to Fig. 6.4, except that here MACS is trained in the fully online manner as

synchronisation decisions are made and new (s, a, r, s0) tuples become available for

training. Fig. 6.4-Fig. 6.6 all correspond to Scenario 1. The bar plot in Fig. 6.8

are the evaluation results of Scenario 2 where we vary the STD of BIS value distri-

butions. Fig. 6.9 presents the evaluation results of Scenario 3, which illustrate the

impacts of varying available synchronisation budget distributions. Note that the bar
1In particular, BISes are randomly drawn from the set {1, 2, 4, 6, 8, 13, 17, 20, 25, 30}. Note that

there is no assumption on the relationship between new and old BIS values (e.g., whether or not they
are correlated).
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plots in Fig. 6.8-Fig. 6.9 are the averaged results over all time slots. In these figures,

the legend “learned” refers to the synchronisation policy learned via MACS; “full

sync", “greedy", “anti-entropy", and “no sync" respectively refer to the synchroni-

sation cases discussed in Section 6.5.1. Moreover, it should be stressed that in these

plots, the unit of the performance metric, i.e., the request latency recorded in the

simulated network, and the time scale of the MDP, i.e., the time slot, are different as

discussed in Section 6.3.5.

1) Superiority of MACS: From Fig. 6.4, we can see that the gap between “full

sync" and “no sync" curves clearly demonstrates the important role controller syn-

chronisation plays in improving performance. Among the three synchronisation

algorithms implemented, MACS consistently performs the best in both scenarios.

Surprisingly, after 300 time slots, MACS, which runs on a limited synchronisation

budget, can almost achieve full sync performance, as can be seen in Fig. 6.4 where

two curves overlap. The superiority of MACS over the other two schemes is also

evident in Fig. 6.5, which compares the statistic properties of the request latency re-

sults of different synchronisation regimes. In addition, these results reveal that while

the goal is to minimise long-term average request latency, this objective is achieved

by consistently minimising average request latency at each time slot.

2) Superiority of MACS for maximising the Bellman equation: Recall that our

objective is to maximise the accumulated reductions in request latency over a pe-

riod of time, i.e., to maximise V ⇡(s0) = E⇡
PT

t=1 �
tR(st, at)|s0

�
. The evaluation

results in and Fig. 6.6 confirm the superiority of MACS in achieving this goal. In

particular, during the testing period of 500 time slots, MACS outperforms the greedy

algorithm by approximately 30%; the anti-entropy by 56%, respectively.

3) Online performance of MACS: In Fig. 6.7, it can be seen that although the syn-

chronisation policy by MACS outperforms that of other algorithms, the performance

margin is significantly smaller than in Fig. 6.4 where pre-training is conducted. The
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performance differences here indicate the value of pre-training with history data be-

fore using MACS to generate synchronisation policies. From Fig. 6.7 we can also

see that as the training continues and more training samples become available, syn-

chronisation decisions by MACS keep improving.

4) The impact of BIS value distribution: From the results in Fig. 6.8 we can see

that when the STDs of the BIS value distributions increase from 5 to 11, only the

“full sync” and “learned” latency results delivered by MACS show improvements.

This suggests that the policies developed by MACS are more valuable when the net-

work conditions are highly volatile, manifested by a wider range where BIS values

can vary. In comparison, the anti-entropy and greedy algorithms are non-adaptive to

varying network conditions, as expected.

5) The impact of available synchronisation budget: Since the “full sync” and

“no sync” cases are not subject to the synchronisation budget constraints, we do not

plot their evaluation results in Fig. 6.9. We can see that when the average synchro-

nisation budget (� in the Poisson process) at a time slot increases from 1 to 5, the

performance of MACS initially improves and then deteriorates. Recall that MACS

makes synchronisation decisions by selecting the sub-actions with the highest Q-

values first until the synchronisation budget is exhausted. Therefore, when a large

synchronisation budget is allowed, MACS may select some actions with low or even

negative Q-values, which explains the performance deterioration. On the other hand,

when the synchronisation budget is too constraints (i.e., � = 1), the greedy algorithm

outperforms MACS. This shows the important role of the budget in regulating the

controller synchronisation process. Moreover, the greedy algorithm appears to be

insensitive to budget levels, i.e., having greater synchronisation budget does not help

its performance.
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6.6 Limitations of the MACS

Recall that MACS operates on the assumption that a central node in the SDN net-

work is responsible for learning the synchronisation policy based on necessary in-

formation gathered from other controllers in the network. It is also assumed that

the central node can always obtain needed information for RL-based policy gener-

ation. Such a central node can be a separate entity who can communicate with all

domain controllers, or it can be one of the domain controllers. Either way, such a

centralised learning scheme is vulnerable since it creates a single point of failure.

On the other hand, although the central node is only responsible for developing con-

troller synchronisation policy, and other control operations are reserved for domain

controllers, the presence of the central node nonetheless leads to poor scalability

as network grows. Moreover, it is not consistent with the design principles of dis-

tributed SDN.

Moreover, MACS depends on accurate information from domain controllers for

its DRL-based policy generation. For example, the reward values are calculated us-

ing the changes in request latency, which are provided by domain controllers. How-

ever, in real distributed SDN environment, it is possible that the central node may

not be able to receive all information required from other controllers, due to network

constraints or anomalies. This creates another vulnerability for MACS, that it may

not always be able to obtain all required information for learning.

In the next chapter, further work are conducted to improve MACS’s scalability

and reliability.
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Algorithm 2: Training algorithm for MACS
input : MLP model settings; distributed SDN settings; simulation program

for generating rewards.
output: Trained parameterised Q-functions for all arms.

1 Initialize Q-functions Qi(s, ai;✓i), i 2 {1, . . . , N} by instantiating the
MLP; Set initial state s0; t = 0;

2 Initialize matrix D with past (s, a, R(s, a)� ⇢◆, s0) tuples;
3 Initialize the delayed Q-functions ✓0

i  ✓i, i 2 {1, . . . , N}.
4 while t  T do

5 foreach time instant t do

6 indicator = 0, 1 with probabilities 1� ", ", respectively;
7 if indicator = 0 then

8 Select an action at randomly;
9 else

10 Select an action at according to Section 6.4.4;
11 end

12 Pass on the (st, at) to the simulation program to get return rt and
st+1 ;

13 Store (st, at, rt � ⇢◆, st+1) in D;
14 Pull minibatch Dt of (si, ai, ri � ⇢◆, si+1) from D;
15 foreach (si, ai, ri � ⇢◆, si+1) in Dt do

16 foreach g 2 {1, . . . , N} do

17 Calculate L(✓g) from ag and yg using (6.7), (6.11), and
(6.12), respectively;

18 end

19 Calculate aggregrated loss L(✓) according to (6.8);
20 Update weights: ✓  ✓ � ↵r✓L(✓);
21 end

22 if t mod C = 0 (C: target sync gap) then

23 foreach i 2 {1, . . . , N} do

24 Update weights: ✓0
i  ✓i.

25 end

26 end

27 end

28 end
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Table 6.1: Evaluation Parameters

Parameter Scenario 1 Scenario 2 Scenario 3

synchronisation budget
distribution

Poisson
distributed
with � = 3

Poisson
distributed
with � = 3

Poisson
distributed
with � =
1, 3, 5

BIS value distribution Uniformly
distributed

Gaussian
distributed

with µ = 10,
� = 5, 8, 11

Uniformly
distributed

Probabilities that
BISes change value

The probability of BIS i changing value
is proportional to 1

�
p
2⇡
e�(i�µ)2/2�2

,

(µ = 30, � = 10)
Probabilities that service

installed in domains
30% probability in any 4 domains and 70%

probability in the other 4 domains

Service request pattern The probability that service i is requested is
proportional to (q + i)��(q = 5, � = 0.8)

The number of domains 8 domains

The number of services 10 unique services, each installed
twice in 2 different domains



CHAPTER 7

SMART: Scalable and Robust SDN

Controller Synchronisation Designs

by DL and RL Techniques

7.1 Introduction

In the previous chapter, we introduce MACS, which delivers fine-grained controller

synchronisation policy designs via customised DRL techniques. We note in Sec-

tion 6.6 that the two main limitations of MACS are the poor scalability and reli-

ability related to the centralised learning paradigm. Therefore, in this chapter, our

main aim is to address these two vulnerabilities by introducing a decentralised policy

derivation framework based on MACS, which is called SMART.

Similar to the previous chapter, we start by introducing the SDN application

which relies on controller synchronisation for improved performance. Recall that

we consider two types of network resources for the SDN application in Chapter 6,

i.e., network elements for computation and communication. In the discussion of this

chapter, we further unify different network resources as services provided by the

SDN when consider SDN applications, which reflects the commonly used network

function virtualisation (NFV) approaches. Furthermore, instead of only consider-

ing service request delay as performance metric as in Chapter 6, in this chapter we

employ a more realistic performance metric which incorporates load balancing con-
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siderations. To account for more realistic scenarios where RL algorithms do not

have full view of the environment due to communication constraints, we formu-

late the problem of developing the controller synchronisation policy that maximises

the defined performance metric as a partially observable Markov decision process

(POMDP), which is used to model many serial decision-making problems in real

life. For the POMDP, we examine potential decentralised solutions for deriving such

policies and then conduct theoretical analysis to identify the conditions upon which

a decentralised solution can perform comparably as the centralised counterpart does.

This is to ensure that any scalable solution developed does not come at prohibiting

costs to performance. With these theoretical results in mind, we then employ a com-

bination of DL and DRL techniques for designing SMART. Specifically, SMART

consists of Long-Short Term Memory (LSTM) cells and MACS-based DRL net-

works, to handle network uncertainties/dynamicity, and to learn policies, respec-

tively. In the high level, SMART’s DRL network is trained to generate policies

based on temporal data that are collected from the SDN network and enhanced by

the LSTM network.

Overall, SMART conducts decentralised RL and employ DL techniques to im-

prove MACS’s scalability and robustness.

7.2 Problem Statement

7.2.1 Controller Synchronisation for Service Request Scheduling

In the Network-as-a-Service (NaaS) SDN environment, QoS-aware service provi-

sion is a crucial problem in the context where network services are virtualised in

servers distributed in different domains. To materialise potential performance gains

controller synchronisation can bring, we focus on an application scenario where

SDN controller synchronisation helps determine where requests for network services
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Figure 7.1: An example of a distributed SDN network.

should be submitted, to ensure that work loads across servers in different domains

are as evenly distributed as possible, and to minimise request loss due to the lack of

available server processing power. Therefore, we choose service request scheduling

as the application of interest. Specifically, we investigate the problem where sev-

eral network services, e.g., wireless access admission, firewall, etc., are installed on

servers across all SDN domains. Requests for services are submitted by users to

domain controllers, which determine where to submit these requests, based on their

network views and communications with other controllers. Note that the process of

finding a destination server is an anycast problem [80], as a service can have mul-

tiple installations in different domains. In order to decide request forwarding rules

that balance the server load levels on servers offering the service, domain controllers

can give instructions to each other regarding request submissions. In the following,

we use a simple example to demonstrate how controller synchronisations assist the

service-request-scheduling application.

In Fig. 7.1, servers providing various services are distributed in the SDN do-

mains. In particular, there are 3 SDN domains with their respective domain con-

trollers. Three network services are distributed in three domains as shown in the

figure; the numbers above server icons indicate their current load levels. When the

load level of a server reaches 1, any additional submitted requests will be rejected

due to server overload. Users in all domains can submit requests for services. There
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are several users belonging to these domains who request different network services

from time to time. Assume that at a time slot all requests for service 2 from users

in domain 1 correspond to 60% of the maximum load level. Domain 1 controller is

aware that service 2 is available in both domain 2 and 3, and it has to decide where

to submit these requests. On the other hand, the controllers of domain 2 and 3 are

aware that there are service requests for service 2 coming from domain 1. Without

prior knowledge of server status in domain 2 and 3, domain 1 controller may choose

to evenly divide the amount of requests received and send them to domain 2 and

3. In this case, 50% of requests will be rejected in domain 3 due to server overflow.

However, if domain 3 controller sends a message to domain 1 controller warning it of

the critical server load level for service 2, domain 1 controller would then establish a

new rule that forwards all requests for service 2 to domain 2. With this new rule, not

only all requests can be served in due course, load levels are balanced among servers

offering service 2, suppose all servers have the same processing power.

This simple example highlights the importance of controller synchronisation for

service request scheduling in distributed SDN. Digging deeper into it, a couple of

questions naturally arise. First, what kind of information needs to be synchronised

for guaranteeing network performance? Second, is it possible to design a synchroni-

sation schedule which only involves a sub-group of controllers at a time, in order to

reduce the overall control plane overhead? In this regard, we formally introduce the

concepts of controller synchronisation and the synchronisation budget.

Definition 17. Controller synchronisation w.r.t. the service request scheduling prob-

lem is the process of domain controllers informing other domain controllers, via

control plane messaging, about the servers in their domains they do not wish to re-

ceive service requests for (the messages sent are referred to as request injunctions

for servers).

Note that since domain controllers always have up-to-date view of the status of
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servers residing in its own domain, they can decide internally the amount of requests

to be satisfied by servers offering the requested services that are located within their

own domains without receiving instructions from other controllers. In other words,

we only consider the portion of service requests to be satisfied by external servers

for the controller synchronisation problem. Note that a controller synchronisation

message is only valid for the current time slot (see Section 7.3.1 for discussions on

time scales). Upon receiving request injunction(s), domain controllers update their

request forwarding rules to send requests evenly to remaining accessible servers. If

a domain controller receives request injunctions for all servers of a service, it sends

requests evenly to all servers offering that service, as a simple heuristic strategy.

Then, we define synchronisation budget which limits the amount of message that

a controller can send during a time slot.

Definition 18. The synchronisation budget of a domain controller for a time slot is

the maximum number of servers in its domain for which it can issue request injunc-

tions to other domain controllers.

The concept of synchronisation budget quantifies the amount of control messages

that are allowed to be exchanged in SDN control plane. The synchronisation bud-

get reflects the status of the network where a higher budget signals a relative good

condition that tolerates more communication overheads.

7.2.2 Performance Metric

Discussions in the previous section show that how controllers synchronise with each

other has major impacts on the outcomes of service request scheduling. In this

section, we define the performance metrics for evaluating the quality of requests

scheduling decisions.

Specifically, we define server makespan as the total amount of time a server
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takes to completely serve all of its waiting jobs. Let lij(t) denote the makespan of

the server offering service i in domain j at time slot t. Clearly, lij(t) corresponds to

the total waiting time for a newly arrived request for service i at the server in domain

j at time t. Since new jobs arriving at the server may be rejected and lost due to

buffer overflow, we use wij(t) to denote the amount of work corresponding to the

rejected jobs by the server offering service i located in domain j at time slot t. Note

that we assume that a domain does not have multiple servers for one service, and one

server only hosts one service.

Then, the objective of the request scheduling w.r.t. service i is to (i) minimise

the variation of makespan of all servers offering the same service; (ii) minimise the

request losses due to overflow caused by uneven distribution of requests. Hence, we

define the performance metric w.r.t. service i at time t, Mi(t), as

Mi(t) = ⇣

sPm
j=1

�
lij(t)�

Pm
z=1 liz(t)/ki

�2

ki � 1
+ ⌘

mX

j=1

wij(t), (7.1)

where ki is the number of servers providing service i, and m is the total number of

domains. It can be seen that the performance metric is defined as the weighted sum of

makespan standard deviation for all servers and the amount of lost request work (⇣, ⌘

are weighting factors). Clearly, the smaller the metric, the better the performance.

We refer to the two terms after ⇣ and ⌘ as load balance level (LBL) and request loss

level (RLL), respectively. Finally, the overall performance metric M is obtained by

taking the average of the metrics for all services, i.e., M =
Pn

i=1 M
(i)/n, where n

is the total number of services.

7.2.3 Objectives of Controller Synchronisation Policies

Here, a controller synchronisation policy refers to a series of synchronisation deci-

sions defined by Definition 17 over time. With the definitions of controller synchro-
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nisation, synchronisation budget, and performance metric, the objective of controller

synchronisation policy design is stated as follows

min
dt

1

T
E
 TX

t=1

nX

i=1

Mi(t)|dt

�

s.t. |dt|  �t for t = 1, 2, · · · , T

(7.2)

where dt and �t are the synchronisation decision and synchronisation budget at

time slot t, respectively. The constraint |dt|  �t abstractly indicates that the number

of synchronisation message should not exceed the given synchronisation budget. See

more discussions on this in Section 7.3.4.

Objective: In dynamic SDN networks where user’s demands for virtualised net-

work services are time-varying and service-specific, given the controller synchroni-

sation budget, how do domain controllers synchronise with each other according to

Definition 17, in order to minimise the defined performance metric in (7.1) over a

period of time, subject to the given synchronisation budget?

Remark: It is an extremely challenging task to achieve the stated objective for the

following reasons. First, distributed SDN networks are large, complex, and mostly

heterogeneous systems exhibiting complicated dynamicity and hebaviors. Tradi-

tional model-based control optimisation techniques, which normally come with spe-

cific assumptions on network dynamicity or structures, are difficult to be applied

for modelling here. Second, this decision-making problem belongs to the class of

general job scheduling problems widely known to be NP-complete [91]. Thus, any

potential solutions are required to have the ability to generalise for handling the

combinatorial complexity. Third, decision-making algorithms need to be able to

use inadequate network status data as inputs for making synchronisation decisions,

since they are not always able to collect all data needed to avoid excessive overheads

the process may incur. In this thesis, we aim to address all these challenges and

develop controller synchronisation policies by leveraging a combination of DL and



7.3. Problem Formulation and Analysis 136

DRL techniques.

7.3 Problem Formulation and Analysis

In this section, we first formulate the problem of finding controller synchronisation

policies for service request scheduling as a POMDP (Section 7.3.1). Then, we anal-

yse the potential RL-based solutions to the formulated POMDP. In particular, we

consider two scenarios where the synchronisation policy is developed in centralised

and decentralised manners (Section 7.3.2). We conclude that the centralised policy-

learning is not sustainable due to the lack of scalability, and thus a decentralised

policy is preferred. Naturally, a centralised solution is inherently better than the de-

centralised counterpart due to the availability of more information. Therefore, we

conduct theoretical analysis to identify the conditions under which the decentralised

policy can achieve the performance of that of a centralised one (Section 7.3.3).

7.3.1 POMDP Formulation

POMDP [92] offers a mathematical framework for modelling sequential decision-

making problems where the operating environment is not fully observable. We

will demonstrate in this section why the environment is not always fully observ-

able, and thus why POMDP is a suitable candidate for modelling our controller

synchronisation policy. In general, a POMDP can be characterized by an 8-tuple

(S,b,A, T, r,⌦, O, �). For our problem, we define the 8-tuple in the following.

• S is the finite state space. In particular, a state corresponds to the collection

of makespan of all servers in the distributed SDN network. Therefore, the

dimension of a state vector is u =
Pn

i=1 ki, i.e., the total number of servers.

• b is the belief vector containing the probabilities that the environment is in

each state, e.g., b(s) is the probability that the environment is in state s. Note
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that the presence of the belief vector suggests that there are times when the

exact state of the POMDP is not known. For our problem, since the latest

makespan of all servers may not always be obtainable due to potentially poor

network conditions, the belief vector estimates the state of POMDP, when

some state elements are missing.

• A is the finite action space. The action vector w.r.t. a state is defined as

whether domain controllers issue request injunction(s) for server(s) via con-

troller synchronisation, as defined in Definition 17. Specifically, a binary ac-

tion vector a consists of 0’s, which indicates no request injunction is sent for

the corresponding server; and 1’s, the opposite. As such, the dimension of a is

also u.

• T is the set of conditional transition probabilities between states after certain

actions are taken. For example, T (s0|s, a) (s 2 S, a 2 A) is the transition

probability from state s to s0 after action a is taken.

• r is the immediate reward associated with a state-action pair. In particular,

r(s, a) (s 2 S, a 2 A) is the reward of the state-action pair. Since RL ap-

proaches are commonly used to solve POMDPs, r(s, a) is the stimulus for

any RL agent to learn in RL algorithms. Specifically, r(s, a) signals to the

RL agent “good actions" to be reinforced and the bad ones to avoid. For our

problem, the designed reward signal consists of 4 components, each conveys

a unique message to the RL agent. When calculating rewards, it is assumed

that state is known to the RL agent; the state could be estimated by the belief

vector, or by other methods which we will discuss later. Formally, the reward

is defined as follows

r(s, a) = �(s0)� �(s) + (◆s · a�  
uX

i=1

ai �
nX

i=1

mX

j=1

wij)/u. (7.3)
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The first component is the difference of LBL between the next and current

states seen by the RL agent, i.e., �(s0) � �(s), where �(·) is the standard

deviation operator of a vector, and s, s0 2 S are the RL agent perceived current

and next states. The perceived states can be different from the actual state, see

Section 7.4.2 for details. This term indicates to the agent the effectiveness

of current action in reducing the makespan variation. The second term is the

dot product of the state and action vector, i.e., ◆s · a, where ◆ is the scaling

factor that decides the relative contribution of this term. This term serves two

purposes: it encourages the agent to take 1 action for servers where the current

makespan is already high, while also discourages agent from taking 1 action

for servers with a low makespan. The third negative term is simply the sum of

elements in the action vector times the scaling factor  , i.e. � 
Pu

i=1 ai. This

term discourages the agent from taking excessive 1 actions, which increases

overheads. The last term accounts for the total lost makespan due to overflow

after the (s, a) pair, which is calculated as �
Pn

i=1

Pm
j=1 wij . Note that the

last three terms are normalised by the size of the state vector.

• ⌦ is the observation space, which contains observations of RL algorithms.

In our problem, an observation ! (! 2 ⌦) is the vector of observed server

makespan. Note that the newest server makespan may not always be avail-

able, therefore, last known server makespan will stay in observations until

new values are recorded.

• O is the set of conditional observation probabilities. Specifically, receiving

certain observation is conditioned on the next state and the action taken, i.e.,

O(!0
|s0, a).

• � is called the discount factor (0 < � < 1), which trades off the importance

between current and future rewards.



7.3. Problem Formulation and Analysis 139

Starting from an initial observation !0, the problem is formulated as finding a

policy ⇡ (i.e., the selection of a sequence of actions {at}
⌥
t=0) such that the long-term

accumulated reward expressed in the Bellman equation below is maximised

V ⇡(!0) = E⇡
 ⌥X

t=1

X

st2S

b(st)�
tr(st, at)|!0

�
, (7.4)

where ⌥ is the total time horizon of the problem.

Time Scale of the POMDP: The basic unit of time in the defined POMDP in-

cludes a series of events, which are jointly referred to as a synchronisation time

slot (time slot for short) in the sequence. Specifically, synchronisation messages ex-

changes take place at the start of a time slot. Then, based on the request injunctions

controllers received, they update rules for forwarding service requests as described

in Section 7.2.1. For modelling tractability, we assume that the lifespan of a syn-

chronised request injunction is only the current time slot. This is true in practical

SDN networks where periodical synchronisation means that the collection of latest

network information takes place at certain time.

With the formulated POMDP, RL algorithms are commonly used to find ⇡ that

maximise (7.4). For RL, imagine an agent who moves from state to state in the

formulated POMDP by taking some actions associated with certain rewards. The

agent’s goal is to discover a sequence of state-action pairs, i.e., the policy ⇡, that

maximises the accumulated time-discounted rewards. Although the agent’s observ-

ability of states are incomplete in the formulated POMDP. By interacting with the

environment, the agent’s internal belief vector are becoming increasingly accurate

as its experiences build up through “trial-and-error" where good decisions are posi-

tively enforced by positive rewards, and bad ones the opposite.

When designing RL algorithms, a central question is whether the learning pro-

cess takes place in a centralised or a relatively decentralised manner. In the next
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section, we analyse these design principles in the context of our synchronisation

problem.

7.3.2 Centralised Vs. Decentralised Policy Learning

There are three important issues of concern in order for any RL algorithms to gen-

erate an appropriate synchronisation policy: (i) Whether to train the state-action to

value function(s) using the single or multi-agent setting? (ii) Since states are par-

tially observable to RL agent(s), how to help agent(s) resolve uncertain states from

observations and update their belief vector(s)? (iii) How to map trained value func-

tions to policies? In this subsection, we consider the first question, and defer the

other two to the next section.

Centralised Learning Approach: For the formulated POMDP, the most straight-

forward way to learn value function is to employ the classic single agent Q-learning

algorithm[67]. Here, we use Q-learning only for the analysis of centralised and de-

centralised policy learning processes.

In general, Q-learning algorithm uses the Q-function to estimate the quality of a

state-action combination

S ⇥A! R.

In particular, the optimal Q-function for our POMDP, denoted by Q⇤(!, a), can be

written as

Q⇤(!, a) =
X

s2S

b(s)[r(s, a) + �
X

s0,!0

pmax
a0

Q⇤(!0, a0)], (7.5)

where s0,!0, a0 are the next step state, action, and observation, respectively; p =

T (s0|s, a)O(!0
|s0, a). The value iteration update process, which is detailed in (7.6)

(↵ is the learning rate (0 < ↵ < 1)), makes Q(!, a) ! Q⇤(!, a) when t ! 1.

In particular, as the learning process proceeds, the Q-function is updated using the
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following rule:

Q(!, a) = (1� ↵)Q(!, a) + ↵[r(s, a) + �
X

s0,!0

pmax
a0

Q(!0, a0)]. (7.6)

where ↵ (0 < ↵ < 1) is the learning rate.

Remark: Although the centralised learning approach based on the Q-learning

can eventually make the value function converge to the exact one in the limit of

time, it is not difficult to see the intractability of the centralised learning approach

as follows. First, the centralised approach is not scalable. With only one RL agent

gathering all required information for training, not only a single point of failure is

possible, the single agent needs to have a tremendous amount of processing power to

handle large-scale information gatherings and RL trainings. Second, the size of the

state-action space in the POMDP increases exponentially in the number of servers in

the network. According to [67], one prerequisite of the convergence guarantee of Q-

learning is that all state-action pairs are visited infinitely often, which is a condition

almost impossible to meet for large networks. Based on our experiences, the agent

almost would not be able to learn anything at all, if only applying (7.6) without

generalisation.

Decentralised Learning Approach: The discussion above implicitly advocates

for decentralised learning approaches in practice, which potentially involves multiple

RL agents. When pursuing a decentralised RL approach for learning policies based

on the formulated POMDP, a natural way to proceed is to create multiple RL agents,

each for a type of service. In other words, all servers providing the same service

form a Learning Group (LG), and one RL agent is assigned for this LG, referred to

as the LG agent. Note that the LG agent performs a set of learning functionalities,

which can physically reside on a domain controller, or it can be implemented as an

independent network unit. We use an example in Fig. 7.2 to illustrate the concept
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Figure 7.2: An example of 3 Learning Groups (LGs).

of LGs. There are 3 services supported in 3 domains in Fig. 7.2, and thus 3 LGs

are formed as shown. Each LG agent is responsible for training the LG-wise value

function based on observations associated with the LG. These observations are past

makespan values and actions taken for the servers within the LG. Again, the quality

of the observations depends on the ability of the agent to gather information from

LG members, which is ultimately dictated by network conditions. In addition, the

synchronisation budget defined in Definition 18 is the bond that link together all

LGs together, as the decisions made by some LGs may compete for the limited

synchronisation budget of some domain controllers.

Essentially, each LG agent manages a subset of the 8-tuple (S,b,A, T, r,⌦, O, �)

of the formulated POMDP. Therefore, we use (Si,bi,Ai, Ti, r,⌦i, Oi, �), i 2 {1, 2, · · · , n}

to denote the section of the POMDP accessed by LG agent i. Let the value function

of LG agent i be denoted by Qi(!i, ai). Comparing to the centralised single agent

scenario, where the RL agent has access to all aspects of the POMDP, one naturally

wonders how the value functions developed by the decentralised LG agents compare

to the centralised one? In other words, we need to analyse the relationship between

Q(!, a) and Q̂(!, a), which is defined as

Q̂(!, a) =
nX

i=1

Qi(!i, ai). (7.7)
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If it can be proved that Q̂(!, a) = Q(!, a), this implies that while a decen-

tralised policy improves the scalability and robustness of the learning process, it also

retains the same performance as achieved by a centralised policy. This is the issue to

be examined as follows. In particular, we first investigate the relationship between

Q̂(!, a) and Q(!, a) without considering the constraints of synchronisation budget.

Then, by taking into account the synchronisation budget that all agents share, we

identify the protocols by which the agents work cooperatively to achieve compara-

ble performance of the centralised learning approach.

7.3.3 Performance Analysis of the Decentralised Learning Ap-

proach Without Considering Synchronisation Budget

First, we define Q(s,!, a) and Qi(si,!i, ai) at time slot t, which are shortened to

Qt and Qt
i, as

Qt = r(st, at) + �
X

st+1,!t+1

pmax
at+1

Qt+1, (7.8)

and

Qt
i = r(sti, a

t
i) + �

X

st+1
i ,!t+1

i

pi max
at+1
i

Qt+1
i , (7.9)

respectively, where pi = T (st+1
i |sti, a

t
i)O(!t+1

i |st+1
i , at

i). We start our analysis by

comparing Qt and Qt
i.

Let ⌥ be the total number of time slots in the POMDP, then, (7.8) and (7.9)

reduce to r(st, at) and r(sti, a
t
i) when t = ⌥ � 1, respectively, because there are no

future rewards. Then, Qt =
Pn

i=1 Q
t
i holds for t = ⌥� 1 , since by definition there

is r(s, a) =
Pn

i=1 r(si, ai). Then, by mathematical induction, we change the time

slot to t� 1 and apply the result from t to identify the conditions for which the same

holds for t � 1. For easier expression, we use Qt and Qt
i to represent Q(st,!t, at)
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and Qi(sti,!
t
i, a

t
i) in the sequence. Below we apply the results proved at t = ⌥ � 1

to time slot t� 1, and add necessary conditions for the induction proof. See the texts

later for the reasoning for each step.

Qt�1 = r(st�1, at�1) + �
X

st,!t

pmax
at

Qt (7.10)

=
nX

i=1

r(st�1
i , at�1

i ) + �
X

st,!t

p
X

sti,!
t
i

max
at
i

Qt
i (7.11)

=
nX

i=1

r(st�1
i , at�1

i ) + �
nX

i=1

X

sti,!
t
i

pi max
at
i

Qt
i (7.12)

=
nX

i=1

Qt�1
i . (7.13)

From (7.10) to (7.11), we simply apply the results obtained for t = ⌥ � 1. The

key condition we used from (7.11) to (7.12) is
P

st,!t p =
Pn

i=1

P
sti,!

t
i
pi. What

this condition means is that the state and observation probabilities of an LG are fully

determined by the members inside the LG. This is the first condition we identified.

Based on (7.5) and (7.10) - (7.13), we use the similar approach to prove Q̂(!, a) =

Q(!, a) as follows

Q(!, a) =
X

s2S

b(s)Q(s,!, a) (7.14)

=
X

s2S

b(s)
nX

i=1

Qi(si,!i, ai) (7.15)

=
nX

i=1

X

si

bi(si)
nX

i=1

Qi(si,!i, ai) (7.16)

=
nX

i=1

Qi(!i, ai). (7.17)

From (7.14) to (7.15), we apply the result in (7.10) - (7.13). The key condition in

deriving (7.16) from (7.15) is
P

s2S b(s) =
Pn

i=1

P
si
bi(si). Similar to the previous
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finding, this condition suggests that a LG agent’s belief vector is fully determined

and updated by members of the LG. By closer examination, this condition can actu-

ally be seen as a corollary of the previous one, as belief vector is updated based upon

observations. We summarise these identified conditions as follows.

Without considering the synchronisation budget, the collection of all value func-

tions gained via LG-based decentralised policy learning approach is guaranteed to

be identical to the single value function learned in the centralised manner, if the ob-

servation probabilities, the belief vectors and their updates of all LG agents are fully

determined by members of the respective LG.

Note that we have not yet considered the synchronisation budget for domain con-

trollers, which impose constraints on the actions derived by LG agents. In the next

subsection, we discuss the impacts of synchronisation budget on the performance of

our LG-based decentralised approach.

7.3.4 Performance Analysis of the Decentralised Learning Ap-

proach Considering Synchronisation Budget

Due to the limited synchronisation budget assigned to domain controllers, it is possi-

ble that servers belonging to different LGs are competing for synchronisation budget

in various domains. Specifically, let �j denote the synchronisation budget, defined

according to Definition 18, for domain controller j at time t. Then, let aij 2 ai (aij is

either 0 or 1 per definition of the action space in Section 7.3.1) be the action element

for the server offering service i in domain j at time t. Then, for the domain controller

j, there is no competition for synchronisation budget if
Pn

i=1 aij  �j (aij = 0 if

service i is not available in domain j). On the other hand, the domain controller j

needs to decide how to assign the synchronisation budget if
Pn

i=1 aij > �j . The con-

straint of the synchronisation budget essentially restricts the values of some action

elements in the affected LGs. In particular, let Z and H denote the set containing
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the indices of the LG(s) that have server(s) competing for synchronisation budget,

and the set containing the indices of the domains that have servers competing for

synchronisation budget, respectively. Then, based on results from (7.10) - (7.13),

the collection of value functions learned for LGs competing for the synchronisation

budget work cooperatively to solve the following optimisation problem.

max
ai

X

i2Z

Qi(si, ai)

s.t.
nX

i=1

aij  �j for all j 2 H.

(7.18)

Therefore, the performance of the decentralised learning approach is ultimately

decided by how close the solution of (7.18) is, when compared to the optimal solu-

tion. As such, in theory, our LG-based decentralised learning approach can achieve

the performance of the centralised learning approach if (7.18) is solved exactly.

As we shall show in Section 7.4, the policy learning part of the SMART, which is

employed to learn synchronisation policies for LGs, is based on the MACS designed

in Chapter 6. Therefore, in Section 7.4.4, we develop a heuristic algorithm, which

take advantage of the MACS design, to solve the optimisation problem defined in

(7.18).

7.4 The SMART

7.4.1 Overview of the SMART Design

Firstly, recall that the state in our POMDP is defined as the makespan of all servers in

the SDN networks. Correspondingly, with the multi-agent learning approach we use,

each LG agent collects current server makespan from its LG members. However, LG

agents are not always able to collect all up-to-date server makespan, due to network

constraints that prevent timely communications between network components, thus
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resulting in the partial observability in the problem formulations. Temporal data

enhancement techniques are therefore needed to resolve such partial observability.

Traditionally, methods used to update the belief vectors based on observations are

studied and applied to resolve the partial observability. Here, we propose to use

LSTM[93] to help LG agents resolve unobservable states. LSTM is a type of re-

current neural network (RNN) that has been used successfully in the wider area of

temporal data forecasting (see Section 7.4.2). For our LSTM, the input data is the

LG agent’s observations and actions in the past several time slots. The LSTM out-

puts the prediction of current states if such information cannot be obtained by the

agent. In other words, if the LSTM is able to make 100% accurate predictions about

unobservable states, this is equivalent to having a belief vector with all 0 but only

one entry equals to 1 for the POMDP. We show in Section 7.5 that LSTM works

especially well when a large portion of state elements are unobservable.

Secondly, we describe details of MACS-based DRL network designed for LG

agents to output selected actions based on past observations. Essentially, the DRL

network is a value function that evaluates the long-term quality of an observation-

action combination. Given the enormity of the state-action space (even for the sub-

state-action space that an LG agent controls), we use deep neural network (DNN)

[66] in the DRL network to generalise the value function due to its exceptional abil-

ity in capturing latent and complicated relationships from input data. As such, the

input to the DRL network is the concatenation of observed state elements and the

predictions made by LSTM for those unobserved states elements. The design for the

DRL networks used by all LG agents is similar to MACS introduced in the previous

chapter, refer to Section 6.4.2 for details.
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Figure 7.3: The structure of SMART.

7.4.2 LSTM for Resolving Unobservable States

LSTM is the state-of-the-art of RNNs, which solves the vanishing gradient problem

that previously plagued the training process of long RNNs. Here, we employ LSTM

to handle unobservable states for LG agents, which can be caused by hostile network

environment or communication resource constraints. See [93] for more details about

LSTM and its structure.

For our task, the input to an agent’s LSTM network is its past observations up to

⌧ time slots ago from the current time slot. Note that an observation includes the LG

agent’s perceived makespan and the action taken by the agent at that time slot. The

left part of Fig. 7.3 shows the structure of our designed LSTM network. Here, we

stack 2 LSTM cells to enhance the capability of the LSTM network. At each time

slot, the observations up to ⌧ time slots ago are fed into the LSTM cells sequentially

in the order of time. For the observation input at time t, the agent perceived state

(ŝti) and actions taken (at
i) are concatenated to one vector and are fed into a two-

layer Multilayer Perceptron (MLP) before entering the fist LSTM cell. The input to

the first LSTM cell at time slot t is zt = MLP[2u ⇥ 128](ŝti � at
i) (� indicates the

concatenation of vectors), where the numbers inside the square brackets indicate the

number of neurons in the input/output layers of the MLP. Then, the outputs of the
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first LSTM cells, ht
1 = LSTM[64](zt,ht�1

1 ), are passed on to the second LSTM cell,

and to itself as the input in the next time step. The number in the square brackets is

the number of memory units we use in the LSTM. The second LSTM cell takes as

input its own output from the previous time slot ht�1
2 = LSTM[64](ht�1

1 ,ht�2
2 ), and

the input from the first LSTM cell ht
1. Finally, the outputs of the second LSTM cell

at the last time step enter an output MLP with the number of input/output neurons

being 128 ⇥ ki. The output of this MLP is the final output of the LSTM network,

which will be fed into the DRL network for generating synchronisation decisions.

7.4.3 MACS-based DRL Network for Learning Policies

For the MACS-based DRL network used by all LG agents, let the value function of

LG agent i be denoted by Qi(ŝi, ai), the state value of the agent’s resolved state ŝi is

defined as

Vi(ŝi) = Eai(s)[Qi(ŝi, ai)]. (7.19)

Note that with the help of the LSTM network, the observation of LG agent i, !i,

turns into resolved state ŝi.

Furthermore, to better distinguish the relative qualities of all possible actions

under a given state si, we define the advantage of an action ai, denoted by Ai(ŝi, ai),

as

Ai(ŝi, ai) = Qi(ŝi, ai)� Vi(ŝi). (7.20)

Following [89], we define the value of a sub-action belonging to action arm j for

agent i, denoted by aij(aij 2 {0, 1}), as

Qij(ŝi, aij) = Vi(ŝi) +
�
Ai(ŝi, aij)�

X

j2{0,1}

Ai(ŝi, aij)/2
�
. (7.21)

To help agent i generalise over the state-action pairs it has seen, we parame-
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terise its value function by DNNs, which is denoted by Qij(ŝi, aij;✓ij). The set of

adjustable parameters ✓ij are weights of the DNN.

Training the DRL Network: The value iteration update [67] of the Q-function

uses the estimation of future rewards at the next state to update current Q-function,

with the reasoning that estimations at the next state are more accurate, hence Qij(ŝi, aij;✓ij)

is eventually accurate enough to estimate the values of both "0" and "1" actions of

each action arm. Then, the synchronisation policy can be easily derived by the LG

agent by comparing the value estimations of two sub-actions of each action arm.

(See Phase 4 in Section 7.4.5 for details.)

During each weight update iteration, ✓ij is adjusted to reduce the gap between

current prediction (i.e., current Qij(ŝi, aij;✓ij)) and the next state estimate. Specifi-

cally, we define the target for action arm j of agent i as

yij = r(ŝi, a
ij) + �max

a0ij

Qij(ŝ
0
i, a

0
i;✓ij). (7.22)

Then, the following loss function using the mean-squared error measurement is

defined for adjusting ✓ij

L(✓ij) = E[
�
yij �Qij(ŝi, aij;✓ij)

�2
]. (7.23)

Before the weight-update process takes place, the total loss is calculated as the mean

loss across all arms

L(✓i) = E

1

ki

kiX

j=1

L(✓ij)

�
. (7.24)

Then, by differentiating L(✓i) w.r.t. ✓i, the weights of the DNN are updated for
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the next iteration (↵ is the learning rate)

✓i  ✓i � ↵r✓iL(✓i). (7.25)

Other details of the DRL network are described as follow. As shown in the right

part of Fig. 7.3, The input layer, which is fully connected to all action arms and the

state layer, consists of 2 hidden fully connected layers with 512 and 256 neurons,

respectively. Every action arm contains a hidden layer of 128 neurons which is

followed by an output layer with 2 neurons that output the advantage estimations

for 2 sub-actions, respectively. The state layer has a hidden layer of 128 neurons

followed by a single neuron in its output layer.

7.4.4 Synchronisation Policy Generation With Given Synchroni-

sation Budgets

Note that the core idea behind the MACS-based DRL network in SMART is to en-

able the estimations of relative contributions of each action element. For example,

"0" action is selected for the server providing service i in domain j if Qij(si, aij)|aij=0 >

Qij(si, aij)|aij=1. Therefore, the structure of the value function for SMART offers

a natural heuristic to solve the optimisation problem defined in (7.18) in a decen-

tralised way. In particular, for the domain controller j with the synchronisation bud-

get �j , let dj denote the initial action vector containing the chosen action elements

for all servers in its domain. Then, dj is determined by

dj = argmax
{aij}

X

i2Ij

Qij(si, aij), (7.26)

where set Ij contains the indices of all services domain j provides. For the server

offering service i in domain j, its corresponding action element is obtained by sim-



7.4. The SMART 152

ply choosing the sub-action with higher value, i.e., aij = 0 if Qij(si, aij)|aij=0 �

Qij(si, aij)|aij=1, or aij = 1 otherwise. Therefore, dj is obtained by carrying out

such comparisons for all servers in Ij using the learned Qij(si, aij). The initial action

vector dj is then adjusted to the final action d0
j as follows. If there is no competition

for the synchronisation budget in domain j, i.e.,
P

{dj}  �j , the initial action vec-

tor dj stands unchanged, i.e., dj = d0
j . Otherwise, the values associated with all "1"

actions are ranked in descending order. The "1" actions whose corresponding values

are in top �j in the rank remain unchanged, and those "1" actions whose correspond-

ing values are not in top �j in the rank are changed to "0" actions, thus rendering a

new d0
j . Finally, the concatenate of all d0

j action vector provide the heuristic solution

to the optimisation problem in (7.18).

7.4.5 From Data to Policy

In this section, we describe the whole process of how LG agents turn their available

network data to a executable policy. To reduce the complexity of the training process

and to avoid the potential vanishing gradient problem resulted from very deep neural

networks, we train the LSTM and the DRL networks separately. The whole process

can be summarised in the following phases.

Phase 1: Data Collection. At each time slot t, LG agent i collects up-to-date

makespan from all servers within its LG to the best of its ability. If the agent does

not have access to the newest makespan information of some servers in this time slot

due to network constraints, it uses the last known makespan values. The agent then

store its observation of time slot t as !t
i .

Phase 2: Collected Data for LSTM Network Training. To train the LSTM net-

work, each agent divides its received observations into chunks of consecutive obser-

vations whose lengths are ⌧ + 1. The first ⌧ observations in a chunk are sequentially
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fed to the LSTM cells and the observed state in the last observation in the chuck is

the training target.

Phase 3: Collected Data from trained LSTM for DRL Network Training. The

training data for the DRL network are the (ŝi, ai, r(ŝi, ai), ŝ0i) tuples. Here, ŝi and ŝ0i

are the resolved current and next states of agent i, with unobservable state elements

predicted by the trained LSTM network.

Phase 4: Trained DRL Network for synchronisation Policy. Preliminary con-

troller synchronisation decision at time slot t is derived by the agent’s trained DRL

with its perceived state ŝti as input. Specifically, as shown in the right side of Fig. 7.3,

at any time slot, each agent’s DRL network estimates Q-values for two sub-actions

of all action arms (each action arm corresponds to a server in the LG) from the ŝti

inputs. Finally, each domain controller, with the given given synchronisation budget

determined by the current network conditions, generates the final action vector using

the heuristic algorithm introduced in Section 7.4.4.

7.5 Evaluation

This section presents performance evaluations of SMART, in which we compare its

performance to other algorithms in different scenarios. We also evaluate the per-

formance of SMART in hostile network environments where significant amount of

data used for deriving the policy are unobtainable. Finally, to test how well SMART

handles growing number of services, we fix the synchronisation budget while in-

crease the number of services across SDN domains in a series of experiments, and

compare the performance of SMART to all benchmarks. Here, we first introduce the

evaluation scenarios and the performance benchmarks used in Section 7.5.1. Then,

the evaluating settings studied are described in Section 7.5.2. Finally, we present the

evaluation results and analysis in Section 7.5.3.
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Table 7.1: Evaluation Parameters

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4
The amount of
available state

status data
100% 100%

50%, 70%,
100% in

three cases

100%

Maximum
sync’

budget at
a time slot

Gaussian

distributed

with µ = 1

1,2, and 3

in three

cases

Gaussian
distributed
with µ = 1

2 for all cases

with different

# services

# domains
and services

6 domains and 4 unique services;
each service has 3,4,5,6

installations (servers), respectively

6 domains and

3-10 unique services

in 8 cases

Server
processing

power

service 1: [0.15, 0.2, 0.25],
service 2: [0.1, 0.15, 0.2, 0.25],

service 3: [0.1, 0.15, 0.2, 0.25, 0.3],
service 4: [0.1, 0.15, 0.2, 0.25, 0.2, 0.15]

3 installations
per service, all server

processing power
uniformly distributed
between 0.1 and 0.3

Max server
makespan 1 for all servers

# requests
per time slot Poisson distributed with � = 1

Unit request
length 0.04

Other
parameters ⇣ = 1, ⌘ = 1, ◆ = 0.5, � = 0.25, ⌥ = 300, ⌧ = 10

7.5.1 Evaluation Scenarios and Performance Benchmarks

Four scenarios are considered for evaluations. In Scenario 1, we compare the perfor-

mance of SMART over three other algorithms in an ideal environment assuming all

data are available for training SMART. As for Scenario 2, we vary the synchronisa-

tion budget and compare the performance of SMART with other algorithms. Then,

in Scenario 3, we evaluate the performance of SMART in networks with increas-

ing difficulty in obtaining input data for training. Finally, in Scenario 4, we test

SMART’s performance when an increasing number of services are present in the

network. Before discussing detailed settings for 4 scenarios, we briefly introduce

the benchmarks employed as follows.
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The Local Greedy Algorithm is a controller synchronisation scheme in which

each domain controller aims at minimising the makespan of the most loaded servers

in its domain. Therefore, the domain controller issues request injunctions to other

controllers for the servers that are most heavily loaded first. In this way, domain

controllers attempt to minimise makespan lost due to requests overflow.

The Anti-entropy [54] Algorithm implemented in the ONOS controller [24], is

based on a gossip algorithm that controllers randomly synchronise with each other

[54]. For our synchronisation problem, a domain controller running anti-entropy al-

gorithm informs and prevents other controllers from submitting requests to a number

of randomly selected servers.

The Static/Pre-calculated Policy are controller synchronisation decisions made

based on statistical data about network dynamics. In particular, domain controllers

are aware of the average number of request arrivals for each server and the servers’

processing power. They plan the issuance of service injunctions in advance to min-

imise request lost due to overflows.

Remark: The three benchmarks we use are representations of some existing

synchronisation strategies. The local greedy algorithm can be seen as a fully decen-

tralised policy in which decisions are made based only on local information. The

Anti-entropy algorithm is used by default in some existing SDN controller designs

for its stochastic nature and relatively simple implementations. The static or pre-

calculated policies represent some research efforts in academia, which aim at taking

advantage of traditional optimisation techniques to determine the best controller syn-

chronisation rate or policy. An example of this can be found in [94]. However, a con-

siderable disadvantage comes with employing traditional optimisation techniques is

the presence of many ideal and unrealistic assumptions that cannot be met in reality.
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Figure 7.4: Performance at
every time slot.

Figure 7.5: Servers’ LBL
distribution comparison.

Figure 7.6: RLL compari-
son (box plot).

Figure 7.7: Performance
comparison with different
max. budgets.

Figure 7.8: SMART per-
formance with missing
data.

Figure 7.9: Performance
comparison over all
servers.

7.5.2 Evaluation Settings

The parameters for the simulated networks in our evaluations are summarised in Ta-

ble 7.1. The independent variables for different scenarios are highlighted in bold

fonts to distinguish them from default (control) variables. Since state data are not

always available to LG agents, we use the amount of available state data to model the

level of LG agents’ ability to collect up-to-date makespan information from servers

in its LG. For example, if only 50% of state information is available, this means that

at each time slot, each server only reports its newest makespan to the LG agent with

50% probability. If the agent does not receive the newest makespan, it uses the last

known data (perceived makespan) as an estimation. The default maximum synchro-

nisation budgets at different time slots are drawn from the Gaussian distribution with

µ = 1. In Scenario 2, we use constant maximum synchronisation budgets of 1, 2 and

3 to investigate its impact. In Scenario 4, we keep a constant budget of 2 and evaluate

how well various algorithms scale up when the number of services increases from 3

to 10. Moreover, since SMART does not necessarily use all available synchronisa-
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tion budget at a time slot, for fair comparisons, we make sure that all algorithms use

the same amount of synchronisation budget at each time slot. We assume that the

capacity of server processing power is largely determined by its hardware configu-

ration. Therefore, we use the server processing power in Table 7.1 consistently in all

experiments. In addition, the requests pattern for different services in all domains

are generated by Poisson distribution with � = 1. All evaluations are repeated for

100 simulated trajectories using the same parameter settings for accurate results.

As for the settings of DNNs used for designing SMART, the configuration for the

LSTM network can be found in Section 7.4.2. The DRL network is implemented as

a Multilayer Perceptron [71]. The specifications of the MLP used can be found at the

end of Section 7.4.3. The dimension of the input layer of the MLP is of the same size

of the state space of the formulated POMDP (see Section 7.3.1). We choose Adam

[95] as the optimiser for optimising DNN weights. In addition, we use Rectified

Linear Unit (ReLU) [74] as activation functions for all neurons, except for output

layers, for which no activation is employed. All DNNs used in SMART are realised

using Keras framework [72] built upon Tensorflow [73] DL library.

Remark: The settings described are for evaluation purpose only and there are no

assumptions made on any parameters herein.

7.5.3 Evaluation Results

All evaluation results are presented in Fig. 7.4 -Fig. 7.9. Specifically, Fig. 7.4 shows

plots of the performance metric M (M =
Pn

i=1 Mi/n, where Mi is defined in

(7.1)) over all experiment time slots. Fig. 7.5 shows the distributions of the LBL of

servers’ makespans. Fig. 7.6 are box plots of average RLL at every time slot. See

Section 7.2.2 for the expressions of LBL and RLL. Fig. 7.4 - Fig. 7.6 correspond to

evaluation Scenario 1. For Scenario 2’s results in Fig. 7.7, we conduct experiments

on increasing maximum allowed synchronisation budgets and compare the perfor-
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mance of 4 algorithms under these budget settings. In Fig. 7.8, we show evaluation

results of SMART’s performance when different amounts of network data are avail-

able for training. The plots in Fig. 7.4 - Fig. 7.8 are service-wise results, which are

first calculated among servers offering the same service and then averaged over all

services. While they are defined as our optimisation goals, it is still interesting to see

the overall performance calculated among all servers in the network, which represent

the cross-service, overall server performance. Therefore, in Fig. 7.9, we also provide

bar plots of the this overall performance metric defined as

M
0 =

⌥X

t=1

✓
�(st) +

nX

i=1

mX

j=1

wij(t)

◆
/⌥. (7.27)

For Scenario 4, the aim is to test how well SMART performs when the network

scales up with more services while the synchronisation budget remains unchanged.

Fig. 7.10-7.11 show the average performances metric and rewards as the number of

services in the network increase from 3 to 10, respectively. The evaluation results

can be summarised as follows.

Figure 7.10: Average performance with
different # services.

Figure 7.11: Average reward with differ-
ent # services.

1) Superior performance of SMART: All evaluation results confirm the superi-

ority of SMART. In particular, in Fig. 7.4, we can see that SMART outperforms

all other algorithm by sizeable margins consistently. Fig. 7.5 shows the LBL dis-

tributions of servers, which represents the load balancing ability in the algorithms’
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performance. While the average LBL for SMART’s is lower than other algorithms,

the distribution curve for SMART is flatter too. Since the metric consists of the LBL

and RLL terms, this shows SMART’s flexibility to balance different aspects for the

better overall performance. Fig. 7.6 reveals SMART’s ability to satisfy more re-

quests, as manifested by having the lowest RLL when compared to other algorithms.

Interestingly, although SMART is not designed to work in a cross-service way with

the metric M
0, in which the objective is to minimise the sum of lost makespan and

STD of all servers (regardless of the service they are running), it’s performance still

tops other approaches in this setting, as shown in Fig. 7.9.

2) Robustness of SMART: One main goal of SMART is to make sure that it sur-

vives the training data scarcity. This is why we build the LSTM network for handling

such potential issues in noisy or hostile environments. Evaluation results show that

this design pays off even when significant amount of data are unobtainable. Specif-

ically, Fig. 7.8 shows that SMART’s performance only deteriorates by about 3.5%

when 50% of the state information w.r.t. the POMDP are unobservable. Moreover,

there is only negligible deterioration from 30% to 50% loss of training data. This

result not only confirms SMART’s survivability when it is hard to obtain data, it

also motivates the voluntary reduction in data collections by LG agents to reduce the

overheads incurred during data collections.

3) Greater synchronisation budget may not be helpful: When domain controllers

have higher synchronisation budget, one would intuitively expect better synchroni-

sation performance. However, this is not evident in our results. In particular, from

Fig. 7.7 we can see that when the maximum allowed budget change from 1 to 3, the

performance of SMART barely changes. This suggests that SMART does not need

a large synchronisation budget to operate.

4) The static algorithm performs almost identically to the anti-entropy algorithm:

This suggests that the pre-planned policy based on statistical patterns in reality be-
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haves similar to a random policy. This further implies that controller synchronisation

policies designed based statistical data without adaptability will perform poorly in

dynamic environments.

5) SMART’s performance edge increases as network services scale up: Recall

that the performance metric employed and the reward defined in the POMDP formu-

lation can be found in Section 7.2.2 and Section 7.3.1, respectively. Note that smaller

is better for the former and greater is better for the latter. Since synchronisation bud-

get is kept constant while more services are added, performance deterioration is to

be expected. Clearly, as shown in Fig.7.10 and Fig.7.11, it can be seen that SMART

results in the most modest performance deterioration compared to the three bench-

marks by both measures.



CHAPTER 8

sasRL: An Efficient RL Architecture

with Implicit Action Space

8.1 Introduction

Chapters 5-7 present our work on control and management of distributed SDN by

employing DRL approaches. As our experiences with various mainstream DRL al-

gorithms build up, we realise that although they are powerful tools for solving com-

plicated serial decision-making problems, there are remaining issues with these ex-

isting RL algorithms, which require further research efforts. In light of this, in this

chapter, we propose a new RL architecture, which is designed to address one of the

most cited issues with existing RL algorithms, i.e., the issues of inefficiency in learn-

ing. The RL architecture we propose is very generic in the sense that it is not only ap-

plicable to network control problems, but also general RL problems. Therefore, the

technical contents of this chapter contribute to RL and DRL research communities.

Classic RL [15] methods, which were developed to solve serial decision-making

and control problems, have been investigated for decades. For instance, Q-learning

algorithm [67], which first appeared in the late 1980s and had since been thoroughly

studied and analysed, inspires many successful algorithms and applications. How-

ever, due to the lack of general means for function approximation, value functions

in Q-learning were estimated in tabular settings or by using simple linear parame-

terisations. As such, their applicabilities are limitted to some simple problems with
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relatively small state-action spaces. In recent years, the advancements in deep learn-

ing [96] extend RL to Deep Reinforcement Learning (DRL) [97], for which Deep

Neural Networks (DNN) [98] are employed as value function approximators. Due to

the DNN’s exceptional capability in capturing complex and high-dimensional data

structures, DRL methods are empowered to handle many real-world RL problems

which involve enormous state-action spaces.

Conventionally, MDP is used to model RL problems. For an MDP, the RL agent

jumps between states by taking actions and it collects a reward after transitioning

from one state to the next state. The agent maintains a state-action-value (SAV) func-

tion (e.g., the Q-value [67]) to estimate the long-term returns of state action pairs.

This SAV function is iteratively updated using rewards associated with state tran-

sitions. For DRL methods based on MDPs, both model-based and model-free [15]

approaches use DNNs as approximators for SAV functions. For example, Google’s

DQN [59] and a family of algorithms using the actor-critic framework [84] all share

this common feature, despite some variations in design details. Then, the agent’s

policy is developed, either directly or indirectly, according to the learned SAV func-

tion.

The SAV function based on the MDP formulation is a convenient choice for

developing policies, since actions directly define the behaviours of RL agents. By

coupling its behaviours with potential returns, one implicit assumption is that the

long term return of an agent is a function of its current state and available actions.

Although this is generally true, for many RL problems, the return of a state transition

is directly determined by the next state after the state transition, and the action is only

indirectly related to the return as it causes such a state transition. Furthermore, for

some RL problems, there are potentially several actions that can cause the same

state transition. Then, all these actions have the same effect as far as rewards are

concerned. As a result, the excessive actions induce extra burdens for training the



8.1. Introduction 163

DNN function approximators. In this case, having more training data actually exerts

adverse impacts on RL. Another source of training inefficiency for the DNN function

approximator is the enormity of the state-action space over which the DNN have

to generalise for approximating the value function, as the size of the state-action

space is combinatorial of already large state and action spaces. All these factors

considered, we argue that although SAV function based on MDP can be intuitive and

convenient, the aforementioned issues can cause inefficiencies in utilising training

data for learning the SAV function in RL.

Aimed to address these issues for RL tasks where rewards are tightly associated

with state transitions, we propose an alternative RL paradigm, called the State Ac-

tion Separable Reinforcement Learning (sasRL), by formulating the RL problem as

a modified Markov Reward Process (mMRP, defined in Section 8.3.1). Specifically,

we employ a new value function, the state-transition-value (STV) function, to esti-

mate returns of state transitions. The STV function takes the current and the next

states as input and estimates the return of such a state transiton pair. While the STV

function is targeted at addressing the issues discussed above, another added benefit

is that in this way, the input to the DNN function approximator only spans the state

space. This is in contrast to the case of MDP-based SAV function, whose DNN ap-

proximator takes inputs that span both state and action spaces. Our intuition is that

the input dimensionality reduction speeds up the training procedure for the DNN

approximator, as the agent’s actions are not explicitly modelled in mMRP. As such,

sasRL develops raw policies in the form of desired next state given the current state.

Given this form of the policy, it should be note that the agent still needs to know

what action to take to behave in the environment. This is not an issue for RL tasks

for which the agent can determine the corresponding action given the desired next

state. For tasks where such mappings are not obvious, we use a light-weight deter-

ministic transition model to help the agent determine the action that causes the de-
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sired state transition. This transition model is trained on the same data collected for

the sasRL training via standard supervised learning procedures. Compared to other

model-based RL approaches [15], most of which require full environment model

for planning and experience simulations, our light-weight transition model is only

required to make predictions of actions, but no other more complex environment

dynamics. Therefore, it is much easier to train. In sum, given the same amount

of training data, sasRL separates the original RL problem into a less complicated

model-free RL problem and a simple supervised learning problem. Our view is that

such decoupling procedure is the key factor that leads to better utilisation of the

training data and higher RL learning efficiency.

8.2 Related Work

The core idea of sasRL is closely related to the work in [99], where the authors use

Q(s, s0) (QSS), instead of the commonly used Q(s, a) (QSA) to estimate the value

of a state transition. However, this work does not provide any systematic reformula-

tions for RL problems, as such QSS still depends on the traditional MDP formula-

tion. In comparison, our mMRP formulation lays the foundation for a new paradigm

to frame RL problems, which enables the analysis of convergence properties and the

theoretical discussions on the efficacy of sasRL based on such mMRP formulations.

In addition, there are noticeable differences in implementations between sasRL and

QSS. For instance, sasRL uses the combination of the nearest heighbour-based regu-

larisation loss and a light-weight transition model to ensure the feasibilities of state-

state and state-action-next state transitions, whereas QSS employs a more complex

setting where 2 environment dynamic models are trained.

Moreover, sasRL is inspired by the idea of combining the strengths of both

model-based and model-free RL techniques to improve training efficiency. In this
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regard, our work is closely related to [100] in that [100] trains a low-dimensional

encoding of the environment, and such a encoding module is used for planning.

However, the model employed in [100] is very heavy, which requires the modelling

of all elements (transition, reward dynamics, etc.) of the environment, in addition to

the parameterised value function. In practice, we find that the low-dimensional en-

coding of the state space is rather difficult to train. Results from exisiting literatures

are not conclusive on if using human insights to aid such encoding design would help

DNNs better capture the state structures, as echoed by [101]. Similarly, other works

on separating the model-free and model-based learning in RL focus on learning state,

action, and/or reward representations/dynamics, separately. The central idea of these

approaches is that modularizations of RL tasks have the benefit of potential transfer

learning and improved learning efficiency. For example, [102] decouples the RL

problem into a state dynamic learning component and a reward function learning

component. The learned state dynamic model is shown to be transferable to new

scenarios. The method proposed in [103] offers a simple yet effective way to obtain

a sparse DNN representation of the training data to assist the DRL agent in better

understanding useful and pertinent dynamics in RL tasks. On the other hand, the

works in [104, 105] investigate the embeddings of action space from theoretical and

practical perspectives. Moreover, the Value Prediction Network (VPN) [106] avoids

the challenging task of modelling the full environment by only focusing on predict-

ing value/reward of future states. The VPN’s model-based part learns the dynamics

of the abstract state transitions, while its model-free part predicts rewards and values

from the abstract state space. In addition, [107] associates RL tasks with a "pseudo-

reward" which encourages the agent to learn features/representations from the input

data. The authors argue that the auxiliary task of learning these features aligns with

the agent’s long-term goal, which is to maximise the accumulated extrinsic rewards.

Therefore, these auxiliary tasks incentivized by the pseudo-reward help the agent
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develop more useful representations of RL tasks.

Although these works use a combination of model-based and model-free RL

techniques like ours, we explore the problem from different perspectives. The most

distinctive difference here is that they rely on embedding and/or representation learn-

ing techniques. In contrast, we do not use any dimension reduction techniques. In-

stead, we decouple the action space from the model-free RL procedure and build a

separate light-weight transition model which is trained via supervised learning.

8.3 Problem Formulation

In this section, we introduce the problem formulation under the sasRL framework,

which uses a modified Markov Reward Process (mMRP) for modelling the RL prob-

lem. Then, Section 8.3.2 defines the value function, i.e., the STV function, for poli-

cies based on the mMRP formulation. To update the STV function and the policy,

we discuss the policy-gradient based method we employ in Section 8.3.3. Then,

Section 8.3.4 discusses how the light-weight transition model in sasRL is trained to

predict actions based on the policy derived from the trained STV function. Finally,

Section 8.3.5 discusses the limitations of the mMRP-based problem formulation un-

der sasRL.

8.3.1 The Modified Markov Reward Process (mMRP)

In the high level, we aim to formulate the RL problem in a way that the action

space is decoupled from the value function. Then, the value function’s input only

spans the state space. On the other hand, the action space, which characterises the

dynamics of the agent’s interaction with the environment, is separately modelled. To

this end, we propose to use the modified Markov Reward Process (mMRP) as the

basis for modeling RL problems. In general, the Markov Reward Process (MRP)
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can be regarded as a Markov chain with state values added. Specifically, our mMRP

is formally defined by a 4-tuple (S,P ,R, �) as follows.

• S is state set;

• P: Pss0 = P [st+1 = s0|st = s] is the state transition probability matrix, where

s, s0 2 S;

• R: Rss0 = E[rt+1|st = s, st+1 = s0];

• � is the discount factor.

Note that for an MDP, the transition probability is denoted by P: Pa
ss0 = P [st+1 =

s0|st = s, at = a]. Although P
a
ss0 and the transition probability matrix Pss0 for the

mMRP are both jointly decided by the agent’s actions and the environment dynam-

ics, the difference is that the transition probability in mMRP does not condition on

any specific actions. In a way, the transition probability matrix for the formulated

mMRP can be viewed as induced by an agent exploring the MDP by taking various

actions. Then, the mMRP is built by the agent’s exploration history, from which the

heighbouring states of any given state, the transition probability into the heighbour-

ing states (Pss0), and the associated rewards (Rss0) are identified. On the other hand,

the mMRP differs from a typical MRP in that rewards only depend on current states

for the MRP formulation, i.e., Rs = E[rt+1|st = s]; while for our mMRP, the reward

depends on both the current and the next state of a state transition.

For the mMRP formulation, one implicit assumption is that if two actions a1 and

a2 cause the same state transition (s ! s0), it is assumed that E[rs,a1 ] = E[rs,a2 ],

where rs,a is the reward for the state action pair (s, a). Another implicit assumption

here is that the environment is deterministic, as there is no guarantee that the a1

and a2 cause the state transition (s ! s0) in a stochastic environment. See more

discussions on this in Section 8.3.5.
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Based on the formulated mMRP, the policy of an RL agent specifies the reachable

next state (s0) given the current state s. We assume that the policy is deterministic,

denoted by µ(s), i.e., µ : S ! S
0, where S 0 is the sub-space of S which includes the

reachable next states from the current state. Therefore, without loss of generality, we

assume that the agent’s policy based on the mMRP always produces reachable next

state from the given current state, see the discussion in Section 8.3.5 for how this

can be achieved in practice. Finally, the long-term value function for the formulated

mMRP under policy µ is denoted by V µ(s), which is defined by V µ(s) = E[r1 +

�r2 + . . . |s0 = s, µ], where rt 2 R is the reward at time t, s0 is the initial state.

8.3.2 The State-Transition-Value (STV) Function under the Given

Policy

Based on the mMRP, we denote the state-transition-value (STV) function, which

quantifies the long-term return of a state transition (s ! s0) under policy µ, as

follows,

�µ(s, s0) = rs,s0 + ��µ(s0, µ(s0)), (8.1)

where rs,s0 is the reward for transition from s to s0. By definition, V µ(s) = �µ(s, µ(s)).

It can be seen that the STV function in (8.1) is defined in the format of a Bellman

equation, which offers a natural way to conduct value iterative update to make it

more accurate. Similar to the update process of SAV function, the STV function is

learned model-free and it is suitable for off-policy learning [108]. The difference is

that the update of STV function does not directly make use raw observation data,

i.e., (s, a, s0, rs,a); but rather first use these raw data to construct the mMRP and

then use the (s, s0, rs,s0) data obtained from the mMRP instead. In this sense, the

employment of STV function for learning policy instead of the SAV function can

be viewed as a way for reducing variance for off-policy learning. In particular, the
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formulation of mMRP reduces the variance introduced by similar actions and the

induced similar state transitions, which helps better generalise the return dynamics

of the RL problem.

Based on the STV function, the return of the policy µ, J(µ) , which corresponds

to the optimisation goal for the formulated RL problem, is

J(µ) =

Z

s2S
⇢µ(s)�µ(s, µ(s))ds, (8.2)

where ⇢µ(s) is the discounted state distribution under µ [109, 110]. Let the ini-

tial state and the initial state distribution be s0 and p0(s0), respectively. Then,

⇢µ(s) =
R
s02S ⌃

1
t=0�

tp0(s0)p(s0 ! s, t, µ)ds0, where p(s0 ! s, t, µ) denotes the

probability of transitioning from state s0 to state s after t steps. For the mMRP, like

the initial transition probability matrix, the initial state distribution is determined by

past observation data collected.

8.3.3 Policy-gradient-based Learning

The STV function defined in (8.1) is the basis for deriving policies for RL problems.

In order to obtain an accurate STV function, it is iteratively updated using (s, s0, r)

tuples. In addition to updating the STV function, which may be directly used for

generating policies for some discrete problems with small state space size. For prob-

lems with larger state spaces, a more intuitive way is to parameterise the policy and

update its parameters, so that policies can be directly generated. This approach is

referred to as policy-gradient method [111]. For generality, we assume that STV

function and policy are parameterised by parameter set  and ✓, denoted by � and

µ✓, respectively. For brevity, we use � and �, µ✓ and µ interchangeably. Next, we

discuss how � and µ✓ are updated.

First, the STV function parameter set  is updated by minimising the mean
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squared TD(0) error [15] defined as L =
�
rss0 + ��µ

(s
0, µ(s0)) � �µ

(s, s
0)
�2. Sec-

ond, recall that the return of the policy µ is defined as J(µ) in (8.2). Therefore, the

policy-gradient method aims to maximise J(µ✓) by performing gradient ascent on

parameter set ✓ using the policy gradient r✓J(µ✓). In the following theorem, we

present how such policy gradient is computed.

Theorem 8.1. If V µ✓(s) andr✓V µ✓(s) are continuous function of ✓ and s, then the

following holds,

r✓J(µ✓) ⇡

Z

s2S
⇢�(s)r✓µ✓(s)rs0�

µ✓(s, s0)ds

= Es⇠⇢�
h
r✓µ✓(s)rs0�

µ✓(s, s0)|s0=µ✓(s)

i
,

(8.3)

where � denotes the behaviour policy [108] used to generate training data, and

⇢�(s) is the discounted distribution of states under the behaviour policy.

Let ↵✓ be the learning rate for updating ✓. Then, the policy parameter is updated

as follows,

✓  ✓ + ↵✓r✓µ✓(s)rs0�
µ✓(s, s0). (8.4)

While updating policy parameters, other types of loss maybe considered as well,

depending on the specific policy-gradient-based implementation employed. See Sec-

tion 8.3.5 for more discussions. Figure 8.1 demonstrates the policy-gradient based

updates for the policy and STV function in sasRL.

State s

Policy 

STV
FunctionNext 

state s’

Next state 
evaluation

Figure 8.1: Policy and
STV function updates by
policy-gradient methods.

State s
Next

state s’

Transition Model

Action a

Figure 8.2: State transition
model training by super-
vised learning.

State s Policy 

Transition Model

Action a

Next state s’

Figure 8.3: sasRL in op-
eration with trained policy
and transition model.
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8.3.4 Deterministic State Transition Model and its Training

The mMRP formulation for sasRL does not explicitly model actions of the agents,

and the policy developed based upon it indicates the target next state (s0) given the

current state (s). For RL tasks with state space consisting of hand-crafted features,

it can be straightforward for the agent to determine the action that causes the state

transition (s! s0).

In other RL tasks where action cannot be determined from (s ! s0), we build

a light-weight deterministic transition model to help the agent determine the action

that can cause the state transition (s ! s0). This deterministic transition model

can be represented by a DNN whose parameters are optimised using standard su-

pervised learning techniques. Formally, define the deterministic transition model

⌧! : S⇥S ! A, which is parameterised by a set of DNN weights !. Then, we train

the model by minimising the prediction error, L!, by using the samples (s, s0, a, r)

which are collected for the RL training. In particular, the loss L! is defined as fol-

lows,

L! = L(⌧!(s, s
0), a), (8.5)

where the type of loss L depends on the representation of the action vector (e.g., L

uses binary cross entropy loss if the action vector consists of only 0 and 1 elements).

Fig. 8.2 shows the supervised learning process for training the transition model. Af-

ter all components of sasRL, i.e., the parameterised policy, the parameterised STV

function, and the transition model, are trained, Fig. 8.3 describes sasRL in operation.

8.3.5 Limitations of the mMRP Formulation

The mMRP-based problem formulation has several assumptions, some may require

special mechanisms in practical implementations, while others may limit sasRL’s

applicabilities in certain problems. Here, we briefly discuss these limitations.
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First of all, although the learning of the STV function is model-free, which does

not rely on any assumptions on environment nor its dynamics, it is not difficult to

see that the policies produced by the STV function are only meaningful if the envi-

ronment is deterministic. This is because in a stochastic environment, the predicted

action by the transition model cannot guarantee the desired state transition given by

the STV function.

Second, as briefly mentioned at the end of Section 8.3.1, depending on how

sasRL is implemented, it is possible that the policies derived by the STV function

is not feasible due to the limitations of the agent’s actions. For example, in the

grid world exit problem, if the state of the mMRP is defined as the agent’s location.

Then, it is possible that the agent cannot reach the desired next location (next state),

which is determined by the learned policy, by taking a single action. Therefore, such

limitations coming from the environment dynamics should be incorporated in the

process of policy generation based on the STV function. In our embodiment of the

sasRL in Section 8.5, we use the regularisation loss for regularising outputs of the

the policy network, which are desired next states. There are various ways to achieve

this, depending on how the sasRL architecture is implemented.

Third, since it is possible that multiple different actions can cause the same state

transition, this creates some challenges for training the transition model. In particu-

lar, when the transition model is trained in a way that multiple targets (actions) are

provided for the same input (current and next states), after training the transition

model may learn to output an "average" of the targets it had seen. The impacts of

this can vary, depend on the nature of the RL problems. It may be the case that

the predicted actions of the transition model require regularisation, which is similar

to the procedures mentioned in the paragraph above for regularising the generated

policies of the STV function. In our experiments, we take an alternative approach to

only train the same state-next state pair for only one target action. This is feasible as
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a single action is sufficient to trigger the desired state transition in the deterministic

environment.

8.4 Convergence Analysis

We conduct convergence analysis for sasRL based on existing convergence studies

developed for the classic Q-learning algorithm. In the high-level, our analysis first

identifies the similarity of the value function update procedure of Q-learning and

policy-gradient based method. Then, we employ similar convergence analysis de-

rived for Q-learning to compare the convergence properties of the SAV and STV

functions. Finally, we compare the convergence properties of SAV and STV func-

tions. It should be noted that all theoretical analyses in this section assume discrete

state and action spaces for theoretical tractability. Nevertheless, as we show in Sec-

tion 8.6, sasRL’s yield superior performance for the three continuous RL scenarios

tested.

The convergence analysis of the Q-learning algorithm is provided in [112]. We

base part of our analysis on the main theorem from this work, which is stated as

follows.

Theorem 8.2. Let Qt(s, a) and Q⇤(s, a) denote the t-th iteration of the Q-function

during the update process as defined in [67], and the optimal Q-function, respec-

tively. Assume that the conditions set out in [112] are met. Then, the following

relation holds asymptotically with probability one: |Qt(s, a)-Q⇤(s, a)|  B
tR(1��) ,

for some suitable constant B > 0 when R(1 � �) < 1/2. Here, R = pmin/pmax,

where pmin = min(s,a) p(s, a), pmax = max(s,a) p(s, a), and p(s, a) is the sampling

probability of (s, a).

For our analysis, let S and A be the state and action spaces of the RL problem

under the MDP formulation. Then, let �(s) be the given sampling policy which
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generates data for updating value function and policy parameters. At each time

step, an action is chosen according to � and the state transition s + a ! s0 takes

place. Let W be the total time steps for one data generation trajectory. All W state

transitions are recorded in forms of W (s, a) and (s, s0) pairs. Denote by ⌫(s, a)

and ⌫(s, s0) the number of occurrence of (s, a) and (s, s0) pairs, respectively. Then,

p�(s, a) = E[⌫(s, a)/W ] and p�(s, s0) = E[⌫(s, s0)/W ] are the the probabilities of

recording (s, a) pairs under the sampling policy �. In addition, let p�min /max(s, a)

and p�min /max(s, s
0) be the minimum/maximum p�(s, a) and p�(s, s0), respectively.

We define R1 = p�min(s, a)/p
�
max(s, a) and R2 = p�min(s, s

0)/p�max(s, s
0). Then, we

summarise the convergence comparison results for SAV and STV functions as fol-

lows.

In order to build our convergence analysis on Theorem 8.2, we first identify

the conditions upon which the parameter update process in policy-gradient based

methods is similar to the Q-function update process in Q-learning. Then, we can

employ Theorem 8.2 for further analysis which compares the convergence properties

of SAV and STV functions, both of which use policy-gradient methods for parameter

updates.

In particular, we start by providing an alternative view on the Q-function update

for the classic Q-learning algorithm. In classic Q-learning algorithm where Q-tables

are used to keep track of Q-values during the update process. The Q-function is

updated as follows,

Q(s, a) = (1� ↵)Q(s, a) + ↵
�
r +max

a0
Q(s0, a0)

�
. (8.6)

We take an alternative view on the Q-learning update process by reforming (8.6),
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which renders,

Q(s, a) ⇡ Q(s, a) + ↵
�
r +max

a0
Q(s0, a0)�Q(s, a)

�
r(s,a)Q(s, a). (8.7)

Note that (8.7) is obtained if we view the values of the Q-table as parameters

of the Q-function and the loss function is defined as L =
�
r + maxa0 Q(s0, a0) �

Q(s, a)
�2
/2. The approximation is due to the omission of the term related tor(s0,a0)Q(s0, a0),

which still preserves the convergence property of tabular Q-learning in certain cases

[15]. Then, the Q-learning update procedure is essentially updating the parameters

of the Q-function approximator (Q-table) to make it more accurate. Therefore, this

is on a par with the value function update processes used by both STV and SAV

functions. We recognise that there are differences between the approximations by

the Q-table (in Q-learning) and by DNNs (parametrized STV and SAV functions).

Nevertheless, based on the assumption that both the Q-table and parametrized STV

and SAV function update processes achieve exact approximation of the correspond-

ing value functions in the asymptotic sense, their parameter update procedures are

identical. Another important characteristic in the Q-function update procedure is

that the greedy policy is employed to estimate the Q-value at the next state s0, i.e.,

a0 = argmaxa0 Q(s0, a0). For the policy-gradient based updates of STV and SAV

functions, the equivalent update procedure requires that the value estimation for the

next state is based on the action that maximises the value function.

Based on the above, for each update of the value (SAV or STV) function in

policy-gradient based methods, we assume that the policy parameters generate poli-

cies that maximise the corresponding value function, and employ Theorem 8.2 to

analyse the convergence properties of the value function update in policy-gradient

methods.

Specifically, let f1(s, a) and f2(s, s0) denote the parameterised SAV and STV
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function, respectively. Then by Theorem 2, |f1(s, a) � f ⇤
1 (s, a)| 

B
tR1(1��) and

|f2(s, s0)�f ⇤
2 (s, s

0)|  B
tR2(1��) hold with probability one, where f ⇤

1 (s, a) and f ⇤
2 (s, s

0)

are the optimal SAV and STV function, respectively. We compare the convergence

properties of SAV and STV functions by comparing B
tR1(1��) and B

tR2(1��) . In par-

ticular, since T is the convergence time for updating the SAV function, we solve

B
TR1(1��) = B

tR2(1��) for t, which is defined as the convergence time for updating the

STV function. This renders t = TR1/R2 . Therefore, the convergence time for up-

dating STV function is O(T 1/k) where k = R2/R1. This means that in theory, to

achieve the same level of regret for the RL problem, the number of updates of the

value function using the SAV function or the STV function is T or TR1/R2 , respec-

tively. As such, if R2 > R1, using STV is more advantageous than using SAV.

Efficient Training Condition (k > 1): The analysis above reveals the key thresh-

old of k = 1, i.e., when k > 1, the value function update convergence under the

mMRP formulation is faster than that under the MDP formulation for RL problems.

Recall that k is closely related to the behaviour (sampling) policy, which is used to

collect data for off-policy [108] updates of the value functions. In this paper, we

argue that sasRL is most suitable for those problems where the action space is large

and multiple actions can trigger the same or similar state transitions. Indeed, many

RL problems of such a nature result in k > 1 under the given behaviour policies (see

Section 8.6.3 for more discussions).

8.5 The Embodiment of sasRL

To demonstrate how sasRL can be implemented in practice, here we implement an

instance of sasRL using the actor-critic framework [84], which is suitable for the

policy-gradient based update process described in Section 8.3.3. The actor-critic

framework offers a natural way to concurrently optimise policy parameters and the
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Algorithm 3: sasRL training procedure
1 // policy training
2 Initialize STV function (critic) parameters  and policy (actor) parameters

✓;
3 Initialize delayed parameters 0

 , and ✓0
 ✓;

4 Initialize replay buffer with (s, s0, a, r) tuples generated by behaviour policy
�.

5 while the maximum number of iterations not reached OR not converged do

6 Pull a random minibatch of (s, s0, a, r) from the replay buffer;
7 Update the critic parameters  by minimising the mean squared TD(0)

error: L =
�
rs,s0 + ��

µ✓0
0 (s0, µ✓0(s0))� �µ✓

 (s, s0)
�2;

8 Update the actor parameters ✓ according to (8.4);
9 Soft update the delayed parameters: 0

 "+ (1� ")0,
✓0
 "✓ + (1� ")✓0;

10 if current policy is evaluated then

11 store new (s, s0, a, r) samples collected from roll-out episodes in
replay buffer.

12 end

13 end

14 // transition model training (optional) using data
from the replay buffer

15 while the transition model training not converged do

16 Pre-process (see Appendix B for details) minibatch of data for training
the transition model;

17 Update transition model parameter ! by minimising loss L(⌧!(s, s0), a).
18 end

STV function parameters. There are several advantages for adopting an actor-critic

approach, compared to more straightforward methods such as the Monte-Carlo RE-

INFORCE [113] algorithm. The most obvious one is that actor-critic methods are

intuitive as policies can be directly derived using the trained DNN with policy param-

eters, which is especially useful for RL tasks with large action spaces. In addition,

the bias introduced by the actor-critic methods’ bootstrapping procedure has been

shown to reduce variance and accelerate learning [15]. Moreover, since actor-critic

methods do not require whole trajectories, they can be implemented online or for

non-episodic problems.

The structure of the actor-critic implementation of sasRL is similar to the update
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process shown in Figure 8.1. Specifically, the actor and critic correspond to the pol-

icy and STV function, respectively. During training, the actor-critic model is used

to concurrently update  and ✓ which are the weights of the actor and the critic, re-

spectively. The training samples generated by the behaviour policy � are organised

in (s, s0, a, r) tuples. These tuples are stored in the replay buffer [59] to be used for

training multiple times. The training procedure of sasRL is summarised in Algo-

rithm 3. Recall that in Section 8.3.1, we assume that the policy µ always produces

reachable next state. In practice, this is achieved by introducing a regularisation loss

during the training of the actor to force it into producing valid next states. In partic-

ular, let ŝ denote the output of the actor, given the input state s, i.e., ŝ = µ(s). Then,

if ŝ is not a reachable next state, it is mapped to the cloest reachable next state by

the mapping g, which is based on the nearest heighbour mapping using L2 distance.

The mapping can be expressed as follows

g(ŝ) = arg min
s02S0

|s0 � ŝ|2. (8.8)

Then the regularisation loss is defined as Lreg = |s0� ŝ|2. Then, the policy parameter

update rule in (8.4) is changed to

✓  ✓ + ↵✓

�
r✓µ✓(s)rs0�

µ✓(s, s0) + ◆r✓Lreg
�
, (8.9)

where ◆ is the weighting factor.

The actor-critic part of sasRL is model-free, since both the actor and the critic

learn directly from samples without explicitly requiring any modellings of the mMRP.

The actor and critic in this sasRL embodiment are both implemented as multi-layer

perceptrons (MLPs) [114]; their specifications are documented in Section B.2 in

Appendix B. As for the optional light-weight transition model in sasRL, it is trained

using (s, s0, a) tuples. The input to the transition model is (s, s0) pair and the output
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is the action a that causes this state transition. Since the transition model is inde-

pendent from the actor-critic network, sasRL has the option of training the transition

model separately from that of the actor-critic network. Alternative, the transition

model can be trained together with the actor-critic network, using the same mini-

batch of (s, s0, a, r) data in every iteration. The transition model is trained using

conventional supervised learning procedure to minimise the loss specified by (8.5).

The transition model is also built as an MLP.

8.6 Experiments

The main objective of our experiments is to evaluate the performance of sasRL which

is pertinent to its structure and the mMRP problem formulation. Therefore, we strive

to minimise the influence of other factors such as the design of the DNN and its

hyper-parameters. For these considerations, our experiment scenarios do not involve

heavy imagery or high-dimensional state definitions, for which extra efforts in pa-

rameter tuning and model design are needed. Since we argue that the formulation

based on mMRP is more efficient in learning the value function, we compare the

performance of sasRL with state-of-the-art DRL solutions based on the MDP for-

mulation. In this chapter, we only provide high level descriptions of our experiments

here, with further details in Appendix B.

8.6.1 Baselines

1). DDPG: Deep Deterministic Policy Gradient [86] is a model-free and off-policy

DRL algorithm based on the deterministic policy gradient theorem [109]. DDPG

employs several techniques to improve data usage efficiency and to stabilize the DRL

training process, such as replay buffers and the soft parameter update procedure.

2). SAC: Soft Actor-Critic [115] is a model-free and off-policy RL algorithm
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for learning stochastic policies. SAC is partially inspired by the desire to address

DDPG’s brittleness and hyperparameter sensitivity. To this end, SAC maximises the

trade-off between the policy’s performance and its randomness, which is measured

by entropy.

3). PPO: Proximal Policy Optimisation [116] is a relatively light-weight, model-

free, and on-policy RL algorithm for learning stochastic policies. The core idea is to

ensure the policy update does not go too far, while striving for greater improvements

per update. In particular, PPO relies on the clipping of the objective function, among

other techniques, to achieve this goal. Another distinctive feature of PPO is that it

requires consecutive data samples (i.e., trajectories) for policy update.

For fair and consistent comparison, we use reference implementations of these

baseline algorithms from the Stable Baselines project [117].

8.6.2 Scenarios

1). Grid world exit problem. First, we consider a continuous grid world exit problem

where the agent tries to avoid the landmine and exit the grid as soon as possible.

For this problem, the state is defined as the agent’s current location. Unlike tradi-

tional grid world problem where the agent’s actions are discretized as jumping from

squares to squares, the scenario we consider is a continuous control problem, as the

agent is allowed to move freely within certain vicinity up to a limit for each time

step. The continuity in the action space increases the complexity of the SAV func-

tion and also results in potentially more actions that cause the same state transition.

For each time step, the agent experiences a large negative reward for hitting a mine

location, or a large positive reward for moving into the exit location. In addition, a

small negative reward applies at all time steps to penalize time consumption (because

the agent is expected to exit as soon as possible).

2). Berzerk-like game. The second scenario is a simplified berzerk game [118]
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Figure 8.4: Comparative evaluation: Gridworld
exit.

Figure 8.5: Comparative evaluation: Berzerk.

Figure 8.6: Comparative evaluation: Slot ma-
chine.

where the agent navigates through a maze with obstacles (walls) and patrolling

robots. The walls are fixed and the robots patrol on routine routes. The goal of

the agent is to kill as many robots as possible by firing bullets while it tries to exit
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the room as soon as possible. At each time step, the agent is allowed to move freely

within certain range, and one bullet is fired towards the direction of travel to kill

the robot on its trajectory if any. For this problem, a state consists of the agent’s

location, the robots’ locations, and the exit locations. The action of the agent is to

move around its current location within the given limit. The reward of the agent is

determined by a combination of factors detailed in Appendix B.

3). The slot machine gambling game. The third experiment considers the gam-

bling game of a slot machine. A slot machine consists of several reels with printed

symbols. The player spins the reels and receives a payout when all reels stop spin-

ning. The payout is determined by the symbols on display on reels; see Appendix B

for the detailed calculation of the payout. Note that the player has no knowledge of

how symbols are arranged on reels and cannot see the symbols before all reels stop.

For this scenario, the state is defined as the symbols on display when all reels stop.

For finer granularity of control, the player is allowed to decide for how long each

reel spins. Therefore, the action is defined as the timer values set for all reels. The

reward is defined as the payout amount.

8.6.3 Discussions on the Experiment Scenarios

One common feature of these experiment scenarios is that the reward of a state tran-

sition is determined by the state transition, while the action is only relevant as it

causes the state transition. These are the scenarios that we argue sasRL would be

more efficient than the RL algorithms based on the MDP formulation. Moreover, it

is likely that multiple actions can cause the same state transition. As a result, our em-

pirical results show that k ⇡ 2.72 in this example under a random behaviour policy

for collecting training samples. Therefore, faster convergence rate is expected for

value function update under the mMRP. For the grid world and berzerk scenarios,

due to the definition of state space, once the next state is given, the agent can directly
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determine the corresponding action to take. Whereas for the slot machine scenario,

the agent cannot know the action that can cause a desired state transition, since the

inside structure of the reel is not available to the agent. In this case, the transition

model is employed to help the agent understand the state transition dynamics in re-

lationship to actions. Although action spaces are continuous in all scenarios, there

are certain limits on each action. For example, the agent is only able to move within

certain vicinity in any time step. In sasRL, to ensure that the actor generates feasible

next state, its output passes through a deterministic nearest neighbour based mapping

which maps the potential out-of-range next state to the feasible next state.

8.6.4 Comparative Evaluation and Results

Fig. 8.4-8.6 show the comparisons of sasRL against DDPG, SAC, and PPO for the

three evaluation scenarios. In these figures, the horizontal axis is the number of

evaluation steps, while the vertical axis is the accumulated reward collected for game

episodes played using the developed policy. The evaluation takes place every several

gradient update steps (see Appendix B for details). In our experiments, 10 instances

(initialization of all DNN parameters) of these algorithms are trained and evaluated.

For each evaluation episode, the maximum number of steps (cap) applies if the agent

does not complete the episode when this cap is reached. In these figures, the solid

lines and shaded areas are the average and the range (minimum/maximum) of the

accumulated reward over all instances.

These evaluation results show that sasRL’s performance is consistently superior

when compared to the baselines. In particular, PPO fails in all three scenarios. The

SAC algorithm produces the most stable results on average, which is expected since

SAC is designed to address the brittle convergence problem that is seen in other RL

algorithms. In contrast, although DDPG outperforms SAC in grid world and berzerk

scenarios, its performance is unstable, which is echoed in [115]. However, despite
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the inferior performance, DDPG shows fastest convergence rate in the berzerk sce-

nario, and its convergence performance is comparable to sasRL in the grid world

scenario. In summary, other than the grid world scenario where DDPG performs

comparably to sasRL, sasRL outperforms all baselines for three evaluation scenar-

ios.

8.6.5 Ablation Evaluation on Action Space Granularity

All evaluation scenarios we consider so far have continuous action spaces. Another

interesting aspect to investigate is the impact of the granularity of state transitions on

the performance of sasRL. To this end, we change the action space of the behaviour

policy from continuous to discrete for generating training samples. Specifically, we

use two levels of action granularity with the discrete action space, a coarse-grained,

and a fine-grained, to generate training samples. Details on the definitions for two

levels of action granularity can be found in Appendix B.

The experiment results are shown in Fig. 8.7-8.9. Overall, they show that train-

ing samples from continuous action space enables sasRL to have better performance.

This is expected as fine-grained actions result in a diverse state transition sample

pools, from which the DNN function approximator can reveal more structural de-

tails of the reward dynamics. In the case of discrete action space, the performance

of sasRL under the "coarse" and "fine-grained" action spaces are comparable, for

the grid world and the berzerk scenarios. A similar trend can be observed in both

scenarios that the training curves for the "coarse" cases experience more fluctua-

tions, whereas they steadily go upwards for the "fine-grained" cases. Therefore,

fine-grained state transitions tend to stabilize training. In addition, the gap between

the "coarse" and "fine-grained" discrete action cases in the slot machine scenario

suggests that the granularity of action space significantly influences sasRL’s ability

to learn for some problems. Another interesting phenomenon is that for the slot ma-
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Figure 8.7: Ablation study: Grid world exit.

Figure 8.8: Ablation study: Berzerk.

Figure 8.9: Ablation study: Slot machine.

chine scenario, sasRL trained on data from continuous action space converges slower

than those trained on data from discrete action spaces. Intuitively, this is caused by

the transition model, which is a lot easier to train when all actions are quantized as

in the case of discrete action spaces.
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8.7 Revisit SDN Application with sasRL

In this thesis, our experiences in employing RL techniques for solving control and

management problems in SDN lead to the proposal of sasRL, which is a generic RL

paradigm suitable for a wide rage of RL problems. In this section, we apply sasRL

to a control application in SDN, which is similar to the service request scheduling

problem discussed in Chapter 7. To this end, we first describe the application sce-

nario in Section 8.7.1. Then, the optimisation problem is formally formulated in

Section 8.7.2. Finally, Section 8.7.3 and Section 8.7.4 discusses evaluation settings

and results, respectively.

8.7.1 The SDN Application Scenario

To evaluate sasRL’s performance on SDN control tasks, we consider a simplified

service request scheduling task, which is similar to the application scenario in Chap-

ter 6. Some simplifications are made for removing unnecessary assumptions and

constraints, as the focus here is on evaluating sasRL’s performance.

Specifically, for our application scenario, the networking elements of interest

are specialised servers that are placed at various locations throughout the distributed

SDN domains which host network services. Multiple types of services are sup-

ported, and each server can support and process service requests for one type of

service. Each server has a buffer to temporarily store requests waiting for process-

ing, and servers process requests on a first-in-first-out (FIFO) basis. Users residing

in SDN domains submit request for service to the corresponding domain controller.

Service request received in one domain can be routed and processed by a server in

other domains. Specifically, each domain controller, based on its knowledge of the

infrastructure status, decides the forwarding rule for received requests. The purpose

of such server selection is to minimise the delay before the request is processed. For
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our experiment in this section, we only consider requests originated from one SDN

domain.

Similar to previous chapters, the system is described by a discrete time-slotted

model where service requests are submitted immediately before a time slot begins.

At the beginning of each time slot, the controller determines forwarding rules for

routing requests to the selected server. It is assumed that servers hosting the same

service can have different processing power, which is reflected by the amount of time

slots needed for process the request.

The status information of a server is defined as the amount of unfinished work on

all servers immediately after the current time slot begins. The amount of unfinished

work on a given server is equal to the total number of time slots required to com-

plete all requests pending in the server’s buffer. We assume that a service request

forwarded from one domain to a server in the other domain does not incur additional

delay or processing overhead.

For our experiment, we focus on one domain controller who handles request for

service from users residing in its domain. The controller is aware of the status infor-

mation of all servers in the distributed SDN network. Such information is obtained

by the controller from local servers (i.e., servers that are within the same domain as

the controller) through SDN’s north-south interface, and remote servers (i.e., servers

located in other domains) through synchronisation with other domain controllers.

The processing power of servers, i.e., the number of time slots required for pro-

cessing a unit request, is influenced by a number of environment factors. As such, it

is assumed that at any time slot, the controllers is not aware of the server processing

power of any servers.

We use the example in Fig. 8.10 to demonstrate the application scenario. In this

example, there are 7 servers offering 3 services across 3 domains in the distributed

SDN network. We focus on Domain 1 where there are 4 users. At each time slot,
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Domain 1

Domain 2 Domain 3

Domain 1 Controller

Service 1

Service 2

Service 3

User

Controller

Figure 8.10: The SDN Application Scenario.

the controller of domain 1 knows the latest workload on all servers. However, due to

environment uncertainty, the controller does not know the server processing capacity

of any servers. Therefore, the goal of domain 1 controller is to develop request

forwarding policy to minimise the processing delay of requests over a period of

time.

8.7.2 Problem Statement

In this section, we formally define the the request scheduling problem and state the

control objective of the controller.

Formally, let nt and T denote the request set at time t and the time horizon of

the problem. Then, the goal of request scheduling is formulated as an optimisation

problem stated as follows

min
dt

1

T
E
 TX

t=1

X

i2nt

lt(i)|dt(i)

�

s.t. |dt(i)| = 1 for t = 1, 2, · · · , T

(8.10)

where lt(i) is the delay for request i submitted at time t and dt(i) is the forward-

ing decision for request i. In particular, a forwarding decision consists of percentages

of the request being sent to all servers offering the requested service in the network.
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Therefore, the constraint |dt(i)| = 1 is in place to ensure that the request is fully

served.

Objective: The control objective of the controller is to decide request forwarding

rules in order to minimise the average request latency, which is defined as the number

of time slots elapsed between the submission and the completion of processing a

submitted request.

To solve the optimisation problem in (8.10), we employ RL-based techniques

similar to Chapter 6 and Chapter 7, and use sasRL as the algorithm for solving the

formulated RL problem. In particular, we define the state space as the concatenation

of status information of all servers and requests for service. For example, at any time

slot, the state vector contains the amount of unfinished work at all servers (in unit of

the number of time slots), and requests for services. The action space corresponds

to the forwarding rules for the requests received. Specifically, the action vector at

a time slot consists of the percentages of total received requests being forwarded to

each servers. Finally, the reward is defined as accumulated tanh-squashed reciprocal

of delays of all requests forwarded. Therefore, the lower the delay, the higher the

reward.

8.7.3 Experiment Settings

For the experiment, we simulate 3 services, each offered by 2 servers. Since it is

assumed that each server only offers 1 service, there are 6 servers in the distributed

SDN. The request arrival for 3 services are modelled by Bernoulli process, whereas

the server processing power at different time slots are randomly and uniformly dis-

tributed. See Section B.5 in the Appendix for detailed simulation settings.

Based on the problem formulation in Section 8.7.2 , we compare the performance

of sasRL with DDPG using the same settings detailed in Section B.2 and [117]. For

DDPG, in addition to the regular training losses specified by the algorithm, we add
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a new regularisation loss to the actor network to regularise its output. For exam-

ple, the regularisation loss will be incurred if the action vector produced by DDPG’s

actor network does not assign all requests received at a time slot. As for sasRL,

we employ the embodiment implementation described in Section 8.5 in our experi-

ment. Therefore, the regularisation loss is also applied during training, as discussed

in Section 8.3.5, which penalises unrealistic next state predictions. For example,

according to the time-slotted system described in Section 8.7.1, the waiting time on

any server decreases at most by 1 when moving from current time slot to the next

time slot. Therefore, the prediction of next state vectors where values decrease for

more than 1 incurs regularisation losses. In addition, we proportionally rescale the

action prediction that does not forward all requests (percentage sum is less than 1)

and/or forwards more requests than received (percentages sum is more than 1).

As for the transition model of sasRL, the input are the current state vector, next

state vector and their time slot indices. The output is the predicted action which

causes the state transition. Here, the time slot index is included for training the tran-

sition model, in the hope that it would assist the transition model in learning temporal

dynamics of the environment, e.g., the time-varying server processing power.

8.7.4 Evaluation Results and Analysis

The trainings for sasRL and DDPG take place in an off-line manner, where 10, 000

pre-recorded (s, s0, a, r) samples generated by random actions are used. Both algo-

rithms train on data samples for 150 epochs, and the policy is evaluated for 10 runs

after each training epoch. The evaluation results are shown in Fig. 8.11.

From Fig. 8.11, we can see that the policy learned by sasRL begins to gener-

ate useful forwarding rules after 80 epochs and the training stabilises after about

100 epochs. In comparison, the policy produced by DDPG does not show sign of

improvement over the 150 training episode. For this experiment, sasRL’s superior
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Figure 8.11: Evaluation Results: DDPG Vs. sasRL.

performance is expected for the following reason. First, the reward of a state tran-

sition is determined by changes in state vectors. Therefore, excluding the action

space and employ STV function reduce the complexity of learning without losing

any important information. Second, as the training of the transition model takes

into account the time steps of state transitions, the transition model can potentially

capture the impacts of temporal dynamics of actions on state transitions, i.e., it im-

plicitly attempts to learns the temporal pattern of server’s processing power, which

is supposed to improve the transition model’s accuracy.



CHAPTER 9

Conclusions and Future Work

9.1 Conclusions

The synchronisation of controllers plays a critical role in supporting superior net-

work performance in distributed SDN. Although there have been numerous design

proposals for controller synchronisation policy designs from both industrial and aca-

demic research communities, two research issues are largely overlooked. First, there

is generally a lack of fundamental understanding on how various factors, including

the level of controller synchronisation, impact the performance of distributed SDN.

Second, most proposals on controller synchronisation policy design focus on en-

suring that the synchronisation process is anomaly-free. However, synchronisation

policy design with the focus on improving fine-grained network performance is not

sufficiently studied.

To address these open issues, this thesis is dedicated to filling these gaps iden-

tified. First, in order to obtain fundamental understandings on the role controller

synchronisation plays in enhancing the performance of distributed SDN, we have

developed two analytical approaches for modelling and quantifying the relationship

between SDN’s network performance and various factors such as the network struc-

tural properties and the levels of controller synchronisation. The two analytical ap-

proaches are developed using different methods with separate sets of assumptions,

and the analytical results obtained accordingly are complementary to each other, as

they reveal insights from different angles with varying degrees of granularities. In
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addition, they arrive at the same conclusion for several findings, thus confirm the

validity of these analytical results. To the best of knowledge, our work in this the-

sis is the first to study distributed SDN from the graph-theoretical perspective. The

analytical results shed light on the relationships among network performance and

controller synchronisation levels and SDN domain’s topological properties, which

lay the foundation for synchronisation protocol designs and optimisations.

Second, we have targeted at designing control and management policies for dis-

tributed SDN by employing a combination of RL and DL techniques. We start our

endeavours in this direction by investigating a well-known service placement prob-

lem in the context of SDN. In contrast to traditional optimisation techniques, we

define the service placement problem as a serial decision-making problem, which is

solved by RL-based techniques via iterative updates. Motivated by the initial success

in applying RL-based methods for network management in SDN, we move on to in-

vestigate the controller synchronisation policy design via RL. In this regard, we have

first tackled the problem of RL-based designs of SDN controller synchronisation pol-

icy for improving inter-domain routing performance. Although experiment results

are positive, we recognise that this study is limited to the routing application and it

comes with several simplifying assumptions. Therefore, in the follow-up works, to

enable finer-grained controls and to overcome the constraints initially imposed, we

developed and employed more sophisticated DRL approaches. While improving the

capabilities of our DRL-based controller synchronisation control and management

algorithms, we also consider the scalability and robustness of the policies developed.

As such, instead of only developing centralised policies, we have investigated the

possibility of having a distributed controller synchronisation policy. Specifically, we

identify conditions upon which a set of distributed policies can achieve comparable

performance of a centralised policy. Furthermore, we have employed state-of-the-art

DL techniques to enhance the temporal data, which our RL algorithms depend on to
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learn the policy. This significantly improves the robustness of our DRL-based policy

generation algorithms.

Finally, from our experiences with existing RL algorithms, we realise that the

learning processes in existing RL algorithms are very inefficiency-prone. Based on

our observations and investigations, we have proposed a novel RL paradigm, named

state action separable RL (sasRL), which aims at improving RL’s training efficiency.

As the name suggests, sasRL achieves higher learning efficiency by separating the

action space from the value function learning process, which effectively breaks a

complex model-free RL problem into a simpler model-free RL problem and a su-

pervised learning problem. It should be noted that sasRL is a generic RL paradigm,

which is not limited to networking applications. Therefore, sasRL constitutes an-

other major contribution to generic RL techniques.

9.2 Future Work: Decentralised Policy Learning in

SDN

In this thesis, one assumption we have made while investigating RL-based controller

synchronisation policy design is that the policy operates in a centralised manner.

That is to say, one central controller is responsible for collecting data required from

all domains and learning the policy from the data collected. At run time, the cen-

tral controller coordinates the behaviours of all other controllers. The centralised

learning paradigm has the obvious advantage of the ability to make globally opti-

mal decisions. However, such a centralised approach does not scale well and it also

creates a single node of failure. Therefore, further research is needed to explore

decentralised or distributed approaches for designing the RL-based controller syn-

chronisation policy design. Therefore, in this section, we briefly discuss about some

ideas which can enable decentralised or even distributed RL-based policies.
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9.2.1 Meta-RL-based Approach

We plan to investigate the potential distributed RL approach in distributed SDN

by meta-reinforcement learning (meta-RL) [119]. Meta-RL recently emerges as a

promising research field, which has been viewed as a potential gateway to artificial

general intelligence (AGI). Broadly speaking, meta-RL aims at designing RL algo-

rithms that can adapt an RL model, which has been trained by data from previous

tasks, to accommodate new tasks in a rapid manner with little new data provided.

The intuition behind this is to exploit some common structures and dynamics among

individual tasks in order to give the RL model some positive inductive bias to help it

quickly adapt to particular goals of new tasks. This is appropriate for developing dis-

tributed control and management policies in distributed SDN networks where policy

developments in domains can be seen as different but related sub-tasks.

In particular, let each domain controller be viewed as an RL agent with its des-

ignated network control task. Initially, all agents share a common RL model with

initial parameters, which represents the control policy. Agents begin learning indi-

vidually (individual phase) before they merge information (merging phase) learned

by each other. For each setting of domain controller parameters, the underneath dis-

tributed optimization process is still used to obtain the corresponding optimal control

variables. During the individual phase, each agent learns from its local domain con-

troller parameters. During the merging phase, agents exchange some training data

(per design of the meta-RL algorithm) and update the RL-model parameters shared

by all agents. The goal of the merging phase is to ensure that information about

the optimal control policy learned by individual agents (domain controllers) will be

combined and captured in the final RL-model before the next individual phase and

continued inference (control) start. The process of updating the final-RL model dur-

ing the merging phase shall also ensure the fast adaptation of the shared RL model

by individual agents for the next individual phase.
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Therefore, the meta-RL based approach offers a way to meta-learn across do-

mains, it also enables distributed decision-making within individual domains.

9.2.2 RL-Attention Based Approach

The concept of attention in learning algorithms stems from the simple observation

on the way humans perceive information. In particular, when processing visual in-

formation, humans pay more attentions to certain distinctive parts of the visual pre-

sentation, which play key roles in identifying the meaning of the presentation. The

same phenomenon exists in the interpretation of the meanings in sentences, where

certain key words and the co-location of some words in a sentence can determine the

message the sentence is conveying.

W.r.t. our goal of developing distributed RL-based control and management pol-

icy for distributed SDN, the idea of attention can be applied to treat multiple network

views generated by various domains. Specifically, recall that due to the distributed

nature and the limited synchronisation among domain controllers, the view of the

SDN network can be different from domain to domain. We assume that in order to

develop distributed control and management policies, each domain develops its own

policy based on the domain controller’s network view. Ideally, the optimal global

policy is developed by the single up-to-date global network view. In reality, the var-

ious network views of domains and the subsequent local policies contribute to the

global policy to various degrees. Therefore, we can introduce an attention module in

the network, whose role is to attend to various network views with different amount

of attentions, based on the value the corresponding network view contributes to the

global objective. Then, each domain’s local policy is adjusted according to the feed-

back from the attention module. In the meantime, the attention module makes use

of the attention weights obtained to develop global control and management policies

for the whole network, which are updated once in a while based on new inputs from



9.2. Future Work: Decentralised Policy Learning in SDN 197

all domains.

9.2.3 Model-based Transfer Learning Approach

In this section, we look at the possibility of a model-based transfer learning approach

for improving the performance of the collection of local policies by transferring

models of local dynamicities for designing global policies.

Here, we assume that global and local network control and management poli-

cies share the common objective, i.e., to improve the overall performance of the

distributed SDN, but the dynamicities of different domains may vary. All domains

can build models of the dynamicities within their own domains based on local data

and observations. As local controllers can freely access all local data, it is assumed

that there are sufficient data to enable the modelling of local dynamicity. The core

idea here is to transfer the knowledge in the local dynamicity models (local model

for short) to aid the global policy development. In particular, the central goal of

knowledge transfer is to identify how to best combine sub-regions of different local

models for building an implicit global dynamicity model (global model for short).

This goal may be achieved by employing a Bayesian method which first projects the

global model as a mixture of various local models. This is done by expressing the

global model as the weighted sum of local models. The weighting vector can be ini-

tialised by certain distributions, which are viewed as priors. Then, posterior updates

on the priors are conducted using global data and observations collected. The goal of

such updates is to reason the similarities between various areas of the global model

and their counterparts in local models. During the process, the weighting vector is

updated to faithfully reflect the relationships between the global model and various

local models w.r.t. to the policy development task considered. Finally, the targeted

transfer of knowledge from local models to the global model takes place according

to the updated weighting vector. Note that the learned global model can be implicit,
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as we expect DNN-based function approximations maybe used, which renders the

opaque representations of models.
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APPENDIX A

Proofs

A.1 Proofs for Lemmas, Theorems, and Corollaries

in Chapter 3

A.1.1 Proof for Theorem 3.1

Theorem 3.1 is derived by further analysis of the APC expressions obtained in Type-

1 Network, which is summarised in Theorem 3.9. Specifically, in (3.19),

log(
n⌧ 0 + 1� �

⇣1�
) = log(

n⌧ 0

⇣1�
�
� � 1

⇣1�
)  log(

n⌧ 0

⇣1�
), (A.1)

as � � 1. Next, for ⌘1 in (3.19), we know

⌘1 = b
log(m/z01)

⌧ 0 log(z02/z
0
1)

+
2

⌧ 0
c � 1 

log(m/z01)

⌧ 0 log(z02/z
0
1)

+
2

⌧ 0
� 1. (A.2)

There are four cases for (A.2). First, when ⌧ = 1, then ⌘1 
log(m/z01)
log(z02/z

0
1)
+ 1. Second,

when ⌧ = 2, then ⌘1 
log(m/z01)
2 log(z02/z

0
1)

. Third, when 2 < ⌧  log(m/z01)
log(z02/z

0
1)
+ 2, we have ⌧ =

⌧ 0; therefore, ⌘1 
log(m/z01)
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+ 2
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0
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. Therefore, 9 constant c0 such that

⌘1 
c0 log(m/z01)

⌧ log(z02/z
0
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. (A.3)
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Since ⌘2  ⌧ 0, when �  n⌧ 0+1
⇣1+1 , using (A.1) and (A.3), we get

⌘1⇠ log(
n⌧ 0+1��
⇣1�
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log(⇣2/⇣1)
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log(n⌘2/⇣1)
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(A.4)

Similarly, when � > n⌧ 0+1
⇣1+1 , we have

log(n⌘2/⇣1)

log(⇣2/⇣1)
+ ⌘1(⇠ + 1) + 1


log(n⌧ 0/⇣1)

log(⇣2/⇣1)
+

c0(⇠ + 1) log(m/z01)

⌧ log(z02/z
0
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=O
⇣ log(m/z01)

⌧ log(z02/z
0
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+
log(n⌧ 0/⇣1)

log(⇣2/⇣1)

⌘
,

(A.5)

thus completing the proof. ⇤

A.1.2 Proof for Theorem 3.4

To prove Theorem 3.4, we consider two trees that are constructed w.r.t. a line net-

work of k domains (F) and its RDPN (FR), where F and FR have the same node

set. The constructed trees w.r.t. FR and F are denoted by T1 and T2, respectively.

We first describe how T1 and T2 are constructed and then show how they are related.

To construct T1 w.r.t. FR, we randomly pick a node r in FR as the root. From this

randomly chosen root r, tree T1 is formed in a way that T1 spans all vertices in FR

and the number of nodes in level-i (nodes in level-i are (i � 1)-connections away

from r, i = 1, 2, . . .) in T1 is the same as the average number of nodes that are

(i � 1)-hop away from r in FR. Note that T1 is constructed based on the statistical

properties of FR rather than a particular instance of FR. Then following the same
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rule, tree T2 w.r.t. F is constructed rooted at r. Let &(1)i and &(2)i denote the set of

nodes that are i-hop away from r in trees T1 and T2, respectively. Then the average

path cost from a random node to node r in FR and F is computable based on T1

and T2 via
P

i(i&
(1)
i /|kn|) and

P
i(i&

(2)
i /|kn|) (recall that both FR and F contain kn

nodes), respectively.

Although FR and F have the same degree distribution, nodes in &(2)i are more

likely to have edges connecting to each other than nodes in &(1)i do. This is caused

by the structural constraints (inter-domain connections) imposed on the line network

F , which is not present in its RDPN FR. Such effect is reflected on the tree con-

structions of T2. In particular, starting from T1, to get T2, some nodes in &(1)i are

effectively moved to &(2)j with j > i. Therefore, 8v in T1, in T2, v either remains

unchanged or moves further away from the root. Hence, let ⇢0 be the expected cost

of the shortest path (in terms of hop counts) between any two random nodes in F , we

have ⇢R  ⇢0 when |M | = |MR| = 1. On the other hand, when |M | = |MR| > 1,

we can view root r above as a set of nodes in FR (or F) with the cardinality the

same as that of MR and M (i.e., a root set); then the depth of a node v in the tree

represents the shortest path (in terms of hop counts) from v to the closest node in

this “root set”. In this way, the above argument still applies when |M | = |MR| > 1,

and again we get ⇢R  ⇢0.

Furthermore, the above discussion assumes pure random selection of the root

set in T2, which includes situations where some nodes in the root set are in transit-

domains (defined in Definition 5), i.e., A2, . . . ,Ak�1. Let M denote such root set

in F . Then, let ⇢00 denote the average distance between node v (v 2 A1) and node

set M. However, we are only concerned with the average distance between node v

(v 2 A1) and node set M (M ✓ Ak) in F , which is defined as ⇢. Apparently, ⇢ > ⇢00

holds according to Theorem 3.6. Since ⇢0 is the average value over all scenarios, i.e.,

⇢0 is the average of ⇢ and ⇢00, there is ⇢ > ⇢0. Thus, we have ⇢R  ⇢0  ⇢.
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A.1.3 Proof of Lemma 3.5

In order to derive the number of 1-hop and 2-hop nodes from a random node in

the RDPN of a line network with k domains, the first step is to obtain the degree

distribution of the RDPN which incorporates the added degree from the inter-domain

connections on top of the intra-domain connections.

Let � be the random variable of the degree distribution of a node in a domain be-

fore inter-domain connections are established (i.e., intra-domain connections). De-

note the random variables of the added degrees of nodes in end-domains and transit-

domains (defined in Definition 5) in a line network by  and ⌥, respectively, after the

inter-domain connections are established. Then, when � ⌧ n,  and ⌥ follow bino-

mial distribution with the following parameters:  ⇠ B
�
�, 1

n

�
and ⌥ ⇠ B

�
2�, 1

n

�
.

Then the overall degree distributions for a random node in a line network of length

k (k � 2) is represented by (�+ 2
k + k�2

k ⌥).

The average number of 1-hop nodes from a random node within a domain, de-

noted by z1, is z1 = E[�] =
P1

k=0 kpk, where pk is the percentage of nodes with

degree k. For the RDPN, whose degree distribution is captured by random vari-

able (� + 2
k + k�2

k ⌥), we have ⇣1 = E[�] + 2
kE[ ] +

k�2
k E[ ]. The mean of �

is z1. As for  and ⌥, since they follow binomial distribution, their means are �
n

and 2�
n , respectively. Thus, we have ⇣1 = z1 +

2�(k�1)
nk . For the calculation of the

average number of 2-hop nodes from a random nodes, denoted by z2, [28] gives an

expression: z2 =
P1

k=0 k(k � 1)pk. However, it is difficult to directly apply this

expression to derive ⇣2. Instead, we use z2 =
P1

k=0 k(k � 1)pk ⇡
P1

k=0 k
2pk as

an approximation. The calculation now becomes tractable, because for a random

variable x, the following result holds: E[x2] = �2
x + E2[x], where �2

x is the vari-

ance of x. Therefore, we can calculate ⇣2 in the following way: ⇣2 = E[(� + 2
k +

k�2
k ⌥)2] = �2

�+ 2
k +

k�2
k ⌥

+ ⇣21 . Since �,  and ⌥ are independent random variables,

�2
�+ 2

k +
k�2
k ⌥

= �2
� + ( 2k )

2�2
 + (k�2

k )2�2
⌥. Given that the variance of a random vari-
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able x ⇠ B (n, p) is np(1 � p), we calculate �2
�, �2

 , and �2
⌥ accordingly. Since we

assume � ⌧ n, we have �/n2
⇡ 0 and �2/n2

⇡ 0; therefore, we conclude that

⇣2 = z2 + z1
4�(k�1)

nk . ⇤

A.1.4 Proof of Theorem 3.6

Consider two line networks of length k and k + 1, whose domains are labelled as

A1,A2, . . . ,Ak and B1,B2, . . . ,Bk+1, respectively. Let Vin(Ci) (Vout(Ci)) be the set of

gateways in domain Ci connecting to domain Ci�1 (Ci+1). Without loss of generality,

we assume that A1 = B1 and Ak = Bk+1. This implies that Vout(A1) = Vout(B1) and

Vin(Ak) = Vin(Bk+1). Therefore, Lk(�) and Lk+1(�) are determined by the pair-wise

distance between Vout(A1) and Vin(Ak), and Vout(B1) and Vin(Bk+1), respectively.

When k � 3, there exist at least one transit domain, apart from the end-domains in

a line network (see Definition 5 for the concept of transit/end-domains). Since all

transit domains have the same statistical parameters, each transit domain offers the

same probability of finding a path with certain path cost in that domain. Furthermore,

more transit domains introduce more inter-domain edges. Thus, there is no higher

possibility of finding a path with lower path cost due to the presence of more transit

domains. Therefore, more transit domains result in higher expectation of pair-wise

distance between Vout(B1) and Vin(Bk+1). Moreover, these arguments apply to both

Type-1 and Type-2 networks. This concludes the proof. ⇤

Remark: Note that in Theorem 3.6, there are two uncovered cases. First, k = 1.

Since we are not interested in determining APC for two random nodes within the

same domain, this case does not exist. Second, k = 2. From numerical results,

we observe that L2(�) may be slightly greater than L3(�) when � satisfies certain

conditions. This could be intuitively understood as follows. When k = 3, the transit-

domain between the source and destination domain acts as a bridge, which could

reduce the average distance between the egress gateway sets in the source domain
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𝐿 (𝛽)

𝐿 (𝛽)

Figure A.1: Non-simple vs. simple domain-wise path for path constructions.

and the ingress gateway sets in the destination domain. In one extreme example, if

the transit-domain consists of only one node, then any egress gateway in the source

domain can reach any ingress gateway in the destination domain, for which the APC

is calculated as E[D(�)
2 ] (see the definition of D(�)

k in Theorem 3.11); In comparison,

the APC in the scenario where k = 2 is calculated by E[M (�)
2 ] (see the definition

of M (�)
k in Theorem 3.11). Apparently, there is: E[M (�)

2 ] > E[D(�)
2 ]. Nevertheless,

the case that two random nodes residing in two neighbouring domains (k = 2) only

happens with probability z01/m, which can be ignored as z02 � z01 and m is large.

A.1.5 Proof of Corollary 3.7

We start the proof by comparing L0
k0(�) and Lk0(�). We consider the simplest form

of domain repetition where only one domain is traversed twice. We use Fig. A.1

to facilitate the proof, where k0 = 4. Suppose that a random node in domain A1

needs to communicate with a random node in domain A3 and the selected domain-

wise path is A1 � A2 � A1 � A3. Apparently, this is not a simple path because

domain A1 is traversed twice; the corresponding APC is denoted by L0
4(�). We

also consider a similar scenario with a simple domain-wise path of the same path

cost, Aa � Ab � Ac � Ad, whose APC is denoted by L4(�). We observe that the

computation of L0
4(�) is the same as that in L4(�) except that there are effectively

less inter-domain path options. Specifically, for the case of non-simple domain-wise

paths, when selecting the gateway in A2 to go back to A1, there are only � � 1
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potential options, since the ingress and egress gateway sets fully overlap in A2, and

ingress gateway in A2 is determined already and it cannot be used as the egress

gateway; otherwise, entering A2 would only increase APC compared to entering A3

directly from A1. By contrast, the ingress gateway selection in Ac has � options.

Hence, L0
4(�) > L4(�). Such analysis remains valid in cases where there are more

repeated domains in the domain-wise path. We also know from Theorem 3.6 that

Lk0(�) > Lk0�1(�). Finally, since k0
� k � 3, we have Lk(�) < L0

k0(�), thus

completing the proof. ⇤

A.1.6 Proof of Theorem 3.10

Recall that in our two-layer model, gateways are randomly selected. Therefore, let

D1,D2, . . . ,D� be i.i.d. random variables, denoting the minimum path cost between

two random nodes in a domain with the same pdf as D in (3.22). We have

M (�) = min(D1,D2, . . . ,D�),

and L(P1) = M (�). As a special case, when � = 1, i.e., 9 only one gateway in S,

then M (�) = D. When � > 1, the probability Pr(M (�)
 d) = Pr(min(D1,D2, . . . ,D�) 

d), i.e., at least one of {Di}
�
i=1 is smaller than or equal to d. Therefore, let FD(x) be

the cdf of D, and FM(�)(x) the cdf of M (�). Then

FM(�)(x) = 1� (1� FD(x))
�.
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Therefore, the pdf of M (�) is

fM(�)(x) =

8
>>>>>>>>><

>>>>>>>>>:

(1� FD(x� 1))�

� (1� FD(x))
�

for x � 1,

1� (1� FD(0))� for x = 0.

⇤

A.1.7 Proof of Theorem 3.11

Similar to (3.7), E[P1] = E[P2] = . . . = E[Pµ�1] 6= E[Pµ], where µ = dq/⌧e.

Therefore, it suffices to determine E[P1] and E[Pµ].

In order to obtain E[P1] and E[Pµ], we only need to compute E[M (�)
k ] and

E[D(�)
k ]. Thus, we define random variable X(k) := D(�)

k�1 + D + 1 (the pdf of D

is in (3.22)). Let X(k)
1 , X(k)

2 , . . . , X(k)
� be i.i.d. r.v. following the same distribution as

X(k). Then similar to the proof of Theorem 3.10, we have

D(�)
k = min(X(k)

1 , X(k)
2 , . . . , X(k)

� ),

where D(�)
1 = D. Analogously, let Y (k) := D(�)

k�1+M (�)+1, and Y (k)
1 , Y (k)

2 , . . . , Y (k)
�

be i.i.d. r.v.s following the same distribution as Y (k). Then M (�)
k = min(Y (k)

1 , Y (k)
2 , . . . , Y (k)

� ),

where M (�)
1 = M (�) is defined in Section A.1.6 (proof of Theorem 3.10). Then

following the same method in Sections A.1.6–A.1.7, E[D(�)
k ] and E[M (�)

k ] are com-

putable. Note that it is expensive to compute D(�)
k and M (�)

k , as they are defined in a

recursive way; more efficient computation methods are discussed in Section A.1.10.
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A.1.8 Proof of Corollary 3.12

When � = 1, Lk(1) = E[D(1)
k ] = kE[D] + k � 1, and Lk+1(1) = E[D(1)

k+1] =

(k+ 1)E[D] + k. Therefore, Lk+1(1)�Lk(1) = E[D(1)
k+1]�E[D(1)

k ] = E[D] + 1. ⇤

A.1.9 Proof of Corollary 3.13

In a line network with k domains A1,A2, . . . ,Ak, when � ! 1, every node in

domain Ai directly connects to all nodes in domain Ai+1 (i  k � 1). As a result,

the path cost incurred within each domain on the line network is 0. Thus, the APC

is the sum of link preference of all traversed inter-domain edges, which is k for

Lk+1(�) and k � 1 for Lk(�), thus completing the proof. ⇤

A.1.10 Efficient Computation of E[D(�)
k ]

Since D(�)
k is defined in a recursive way, the computation of E[D(�)

k ] is relatively

complex (see the expression of X(k) in the proof of Theorem 3.11). As such, we

establish an efficient strategy to estimate E[D(�)
k ]. Specifically, let D1,D2, . . . ,Dk

denote i.i.d. random variables following the same distribution as D. Then we de-

fine random variable Z(k) :=
Pk

i=1 Di + k � 1. For the two-layer network model,

when the length of the line network is increased by 1, the number of path op-

tions w.r.t. two random nodes at the end-domains grows �-fold. Therefore, let

Z(k)
1 , Z(k)

2 , . . . , Z(k)
�k�1 be i.i.d. random variables following the same distribution as

Z(k). Define eD(�)
k := min(Z(k)

1 , Z(k)
2 , . . . , Z(k)

�k�1). We then use E[ eD(�)
k ] to approxi-

mate E[D(�)
k ]. Since eD(�)

k does not rely on eD(�)
k�1, E[ eD

(�)
k ] is easily computable using

the method in Sections A.1.6–A.1.7.

Remark: As for computation complexity, there are two types of computation

when calculating E[D(�)
k ] and E[ eD(�)

k ], i.e., the convolution operation for calculating

the pdfs of X(k) and Z(k) (Operation-1), and the operation defined in Theorem 3.10
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for calculating the pdfs of E[D(�)
k ] and E[ eD(�)

k ] (Operation-2). The calculation of

E[D(�)
k ] involves k � 1 Operation-1 and k Operation-2; whereas the calculation of

E[ eD(�)
k ] involves k Operation-1 and only 1 Operation-2. Therefore, the established

method doubles the computation efficiency. Moreover, such efficient approximation

method is highly accurate, as validated in evaluation section in the thesis. Intuitively,

this is because the process of establishing inter-domain connections in our network

model is purely random, which enables us to use the method above to estimate the

number of path construction options between two random nodes in the end-domains

of a line network of length k.

A.2 Proofs for Lemmas,Theorems, and Corollaries in

Chapter 4

A.2.1 Proof of Theorem 4.1

First, we replace relevant notations in (A.8) of Proposition A.2 by the notations

listed in Table 4.1, there is log(�+(1��)/z1
� ) = log(�� ) + log(1 + 1��

n ). Let f(�) =

log(1 + 1��
n ). It can be observed that max(f(�)) = f(1) = 0. Since �  n+1

z1+1 ,

min(f(�)) = f( n+1
z1+1) = log( (n+1)z1

n(z1+1)) < 0. However, when n and z1 are relatively

large, there is min(f(�)) = log( (n+1)z1
n(z1+1)) ⇡ 0. Thus, f(�) can be ignored. As

such, we use
log(�� )

log(z2/z1)
+ 1 for the estimation of minimum APC between the ingress

gateway and the egress gateway set, for �  �. Let ⇠ be the probability that the

ingress gateway is also an element in the egress gateway set. Then,

l1 =

8
><

>:

⇠
� log(�� )

log(z2/z1)
+ 1

�
if �  �,

⇠ otherwise,

According to Lemma A.1, the minimum APC between ingress and egress gate-
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way sets (the cardinality of both sets are �) is the same as the minimum APC between

an ingress gateway and an egress gateway set whose cardinality is �2. Similarly, with

both Proposition A.2 and Lemma A.1, we have

l2 =

8
><

>:

⇣
� log( �

�2
)

log(z2/z1)
+ 1

�
if � 

p
�,

⇣ otherwise.

Since ⇠ � ⇣ and we are concerned with APC lower bound, for simplier expressions

in later derivations, we also use ⇣ in l1, and thus

l1 �

8
><

>:

⇣
� log(�� )

log(z2/z1)
+ 1

�
if �  �,

⇣ otherwise.

A.2.2 Proof of Theorem 4.2

The overall APC lower bound is obtained by adding the minimum APC lower bounds

of all Type-1 domains, Type-2 domains, and the destination domain on the domain-

wise path between the source and destination domains. Specifically, there are µ

Type-1 domains, (m � µ � 1) Type-2 domains, and 1 destination domain on the

domain-wise route. The minimum APCs for Type-1 and Type-2 domains are pro-

vided in Theory 4.1. As for the destination domain, its minimum APC is the same as

Type-1 domains when there are more than one domain in the RC where the destina-

tion node belongs; or its minimum APC is estimated by log(�)
log(z2/z1)

+ 1, it constitutes

an RC itself. For simpler expressions, the overall APC lower bound is calculated

by assuming that there are µ Type-1 domains and (m � µ) Type-2 domains on the

domain-wise path with m domains, i.e., we treat the APC of the destination domain

as that of a Type-2 domain. This is valid because LLB is a lower bound expression.
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Therefore, we have:

LLB =
µ⇣ log

�
�
�

�

log(z2/z1)
+

(m� µ)⇣ log
�
�
�2

�

log(z2/z1)

+m� 1

=
µ⇣ log(�) +m⇣ log(�z2/z1�2 )

log(z2/z1)
� 1.

A.2.3 Proof of Theorem 4.3

We derive the bound of the gap between APC and APC lower bound by comparing

the APC lower bound to the scenario where no synchronized information is used for

routing along the domain-wise path, i.e., routing falls back to the default BGP-like

inter-domain routing mechanism. In such a scenario, each domain makes indepen-

dent routing decisions which minimises the APC in its own domain. This is the worst

case since every domain is essentially an RC itself, i.e., µ = m. The APC of each

domain except the destination domain is estimated by the minimum APC in Type-1

domains. The APC in the destination domain is approximated by log(�)
log(z2/z1)

+ 1. Fur-

thermore, in the worst case, we assume that the link preference of all links equals the

maximum link weight !. Therefore,

L� LLB <
!⇣(m� 1) log(�� )

log(z2/z1)
+

! log(�)

log(z2/z1)
+ !

� LLB

=
⇢⇣ log(�) +m(! � 1)⇣ log(�)

log(z2/z1)
,

where ⇢ = (2� !)m+ ! � µ.
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A.2.4 Proof of Theorem 4.4

When
p
� < �  �, the minimum APC for all Type-2 domains reduces to ⇣ , whereas

the minimum APC for Type-1 domains remains unchanged. Thus,

LLB =
µ⇣ log

�
�
�

�

log(z2/z1)
+ (m� µ)⇣ +m� 1

=
µ⇣ log( �

�z2/z1
) +m(⇣ + 1) log( z2z1 )

log(z2/z1)
� 1.

A.2.5 Proof of Theorem 4.5

This proof uses the same method described in the proof of Theorem 4.3.

L� LLB <
!⇣(m� 1) log(�� )

log(z2/z1)
+

! log(�)

log(z2/z1)
+ !

� LLB

=
⌧⇣ log(�� ) + ! log(�)

log(z2/z1)
� ⇣(m� µ),

where ⌧ = !(m� 1)� µ.

A.2.6 Proof of Theorem 4.6

When � > �, the APC lower bounds for both Type-1 and Type-2 doamins reduce

to ⇣ . Thus, the overall APC lower bound for the domain wise path becomes LLB =

⇣µ+ ⇣(m� µ) +m� 1 = (1 + ⇣)m� 1.



A.2. Proofs for Lemmas,Theorems, and Corollaries in Chapter 4 226

A.2.7 Proof of Theorem 4.7

This proof uses the same method described in the proof of Theorem 4.3, except that

minimum APC in Type-1 domains now reduces to ⇣ .

L� LLB < !⇣(m� 1) +
! log(�)

log(z2/z1)
+ ! � LLB

=
! log(�)

log(z2/z1)
+ ⇣

�
(m� 1)! �m

�
.

A.2.8 Lemma A.1 and its proof

Under the two-layer network model, let I and E denote the ingress and egress gate-

way sets in a Type-2 domain on the domain-wise path, where � = |I| = |E| is the

cardinality of ingress and egress gateway sets. Let LIE denote the APC between set

I and E , and L�2 the APC between a randomly chosen node and a random chosen

node set with cardinality �2 in this domain.

Lemma A.1. For any Type-2 domain, there is LIE = L�2 .

Proof. Let random variable (r.v.) M (�) denote the shortest distance from an arbitrary

node w to the closest gateway in the candidate gateway set S within a domain, where

S contains all gateways connecting to the same neighbouring domain. In addition,

let r.v. D be the shortest distance between two random nodes in one domain. By

definition, we have M (�) = min(D1,D2, . . . ,D�), where Dis (1  i  �) are

i.i.d. r.v.s which share the same distribution as r.v. D. Then, let MLIE and ML�2

be the R.V.s of LIE and L�2 . According to the definition of LIE , we have MLIE =

min(M (�)
1 ,M (�)

2 , . . . ,M (�)
� ), where M (�)

j s (1  j  �) are i.i.d. r.v.s which share

the same distribution as r.v. M (�). Then MLIE = min(D1,D2 . . . ,D�2) = ML�2
.

Therefore, there is E[MLIE ] = E[ML�2
], and thus LIE = L�2 .
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A.2.9 Proposition A.2

Proposition A.2. [32], [34] In an undirected connected graph H with n0 vertices

and the vertex degree satisfying a given distribution, let xi be the average number of

vertices that are i-hop away from a random vertex in H. Suppose all edge weights

are 1, and x2 � x1. Then,

a)

xi = (x2/x1)
i�1x1; (A.6)

b) APC between two arbitrary nodes in H is

log(n0/x1)

log(x2/x1)
+ 1; (A.7)

c) APC between an arbitrary node and ⌘ arbitrary nodes in H (see Definition 11) is

8
><

>:

log(
n0+1�⌘

x1⌘
)

log(x2/x1)
+ 1 if ⌘  n0+1

x1+1 ,

1 otherwise.
(A.8)

A.3 Proofs for Lemmas,Theorems, and Corollaries in

Chapter 8

A.3.1 Proof for Theorem 8.1

First, we consider the scenario of the mMRP starting from a specific initial state state

s0. Then, the policy gradient is calculated byr✓J(µ✓) =
R
s02S p0(s0)r✓V µ✓(s0)ds0,

where p0(s0) is the initial distribution of state s0. Therefore, we first derive the ex-

pression of r✓V µ✓(s). Before we proceed with the derivation, we define some no-

tations used as follows. p(s0|s, µ✓(s)) is the probability of transition into s0 from s,

given the policy µ✓. Although µ✓ is a deterministic policy, the next state s0 is also
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influenced by other environment factors. For example, if the next state suggested

by µ✓ is not a feasible next state, a mapping is needed to map the raw next state

indicated by the policy to a feasible next state s0. In addition, p(s ! s0, t, µ✓) is the

probability of transitioning from state s to state s0 in t steps under policy µ✓.

r✓V
µ✓(s) = r✓(rs,s0 + ��µ✓(s0, µ(s0)))

= r✓µ✓(s)rs0rs,s0 +r✓

Z

s02S
�p(s0|s, µ✓(s))V

µ✓(s0)ds0

= r✓µ✓(s)rs0rs,s0

+

Z

s02S
�

✓
p(s0|s, µ✓(s))r✓V

µ✓(s0) +r✓µ✓(s)rs0p(s
0
|s, µ✓(s))V

µ✓(s0)

◆
ds0

= r✓µ✓(s)rs0

✓
rs,s0 +

Z

s02S
�p(s0|s, µ✓(s))V

µ✓(s0)ds0
◆

+

Z

s02S
�p(s0|s, µ✓(s))r✓V

µ✓(s0)ds0

(A.9)

For simpler expression, we denote ↵(s) = r✓µ✓(s)rs0

✓
rs,s0+

R
s02S �p(s

0
|s, µ✓(s))V µ✓(s0)ds0

◆
,

which can be further simplified as ↵(s) = r✓µ✓(s)rs0�µ✓(s, s0). Then, we have the

following.
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r✓V
µ✓(s) = ↵(s) +

Z

s02S
�p(s0|s, µ✓(s))r✓V

µ✓(s0)ds0

= ↵(s) +

Z

s02S
�p(s! s0, 1, µ✓)r✓V

µ✓(s0)ds0

= ↵(s) +

Z

s02S
�p(s! s0, 1, µ✓)

⇣
↵(s0) +

Z

s002S
�p(s0 ! s00, 1, µ✓)r✓V

µ✓(s00)ds00
⌘

ds0

= ↵(s) +

Z

s02S
�p(s! s0, 1, µ✓)↵(s

0)ds0

+

Z

s002S

Z

s02S
�2p(s! s0, 1, µ✓)p(s

0
! s00, 1, µ✓)r✓V

µ✓(s00)ds0ds00

= ↵(s) +

Z

s02S
�p(s! s0, 1, µ✓)↵(s

0)ds0 +
Z

s002S
�2p(s! s00, 2, µ✓)r✓V

µ✓(s00)ds00

=
...

=

Z

x2S
⌃1

t=0�
tp(s! x, t, µ✓)↵(s)dx

(A.10)

Then, we replace s with s0 in r✓J(µ✓) =
R
s2S p0(s)r✓V µ✓(s)ds, and use the

result in (A.10), we obtain

r✓J(µ✓) =

Z

s02S
p0(s0)r✓V

µ✓(s0)ds0

=

Z

s02S

✓Z

s2S
⌃1

t=0�
tp0(s0)p(s0 ! s, t, µ✓)ds

◆
↵(s0)ds0

=

Z

s02S
⇢µ✓(s0)r✓µ✓(s0)rs00

�µ✓(s0, s
0
0)ds0

= Es⇠⇢µ✓

h
r✓µ✓(s)rs0�

µ✓(s, s0)|s0=µ✓(s)

i
.

(A.11)

Note that the results in (A.11) is suitable for calculating on-policy policy gradi-

ent since the states are sampled by the policy being updated, i.e., µ✓. For off-policy

policy gradient scenarios, where the policy-gradient, denoted byr✓J�(µ✓), is calcu-

lated using states sampled from the behaviour policy �, (A.11) is updated as follows.
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r✓J�(µ✓) =

Z

s2S
⇢�(s)r✓V

µ✓(s)ds

⇡

Z

s2S
⇢�(s)r✓µ✓(s)rs0�

µ✓(s, s0)ds

= Es⇠⇢�
h
r✓µ✓(s)rs0�

µ✓(s, s0)|s0=µ✓(s)

i

(A.12)

Here, the second term related to the partial derivative of in �µ✓(s, s0) is dropped,

and thus the approximation. This approximation is first used and justified in [108],

and has since been commonly used in various policy gradient derivations.



APPENDIX B

Experiment and Implementation

Details for sasRL

B.1 Experiment Scenario Details

1). Grid world exit problem. The state vector spans two-dimensional real coordinate

space, i.e., S 2 R2. All state vector elements are decimal numbers between 0 and 1,

which are the Cartesian coordinates of the agent on the two-dimensional plane. The

landmine and exit locations are small regions on the Cartesian plane with each taking

a 0.1⇥ 0.1 square area. For our experiments, we implement 1 landmine location and

1 exit location only for faster training. It is assumed that the agent always starts

from the origin of the two-dimensional Cartesian plane. The action vector is also

two-dimensional with its elements specifying the amounts of movement of the agent

along the horizontal and vertical directions on the Cartesian plane at a time step.

Note that the range of each element of the action vector is between �0.09 and 0.09.

The reward of the agent consists of three parts: (i) a negative reward of �0.1 at

each time step to penalize time consumption, as the goal of the agent is to leave find

the exit as soon as possible; (ii) a negative reward of �2 if the agent lands in the

landmine location; (iii) a positive reward of 5 if the agent finds the exit and leaves

the grid world. The maximum number of time steps per game is set to 50. The game

ends automatically if the agent finds the exit before the time step limit is reached.

The agent is put back to the origin when it hits a landmine while the old time step
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count still applies.

2). Berzerk-like game. The state vector consists of 12 elements, which corre-

spond to the coordinates of the agent, 3 patrolling robots, 1 wall, and 1 exit. In

particular, the robots’ patrolling routines are fixed, i.e., at each time step they move

to the next locations on the pre-defined routes. The action vector includes two el-

ements which are the amount of movements of the agent along the horizontal and

vertical directions, respectively. Note that at every time step, a bullet is fired towards

the agent’s direction of travel. The bullet can kill 1 robot if there are any on the bul-

let’s trajectory within the same time slot of the bullet’s firing. The reward consists of

4 parts as follows: (i) a negative reward of �0.2 at each time step to penalize time

consumption; (ii) a negative reward of �5 if the agent is killed by colliding with

a robot; (iii) a positive reward of 3 if a robot is killed by the bullet; (iv) a positive

reward of 6 if the agent exits the map alive. The maximum number of time steps

per game is set to 50. The game ends automatically if either the agent is killed by

collisions with a robot or the agent leaves the current map through the exit location

before the time step limit is reached.

3). The slot machine gambling game. The slot machine in this experiment has 10

reels and 10 symbols on each reel. Note that the same symbol can appear multiple

times on a reel. The state is defined as the symbols on display when all reels stop

spinning. Therefore, the state vector consists of 10 elements. The value of each

state element is a decimal number between 0 and 1, which is uniquely mapped to the

symbol on display. Each symbol is therefore represented by the decimal numbers

within a window of size 0.1. For example, the decimal values between 0 and 0.1

represent the first symbol, values between 0.1 and 0.2 represent the second symbol,

etc. The action vector has 10 elements which correspond to the amount of spinning

for each reel. In particular, the value of every action element is a decimal number

between �1 and 1, which indicates the amount of spinning for each reel. A positive
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value indicates spinning clockwise and a negative value the opposite. For example,

if the value of an action element is 1, that means the corresponding reel spins for a

full cycle and the same symbol will be on display as a result when the reel stops. The

reward is associated with the type and the number of symbols on display when all

reels stop spinning. In particular, each symbol is associated with a different value.

For each symbol, the number of that symbol on display among all reels must reach

a threshold of 3 to trigger a payout. The payout of a symbol is then calculated as

the product of the number of that symbol and the value of the symbol. The reward

is calculated as the sum of payouts triggered by all symbols that reach the threshold.

For instance, assume that symbol a carries a value of 3, symbol b carries a value of 4,

and symbol c carries a value of 5. Then, assume that among 10 symbols on display

when all reels stop, there are 5 symbol a, 3 symbol b, and 2 symbol c. The reward is

5⇥ 3 + 3⇥ 4 = 27. For each game, the player can spin all reels 20 times.

B.2 Implementation Details for the sasRL

The actor, the critic, and the transition model in the sasRL embodiment used in our

experiment are all implemented by multilayer perceptrons (MLPs).

The actor has one input layer, two hidden layers, and one output layer. The

number of neurons in both the input layer and the output layer is the same as the

dimension of the state vector. There are 64 neurons in both hidden layers. The

rectified linear unit (ReLU) is selected as the activation function for all neurons in

hidden layers, whereas sigmoid is employed as the activation function for the output

layer.

The critic has two input layers, three hidden layers, and one output layer. The

input layer takes the current and the next state vectors as inputs, it then concatenate

the two inputs to be fed to the hidden layers. Therefore, the number of neurons in
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both input layers equals the dimension of the state vector. There are 128, 64, and 32

neurons in three hidden layers, respectively. The output of the the critic corresponds

to the predicted STV. Therefore, there is 1 neuron in the output layer. The rectified

linear unit (ReLU) is selected as the activation function for all neurons in hidden

layers, whereas no activation function is used in neuron in the output layer.

The transition model also has two input layers, two hidden layers, and one output

layer. The input layer takes the current and the next state vectors as inputs. There-

fore, the number of neurons in the input layer is twice the dimension of the state

vector. There are 64 and 32 neurons in two hidden layers, respectively. The output

of the the transition model corresponds to the predicted action that causes the input

state transition. Therefore, the number of neurons in the output layer is equal to the

dimension of the action vector. The rectified linear unit (ReLU) is selected as the

activation function for all neurons in hidden layers, whereas the hyperbolic tangent

activation (tanh) is used the neuron in the output layer. Note that for the training of

the transition model, the training data are pre-processed to avoid the situations where

the same state transition is caused by multiple actions, resulting in various training

targets for the same input (s, s0). Specifically, the pre-processing procedure reserves

only one action as the training target for a state transition.

We use the Keras deep learning library for building and training the MLPs, which

represent the actor, the critic, and the transition model described above. In partic-

ular, we use mean square error (mse) and the Adam optimizer for estimating and

minimizing training losses. The settings for the Adam optimizer are as follows:

lr = 0.001, �1 = 0.9, �2 = 0.999,clipnorm = 1.0. The training procedure uses

stochastic gradient descents operating on minibatches of data (the minibatch size is

32) for gradient updates. The policy being trained is evaluated every 20 gradient

update steps. For one evaluation, the corresponding game is played according to

current policy and the score at the end of the game is recorded.
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For DNN weight initializations, we use the Glorot uniform initializer (also known

as Xavier uniform initializer) with default settings implemented in Keras. The soft

update procedure updates the delayed version of the actor and critic parameters by

10% (i.e., " = 0.1 in line 9 of Algorithm 1), after each update of the corresponding

non-delayed parameters. The discount factor for the STV function is set to � = 0.8.

B.3 Details on the Ablation Study for Action Space

Granularity

For the grid world scenario, the coarse action space corresponds to 4 canonical ac-

tions, i.e., up, down, left, or right, whereas the fine-grained action space adds a

further 4 diagonal actions, thus resulting in 8 canonical actions. As for the berzerk

scenario, the agent’s horizontal and vertical movements are quantized to certain num-

ber of actions. The agent can pick action(s) from the allowed action set for moving

towards horizontal and/or vertical directions at a time slot. The number of quantized

actions along each direction is 5 (or 10) for the coarse-grained (or the fine-grained)

discrete action case. Finally, for the slot machine scenario, the default continuous

action space means that the player can decide freely for how long each reel spins, as

long as the a given maximum limit is not exceeded. For the discrete action space,

the given maximum limit is quantized to several time intervals; the agent decides the

time to spin for each reel by choosing from these time intervals.

B.4 Details on the Replay Buffer

The size of the replay buffer is fixed to 50000. Initially, the reply buffer is filled with

data samples generated by the random behaviour policy. During training, new sam-

ples are added when all samples in the replay buffer are used for training once. For
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each replay buffer update, 500 existing samples (or 1% of all samples) are replaced

with new data generated by a mix of random policy and the policy being trained.

The replay buffer is randomly shuffled every time after new samples are added to it.

B.5 Detailed Settings for the Experiment in Section 8.7

The server processing power (the number of time slots needed for processing an unit

of request) of 3 services at a time slot are uniformly drawn from the sets as follows.

Service 1: {1, 2, 3} for the first server and {3, 4, 5} for the second server; Service 2:

{2, 3, 4} for the first server and {5, 6, 7} for the second server; Service 3: {4, 5, 6}

for the first server and {9, 10, 11} for the second server. Request arrivals at all times

slots for 3 services are modelled by Bernoulli distribution with p = 0.8, p = 0.5,

p = 0.3, respectively.
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