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ABSTRACT Kernel Principal Component Analysis (KPCA) using Radial Basis Function (RBF) kernels can
capture data nonlinearity by projecting the original variable space to a high-dimensional kernel feature space
and obtaining the kernel principal components. This article examines the tuning of the kernel width when
using RBF kernels in KPCA, showing that inappropriate kernel widths result in RBF-KPCA being unable
to capture nonlinearity present in data. The paper also considers the choice of monitoring statistics when
RBF-KPCA is applied to anomaly detection. Linear PCA requires two monitoring statistics. The Hotelling’s
T 2 monitoring statistic detects when a sample exceeds the healthy operating range, while the Squared
Prediction Error (SPE) monitoring statistic detects the case when the sample does not follow the model
of the training data. The analysis in this article shows that SPE for RBF-KPCA can detect both cases.
Moreover, unlike the case of linear PCA, the T 2 monitoring statistic for RBF-KPCA is non-monotonic with
respect to the magnitude of the anomaly, making it not optimal as a monitoring statistic. The paper presents
examples to illustrate these points. The paper also provides a detailed mathematical analysis which explains
the observations from a theoretical perspective. Tuning strategies are proposed for setting the kernel width
and the detection threshold of the monitoring statistic. The performance of optimally tuned RBF-KPCA for
anomaly detection is demonstrated via numerical simulation and a benchmark dataset from an industrial-
scale facility.

INDEX TERMS Anomaly detection, asymptotic analysis, fault detection, kernel principal component
analysis, monitoring statistic, multivariate statistics.

I. INTRODUCTION
When monitoring an industrial process, anomalous data can
be an indicator of faults which may cause performance degra-
dation ormay even lead to failures and unplanned shut downs.
Data-driven anomaly detection determines if a data sample
is anomalous when compared to healthy data available for
training. However, an inaccurate description of the healthy
data may result in increased false or missed alarm rates.

Various sources of nonlinearity may be present in a process
for example due to valve characteristics, multimode oper-
ation or specific mass balance relationships. Kernel-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Fanbiao Li .

methods can account for nonlinearity [1]. They achieve a
more accurate description of the healthy data and thereby
improve the anomaly detection performance.

Many researchers have adopted Kernel Principal Com-
ponent Analysis (KPCA) for data-driven anomaly detection
[2]–[6]. Most use the Radial Basis Function (RBF) kernel.
Both the kernel width of the RBF kernel and the monitoring
statistics need to be specified when using RBF-KPCA. The
kernel width is an important adjustable parameter which
can determine how accurately the healthy training data is
described, while the monitoring statistics are important for
the detection of anomalies. These aspects are not indepen-
dent, because monitoring statistics are functions of the kernel
principal components obtained using specific kernel widths.
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This article gives new insights into the tuning of
RBF-KPCA applied to anomaly detection. It gives recom-
mendations for correct tuning of the kernel-width parameter.
Specifically, it will be shown that RBF-KPCA leads to
increased false alarms when the kernel width is exceeding
small, while exceedingly large kernel widths will lead to
incorrect models and missed alarms.

We will also prove that the Hotelling’s T 2 and SPE
(squared prediction error) monitoring statistics that are
widely used in linear principal component analysis do not
have the same interpretation or behaviour when used with
RBF-KPCA. The SPE for PCA is sensitive only to anomalies
in the residual sub-space, whereas the SPE for RBF-KPCA is
sensitive to all anomalies. Moreover, the paper will demon-
strate that in RBF-KPCA the T 2 statistic is not monotonic
with respect to the magnitude of the anomaly. Therefore,
use of the T 2 monitoring statistic in RBF-KPCA can lead
to false and missed detection of anomalies. This observation
may explain difficulties that other researchers have had in
applying T 2 for RBF-KPCA.

Based on these findings, we will propose novel strate-
gies for tuning RBF-KPCA and for setting the thresholds
for the SPE monitoring statistic for anomaly detection in
nonlinear systems. These strategies will be demonstrated for
anomaly detection in experimental data from a multiphase
flow facility.

The next section discusses previous work. Section III of
the paper reviews the KPCA formulation using RBF ker-
nels and compares the SPE and T 2 as monitoring statistics.
It also shows the influence of the kernel width on anomaly
detection. Sections IV and V derive and discuss the asymp-
totic behaviour of RBF kernels with large and small kernel
widths and investigates the behaviour of the SPE and T 2

monitoring statistics for RBF-KPCA. Section V shows that
SPE increases monotonically as the magnitude of anomalies
increases, whereas T 2 does not. These findings form the
basis of a strategy for tuning the RBF kernel under the RBF-
KPCA framework for anomaly detection, which is given in
Section VI. Section VII illustrates the issues identified in
this article and applies the strategy using both synthetic and
experimental data. The performance of the proposed strategy
is also demonstrated in that section.

II. BACKGROUND AND CONTEXT
The kernel width of the RBF kernels is a tuning parameter
for an RBF-KPCA. Kernel width is usually specified accord-
ing to empirical values [7], empirical equations [8], cross-
validation [9] and optimization with respect to the correct
detection performance [10], [11]. Some works have com-
pared the performance of kernel-based methods with various
kernel widths empirically [12], [13]. To date, it has been
shown that the RBF kernel will approach to the linear kernel
when the kernel width is large [14], [15]. The influence of
the kernel width on the performance of kernel-based anomaly
detection methods may also be considered from a theoretical
perspective. For example, [15] investigated the influence of

the tuning of the RBF kernel width on the anomaly detection
performance of support vector machines.

The standard Hotelling’s T 2 is used as a monitoring statis-
tic in many works [3], [4], [13], [16], [17]. Recent works
have defined the SPE for KPCA in various different ways
[13], [17], [18]. Recently, [13] also demonstrated that the
value of the RBF kernel will approach zero when the test
sample moves sufficiently far away from the training data,
leading to the monitoring statistic T 2 approaching a constant
value. Indicators based on a combination of T 2 and SPE
[16], [19], as well as other statistics [4], [20], have also been
proposed to improve the anomaly detection performance. The
underlying problem motivating these developments is that in
RBF-KPCA, the value of T 2 does not increase monotoni-
cally with respect to the magnitude of the anomaly. Usually,
an upper control limit is adopted following the practice in
linear PCA, such that an anomaly is detected when the mon-
itoring statistic is larger than its control limit. A few works
have considered both upper and lower control limits for T 2

due to the non-monotonic behaviour [9].
To summarize, the kernel width tuning and the monitor-

ing statistic selection influence the anomaly detection per-
formance of RBF-KPCA. This article will address these
issues by analysing the behaviour of RBF-KPCA and asso-
ciated monitoring statistics with respect to the kernel width.
Based on the behaviour, we will make a recommendation for
the monitoring statistic selection and a tuning strategy for
RBF-KPCA.

III. KERNEL PCA AND RBF KERNELS
A. KERNEL PCA WITH RBF KERNELS FOR MONITORING
As formulated in [21], KPCA first projects the original
variables to a new feature space, then conducts dimension
reduction in the new feature space to obtain the kernel Prin-
cipal Components (PCs). Assuming the normalized training
dataset X = {x1, x2, · · · , xn} ∈ Rm×n includes n data
samples of m variables, under the KPCA framework, X is
first projected to another feature space 8. The feature space
8 has infinite dimensions when the RBF kernel is applied.
This means that a vector of measurements x undergoes a
mapping to the feature space 8(x), x 7→ 8(x), where x =
[x1, x2, . . . , xm] and 8(x) = [φ1(x), φ2(x), . . . , φ∞(x)]. The
kernel features 8(x) are the projected variables in the new
feature space. Although 8(x) cannot be calculated directly,
K ∈ Rn×n, the matrix of dot products of8(x) can be obtained
using the kernel function. The RBF kernel function defines
the entries of the kernel matrix K :

Ki,j = 8(xi) ·8(xj)

= φ1(xi)φ1(xj)+ · · · + φ∞(xi)φ∞(xj)

= exp

(
−
(xi − xj)>(xi − xj)

σ 2

)
(1)

where xi and xj are two data samples. σ is the kernel width
of RBF kernels. The kernel function Ki,j is the dot product of
8(xi) and 8(xj).
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It is not guaranteed that 8(X ), the projections of X to the
kernel feature space, are centered. Therefore the K matrix is
centered such that 8(X ) is also centered:

K̃ = (8(X )− 8̄)> · (8(X )− 8̄) = 8̃(X )> · 8̃(X )

= K −
1
n
1n×nK −

1
n
K1n×n +

1
n2

1n×nK1n×n (2)

where 8̄ = 1/n
∑n

i=18(xi) is the center of 8(X ). 8̃(X ) is
the centered result of 8(X ). 1n×n is an n× n matrix with all
entries having value 1.

In the second step, PCA is implemented in the 8 space
by applying eigenvalue decomposition to the centered kernel
matrix K̃ :

K̃ = α>3−1α (3)

where α = {α(1), · · · ,α(n)}. The l-th eigenvector is α(l) =

{α
(l)
1 , · · · , α

(l)
n } ∈ Rn×1 is the l-th eigenvector. 3 =

diag{λ1, · · · , λn} where λl is the l-th eigenvalue. Assuming
the first L kernel PCs are retained, the value of the l-th kernel
PC for xj is y

(l)
j , given by:

y(l)j = V (l)
· 8̃(xj) =

n∑
i=1

α̃
(l)
i K̃i,j (4)

where α̃(l)i is the i-th entry of a normalized version of α(l)

such that ‖α̃(l)‖2 = 1/λl for l = 1, . . . ,L and V (l) is the l-th
row of the projection matrix V . Although8(X ) and V cannot
be calculated in RBF-KPCA, the kernel PCs, which are the
principal components of 8(x), can be calculated explicitly
using Eqn (4) with α̃ and K̃ . Throughout the paper, L is
chosen such that 99% of the variability in the centered kernel
features 8̃(x) is explained. The centered kernel features can
be reconstructed as

ˆ̃
8(x) = V> · V · 8̃(x). (5)

The difference between 8̃(x) and ˆ̃8(x) is because of the
infinite number of kernel PCs that are not retained when V

is used. A significant difference between 8̃(x) and ˆ̃8(x) can
indicate that the KPCA model does not adequately describe
the data.

A monitoring statistic is usually defined as a function of
the retained kernel PCs. For example, the T 2 statistic of the
j-th sample xj is:

T 2
j = y>j 3

−1
L yj =

L∑
l=1

λ−1l

(
n∑
i=1

α̃
(l)
i K̃i,j

)2

(6)

where 3L = diag{λ1, . . . , λL} is a diagonal matrix with
the first L eigenvalues that correspond to the first L kernel
PCs. For a test sample xtest, T 2 is calculated using the cor-
responding kernel PCs ytest. The value of ytest is small when
xtest is close to the center of healthy data because in Eqn (2),
the projected 8(xtest) will be close to 8̄ and the K̃ will be
close to zero. Hence T 2 will be small. The value of ytest is
also small when xtest is anomalous, i.e. located far away from

the healthy data, because the projection of xtest to the retained
L kernel PCs will be small. T 2 will also be small in this case.
The fact that T 2 is small for both casesmeans that it is difficult
to distinguish anomalies from healthy data when using this
particular monitoring statistic. This comment applies even if
n kernel PCs are retained, because there will always be an
infinite number of kernel PCs that are not retained in ytest.
The non-monotonic behaviour makes T 2 suboptimal as a
monitoring statistic when applying RBF-KPCA.

The SPE for KPCA-based monitoring has been defined
in various ways [3], [4], [9]. Here we define the SPE of xj
as the second order norm of the difference between 8̃(x̃j),
the centered projection of a normalized sample x̃j in the kernel

feature space, and ˆ̃8(x̃j), the reconstruction of 8̃(x̃j) using
kernel PCs obtained by KPCA [2]:

SPEj = ‖8̃(x̃j)−
ˆ̃
8(x̃j)‖2

= ‖8̃(x̃j)− V> · V · 8̃(x̃j)‖2
= ‖8̃(x̃j)‖2 − 2(8̃>(x̃j) · V>) · (V · 8̃(x̃j))

+ (V> · V · 8̃(x̃j))> · V> · V · 8̃(x̃j)

= ‖8̃(x̃j)‖2 − (V · 8̃(x̃j))> · (V · 8̃(x̃j)) (7)

where, as in Eqn (4), V is the projection matrix from the
feature space8 to the kernel PC space such that V ·V> = I .
80 = 1/n

∑n
i=18(x̃i) is the center of the projections of the

training samples in the kernel feature space. Although 8̃(x̃)
cannot be obtained directly, its second order norm is:

‖8̃(x̃j)‖2 = 8>(x̃j) ·8(x̃j)− 28>(x̃j) ·80 +8
>

0 80

= k(xj, xj)−
2
n

n∑
i=1

k(xi, xj)+
1
n2

n∑
i,j=1

k(xi, xj)

= 1− 2K̄j + K̄ . (8)

where K̄j is the mean of the j-th row in K and K̄ is the mean
of all entries in K . The second term of Eqn (7) is the second
order norm of the kernel PCs yj of xj:

(V · 8̃(x̃j))> · (V · 8̃(x̃j)) = y>j yj. (9)

Therefore, SPE for KPCA can be written explicitly:

SPEj = 1− 2K̄j + K̄ − y>j yj (10)

For a test sample xtest, the SPE is calculated by using themean
of the kernel vector 1/n

∑n
i=1 k(xi, xtest) and ytest as K̄j and yj

in Eqn (10), respectively.

B. ILLUSTRATIVE EXAMPLES
1) THE BEHAVIOUR OF MONITORING STATISTICS
The following illustrative example compares the performance
of T 2 and SPE obtained by PCA and RBF-KPCA for various
types of anomalies. The example demonstrates that the roles
of T 2 and SPE, respectively, in RBF-KPCA are not the same
as their roles in PCA. The data sets used for training and test-
ing are plotted in Fig. 1. The training data are generated from
a linear algebraic model with white Gaussian disturbances.
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FIGURE 1. Data plot for the illustrative example.

Three test samples represent three anomalous cases. Test 1
represents the case where the linear relationship between the
variables still holds, but the values exceed the healthy range.
Test 2 is the case where the measurements of variable 1 and
variable 2 each fall within the same range of values as the
healthy case, but the relationship between the variables is not
the same as in the healthy case. Test 3 combines both cases
where the variables exceed the range and follow a different
relationship. PCA and RBF-KPCA are applied to these data.
In this example, PCA obtains two PCs. The first PC with the
largest variance is retained to calculate T 2 and the second PC
is used for SPE. In KPCA, kernel PCs are retained such that
the percentage of the accumulated variance explained by the
kernel PCs is over 99%.

TABLE 1. Monitoring statistics for illustrative example of Fig. 1.

Table 1 compares the T 2 and the SPE for PCA and KPCA,
respectively. The upper control limit for each monitoring
statistic is defined as the 95th percentile of the monitoring
statistic values obtained in the training set. An anomalous
sample is detected by a monitoring statistic if the value of this
statistic obtained for the sample exceeds the control limit. The
results demonstrate that:

1) In PCA, T 2 detects the case where the variables exceed
the healthy operating range. SPE detects the case where
the sample does not follow the model of the training
data. PCA needs both T 2 and SPE to detect all the three
anomalies.

2) T 2 for RBF-KPCA cannot detect the anomalies when
using the upper control limit because the value of T 2 in
Eqn (6) approaches zero when the anomaly is large.

3) In contrast, SPE for RBF-KPCA can detect all three
types of anomalies.

This example has demonstrated that the T 2 and the SPE
for KPCA behave differently when compared with the T 2

and the SPE for PCA. In particular, SPE as formulated in
Eqn (10) is sensitive both to changes in the model of the rela-
tionships between variables and is also sensitive to samples
falling outside of the range of the data from healthy operating
conditions. These findings are explored mathematically and
explained in Section V.

2) THE INFLUENCE OF TUNING
In the RBF kernel function shown in Eqn (1), the kernel
width σ regulates the behaviour of the kernel function. Such
behaviour will further influence the KPCA-based modelling
and anomaly detection. The following nonlinear algebraic
example is used to demonstrate the influence of σ :

x(1) ∼ U [−1.5, 1.5],

x(2) = x(1)2 − 1+ e,

where e ∼ N (0, 0.3) (11)

The first variable x(1) follows a uniform distribution in
order to represent a process variable that is bounded. The
relationship between x(1) and x(2) is quadratic, resulting in
a nonlinear dataset. The second variable x(2) has Gaussian
noise that represents the measurement noise that is often
found in real-life process data. The training dataset contains
500 samples randomly generated using Eqn (11). Various σ
values are used to train the KPCAmodel on the dataset.When
applied to anomaly detection, the SPE is calculated for the
samples. The upper control limit of SPE is used such that a
data sample with the SPE value exceeding the control limit
is detected as an anomaly. For this two-dimensional problem,
it is possible to visualize the detection contours obtained by
selecting the control limit of the SPE as the 99th percentile of
the SPE values obtained on the training data and connecting
the points at which the SPE reaches its control limit for each
KPCA model.

The shaded area in each figure shows the healthy range
and samples in the white area are anomalous. Fig. 2(a) shows
that a small σ value yields an over-fitted model, where ‘over-
fitted’ means that the contour also captures the noise existing
in the training data. New data generated by the same model
in Eqn (11) will be detected as anomalies due to the existence
of noise. Larger σ values will result in relaxed detection
contours. However, when σ is too large, Fig. 2(d) shows that
the under-fitted detection contour loses its ability to capture
the nonlinear profile of the data.

To summarize, the tuning of σ influences the perfor-
mance of RBF-KPCA and the SPE for anomaly detection.
In the following sections we will investigate the influence
of σ and the behaviour of monitoring statistics through
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FIGURE 2. SPE detection contours of RBF-KPCA with various kernel
widths. Yellow-shaded areas: range of values classified as healthy.

asymptotic analysis. Moreover, we will analyse and explain
why SPE (Eqn (10)) and not T 2 (Eqn (6)) should be used as
the monitoring statistic for RBF-KPCA applications.

IV. ASYMPTOTIC BEHAVIOUR OF RBF KERNELS
This section investigates the asymptotic behaviour of the RBF
kernels, both when the σ value tends to an exceedingly large
value and conversely when it tends to an exceedingly small
value. We assume the kernel width σ > 0 throughout this
article.

A. EXCEEDINGLY LARGE KERNEL WIDTH (σ → ∞)
This section shows that when σ is large, the centered RBF
kernel matrix is a scaled version of the centered kernel matrix
obtained by a linear kernel. The reason for comparing cen-
tered kernel matrices is that, as mentioned in Section III-A,
the PCA step is applied to the centered kernel matrix K̃ in
KPCA.

1) TRAINING THE MONITORING MODEL
The i, j-th entry of the kernel matrix K is:

Ki,j = lim
σ 2→∞

exp

(
−
(xi − xj)>(xi − xj)

σ 2

)

= lim
σ 2→∞

[
1−

(xi − xj)>(xi − xj)
σ 2

+ o

(
(xi − xj)>(xi − xj)

σ 2

)]
≈ 1−

1
σ 2

(
x>i xi + x

>
j xj − 2x>i xj

)
(12)

In this article, σ is considered exceedingly large when
o
(
(xi − xj)>(xi − xj)/σ 2

)
≈ 0 for all xi and xj in the training

dataset. Eqn (12) keeps the second order terms after the Taylor
expansion because the result in Eqn (12) is a more accurate
estimation of Ki,j than assuming Ki,j as a constant. Moreover,
the kernel width σ cannot be infinity in practice. A test sample
xtest may deviate significantly from the training data, making
themagnitude of xtest comparable with σ . In this case, the sec-
ond order terms cannot be neglected. Section V investigates
the case when xtest as well as σ approaches infinity.

The kernel matrix K will be centered using Eqn (2). The
i, j-th entry of K̃ is therefore:

K̃i,j = Ki,j − K̄i,row − K̄col,j + K̄ (13)

In Eqn (12), K̄i,row and K̄col,j are the means of i-th row and
j-th column of K , respectively.

K̄i,row=
1
n

n∑
j=1

Ki,j

=
1
n

n∑
j=1

[
1−

1
σ 2

(
x>i xi + x

>
j xj − 2x>i xj

)]

= 1−
1
σ 2 x

>
i xi−

1
nσ 2

n∑
j=1

x>j xj+
2
nσ 2

n∑
j=1

x>i xj (14)

K̄col,j= 1−
1
σ 2 x

>
j xj−

1
nσ 2

n∑
i=1

x>i xi+
2
nσ 2

n∑
i=1

x>i xj (15)

K̄ is the mean of all entries of K :

K̄ = 1−
2
nσ 2

n∑
i=1

x>i xi +
2

n2σ 2

n∑
i=1

n∑
j=1

x>i xj. (16)

Hence the centered kernel matrix K̃ has the following entry:

K̃i,j =
2
σ 2

x>i xj − 1
n

 n∑
j=1

x>i xj +
n∑
i=1

x>i xj


+

1
n2

n∑
i=1

n∑
j=1

x>i xj

 . (17)

As shown in [22], KPCA with a linear kernel, defined as
Klin(i, j) = x>i xj, will reduce to the ordinary linear PCA. The
centered linear kernel matrix is defined as:

K̃lin,i,j = x>i xj −
1
n

 n∑
i=1

x>i xj +
n∑
j=1

x>i xj


+

1
n2

n∑
i=1

n∑
j=1

x>i xj. (18)

A comparison of Eqns (17) and (18) shows that K̃i,j =
2σ−2K̃lin,i,j. Thus, when σ is large, the RBF kernel will gen-
erate a centered kernel matrix whose entries are proportional
to the entries of the centered kernel matrix obtained by the
linear kernel. Hence the eigenvectors and eigenvalues of the
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kernel matrix obtained by the RBF kernel will be proportional
to those of the linear kernel matrix. Moreover, when σ is
exceedingly large, the number of kernel PCs of the illustrative
example in Fig. 2 has already reduced to two because L = 2
given the criterion of 99% of variability, which is the same as
the linear PCA result. This explains the behaviour in Fig. 2(d).

2) FOR A TEST SAMPLE xtest
The test kernel vector Ki,test of xtest is:

Ki,test = lim
σ 2→∞

exp
(
−
(xi − xtest)>(xi − xtest)

σ 2

)
≈ 1−

1
σ 2

(
x>i xi + x

>
testxtest − 2x>i xtest

)
. (19)

The centered value K̃i,test is:

K̃i,test =
2
σ 2

x>i xtest − 1
n

n∑
i=1

x>i xtest −
1
n

n∑
j=1

x>i x
>
j

+
1
n2

n∑
i=1

n∑
j=1

x>i xj

 . (20)

For the linear kernel,

Klin,i,test = x>i xtest. (21)

The centered kernel vector K̃lin,i,test is:

K̃lin,i,test = x>i xtest −
1
n

 n∑
i=1

x>i xtest +
n∑
j=1

x>i xj


+

1
n2

n∑
i=1

n∑
j=1

x>i xj. (22)

Therefore, K̃i,test = 2σ−2K̃lin,i,test. To conclude, the RBF
kernel will result in centered kernel matrices and kernel vec-
tors that are proportional to the equivalent centered kernel
matrix and the equivalent kernel vector obtained by a linear
kernel when σ is exceedingly large relative to the training
dataset Xtrain and the test sample xtest. The behaviour of
RBF-KPCAwhen xtest also approaches infinity will be inves-
tigated later.

B. EXCEEDINGLY SMALL KERNEL WIDTH (σ2 → 0)
1) TRAINING THE MONITORING MODEL
On the other hand, the value of σ is considered exceedingly
small when the kernel function k(xi, xj) will reduce to the
Kronecker Delta (δ) function:

Ki,j = lim
σ 2→0

exp

(
−
(xi − xj)>(xi − xj)

σ 2

)

=

{
1, i = j
0, i 6= j.

(23)

This results in the kernel matrix K being an n× n identity
matrix In×n. The centered kernel matrix K̃ then becomes:

K̃=


1−1/n −1/n −1/n . . . −1/n
−1/n 1−1/n −1/n . . . −1/n
. . . . . .

−1/n −1/n −1/n . . . 1− 1/n

 . (24)

which has n − 1 eigenvalues λ1 = λ2 = · · · = λn−1 = 1
and one eigenvalue λn = 0. The first n − 1 normalized
eigenvectors satisfy the following condition:

n∑
i=1

α̃
(l)
i = 0 for l = [1, 2, · · · , n− 1]. (25)

2) FOR A NEW SAMPLE xtest
According to Eqn (23), Ki,test = 0 if xtest /∈ Xtrain for all i.
The centered value K̃i,test is:

K̃i,test = Ki,test − K̄i,test − K̄i,row + K̄ = 0 (26)

where K̄i,row = K̄ = 1/n. Therefore, both the kernel vector
Ki,test and centered kernel vector K̃i,test are zero vectors.
Fig. 2(a) is an example of an over-fitted model caused by
σ being set too small. In the extreme case of over-fitting,
the detection contour will shrink into a Dirac measure of the
training set Xtrain in the variable space. In other words, any
test sample that is not identical to a sample in the training set
will be detected as an anomaly.

V. BEHAVIOUR OF MONITORING STATISTICS
IN RBF-KPCA
This section demonstrates why the SPE defined by Eqn (10)
is a good choice for a general-purpose single monitoring
statistic for RBF-KPCA. The calculation of SPE given by
Eqns (7)-(10) is a quadratic measure of themismatch between
the infinite number of features and their reconstructed results
after applying PCA to the feature space. As discussed in
Section III-A, a large reconstruction error between 8̃(x̃) and
ˆ̃
8(x̃) indicates that the KPCA model no longer applies. SPE
increases monotonically as the reconstruction error increases.

Other than for the over-fitted case when σ is too small,
the SPE for RBF-KPCA increases monotonically with
respect to the magnitude of anomalies. Therefore, the anoma-
lies can be detected using the SPE for RBF-KPCA and its
upper control limit. Nevertheless, T 2 has been widely used
in the literature as a monitoring statistic in RBF-KPCA.
Section V-B will analyse and explain the properties of T 2.
Its non-monotonic behaviour explains the unsatisfactory
detection performance of T 2 for KPCA. Moreover, some of
the adjustments that previous authors have made to adapt T 2

as a monitoring statistic for RBF-KPCA, such as the need for
both upper and lower control limits [9], can also be explained.

A. BEHAVIOUR OF SPE FOR RBF-KPCA
As previously given in Eqn (7), we define the SPE as
the difference between the kernel features 8̃(x̃) and the
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reconstructed ˆ̃8(x̃) after applying PCA in the8 space. When
using the RBF kernel, the following limit of SPE exists when
xtest→∞:

SPEtest,lim = 1− 2K̄ (lim)
i,test + K̄ − y

(lim)>
test y(lim)

test

= 1+ K̄ − y(lim)>
test y(lim)

test

s.t. y(lim)>
test y(lim)

test =

L∑
l=1

(
n∑
i=1

α̃
(l)
i

[
K̄ − K̄i,row

])2

(27)

where K̄ (lim)
i,test = 0. Since SPE converges to a non-zero

finite value when xtest approaches infinity, SPE cannot be χ2

distributed because a χ2-distributed random variable ranges
from zero to infinity. Therefore, unlike in ordinary PCA,
the control limits for T 2 and SPE should not be set according
to the χ2 distribution.

The illustrative example presented in Fig. 1 and Table 1 has
demonstrated that the SPE in RBF-KPCA can detect model
mismatch and violation of the healthy range. The reason is
that, when the RBF kernel is used, the higher-dimensional
kernel PCs are supposed to be a comprehensive description
of the training data in the original variable space since these
kernel PCs are obtained such that the reconstruction error is
minimized for the training data. Therefore, the process model
and the feasible range are learned simultaneously.

FIGURE 3. SPE with respect to d2/σ2. σ2 = 0.05: over-fitted model.
σ2 = 20000: linear model.

The SPE can distinguish between the case where the test
sample is located close to the center of the training data and
the case where the test sample is located far away from the
training data. To demonstrate the behaviour, Fig. 3 shows the
trends of SPE with respect to d2/σ 2 given σ values, where
d =
√
‖x‖2 is the Euclidean distance between a data sample

and the origin in the variable space. The quantity d repre-
sents the distance between a data sample and the normalized
training dataset. When σ is extremely small, the RBF-KPCA
model is over-fitted to the data in the training set, as shown
in Fig. 2(a). In this situation, as may be expected, the SPE has
non-monotonic behaviour because any new data point that is

in between the training samples is considered as anomalous.
For larger values of σ , the SPE increases monotonically as d
increases, indicating the sample x deviates from the training
data. It is also necessary to notice that, although the SPE for
KPCA increases monotonically when σ is extremely large,
e.g. in Fig. 3(b), the σ values may lead to under-fitted models
that cannot capture the data nonlinearity and, as a result, such
σ values should be avoided.
The criterion for anomaly detection using SPE is:

SPEtest > SPEUCL (28)

where SPEUCL is the upper control limit of SPE. This value
may be set according to the training data.

B. BEHAVIOUR OF T 2

The T 2 statistic defined by Eqn (6) is suitable for PCA-based
anomaly detection because it increases as a test data sample
moves away from the training set and an anomaly is detected
if T 2 exceeds its upper control limit. However, in RBF-KPCA
T 2 cannot be monotonic, as highlighted in Section III-A.
In this section we investigate the behaviour of T 2 with respect
to both σ and xtest. Fig. 4 shows the trends of T 2 with
respect to d2/σ 2 given σ values for the illustrative example
of Fig. 2. It is evident that the T 2 statistics do not increase
monotonically as d increases for any choice of σ .

FIGURE 4. T 2 with respect to d2/σ2. σ2 = 0.05: over-fitted model.
σ2 = 10000: linear model.

It is necessary for a statistic to have different values for
healthy samples than for anomalous samples. However, in the
case of RBF-KPCA, the non-monotonicity of T 2 exists in all
curves in Fig. 4. In all curves in Fig. 4, T 2 has a relatively
small value when d2/σ 2 is small, i.e. when the test sample is
located among the healthy data. However, as d increases, T 2

becomes small again when the test sample is far away from
the healthy data and the anomaly is significant. Therefore,
T 2 is non-monotonic no matter if the monitoring model is
over-fitted, is under-fitted, or is properly fitted. Such non-
monotonic behaviour makes it impossible to establish if the
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test sample is healthy or anomalous on the sole basis of a
small value of T 2. Such non-monotonic behaviour can be
demonstrated by mathematical analysis.

1) UPPER BOUND
For an arbitrary test sample xtest ∈ Rr×1, the monitoring
statistic T 2 is calculated as follows using the centered kernel
vector K̃test and the eigenvectors obtained from the training
data.

T 2
test

=

L∑
l=1

λ−1l

(
n∑
i=1

α̃
(l)
i K̃i,test

)2

≤

L∑
l=1

λ−1l

 n∑
i=1

α̃
(l)2
i K̃ 2

i,test +

n∑
i6=j

∣∣∣α̃(l)i α̃(l)j ∣∣∣ ∣∣∣K̃i,testK̃j,test∣∣∣

(29)

where K̃i,test and K̃j,test are the i-th and j-th entry of the
centered kernel vector K̃test, respectively. α̃

(l)
i and α̃(l)i are

i-th and j-th entry of the l-th normalized eigenvector α̃(l),
respectively.

The following inequalities hold when using the RBF
kernel:

0 ≤ Ki,test ≤ 1, 0 ≤ K̄i,row ≤ 1,

0 ≤ K̄i,test ≤ 1, 0 ≤ K̄ ≤ 1.

As a result, the range of
∣∣∣K̃i,test∣∣∣ may be given as:

0 ≤
∣∣∣K̃i,test∣∣∣ = ∣∣Ki,test − K̄i,row − K̄i,test + K̄ ∣∣ ≤ 2. (30)

The upper bound of T 2
test is:

T 2
test ≤

L∑
l=1

λ−1l

 n∑
i=1

4α̃(l)2i +

n∑
i6=k

4
∣∣∣α̃(l)i α̃(l)k ∣∣∣


= 4

L∑
l=1

λ−1l

[
n∑
i=1

n∑
k=1

∣∣∣α̃(l)i α̃(k)i

∣∣∣] (31)

which is dependent only on the α̃s and λs obtained in the
training procedure. Eqn (31) shows that the monitoring statis-
tic T 2 of all possible samples has an upper bound when the
training data and the kernel width are both fixed.

2) LARGE xtest
This section examines the extreme case of anomalies, i.e. the
xtest deviates significantly from the training data. Assuming
a test sample x(lim)

test has sufficiently large distances from all
training samples such that:

K (lim)
i,test = k(x(lim)

test , xi)

= exp

(
−
(xi − x

(lim)
test )>(xi − x

(lim)
test )

σ 2

)
= 0

for i = [1, 2, . . . , n], (32)

the centered kernel vector of this test sample is:

K̃ (lim)
i,test = K (lim)

i,test − K̄
(lim)
i,tow − K̄i,test + K̄

= K̄ − K̄i,row (33)

where K (lim)
i,test = K̄ (lim)

i,test = 0.
The T 2 statistic in this case becomes:

T 2
test,lim =

L∑
l=1

λ−1l

[
n∑
i=1

α̃
(l)
i K̃

(lim)
i,test

]2

=

L∑
l=1

λ−1l

(
n∑
i=1

α̃
(l)
i

[
K̄ − K̄i,row

])2

(34)

which is a constant when the kernel matrix K of the training
data is known. It can be seen that the monitoring statistic
T 2 will converge to this constant value when the test sample
deviates significantly from the training samples.

3) LARGE σ AND LARGE xtest
Fig. 5 shows the contour plot of T 2 when zooming out
Fig. 2(c) to a larger scale. It shows that T 2 is non-monotonic
in all directions as d increases. Fig. 4(b) further suggests that a
common turning point of T 2 exists when the σ is exceedingly
large.

FIGURE 5. T 2 contour for the illustrative example when σ2 = 1.

For a given large σ value, the common turning point of

d̂test = σ/
√
2 (35)

exists for T 2 statistics when the nonlinear part in RBF ker-
nels becomes dominant. A detailed derivation of the turning
point is given in the Appendix for the case where xtest is
one-dimensional and dtest = |xtest|. The turning point is in
accordance with the observation in Fig. 4(b): for σ 2

=300,
500 and 1000, the turning points of T 2 are all at d2/σ 2

= 0.5.

4) LIMITATION OF T 2 AS A MONITORING STATISTIC
The main issue of T 2 as a monitoring statistic in RBF-KPCA
is that it is non-monotonic. When the σ value is too large,
T 2 will firstly increase then will decrease as xtest moves
away from the training data according to Fig. 4(b). The non-
monotonic behaviour indicates that, if the upper control limit
of T 2 is selected such that a fault is detected if T 2 > T 2

UCL,
larger anomalies may be missed. A value of σ may exist such
that T 2 is monotonically decreasing when the test sample
moves away from the training data. A lower control limit of
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FIGURE 6. Asymptotic behaviour of SPE and T 2 when σ2 = 1. A: the
boundary of healthy behaviour. B: SPE detects an anomaly using an upper
control limit of 0.25. C: T 2 detects an anomaly using a lower control limit
of 0.04.

T 2 could be used and a fault is detected when T 2 < T 2
LCL.

However, since T 2 can also be small when the test samples
are close to the center of the training data (left side of the
curves in Fig. 4(a)), the lower control limit will identify these
test samples as anomalies while they are within the training
dataset, leading to the small detection contours in Fig. 4(b)
and increased false alarms. In addition to having clear prac-
tical implications, such false alarms can lead to mislead-
ing results when tuning the kernel width σ using empirical
approaches.

Fig. 6 compares the T 2 and the SPE with respect to d2/σ 2

when σ 2
= 1. The training data are in the range d2/σ 2

≤ 5.6,
shown by line A. SPE is close to zero when the test sample
is within the range of the training data and rises as the test
sample moves away from the training data. An SPE control
limit of 0.25 detects an anomalywhen d2/σ 2

≥ 8.2, as shown
by line B. The value of T 2 is not monotonic, as is also evident
in Fig. 4. As discussed above, T 2 could be used with a lower
control limit. A lower control limit of 0.04 would detect a test
sample as anomalous when d2/σ 2

≥ 18.6, as shown by line
C. If the lower control limit for T 2 were higher, for example
0.075, then anomalies could be detected earlier, but then the
healthy data within the range of the training data would also
be detected as anomalous.

It may be observed that T 2 has low values both when a
test sample is located close to the center of the training data
(d2 → 0) and when a test sample is located far from the
training data (d2 → ∞). The value of T 2 in the latter case
can be calculated using Eqn (34). In contrast the SPE is low
when the test sample is close to the training data (d2 → 0)
and rises as the test sample moves away from the training data
(d2→∞).

VI. TUNING STRATEGY FOR RBF-KPCA
Previous sections have demonstrated that the tuning of the
kernel width σ influences the performance of RBF-KPCA.
When training the RBF-KPCA model for anomaly detection,
the dataset used for training is usually assumed to be from
healthy operations, containing no samples that may be con-
sidered as anomalous. A cross-validation approach for tuning
σ divides the data from healthy operations into training and
validation sets. The RBF-KPCA model with various initial
guesses of σ are trained on the training set and the σ which
achieves a low false alarm rate on the cross-validation set
is chosen as the appropriate σopt. However, this approach

may not be sufficient for RBF-KPCA. In Fig. 2(d), the small
number of training samples lying outside the detection con-
tour indicates that, even when σ is inappropriate, the number
of alarms triggered on the original dataset because of the
mismatch between model and data can still be small. Hence
the cross-validation approach may not tune the σ correctly if
the initial guesses of σ are in an incorrect range. Therefore,
this section proposes the strategy for tuning the kernel width
σ in RBF-KPCA which combines the estimation of σ based
on the previous analysis and the cross-validation approach.

A. MAXIMUM VALUE OF σ
It is important to avoid a too large σ value as large σ values
may impact the ability of RBF-KPCA to capture data non-
linearity (e.g. Fig. 2(d)). Therefore, an upper bound of σ is
important. According to Eqn (53) given in the Appendix, it is
possible to estimate the maximum value of σ by the following
empirical equation:

σmax =
√
2dtrain,max (36)

where dtrain,max is the maximum distance defined from the
training set, i.e. dtrain,max = max

√
‖xi − xj‖2 for xi, xj ∈

Xtrain. A criterion for a maximum value of σ is required such
that the RBF kernels in Eqn (1) are sufficiently localized
without being over-fitted. This can be achieved if the values
of ytest from Eqn (4) decrease monotonically when the test
sample xtest is located outside the training data set. This is
achieved for the same value of d/σ as in Eqn (35). Setting
σmax such that the largest distance between the training sam-
ples (dtrain,max) can be accounted for leads to Eqn (36).

B. SUMMARY OF THE TUNING STRATEGY
After σmax is estimated, the appropriate σ value will be
determined by the cross-validation performance. Eqn (27)
shows that the kernel PCs converge to finite values, indicating
that the kernel PCs cannot be Gaussian distributed. Thus the
analytic form for the distribution of SPE for RBF-KPCA is
not known. Therefore, it is recommended to use a percentile
of the SPEs of the training data as the control limit of SPE
with a certain confidence level.

The strategy for tuning the kernel width in RBF-KPCA is
summarized as:

1. Estimate the upper limit of σ by σmax =
√
2dtrain,max.

2. Enumerate between σ = 0 and σ = σmax to get
the alarm rates on the cross-validation set. In this step
a provisional control limit of a monitoring statistic is
set so that the alarm rate is expected to be minimized
(usually the maximum value of the monitoring statistic
of the training set).

3. Set the smallest σ that leads to an acceptable level of
alarm rates on the cross-validation set as σopt.

4. Specify the final control limit of themonitoring statistic
for anomaly detection.

For the illustrative example in Fig. 2, Fig 7(a) compares the
eigenspectra obtained when σ 2 is equal to 0.05, 1, and 20000,
respectively. It may be observed that when σ is selected
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FIGURE 7. Eigenspectra and alarm rates of the illustrative example.

properly, such as σ 2
= 1, the eigenvalues have a rapid

trend of decreasing, resulting in a small number of kernel
PCs. Fig. 7(b) shows the alarm rates with respect to σ 2 and
the optimal σ value estimated when using the SPE as the
monitoring statistic.

VII. EXAMPLES
A. NUMERICAL SIMULATION
The first example is based on the illustrative example
described in Section III-B. In addition to the qualitative
detection contours presented in Fig. 2, the anomaly detec-
tion performance of RBF-KPCA with various σ values will
be quantitatively compared. Set 1 is the healthy set with
500 samples in the illustrative example. It is randomly divided
into training and cross-validation sets with 250 samples in
each set. The σ value is tuned using the training and the cross-
validation sets by the strategy proposed in Section VI-B,
as shown in Fig. 7(b). The confidence level of control limits
is set as 1% of the monitoring statistic values obtained on
the training set. The RBF-KPCA anomaly detection model
is trained accordingly using Set 1. Set 2 comprises another
500 healthy samples generated using Eqn (11). The perfor-
mance of the RBF-KPCA model on Set 2 is used to eval-
uate the robustness of the RBF-KPCA approach. Set 3 is
an anomalous data set of 394 samples used for validating
the fault detection performance. The blue circles and the
red crosses in Fig. 8 represent Set 2 and Set 3, respectively.
An anomaly detection approach should be able to identify the
samples in Set 2 as healthy data and detect the samples in
Set 3 as anomalies.

In order to demonstrate the influence of kernel widths,
a variety of σ values are used. We select σ 2

= 0.2, 1.5, 5, 10

FIGURE 8. Detection contours obtained by RBF-KPCA and PCA.

and 100 for the RBF-KPCA and the SPE as the monitor-
ing statistic. The detection contours generated by the upper
control limits of SPE are compared in Fig. 8. The contour
obtained by PCA is also visualized (denoted as ‘‘Linear’’
in Fig. 7(b)). Fig. 8 shows that σ 2

opt,SPE = 1.5 can generate a
good detection contour while the contour is over-fitted when
σ is smaller than the optimal value (σ 2

= 0.2), and the
contour becomes loose when σ increases (σ 2

= 10).
For quantitative comparison, the False Alarm (FA) rate for

Set 2 and theMissedAlarm (MA) rate for Set 3 are defined as:

FA =
NAD

NSet2
, MA =

NND

NSet3
(37)

where NAD is the number of anomalies detected in Set 2 and
NSet2 is the number of samples in Set 2. NND denotes the
number of samples which are detected as healthy samples
in Set 3 and NSet3 is the number of samples in Set 3. The
FA rate represents the robustness of the monitoring model to
random variations in the healthy data. Since the confidence
level of control limits is set as 1%, the FA rate should be
close to 1%. The MA rate represents the sensitivity of the
monitoring model to anomalies. By inspecting Set 2 and Set
3 in Fig. 8, a good monitoring model should have no missed
alarms, i.e. zeroMA rate, because the two sets do not overlap.

TABLE 2. Quantitative performance.

Table 2 compares the quantitative performance, i.e. the
FA rate on Set 2 and the MA rate on Set 3, of the
RBF-KPCA approach with various σ values and the linear
PCA approach. It can be observed that, relative to other

1T 2 is used as the monitoring statistic in linear PCA because both two PCs
are retained. A data sample can always be reconstructed by the PCA model
with two PCs in this example.
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combinations, the SPE with σ 2
opt,SPE = 1.5 estimated in the

previous section (Fig. 7(b)) can achieve a MA rate equal
to zero with a FA rate close to 1%. The σ value smaller
than the σopt,SPE results in an over-fitted model which also
achieves a MA rate of zero, but with a high FA rate. This
indicates that the model is not robust to the randomness in the
healthy data. Moreover, larger σ values (e.g. σ 2

= 100 and
20000) may also achieve low FA rates as the detection con-
tours become relaxed. However, since the contours achieved
by these σ values do not match the profile of the healthy
data well, the monitoring model cannot differentiate properly
between the healthy data and the anomalous data. Thus the
MA rate increases as σ increases. An extreme case occurs
when linear PCA is applied. The FA rate is low while the
MA rate is high since the contour in Fig. 8 achieved by linear
PCA is different from the profile of the healthy data. This
further indicates that, although various σ values may achieve
similar FA rates in cross-validation, their performance in
anomaly detection can be different. A cross-validation strat-
egy that purely minimizes false alarms is insufficient for
tuning the σ .

B. EXPERIMENTAL BENCHMARK DATASET
1) DATASET DESCRIPTION
This example uses a real-life, experimental benchmark
dataset obtained from a pilot-scale multiphase flow facility.
It provides a demonstration of the influence of σ and com-
pares the performance of SPE and T 2 for KPCA on higher
dimensional real-life data with varying magnitudes of faults.
Eight process variables including flow rate, pressure, and
water level, are used for model training and validation. For
a full description of these variables and the experimental
facility, one may refer to [23].

FIGURE 9. Operating sequence for the air blockage fault.

This example uses the data from an operating mode with
120 m3 h−1 inlet air and 0.1 kg s−1 inlet water. The data used
for training were recorded when the facility was operating in
healthy conditions. A fault was manually induced in the inlet
air line by reducing the valve opening in a sequence of step-
wise increments to simulate a developing blockage fault in
the pipeline. This blockage fault influences the flow regime
in the facility, therefore changes the relationship of flow rates
and pressure measurements. The valve opening sequence for
introducing this fault is shown in Fig. 9. The real-life process
data collected when the fault is induced are plotted in Fig. 10
and RBF-KPCA is applied to the faulty data in Fig. 10.
It can be observed that the deviation of process measure-
ments becomes visible as the fault magnitude increases.

FIGURE 10. High density plot of the measurements from the air blockage
fault.

Therefore, this faulty dataset includes both an anomaly with
small and large magnitudes, making it suitable for demon-
strating the performance of anomaly detection.

2) RESULTS AND DISCUSSIONS
When applying the RBF-KPCA approach to this dataset,
the σ is tuned based on the strategy proposed in Section VI-B.
The results for the optimum value of σ 2 are shown in Fig. 11.
A fault is detected when the monitoring statistic exceeds its
control limit for a continuous sequence of 50 samples.

FIGURE 11. Alarm rates and σ2
opt,SPE obtained by SPE for KPCA.

FIGURE 12. Trend plot of SPE for RBF-KPCA with σ2
opt = 45.

FIGURE 13. Trend plot of SPE for RBF-KPCA with σ2 = 500.

Figs 12 to 14 show the performance of SPE. The SPE
obtained by RBF-KPCA with σ 2

opt,SPE = 45 (Fig. 12) can
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FIGURE 14. Trend plot of SPE for PCA.

FIGURE 15. Trend plot of T 2 for RBF-KPCA with σ2 = 2.

FIGURE 16. Trend plot of T 2 for RBF-KPCA with σ2 = 45.

FIGURE 17. Trend plot of T 2 for RBF-KPCA with σ2 = 1500.

FIGURE 18. Trend plot of T 2 for PCA.

detect the blockage fault earlier than the cases when σ is
exceedingly large (Fig. 13) and when the SPE is calculated
from linear PCA (Fig. 14).
Figs 15 to 18 compare the performance of T 2 obtained by

RBF-KPCA with σ 2
= 2, 45 and 1500 and by PCA, respec-

tively.When σ is small, Fig. 15 shows that T 2 decreases when
a fault occurs. This observation explains the decision of some
authors [9] to use a lower control limit for T 2. In Fig. 16,
where σ 2

= 45, T 2 first increases then reduces with respect
to the fault development. When σ is inappropriately tuned

(Fig. 17) and the upper control limit is used, T 2 can detect
the fault when its magnitude is small while faults with larger
magnitudeswill bemissed due to the non-monotonicity ofT 2.
The non-monotonicity issue of T 2 does not exist when PCA
is applied (Fig. 18). However, linear PCA with T 2 has a later
detection when compared with the result in Fig. 12 because
it cannot capture data nonlinearity.

This example shows that the behaviour of T 2 in
RBF-KPCA when σ is exceedingly large can be misleading.
In such a situation T 2 may be increasing when the fault mag-
nitude is small and the upper control limit can detect the fault.
However, since T 2 is non-monotonic, it drops back below the
upper control limit when the fault magnitude increases, lead-
ing to the RBF-KPCA approach failing to detect the fault with
large magnitudes. On the other hand, the performance of SPE
for RBF-KPCA is not influenced by the non-monotonicity
issue. RBF-KPCA with properly tuned σ values and SPE
as the monitoring statistic can detect faults with both large
and small magnitudes. Compared to the numerical example,
this real-life example with eight variables also shows that
the findings on the SPE and T 2 for RBF-KPCA can be
generalized to a higher dimensional, real-life dataset with a
real fault.

VIII. COMMENT ON OUTLIERS AND ANOMALIES
The assumption of the paper is that the training data are
healthy with no outliers or other issues of data quality.
Hawkins defined an outlier as an ‘‘Observation which devi-
ates so much from other observations as to arouse suspicion
it was generated by a different mechanism’’ [24]. Detection
and removal of outliers from the training data set falls under
the task of data cleaning and there are many method for data
cleaning, including various tests for outlier detection outlined
in the monograph by Hawkins.

The analysis in this article is formulated based on the
assumption that the training set has been cleaned of outliers
and contains only samples that arise during healthy oper-
ation. Any data sample that is far away from the training
data will therefore be classified as anomalous. The findings
of the paper including the influence of the kernel width,
the behaviour of the monitoring statistics, and the tuning
strategy, are valid under this assumption.

A future research direction is to consider the behaviour
of RBF-KPCA and the monitoring statistics when outliers
exist in the training data. The formulation of KPCA needs
to be adapted in order to account for outliers in training
data. The authors of [25]–[27] reported several ways to make
KPCA robust to outliers. The authors of [26] gave an example
of analysing the influence of outliers on the outcome of
KPCA. Also, [28], [29] presented alternative solutions to
the problem of anomaly detection with outliers. It will be
interesting to investigate the influence of the kernel width
and the behaviour of monitoring statistics in these robust
methods.
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IX. CONCLUSION
The selection of monitoring statistics and the tuning of
the RBF-KPCA for anomaly detection was investigated in
this article. The asymptotic analysis with respect to the kernel
width highlighted that inappropriate tuning of the kernel
width in RBF-KPCA may impact the performance. When
the kernel width is too small, the anomaly detection model
will be over-fitted and the false alarm rate will be high.
When the kernel width is too large, the model cannot capture
nonlinearity.

The behaviour of SPE and T 2 as monitoring statistics in
RBF-KPCA is proven to be different from the behaviour of
SPE and T 2 in linear methods. It is shown that T 2 is non-
monotonic with respect to the magnitude of the anomaly,
making it not optimal as a monitoring statistic. Under the
RBF-KPCA framework, the SPE is a better monitoring statis-
tic because it can detect both anomalies that exceed the
healthy range of variables and anomalies which do not follow
the model for the healthy data. The SPE as formulated for
RBF-KPCA can detect anomalies that would require both
T 2 and SPE in a linear method. Moreover, the SPE for
RBF-KPCA increases monotonically as the magnitude of the
anomalies gets larger, making it possible to set an upper
control limit for anomaly detection, which cannot be adopted
for T 2 due to its non-monotonicity. A tuning strategy for
the kernel width was proposed. Numerical and real-life case
studies showed the effectiveness of the tuning strategy for the
kernel width and for the SPE as a single monitoring statistic.

APPENDIX
Fig. 4(b) has shown that a common turning point at a
specific value of d2/σ 2 exists for T 2 when using large σ
values, resulting in a non-monotonic T 2. We explore the non-
monotonicity behaviour of T 2 and the common turning point
in this Appendix. To find the turning point, the derivative
of T 2

test with respect to xtest is investigated. Since T 2
test is a

function of K̃i,test, we try to find the local optimum for T 2
test

by finding a local optimum that applies to all K̃i,test.
It is clear that Ki,test is monotonically decreasing with

respect to the Euclidean distance between xtest and xi, i.e.
di,test =

√
‖xtest − xi‖2, because of the RBF function:

Ki,test = exp
(
−
(xi − xtest)>(xi − xtest)

σ 2

)
. (38)

However, K̃i,test may not be monotonic after centering
(Eqn (2)). The derivative of K̃i,test with respect to xtest is
investigated to check its monotonicity:

∂K̃i,test
∂xtest

=
∂
[
Ki,test − K̄i,test + Ci

]
∂xtest

(39)

where Ci = 1/n2
∑∑

(K·,·)− 1/n
∑

i(Ki,·) is constant with
respect to xtest. For simplicity, we consider the case where
xtest is a scalar.

By assuming xtest > xi, Eqn (39) can be simplified as:

∂K̃i,test
∂xtest

=

∂ exp
(
−

(xtest−xi)2

σ 2

)
∂xtest

−

1
n

∑n
j=1 exp

(
−

(xtest−xj)2

σ 2

)
∂xtest

=−
2
σ 2 (xtest−xi) exp

(
−
(xtest−xi)2

σ 2

)
+

2
nσ 2

n∑
j=1

(xtest−xj) exp

(
−
(xtest−xj)2

σ 2

)
. (40)

When the stationary point occurs for K̃i,test, Eqn (40) will
be equal to zero. Denoting ai = 2/σ 2(xtest − xi) exp(
−(xtest − xi)2/σ 2

)
, Eqn (41) holds for the stationary point:

ai −
1
n

n∑
j=1

aj = 0. (41)

Since

T 2
test =

L∑
l=1

λ−1l

(
n∑
i=1

α̃
(l)
i K̃i,test

)2

(42)

and

∂T 2
test

∂xtest
= 2

L∑
l=1

λ−1l

(
n∑
i=1

α̃
(l)
i K̃i,test

)(
n∑
i=1

α̃
(l)
i
∂K̃i,test
∂xtest

)
,

(43)

a sufficient but not necessary condition for T 2 having a maxi-
mum is that all K̃i,test have the same local maxima or minima.
If there exists a common stationary point for all K̃i,test, where
i = {1, . . . , n}, at xtest, the following matrix equation

1/n−1 1/n . . . 1/n
1/n 1/n− 1 . . . 1/n
. . .

1/n 1/n . . . 1/n−1



a1
a2
. . .

an

=0 (44)

is valid. The non-zero solution to Eqn (44) is any non-zero
vector {a1, a2, . . . , an} that satisfies a1 = a2 = · · · = an.
However, since xtest − xi are different for different i values,
the solution to Eqn (44) is infeasible. Instead, we consider the
following minimization problem where all K̃i,test have their
stationary points in a very small neighbourhood:

min
xtest

n∑
i=1

ai − 1
n

n∑
j=1

aj

2

s.t. ai =
2
σ 2 (xtest − xi) exp

(
−
(xtest − xi)2

σ 2

)
. (45)

To simplify this problem:

argmin
xtest

n∑
i=1

ai − 1
n

n∑
j=1

aj

2

= argmin
xtest

n− 1
n

n∑
i=1

a2i −
1
n

n∑
i=1

n∑
j6=i

aiaj


= argmin

xtest

n∑
i=1

n∑
j6=i

(
ai − aj

)2 (46)
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where

ai − aj =
2
σ 2 (xtest − xi) exp

(
−
(xtest − xi)2

σ 2

)
−

2
σ 2 (xtest − xj) exp

(
−
(xtest − xj)2

σ 2

)
. (47)

Now considering a function of x:

f (x) =
2
σ 2 x exp

(
−
x2

σ 2

)
, (48)

Eqn (47) can be written as:

ai − aj = f (xtest − xi)− f (xtest − xj). (49)

It is reasonable to assume that |xi|, |xj| � xtest. Eqn (49)
becomes:

ai − aj =
[
f (x − xi)− f (x − xj)

] ∣∣∣∣
x=xtest

≈ f ′(x)

∣∣∣∣
x=xtest

(xj − xi). (50)

Then the optimization problem in (46) becomes:

argmin
xtest

n∑
i=1

n∑
j6=i

(
f ′(x)

∣∣∣∣
x=xtest

(xj − xi)

)2

= argmin
xtest

f ′(x)

∣∣∣∣
x=xtest

n∑
i=1

n∑
j6=i

(xi − xj)2. (51)

Given that
∑n

i=1
∑n

j6=i(xi− xj)
2 is constant when the train-

ing set is fixed, the solution to this optimization problem will
be x̂test such that:

f ′(x)

∣∣∣∣
x=x̂test

=
2
σ 2

[
(1−

2x̂2test
σ 2 ) exp

(
−
x̂2test
σ 2

)]
=0. (52)

The solutions to this condition are:

x̂test,1 =
σ
√
2

and x̂test,2 = ∞. (53)

In this univariate case, the distance between xtest and the
origin is dtest = |xtest|. Therefore, the tuning point of T 2

test
exists such that d̂2test = σ 2/2, which explains the behaviour
in Fig. 4(b).
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