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ABSTRACT This article presents a two-stage framework for optimal Electric Vehicle (EV) charg-
ing/discharging strategy for DC Microgrid (MG) with Distributed Generators (DGs). A multi-objective
optimisation task aimed at minimising system losses and EV battery degradation with Vehicle-to-Grid (V2G)
peak shaving service has been realised. This coordinated EV integration into the DCMGwas formulated as a
directed weighted single source shortest path problem that was solved using a modified Dijkstra’s algorithm.
The weights of the edges were obtained using primal-dual interior point method. The proposed framework
has been experimentally verified using simulations with a test DCMG system with practical IEEE European
low voltage test feeder load profiles. Results show realisation of peak demand shaving leveraging on EV
discharge with minimal on-board battery degradation as well as reduced system losses. It is also shown that
the proposed two-stage framework reduces the battery state of charge (SOC) sample space requirements in
the analysis, thus, reducing the computational burden.

INDEX TERMS EV integration, dc microgrid, control, V2G, battery degradation, multi-objective optimi-
sation, optimal power flow, modified Dijkstra’s algorithm, power losses.

LIST OF SYMBOLS
Vg,i output voltage to DC source in bus i
V0,i nominal voltage in bus i
Rv,i virtual resistance in DG unit i
Ig,i DG output current in bus i
Ii injection current in bus i
Gij conductance between bus i and j
Rij resistance between bus i and j
Pi injection power in bus i
SOCt,i battery SOC at time t in bus i
Capref ,t,i battery capacity of reference at time t in bus i
Capt,i capacity of battery at time t
PEV ,t,i EV charging/discharging power at time t
SOHt,i battery State-of-Health
Capref ,nom,i nominal battery capacity of reference
La lithium battery linear aging coefficient
PSysLoss network system power losses
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ESys network system energy losses
ECap,t,i battery capacity losses
Wsys weighting factor for network system losses
Wcap weighting factor for battery capacity losses
Pt,i power injection at time t , in bus i
Pg,t,i generating power at time t , in bus i
Pd,t,i load power at time t , in bus i
M number of equality constraint equations
N number of buses in the network
D number of dispatchable DG bus
K number of DG bus deployed with GEVs
J Jacobian matrix
Vi,max maximum voltage in bus i
Vi,min minimum voltage in bus i
Pg,i,max maximum generating power in bus i
PEV ,i,max maximum EV charging/discharging power
Rv,i,max maximum virtual resistance in bus i
Rv,i,min minimum virtual resistance in bus i
ta time EV is integrated
tm time duration of EV integration
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Sc load power capping for peak shaving
p graph path
S determined shortest-path vertex set
Q min-priority queue
E total edge set
V total vertex set
v vertex

I. INTRODUCTION
Recently, there is increased awareness of the adverse impacts
of fossil fuel consumption on environmental sustainability
as well as the threats this poses to national economies and
their energy security. For instance, it was estimated that
in the last decade, light-duty vehicles, sports utility vehi-
cle and motorcycles accounted for approximately 61.8% of
oil demand within the aggregate transportation sector [1].
Such fossil fuel consumption leads to emission of green-
house gases. Therefore, several governments have made
commitments to fundamentally transform the transportation
sector, moving from gasoline dependent vehicles to an inte-
grated system that powers mobility with electricity [2]. As a
result, more than 1.3 million EVs have been registered in
Europe by June 2018 [3]. Meanwhile, a market penetration
of 20% for EVs by 2030 with a focus on achieving emis-
sion targets has been predicted in Europe based on more
efficient and hybridised Internal Combustion Engine (ICE)
vehicles [4], [5].

Despite the rapid progress currently being made in the
global EV market, substantial barriers to widespread EV
adoption still exist. Overcoming these barriers will require
thoughtful investment in charging infrastructure, innovative
battery and vehicle development, reliable electric power
sector interface and strategic marketing policy [2]. Indeed,
the currently under-developed charging infrastructure has
slowed down the pace of transport sector electrification. Fur-
thermore, large-scale EV charging would challenge utility
networks due to the need for network capacity expansion,
asset operation optimisation and software updating to support
a range of smart grid applications including Grid-Enabled-
Vehicles (GEVs) [6]. Regulatory reforms are also required.

Interestingly, MG has demonstrated to be a feasible option
to meet GEV charging demand and mitigate the intermit-
tency and volatility of GEV integration into modern power
networks. When connected to distributed networks, GEVs
could be considered as controllable loads during charging,
called grid-to-vehicle (G2V) and as DGs during discharging,
called vehicle-to-grid (V2G) [7]. Similarly, these GEVs can
be manipulated as remote Energy Storage Systems (ESSs) to
participate in the operation and control of the MG, thereby
improving performance and reliability of MG by providing
optimal charging and ancillary peak demand shaving service.
However, to establish a comprehensive and effective gate-
way between the network and GEVs, both network power
flows and EV integration need innovative strategies to serve

conventional customers and GEVs. This is usually tackled as
an optimisation problem.

Generally, the main objective in an MG scheduling task is
supplying power at minimum cost while ensuring maximum
profit to the MG owners [8]. To this end, some studies in
the literature have adopted the multi-objective optimisation
approach by focusing on operational cost and emission min-
imisation [9]; energy costminimisation and reliability consid-
eration as energy loss index [10]; combined heat and power
operation cost and energy trading from/to the grid as total
MG operation cost [11]; DG units related costs, income and
subsidy ofDistribution SystemOperator (DSO) for electricity
sales to aggregators as total cost of DSO [12]; and distributed
energy resources (DERs) penetration and generation cost for
microgrid energy supply [13]. Besides, benefit maximisation
and cost minimisation have also been investigated to achieve
optimal economic value [14]. According to these previous
studies, it can be concluded that operational cost, emission,
and reliability are popular concerns in multi-objective opti-
misation in the context of MGs.

The above described optimisation tasks have been for-
mulated using numerous techniques. Pareto-based approach
has been widely used because of the existence of conflict-
ing objectives in such studies. Where Pareto optimal set is
obtained, a best compromise solution would be selected with
the help of the preferences [9]. Moreover, weighting method
is considered the most suitable method for optimisation with
aggregate objectives because of its capability of identifying
non-inferior solutions that are not obtainable on a non-convex
boundary [15]. To solve such problems, several algorithms
have been adopted in the literature. Non-dominated sorting
genetic algorithm II is one of the most popular algorithm
due to its high performance for finding a set of Pareto solu-
tions [16], [17]. Memetic algorithm has also been proposed
in Ref. [18] for its separated local and global iterative process
which guarantees convergence accuracy. Mixed Integer Lin-
ear Programming is another popular technique - it involves
the use of some linearisation approach to convert the nonlin-
ear models into linear models [11], [12], [19]. Particle swarm
optimisation, a heuristic approach, has also been proposed in
the literature [19], [20].

Furthermore, these MGs analysed for EV uptake could
be either DC or AC type. Indeed, DCMGs offer signifi-
cant advantages like fewer conversions, skin-effect free and
no requirement for reactive power control, which are more
suitable for EV integration and DERs compared with AC
network [21]. In such systems, controlled DGs, DERs as
well as EV discharging share high proportion of total system
generation compared to the feeder frommain grid. Therefore,
the use of prespecified slack bus is replaced with the concept
of distributed slacks [22].

With an Optimal Power Flow (OPF) established based on
distributed slack buses, EV integration mechanism is built
by aggregating OPF model as a time series optimisation
problem. Remembering that the most fundamental task of
EV integration is charging, thus, any improvement of system
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performance leveraging on EV discharge should guaran-
tee EV is charged to satisfied level as expected. However,
enabling EV discharging and injecting energy back to the
network would require to meet three conditions. Firstly,
a bidirectional converter is needed. Secondly, communication
with DCMG operator is also necessary. Lastly, on-board
precision meter should be available [23]. After satisfying
these conditions, EV could be discharged to provide ancillary
service to the MG within its operational capacity [24].

Obviously, various types of ancillary services based
on optimal V2G strategies have been proposed by other
researchers. For instance, enhancement of PV generation
provided by optimal V2G by minimising the penalty cost for
PV power imbalances between predicted power and actual
output with driving patterns was proposed in [25]. Mean-
while, frequency regulation service was presented with the
help of a game-theoretic model describing interaction among
EVs and aggregators in [26]. A probabilistic multi-objective
microgrid planning method was proposed in [17]. Addition-
ally, an optimal charging/discharging coordination between
aggregator and its EVs was shown as a convex optimisa-
tion problem [27]. Similarly, peak shaving service provision
strategy was reported in [28] in order to compensate PV
production with an optimal power management performed
by Dynamic Programming (DP). The objective was defined
as cash flow minimisation where EV battery degradation
and operation of PV and EV charging were also taken as
constraints [28].

In this study, optimal EV charging/discharging strategy for
ancillary service is proposed for a test DCMG. The DCMG
scheduling problem consists of OPF formulation aimed at
minimising system losses and EV battery degradation, thus,
a multi-objective formulation is realised. We considered the
battery capacity losses as the cost of peak shaving from the
standpoint of EV owners, rather than simply including it
as constraint as adopted in [28]. Also, compared with [27],
a realistic power flows incorporating droop control has been
considered. The multi-objective OPF in this article was for-
mulated as a shortest path problem and solved by modified
Dijkstra’s method to accomplish EV optimal charging and
peak shaving. The weights of the paths were determined
by deploying the interior point method. Thus, a two-stage
optimisation framework is realised.

Other sections of this article are organised as follows: the
mathematical model of OPF for DCMGs with EV integration
is presented in Section II. The modified Dijkstra’s algorithm
and optimisation flowchart are introduced in Section III.
The case studies using a test DCMG system is presented in
Section IV. Finally, Section V concludes this technical work.

II. SYSTEM MODELLING
A. PROBLEM FORMULATION
1) DROOP CONTROL IN DC NETWORK
In DC network modelling, buses are generally catalogued
into two types according to droop implementation.

FIGURE 1. Droop Control with Virtual Resistance in DCMG.

Non-dispatchable DGs and uncontrollable loads are consid-
ered as P buses, dispatchable DGs and controllable loads are
considered as DG buses which deploy the droop control.

Considering Figure 1, the droop control constraint for bus i
is [22]:

Vi = Vg,i = V0,i − Rv,iIg,i (1)

where Vg,i is the output voltage in bus i, V0i is the nominal
voltage in bus i, and Rvi is the virtual resistance of the
dispatchable DG unit i. Igi is the output current and can be
written as

Igi =
Pgi
Vi

(2)

where PG,i is the output power of DG connected in bus i.
In steady state mode, the DC network can be considered
as purely resistive. Using KCL, the network equations for
the two categories of buses (i.e., P and droop buses) can be
written as [22]:

Ii =
n∑
j=1
j 6=i

Gij(Vi − Vj) (3)

where

Gij =
1
Rij

(4)

In the above expression, Ii is the ith bus injection current.
Gij and Rij are respectively the conductance and resistance
between bus i and j, Vi and Vj are voltages in bus i and
j respectively. With the assumption of a unipolar DCMG,
the ith bus injection power Pi is stated thus:

Pi = Vi
n∑
j=1
j 6=i

Gij(Vi − Vj) (5)

2) BATTERIES IN EVs
This study has been performed with passenger EVs where
lithium batteries are mostly popular in global market. Thus,
the EV was modelled as lithium batteries in this study. Gen-
erally, battery pack can be modelled as battery equivalent
circuits [29]. However, battery packs in EVs are controlled by
battery management system (BMS) and connected to the grid
via on-board chargers (OBC). Therefore, EVs are regarded
as controllable DGs when discharging and controllable loads
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when charging. The concepts of State-of-Charge (SOC) and
State-of-Health (SOH) are thus included in the model.

The SOC describes the level of charge of an electric battery
relative to its capacity and it is still the subject of many studies
[30]. The specific SOC calculation from [28] is chosen for
this study. The expression for SOC is shown below:

SOCt,i =
Capt,i

Capref ,t,i
(6)

where SOCt,i is battery SOC at time t in bus i, Capref ,t,i is
battery capacity of reference at time t in bus i, and Capt,i is
the capacity of battery at time t in bus i. It is logical to develop
a recursive expression of battery SOC in terms of EV battery
charging/discharging power [28]:

SOCt,i = SOCt−1t,i +
PEV ,t,i1t
Capref ,t,i

(7)

where PEV ,t,i is EV charging/discharging power at time t
in bus i and it is assumed to be constant in time step 1t .
PEV ,t,i would be positive when charging and negative when
discharging. SOCt,i and SOCt−1t,i are battery SOC at time t
and t −1t respectively.
The SOH describes the merit of the condition of a battery

and can be generally defined below [28]

SOHt,i =
Capref ,t,i
Capref ,nom,i

(8)

where SOHt,i is the ith bus EV battery State-of-Health at
time t andCapref ,nom,i is the reference nominal battery capac-
ity which is available from manufacturer’s data sheet [31].
Degradation of the performance of batteries during the aging
process has been modelled by [32] and it is represented as
losses of capacity of reference that are considered linear
according to the Depth-of-Discharge (DOD) of batteries [31].
A linear aging coefficient La is set to capture aging level for
different battery technologies and has a value of 3×10−4 for
lithium-ion battery [32] and can be expressed recursively as

Caploss,t,i = Capref ,nom,i × La × |SOCt,i − SOCt−1t,i| (9)

Capref ,t,i = Capt−1t,i − Caploss,t,i (10)

where La is lithium battery linear aging coefficient.
Based on equations (7) - (10), we obtain:

SOHt,i =
Capref ,t−1t,i
Capref ,nom,i

− La × |
PEV ,t,i1t

Capref ,t−1t,i
| (11)

where SOHt,i indicates bus i battery State-of-Health at time t .

B. OPF MODEL
1) OBJECTIVE FUNCTIONS
Considering DCMGwith EV charging/discharging task from
the perspective of MG operators, one of the most signif-
icant network performance indicator is system loss. Thus,
the OPF formulated for the DCMG seeks to minimise system
losses with the help of EV discharging. With EV discharging
enabled, EVs together with Electric Vehicle Owners (EVOs)
are regarded as a service provider to the network. Thus,

the cost of EV discharging needs to be integrated into the
OPF framework. For the EVdischarging, the on-board battery
life degradation is the most obvious cost in this process.
Therefore, the battery capacity loss is used in quantifying
the battery aging during EV discharging. The system (total
line/feeder) loss for the DCMG is stated as:

PSysLoss =
n∑
j=1
j 6=i

Gij(Vi − Vj)2 (12)

Also, battery capacity loss defined in (9) can be rewritten
in terms of EV charging/discharge power as:

Caploss,t,i =
k∑
i=1

(Capref ,nom,i × La × |
PEV ,t,i ×1t
Capref ,t−1t,i

|) (13)

However, to establish an OPF with two comparable objec-
tives, battery capacity loss Caploss,t,i and system loss should
be modified to the same unit. Thus, both losses would be
modified as ‘‘energy loss’’ which have been defined below.

ESys = PSysLoss1t (14)

ECap,t,i = Caploss,t,i (15)

In this way, with a weighting factorW , the objective func-
tion comprising two objectives can be expressed as:

min f (x) = min(Wsys

tm∑
t=1

ESys +Wcap

tz∑
t=ta

ECap) (16)

Notice that when the EV is in charging mode or dis-
connected, the objective function will simply be reduced to
system loss.

2) CONSTRAINTS
The equality constraints include the following:

Power flows: The power flow mismatch function for the
ith bus can be represented as

Fvi = Pg,t,i − Pd,t,i − Pt,i = 0 (17)

where Pg,t,i, Pd,t,i and Pt,i respectively indicate DG gener-
ated power, load power and power injection in bus i at time t .

Droop control mismatch can be derived from (1) and
expressed as

Fpi = V0i − Rv,t,i
Pg,t,i
Vt,i
− Vt,i = 0 (18)

SOC mismatch is realised from (7) and can be rewritten as

Fbi = SOCti − SOCt−1t,i −
PEV ,t,i ×1t
Capref ,t,i

= 0 (19)

The terms are as defined in the nomenclature. The total
number of equality constraint equations M can be expressed
as follows

M = N + D+ K (20)

where N is the number of buses in the network, D is the
number of dispatchable DG bus, and K is the number of DG
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bus deployed with GEVs. Newton-Raphson algorithm was
deployed to linearise the equality constraints [33]–[35]. State
variables have been selected as:

x =
[
V T
i PTg RTv SOCT

t
]T

(21)

The Jacobian can be represented in condensed form as

J =

 J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34

 (22)

The derivation of sub-matrices in J can be found in
Appendix A.

The inequality constraints are as stated next.
Bus voltage limits:Bus voltage at all times in DCMGmust

be maintained within the prescribed limits:

Vi,min ≤ Vt,i ≤ Vi,max (23)

DG output power limits: The DGs output powers are
constrained by their maximum value:

Pg,t,i ≤ Pg,i,max (24)

EV charging/discharging power limits: Similar to DGs,
EV charging and discharging enforces the constraint:

−PEV ,i,max ≤ PEV ,t,i ≤ PEV ,i,max (25)

Virtual resistance limits: Virtual resistance in droop con-
trol is constrained by converter control method:

Rv,i,min ≤ Rv,i ≤ Rv,i,max (26)

SOC operation: EV battery SOC is constrained within
Degree-of-Discharge (DOD) and below 1:

(1− DOD) ≤ SOCt,i ≤ 1 (27)

where DOD is generally taken as 0.8.
Optimal EV charging: Generally, the EVO expects that

full charge will be realised at the end of the integration
process. This is thus reflected by the constraint:

SOCta +
tm∑

t=ta+1

PEV ,t,i1t
Capref ,t

= 1 (28)

where ta indicates the time EV is integrated, tm indicates time
duration of EV integration into the network, SOCta indicates
battery SOC before integration. PEV ,t,i will be positive when
charging and negative when discharging. Note that battery
self-discharge is not considered in this study.

Peak Shaving: While various ancillary services can be
realised from EV discharging (V2G), the main issue with EV
charging is that the additional demand from this charging pro-
cess challenges the available DCMG network capacity. Thus,
peak shaving implementation leveraging on EV discharging
mechanism is selected and expressed as follows:

N∑
i=1

Pd,t,i −
K∑
i=1

PEV ,t,i ≥ maxt
N∑
i=1

Pd,t,iSc (29)

where Sc is load power capping and EV is able to discharge
when the total load reaches power capping and adequate
battery capacity is available [36].

3) INTERIOR-POINT ALGORITHM
A popular approach in the power systems literature for
optimising the objective function (16), subject to con-
straints (17)-(29) is the interior point method (IPM) [37],
[38]. In particular, the problem is cast in a condensed form
as shown below.

min f (x) (30)

subject to:

g(x) = 0 (31)

h(x) ≥ 0 (32)

where f (x), g(x) and h(x) respectively denote the objective
function, sets of equality and inequality constraints. x is a
vector comprising the control and state variables, The IPM
requires series of steps for realising the optimality conditions
[37], [38]. This include converting the inequality constraints
into equality constraints by using a vector of non-negative
slack variables s and introducing the barrier function; thus,

min f (x)− µ
r∑
i=1

ln Si (33)

subject to:

g(x) = 0 (34)

h(x)− s = 0, s ≥ 0 (35)

where µ is a positive scalar called barrier parameter. The
vectors x and s = [s1, . . . , sr ]T are called primal variables.
Subsequently, the equality constrained optimisation prob-

lem is transformed into an unconstrained formulation by
writing the Lagrangian function [37]:

Lµ(y) = f (x)− µ
r∑
i=1

ln Si − λT (x)− πT [h(x)− s] (36)

where the vectors of Lagrangian multipliers λ and π are dual
variables and y = [s, π, λ, x]T . At the optimal solution, these
dual variables represent the sensitivity of the cost function to
slight adjustments in the constraint equations [37].

Furthermore, the Karush-Kuhn-Tucker optimality condi-
tions is realised by setting the partial derivatives of the
Lagrangian function to zero.
∇sLµ(y)
∇πLµ(y)
∇3Lµ(y)
∇xLµ(y)

=


−µe+ Sπ
−h(x)− s
−g(x)

∇f (x)− Jg(x)Tλ− Jh(x)Tπ

 = 0 (37)

where S is a diagonal matrix of slack variables, e =
[1, . . . , 1]T , ∇f (x) indicates the gradient of f , Jg(x) is the
Jacobian of g(x) and Jh(x) is the Jacobian of h(x).
The primal dual IPM algorithm is used to solve for vari-

ables that satisfy the KKT condition as illustrated in [37].
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III. OPTIMAL EV INTEGRATION IMPLEMENTATION
FRAMEWORK
A. TWO-STAGE OPTIMISATION FRAMEWORK
EV ancillary service, in this case, is a trade-off between the
network loss reduction benefit (leveraging on EV discharge)
and EV charging task (which is focused on ensuring full EV
battery charge before end of the integration time). Indeed,
addressing this challenge of optimal EV integration using
IPM alone is inadequate.

Firstly, since this study focuses on providing ancillary
service to MG operators, battery degradation is not consid-
ered during EV charging, which means the number of objec-
tives is different between charging and discharging goals.
Implementing IPM while switching objectives will lead to
convergence issues. This was experienced during the initial
stages of this technical work. Besides, optimal EV integration
is also a matter of Time-of-Use which is also not suitable for
the classical IPM [6].

It is more appropriate to modify the IPM-OPF by lever-
aging on a high-level algorithm. Consequently, the shortest
path formulation [6], [28] has been deployed. It is pertinent
to highlight that while DP can also be used for such optimi-
sation task [28], [39], the significant reduction in number of
possible paths (and thus the narrowing of the flexibility of
path selection) limits the advantages that would have accrued
from the use of DP [40]. Moreover, implementing DP will
also necessitate a very large sample space for the battery SOC.
Dijkstra’s technique, a method based on greedy algorithm,
is thus a more attractive approach for this shortest-path prob-
lem with limited vertices [41].

Based on the above explanations, a two-stage optimisation
framework is proposed in this article. That is, the problem
is formulated as a shortest path problem based on modified
Dijkstra’s algorithm while IPM is employed to determine the
weight of the edges/paths of the graph. Detailed logical steps
are explained in subsequent sections and a flowchart also
provided.

B. SUBSTRUCTURE CONFIGURATION
Figure 2(a) shows the detailed SOC sample space. In this
figure, the considered state is the battery’s SOC and it has
been discretized for each time period, t (with each value
been equals δSOC ). The battery can assume any of the dis-
cretized value δSOC as long as this is within the constraint
boundaries. This problem can be considered as comprising of
subproblems [28].

Figure 2(b) shows SOC space with three time-steps. All
the possible trajectories from the origin to all allowed states at
the end are presented. It is easily understood that if an optimal
solution to the problem contains within it optimal solutions to
subproblem, this problem exhibits optimal subproblemwhich
in this case becomes optimal power flow at each time step1t
in either charging or discharging mode [42]. Moreover, all
possible trajectories in Figure 2(a) can be simplified as opti-
mal trajectories in charging, discharging and disconnected

FIGURE 2. (a) Complete battery SOC space and all possible trajectories
(b) Battery SOC space and trajectories with optimal substructure.

mode as shown in Figure 2(b). Thus, the total states have
been reduced to three indicating charging, discharging and
not charging.

C. SHORTEST PATH FORMULATION
The aforementioned optimisation goals could be translated
into subproblems as previously highlighted. For each sub-
problem, OPF solutions including bus voltage, DG/EV
power, battery SOC and losses vary with load conditions of
the system. The greedy algorithm approach is leveraged to
solve these optimisation tasks. Such strategy is achieved by
assembling local greedy choices as global optimal solution.
In other words, greedy strategy make whatever choice seems
best at the moment and then solve the subproblems that
remains.

Inspired by greedy method, the problem can be further
considered as aweighted single source shortest-path problem.
In this shortest-path problem, a weighted, directed graphG =
(V ,E) is given, with weight function ω : E → R mapping
edges to real-value weights. However, since not only the
network losses and battery degradation require minimisation
but also SOC constraint need to be satisfied, therefore two
weight functions are deployed. The SOC weight ωSOC (p) and
net loss weight ωloss(p) of path p = 〈vta, vta+1, . . . , vtm〉 are
the sum of their constituent edges:

ωSOC (p) =
tm∑
t=ta

ωSOC (vt−1 − vt )

=

tm∑
t=ta

PEV ,t,i1t
Capref ,t−1t

(38)
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ωloss(p) =
tm∑
t=ta

ωloss(vt−1 − vt )

= (Wsys

tm∑
t=1

Esys +Wcap

tz∑
t=ta

ECap) (39)

where ta is start time, tz is end time, tm is total time step.
We define a shortest-path weight δ(ta, tz) from ta to tz byδloss(ta, tz) =

{
min

{
ωSOC (p) : ta

p
−→ tz if ta

p
−→ tz exist,

∞ otherwise.
δSOC (ta, tz) = 1− SOCta

(40)

A shortest path from vertex ta to vertex tz is then defined as
any path p with weights

ωloss(p) = δloss(ta, tz) (41)

ωSOC (p) = δSOC (ta, tz) (42)

Since this EV integration problem has been modelled as a
single source shortest problem with Greedy strategy, Dijk-
stra’s algorithm is applied due to its well-known advantages
as discussed in [42].

With already represented weights in shortest path problem,
vertices require further explanation and representation. Given
a directed graphG = (V ,E), we maintain for each vertex v ∈
V a predecessor v.π that is either another vertex or nil. When
attributes of π are set, the chain of predecessors originating
at a vertex v runs backwards along a shortest path from s to v.
However, the value of π may not indicate the shortest paths.
The predecessor subgraph Gπ = (Vπ ,Eπ ) induced by the
π value should draw more attention. Vπ here is designed to
be a set of vertices of G with non-nil predecessors and the
sources s. The edges set Eπ is the set of edges induced by Vπ
which is shown below [42]:

Vπ =
{
v ∈ V : v.π 6= NIL

}
∪

{
s
}

(43)

Eπ =
{
(v.π, v) ∈ E : v ∈ vπ −

{
s
}}

(44)

D. MODIFIED DIJKSTRA’s ALGORITHM
Subsequently, relaxation technique is deployed for determin-
ing shorter path. For each vertex v ∈ V . An attribute v.d is
maintained as an upper bound on the weight of shortest path
from s to v, called a shortest path estimate.
Relaxing procedure (u, v) involves determining whether

shortest path estimate v.d can be reduced so far by going
through u and if so, updating v.d and v.π . A relaxation pro-
cedure may lead to decrease of shortest path v.d and update
of predecessor attribute v.π .

However, δSOC (u, v) can be negative when EV is discharg-
ing, which implies negative weight edges. Since δloss(ta, tz) is
the weight to be optimised, relaxation will focus on ωloss(v)
measurement. It is known that ωloss(v) will find minimum
value during optimal discharging with negative ωSOC (v).
In this way, vertices would be relaxed into discharging

mode at each step until SOC reach the lower bound. Thus,
δSOC (u, v) requires further modification before relaxation in
Dijkstra’s algorithm. Since OPF solution to each state is
predictable, given that:

ωloss(vch) > ωloss(vnil) > ωloss(vdis) (45)

and

ωSOC (vch) > ωSOC (vnil) = 0 > ωSOC (vdis) (46)

it is possible to design a novel procedure fitting implementa-
tion of Dijkstra’s algorithm based on OPF characteristics.

Hence, an ultimate procedure is introduced to enable nega-
tive edges in Dijkstra’s algorithm and satisfyωSOC constraint,
which is implemented after initialisation. In the ultimate
procedure, vertices will be enforced in charging state so that
ωSOC (p)+ SOCa would reach 1 and net loss weight ωloss(p)
achieve its maximum. Then, relaxation procedure can be
executed based on that.

With the implementation of ultimate procedure, Dijkstra’s
algorithm is able to solve single-source shortest-path problem
for the case in which negative edges exist. Dijkstra’s algo-
rithm maintains a set S of vertices whose final shortest-path
from last step is determined. The algorithm repeatedly selects
the vertex u ∈ V − S with the minimum shortest-path
estimate, adding u to S and relaxing the other edges but u.
In this case, since vertices are already attributes of charging
state whose ωloss(u) are the highest compared to weights in
other states, the relaxation will based on the maximum net
loss decrease from charging state to others in the same step.
Then amin-priority queueQ of vertices keyed by their d value
is maintained by the variant that Q = V − S.
Dijkstra’s algorithm firstly initialises π and d value, and

attributes ultimate value for π and d . After that, S is set as
empty, then the min-priority queue Q contains all the other
vertices in V . Since δSOC (s, u) is maximum value at that time,
the variant is true. Each time through the while loop a vertex
is extracted from Q and added to S, thereby maintaining the
invariant. If vertex u has the largest loss weight decrease
inQ, then estimate d and predecessor π will be updated, until
SOC ta + δSOC (s, u) is less than 1. In this way, net weight
is minimised with SOC constraint satisfied. The flowchart
for the proposed 2-stage optimisation framework is shown
in Figure 3.

IV. CASE STUDY
A. TEST SYSTEM AND PARAMETERS
1) TEST SYSTEM
The test system shown in Figure 4 was used to verify
the effectiveness of the proposed technique. In this net-
work, bus 1, 2 and 3 were considered as dispatchable buses
controlled by droop controller through virtual resistance.
Buses 4, 5 and 6 were considered as time-series power (load)
buses with IEEE European Low Voltage Test Feeder v2 load
profiles having total duration of 24 hours and time interval
of 10 minutes. These load profiles are identified as Loads 1,
2, 3 in this article and are shown in later sections.
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FIGURE 3. Flowchart of proposed two-stage optimisation strategy for
optimal EV integration.

FIGURE 4. Test DCMG system.

2) PARAMETERS
Initial battery SOC was set to 30% i.e. at the start of EV
integration and desired SOC after the entire EV charging
was limited to 100%. Battery discharging was enabled after
SOC reached 50% bearing in mind the battery health, pro-
tection and minimal travel demand. Maximum EV charg-
ing/discharging power was set to 4kW (battery capacity was
set to 3.5kWh). The virtual resistance on droop buses varied
between 0.2-ohms and 5.0-ohms. Power capping for peak
shaving service is 0.3p.u. The DGs are considered as com-
bined PV and BESS, like the arrangement in the microgrid
supplying power to the company complex where the first
author had worked in China prior to his commencement of
PhD study in the UK. For the test network, two DGs were
deployed with rating of 6.5kW and 7.0kW.

B. CASES
In order to investigate the performance of the proposed
method, four EV integrating cases and two load scenarios
were analysed for the test system.

1) CASE 0 - BASE CASE
In this case, three load profiles were deployed at buses 4,
5 and 6 but no generator or load was connected to bus 3.
Two DGs with droop control using virtual resistance were
integrated into the test network at nodes 1 and 2 for this case.
Since EV integration was not involved in case 0, the resulting
OPF is a single objective optimisation aimed at minimising
system losses.

2) CASE 1 - CONSTANT POWER EV CHARGING
Using the same network configuration explained for case 0,
EV charging unit with constant power was added to bus 3 for
this case.

3) CASE 2 - OPTIMAL EV CHARGING
In addition to the state variables of bus voltages and DG
output powers, EV charging power was modified to a con-
trollable load at bus 3. Furthermore, virtual resistances for
the 2 DGs and the EV implementing droop control were
integrated. Modified Dijkstra’s Algorithm was employed to
implement the time-series optimal charging.

4) CASE 3 - OPTIMAL EV CHARGING/DISCHARGING
System configuration in case 3 is identical to that of case
2: two DGs, the EV and three Loads. EV discharging was
however enabled by the two-stage optimisation algorithm
after battery was charged to more than 50% SOC.

C. SCENARIOS
In order to investigate the effectiveness of the proposed
method for different scenarios, load profiles were catalogued
into commercial and residential load scenarios. The load
profile data set was selected for 24 hours; however, scenarios
considering weekday and seasonal features were not included
in this study.

1) COMMERCIAL SCENARIO
Loads in commercial scenario simulate electricity consump-
tion in commercial buildings like office buildings, hospitals,
and university campus. The demand peak time in commercial
scenario occurred during the day.

2) RESIDENTIAL SCENARIO
Residential scenario presents electricity consumption in a
residential district like apartments and flats in urban district.
The peak time of residential property occurred in the evening
and the morning (exact time differ for each of the three load
profiles). The load profiles for both scenarios are plotted in
later sessions in this article.

D. RESULTS
1) CASE 0
Bus output power in case 0 with commercial loads is shown
in Figure 5(a) where generated powers are plotted in the
positive vertical axis and loads are shown in the negative
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FIGURE 5. Case 0 - bus output power in (a) commercial scenario,
(b) residential scenario.

vertical axis. Clearly, from the plot, the DG output powers
increase with increasing load requirement.

Results in residential scenario have also been shown in
Figure 5(b). The trend is similar. However, unlike loads in
commercial scenario, residential loads peaked in the evening
as well as in the morning.

2) CASE 1
As previously highlighted, EV charging was introduced to
the system for this case, specifically at bus 3. Results are
shown in Figure 6(a). When charged with constant power like
in this case, EVs are considered as an uncontrollable load.
The charging process started from 09:00 and ended at 16:10;
thereby mirroring the daily behaviour of EV owners (EVOs)
in commercial properties. The charging power was ramped
up to 3.5kW at 09:10 and kept constant until 15:20 when EV
SOC reached 93.4%. Charging power was then reduced for
battery protection until full charge was realised at 16:10.

For residential scenario, the EV was considered available
overnight i.e. from 20:00 to 08:00. Constant power charging

FIGURE 6. Case 1 - bus output power and battery SOC in (a) commercial
scenario, (b) residential scenario.

was executed from 20:10 until 02:20. The power require-
ments from the DGs due to the additional EV charging
demand exceeded those of case 0 as shown in the plots.

3) CASE 2
Result in commercial scenario can be seen in Figure 7(a). The
time slot for EV charging is the same as case 1. For load peaks
at 11:40, 12:50 and 17:40, the charging power was reduced
to avoid additional system stress. Therefore, this resulted to
longer charging time (10.5 hours) which is 3 hours 20minutes
longer than that of case 1.

Figure 7(b) shows case 2 result in residential scenario.
Charging process started at 20:00 and terminated at 05:30.

4) CASE 3
Result of case 3 in commercial scenario is shown in
Figure 8(a). EV discharging was enabled in this case when
battery SOC reached 50% and the EV behaviour was then
modified as a DG to shave load peaks as seen in the plot. Dur-
ing EV discharging, both system losses and battery capacity
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FIGURE 7. Case 2 - bus output power and battery SOC in (a) commercial
scenario, (b) residential scenario.

losses were optimised. Figure 8(a) shows that EV discharged
at 11:40, 12:50 and 17:40; interestingly, these times corre-
spond with peak demand.

Figure 8(b) indicates results of case 3 in residential sce-
nario. During load peak at 20:50 and 22:20, EV charging was
paused to reduce system losses and ease network burden. Like
commercial scenario, beyond 50% SOC , EV discharging
was enabled. Figure 8(b) shows the EV discharged at 23:30,
23:50, 07:20 and 07:50.
Discussions on the Test Cases: The net demand compari-

son for both scenarios has been shown in Figure 9. Demand
profiles for each case consists of local power demand and
the additional EV charging demand except case 0 where EV
was not considered. From the figure, it is obvious that case 1
(uncoordinated EV charging) resulted in the highest peak
net demand. This is true for both commercial and residen-
tial scenarios. With smart charging (case 2), the peak net
demand was reduced. A further reduction in peak net demand
was observed in case 3 (smart control (charge/discharge)
strategy).

FIGURE 8. Case 3 - bus output power and battery SOC in (a) commercial
scenario, (b) residential scenario.

System loss comparison in the commercial and residential
scenarios are also shown in Figure 10. The plots show that
case 1 had the highest system losses for the residential sce-
nario which is expected given that it presented the highest
peak net demand in the test network. On the other hand,
it is interesting to observe that case 2 presented a slightly
higher aggregated power losses (over the 24-hour horizon)
than case 1 due to the EV taking longer to charge for case 2
than case 1. Generally, the high demand and increased sys-
tem losses negatively challenge DCMG operations and thus,
deteriorate the system performance.

In all scenarios, case 3 resulted in the lowest system losses
(excluding the base case where there was no EV in the
DCMG). In other words, with the smart EV control/discharge
as demonstrated in case 3, the network was relieved of current
flows requirement since loads were met locally. This aligns
with findings from the field trials involving the coordinated
control of PVs and energy storage units reported by the same
authors in another publication [34].

Furthermore, Figure 11 shows the comparison of DG
capacity requirement in different cases. As evident from the
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FIGURE 9. Net demand in (a) commercial scenarios and (b) residential
scenarios.

plot in Figure 11, from case 0 to case 1, the DG power supply
requirements for both scenarios increased. This is interlinked
with the increased demand; thus, this would necessitate net-
work reinforcement/expansion and further investment costs.
From case 1 to 2 and to 3, the DG capacities were reduced;
hence, indicating that optimal operation of EV integration can
effectively reduce the power supply requirements from the
DGs. However, the capacity of DG2 in residential scenario
remainedmostly the same (except for case 1) because the load
peaks happened outside of smart EV discharge time slot.

From these findings, it is therefore obvious that for MG
operators as well as DNOs, the advantages of enabling EV
discharge is significant. Firstly, EV discharging is able to
reduce output power requirement from network generators
during heavy load conditions since such demands are met
locally. This enhances system security and defers the need for
expansion investments. Moreover, system losses are further
reduced when more DGs operate as distributed slack buses
and participate in power sharing unlike the traditional single
slack approach.

FIGURE 10. System loss comparison in (a) commercial scenarios and
(b) residential scenarios.

FIGURE 11. DG capacity comparison in (a) commercial scenarios and
(b) residential scenarios.

It is also important to highlight that some drawbacks exist.
As realised, it will take longer time to attain full charge
i.e. if the EV is discharged during the integration period;
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this implies battery capacity losses (battery degradation).
Nevertheless, with our proposed framework, a wise trade-off
between EV charging task and peak shaving service is achiev-
able as shown in this technical work. Hence, the proposed
two-stage optimisation framework finds useful applications
in modern DCMGs as well as encouraging the fast-tracking
of EV uptakes.

V. CONCLUSION AND FUTURE WORK
In this article, an EV charging/discharging strategy based on
two-stage optimisation framework (that combines modified
Dijkstra’s algorithm and IPM) which minimises DCMG net-
work losses and EV battery degradation has been presented.
The objective was to make a trade-off between performing
peak shaving and EV charging in the same time interval. The
particularity of this technical work lies in the consideration

of battery degradation as optimisation objective simultane-
ously with network losses and the solution implementation
using a novel two-stage framework for the time-series multi-
objective task. Simulations in commercial and residential
load scenarios have been performed and compared. For a
24-hour simulation, 4.4% of system losses were reduced and
17.8% of DG capacity was saved by leveraging on the pro-
posed framework i.e. for the commercial scenario. Similarly,
13.9% of system losses were reduced and 27.0% of DG
capacity saved for residential scenario. Further investigation
that takes into account large-scale network and significant EV
uptake is on course.

APPENDIX
SUBMATRICES IN JACOBIAN
Key submatrices in Jocobian are presented in (47)-(58):

J11 =


∂Fv1
∂V1

. . .
∂Fv1
∂VN

. . . . . . . . .
∂FvN
∂V1

. . . ∂FvN
∂VN

 =


∂[PG1−PD1−V1
∑N

j=2 G1j(V1−Vj)]
∂V1

. . .
∂[PG1−PD1−V1

∑N
j=2 G1j(V1−Vj)]

∂VN
. . . . . . . . .

∂[PGN−PDN−VN
∑N−1

j=1 GNj(VN−Vj)]
∂V1

. . .
∂[PGN−PDN−VN

∑N−1
j=1 GNj(VN−Vj)]

∂VN

 (47)

J12 =


∂Fv1
∂PG1

. . .
∂Fv1
∂PGD

. . . . . . . . .
∂FvN
∂PG1

. . . ∂FvN
∂PGD

 =


∂[PG1−PD1−V1
∑N

j=2 G1j(V1−Vj)]
∂PG1

. . .
∂[PG1−PD1−V1

∑N
j=2 G1j(V1−Vj)]

∂PGD
. . . . . . . . .

∂[PGN−PDN−VN
∑N−1

j=1 GNj(VN−Vj)]
∂PG1

. . .
∂[PGN−PDN−VN
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j=1 GNj(VN−Vj)]

∂PGD

 (48)

J13 =


∂Fv1
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. . .
∂Fv1
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∂FvN
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. . . ∂FvN
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. . . . . . . . .

∂[PGN−PDN−VN
∑N−1

j=1 GNj(VN−Vj)]
∂Rv1
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J14 =
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