
On the consistency of jump-di�usion dynamics for FX rates under

inversion ∗

Federico Grace�a† Damiano Brigo † Andrea Pallavicini‡

24th April 2020

Abstract

We investigate the consistency under inversion of jump di�usion processes in the foreign exchange
market. That is, if the EUR/USD exchange rate follows a given type of dynamics, under which con-
ditions will USD/EUR follow the same type of dynamics? After giving a numerical description of this
property, we establish a suitable local volatility structure ensuring consistency. We subsequently intro-
duce jumps and analyze both constant and random jump size. While in the �rst scenario consistency is
automatically satis�ed, the second case is more involved. A fairly general class of admissible densities
for the jump size in the domestic measure is determined.
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1 Introduction

The foreign exchange (FX) market has peculiar symmetries that distinguish it from other markets. The
�rst is the symmetry with respect to inversion: given an exchange rate, its reciprocal is again an exchange
rate. For example, the USD-GBP is the reciprocal of the GBP-USD exchange rate. The other "symmetry"
is what we could term triangular consistency and is with respect to multiplication: given two exchange
rates such that the domestic currency of one corresponds to the foreign currency of the other, their product
is another exchange rate. For example, the product of USD-GBP and GBP-EUR is the cross rate USD-
EUR. Triangular consistency requires that if USD-GBP and GBP-EUR are in the same model class up
to reparametrization, so is USD-EUR. For an example and a related discussion with multivariate mixture
models and an application involving China's FX rates see for instance Brigo et al. [4]. These two stylized
facts have motivated research in understanding which mathematical models ful�l some kind of consistency
conditions which make them compatible with such empirical facts.

Let us start with a de�nition

De�nition 1.1. A model for S(t) is said to be consistent under inversion if the dynamics of S(t) under
the domestic measure is the same as the dynamics of 1/S(t) under the foreign measure, up to a repara-
metrization. Expressing S(t) as a Ito stochastic di�erential equation (SDE), both the �nite variation drift
and the di�usive part will be required to have the same functional form. In case there are hidden sources
of randomness, such as stochastic volatility or random jumps, consistency will be said to hold if also the
description of such sources is invariant modulo reparametrization.

Such a requirement can be justi�ed from di�erent points of view. Firstly, in principle there is no reason
why an exchange rate and its inverse should be described in substantially di�erent ways. They are actually
the same entity, just seen from two di�erent perspectives. Furthermore, in terms of design of libraries, it
is helpful to have a consistent dynamics for all FX rates involved in transactions.

The issue of consistency with respect to inversion was raised, for instance, by Brigo et al. [3] in the
context of multi currency CDSs and FX rate devaluation in conjunction with default events. In Section
2.2. the authors explain that when pricing quanto CDS one might be interested in pricing either under
the liquid-currency measure or the contractual-currency measure. FX symmetry plays a role in that the
measure change a�ects all risk factors whose dynamics is de�ned under a measure di�erent from the one
in which they were calibrated.

The Heston model is certainly one of the most widespread [16, 17]. Its consistency with respect to
inversion was �rst addressed by Del Baño Rollin [8], who showed that the Heston model is indeed well
behaving (see also [7, 13]). On the other hand, inconsistent models are numerous: for instance, the Garch
stochastic volatility model [13], the SABR model [13, 7], the Hull-White stochastic volatility model [13],
and the Scott model [7]. By following the intrinsic currency framework introduced by Doust [9, 10], De Col
et al. [7] presented a multi-factor SV model of Heston type which remains invariant under a risk-neutral
measure change. This approach was later generalized by Gnoatto [13], who introduced a consistent a�ne
stochastic volatility model. The intrinsic currency approach was employed by Gnoatto and Grasselli as
well [14], who extended the model presented previously in [7] to the case where the stochastic factors
driving the volatilities of the exchange rates belong to the cone of positive semide�nite d× d matrices S+

d .
Speci�cally, they showed that their model is at the same time an a�ne multifactor stochastic volatility
model for the FX rate where the instantaneous variance is driven by a Wishart process, and a Wishart
a�ne short-rate model. Recently, Grace�a et al. [15] studied consistency with respect to inversion of
fairly general classes of local stochastic volatility (LSV) models, determining general conditions that a
LSV model has to satisfy in order to be consistent. Finally, it is worth mentioning that this problem was
also discussed in the context of semimartingales, see for instance the works of Eberlein and Papapantoleon
[11] and and Eberlein et al. [12] who discussed the so-called duality principle.

This paper aims at including jumps into the analysis and discussing how Poisson and compound Poisson
processes behave under inversion in the FX rate. It is structured as follows. In Section 2 we present a
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fairly general jump-di�usion model with local-stochastic volatility, and illustrate some numerical results
highlighting the consistency and inconsistency of the Heston model and SABR model respectively. In
section 3 we discuss consistency for a general local volatility structure, identifying some suitable functional
forms satisfying the required property. In section 4 we focus without loss of generality on the jump
component, and discuss the case where jump size is constant. Here consistency with respect to inversion
turns out to be automatically satis�ed, since the jump size is a constant as well. Finally, in Section 5
we analyze the more complicated case of compound Poisson processes. We identify a fairly general class
of jump size distributions which are invariant, up to a reparametrization, under the transformation from
domestic to foreign measure.

2 General model and numerics

Consider the jump-di�usion with local stochastic model

dS(t) = ∆rS(t)dt+ η(t, V (t))σ(t, S(t))S(t)dWQd
1 (t) + S(t−)JddNQd(t)

dV (t) = m(t, V (t))dt+ ξ(t, V (t))dWQd
2 (t)

(2.1a)

(2.1b)

where the process S(t) denotes the exchange rate, ∆r = rd − rf the di�erential of the domestic and
foreign risk free interest rates, m, η, σ, ξ : [0, T ] → R measurable functions, Qd denotes the risk neutral
domestic measure, WQd

1 (t),WQd
2 (t) standard Brownian motions under the domestic measure, NQd(t) a

Poisson process under the domestic measure with intensity λd, and Jd the size of the relative jump of the
exchange rate. The Poisson process will be assumed to be independent from the Brownian motions while
the two Brownian motions will in general be correlated.

As mentioned in the introduction, a model S(t) is said to be consistent under inversion if the SDE
describing S in the domestic measure and the SDE describing 1/S in the foreign measure are the same,
up to a reparametrization. Furthermore, any hidden source of randomness, such as stochastic volatility or
stochastic jumps, must be described by the same kind of SDE/distribution. To give a numerical measure
of the inconsistency, we can consider, for the sake of simplicity, the Heston model (which is consistent)
and the SABR model (which is not) [15]. The Heston model is

dS(t) = ∆rS(t)dt+
√
V (t)S(t)dWQd

1 (t)

dV (t) = κ(V̄ − V (t))dt+ σ
√
V (t)dWQd

2 (t).

This model is well known to be consistent. Its inverse is

dY (t) = −∆rY (t)dt+
√
V (t)Y (t)dW

Qf

1 (t)

dV (t) = (κ− ρσ)

(
κ

κ− ρσ
V̄ − V (t)

)
dt+ σ

√
V (t)dW

Qf

2 (t).

Indeed, the model dynamics followed by the inverse FX rate is again of Heston type. It is important
to point out, though, that the term k − ρσ should be positive. The reason being that, otherwise, the
volatility model is not mean reverting anymore. Such a condition is easily ful�lled in case, for example,
the correlation between the asset and volatility processes is negative.

The SABR model reads as
dS(t) = ∆rS(t)dt+ Sβ(t)dWQd

1 (t)

dV (t) = νV (t)dWQd
2 (t).

Unlike Heston, the SABR model is inconsistent. The inverse of the SABR is

dY (t) = −∆rY (t)dt+ v(t)Y 2−β(t)dW
Qf

1 (t)

dV (t) = νρY 1−β(t)V 2(t)dt+ νV (t)dW
Qf

2 (t).
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The model dynamics is indeed not a SABR model anymore. In order to provide the reader with a clearer
understanding of what consistency means in practice, we �t both models and their inverses to market data.
As we shall see, consistency will imply that the smile of a model and the smile of the inverse model will
match almost perfectly. Using an inconsistent model, instead, will cause the two smiles to be markedly
di�erent.

In the �rst plot we calibrate Heston model and SABR model to the market data, and show the resulting
smiles.

Figure 1: Calibration Heston and SABR model to EUR/USD market volatility, 30-th January 2018, 3
months maturity.

The underlying asset is the EUR/USD exchange rate as of 30-th January 2018, with spot S0 = 1.24122.
We used �ve market volatilities: 10-delta put, 25-delta put, ATM, 25-delta call, 10-delta call. The maturity
is T = 3 months. The scattered strikes are those from market data, and were computed via (see [5], Eq.
(3.8))

Kmarket := F0,T exp

(
1

2
σ2ATMT

)
,

F0,T denoting the current forward price. In our speci�c case, F0,T = 1.2478 and σATM = 0.0755. As usual,
calibration was carried out my minimizing the sum of squared di�erences between market volatilities and
model implied volatilities. In both cases, results are quite satisfactory. Heston calibration gives the
parameters

v∗0 = 0.0025, , θ∗ = 0.0287, k∗ = 1.1718, σ∗ = 0.1720, ρ∗ = 0.0952. (2.2)

The condition ensuring consistency is indeed satis�ed. On the other hand, calibrating the SABR model
gives us the parameters

α∗ = 0.0748, ρ∗ = 0.1435, ν∗ = 0.7330,

with αshift = 9.8986×10−8, where, we recall, α denotes the current SABR volatility and it is shifted so as
to match the ATM volatility, and ν denotes the volatility of volatility. The parameter β, instead, is chosen
a priori to be 0.50. In order to make Heston and SABR smiles look smooth, we built a denser strikes vector
and then performed a spline interpolation. Next, we illustrate the consistency of the Heston model. Using
the calibrated parameters (2.2) of the Heston model, we priced options on the reciprocal exchange rate
using the reciprocal of the Heston model, which is known to be a Heston model as well. Then, given these
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prices, we employed a standard numerical routine and obtained the corresponding implied volatilities,
coherent with the Heston reciprocal. Finally, we plotted the smile of these implied volatilities against the
one of the original model.

Visualizing both smiles in the same plot, we see that they are almost overlapping. More precisely, the
norm of the di�erence between the two is of order 10−14. Such an overlap indicates the model and its
reciprocal have the same volatility, that is, the volatility in the models is described by the same kind of
stochastic dynamics. This, in turn, is a clear sign con�rming model consistency.

Figure 2: Consistency Heston model with respect to inversion: Heston smile and inverse smile are almost
exactly overlapping.

Repeating the same procedure with the SABR model and its reciprocal, we see that the result is
considerably di�erent.
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Figure 3: Inconsistency SABR model with respect to inversion

Unlike what happens in Figure 2, the two smiles do not overlap at all. This clearly suggests this model
is not consistent under inversion.

3 Inversion with local volatility structure

After showing a few numerical examples, we proceed by analysing more complex models. We start by
investigating the scenario where no jumps nor stochastic volatility are present, that is we specify the model
(2.1) with Jd = 0 and η = 1. Inversion of local stochastic volatility was discussed in [15]. The authors
determined an a�ne condition for the local volatility component, and a relationship linking the functions
m,xi, η. Here we propose a further viable speci�cation for the general volatility. Let us consider the model

dS(t) = ∆rS(t)dt+ σ(S, t)S(t)dWQd(t).

Then, by Ito's formula, the inverted dynamics in the domestic measure reads as

d

(
1

S(t)

)
=

[
− 1

S(t)
∆r + σ2(S, t)

1

S(t)

]
dt− 1

S(t)
σ(S, t)dWQd(t).

Implementing the change of measure from domestic to foreign

dWQf (t) = dWQd(t)− σ(S(t), t)dt,

implies

d

(
1

S(t)

)
= −∆r

1

S(t)
dt− 1

S(t)
σ(S(t), t)dWQf (t).

Therefore, the dynamics of the inverted exchange rate Y (t) := 1/S(t) in the foreign measure becomes

dY (t) = −∆rY (t)dt− σ
(

1

Y (t)
, t

)
Y (t)dWQf (t).

This means that in order to ensure consistency, we will require

σ

(
1

Y
, t

)
∼ σ(Y, t),
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where by ∼ we mean the same functional form. A non trivial function satisfying this is, for example, the
logarithm, since

log

(
1

x

)
= − log(x).

More generally, we might consider any polynomial of logarithms. Another class is given by

σ(x, t) =
1

xk
+

1

xk−1
+ · · ·+ 1 + xk−1 + xk.

Interestingly, this last expression is a local volatility which is useful in practice thanks to its �exibility in
the parametrization. Generally, we could consider

σ(x) = f(log(x)),

with function f having some sort of symmetry around the x-axis

f(x) ∼ f(−x).

4 Inversion of jump di�usion with constant jump size

By virtue of the independence of the Brownian motion from the Poisson process, we can, without loss of
generality, set the volatility structure to be constant, and focus on the jump component of our model. In
the current section we will assume the jump size to be constant,

S(t) = S(t−) + ∆S(t) = S(t−) + S(t−)γd

= S(t−)(1 + γd).

Specifying η = 1, σ(S(t), t) = σ in (2.1), our model becomes

dS(t) = (∆r − γdλd)S(t)dt+ σS(t)dWQd(t) + S(t−)γddNQd(t),

In order to determine whether, and under which conditions, consistency is ful�lled, we de�ne, as above,
the inverse exchange rate Y (t) := 1

S(t) . Applying Ito's formula for jump-di�usion processes (see Cont and

Tankov [6], Prop 8.14,) yields

dY (t) = (∆r + γdλd + σ2)Y (t)dt− σY (t)dWQd(t) + Y (t−)

(
− γd

1 + γd

)
dNQd(t).

Next, we perform a change of measure so as to express Y in the foreign measure. As it is well known (see
e.g. Brigo and Mercurio [2]), the change of measure is de�ned via the Radon-Nikodym derivative

L(t) :=
S(t)Bf (t)

S(0)Bd(t)
, (4.1)

Bd(t), Bf (t) denoting the domestic and foreign bank accounts respectively. In general, this can be rewritten
in closed form as (see e.g. Shreve [18])

L(t) = L1(t)L2(t) (4.2)

with

L1(t) = exp

{
σW (t)− 1

2
σ2t

}
responsible for the Brownian motion and

L2(t) = e(λ
f−λd)t

(
λf

λd

)N(t)

(4.3)
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responsible for the Poisson process, λf denoting the intensity of the Poisson process in the foreign measure.
In di�erential form, we might write

dL1(t) = σL1(t)dW
Qd

(t)

dL2(t) =
λf − λd

λd
L2(t)dM

Qd
(t) = γdL2(t)dM

Qd
(t),

with dMQd
(t) := dNQd

(t)− λdt a martingale. In the second expression, the �rst equality is due to (4.3),
while the second is due to (4.1). More compactly, applying formula (4.2) and noting that Brownian motion
and Poisson process are independent:

dL(t) = σL(t)dWQd
(t) + γdL(t)dMQd

(t).

Hence, we deduce that
λf − λd

λd
= γd,

that is

λf = λd(1 + λd). (4.4)

The new Brownian motion is given by

dWQf (t) := dWQd(t)− σdt.

Remark 4.1. It could be interesting to notice that equation (4.4) can be deduced heuristically as follows
(see also [1])

λfdt = λddt+
E[dL(t)dN(t)|Ft]

L(t)

= λddt+
E[γdL(t)(dN(t))2|Ft]

L(t)

= λddt+ γdλdt

= λd(1 + γd)dt.

Let us now notice that there appear to be two choices for the de�nition of the new jump size γf : we
can de�ne it as the whole term multiplying the Poisson process or that term with a minus in front. We
opt for the �rst choice, that is

γf := − γd

1 + γd
.

The reason for doing so is that in this way both the two jumps sizes in the di�erent measures have domain
D = (−1,+∞). Indeed,

γd → −1+ =⇒ γf → +∞
γd → +∞ =⇒ γf → −1+.

Therefore, the dynamics of Y under the foreign measure reads as

dY (t) = Y (t)(∆r − γfλf )dt− σY (t)dWQf
(t) + Y (t−)γfdNQf

(t).

Since γd is constant, so is γf . Hence, consistency is readily ful�lled. It is also easy to check that Y is
correctly compensated. This happens when

−λdγd + λfγf = 0

and this is satis�ed in view of (4.4) and the de�nition of γf . In absolute values,

λf

λd
=

∣∣∣∣γdγf
∣∣∣∣ .
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This means that the higher the jump size in the domestic measure, the higher the jump frequency in the
foreign measure. Since the foreign jump size is decreasing as a function of the domestic jump size, the
foreign intensity must somehow compensate this e�ect and then increase. In other words, the Poisson
process in the foreign measure is expected to have a higher number jumps, but with a lower size.

5 Inversion of jump di�usion with compound Poisson process

Finally, we discuss the case where the jump size is random, that is when the exchange rate is driven by a
compound Poisson process. Consistency will now be more restrictive, as we will require the distribution
of jump sizes not to be a�ected by the measure change. The aim of this section will be to determine a
fairly general class of densities for the jump size in the domestic measure for which such condition will be
satis�ed.

dS(t) = (∆r − βdλd)S(t)dt+ σS(t)dWQd(t) + S(t−)dKQd(t),

where KQd(t) is a compound Poisson process (under the domestic measure)

KQd(t) :=

NQd (t)∑
i=1

Jdi ,

with the jump sizes Jdi are i.i.d. (independent of the processes W and N) and

βd := Ed[Jd]

is the expectation of the domestic jump size under the domestic measure. The jump part might be
conveniently rewritten as

dKQd(t) = KQd(t+ dt)−KQd(t)

=

N
Qd
t+dt∑
i=1

Jdi −
N

Qd
t∑
i=1

Jdi

=

N
Qd
t +dN

Qd
t∑

i=1

Jdi −
N

Qd
t∑

j=1

Jdi

= Jd1dN
Qd
t .

Hence, our model can we rewritten also as

dS(t) = (∆r − βdλd)S(t)dt+ σS(t)dWQd(t) + S(t−)Jd1dN
Qd(t).

For the sake of clarity, we remark that the compensator βdλd guarantees absence of arbitrage. Since S(t−)
is Ft−-measurable,

Edt−
[
S(t−)dKQd(t)

]
= S(t−)Edt−

[
dKQd(t)

]
= S(t−)Ed[Jd]λddt.

In close form, this is (see Shreve [18])

S(t) = S(0) exp

{
σWQd(t) + (∆r − βdλd − 1

2
σ2)t

}NQd (t)∏
i=1

(Jdi + 1).

We can readily see that the domain D of the density of the jump size must be contained in (−1,+∞).
Performing the inversion and changing measure yields

dY (t) = (−∆r + βdλd)Y (t)dt− σY (t)dWQf (t) + Y (t)

(
− Jd

1 + Jd

)
dNQf (t).

9



Analogously to the constant scenario, we might de�ne

Jf := − Jd

1 + Jd
.

In order to determine expressions for λf and ff , we look at the Radon-Nykodim derivative

L(t) :=
S(t)Bf (t)

S(0)Bd(t)
.

Its di�erential is
dL(t) = σL(t)dWQd(t) + L(t)dMQd(t),

with M being a martingale de�ned via

dM(t)Qd := dKQd(t)− βdλddt.

In general, the RD derivative describing the joint change of measure of a Brownian motion and compound
Poisson process is (see Shreve [18])

L(t) = L1(t)L2(t),

with

L1(t) = exp

{
σW (t)− σ2

2
t

}
and

L2(t) = e(λ
f−λd)t

N(t)∏
i=1

λf

λd
ff (Ji)

fd(Ji)
.

In di�erential form, we have (see Shreve [18])

dL2(t) = L2(t−)d(H(t)− λf t)− L2(t−)d(N(t)− λdt)

with

H(t) =

N(t)∑
i=1

λf

λ

ff (Ji)

fd(Ji)
.

Also,

dH = ∆H(t) =
λf

λd
ff (Y1)

fd(Y1)
∆N(t).

Therefore,

dL2(t) = L2(t)
[
dH(t)− λfdt− dN(t) + λddt

]
= L2(t)

[(
λf

λd
ff (Y1)

fd(Y1)
− 1

)
dN(t) + (λd − λf )dt

]
.

In our context of FX measure change, we have

L(t) = exp

{
σWQd(t) + (−βdλd − 1

2
σ2)t

}NQd (t)∏
i=1

(Yi + 1).

The di�erential of the jump part can be written as

dL2(t) = L2(t)
[
Jd1dN

Qd − βdλddt
]
.
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It is now evident that, comparing the dt and dN terms, we obtain

λd − λf = −βdλd,

that is, the intensity in the foreign measure is

λf = (1 + βd)λd.

Moreover,
λf

λd
ff (J1)

fd(J1)
− 1 = J1,

that is
ff (J1)

fd(J1)
= (1 + J1)

λd

λf
.

Therefore, the probability distribution function of the jump size in the foreign measure is

ff (x) = fd(x)(1 + x)
λd

λf
. (5.1)

For the sake of completeness, we check that the inverted process Y (t) is free of arbitrage. This is true if
and only if

Ed[Jd]λd + Ef
[
− Jd

1 + Jd

]
λf = 0.

In terms of densities, this is equivalent to

λd
∫ +∞

−1
xfd(x)dx+ λf

∫ +∞

−1
− x

1 + x
ff (x)dx = 0.

and this is readily satis�ed in view of (5.1).
As far as consistency is concerned, we require the density fd of the jump size Jd under the domestic

measure to belong to the same class as the density of Jf under the foreign measure. Notice that ff is the
density of Jd under the foreign measure.

Remark 5.1. For small J , at �rst order we have

− J

1 + J
=

1

1 + J
− 1 ≈ 1− J − 1 = −J,

that is
Jf = −Jd.

This means that for small jumps, consistency is automatically satis�ed.

Lemma 5.2. Let X be a generic random variable and de�ne

Y = − X

1 +X
.

Let fX be the density of X and fY the density of Y . Then, for any measure P,

fY (y) = fX

(
− y

1 + y

)
1

(1 + y)2
.
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Proof. We have

P(Y ≤ y) = P
(
− X

1 +X
≤ y
)

= P(−X ≤ y +Xy)

= P (X(1 + y) ≥ −y)

= P
(
X ≥ − y

y + 1

)
= 1− P

(
X < − y

y + 1

)
.

So,

FY (y) = 1− FX
(
− y

1 + y

)
.

Di�erentiating, we conclude.

Let us denote by ff
Jd the density of Jd under the foreign measure Qf , by f

d
Jd the density of Jd under

the domestic measure Qd, and by ff
Jf the density of Jf under the foreign measure Qf . Then, in view of

equation (5.1), we write

ff
Jd(x) = fdJd(x)(1 + x)

λd

λf
.

Moreover, in light of the lemma above, it holds

ff
Jf (y) = ff

Jd

(
− y

1 + y

)
1

(1 + y)2
.

Combining the two equations yields the relationship

ff
Jf (y) = fdJd

(
− y

1 + y

)
1

(1 + y)3
λd

λf
.

At this point we might ask ourselves which kind of densities are appropriate. Keep in mind the domain
D = (−1,+∞). Let us consider a power law distribution with cuto� function

fdJd(x) = c
1

(1 + x)α
eg(x),

where c is the normalization constant. Then,

ff
Jf (y) = c

1(
1− y

1+y

)α eg(− y
1+y

)
1

(1 + y)3
λd

λf

= c
λd

λf
e
g
(
− y

1+y

)
1

(1 + y)3−α
.

We might de�ne the new scaling parameter β := 3− α. Consistency is then ful�lled only for those cut-o�
functions such that

g(y) ∼ g
(
− y

1 + y

)
.

Notice that in this way the cut-o� function ensures convergence at both −1 and + inf, since

lim
x→+∞

g(x) = lim
x→−1+

g(x) = −∞.
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A possible guess for g is

g(x) = −q x2

1 + x
,

with q positive constant. Indeed,

−
(y
1

)2
1− y

1+y

= − y2

(1 + y)2
(1 + y) = − y2

1 + y
.

Summing up, a good candidate for the jump size density is

fdJd(x) = c
1

(1 + x)α
e−q

x2

1+x ,

This density is de�ned on the interval [−1,+∞), and it is made of two components: a power law part
depending on the scaling parameter α, and an exponential cuto� depending on a positive parameter q.

6 Conclusion

In this paper we discussed the consistency of jump-di�usion processes with respect to their reciprocal
processes, and therefore their applicability in the FX market. After presenting the general model and
illustrating numerically the Heston consistency and SABR inconsistency, we presented general classes of
local volatility models ful�lling our conditions. Then, we discussed inversion of a jump process with
constant jump size. In this simple case, consistency is automatically veri�ed, since the jump size of the
inverted process, de�ned under the foreign measure, is a constant as well. More involved is the inversion
of a compound Poisson process. In this case, we determined a fairly general admissible density for the
jump size in the domestic measure ensuring that the jumps distribution of the original process under the
domestic measure is, up to a reparametrization, the same as the jumps distribution of the inverted process
under the foreign one.
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