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Abstract 31 

Background 32 

Although neutrophils have been linked to the progression of cancer, uncertainty exists around their association with cancer outcomes, 33 

depending on the site, outcome and treatments considered. We aimed to evaluate the strength and validity of evidence on the 34 

association between either the neutrophil to lymphocyte ratio (NLR) or tumour-associated neutrophils (TAN) and cancer prognosis. 35 

Methods 36 

We searched Medline, EMBASE and Cochrane Database of Systematic Reviews from inception to 29 May 2020 for systematic 37 

reviews and meta-analyses of observational studies on neutrophil counts (here NLR or TAN) and specific cancer outcomes related 38 

to disease progression or survival. The available evidence was graded as strong, highly suggestive, suggestive, weak or uncertain 39 

through the application of pre-set GRADE criteria. 40 

Results 41 

204 meta-analyses from 86 studies investigating the association between either NLR or TAN and cancer outcomes met the criteria 42 

for inclusion. All but one meta-analyses found a hazard ratio (HR) which increased risk (HR>1). We did not find sufficient meta-43 

analyses to evaluate TAN and cancer outcomes (N=9). When assessed for magnitude of effect, significance and bias related to 44 

heterogeneity and small study effects, 18 (9%) associations between NLR and outcomes in composite cancer endpoints (combined 45 

analysis), cancers treated with immunotherapy and some site specific cancers (urinary, nasopharyngeal, gastric, breast, endometrial, 46 

soft tissue sarcoma and hepatocellular cancers) were supported by strong evidence. 47 

Conclusion 48 

60 (29%) meta-analyses presented strong or highly suggestive evidence. Although the NLR and TAN hold clinical promise in their 49 

association with poor cancer prognosis, further research is required to provide robust evidence, assess causality and test clinical 50 

utility. 51 

 52 
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Cancer, Neutrophils, Neutrophil to lymphocyte ratio, Tumor-associated neutrophils, Prognosis, Umbrella review 54 

 55 

Registration 56 

This umbrella review was registered on PROSPERO (CRD42017069131). 57 

 58 

 59 

 60 



 3 

Background 61 

Cancer is the second leading cause of mortality worldwide,1 contributing to over 8.7 million deaths globally in 2015. 2 Cancer 62 

incidence is increasing due, in part, to higher morbidity from chronic diseases and epidemiological transitions in developing 63 

countries.3 This increase highlights the importance of identifying prognostic indicators associated with cancer progression such as 64 

the neutrophil to lymphocyte ratio (NLR).4 The link between inflammation and cancer was first observed by Rudolf Virchow, who 65 

detected leukocytes within tumours and hypothesized that inflammation increased cellular proliferation.5 Since this discovery in the 66 

19th century, inflammation has been recognised as one of the six biological capabilities of tumour development and a hallmark of 67 

cancer,6 with links to cancer initiation, progression and metastasis.7 The paradoxical role of neutrophils in both the prevention and 68 

facilitation of tumour progression has generated significant research interest around neutrophils in the tumour microenvironment.8  69 

 70 

The NLR has emerged as a potential biomarker of cancer prognosis and is of particular clinical interest due to its accessibility and 71 

the ease of calculating the ratio from patients’ routine blood cell counts.9 The NLR was first recognised for its association with 72 

systemic inflammation in the critically ill and meta-analyses on the association between elevated NLR and poor prognosis have 73 

reported a wide range of effect sizes, depending on the site of cancer.9, 10 The close association between inflammation and cancer 74 

progression hints at the potential of elevated tumour-associated neutrophils (TAN), or neutrophils which infiltrate tumours,11 as a 75 

prognostic biomarker.8,12,13 Many systematic reviews and meta-analyses have explored the association between neutrophils and 76 

cancer prognosis. However, the myriad of different cancer sites, stages, treatments, survival outcomes and cut-off values for 77 

classifying a “high” NLR complicates the interpretation of this body of evidence. 78 

 79 

It is currently unclear how the association between NLR and poor prognosis varies depending on the site of cancer or the treatment 80 

considered. Umbrella reviews allow for the analysis of such broad subject areas to examine the strength and credibility of associations 81 

using the results of published systematic reviews and meta-analyses.14,15 Umbrella review methods assess the strength and 82 

consistency of the literature to evaluate bias and identify which associations are supported by strong evidence.14 Here we carried out 83 

an umbrella review of systematic reviews and meta-analyses with the aim of comprehensively evaluating the validity and strength 84 

of reported associations between NLR or TAN and cancer prognosis and identify potential biases in relevant literature. 85 

 86 

Methods 87 

Literature search 88 

Searches were conducted in Medline, Embase and the Cochrane Database (Additional File 1: Appendix A) and aimed to include all 89 

systematic reviews and meta-analyses published in English from inception up to 29 May 2020. Measures of neutrophil counts 90 
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included NLR and TAN (intratumoural, peritumoural and stromal neutrophils). Overall survival (OS), cancer-specific survival 91 

(CSS), progression-free survival (PFS), disease-free survival (DFS) and reoccurrence-free survival (RFS) were considered as cancer 92 

outcomes. Articles were initially screened by title and abstract to determine eligibility for full text screening and inclusion using 93 

RefWorks web-based bibliography and database manager.16 94 

 95 

Inclusion and exclusion criteria 96 

Included studies were systematic reviews and meta-analyses of individual observational studies in humans with any cancer diagnosis 97 

and NLR or TAN measurements taken around the time of diagnosis. Systematic reviews which did not include a meta-analysis were 98 

excluded. Meta-analyses were excluded if they did not assess a cancer outcome in our inclusion criteria, included more than one 99 

outcome in a single analysis, did not specify the cancer site or included multiple cancer sites in a single analysis without clarifying 100 

whether there was a shared feature (e.g. analyses that combined cancers and classified them as “other cancers” without further 101 

details). However, meta-analyses which assessed multiple cancers in a single analysis based on a shared feature were included and 102 

classified as “composite cancer endpoints”. Meta-analyses were also excluded if they did not provide sufficient detail for replication, 103 

such as the hazard ratio (HR), 95% confidence interval and total sample size of each individual study included in a meta-analysis. If 104 

a single systematic review included multiple meta-analyses, all meta-analyses were individually assessed for eligibility. 105 

 106 

When more than one meta-analysis was identified for a single association at a specific site, they were assessed for concordance in 107 

the direction, magnitude and significance of their effect estimates. If the duplicate meta-analyses identified agreed in significance, 108 

magnitude and direction of effect, the meta-analysis with the greatest number of component studies was included. Where 109 

disagreement was found, both duplicate meta-analyses were excluded unless the disagreement arose from an underpowered meta-110 

analysis (less than five component studies), in which case the meta-analysis with the greatest number of component studies was 111 

used. 112 

 113 

Data extraction 114 

Data extraction forms were generated to record information from each meta-analysis and the included individual studies. First author, 115 

year of publication, outcome measure, biomarker and cancer diagnosis were extracted from each meta-analysis. For each included 116 

individual study within a meta-analysis, the first author, year of publication, total population, epidemiological design, HR, 95% 117 

confidence interval were extracted along with analysis method and NLR cut-off where available. 118 

 119 

Data analysis 120 
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The weighted inverse variance method was used with restricted maximum likelihood (REML) estimations to reproduce all included 121 

meta-analyses in R with the “meta” package17 and “metagen” command.18 For each cancer site specific biomarker and outcome pair, 122 

the summary effect size and 95% confidence interval were calculated using fixed and random effects models with adjustment by the 123 

Knapp-Hartung modification. To take into account heterogeneity between studies, a random effects model was used to compute 124 

summary effect size estimates.19,20 Estimates from the fixed effects model are also presented. 125 

 126 

Each included meta-analysis was reproduced to yield both fixed and random effects estimates. Reproduced random or fixed effect 127 

estimates which did not match the results of the original review results were assessed for absolute and percent difference. Meta-128 

analyses with a difference in HR of 0.01 were attributed to rounding errors. Studies with larger discrepancies were investigated to 129 

determine the source of disagreement. Where there were issues with reproducibility, the calculated values of the random effects 130 

model were used to assess the evidence for the association. 131 

 132 

We calculated 95% prediction intervals (PI) in order to assess the impact of uncertainty around the summary effect size estimate and 133 

between-study variance (Tau).21 Prediction intervals account for the uncertainty caused by heterogeneity when estimating the 134 

distribution of true effect sizes in an association and yield an interval which predicts the effect size of future studies investigating 135 

the same association.21 In studies with large amounts of heterogeneity or an effect size close to the null value, the prediction interval 136 

may be wide enough to include the null value (HR=1). This suggests the true effect size in a single meta-analysis may be a HR of 1 137 

or <1. We further assessed heterogeneity with Cochran’s Q test and quantified using the I2 statistic.22 We considered Cochran’s Q 138 

test to detect a departure from homogeny in the effect sizes of individual studies when P<0.10.22 Due to common limitations 139 

associated with Cochran’s Q test, the I2 statistic was also used to quantify the percentage of variation which can be attributed to 140 

heterogeneity.22 The 95% confidence intervals around each I2 value were included to evaluate the uncertainty around estimates of 141 

heterogeneity.23 However, large measures of variation due to heterogeneity, representing true heterogeneity or inconsistency due to 142 

bias,24 were primarily assessed through prediction intervals. To further assess heterogeneity, we used sub-group analysis and meta-143 

regression and as detailed below. 144 

 145 

To further explore heterogeneity and determine the impact of adjustment with additional prognostic factors, sub-group analyses of 146 

the statistical models used in each study were conducted. Meta-analyses which reported the analysis method (univariate or 147 

multivariate) of their component studies were included. The Q test for subgroup differences was used to test for significant 148 

differences in the random effects model effect size between subgroups in each meta-analysis (P<0.05). 149 

 150 
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Meta-regression was used to assess NLR cut-offs as a source of heterogeneity in all component studies that reported them.25 We 151 

used a random-effects meta-regression model with REML estimates to account for residual heterogeneity and the Knapp-Hartung 152 

method to adjust CIs and test statistics.26 153 

 154 

Small study effects and funnel plot asymmetry were quantified through the arcsine-Thompson test described by Rücker et al. 2008 155 

and the command “metabias” from the R package “meta”.27,17 The arcsine-Thompson has greater power than similar tests of small 156 

study effects when heterogeneity is present, however it may be overly conservative when no heterogeneity is present.27 A low 157 

significance value in the arcsine-Thompson test (P<0.10) was used to indicate presence of small study effects which could reflect 158 

publication and other selective reporting biases. Further assessment was carried out to determine if the summary effect size estimate 159 

of each meta-analysis was greater than the point estimate of the largest included study, indicating potential small study effects.28 A 160 

meta-analysis was judged to have evidence of small study effects if either one of these criteria were met. 161 

 162 

The test for excess significance (TES) was used to determine if the number of observed significant results differed significantly from 163 

the expected number, indicating reporting bias.29 TES results can reveal reporting bias if the number of observed studies with 164 

significant results in each meta-analysis is significantly larger than the expected number using a two-tailed binomial probability test 165 

(P<0.10).30 The expected number of significant results in each meta-analysis was calculated as the sum of the statistical power 166 

estimate, or the probability that each component study will find a positive result.29,30 The estimated power for each component study 167 

was calculated in Stata 14,31 using the “power cox” command to calculate the power of each test given its sample size, effect size 168 

and significance level.32 The estimation of power for each component study also requires an estimation of the true effect size, so the 169 

effect size of the largest study was used to give an estimation of true effect with the smallest standard error. Estimates from both 170 

fixed and random effects models were included for sensitivity analysis. The “binom.test” command in R was used to assess the 171 

significance of differences in the number of observed versus expected significant studies using an exact binomial test.33 172 

 173 

Credibility ceilings were utilised for sensitivity analysis and to test the robustness of meta-analyses, considering studies of 174 

biomarkers often underestimate biases due to large sample sizes and observational study design.34,35 Credibility ceiling calculations 175 

inflate the variance of each study included in a meta-analysis to account for the probability c that the true effect size is in the opposite 176 

direction of effect of the observed point estimate.35 Inflated variances were calculated in Stata 14.31,34 The summary effect size and 177 

heterogeneity of each meta-analysis was assessed with ceiling values ranging from 5 to 20%. 178 

 179 

Associations between neutrophil counts (here NLR or TAN) and cancer prognosis were categorised into strong, highly suggestive, 180 

suggestive, weak or uncertain through assessment of the strength and validity of the evidence for each meta-analysis, according to 181 
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pre-defined Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria outlined in Additional File 182 

2: Supplementary Figure 1.36 In order for an association to be considered strong, the meta-analysis must yield a P-value of less than 183 

10-6 in the random effects model,37 include more than 1,000 individuals, show significance at P<0.05 in the largest included study, 184 

find no heterogeneity (P>0.10) through the Q test, detect less than 50% variance due to heterogeneity through the I2 statistic, yield 185 

a prediction interval excluding the null value (HR=1), display no evidence of small study effects or excess significance, and the 186 

association must maintain significance at P<0.05 with the application of a credibility ceiling of 10%. The number of studies in each 187 

meta-analysis was also included as eligibility criterion for strong evidence since a sample size greater than three is required for 188 

reliable assessment of heterogeneity and small study effects.22,38,39 Associations categorised as “highly suggestive” were eligible to 189 

be upgraded to “strong” if they presented a HR>2 and a lower 95% CI>1.6.40 To assess the potential impact of limitations around 190 

the measures assessing heterogeneity on the GRADE criteria, we performed a sensitivity analysis in which I2 and Cochran’s Q test 191 

criteria were removed for associations classified as strong. Additionally, we applied a simplified method to rank associations based 192 

only on their effect size estimate (HR) and precision (standard error from PI or CI intervals) to aid interpretation. 193 

 194 

Studies with meta-analyses categorised as providing either highly suggestive or strong evidence underwent quality assessment 195 

through AMSTAR 2, a tool for assessing the methodological quality of systematic reviews for both health interventions and 196 

observational research.41,42 Furthermore, assessment of the component studies included in each meta-analysis providing strong 197 

evidence was carried out with the Quality in Prognostic Studies (QUIPS) tool.43 Studies were assessed by two reviewers (MAC and 198 

MC) and consensus reached on any disagreements in quality. 199 

 200 

Statistical analyses were carried out in R,18 including the packages “meta” version 4.8-4 and “ggplot2” version 2.2.1, and in Stata 201 

14.17,44,31 202 

 203 

Role of the funding source 204 

Funders had no role in data collection, analysis, interpretation or writing of the report. All authors had access to all the data in the 205 

study. 206 

 207 

Patient involvement 208 

No patients were involved in development of our umbrella review design nor were they asked to advise on interpretation. No ethical 209 

approval was required for this review since it relied entirely on anonymised, published data. 210 

 211 
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Results 212 

Characteristics of included meta-analyses 213 

The 140 published articles meeting the criteria for inclusion contained 517 meta-analyses (Additional File 1: Appendix B). The 204 214 

meta-analyses meeting the eligibility criteria arose from 86 of these articles, published between 2014 and 2020 (Figure 1). 45–130 215 

These meta-analyses included individual studies which presented NLR (N=195) or TAN (N =9) categorically as either a high or low 216 

value. Included meta-analyses summarised effect size estimates from 1,978 individual studies, with OS as the most frequently 217 

assessed outcome (N=90). In 135 meta-analyses (66%) total sample size exceeded 1,000 individuals and each meta-analysis had a 218 

median of seven studies. However, 134 meta-analyses (66%) included less than ten studies and 25 (12%) included only two studies. 219 

The characteristics of included meta-analyses are summarised in Additional File 3: Supplementary Table 1.   220 

 221 

A total of 171 duplicate meta-analyses were excluded. Nine meta-analyses assessing three associations were excluded due to 222 

disagreement in significance between duplicates. A further 162 duplicate meta-analyses that agreed in significance, magnitude and 223 

direction of effect were excluded for 69 associations and only the meta-analysis with the largest number of studies was included for 224 

each association (Additional File 1: Appendix C). 225 

 226 

Summary effect size 227 

All estimated summary effect sizes for both fixed and random effects estimates are shown in Additional File 2: Supplementary 228 

Figures 2-205.  229 

 230 

Using a threshold of P<0.05 for statistical significance, 188 of the 204 meta-analyses (92%) were significant with random effects. 231 

At a more stringent threshold of P<10-6, the number of statistically significant meta-analyses for random effects dropped to 93 (46%) 232 

(Additional File 3: Supplementary Table 1). The 93 meta-analyses with significance at P<10-6 assessed both NLR and TAN as 233 

biomarkers of poor prognosis. Ninety of these 93 meta-analyses (97%) assessed NLR as a biomarker of poor prognosis in melanoma, 234 

neurologic, gynaecologic, pancreatic, gastrointestinal and oesophageal, colorectal, hepatocellular and biliary, respiratory and oral, 235 

urinary, head and neck, Soft Tissue Sarcoma (STS), treatment with immunotherapy, and composite cancer endpoints. TAN 236 

(intratumoural neutrophils) were assessed as a biomarker of poor prognosis in three of the 93 meta-analyses (3%), including urinary 237 

and composite cancer endpoints. 238 

 239 

In 48 meta-analyses (24%), the largest component study was not statistically significant at P<0.05. However, 42 (88%) of these 240 

meta-analyses still had a statistically significant summary random effects estimate. In three meta-analyses,70,72,96 the largest 241 
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component study had an effect size in the opposite direction to the random effects estimate (HR<1). The effect size estimates of the 242 

largest component studies tended to be more conservative than the random effect estimates, with 136 meta-analyses (67%) yielding 243 

a HR which was greater than the point estimate of the largest component study. However, there was correlation between the log(HR) 244 

of the summary random effects and the largest component study for each meta-analysis, indicating consistency in the results (Figure 245 

2A). 246 

 247 

In order to determine the impact of study size on the magnitude of the summary effect size, random effects estimates were plotted 248 

against the inverse variance of the pooled effect size from each meta-analysis. When compared to meta-analyses with large variances, 249 

those with smaller variances produced more conservative estimates, displaying a smaller range of HR estimates and a slight tendency 250 

toward a null value (HR=1). Meta-analyses with large variance displayed a wide range of random effects HR and included an 251 

increased number of HR estimates greater than two (Figure 2B). 252 

 253 

Reproducibility 254 

In 87 of the 204 included meta-analyses (43%), the pooled effect size was reproduced with an absolute difference between the 255 

calculated and reported HR outside of the range which can be attributed to rounding errors (> 0.01). Twenty-eight of these 87 meta-256 

analyses were within 2% of the reported HR, 35 were between 2% and 5% of the reported HR, 14 were between 5% and 10% and 257 

ten meta-analyses reported an HR with over a 10% difference from the calculated HR (Additional File 1: Appendix D). 258 

 259 

Heterogeneity between studies 260 

Prediction intervals were not calculated for 25 (12%) meta-analyses which had included only two individual studies (Additional File 261 

3: Supplementary Table 1). The prediction intervals of 131 meta-analyses (64%) included the null value of HR=1. Of 179 meta-262 

analyses (87%) including at least three individual studies, 47 had prediction intervals which excluded the null value (HR=1). The 25 263 

meta-analyses (12%) including exactly three individual studies yielded very wide prediction intervals, all of which included the null 264 

value of HR=1. For completeness, we also calculated I2 values and Cochran’s Q test although they must be interpreted with caution 265 

due to low power, consistent direction of effect and moderate magnitude of effects (Additional File 1: Appendix E). 266 

 267 

Subgroup analyses of adjustment of effect estimates 268 

In the subgroup analyses of the 48 meta-analyses (24%) which reported on the analysis methods utilised by component studies, a 269 

significant difference was found between the multivariate and univariate groups in only six (13%) meta-analyses (Additional File 1: 270 

Appendix F and Additional File 2: Supplementary Figures 2-205). In general, adjustment of HRs resulted in minor modification in 271 

the strength of association with no consistent pattern. In most cases, summary estimates obtained with the random effects model 272 
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showed slightly stronger or weaker associations with no change in the direction of effect and no major differences in the width of 273 

the 95% CI. However, we note that the majority of studies had 10 or fewer component studies. In studies where both univariate and 274 

multivariate meta-analyses included at least five component studies, 95% PIs tended to be wider for multivariate studies, with lower 275 

bounds close to the null. 276 

 277 

Study authors of the included meta-analyses often reported that HRs derived from multivariate models were preferentially included. 278 

Additional factors that were typically adjusted for included gender, age, smoking, body mass index, co-morbidities, C-reactive 279 

protein, primary tumour location, stage and grade. These could constitute a core set which future studies could consider adjusting 280 

for at a minimum. Concurrent infections, other inflammatory markers (such as fibrinogen and erythrocyte sedimentation rate), 281 

ethnicity and current medications were not typically reported and could modify the estimates. 282 

 283 

Meta-regressions of NLR threshold values 284 

156 meta-analyses (76%) reported sufficient information on NLR cut-offs to undergo meta-regression analysis (Additional File 1: 285 

Appendix G). Of these, 97 (62%) yielded a positive association between NLR and effect size, however only 14 (11%) showed 286 

significance. In the remaining 59 meta-analyses (38%) with a negative association, only three (5%) showed significance. We 287 

observed extreme R2 in many cases, likely due to small sample sizes.131 In 82 meta-analyses (53%), the addition of NLR cut-off did 288 

not account for any of the heterogeneity observed, indicated by an R2 value of 0%. In 15 (20%) of the remaining 74 meta-analyses, 289 

the addition of NLR cut-off values accounted for 100% of the heterogeneity, with a mean and standard deviation of 50.15±39.94%. 290 

 291 

Results of the meta-regressions should be interpreted with caution since only 58 meta-analyses (37%) included the recommended 292 

threshold of ten or more component studies to be considered reliable.25 Of these 58 meta-analyses, 42 (72%) suggested a positive 293 

association between NLR and effect size, with only four (10%) showing significance. The 16 meta-analyses (28%) suggesting a 294 

negative association did not show significance. Bubble plots of the regression of log HR on NLR cut-off are available in Additional 295 

File 2: Supplementary Figures 2-205. Although few showed significance, most meta-regressions yielded a positive association 296 

between NLR cut-off and effect size, suggesting the dose-response relationship should be explored further in future studies. Ideally, 297 

continuous data should be reported instead of non-standardised thresholds. 298 

 299 

Small study effects 300 

179 meta-analyses (88%) included two or more studies and were eligible for further assessment through the arcsine-Thompson test 301 

for publication bias.27 Eighty-eight (49%) of these 179 meta-analyses yielded significant P-values (P<0.10), indicating potential 302 

small study effects. The presence of small study effects was also assessed through comparison of the random effects model effect 303 
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estimate and the effect estimate of the largest component study. In 68 meta-analyses (33%), the summary effects estimate from the 304 

largest component study was larger than the point estimate of the model and were considered to have evidence of small study effects. 305 

Taking both criteria into account, 136 (67%) of the 204 included meta-analyses were judged to have evidence of small study effects 306 

(Additional File 1: Appendix E). 307 

 308 

Excess significance 309 

Forty-two meta-analyses (21%) showed evidence of excess significance bias according to the TES when the effect size of the largest 310 

component study was utilised as an estimate of true effect size (Additional File 1: Appendix H). When the fixed summary effect 311 

sizes were utilised as an estimation of true effect size, 50 meta-analyses (25%) showed evidence of excess significance. Four meta-312 

analyses (2%) showed evidence when the random summary effect sizes were used.  313 

 314 

Credibility ceilings 315 

The summary effect size estimates and significance of each meta-analysis matched that of the random effects model at a credibility 316 

ceiling of 0%, with 188 of the 204 meta-analyses being significant at P<0.05 (93%) (Table 1).  317 

 318 

At a ceiling of 5%, 178 maintained significance (87%) and 139 (68%), 84 (41%), and 51 (25%) maintained significance at ceilings 319 

of 10%, 15%, and 20%, respectively. All of the meta-analyses remained consistent in direction of effect (HR>1) up to a ceiling of 320 

15% and three (1.5%) yielded an effect estimate in the opposite direction (HR<1) with a ceiling of 20%. The I2 value of each meta-321 

analysis decreased with each increase in ceiling value. 322 

 323 

Grading the evidence 324 

Each included meta-analysis was evaluated to determine if the association of interest was supported by strong, highly suggestive, 325 

suggestive or weak evidence (Additional File 1: Appendix I). In 16 meta-analyses (8%), no significance was detected at a threshold 326 

of P<0.05. The remaining 188 meta-analyses (92%) provided at least weak evidence of an association (P<0.05) (Table 2). 327 

 328 

Strong evidence was presented in 18 meta-analyses (9%) for associations between NLR and poor cancer prognosis. Seven of these 329 

associations met the grade criteria for strong evidence, including PFS in non muscle-invasive bladder cancer (N=6; HR 2.26, 95%CI 330 

1.59-3.22), OS and PFS in nasopharyngeal cancer (N=10; HR 1.48, 95%CI 1.29-1.69 & N=5; HR 1.50, 95%CI 1.30-1.73), OS in 331 

castration resistant prostate cancer (N=9; HR 1.56, 95%CI 1.42-1.72), RFS in bladder cancer with Urothelial Transurethral Resection 332 

(UTR) (N=5; HR 2.22, 95%CI 1.81-2.74), OS in endometrial cancer (N=9, HR 2.22, 95%CI 1.76-2.79) and DFS in soft tissue 333 

sarcoma (STS) (N=7, HR 1.72, 95%CI 1.43-2.08) and the other 11 were upgraded from highly suggestive (Additional File 1: 334 
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Appendix J), including DFS in composite cancer endpoints (N=20; HR 2.11, 95%CI 1.71-2.60), OS in advanced cancer with anti-335 

Vascular Endothelial Growth Factor Receptors (VEGFR) (N=14; HR 2.02, 95%CI 1.61-2.53), OS in cancer with Immune 336 

Checkpoint Inhibitors (ICI) (N=18; HR 2.21, 95%CI 1.70-2.88), OS in gastric cancer with surgical resection (SR) (N=7; HR 3.13, 337 

95%CI 1.99-4.92), OS in colorectal liver metastasis (CLM) (N=7; HR 2.17, 95%CI 1.83-2.57), OS in CLM with SR (N=5; HR 2.08, 338 

95%CI 1.73-2.49), OS in breast cancer (N=13, HR 2.54, 95%CI 1.96-3.30), OS in renal cancer with Tyrosine kinase inhibitors 339 

(TKIs) (N=7; HR 2.14, 95%CI 1.66-2.76), OS in melanoma with ICI (N=9, HR 2.49, 95%CI 1.72-3.61), OS in non-small cell lung 340 

cancer (NSCLC) with PD-1 inhibitors (N=13, HR 2.59, 95%CI 2.10-3.20) and OS in breast cancer with SR (N=12, HR 2.47, 95%CI 341 

1.71-3.56). 342 

 343 

Forty-two meta-analyses (21%) presented associations supported by highly suggestive evidence, including associations between 344 

increased NLR and poor prognosis in composite cancer endpoints, cancers treated with immunotherapy, gastric, colorectal, CLM, 345 

pancreatic, gynaecologic, breast, hepatocellular, biliary, NSCLC, lung, head and neck, oral, renal, advanced renal cancer, upper 346 

urinary and bladder, STS and bladder. The most commonly assessed outcome for highly suggestive associations was OS (N=26), 347 

followed by PFS (N=7), DFS (N=5) and RFS (N=4). 348 

 349 

Fifty-one meta-analyses (25%) provided suggestive evidence for an association between high NLR (N=50) or TAN (N=1) and poor 350 

cancer prognosis, and 77 meta-analyses (38%) provided weak evidence for an association between high NLR or TAN and poor 351 

cancer prognosis. The association between intratumoural neutrophils and overall survival in composite cancer endpoints was 352 

classified as suggestive, but there was weak evidence supporting associations with peritumoural neutrophils or stromal neutrophils. 353 

Details of the grading and upgrading for each meta-analysis are included in Additional File 1: Appendices I and J. 354 

 355 

Sensitivity analysis of evidence classification 356 

The sensitivity analysis of GRADE criteria resulted in only one association between NLR and OS in gastric cancer being reclassified 357 

from highly suggestive to strong when I2 and Cochran’s Q test criteria were removed (Additional File 1: Appendix K). To aid 358 

interpretation we also ranked studies by precision (inverse of the standard error of 95% PI or 95% CI) and then by effect size 359 

(Additional File 1: Appendix L). We observed a moderate but highly significant positive correlation between rankings (Kendall’s 360 

rank correlation tau = 0.31, P-value = 1.32e-07 for GRADE and SE 95% PI rank). Although GRADE criteria are limited by rigid 361 

thresholds, these analyses suggest they are relatively robust and considerably improve the classification of evidence for quality and 362 

strength of recommendations. 363 

 364 

Quality assessment 365 
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The 38 meta-analyses categorised as providing either highly suggestive (N=26) or strong evidence (N=12) arose from 30 individually 366 

published studies. Of the 26 highly suggestive meta-analyses, four were from studies ranked as critically low quality (15%), five as 367 

low quality (19%), Seventeen as moderate quality (65%) and one as high quality (4%). The twelve meta-analyses categorised as 368 

providing strong evidence were ranked as moderate quality (N=8, 67%), low quality (N=3, 25%) and critically low quality (N=1, 369 

8%) (Additional File 1: Appendix M).  From the 86 review studies included, we found that 10 (12%) did not assess the risk of bias 370 

in component studies, 7 (8%) used QUIPS and the remainder used various other tools (Additional File 1: Appendix N, Table 1). We 371 

assessed the risk of bias in the 42 unique component studies included from the seven review studies graded as strong and considered 372 

most (N=37) to be at low risk of bias (Additional File 1: Appendix N, Table 2). 373 

 374 

Discussion 375 

A total of 204 associations between elevated NLR or TAN and cancer outcomes were reviewed to assess the strength of the evidence 376 

supporting them. Twelve associations were supported by strong evidence. Although the studies included showed strong consistency 377 

in direction of effect and moderate effect sizes, we detected poor reproducibility of findings overall as well as evidence of 378 

heterogeneity and small-study effects. 379 

 380 

Risk of elevated neutrophil to lymphocyte ratio 381 

Previous studies have documented the prognostic role of neutrophils, particularly the NLR, and their link with poor outcomes for 382 

many cancer sites.10 We found that 92% of the included meta-analyses had a significant HR through random effects estimates 383 

(P<0.05). However, a cautious interpretation is required due to the presence of heterogeneity and small study effect biases. 384 

Associations supported by strong evidence included elevated NLR in urinary (prostate and non muscle-invasive bladder) and 385 

nasopharyngeal cancers, amongst others. Future research should assess the association between the NLR and prognosis in oral and 386 

respiratory cancers by environmental exposures, such as smoking status, to ensure these do not confound associations. 387 

 388 

CLM represents a unique case where metastasis has already occurred and may present a link between elevated NLR and poor 389 

prognosis in metastasised cancers. It is interesting to note that the associations between NLR and OS and PFS in colorectal cancer 390 

also included patients with different stages of metastasis according to the Tumour Node Metastasis (TNM) system. These 391 

associations were supported by highly suggestive and suggestive evidence, respectively, and emerged from a study of moderate 392 

quality. To determine the impact of advanced cancer stages, metastasis and subtypes of cancer on the association between the NLR 393 

and cancer outcomes, future studies should consider these additional factors carefully when assessing the prognostic potential of the 394 

NLR. 395 
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 396 

Risk of tumour-associated neutrophils 397 

Although previous studies suggest a link between TAN and the progression of cancer in the tumour microenvironment,11,13,132 the 398 

evidence for their association was mostly classified as weak or uncertain. The significance of these associations may have been 399 

limited by small sample size and it is important to note that all meta-analyses considering TAN arose from a single publication and 400 

may be subject to the same limitations.57  The association between TAN and cancer outcomes holds potential for a strong association 401 

due to the large effect size observed in this review and the plausibility of the biological mechanism behind the relationship.8 However, 402 

a recently published individual study on this association found that high levels of TAN had a protective effect in cancer,133 indicating 403 

that additional research is required.  404 

 405 

Strengths 406 

A key strength of this study comes from the use of umbrella review methodology which only includes meta-analyses as evidence for 407 

quantitative data analyses.14 The use of meta-analyses ensures that effect size estimates are a balanced representation of the available 408 

evidence, as demonstrated by  the sensitivity analysis of the association between elevated NLR and OS in rectal cancer from Dong 409 

et al. 2016 (Additional File 1: Appendix O).116 When an extreme outlier detected in this meta-analysis was removed from the analysis, 410 

the random effects estimate was not considerably altered due to the small weighting given to studies with large variances.  411 

 412 

Although there are considerable differences between the included meta-analyses in terms of cancer site, stage and treatment, all but 413 

one of the HR estimates reported in these meta-analyses were in the same direction of effect. This finding suggests consistency in 414 

the relationship between neutrophil biomarkers and poor outcomes across a wide spectrum of cancer diagnoses. 415 

 416 

Limitations 417 

Only 39% of the identified meta-analyses were eligible for inclusion and 16% of the identified meta-analyses were excluded because 418 

they did not include sufficient data to be reproduced. Furthermore, we were unable to reproduce 43% of the included studies within 419 

0.01 of the reported HR, highlighting issues with transparency and reproducibility of findings in epidemiologic research.134 Umbrella 420 

reviews also fail to include evidence published in individual studies after the last published meta-analyses. However, all the included 421 

meta-analyses in our review were recently published, with the oldest published in 2014, so the exclusion of individual studies in our 422 

case may be minimal. This exclusion of individual studies is of greatest concern in the association between TAN and cancer 423 

outcomes, due to the availability of a single systematic review, which yielded all nine meta-analysis considered. 424 

 425 
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Umbrella reviews are reliant on the quality of the included meta-analyses. This methodological limitation is of concern since 42% 426 

of the studies which yielded meta-analyses with highly suggestive or strong evidence were ranked as low or critically low quality by 427 

AMSTAR 2 (Additional File 1: Appendix M). The application of AMSTAR 2 for the purpose of ranking the quality of systematic 428 

reviews of prognostic studies may also present a limitation in itself, as there are currently no tools designed specifically for this. 429 

There is also some concern over consistency, since meta-analyses aggregated the results of individual studies which categorised 430 

patients’ NLR or TAN levels as high or low using different cut-off values (Additional File 1: Appendix G) and utilised different 431 

analysis methods which adjusted for a range of confounders (Additional File 1: Appendix F). Due to heterogeneity in these values, 432 

it is not possible to establish a dose-response relationship between NLR and cancer prognosis. 433 

 434 

The assessment of heterogeneity using Cochran’s Q test and the I2 statistic is problematic with varying size of component studies. 435 

Although some studies recommend the interpretation of the I2 value with 95% confidence intervals,38 we did not utilise them as 436 

grading criteria since 168 of our included meta-analyses (82%) include less than 15 studies.38 Cochran’s Q test also has weak power 437 

when there are few studies and excess power in detecting heterogeneity when studies are numerous, both of which are complications 438 

in this study.22 The sensitivity analysis removing I2 and Cochran’s Q test was conducted to assess the potential impact of these 439 

limitations and the resulting reclassification of only a single association suggests the GRADE criteria are relatively robust.  440 

 441 

Causal association 442 

This umbrella review does not address causality directly and cannot determine whether the association between neutrophils and poor 443 

prognosis in cancer is causal or due to confounding or reverse causation.135,136 Previous studies have highlighted the paradoxical role 444 

of neutrophils in both tumour progression and suppression.13 Our study suggests that the overall effect of high NLR could be 445 

tumourigenic in certain cases, but further work is required to assess this. 446 

 447 

Our study supports the relationship between elevated NLR and poor outcomes in cancer in terms of effect size and consistency of 448 

findings. We cannot address temporality as the studies included measured biomarkers before the initiation of treatment but after 449 

diagnosis. The biological mechanisms behind inflammation and cancer progression could suggest temporality, as elevated NLR and 450 

TAN are proposed to promote increased cell proliferation, angiogenesis and risk of metastasis as contributors to poor prognosis.5,13,137 451 

 452 

Clinical significance and future research 453 

Future research should focus on strengthening the current evidence base for specific cancers which displayed suggestive and highly 454 

suggestive associations, addressing heterogeneity and small-study issues. Unveiling a causal association between neutrophils and 455 

cancer outcomes could lead to cancer treatments which involve neutrophils as a therapeutic target and validate the NLR as a 456 
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prognostic biomarker in cancer. A causal association between neutrophils and poor prognosis could give further insight into 457 

experimental therapy which lowers neutrophils counts in the body to improve outcomes in cancer.138–141 Sub-group analysis 458 

suggested that the magnitude and direction of effect of NLR on cancer outcomes was robust to adjustment for additional prognostic 459 

factors. Regardless, consensus on a minimum set of covariates to adjust for is needed. Furthermore, the dose response relationship 460 

between NLR and prognosis remains unclear. Within the included papers, only two of the 86 conducted a dose response analysis.82,142 461 

Future work should consider whether the association is linear or has threshold effects. In light of the variation observed in meta-462 

regressions of NLR cut-off and effect size, identification of a clinically relevant NLR cut-off could be specific to different cancer 463 

sites and may be affected by treatment. Future systematic reviews should consider performing individual patient data (IPD) meta-464 

analyses to allow for the assessment of NLR values on a continuous scale. 465 

 466 

Conclusion 467 

The quantitative evidence presented suggests an association between elevated NLR and poor outcomes in cancer patients across a 468 

wide spectrum of diagnoses, stages of disease and courses of treatment. The evidence is strongest for associations between NLR and 469 

OS in prostate, non muscle-invasive bladder and nasopharyngeal cancer, amongst others. Overall however, and in particular for 470 

associations between TAN and poor prognosis in cancer patients, evidence is limited by study quality, heterogeneity and small-study 471 

effects. Further research is required to overcome the limitations of the existing evidence. 472 
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Table 1 – Credibility ceiling results 862 
 863 

All meta-analyses Ceiling 0% Ceiling 5% Ceiling 10% Ceiling 15% Ceiling 20% 

X = 1, n (%) 
     

Number of meta-analyses with effect size > 1.0 204 (100) 204 (100) 204 (100) 204 (100) 201 (99) 

Number of meta-analyses with nominal statistical significance 188 (92) 178 (87) 139 (68) 84 (41) 51 (25) 
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Table 2 - Grading of evidence 884 

Evidence Criteria Increased risk of poor prognosis 

Strong 
(N=18) 

 
P<10-6* with random effects; >1000 individuals 
included; >3 studies included; largest study 
significant at P<0.05; Q test significant at 
P<0.10; I2 less than 50%, prediction interval 
does not include null value (HR=1); small study 
effects not detected; excess significance not 
detected 
  

Bladder (UTR) - RFS [NLR], Breast - OS [NLR], Breast (SR) - OS [NLR], CLM - OS [NLR], 
CLM (SR) - OS [NLR], Endometrial  - OS [NLR], Gastric (SR) - OS [NLR], Immunotherapy 
(Immune checkpoint inhibitors) - OS [NLR], Melanoma (Immune checkpoint inhibitors) - OS 
[NLR], Nasopharyngeal - OS [NLR], Nasopharyngeal - PFS [NLR], Non muscle Invasive 
Bladder  - PFS [NLR], NSCLC (PD-1 inhibitor) - OS [NLR], Prostate CR  - OS [NLR], Renal 
(TKI) - OS [NLR], STS - DFS [NLR] 

Upgraded to “Strong” from “Highly Suggestive” 
if HR>2, lower 95%CI > 1.6 

 
Advanced Cancer (Anti-VEGFR) - OS [NLR], Composite endpoints - DFS [NLR], Bladder 
(UTR) - RFS [NLR], Breast - OS [NLR], Breast (SR) - OS [NLR], CLM - OS [NLR], CLM 
(SR) - OS [NLR], Endometrial  - OS [NLR], Gastric (SR) - OS [NLR], Immunotherapy 
(Immune checkpoint inhibitors) - OS [NLR], Melanoma (Immune checkpoint inhibitors) - OS 
[NLR], Nasopharyngeal - OS [NLR], Nasopharyngeal - PFS [NLR], Non muscle Invasive 
Bladder  - PFS [NLR], NSCLC (PD-1 inhibitor) - OS [NLR], Prostate CR  - OS [NLR], Renal 
(TKI) - OS [NLR] 
 

Highly 
Suggestive 
(N=42) 

P<10-6* with random effects; >1000 individuals 
included; largest study significant at P<0.05 

 
Advanced Cancer (Immunotherapy) - PFS [NLR], Composite endpoints - PFS [NLR], Biliary 
Tract  - OS [NLR], Bladder - RFS [NLR], Breast (Metastasis) - DFS [NLR], Breast (Triple 
Negative and Her2 Positive) - DFS [NLR], Colorectal - OS [NLR], CLM - RFS [NLR], Gastric 
- OS [NLR], Gynaecologic - OS [NLR], Head and Neck - OS [NLR], Hepatocellular - OS 
[NLR], Hepatocellular - DFS [NLR], Hepatocellular - RFS [NLR], Hepatocellular (Sorfenib) - 
OS [NLR], Hepatocellular (SR) - RFS [NLR], Hepatocellular (SR) - OS [NLR], Hepatocellular 
(SR) - DFS [NLR], Hepatocellular (TACE) - OS [NLR], Advanced Cancer (Immunotherapy) - 
OS [NLR], Immunotherapy (Immune checkpoint inhibitors) - PFS [NLR], Lung (both) - OS 
[NLR], NAC - OS [NLR], NSCLC - PFS [NLR], NSCLC (PD-1 inhibitor) - PFS [NLR], 
NSCLC (ST) - PFS [NLR], Oesophageal - OS [NLR], Oesophageal (DCRT) - OS  [NLR], 
Oesophageal (Surgery) - OS  [NLR], Oesophageal (Surgery+/-Chemo) - OS  [NLR], 
Oesophageal SCC - OS  [NLR], Oral cavity - OS [NLR], Oral cavity - DFS [NLR], Pancreatic - 
OS [NLR], Pancreatic (SR) - OS [NLR], Prostate - PFS [NLR], Prostate (Metastatic) - OS 
[NLR], Prostate CR (Enzalutamide) - OS [NLR], Renal - OS [NLR], Renal Advanced - OS 
[NLR], STS - OS [NLR], Urothelial (Chemotherapy) - OS [NLR] 
  

Suggestive 
(N=51) 

P<10-4* with random effects; >1000 individuals 
included 

 
Composite endpoints - OS [NLR], Composite endpoints - OS [IN], Composite endpoints 
Operable - OS [NLR], Composite endpoints Operable - CSS [NLR], Bladder - OS [NLR], 
Bladder (UTR) - PFS [NLR], Bladder and Upper Urinary - PFS [NLR], Bladder and Upper 
Urinary - CSS [NLR], Breast - DFS [NLR], Breast (SR) - DFS [NLR], Breast (Triple Negative 
and Her2 Positive) - OS [NLR], Cervical - OS [NLR], Cervical - PFS [NLR], Colorectal - DFS 
[NLR], Colorectal - PFS [NLR], Colorectal (SR) - OS [NLR], CLM (Non-surgical) - OS 
[NLR], Endometrial  - PFS [NLR], Glioma - OS [NLR], Head and neck - DFS [NLR], Head and 
Neck (No Surgery) - OS [NLR], Head and Neck (SCC) - CSS [NLR], Head and Neck (SCC) - 
OS [NLR], Head and Neck (SCC) - DFS [NLR], Hepatocellular (Transplant) - OS [NLR], 
Larynx - DFS  [NLR], Larynx - OS [NLR], Lung (Surgery) - OS [NLR], Melanoma - OS 
[NLR], Multiple Myeloma - OS [NLR], Nasopharyngeal - CSS [NLR], Non muscle Invasive 
Bladder  - RFS [NLR], NSCLC - OS [NLR], NSCLC (Chemotherapy) - OS  [NLR], NSCLC 
(Immunotherapy) - OS  [NLR], NSCLC (ST) - OS [NLR], Oesophageal (No Surgery) - OS  
[NLR], Oral SCC - OS [NLR], Ovarian - PFS [NLR], Ovarian - OS [NLR], Prostate - OS 
[NLR], Prostate CR  - PFS [NLR], Prostate CR (Abitaterone) - OS [NLR], Rectal - OS [NLR], 
Renal - PFS [NLR], Urinary - OS [NLR], Urothelial (Nephroureterectomy) - OS [NLR], 
Urothelial (Nephroureterectomy) - PFS [NLR], Urothelial (Radical Cystectomy) - CSS [NLR], 
UTUC (Nephroureterectomy) - CSS [NLR], UTUC (Radical Cystectomy) - CSS [NLR],  
  

Weak 
(N=77) P<0.05* with random effects 

 
Composite endpoints - CSS [IN], Biliary Tract  - RFS [NLR], Bladder (Metastasis) - OS [NLR], 
Bladder (Radical Cystectomy) - OS [NLR], Breast - CSS [NLR], Breast (Metastasis) - OS 
[NLR], Breast (SR) - RFS [NLR], Breast (Triple-negative) - OS [NLR], Breast (Triple-
negative) - DFS [NLR], Colorectal (PC) - DFS [NLR], Colorectal (SR) - DFS [NLR], 
Colorectal (SR) - RFS [NLR], CLM (Non-surgical) - RFS [NLR], CLM (SR) - RFS [NLR], 
Gastric - DFS [NLR], Gastric - PFS [NLR], Gastric (SR) - DFS [NLR], GNT  - OS [NLR], 
GNT  - RFS [NLR], Head and Neck - RFS [NLR], Head and neck - PFS [NLR], Head and Neck 
- OS [IN], Head and Neck (SCC) - PFS [NLR], Head and Neck (SR) - OS [NLR], 
Hepatocellular (MT) - OS [NLR], Hepatocellular (RFA) - OS [NLR], Hepatocellular 
(Transplant) - RFS [NLR], Hepatocellular and ICC - OS [IN], Hypopharynx - OS  [NLR], 
Ipilimumuab - OS [NLR], Ipilimumuab - PFS [NLR], Large B - OS [NLR], Large B - PFS 
[NLR], Lung (both) - PFS [NLR], Melanoma - PFS [NLR], Melanoma (Immune checkpoint 
inhibitors) - PFS [NLR], MPM - OS [NLR], Multiple Myeloma - PFS [NLR], NAC - RFS 
[NLR], NAC - CSS [NLR], Nivolumab - OS [NLR], Nivolumab - PFS [NLR], Non muscle 
Invasive Bladder (High Risk) - RFS [NLR], Non muscle Invasive Bladder (High Risk) - PFS 
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[NLR], NSCLC (Chemotherapy) - PFS  [NLR], NSCLC (Immune Checkpoint Inhibitors) - PFS  
[NLR], NSCLC (Nivoumab) - OS [NLR], NSCLC (Nivoumab) - PFS [NLR], NSCLC (TT) - 
OS  [NLR], NSCLC (TT) - PFS  [NLR], Oesophageal - CSS [NLR], Oesophageal - RFS [NLR], 
Oesophageal - DFS [NLR], Oesophageal - PFS [NLR], Oesophageal (Neo+Surgery) - OS  
[NLR], Oral SCC - DFS [NLR], Oropharynx - DFS  [NLR], Pancreatic - DFS [NLR], 
Pancreatic - CSS [NLR], Pancreatic Neuroendocrine Tumour - OS [NLR], Pancreatic 
NeuroendocrineTumour - RFS [NLR], Rectal - DFS [NLR], Rectal - RFS [NLR], Renal - RFS 
[NLR], Renal - OS [IN], Renal (TKI) - PFS [NLR], Renal Advanced - PFS [NLR], Renal 
Localised - RFS [NLR], STS  (Synovial Sarcoma) - OS [NLR], STS (Liposarcoma) - OS 
[NLR], Upper Urinary - RFS [NLR], Urothelial  - OS [NLR], Urothelial  - RFS [NLR], 
Urothelial (Chemotherapy) - PFS [NLR], Urothelial (Radical Cystectomy) - OS [NLR], 
Urothelial (Radical Cystectomy) - PFS [NLR], Prostate Localised - RFS [NLR] 
  

Uncertain 
(N=16) Not significant at P<0.05* with random effects 

 
Composite endpoints - OS [PN], Composite endpoints - OS [SN], Bladder (Radical Cystectomy 
and NAC) - OS [NLR], Breast (No Metastasis) - OS [NLR], Breast (No Metastasis) - DFS 
[NLR], Gastric - OS [IN], Gastrointestinal Stromal - OS [NLR], Hepatocellular (RFA) - DFS 
[NLR], NSCLC - OS [IN], Prostate Localised - OS [NLR], Prostate CR (Abitaterone) - PFS 
[NLR], Prostate CR (Enzalutamide) - PFS [NLR], Renal - CSS [NLR], Renal Localised - OS 
[NLR], Thyroid - DFS [NLR], Urothelial  - DFS [NLR] 
  

(NLR) Neutrophil to lymphocyte ratio, (IN) Intratumoural neutrophils, (PN) Peritumoural neutrophils, (SN) Stromal Neutrophils, (OS) Overall Survival, (DFS) Disease-885 
Free Survival, (PFS) Progression-Free Survival, (RFS) Reoccurrence-Free Survival, (CSS) Cancer Specific Survival, (VEGFR) Vascular Endothelial Growth Factor 886 
Receptor, (PC) Palliative Chemotherapy, (SBR) Surgical Bowel Resection, (NAC) Neoadjuvant Chemotherapy, (STS) Soft Tissue Sarcoma, (UTR) Urothelial 887 
Transurethral Resection, (SR) Surgical Resection, (GNT) Gastroenteropancreatic Neuroendocrine Tumors, (SCC) Squamous Cell Carcinoma, (ST) Systematic Therapy, 888 
(MT) Mixed Therapy, (TT) Targeted Therapy, (CLM) Colorectal Liver Metastasis, (NS) Non-surgical, (ICC) Intrahepatic Cholangiocarcinoma, (RFA) Radiofrequency 889 
Ablation, (TACE) Trans-Arterial Chemoembolization, (MPM) Malignant Pleural Mesothelioma, (NSCLC) Non-Small Cell Lung Cancer, (NHC), Neck and Head Cancer, 890 
(UTUC) Upper Tract Urothelial Carcinoma, (DCRT) Definitive Chemoradiotherapy, (CR) Castration Resistant, (TKI) Tyrosine Kinase Inhibitor. 891 
*Composite cancer endpoints are defined as a grouping of cancer diagnosis unrelated to site, stage or treatment unless otherwise specified. 892 
No meta-analyses presented evidence of elevated neutrophils and improved cancer prognosis (HR<1). 893 
 894 


