Design, synthesis and evaluation of a tripodal receptor for

phosphatidyl inositol phosphates

Katharina Reeh, Peter Summers, Ian Gould, Rudiger Woscholski and Ramon Vilar*

Department of Chemistry, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, UK

Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK

Corresponding author: r.vilar@imperial.ac.uk

Supplementary Information

Synthesis of the tripodal receptor 11.

Synthesis of tert-butyl N-{4-[2-(morpholin-4- yl)ethoxy]phenyl}carbamate (4).

A suspension of tert-butyl N-(4-hydroxyphenyl)carbamate (250 mg, 1.20 mmol), 4-(2-chloroethyl)morpholine hydrochloride (245 mg, 1.31 mmol) and Cs₂CO₃ (856 mg, 2.63 mmol) in anhydrous DMF (15.0 mL) was heated at 90 °C for 18 hr under nitrogen. The reaction mixture was diluted with EtOAc (15.0 mL) and partitioned with water (20.0 mL). The layers were separated and the aqueous layer back-extracted with EtOAc (2 × 15.0 mL). The combined organic layers were washed with water (5 × 30.0 mL), dried using Na₂SO₄ and following filtration under gravity concentrated *in vacuo*. Flash column chromatography eluting with EtOAc/hexane (1:1) then EtOAc/hexane (4:1) gave ethoxy **4** as a white solid (296 mg, 79 %). TLC (EtOAc:hexane, 4:1 v/v): $R_f = 0.20$; ¹H-NMR (400 MHz, CDCl₃) δ 1.50 p.p.m. (9H, d, A), 2.57 (4H, br t, *J* 4.5, F), 2.87 (2H, t, *J* 5.7, E), 3.73 (4H, br t, *J* 4.5, G), 4.07 (2H, t, *J* 5.7, D), 6.34 (1H, br s, NH), 6.84 (2H, d, *J* 8.8, C), 7.25 (2H, br d, *J* 8.8, B); ¹³C-NMR (100 MHz, CDCl₃) δ 28.5 p.p.m. (A), 54.2 (F), 57.8 (E), 66.2 (D), 67.0 (G), 80.4 (C4), 115.1 (C), 120.6 (B), 131.8 (C3), 153.4 (C2), 154.9 (C1); m/z (electrospray) 323.1964 (MH⁺, 100%), Found: MH⁺, 323.1964. C₁₇H₂₆N₂O₄ requires MH⁺, 323.1971; Δ = -2.2ppm).

Figure S1. ¹H NMR spectrum of tert-butyl N-{4-[2-(morpholin-4-yl)ethoxy]phenyl}carbamate (4).

Figure S2. ¹³C NMR spectrum of tert-butyl N-{4-[2-(morpholin-4-yl)ethoxy]phenyl}carbamate (4).

Figure S3. MS spectrum of tert-butyl N-{4-[2-(morpholin-4-yl)ethoxy]phenyl}carbamate (4).

Synthesis of 4-[2-(morpholin-4-yl)ethoxy]aniline (5).

To a stirred solution of Boc-protected amine **4** (1.32 g, 4.09 mmol) in anhydrous CH₂Cl₂ (20.00 mL) under nitrogen was added TFA (3.56 mL, 46.5 mmol). The reaction mixture was stirred at room temperature under nitrogen overnight. The reaction mixture was concentrated *in vacuo*. The residue was partitioned between CHCl₃ (20.0 mL) and NaHCO₃ (20.0 mL). The layers were separated and the aqueous layer back-extracted with CHCl₃ (2 × 20.0 mL). The combined organic layers were washed with NaHCO₃ (2 × 30.0 mL) and water (3 × 30.0 mL). The resulting aqueous layer was back-extracted with CHCl₃ (6 × 25.0 mL). The combined organic layers were dried using Na₂SO₄ and filtered under gravity. Concentration of the filtrate gave amine **5** as a pale brown oil (874 mg, 94 %). TLC (EtOAc): $R_f = 0.18$; ¹H-NMR (400 MHz, CDCl₃) δ 2.56 p.p.m. (4H, br t, *J* 4.5, E), 2.76 (2H, t, *J* 5.8, D), 3.42 (2H, br s, NH₂), 3.73 (4H, br t, *J* 4.5, F), 4.03 (2H, t, *J* 5.8, C), 6.63 (2H, d, *J* 8.8, B), 6.75 (2H, br d, *J* 8.8, A); ¹³C-NMR (100 MHz, CDCl₃) δ 54.2 p.p.m. (E), 57.9 (D), 66.5 (C), 67.0 (F), 115.9 (B), 116.5 (A), 140.3 (C1), 152.0 (C2); m/z (electrospray) 223.1438 (MH⁺, 100%), Found: MH⁺, 223.1438. C₁₂H₁₈N₂O₂ requires MH⁺, 223.1447; Δ = -4.0ppm).

Figure S4. ¹H NMR spectrum of 4-[2-(morpholin-4-yl)ethoxy]aniline (5).

Figure S5. ¹³C NMR spectrum of 4-[2-(morpholin-4-yl)ethoxy]aniline (5).

Figure S6. HSQC spectrum of 4-[2-(morpholin-4-yl)ethoxy]aniline (5).

Figure S7. ESI(+)-MS of 4-[2-(morpholin-4-yl)ethoxy]aniline (5).

Synthesis of compound (6).

Di-amine **3** (332 mg, 0.95 mmol) in anhydrous MeCN (13.0 mL) was added dropwise to a stirring solution of 1,1'-thiocarbonyldiimidazole (342 mg, 1.92 mmol) in anhydrous MeCN (13.0 mL) cooled in an ice-water bath. The reaction mixture was stirred for 30 min in an ice-bath under nitrogen before amine **5** (427 mg, 1.92 mmol) in anhydrous MeCN (10.0 mL) was

added dropwise at a rapid rate. The reaction mixture was heated at reflux under nitrogen overnight. The reaction mixture was concentrated in vacuo and the residue was partitioned between CHCl₃ (50.0 mL) and H₂O (50.0 mL). The layers were separated and the aqueous layer back-extracted with $CHCl_3$ (2 × 40.0 mL). The combined organic layers were washed with water $(3 \times 80.0 \text{ mL})$. The resulting aqueous layer was further back-extracted with CHCl₃ $(5 \times 50.0 \text{ mL})$. The resulting combined organic layers were dried using Na₂SO₄ and following filtration under gravity concentrated in vacuo. Flash column chromatography eluting with CHCl₃/MeOH (9.8:0.2) followed by CHCl₃/MeOH (9.5:0.5) gave thiourea 6 as a pale orange solid foam (717 mg, 86%). TLC (CHCl₃/MeOH (9:6:0.4): $R_f = 0.18$; ¹H-NMR (400 MHz, CDCl₃) δ 1.07 p.p.m. (3H, br t, J 7.2, A1), 1.13 (6H, br t, J 7.4, A), 1.43 (9H, br s, K), 2.61-2.64 (12H, H and I), 2.84 (6H, br s, B and B1), 3.74-3.75 (8H, J), 4.13 (4H, m, G), 4.28 (2H, br s, D), 4.75 (4H, br s, C), 6.87 (4H, d, J 8.7, F), 7.09 (4H, d, J 8.7, E); ¹³C-NMR (100 MHz, MeOD) & 16.8 p.p.m (A), 16.9 (A1), 24.0 (B and B1), 28.8 (K), 39.7 (C), 44.4 (D), 55.1 (I), 58.7 (H), 66.6 (G), 67.6 (J), 80.3 (C9), 116.0 (F), 128.0 (E), 132.8 (C2), 133.9 (C1 and C3), 145.5 (C4), 145.8 (C7), 158.0 (C8), 158.4 (C6), 182.4 (C5); m/z (electrospray) 878.4654 (MH⁺, 40%), 439.7334 (MH₂²⁺, 100 %) Found: MH⁺, 878.4654. C₄₆H₆₈N₇O₆S₂ requires 878.4673; Δ = -2.2 ppm);

Spectra for compound (6).

Figure S8. ¹³C NMR spectrum of compound (6).

Figure S9. ¹H NMR spectrum of compound (6).

Figure S10. MS spectrum of compound (6).

Preparation of compound (7).

To a stirred solution of Boc-protected amine **6** (694 mg, 0.790 mmol) in anhydrous CH₂Cl₂ (18.00 mL) was added TFA (4.42 mL, 57.7 mmol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated *in vacuo*. The residue was partitioned between CHCl₃ (20 mL) and 2 M NaOH (20.0 mL). The layers were separated and the organic layer further washed with 2 M NaOH (20.0 mL) and H₂O (20.0 mL). The aqueous layer was back-extracted with CHCl₃ (3 × 40.0 mL) followed by a 3 % MeOH in CHCl₃ solution (3 × 40.0 mL). The combined organic layers were dried using Na₂SO₄ and filtered under gravity. Flash column chromatography eluting with CHCl₃/MeOH (9.5:0.5), then

CHCl₃/MeOH/7N NH₃ in MeOH (9.45:0.5:0.05) gave amine **7** as a white solid foam (497 mg, 81 %). TLC (CHCl₃/7N NH₃ in MeOH (9:95:0.05)): $R_f = 0.16$; ¹H-NMR (400 MHz, MeOD) δ 1.18 p.p.m. (9H, t, *J* 7.1, A and A1), 2.57 (8H, m, I), 2.76 (10H, m, H, B and B1), 3.69 (8H, m, J), 3.86 (2H, s, D), 4.11 (4H, t, *J* 5.5, G), 4.74 (4H, br s, C), 6.91 (4H, d, *J* 8.8, F), 7.22 (4H, d, *J* 8.8, E); ¹³C-NMR (100 MHz, MeOD) δ 16.9 p.p.m (A and A1), 23.9 (B), 39.4 (D), 44.5 (C), 55.1 (I), 58.7 (H), 66.7 (G), 67.6 (J), 116.1 (F), 127.0 (E), 132.4-8 (C1 and C3), 137.7 (C2), 144.8 (C7), 145.4 (C4), 158.4 (C6), 182.4 (C5); m/z (electrospray) 778.4164 (MH⁺, 100%), 389.7068.2176 MH₂²⁺, 40 %) Found: MH⁺, 778.4164. C₄₁H₆₀N₇O₄S₂ requires 778.4148; Δ = 2.1ppm).

Figure S11. ¹H NMR spectrum of compound (7).

Figure S12. COSY spectrum of compound (7).

Figure S13. ¹³C NMR spectrum of compound (7).

Figure S14. HSQC spectrum of compound (7).

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

237 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Elements Used:

C: 41-41 🕴	H: 0-200	N:0-10	O: 0-10	Na: 0-	1 S: 2-2	2				
Minimum:					-1.5					
Maximum:			5.0	10.0	50.0					
Mass	Calc.	. Mass	mDa		PPM		DBE	i-FIT	i-FIT (Norm)	Formula
778.4164	778.	4148	1.6	2.1	15.5	45.0		0.0	C41 H	60 N7 O4 S2

Figure S15. MS spectrum of compound (7).

Synthesis of compound (8).

To a solution of 1-bromo-2-methylnaphthalene (0.200 mL, 1.283 mmol) in anhydrous toluene (10.0 mL) was added [Pd(PPh₃)₂Cl₂] (45.0 mg, 1.924 mmol; 5 mol%), NEt₃ (0.890 mL, 6.42 mmol) followed by HBpin (0.279 mL, 1.92 mmol). The solution was stirred under nitrogen at 90 °C for 19 hr. The reaction mixture was allowed to cool to room temperature and concentrated in vacuo. The residue was taken up in EtOAc (15 mL), filtered and the filtrate partitioned with water (15 mL). The layers were separated and the aqueous phase extracted with EtOAc (2 \times 15 mL). The combined organic extracts were washed with water (2 \times 30 mL), subsequently dried using Na₂SO₄ and following filtration under gravity concentrated in vacuo. Flash column chromatography eluting with hexane then hexane/EtOAc (9.8:0.2) gave boronate ester 8 as white needles (300 mg, 87 %). TLC (hexane/ EtOAc, 9.8:0.2 v/v): $R_f = 0.2$; vmax /cm⁻¹ 3051 (aromatic C-H stretch), 2975 and 2929 (methyl C-H stretch), 1298 (B-O stretch), 1260 (CH₃ bend), 1129 (C-O stretch); ¹H-NMR (400 MHz, CDCl₃) δ 1.47 p.p.m. (12H, s, H), 2.68 (3H, s, G), 7.33 (1H, d, J 8.4, F), 7.42 (1H, m, C), 7.50 (1H, m, B), 7.80 (2H, m, D and E), 8.17 (1H, d, J 8.4, A); ¹³C-NMR (100 MHz, CDCl₃) δ 22.7 p.p.m. (G), 25.2 (H), 84.1 (C5), 124.7 (C), 126.1 (B), 127.6 (A), 128.2 (D), 128.6 (F), 129.7 (E), 131.5 (C3), 136.7 (C4), 141.5 (C1 and C2); m/z (EI) Found: M⁺, 268.1626. C₁₇H₂₁11BO₂ requires M⁺, 268.1635; $\Delta = -3.4$ ppm).

Figure S16. ¹H NMR spectrum of compound (8).

Figure S17. COSY spectrum of compound (8).

Figure S18. ¹³C NMR spectrum of compound (8).

Figure S19. HSQC spectrum of compound (8).

Figure S20. MS spectrum of compound (8).

Synthesis of compound (9).

A solution of compound **8** (1.042 g, 3.89 mmol), N-bromosuccinimide (830 mg, 4.66 mmol) and benzoyl peroxide (113 mg, 0.466 mmol, 12mol %) in anhydrous CCl₄ (10.0 mL) under nitrogen was stirred at reflux overnight. The reaction mixture was allowed to cool to room temperature and concentrated *in vacuo*. Flash column chromatography of the residue eluting with hexane then hexane/EtOAc (9.9:0.1) gave compound **9** as off-white needles (1.05 g, 81 %). TLC (hexane/ EtOAc, 9.5:0.5 v/v): $R_f = 0.3$; v_{max} /cm⁻¹ 3071 (aromatic C-H stretch), 2976 and 2928 (methyl C-H stretch), 1294 (B-O stretch), 1259 (aliphatic CH bend), 1129 (C-O stretch), 662 (C-Br stretch); ¹H-NMR (400 MHz, CDCl₃) δ 1.54 p.p.m. (12H, s, H), 4.99 (2H, s, G), 7.50 (3H, m, B, C and F), 7.80 (1H, br d, *J* 9.2, D), 7.87 (1H, br d, *J* 8.8, E), 8.32 (1H, d, *J* 8.4, A); ¹³C-NMR (100 MHz, CDCl₃) δ 25.2 p.p.m. (H), 34.2 (G), 84.1 (C5), 126.3 (C), 126.7 (F), 127.8 (B), 128.4 (D), 128.6 (A), 130.9 (E), 132.8 (C3), 136.7 (C4), 141.8 (C1 and C2); m/z (EI) Found: M⁺, 346.0742. C₁₇H₂₀11BO₂Br requires M⁺, 346.0740; Δ = 0.6ppm).

Spectra for compound (9).

Figure S21. ¹H NMR spectrum of compound (9).

Figure S22. ¹³C NMR spectrum of compound (9).

Figure S23. MS spectrum of compound (9).

Synthesis of compound (10).

A solution of amine 7 (474 mg, 0.609 mmol) and K₂CO₃ (51.0 mg, 0.366 mmol) in anhydrous DMF (6.00 mL) was stirred under nitrogen for 30 min before a solution of bromine 9 (106 mg, 0.305 mmol) in anhydrous DMF (2.50 mL) was added dropwise over 25 min. The reaction mixture was stirred under nitrogen at room temperature for 6 hr. The reaction mixture was concentrated in vacuo and the residue was partitioned between CHCl₃ (15 mL) and brine (15.0 mL). The layers were separated and the aqueous layer back-extracted with CHCl₃ (2×10.0 mL). The organic layers further were washed with brine $(3 \times 30.0 \text{ mL})$. The resulting aqueous layer was further back-extracted with CHCl₃ (3 × 40.0 mL) followed by a 3 % MeOH in CHCl₃ solution (3 \times 40.0 mL). The resulting combined organic layers were dried using Na₂SO₄ and following filtration under gravity concentrated in vacuo. Flash column chromatography eluting with CHCl₃/MeOH (9.85:0.15), then CHCl₃/MeOH (9.5:0.5) gave boronate ester 10 as an offwhite foam solid (149 mg, 48 %). TLC (CHCl₃/MeOH (9:98:0.02)): $R_f = 0.29$; ¹H-NMR (400 MHz, MeOD) δ 0.90 p.p.m. (6H, br t, J 7.2, A), 1.22 (3H, m, A1), 1.46 (12H, s, R), 2.56 (12H, m, I and B), 2.78 (6H, m, H and B), 3.68 (8H, br t, J 4.6, J), 3.78 (2H, br s, K), 3.97 (2H, br s, D), 4.12 (4H, br t, J 5.4, G), 4.80 (4H, br s, C), 6.95 (4H, d, J 8.8, F), 7.13 (1H, br d, J 8.0, L), 7.24 (4H, br d, J 8.8, E), 7.44 (1H, br t, J 6.8, O), 7.50 (1H, br t, J 6.8, P), 7.81 (1H, d, J 8.0, M), 7.86 (1H, d, J 8.0, N), 8.6 (1H, d, J 8.1, Q); ¹³C-NMR (100 MHz, MeOD) δ 16.5 (A), 16.8 (A1), 24.2 (B and B1), 26.6 (R), 43.8 (D), 44.4 (C), 49.0 (K), 55.1 (I), 58.7 (H), 66.7 (G), 67.6 (J), 81.8 (C12), 116.1 (F), 123.0 (L), 126.2 (O), 126.4 (P), 128.0 (E), 128.6 (Q), 129.6 (N), 130.1 (C11), 130.4 (M), 132.5 (C3), 133.3 (C1), 135.0 (C8), 136.8 (C9 and C10), 140.0 (C2), 146.7 (C4), 147.1 (C7), 158.5 (C6), 182. 4 (C5); m/z (electrospray) 1044.5657 (MH⁺, 100%), 522.7809 MH₂²⁺, 70 %) Found: MH⁺, 1044.5657. C₅₈H₇₉N₇O₆S₂11B requires 1044.5626; $\Delta =$ 3.0ppm).

Spectra for compound (10).

Figure S24. ¹H NMR spectrum of compound (10).

Figure S25. COSY spectrum of compound (10).

Figure S27. HSQC spectrum of compound (10).

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

695 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)

Elements Used:

C: 58-58 H: 0-200 N: 0-10 O: 0-15 Na: 0-1 S: 2-2 11B: 0-1

Minimum:				-1.5						
Maximum:		5.0	10.0	50.0						
Mass	Calc. Mass	mDa		PPM		DBE	i-FIT	i-FIT (Norm)	Formula	
1044.5657	1044.5626	3.1	3.0	23.5	27.9		1.0	C58	179 N7 O6 S	2 11B

Figure S28. MS spectrum of compound (10).

Synthesis of receptor (11).

Boronate ester 10 (120 mg, 0.115 mmol) was stirred in a 70 % TFA : H₂O solution (5.80 mL) at 68 °C for 24 hr. The solvent was removed in vacuo. The residue was taken up in CHCl₃ (10 mL) and washed with 2 M NaOH (2×10.0 mL). The aqueous layer was further extracted with CHCl₃ (5 \times 7.00 mL). The combined organic layers were concentrated *in vacuo*. The resulting precipitate was washed several times with methanol and isolated the centrifuge. This process gave boronic acid **11** as an off-white powder (65 mg, 59 %). ¹H-NMR (400 MHz, DMSO) δ 1.13 p.p.m. (6H, br t, J 7.2, A), 1.20 (3H, br t, J 7.3, A1), 2.49 (8H, m, J), 2.69 (4H, t, J 5.8, H), 2.78 (2H, br d, J 7.3, B1), 2.97 (6H, m, B), 3.21 (1H, s, N1H), 2.59 (8H, m, J), 3.92 (2H, brs, D), 4.07 (4H, t, J 5.8, G), 4.72-4.74 (6H, C and K), 6.86 (4H, d, J 9.0, 7.06 (2H, m, N2H), 7.34 (4H, d, J 9.0, E), 7.39 (1H, br d, 8.3, L), 7.44 (1H, m, O), 7.51 (1H< m, P), 7.80 (1H, m, M), 7.87 (1H, m, N), 8.55 (1H, d, J 8.2, O), 9.04 (2H, br s, B(OH)₂); ¹³C-NMR (100 MHz, DMSO) δ 15.5 p.p.m. (A), 15.6 (A1), 21.7 (B), 22.1 (B1), 41.2 (K), 42.2 (C), 51.3 (D), 53.1 (I), 56.6 (H), 65.7 (J and G), 114.2 (F), 120.6 (L), 124.2 (O), 124.6 (E), 125.1 (P), 126.4 (Q), 127.4 (N), 128.1 (M), 131.4 (C1), 131.6 (C3), 132.2 (C2 and C4), 132.8 (C8), 134.0 (C11) 142.8 (C9), 143.6 (C10), 148.8 (C7), 155.2 (C6), 180.7 (C5); LCMS trace 100 %; m/z (electrospray) 962.4866 (MH⁺, 100%), 944.4828 (MH⁺-OH, 35 %) Found: MH⁺, 962.4866. $C_{52}H_{69}N_7O_6S_211B$ requires 962.4844; $\Delta = 2.2ppm$).

Spectra for receptor (11).

Figure S29. ¹H NMR spectrum of receptor (11).

Figure S30. COSY spectrum of receptor (11).

Figure S32. HSQC spectrum of receptor (11).

Figure S33. MS spectrum of receptor (11).

Peak ID Compound Time Mass Found 1.48

Figure S35. Comparison of the AP activity rates for PIps. Absorbance at 625 nm was recorded using a constant lipid concentration of 40 μ M. The alkaline phosphatase concentrations was 5 nM (for PI(3)P, PI(4)P and PI(5)P) and 0.5 nM for PI(3,5)P₂ and PI(4,5)P₂ as sufficient AP activity was recorded at this concentration. Each independent experiment was performed in triplicates. Error bars represent ± standard deviation of one experiment carried out in triplicates (n=3).

Figure S36. Alkaline phosphatase activity upon incubation of receptor 11 with PI(3)P (a), PI(4)P (b) and PI(5)P (c). Increasing concentrations of receptor 11 were incubated with PI(3)P (a), PI(4)P (b) and PI(5)P (c) (40 μ M) for 1 hour before phosphatase (5 nM) was added and the enzyme reaction was carried out at 37 °C for 30 min before it was stopped by addition of phosphate detection reagent. The absorbance is plotted as a percentage of control where no receptor is present (no receptor set at 100 %). Data represented are the mean of two independent experiments performed in triplicates. Error bars represent ± standard deviation of two independent repeats carried out in triplicates (n=6). The dashed line represents fitting performed in MatLab, R² = 0.7821 for (a), 0.9078 for (b) and 0.8171 for (c). For PI(4)P (b) the last data point was excluded from the fitting.

Figure S37. Alkaline phosphatase activity upon incubation of receptor 11 with $PI(3,4)P_2$ (a), $PI(3,5)P_2$ (b), $PI(4,5)P_2$ (c) and $PI(3,4,5)P_3$ (d). Increasing concentrations of receptor 11 were incubated with $PI(3,4)P_2$ (a), $PI(3,5)P_2$ (b), $PI(4,5)P_2$ (c) and $PI(3,4,5)P_3$ (d) (40 µM) for 1 hour before phosphatase was added and the enzyme reaction was carried out at 37 °C for 30 min before it was stopped by addition of phosphate detection reagent. The absorbance is plotted as a percentage of control where no receptor is present (no receptor set at 100 %). Data represented are the mean of two independent experiments performed in triplicates. Error bars represent ± standard deviation of two independent repeats carried out in triplicates (n=6). The dashed line represents fitting performed in MatLab, $R^2 = 0.9059$ for (a), 0.9834 for (b) and 0.9436 for (c).

Figure S38. Fully optimised structures of the mono-phosphorylated PIP's with receptor **11** – side, head-on and from behind views left to right respectively; (a) PI(3)P, (b) PI(4)P and (c) PI(5)P bound.

Figure S39. Fully optimised structures of the bis-phosphorylated PIP's with receptor **11** – side, head-on and from behind views left to right respectively; (a) $PI(3,4)P_2$, (b) $PI(3,5)P_2$ and (c) $PI(4,5)P_2$

Table S1. Hydrogen-bond distances and "bite" angle for the host-guest complexes between mono- and bi-phosphorylated PIPs and receptor **11**. Distances are in Ångstroms and the angle is in degrees.

Complex	H-Bond H1-01P	H-Bond H2-O2P	H-Bond HA-O3P	H-Bond HC-O3P	H-Bond HB-O5P	H-Bond HD-O5P	Angle NC-C1-ND
PI(3)P	1.873	1.877	1.896	1.890	2.081	1.784	88.78
PI(4)P	1.85	1.925	2.024	1.791	1.859	1.872	88.25
PI(5)P	1.826	1.882	1.878	1.797	1.860	1.802	90.02
PI(3,4)P ₂	1.802	1.877	1.889	1.760	1.800	1.721	106.35
	H1-O1P	H2-O2P	HA-05	HC-O3	HB-O8	HD-08	NC-C1-ND
PI(3,5)P ₂	1.776	1.932	1.756	1.747	1.932	1.694	110.07
	H1-01P	H2-O2P	HA-05	HC-05	HB-O7	HD-07	NC-C1-ND
PI(4,5)P ₂	1.873	1.778	1.937	1.743	1.920	1.730	102.07