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Abstract—Whilst offering numerous benefits to patients, minimally
invasive surgery (MIS) has a disadvantage in the loss of tactile feedback
to the surgeon, traditionally offering valuable qualitative tissue assess-
ment, such as tumour identification and localisation. Tactile sensors aim
to overcome this loss of sensation by detecting tissue characteristics such
as stiffness, composition and temperature. Tactile sensors have previously
been incorporated into MIS robotic end effectors, which require lengthy
scanning procedures due to localised sensitivity. Distributed tactile sen-
sors, or “artificial skin” offer a map of tissue properties in a single
instance but are often not suitable for MIS applications due to limited
biocompatibility or large collapsed volumes. We propose a deployable,
soft, tactile sensor with a deformable saline chamber and integrated
Electrical Impedance Tomography (EIT) electrodes. During contact with
tissue, the saline is displaced from the chamber and the lesion size and
stiffness can be inferred from the resultant impedance changes. Through
optimisation of the EIT measurement protocol and hardware the sen-
sor was capable of localising the centre of mass of palpation targets
within 1.5 mm in simulation and 2.3–4.6mm in phantom experiments.
Reconstructed image metrics differentiated target objects from 8–30 mm.

Index Terms—Electrical impedance tomography, medical robotics, soft
robotics, tactile sensors.

I. INTRODUCTION

The advent of minimally invasive surgery (MIS) has provided
many benefits to patients over open surgery due to smaller inci-
sions made by the surgeon, resulting in faster healing and recovery
time. However, despite the numerous benefits, MIS has brought a loss
of tactile ‘feel’ to the surgeon. Tactile or haptic feedback provides
information of the shape, stiffness and texture of the organ or tissue
to the surgeon’s hands through the sense of touch. This enables a sur-
geon to identify tumours, through palpation, which exhibit a ‘tougher’
feel than healthy soft tissue, pulse felt from blood vessels, and abnor-
mal lesions. Tactile sensors have been fabricated to be able to sense
different characteristics of tissue inside the body such through phys-
ical touch. Sensor outputs include: shape, size, pressure, softness,
composition, temperature, vibration, shear and normal forces [1].
Tactile transduction mechanisms in the literature include capacitive,
inductive, piezoelectric, piezoresistive, magnetic and optical [2].

Numerous approaches to tactile sensing specific to MIS have been
explored, typically at the tip of the robot end effector [3]. The
localised sensitivity of these sensors necessitates time consuming
scanning procedures to build a map for assessment. Conversely,
distributed sensing typically focuses on the creation of “artificial
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Fig. 1. Soft tactile EIT sensor design (A) FPC affixed to base layer of sensing
chamber (B) Complete sensor with encapsulated chamber with hydraulic inlet
(C) EIT concept: current injected between pairs of electrodes and voltages
measured between all electrodes and central ground.

skin” for robotics and are often not suitable for MIS due to lack
of biocompatibility and large volumes when collapsed [4]. It is pos-
sible to obtain measures of elastic properties through pressure and
volume curves during balloon inflation [5]. However, there is ambi-
guity with a single measurement, as it is not possible to ascertain
which area of the tissue under the balloon is deforming.

To address these limitations, we are proposing a deployable, soft,
tactile sensor based on Electrical Impedance Tomography (EIT). The
deformation of a saline filled chamber is measured using multiple
impedance measurements, and thus the size and stiffness of the con-
tact tissue can be inferred. The majority of impedance based tactile
sensors are constructed of thin sheets, which can be approximated
to 2D EIT problems [6], however measuring the deformation of the
volume of the saline chamber necessitates a full 3D image reconstruc-
tion. We present optimisations of the measurement configurations
and investigate candidate metrics from images and from phantom
experiments.

II. MATERIALS AND METHODS

A. Sensor Design

The sensor, Fig. 1, was constructed from two layers of
Polydimethylsiloxane (PDMS): a DragonSkin 30 base layer, and a
2mm Eco-Flex 50 top layer. A Flexible Printed Circuit (FPC) with
a ring of 16 electrodes spaced equally at a radius of 15 mm from a
central ground electrode was affixed to the base layer using SilPoxy
adhesive. Finally, a silicone tube with 2 mm inner diameter was con-
nected to the base as a hydraulic inlet, and the two layers were sealed
using SilPoxy. To deploy, the sensor chamber was filled with 0.2%
saline as the conductive medium for EIT measurements. Deformation
of the domed PDMS surface of the sensor by an object would
locally displace saline at the contact point and create a localised
impedance change. By combining a multitude of impedance measure-
ments, Fig. 1C, an EIT image of the apparent conductivity change
could be reconstructed, and the target location and size inferred from
the result.
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Fig. 2. EIT sensing optimisation (A) FEM of sensing chamber. Measurement
sensitivity with (B) skip-0 and (C) skip-8 patterns. (D) Simulated deformation
and CoM comparison. Resultant EIT images for (E) skip-0 and (F) skip-8.
(G) RMS voltage change δV and total sensitivity in sensing chamber Jsens
(H) Reconstructed centre of mass error and total conductivity change �σ .

B. EIT Hardware

A Frequency Division Multiplexed EIT (FDM-EIT) system used
in previous studies [7] was extended to provide a maximum of 18
current injections, using three daisy chained boards of six indepen-
dent Howland current sources [8]. A National Instruments USB-6363
16-bit Data acquisition (DAQ) was used to record the voltages with
50 kHz sample rate on all 16 electrodes on the outer ring, with respect
to the central ground. The voltage amplitude on each electrode at each
frequency was obtained from the FFT, to provide a full data frame
of 256 measurements.

Current was injected at sixteen frequencies, from 2.75 to 13.625 kHz
at 725 Hz spacing. These were chosen to give a clearance of 150 Hz
between all harmonics of the carrier frequencies to reduce. A current
amplitude of 120 μA, far below the IEC 60601 safety standards,
was injected at all frequencies, resulting in voltages of approximately
200 mV. The theoretical maximum frame rate was 725 Hz based
on the frequency spacing, however a minimum of 1000 samples (or
50 Hz) was needed to obtain maximum Signal to Noise Ratio (SNR).

C. EIT Imaging

The EIT software used in this study was a fork of the common
EIDORS package [9] and the meshing and reconstruction methods
developed by Aristovich et al. [10]. The EIT forward problem was
solved using a Finite Element Mesh (FEM) based on a CAD model
of the internal chamber of the inflated sensor, Fig. 2A, created using
custom meshing software. The mesh was refined around each electrode
by a factor of 10 within a region of 0.8 mm. Conductivity images
were reconstructed using Zeroth Order Tikhonov regularisation using
cross-validation to select the hyper parameter λ. The forward FEM
consistent of 310k tetrahedral elements, and a hexahedral mesh of
7k elements was used for reconstruction. In all EIT images the area
of deformation corresponded to a reconstructed volume of decreased
conductivity. For analysis, the perturbation was defined as the largest
contiguous cluster of elements with at least 75% of the maximum
absolute reconstructed change.

III. EXPERIMENTAL SETUP

A. EIT Protocol Optimisation

The sequence of electrodes used for current stimulation and voltage
measurements, or EIT “protocol”, is crucial in determining the overall

Fig. 3. Palpation test setup. Silicone targets compressed onto the EIT sensor
using a linear stage. Insert: FDM-EIT system overview.

sensitivity. As the optimal protocol is highly application specific, a
simulation study was performed to find the protocol which maximised
the sensitivity in the entirety of the sensing chamber Jsens, voltage
change δV, and image quality. As the voltage measurement pattern
is fixed by the DAQ, only the effect of the current injection pattern
was investigated. For approximately circular electrode configurations,
these are known as “skip patterns”, based on the number of passive
electrodes between injecting electrodes, e.g., Fig. 1C depicts a skip-1
pattern [11]. To obtain an example change in voltage, the EIT forward
model was calculated with a deformed version of the original CAD
model Fig. 2D. Image quality was assessed by calculating the total
conductivity change within the perturbation �σ and weighted centre
of mass (CoM) error was used to assess localisation accuracy.

B. EIT Hardware

To assess the new current source and the impact of the connection
of multiple circuit boards, measurements were made on a custom
resistor phantom of 2 k� load. Data were collected for 60 s with
all 16 current sources active. To prevent biasing the reconstruction
towards the channels with lower noise, an FDM-EIT system must
have frequency invariant SNR performance. This was assessed in
these measurements by testing for statistical significance in SNR
across frequencies. To assess the suitability of the electroless nickel
immersion gold (ENIG) surface of the FPC electrodes, measurements
of the noise were collected using a single isolated current source, at
frequencies between 1 and 20 kHz in 1 kHz increments.

C. Palpation Test

A PDMS target was attached to the gantry of a linear stage with
a resolution of 0.01 mm, which moved at a constant speed of 25
mm/s, while the sensor was affixed to a stationary rigid plate such
that the silicone targets deformed the top surface of the sensor, Fig. 3.
The hydraulic inlet tube was connected to a reservoir elevated above
the sensor whose free surface was allowed to move when fluid was
displaced from the sensor. Targets of 8-30mm radii, approximating
tumours, were compressed onto the sensor, compensating the initial
distance between sensor and target. EIT images were reconstructed
at 50 Hz frame rate after subtraction of the initial steady state values.

IV. RESULTS

A. EIT Protocol Optimisation

The sensitivity within the sensing volume Jsens increased with skip
pattern, with a corresponding increase in detected voltage change, as



IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 2, NO. 4, NOVEMBER 2020 563

Fig. 4. Palpation results for 8, 15 and 30mm targets (A) Voltage changes with
mean δV highlighted (B) reconstructed perturbations of maximum change (C)
Image metrics: object diameter (red) and total conductivity change �σ (blue).

shown in Fig. 2. This is also evident in the improved reconstruction
(Fig. 2E compared to Fig. 2F) and greater �σ . The CoM error was
less than 1.5 mm for skip patterns 7 and 8. Given the decrease in
reconstructed intensity using skip-7, skip-8 was chosen as a trade-off
between these metrics for subsequent experiments.

B. EIT Hardware

The SNR measured on the resistor phantom was 66.8 ± 7.3 dB, and
there was no significant difference in SNR below 13 kHz (P = 0.286
One-way ANOVA). There was a decrease in SNR at the highest
frequency (13.625 kHz) although this was not found to be signif-
icant (P = 0.528). Using the FPC electrodes, the SNR increased
to 74.2 ± 8.3 dB and showed a similar stability across frequency.
With no significant changes in SNR (ANOVA), except at 20 kHz,
the highest frequency, which decreased from the mean by 23 dB.

C. Palpation Test

The maximum change in voltage, Fig. 4A, increased with tar-
get object size, with a corresponding increase in reconstructed
intensity, Fig. 4B. The conductivity changes �σ demonstrated an
approximately linear increase with object size. However, the aver-
age reconstructed diameter substantially overestimated the 5- and
15-mm objects. The CoM localisation in the XY directions ranged
from 2.3–4.6 mm across all frames. However, the Z localisation accu-
racy was significantly compromised by artefactual changes close to
the electrodes.

V. CONCLUSION

This decrease in spatial resolution with distance from the bound-
ary electrodes is typical of EIT based sensors. Reducing the point

spread function of the reconstruction would improve the localisa-
tion accuracy and shape estimation. This could be achieved through
reconfiguration of the FPC to include internal electrodes [12], [13],
[14] or a full grid [10], [15], [16] to better distribute the sensitivity
across the plane of the electrodes. However, these may not suffi-
ciently address the decrease in out of plane sensitivity towards the
deformable contact surface. Potential solutions to this problem are to
further increase the SNR of the system to ensure these small changes
still detected, or improved reconstruction algorithms targeting this
problem [17], [18]. Placing electrodes onto the deformable surface
would greatly increase the sensitivity. However, the voltage changes
observed would then be as a result of both boundary deformation and
electrode movement, making the images challenging to reconstruct
and interpret.

Using FPCs to create the electrode arrays allowed for accurate elec-
trode placement and simple integration into the sensor body. Using
saline as a conductive medium as opposed to a conductive elastomer
meant the challenges of connecting rigid electrodes to the flexible
substrates were avoided [19], [20]. However, the disadvantage of this
approach is that the polyimide substrate is not stretchable, and thus
limits the collapsibility of the sensor. Using Magnetic Resonance
conditional materials once an optimal configuration was found would
enable a wider range of surgical applications. The extent to which the
PDMS encapsulation insulates the sensor from electrical and thermal
interference from surgical instruments like radiofrequency ablation
or diathermy requires experimental investigation and may necessitate
additional data processing prior to reconstruction.

There was no substantial decrease in SNR as a result of daisy
chaining three parallel current sources, and the FPC electrodes and
improved hardware increased SNR by 8 dB compared to previous
implementations [7]. The decrease at 20 kHz is caused by the
DAQ anti-aliasing filter and represents the upper limit of the car-
rier frequency. This provides a total bandwidth of 19 kHz, which
would allow for a maximum of 25 current injections with this same
frequency spacing of 725 Hz. Any sensors requiring a larger proto-
col would consequently require a decrease in frame rate, or a faster
DAQ, to avoid decreasing SNR. The FDM allows for higher frame
rates and simpler processing, but the disadvantage is that the hard-
ware prevents the use of dynamic protocols, which could improve
image quality by targeting the deformed volume once a perturbation
has been identified [21].

Currently the results are uncalibrated, so measurements of lesion
size or tissue properties are only relative quantities. Extension of the
phantom tests within this study to a full XYZ map, would provide a
dataset to create a localisation map for machine learning approaches
[12], in combination with a denoising/post-processing step have been
successfully applied to 2D tactile sensors [6]. It may also be possible
to obtain a similar transform based on simulations of the deformation
of the sensor in SOFA [22]. Ultimately it may be possible to create
a joint physics simulation, combining EIT and mechanical models,
and thus calculate the deformation directly.

Experiments are ongoing to find the optimal metric, either from
voltage traces or images, to quantify the elastic properties of the
contact tissue and potentially create elastography images across the
sensor surface. The results show a proof of concept for this sensor but
demonstrate the importance of correct metric choice and calibration
to obtain clinically useful results.
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