
Real-time Object Detection using Deep Learning
for helping People with Visual Impairments

1st Matteo Terreran
Dept. of Information Engineering

University of Padova
Padova, Italy

matteo.terreran@dei.unipd.it

2nd Andrea G. Tramontano
Dept. of Information Engineering

University of Padova
Padova, Italy

andreagaetano.tramontano@dei.unipd.it

3rd Jacobus C. Lock
School of Computer Science

University of Lincoln
Lincoln, United Kingdom

jlock@lincoln.ac.uk

4th Stefano Ghidoni
Dept. of Information Engineering

University of Padova
Padova, Italy

stefano.ghidoni@unipd.it

5th Nicola Bellotto
School of Computer Science

University of Lincoln
Lincoln, United Kingdom

nbellotto@lincoln.ac.uk

Abstract—Object detection plays a crucial role in the develop-
ment of Electronic Travel Aids (ETAs), capable to guide a person
with visual impairments towards a target object in an unknown
indoor environment. In such a scenario, the object detector runs
on a mobile device (e.g. smartphone) and needs to be fast,
accurate, and, most importantly, lightweight. Nowadays, Deep
Neural Networks (DNN) have become the state-of-the-art solution
for object detection tasks, with many works improving speed and
accuracy by proposing new architectures or extending existing
ones. A common strategy is to use deeper networks to get higher
performance, but that leads to a higher computational cost which
makes it impractical to integrate them on mobile devices with
limited computational power. In this work we compare different
object detectors to find a suitable candidate to be implemented
on ETAs, focusing on lightweight models capable of working in
real-time on mobile devices with a good accuracy. In particular,
we select two models: SSD Lite with Mobilenet V2 and Tiny-
DSOD. Both models have been tested on the popular OpenImage
dataset and a new dataset, named L-CAS Office dataset, collected
to further test models’ performance and robustness in a real
scenario inspired by the actual perception challenges of a user
with visual impairments.

Index Terms—Object detection, real-time, electronic travel aid

I. INTRODUCTION

As a fundamental part in computer vision and visual un-
derstanding, object detection is among the key components
for solving more complex or high level vision tasks such as
scene understanding, object tracking and activity recognition.
Great improvements have been achieved in recent years,
thanks to the advent of deep learning which allows very high
performance levels when applied to object detection [1] [2] [3].
Object detection has found applications in a large variety of
scenarios such as autonomous driving, surveillance, medical
and industrial ones. However, there are many fields not yet
explored. An interesting application is the use of object detec-
tion to help disabled people with their mobility, as proposed
in the ActiVis project [4]. This project aims to enable people

Fig. 1: Example of the system proposed in the ActiVis
project, during an experiment with a blindfolded participant.
Source: [4].

with vision impairments to independently navigate and find
objects within an unknown indoor environment using only a
mobile phone and its camera. Indeed, one main problem for
blind or visual impaired people is to move across an indoor
environment that they have never seen before, while avoiding
possible obstacles. Consider for example a real scenario in
which a blind person is looking for a chair in a new office.
The person stands at the entrance of the room and wants to
know where the chair is in the office, in order to reach it.
He could wait for someone to escort him to the chair, or
take out his smartphone and point it in front of him as in
Figure 1. The device prompts the user to point the camera
to the chair’s most likely location, using any detected objects
during this transition to refine the location, ultimately guiding
the user towards the chair. Such system could hence help
blind people to be more autonomous in the mobility in indoor
locations and decrease the time for many operations. Although
the project focuses on office environments, it is easy to find



possible uses in other areas, such as waiting rooms, kitchens,
etc. In such scenario object detection plays a central role. It
should be very accurate and precise to correctly localize the
objects required by the user, but also all the possible obstacles
in the room to guide the user safely within the environment.
Moreover, it should work in real-time since the user needs
an instantaneous feedback from the system regarding where
and how to move. In addition, the project foresees that the
object detection is realized using the user’s mobile phone,
which introduces some challenges in the development. One is
the hardware limitation, since mobile devices are not equipped
with powerful GPUs commonly used for state-of-the-art object
detection models. Another challenge is related to robustness:
object detection should work on images acquired with a mobile
phone, which could be blurred or very shaky due to anomalous
movements of the user. This is especially important when
one considers that the visually impaired population are often
elderly people. Note that running the object detector directly
on the smartphone is a key element of the ActiVis project.
It aims to create a fully-enclosed system that does not need
to rely on external services and could work also in poorly-
connected or totally unconnected areas; solutions such as cloud
detectors are not suitable in this case.

In this work, we analyze and compare several state-of-the-
art object detection models to be integrated in the proposed
application. As described, performance and computational
complexity are crucial elements, since the object detection
models will be integrated on low performance devices. This
leads to narrowing the choice between two possible archi-
tectures, namely SSD Lite [5] and Tiny-DSOD [6]. Both
networks have been tested on different datasets, in order
to investigate which architecture offers the best compromise
between speed and accuracy. In particular, we collected a new
office-themed dataset with video and image data to test the
networks performance in a real scenario, similar to the one
used in the project’s evaluation [4]. It is important to test the
application also on videos to evaluate the robustness of the
models under conditions similar to those in which a person
uses the system. A test made only on images, does not take
into account the noise introduced by the user movements,
which can produce shaky and blurred images that are more
challenging for the object detectors. Summarizing, this work
presents 3 main contributions: (i) a novel object detection
scenario targeting mobile devices, which can push research in
this field; (ii) experiments evaluating several object detection
models, in order to find the most suitable to be implemented
in the proposed application; (iii) a new dataset, named L-CAS
Office dataset1, collected to test object detection accuracy and
robustness on a real scenario.

The remainder of the paper is organized as follows. Sec-
tion II presents the state-of-the-art for object detection and the
related works made till now. Section III describes the archi-
tectures we selected and the main differences between them.
In Section IV we present the datasets used for training and

1Available at https://lcas.lincoln.ac.uk/wp/research/data-sets-software/

testing, while in Section V the results achieved by all networks
are reported and discussed. Finally, in Section VI, conclusions
are drawn and future directions of research identified.

II. RELATED WORKS

Object detection systems based on deep learning (DL)
could be divided into two main categories: single-stage based
methods and two-stage based methods. Two-stage based meth-
ods use a “region proposal” approach: first candidate regions
of interest are produced by an external algorithm, then a
convolutional neural network (CNN) performs classification on
each candidate region and computes a bounding box for each
object within that candidate region proposal. For example,
Fast R-CNN [7] rely on the Selective Search algorithm [8] to
produce region proposal candidates. Faster R-CNN [1] builds
upon the previous architecture proposing an efficient and
accurate Region Proposal Network (RPN) to generate region
proposals without using external algorithms. Generally, two-
stages based methods are accurate but with heavy computing
cost, and thus yield slow processing speed.

Single-stage based methods like SSD [3] and YOLO [2] [9]
instead, directly compute classification and detection from the
images with a single forward pass by applying sliding windows
of different size to the input image. In this way, they are
able to check if the object appears in the windows without
the necessity of involving region proposal systems or post
classification layers. Single-stage based methods are usually
faster than the two-stage based methods, but also less accurate.
In many cases they share a common structure composed of
two sub-networks: one sub-network to extract features from
the input and one to classify and localize the objects. The
former part is called backbone network, while the latter one
is called front-end network. Single Shot Detection (SSD)
network [3] uses VGG16 [10] as backbone, and a front-end
with multiscale convolutional layers to achieve fast detection
speed and high detection quality. Deeply Supervised Object
Detector (DSOD) [11] uses instead DenseNet [12] as backbone
and introduces Deep Supervision to address the issue of the
vanishing gradient.

A common strategy is to use deeper networks to get higher
performance, but that leads to a higher computational cost
which makes it impractical to integrate them on mobile devices
with limited computational power. In this scenario a break-
through is represented by depth-wise separable convolutions
proposed in the Mobilenet architecture [13] for classification
tasks. Depth-wise separable convolution consists of a depth-
wise convolution followed by a point-wise convolution (also
named 1× 1 convolution), which greatly reduces the number
of operations required to compute convolutions. Many object
detection models adopted Mobilenet as a features extractor,
like SSD Lite [5], reducing their size with respect to the
same models implemented with standard convolution. This
drastically reduces the memory usage and improves the speed
on low resources devices. Even without using the Mobilenet
architecture as backbone, other models like Tiny-DSOD [6]
rely on depth-wise separable convolutions to reduce model



complexity. Indeed, Tiny-DSOD introduces the Depth-wise
Dense Block, an efficient network structure to combine depth-
wise separable convolutions with densely connected networks
like DenseNet [12]. These final considerations motivate our
choices for implementing a real-time object detector on a
smartphone-based assistive device.

III. METHODS

We restrict our attention to two architectures selected on
the basis of real-time performance and model complexity,
namely SSD Lite with Mobilenet V2 [5] and Tiny-DSOD [6].
Indeed, we want a model which is light and capable of
running on a mobile device like a smartphone with real-time
performance. State-of-the-art models like Faster-RCNN [1] are
not able to reach real-time performance with a Nvidia Titan
X GPU. Therefore, we can assume it can not reach real-
time performances on a mobile platform. Other networks like
YOLOv3 [9] achieve better performance in terms of speed
and accuracy, but they are too big in terms of memory to
be ported on a mobile device. YOLOv3 has also a light ver-
sion, named Tiny-YOLOv3, which is about 30 times smaller
compared with its standard version. We tested Tiny-YOLO
in a preliminary setup on a smartphone, namely an Asus
ZenFone AR 4.2, using a mobile implementation developed
with OpenCV library and YOLO [2] framework. However,
the results were not satisfactory: the implementation was not
compatible with the smartphone GPU and runs only on CPU,
limiting the possible frame rate to an average speed of 2 FPS.
Furthermore, when tested with video data, the network was
only able to classify objects when the device was held still.
The slow frame rate compounded the motion blur and made
classification impossible.

These initial tests confirmed that the structure of this
network is not able to reach real-time performance on a
mobile device, therefore it was disregarded. SSD Lite and
Tiny-DSOD architectures instead, when tested on the same
smartphone CPU, reach a higher frame rate around 20 FPS.
The higher frame rate makes such networks even more robust
at small camera movements, since they can work on less
blurred images. In the following, these two architectures are
described in detail while their performance are reported and
discussed in Section V.

A. Single Shot Detection Lite (SSD Lite)

SSD Lite is a lighter version of the standard SSD architec-
ture, a single-staged network composed of two parts: a back-
bone network that extracts the features from the input image,
and a front-end part that classifies and localizes the objects
from the features provided. Compared to SSD architecture, in
SSD Lite the backbone network is substituted with Mobilenet
V2 architecture, a light classification network designed for
mobile devices. Moreover, to reduce computational burden,
all the convolutions in the front-end part are substituted with
depthwise separable convolutions.

The backbone network extracts feature maps from the input,
with a smaller resolution as the network goes deeper. The

front-end part uses such multiple features maps at different
scale to compute predictions. In particular, SSD Lite uses a
batch of six feature maps: two feature maps directly from
Mobilenet V2 (output of block 13 and 17, the last block),
and four feature maps computed from the last feature map
of Mobilenet V2 by means of four depthwise separable
convolutional layers. Each of the six feature maps is then
subdivided into cells with a grid. Different bounding boxes are
then applied at the center of each cell in the feature maps: four
bounding boxes for feature maps directly from the backbone,
and six bounding boxes for the feature maps obtained from
convolutional layers. As in SDD architecture, the bounding
boxes applied are not random guesses, but selected from
a set of default bounding boxes which represent different
boundary shapes. From each bounding box considered in the
cells grid, the network produces one prediction. A single
prediction is an array containing the confidence predicted for
each class and the coordinates of the bounding box with the
highest confidence. All the predictions are then combined and
analyzed: predictions of the same class are compared and
grouped together, predictions of different classes in the same
location are checked. Finally, the final set of predictions is
obtained after a Non-Maximal-Suppression operation to delete
repeated and false bounding boxes.

B. Tiny-DSOD

Tiny-DSOD is an object detection network based on the
single-shot detector (SSD) [3] framework and the deeply-
supervised object detection (DSOD) framework [11], which
consists of a backbone part and a front-end part. It promises
good performance in mobile devices while maintaining a
good trade-off between speed and accuracy. The main nov-
elties proposed by Tiny-DSOD are the Depthwise Dense
Block (DDB) based backbone and a feature-pyramid-network
(D-FPN) based front-end. The Depthwise Dense Block (DDB)
is an efficient network structure to combine Depthwise
Separable convolutions with densely connected networks as
DenseNet [12], inspired by the inverted residual blocks pro-
posed in Mobilenet [13]. Given an input features map, this is
first compressed to g channels using a 1× 1 convolution, and
then a depthwise convolution is applied. The generated output
is finally concatenated to the input feature map.

The feature-pyramid-network (D-FPN) is a lightweight
version of FPN [14], that fuse semantic information from
neighborhood scales to speed up object detection. The front-
end predictor D-FPN consists of a down-sampling path made
of convolutions and max-pooling layers, and a reverse up-
sampling path using a Bilinear interpolation layer followed by
a depthwise convolution. The feature maps obtained in each
up-sampling step are then merged with the same-sized feature
maps in the down-sampling path via element-wise addition.
The backbone network in Tiny-DSOD is composed of four
DDB stages followed by one transition layer to fuse channel-
wise information from the last stage and compress the channel
number for computing and parameter efficiency. The D-FPN
takes as input the feature map computed by the backbone and



outputs six feature maps at different scales which are then
used for the detection using the same mechanism described
in Section III-A for SSD Lite. Since they rely on the same
detection framework, Tiny-DSOD and SSD Lite have the same
layers at the end of the network. Moreover, they use the same
defaults bounding boxes and the same multi-scale features
parameters. The only difference is how the set of feature
maps for the multi-scale detection it is generated: with D-FPN
in Tiny-DSOD, while with Mobilenet V2 and convolutional
layers in SSD Lite.

IV. DATASETS

To evaluate the networks we consider different datasets,
namely the OpenImage dataset [15] and a new self collected
dataset specifically created for the project. OpenImage is used
for training and testing the networks, while the remaining
dataset is used to test the models in conditions similar to the
project’s evaluation environment. Testing the models on differ-
ent datasets allows us to better investigate their performance.
On the one hand, testing on OpenImage allows to understand
the weaknesses and the strengths of the networks in term of
learnability, since test images come from the same distribution
of the training data. On the other hand, using a test set coming
from a different distribution, helps to understand how robust
the model is. Furthermore, using a real environment as test
set, we can better understand how well the model works in
the real-world.

A. OpenImage Dataset

OpenImage [15] is a dataset of 9M images annotated with
image-level labels, object bounding boxes, object segmentation
masks, and visual relationships. It contains a total of 16M
bounding boxes for 600 object classes on 1.9M images,
making it the largest existing dataset with object location an-
notations. The OpenImage dataset contains a large number of
object categories, especially object from office environments.
We selected a subset of images to train and test our models,
considering common objects in an office room that an impaired
person would like to look for.

The selected categories are reported in Table I, together with
the number of images for each object category. Categories like
Person, Man or Woman were not considered since the scope
of the project was specifically limited on finding objects in an
unknown indoor environment. People can make their location

TABLE I: Selected object categories from OpenImage dataset.

Object category # Images Object category # Images
Backpack 1314 Light switch 114

Book 10000 Monitor 6384
Bookcase 5708 Mouse 841

Chair 10000 Mug 2403
Desk 10000 Plant 10000
Door 10000 Telephone 316

Keyboard 4757 Whiteboard 1056
Lamp 3849 Window 10000

Laptop 10000

known simply by talking, so the search for a person is not
so interesting for the project. To limit the dataset size, we
take a maximum number of 10.000 images per category. The
selected images are equally divided in three groups following
a 60/20/20% partition in train, validation and test sets.

B. L-CAS Office Dataset

The L-CAS Office dataset is created on purpose for the
ActiVis project. The pictures are taken from a real office in
our university and it contains all the 17 objects reported in
Table I. To acquire the images we use an Asus ZenFone AR
4.2 equipped with: 4GB of RAM, 64-bit CPU Qualcomm
Snapdragon Quad-Core 821 2.35 GHz, optimized for Tango,
Adreno 530 GPU, 23 megapixel camera, with Android 8.

Fig. 2: Schematic representation of the office and the three
different points of view considered: door position (A), guest
position (B), owner position (C).

The dataset is composed of pictures captured in the same
environment, an office, with the objects fixed in the same
position. A schematic representation of the office is depicted
in Figure 2. We take pictures from three different points of
view: (i) door position, when the user opens the door and
looks inside the room office; (ii) guest position, when the
user sits down on the chair in front of the desk; (iii) owner
position, when the user sits down on the chair behind the
desk. An example of images taken from the three different
points of view is shown in Figure 3. For each point of
view, pictures have been acquired according to three different
heights and three different inclinations of the smartphone. As
possible heights we consider: when user holds approximately
the smartphone at the height of the chest, head height and
pelvis height. Regarding the different inclinations we assume
no rotation when the user holds the smartphone in portrait
mode, and consider rotations of 45° on the right and on
the left. We decide not to take pictures in the landscape
mode, because it is uncommon or uncomfortable position to
hold the smartphone when a person is using it. The total
amount of captured pictures is 459 pictures, with 27 images
for each of the 17 objects considered. All the images have
been annotated using the LabelImg annotation tool2, which
offers a graphical interface to quickly annotate the dataset by
drawing a bounding box around each object of interest; for

2https://github.com/tzutalin/labelImg



each bounding box it is possible to assign a label representing
the class of the object. The annotations are then saved as XML
files in PASCAL VOC format.

(a) (b) (c)

Fig. 3: Three pictures taken from the L-CAS Office dataset.
The images are centered on the desk object, respectively from:
door position (a), guest position (b), and owner position (c).

C. Video Test Dataset

We also collected nine different videos, taken from three
different office rooms. The first one is a small office of ap-
proximately 10m2, the same used to acquire the Office Dataset
previously described. Then a medium office of approximately
50m2 and a big room of approximately 300m2. We choose
three different room dimensions, to better understand if the
models are able to recognize objects at different distances. In
each of the three rooms, three different videos are recorded
at three different speeds: slow speed, medium speed and high
speed. The speed is intended as the velocity of the movements
that the user produces, while he is walking in the room. At
slow speed, the user walks very slow and the acquired video
is not blurred and the scene change gradually; increasing the
speed, the user’s movements become faster and the acquired
video gets blurred with rapid scene changes. The videos are
only used for a qualitative evaluation of weaknesses and
strengths of the implemented object recognition systems.

V. EXPERIMENTAL RESULTS

We perform two sets of experiments to investigate which
network is more suitable for our project. Indeed, we are
looking for an algorithm with real-time performance (≥ 20
FPS), robust to anomalous movements of the user and to
blurred frames, and which avoids as many detection errors as
possible. We focus on SSD-Lite and Tiny-DSOD models. We
train and evaluate both models on the subset of OpenImage
dataset described in Section IV. The same trained models are
then tested on the Office dataset to evaluate their performance
in a real scenario. To evaluate the performance of each
model we refer to the mean Average Precision (mAP) metric,
computed as the mean over the average precision on each
object category.

A. Experimental setup

Experiments have been developed using the Keras and Ten-
sorflow libraries. We do not use the original implementation
of the models, but we developed our own Keras version of
SSD-Lite with Mobilenet V2 and Tiny-DSOD. Developing
these models with the Tensorflow framework is convenient,
since it is compatible with Android and allows to easily
export the models to run on mobile devices. For both archi-
tectures we follow the respective paper guidelines and hyper-
parameters, trying to be as close as possible to the original
implementations. Experiments have been performed on the
Asus ZenFone smartphone used to acquire the datasets and
a desktop computer with GPU Nvidia Geforce GTX 1050Ti
4GB, 16GB RAM, i7-4770 CPU 3.40GHz. The smartphone
was used for qualitative evaluation on the Video dataset and
measuring the average speed in terms of FPS, while the
computer was used for training the models and quantitative
evaluation of their performance on OpenImage and Office
datasets. Both architectures have been trained for 120 epochs,
with 943 iterations each and a batch size of 24 (maximum
permitted from the GPU).

B. Networks comparison

The results obtained are reported in Table II, which high-
lights SSD-Lite as the best model on both datasets. Indeed,
it reaches a higher mean accuracy and also regarding single
object categories, it gives better results in most cases. Tiny-
DSOD architecture instead, has a much lower mean accuracy
and the accuracy per object reveals that the model learns to
recognize really few of them: more than half have less then 10
AP accuracy, and five of them have less then 1 AP accuracy.
Also SSD-Lite has four objects with accuracy less then 1 AP,
but more then half of the objects have an accuracy greater
then 10 AP. A good threshold of confidence for SSD-Lite’s
predictions is of 70%: using this threshold the majority of the
wrong predictions are discarded.

However, both models do not achieve high accuracy in our
experiments. The main reason for that could be the number
of training images, not enough for some object categories.
For example, Light-switch and Telephone categories which
achieve an accuracy less then 1 AP are also the categories
with less training images as reported in Table I; in such cases
it is difficult for both models to learn an effective object
representation. Moreover, the total number of training images
could be not enough for the complexity of the networks.
Indeed, a complex network has a huge amount of parameters
to be trained, requiring more examples and a longer training
to perform well.

Analyzing the predictions of the two models, it is possible
to see that Tiny-DSOD produces many wrong bounding boxes
with high confidence, as depicted in Figure 4b. SSD-Lite
architecture instead, produces only few correct detections with
a nice confidence as shown in Figure 4a. When tested on
the Video dataset, both SSD-Lite and Tiny-DSOD reach a
speed of approximately 20 FPS, which is sufficient to detect
objects if the user is not moving too fast. Indeed, on the slow



TABLE II: Results in terms of accuracy of SSD-Lite and Tiny-
DSOD, both on OpenImage and Office test set.

Object SSD-Lite Tiny-DSOD
OpenImage Office OpenImage Office

Backpack 15.5 0.0 3.2 0.0
Book 9.1 0.0 0.6 0.0
Bookcase 31.4 43.7 14.9 22.6
Chair 1.0 0.0 0.1 0.0
Desk 11.1 3.1 9.8 5.1
Door 17.0 18.2 9.7 8.4
Keyboard 18.5 0.2 3.3 0.0
Lamp 12.9 0 4.6 0.0
Laptop 22.4 19.6 10.0 11.1
Light-switch 0.0 0.0 0.0 7.0
Monitor 2.4 11.4 5.1 5.6
Mouse 15.3 0.0 4.5 0.0
Mug 28.8 0.0 5.4 0.0
Plant 24.3 60.3 16.4 32.7
Telephone 0.0 0.0 0.0 0.0
Whiteboard 64.7 7.3 19.3 3.9
Window 0.3 0.0 0.8 0.0
MEAN 16.2 9.6 6.3 5.3

speed videos SSD-Lite model is able to recognize with a good
confidence only few objects and has difficulties to detect most
of the objects in both medium and high speed videos, with
many wrong predictions. In particular it is able to detect Desk,
Door, Laptop, and Whiteboard if the user movements are slow
and the objects are close enough. Tiny-DSOD model instead,
produces too many wrong predictions with high confidence,
invalidating the actual purpose of our application.

C. Fine-tuning

Between the two model candidates, the previous experiment
highlighted SSD-Lite as the most promising object detector for
our application. Therefore we tried to improve its performance
on our scenario by using the fine-tuning technique, generally
used when the dataset for a particular application is limited: the
model is first trained on bigger dataset (e.g. ImageNet [16])
and then again on the small application-specific dataset. In
such a manner, the model can improve its performance on the
small dataset by relying on powerful features learned using the
bigger one. We used SSD-Lite with Mobilenet V2 pre-trained
on ImageNet dataset, and finetuned the whole network on the
same train set of images from OpenImage used previously.

The results obtained are reported in Table III together with
the results achieved from the network trained from scratch. As
shown in the fourth column of Table III the mean accuracy
on OpenImage Test set is doubled. Although there is no great
improvement for the mean accuracy on the Office dataset, the
fine-tuned model detects more objects with a good confidence.
The predictions are now more often correct and with less
mistakes, as shown in Figure 4c. Regarding the results on the
Video dataset, the model is not able to detect all the objects in
all the frames, but the improvements are visible: although few
wrong predictions and some missed ones, the model works
well when the objects are big in the frame (either close to the

(a) (b) (c)

Fig. 4: Prediction examples on the L-CAS Office dataset of:
(a) SSD-Lite, (b) Tiny-DSOD and (c) SSD-Lite fine-tuned.

camera or big objects). Also in the video at medium speed, it
detects big and close objects, while in the fast speed videos,
it still has some difficulties.

In conclusion, the best model we developed for our ap-
plication is SSD-Lite with fine-tuning. Although the obtained
accuracy is rather low on some classes, the model showed
good overall performance on the Video dataset which repli-
cates conditions similar to a real use of the system. This,
together with the frame rate of about 20 FPS achieved, has led
to choose this model for a first implementation of the system
foreseen in the ActiVis project. In Table IV the performance
of all models considered are reported in terms of accuracy,
complexity and speed. Speed is computed in terms of Frame
per second (FPS), measured on the Asus ZenFone smartphone
with models running on CPU. Complexity is evaluated with
respect to the number of parameters of the model (Params)
and FLoating point Operations Per Second (FLOPS) required.

TABLE III: Results in terms of accuracy of SSD-Lite and
SSD-Lite finetuned, both on OpenImage and Office test set.

Object SSD-Lite SSD-Lite Fine-tuned
OpenImage Office OpenImage Office

Backpack 15.5 0.0 43.3 14.8
Book 9.1 0.0 0.6 0.0
Bookcase 31.4 43.7 39.4 9.9
Chair 1.0 0.0 1.2 0.0
Desk 11.1 3.1 27.9 1.7
Door 17.0 18.2 25.0 3.7
Keyboard 18.5 0.2 36.5 12.3
Lamp 12.9 0 22.82 0.0
Laptop 22.4 19.6 43.8 26.1
Light-switch 0.0 0.0 77.7 0.0
Monitor 2.4 11.4 35.6 4.9
Mouse 15.3 0.0 39.7 0.0
Mug 28.8 0.0 59.9 0.0
Plant 24.3 60.3 24.0 33.3
Telephone 0.0 0.0 11.4 0.0
Whiteboard 64.7 7.3 68.8 41.1
Window 0.3 0.0 2.5 22.2
MEAN 16.2 9.6 32.9 9.7



TABLE IV: Results in terms of mean accuracy (mAP), speed
(FPS), and weights (Params and FLOPS)

Model mAP FPS Params FLOPSOpenImage Office
SSD-Lite 16.2 9.6 ∼ 20 4.30M 0.8B
Tiny-DSOD 6.3 5.3 ∼ 20 0.95M 1.12B
SSD-Lite 32.9 9.7 ∼ 20 4.30M 0.8B(fine tuned)

VI. CONCLUSIONS

In this work we focus on object detection targeting mobile
applications as proposed in our recent project, which aims
to develop a system to help visually impaired people to
navigate in indoor environments. In such scenario, an object
detector that is light and accurate is fundamental to scan the
surrounding space. We select and evaluate two state-of-the-
art models capable of working on mobile devices and that
promise good accuracy: SSD-Lite and Tiny-DSOD. A novel
dataset has been acquired to test the models on a real scenario
and highlight their robustness. Among the two models, SSD-
Lite achieves better performance, which is further improved in
a fine-tuned version and currently used in the ActiVis project.
The system presented is limited to find objects in an office
scenario and guiding the user. In the future we wish to validate
the system on other indoor environments (e.g. a domestic
scenario) and considering new classes such as a person class to
aid in avoiding possible collisions, hence improving navigation
and achieving 3D guidance.

ACKNOWLEDGMENT

This research is partly supported by a Google Faculty Re-
search Award (Winter 2015). Part of this work was supported
by MIUR (Italian Minister for Education) under the initiative
“Departments of Excellence” (Law 232/2016).

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conf. on computer vision and pattern recognition, 2016, pp. 779–788.

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[4] J. Lock, A. Tramontano, S. Ghidoni, and N. Bellotto, “Activis: Mobile
object detection and active guidance for people with visual impair-
ments,” in International Conference on Image Analysis and Processing.
Springer, 2019, pp. 649–660.

[5] M. B. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4510–4520, 2018.

[6] Y. Li, J. Li, W. Lin, and J. Li, “Tiny-dsod: Lightweight object detection
for resource-restricted usages,” in BMVC, 2018.

[7] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[8] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International journal of com-
puter vision, vol. 104, no. 2, pp. 154–171, 2013.

[9] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[11] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, “Dsod: Learning
deeply supervised object detectors from scratch,” in Proceedings of the
IEEE international conf. on computer vision, 2017, pp. 1919–1927.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[14] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[15] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci et al., “The open images dataset v4:
Unified image classification, object detection, and visual relationship
detection at scale,” arXiv preprint arXiv:1811.00982, 2018.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.


