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introduces a generalized iterative method for the computation of ultrasonic ray paths,
when ultrasonic source and target are separated by multiple complex material
interfaces in the two dimensional and three dimensional domains. The manuscript
starts with a review of the well-known bisection method, and extends the applicability of
the method to cases with increasing complexity. An application example, in the field of
in-process weld inspection, shows that the introduced generalised bisection method
can enable the computation of optimum incidence angles and focal delays for accurate
ultrasonic focusing. There is no restriction on the analytical interfaces to be surjective.
Interface folding is permitted. It is not necessary to know, a priori, with what sequence
the interfaces are crossed by the rays. The presented implementation of the method
completes each iteration of the bisection method in 4ms, for a case with a single
interface, and in 960ms for the case with 52 interfaces.
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Dear Editor-in-Chief, 

 

I and my co-authors are glad to submit the revised version of our manuscript entitled “Generalised Bisection Method 

for Optimum Ultrasonic Ray Tracing and Focusing in Multi-Layered Structures”.  

We thank the reviewers for the time and efforts they put in reviewing our work and in producing clear and useful 

comments. We addressed all flagged issues. We believe this revision improves the quality of the article. We are pleased 

to submit the revised manuscript, where all changes have been highlighted through using the “Track Changes” tool of 

Microsoft Word. Our answers to each one of the reviewers’ comments are also provided and clearly listed in a separate 

document we prepared.  

This work is original, it has not been published elsewhere and it is not under consideration for publication elsewhere. 

The paper introduces a generalized iterative method for the computation of ultrasonic ray paths, when ultrasonic source 

and target are separated by multiple complex material interfaces in the two and three dimensional domain. The 

manuscript starts with a review of the well-known bisection method, and extends the applicability of the method to 

cases with increasing complexity. We present the detailed mathematical formulation of the method to help the 

scientific community to take advantage of the implementation of the method in ongoing research and in industrial 

applications. We have chosen to include an interesting application example, concerning the field of in-process weld 

inspection. This example shows how the introduced generalised bisection method enables the computation of optimum 

incidence angles and focal delays for accurate ultrasonic focusing in complex scenarios. Qualitative and quantitative 

performance results are presented. 

The paper is aligned with the key topics covered by the journal. In particular, this is a high-quality, original research 

paper with scientific merit and novelty, introducing significant advancements in the comprehension of the ultrasonic 

wave propagation in multi-layer three dimensional structures. This can have an immediate application to the fields of 

ultrasonic NDT/SHM and their industrial applications. 

I am a Research Fellow of the University of Palermo (Italy), affiliated to the Department of Engineering. My co-

authors and I have already successfully published the outcomes of our research in excellent peer-reviewed journals, 

comprising Ultrasonics, in the past. Your journal is the best place to publish this new work. 

Thank you for considering our manuscript. Do not hesitate to let we know if a further revision is required by the 

reviewers. 

 

Yours Sincerely, 
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Authors’ answers to reviewers’ comments 
 

Each one of the reviewers’ comments is reported in bold and is followed by a bullet point 

with the authors’ answer. All changes applied to the manuscript have been highlighted 

through the “Track Changes” tool of Microsoft Word.  

 

 

Reviewer #1:  
 

Comments 

 

1. A very nice paper which has developed an ultrasonic wave ray tracing 

method based on refraction (Snell's Law) where the wave is passing 

through a series of isotropic layers.  

 We thank the reviewer for the time and efforts put in the review of our work. 

 

2. The method has been generalised to the three dimensional case.  These 

layers can have curved interfaces provided that there is a one-to-one map 

from the x-y plane to each interface.  In other words the layers can be 

described by z=f(x,y) and so folding is not permitted. The use of this 

method is to inform the delay laws in an ultrasonic transducer array to 

enable it to focus on a specific point in the layered domain.  The method 

therefore requires knowledge of the wave velocity in each layer, the 

functions describing the shape of each layer to layer interface, and the 

particular spatial point to be focused upon.  The method was successfully 

tested on some simulated data sets in the latter part of the paper. 

 Note, the current implementation is able to support any kind of interfaces. 

There is no restriction on the analytical interfaces to be defined in the x-y 

domain. The interfaces can tilt and folding is permitted. For every refraction, 

the analytic equation of the line for the last intersection point, whose 

direction is given by the unitary refraction vector, is intersected in turn with 

all the analytic functions of the interfaces. This operation gives one 

intersection point for each interface surface. The interface that produces the 

closest point to the last intersection point is selected as the correct 

intersection surface and the point is returned as the location where a new 

refraction takes place. This continues until the horizontal plane for the target 

(T) is reached. For this reason, which maximises the usefulness of the 

proposed implementation, there is a quadratic dependence between the 

computation time and the number of interfaces (see Table 2). The 

dependence would be linear if the sequence of intersected surfaces is 

defined, but the method would only be applicable to layered material. 

 

3. I would suggest using the phrases "two dimensional" and "three 

dimensional" throughout the manuscript rather than "bi-dimensional" and 

"tri-dimensional" which are non-standard. 

 All instances of "bi-dimensional" and "tri-dimensional" have been replaced 

with "two dimensional" and "three dimensional". 

Response to Reviewers



4. In Section 2 you describe the Bisection Method. Can you explain why this 

method was chosen over other root finding algorithms? The bisection 

method is well known to be slow to converge when compared to Newton 

type methods for example. 

 The reviewer is right. The bisection method is well known to be slow to 

converge when compared to Newton type methods. If we are interested in 

the solution of 𝑓(𝑥) = 0 and we have access to the derivative of  𝑓(𝑥)  as well 

as a good rough estimate of the root, then the Newton type methods would 

give us a quadratic convergence (at least two extra digits of the root per 

iteration). However, the increased speed of convergence comes with more 

ways to fail. The method is sensitive to the choice of the initial condition and 
the smoothness of 𝑓(𝑥). Iterations can overshoot the root, or get locked into 

a periodic iteration forever. If the initial condition is also a critical point, i.e., 

𝑓′(𝑥∗) = 0 , or close to a critical point, the method cannot even start. In fact, 

multiplicity of a root can slow down the method. Getting a good initial 
estimate for 𝑥∗ is tricky, especially in high-dimensional examples. The 

bisection method needs an interval (or whatever its generalization in higher 
dimensions) that contains the root and 𝑓(𝑥) has to be a continuous function. 

With those assumptions, convergence is guaranteed and it is linear with 

respect to the iterations. So, in terms of convergence speed, Newton’s 

methods outperform the bisection method. However, they need information 

about the derivative or about the partial derivatives (for multi-dimensional 
functions). In terms of information about 𝑓(𝑥), the bisection method requires 

much less. Thus, this is the reason why the bisection method was chosen 

over other root finding algorithms, for this work. Nevertheless, the authors 

envisage future work focusing on the application of faster root finding 

algorithms. The authors’ aim is to investigate the efficiency of a combination 

of bisection and Newton’s methods in ultrasonic ray tracing, where the 

bisection approach would be used until a rough estimate of the root is found 

and the Newton’s method would be used to refine the estimate. 

5. Page 4, Equation(6).  Please note that there is an identity 

tan(asin(x))=x/Sqrt[1-x^2].  Use of such an identity may well speed up 

your algorithm.  You may wish to comment in the paper. 

 We thank the reviewer for helping us to refine the math. This has been 

included in the paper through a revised version of Equation 6 and the 

accompanying text. 

6. Page 9, Line -5.  When you say "horizontal plane" do you mean the plane 

that passes through P1 and has normal vector k=(0,0,1)^T ?  So that is 

the plane z=f1(p1)?  If so then please state this. 

 The reviewer is right. This comment and the following comment have been 

addressed by replacing the original paragraph, which introduced the planes 
𝜔1 and 𝜏1, with the following text: “The plane 𝜔1 is the horizontal plane that 

passes through 𝑃1 and has normal vector [0 0 1]𝑇, which is the plane 

described by the equation: 𝑧 = 𝑓1(𝑃1). The plane 𝜏1 𝑖𝑠 the plane tangent to 

the surface 𝑓1(𝑥, 𝑦, 𝑧) = 0 in 𝑃1, whose normal coincides with �⃗⃗� 1.” 

7. Page 9, Line -5.  Does the plane tau_1 have normal vector n_1 ?  If so then 

state this. 

 The reviewer is right. This comment has been addressed, as per answer to 

the previous comment. 

8. Page 9. Equation (20).  The notation in equation (20) has "n_1" and yet 

you have used the notation "n_{P1}" in equation (21).  Please use one of 

these for consistency. 



 Thank you to the reviewer for spotting this inconsistency. This has been 

fixed. 

9. Same comment as 6. For equation (23). 

 Fixed, as per comment 6. 

10. p19, line -10: State how many iterations the method took typically to 

converge. 

 The average number of iterations has been included in Table 2, as additional 

quantitative performance parameter. The typical number of iterations is 

slightly bigger than 13 and does not seem to be influenced by the number 

of interface surfaces in the model. 

11. p20, line 4: You mention that your method is much faster than a FEM code.  

What about using the Fast-Marching Method (FMM) (i.e. solving the 

Eikonal equation) combined with Fermat's Principle to do the ray tracing.  

How would your method compare with that approach?  The FMM does not 

care if the medium is layered or indeed just a partition of regions with 

differing material properties such as a weld region.  Indeed, you can 

implement Fermat's principle by viewing the domain as a grid of connected 

points and then use Dijkstra's algorithm. At the very least you should 

mention this an alternative approach in the literature review section and 

in the conclusions as an alternative method. You could cite Nowers, O, 

Duxbury, DJ, Zhang, J & Drinkwater, BW, 2014, 'Novel ray-tracing 

algorithms in NDE: Application of Dijkstra and A* algorithms to the 

inspection of an anisotropic weld'. NDT and E International, vol 61., pp. 

58-66 10. 

 We thank the reviewer for this interesting comment. The proposed 

generalization of Snell’s law to the three-dimensional case is not limited to 

layered medium. It is applicable to situations where there are partitions, as 

long as the interface of the partitions are described by analytical equations. 

Each iteration of the bisection method advances looking for the interface 

surface that is intersected by the ray. We have inserted a note related to 

the use of Dijkstra's algorithm in the introduction. The recommended paper 

has also been cited in the introduction and in the conclusion as an 

alternative method. 

12. p20, line -3: You mention "anisotropic" media.  How would you extend 

your method to a layered medium where each layer was anisotropic?  In 

such a case you would need to take into account the orientation of the 

tensor describing the anisotropic material (eg the slowness surface) AND 

the angle that the ray enters that region.  Please note that the FMM has 

been extended to heterogeneous materials where each region (for 

example layer but again can be a partitioning into a random collection of 

locally anistropic regions such as a weld) is anisotropic.  You could cite in 

the introduction/conclusion K. M. M. Tant, E. Galetti, A. J. Mulholland, A. 

Curtis & A. Gachagan (2020) Effective grain orientation mapping of 

complex and locally anisotropic media for improved imaging in ultrasonic 

non-destructive testing, Inverse Problems in Science and Engineering, 

DOI: 10.1080/17415977.2020.1762596 

 Our claim is motivated by the fact that the proposed method allows 

computing the angle that the ray enters each region. So, it enables 

considering the anisotropy of the medium through the tensor describing the 

anisotropic material in every region. Obviously, this would require building 

onto the presented generalized algorithm. The scope of the paper is limited 

to presenting the mathematical formulation required to generalize Snell’s 



law to the three-dimensional case. As it was suggested, the recommended 

work has been cited in the introduction of the manuscript. 

 

Typographical Errors 

 

13. In various places you have used the phrase "bisecting method" and it 

should be "bisection method". 

 All occurrences of “bisecting method” have been replaced with "bisection 

method". 

14. In p9, equation (20) (and the line above) you have used the Greek letter 

uppercase delta to denote Grad.  You should use the standard notation of 

nabla. Which is an inverted delta. 

 Thanks to the reviewer for spotting this mistake. The issue has been fixed. 

15. p9, 2 lines after equation (20).  Replace "lays on" with "lies in" 

 Done 

16. p10, line -9. Remove "the" to read "imposition of Snell's law…." 

 Done 

17. p13, line 3. Add "s" to "function". 

 Done 

18. p14, line 1: replace "such" with "the" 

 Done 

19. p14, line 7: "finale" should be "final" 

 Done 

20. p15, line 1: should read "inspection of" 

 Done 

21. p16, line 5: add "the" before "sake" 

 Done 

22. p19, line -3: spelling "discrete" 

 Done 

 

 

 

Reviewer #2: 
 

Comments 

 

1. This paper has a number of issues which preclude publication in its current 

format. 

 Thanks to the reviewer for the time and efforts put into the review of our 

work. The reviewer’s comments are answered below. We believe our 

corrections address the comments and improve the quality of the 

manuscript. 

 

2. The abstract reads like a shortened introduction, with no mention of their 

(limited) findings. 



 We thank the reviewer for this criticism. The abstract has been revised. 

Mention of other existing methods, features of the proposed approach and 

results have been added. 

3. In the introduction, no detail of current ray tracing methods is presented, 

as we only have a single sentence to work with: "To increase imaging 

speed, and improve focusing and/or steering of phased array (PA) 

ultrasonic beams on the desired position, several works have investigated 

ways to compute the ultrasonic ray paths [9-11]." What alternatives are 

available to the bisection method introduced in section 2? How does this 

approach provide benefits over other methods? This cuts to one of the 

criticisms of this paper - it provides a method which it compares (time-

wise) to finite element simulation. However, ray-based modelling is 

common, so their method should be compared against ray-based 

alternatives. 

 The scope of the paper is focused to presenting the mathematical 

formulation required to generalize Snell’s law to the three-dimensional case. 

We believe this can find applicability to several scenarios. Nevertheless, we 

thank the reviewer for inviting us to refine the review of the state of the art. 

We have inserted a note related to an alternative method based on the use 

of Fast-Marching Method (FMM), combined with Fermat's Principle, to do the 

ray tracing. It has also been highlighted that the FMM has been extended to 

heterogeneous materials. The following two works have been included in 

the references: 

i. Nowers, O, Duxbury, DJ, Zhang, J & Drinkwater, BW, 2014, 'Novel 

ray-tracing algorithms in NDE: Application of Dijkstra and A* 

algorithms to the inspection of an anisotropic weld'. NDT and E 

International, vol 61., pp. 58-66 10. 

ii. K. M. M. Tant, E. Galetti, A. J. Mulholland, A. Curtis & A. Gachagan 

(2020) Effective grain orientation mapping of complex and locally 

anisotropic media for improved imaging in ultrasonic non-destructive 

testing, Inverse Problems in Science and Engineering, DOI: 

10.1080/17415977.2020.1762596 

4. The authors have followed a sensible approach by increasing the model 

complexity as it moves from 2d flat to curved surfaces and finally 3d 

curved. However, presentation of the equations used for these scenarios 

is questionable. An appendix should definitely be considered. For example, 

equation 34 is actually an if-elseif statement covering 2/3rd of a page. The 

same is true of equation 35. 

 Thanks to the reviewer for the suggestion. Equation 34 and 35 have been 

moved respectively to Appendix A and Appendix B, after the references. The 

numbering of the other equations has been adjusted accordingly. 

5. The authors undermine their complexity staircase by only considering one 

demonstration example in the results. Although initially presented in 3d, 

it is just a 2d problem with flat interfaces - as is neatly summarised in 

figure 7. Figure 7 also highlights the necessary editing required of this 

paper. It contains 3 parts, but only Figure 7(c) is necessary! This is also 

true in other figures, such as Figure 8 (remove (a) and move numbering 

to (b)). 

 The authors thought carefully about a suitable example to describe the use 

of the mathematical formulation presented in this work. Eventually, the in-

process butt-welded plate was selected as a good example. The reviewer is 

right in observing that, although the paper presents the generalization of 

Snell’s laws to the three-dimensional case, a two-dimensional formulation 



would be sufficient for the proposed example. Indeed, by neglecting the 

evolution of the temperature in the y-direction of the welded model, the 

problem is reduced to a 2D case. This approach was pursued by the authors 

just to make the example and all figures more easily comprehensible by the 

readers. Following the reviewer’s comment Figure 7b is removed and Figure 

7c is renamed as Figure 7b. The authors deemed useful to keep Figure 7a 

since it helps visualize the eleven temperature zones across the specimen, 

with relative sound speed in the material. Likewise, the authors have 

decided to not remove Figure 8a. Moving the numbering of the interface 

surfaces from Figure 8a to Figure 8b would make Figure 8b too confusing. 

Whereas Figure 8a gives the numbering of all surfaces, Figure 8b is 

dedicated to highlighting the interfaces intersected by the ultrasonic rays. 

Hopefully, this can be deemed acceptable by the reviewers and editor too. 

 

6. In section 6, the authors propose that their method is suitable for real-

time in-process welding inspection. This would suggest a rapid calculation 

would be required, something that the results presented in the paper 

certainly do not suggest is currently possible. 

 We highlight that the implementation of the proposed method was not 

optimized for speed. Although the current result is already a great 

advantage if compared to the time required by Finite Element models, more 

work is required to produce more sophisticated implementations of the 

method, capable of minimizing the execution time without compromising 

the accuracy. This is also mentioned as future work in the conclusions. In 

terms of convergence speed, Newton’s methods outperform the bisection 

method. However, they need information about the derivative or about the 

partial derivatives. The bisection method requires much less. Thus, this is 

the reason why the bisection method was chosen over other root finding 

algorithms, for this work. However, we envisage future work focusing on 

the application of faster root finding algorithms. The authors’ aim is to 

investigate the efficiency of a combination of bisection and Newton’s 

methods in ultrasonic ray tracing, where the bisection approach would be 

used until a rough estimate of the root is found and the Newton’s method 

would be used to refine the estimate. Nevertheless, taking advantage of this 

revision, some improvements have been added to the presented 

implementation, reducing the computation time of each iteration of the 

bisection method to 3.98 ms, for the case with a single interface, and to 

960.36 ms, for the case with 52 interfaces. The convergence time for each 

ray depends on the stopping criteria, which affects the number of required 

iterations. Moreover, the proposed algorithms can be used to pre-calculate 

a number of focal laws for the geometry (e.g. with differing temperature 

profiles). During the inspection, the temperature sensors are used to select 

the most appropriate match for the thermal profile. 

7. They present an anisotropic problem, due to temperature gradient, as one 

capable of being determined using a piecewise isotropic approach. When 

comparing either 27 and 52 interfaces, they conclude that "This seems to 

suggest that the dependence between the computation time of the current 

method and the number of surfaces in the model could be described by a 

linear or a subquadratic law". Why is this conclusion drawn from only 2 

data points? 

 We had used three points (1, 27 and 52 interfaces) to infer the dependence 

of the computation time from the number of interfaces. Nevertheless, we 

accept the reviewer’s criticism and acknowledge that more points should 

have been used. Four more points were added (7, 17, 37 and 47 interfaces), 



for a total of 7 points (1, 7, 17, 27, 37, 47 and 52 interfaces). The 

corresponding computation times are given in Table 2. Beside the total 

elapsed time, the revised version of Table 2 also contains the average 

number of iterations, the average duration of each iteration and the average 

convergence time for each ray. The average duration of each iteration is the 

best parameter to investigate the dependence between the computation 

time and the number of interfaces, since such parameter is independent 

from the stopping criteria, which influence the number of iterations of the 

bisecting method, and the number of sources (elements) in the ultrasonic 

phased array probe. This confirmed a quadratic relationship between the 

computation time and the number of interfaces, as it is illustrated in the 

picture below. 

 

Note, the current implementation is able to support any kind of interfaces. 

There is no restriction on the analytical interfaces to be defined in the x-y 

domain. The interfaces can tilt and fold. For every refraction, the analytic 

equation of the line for the last intersection point, whose direction is given 

by the unitary refraction vector, is intersected in turn with all the analytic 

functions of the interfaces. This operation gives one intersection point for 

each interface surface. The interface that produces the closest point to the 

last intersection point is selected as the correct intersection surface and the 

point is returned as the location where a new refraction takes place. This 

continues until the horizontal plane for the target (T) is reached. This is the 

reason of the quadratic dependence between the computation time and the 

number of interfaces. This aspect, which was already highlighted in the 

section 6, has been mentioned in the abstract too. The dependence would 

be linear if the sequence of intersected surfaces is defined (e.g. the case of 

a layered composite material). 

8. The best times provided by the method are approximately 42 seconds 

when modelling an isotropic plate medium (only 1 interface, the 

wedge/plate). This seems high for calculating only 64 rays (64 start 

points, 1 end point and 1 interface), even for a MATLAB implementation. 

When considering the best piecewise isotropic approach with 52 

interfaces, this time increases to 21 minutes. How do other ray approaches 

perform? 

 As is was said in the answer to comment n.5, some improvements have 

been added to the presented implementation, taking advantage of this 

revision. We achieved to reduce the computation time of each iteration of 



the bisection method has been reduced to from 42 to 3.4 seconds, when 

modelling an isotropic plate medium (only 1 interface, the wedge/plate), 

and from 21 to 15 minutes, for the case with 52 interfaces. As it was 

explained in the answer to the previous comment, there is a quadratic 

dependence between the computation time and the number of interfaces. 

The dependence would be linear if the sequence of intersected surfaces is 

defined (e.g. the case of a layered composite material). 

With this being said, the scope of this work is focused to presenting the 

mathematical formulation required to generalize Snell’s law to the three-

dimensional case. We believe it can find applicability to several scenarios. 

However, since the implementation of the method was not optimized for 

speed, we did not compare it to the performance of other method. Indeed, 

we aim to focus the future work on generating more sophisticated 

implementations of the method, capable of minimizing the execution time 

without compromising the accuracy. 

9. Why is an accuracy of 0.01mm required? What effect does this required 

accuracy negate? 

 One or more stopping criteria are required in iterative convergence 

methods. Obtaining a distance from target smaller than 0.01mm has been 

used as stopping criteria in our work. There is nothing this negate. The 

stopping criteria can be different, depending on the application. In practical 

applications of the method, a meaningful approach would be to stop 

iterating when the change in transit time is smaller than a defined fraction 

of a wavelength. A note about this has been added to the manuscript (page 

17). 

10. Only relative metrics are presented, e.g. mean shift in transit time. For 

ease of future validation, absolute metrics should be provided, with 

relative ones an optional extra. 

 The reviewer is right about this. We apologise for not having payed attention 

to this before. The relative metrics (distance from target and shift in travel 

time) have been moved from Table 2 to a new table (Table 3). Also, the 

requested absolute metrics (travel distance and travel time) have been 

included in Table 3, for all cases. The text of section 6 has been edited to 

introduce the new table and the new reported data. 

11. In summary, the method the authors introduce should be considered "not 

proven". The single example given doesn't cover the majority of the 

theory, with sections 4 and 5 unused. Also, the results are not validated 

against any other method. 

 This comment is answered by the answer to comment n.5. 

 



 The work introduces a generalized iterative method for computation of ultrasonic ray paths; 

 Ray tracing through multiple complex interfaces in the two and three dimensional domains; 

 Enabling the computation of optimum incidence angles for accurate ultrasonic focusing; 

 Application example in the field of in-process weld inspection. 
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ABSTRACT 

Ultrasonic testing has been used for many decades, proving itself very efficient for detecting defects in many 

industrial sectors. Due to it being inexpensive and much safer than other non-destructive testing techniques, 

ultrasonic testing remains a hot research topic, since researchers try to extend and maximize its applicability to 

challenging parts and new industrial areas. The desire to apply ultrasonic testing to geometrically complex 

structures, and to anisotropic, inhomogeneous materials, together with the advent of more powerful electronics 

and software, is constantly pushing the applicability of ultrasonic waves to their limits. General ray tracing 

models, suitable for calculating the proper incident angle of single element probes and the proper time delay of 

phased array, are currently required. They can support the development of new imaging techniques, as Full 

Matrix Capture and Total Focusing Method, and the execution of very challenging ultrasonic inspections. This 

paper introduces a generalized iterative method for the computation of ultrasonic ray paths, when ultrasonic 

source and target are separated by multiple complex material interfaces in the bi- two dimensional and tri-

dimensional three dimensional domains. The manuscript starts with a review of the well-known bisection method, 

and extends the applicability of the method to cases with increasing complexity. An application example, in the 

field of in-process weld inspection, shows that the introduced generalised bisection method can enable the 

computation of optimum incidence angles and focal delays for accurate ultrasonic focusing. There is no 

restriction on the analytical interfaces to be surjective. Interface folding is permitted. It is not necessary to know, 

a priori, with what sequence the interfaces are crossed by the rays. The presented implementation of the method 

completes each iteration of the bisection method in 4ms, for a case with a single interface, and in 960ms for the 

case with 52 interfaces.  

 
Keywords: Ultrasonic wave propagation, Ray tracing, Mathematical modelling, Bisection method, Multi-

layered structures, Weld inspection, Composites. 
 

 
1. INTRODUCTION 

Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic 

waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with 

centre frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to 

detect internal flaws or to characterize materials. Ultrasonic testing is often performed on steel, concrete, wood 

and composites. It is used in many industries including steel and aluminium construction, metallurgy, 

manufacturing, petrochemical, aerospace, automotive and other transportation sectors [1, 2]. UT inspection of 
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planar components is relatively straightforward. However, the inspection of components with nonplanar surface 

geometries, such as weld-caps, curved pipes, and curved composite structures is more challenging and requires 

specific technologic solutions. Various works have addressed the inspection of curved components and developed 

ways to couple the ultrasonic transducers with the material under test, using flexible ultrasonic arrays conforming 

to the surface [3], deploying a rigid array on a nearby planar surface to image the region of interest from the side 

either directly [4] or by using signals reflected from the back wall of the component [5]. Another option is to use 

an intermediary layer (e.g., a solid shoe with a surface conformal with that of the component or water), to couple 

the transducer to the component [6-8]. However, the imaging speed depends on the complexity of the surface 

and the total number of image pixels, and this is a key concern for industrial end-users. To increase imaging 

speed, and improve focusing and/or steering of phased array (PA) ultrasonic beams on the desired position, 

several works have investigated ways to compute the ultrasonic ray paths [9-11]. One solution is to use the Fast-

Marching Method (FMM) combined with Fermat's principle, considering the domain of interest as a grid of 

connected points, and then use Dijkstra's algorithm [12]. FMM has been extended to heterogeneous materials, 

where each region can be anisotropic [13]. Despite these effortsHowever, a general ray tracing model based on 

Snell’s law, suitable for calculating the proper incident angle of single element probes and the proper time delay 

of phased array probes in bi-dimensional two and tri-dimensional three dimensional multi-layer parts, and in 

anisotropic and inhomogeneous materials, is still missing. This paper introduces a generalized iterative method 

for the computation of ultrasonic ray paths, when ultrasonic source and target are separated by multiple complex 

material interfaces in the bi- two and tri-dimensional three dimensional domains. The manuscript starts with a 

review of the well-known bisection method in Section 2. It then demonstrates the application of the method to 

cases with increasing complexity (flat material interfaces in Section 3 and curved bi-dimensional two dimensional 

interfaces in Section 4), concluding with the generalisation of the method for its applicability to ray tracing 

through multiple complex interfaces in the tri-dimensional three dimensional domain. The paper discusses 

application examples and results in Section 6 and draws the conclusions in Section 7.  

2. BISECTION METHOD 

The bisection method is a root-finding method that applies to any continuous functions for which one knows two 

values with opposite signs [14]. The method consists of repeatedly bisecting the interval defined by these values 

and then selecting the subinterval in which the function changes sign, and therefore must contain a root. The 

method is also called the interval halving method [15], the binary search method [14], or the dichotomy method 

[16]. 

The method is applicable for numerically solving the equation 𝑓(𝑥) = 0 for the real variable 𝑥, where 𝑓(𝑥) is a 

continuous function defined on an interval [𝑎, 𝑏] and where 𝑓(𝑎) and 𝑓(𝑏) have opposite signs. In this case 𝑎 

and 𝑏 are said to bracket a root since, by the intermediate value theorem, the continuous function 𝑓(𝑥) must have 

at least one root in the interval (𝑎, 𝑏). The interval halving method is an iterative method. At each iteration the 

method divides the interval in two by computing the midpoint 𝑐 =
(𝑎+𝑏)

2
 of the interval and the value of the 

function 𝑓(𝑐). Unless 𝑐 is itself a root (which is very unlikely, but possible), there are only two possibilities: 

either 𝑓(𝑎) and 𝑓(𝑐) have opposite signs and bracket a root, or 𝑓(𝑐) and 𝑓(𝑏) have opposite signs and bracket a 

root. The method selects the subinterval that is guaranteed to be a bracket as the new interval to be used in the 
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next iteration. Explicitly, if 𝑓(𝑎) and 𝑓(𝑐) have opposite signs, then the method sets 𝑐 as the new value for 𝑏, 

and if 𝑓(𝑐) and 𝑓(𝑏) have opposite signs then the method sets 𝑐 as the new 𝑎. In both cases, the new 𝑓(𝑎) and 

𝑓(𝑏) have opposite signs, so the method is applicable to this smaller interval. In this way, the interval that contains 

a zero of 𝑓(𝑥) is reduced in width by 50% at each iteration. The process is continued until the interval is 

sufficiently small or if 𝑓(𝑐) = 0. Then 𝑐 is taken as the root of the function and the process stops. 

3. FLAT MATERIAL INTERFACES 

Given a source of ultrasonic energy in a point 𝑆 and defining the point 𝑇 as the target point, where one wants to 

send the energy, Figure 1 shows the ultrasonic ray tracing for multiple material layers, in the bi-dimensional two 

dimensional case. Although the figure illustrates the ray tracing for the case of a structure with four material 

layers, the algorithms presented in this work are generalized for 𝑘 layers, with 𝑘 being not predetermined. 

 
Figure 1 – (a) Annotated ultrasonic ray tracing for multiple material layers in the bi-dimensional two 

dimensional case and (b) convergence to solution through the bisecting method bisection method. 

Thus, using the notation in Figure 1a and generalizing for 𝑘 layers, the following equation is valid: 

𝑆𝑃1
𝑥̅̅ ̅̅ ̅ + (∑ 𝑃𝑖−1

𝑥 𝑃𝑖
𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑘−1

𝑖=2
) + 𝑃𝑘−1

𝑥 𝑇𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅ =  𝑆𝑇𝑥̅̅ ̅̅ ̅ (1) 

Considering that the lengths of the segments on the left-hand side of the equation are equal to the product of the 

layer thicknesses (𝑑𝑖) and the tangents of the angles of incidence/refraction (𝜃𝑖), in each layer, we have: 

𝑑1 ∙ tan 𝜃1 + (∑ 𝑑𝑖 ∙ tan 𝜃𝑖
𝑘−1

𝑖=2
) + 𝑑𝑘 ∙ tan 𝜃𝑘 = 𝑆𝑇

𝑥̅̅ ̅̅ ̅ (2) 

𝑑1 ∙ tan 𝜃1 + (∑ 𝑑𝑖 ∙ tan 𝜃𝑖
𝑘

𝑖=2
) = 𝑆𝑇𝑥̅̅ ̅̅ ̅ (3) 

The relationship between the angles of incidence and refraction, when referring to waves passing through a 

boundary between two different isotropic media, is described by the Snell's law (also known as Snell-Descartes 

law and the law of refraction) [17]. The law follows from Fermat's principle of least time [18]. Snell's law states 

that the ratio of the sines of the angles of incidence and the speed of propagation of the wave is equivalent to the 
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ratio of the sine of the refracted angle and the propagation speed in the media where the wave is refracted. 

Therefore, the following is valid: 

sin 𝜃1
𝑣1

= ⋯ =
sin 𝜃𝑖
𝑣𝑖

= ⋯ =
sin 𝜃𝑘
𝑣𝑘

 (4) 

Note that each angle is measured from the normal of the boundary interface and the propagation velocities in the 

respective media are inserted in the formula in meters per second (m/s). Thus, it is possible to express each angle, 

𝜃𝑖, as a function of the first incidence angle 𝜃1, and the respective propagation velocities (𝑣𝑖, 𝑣1): 

𝜃𝑖 =  𝑎𝑠𝑖𝑛 (
𝑣𝑖
𝑣1
∙ sin 𝜃1) (5) 

Replacing equation 5 in equation 3, we get the following function, 𝑒(𝜃1): 

𝑒(𝜃1) = 𝑑1 ∙ tan 𝜃1 + (∑ 𝑑𝑖 ∙ tan [𝑎𝑠𝑖𝑛 (
𝑣𝑖
𝑣1
∙ sin 𝜃1)]

𝑘

𝑖=2
) − 𝑆𝑇𝑥̅̅ ̅̅ ̅ = 

(6) 

            = 𝑑1 ∙ tan 𝜃1 +

(

 ∑ 𝑑𝑖 ∙
𝑣𝑖 ∙ sin 𝜃1

√𝑣1
2 − 𝑣𝑖

2 ∙ 𝑠𝑖𝑛2𝜃1

𝑘

𝑖=2

)

 − 𝑆𝑇𝑥̅̅ ̅̅ ̅ 

Therefore, the bisecting method bisection method is applied to this function., Note the final form of the function, 

makes use of the identity: 𝑡𝑎𝑛[𝑎𝑠𝑖𝑛(
𝑣𝑖
𝑣1⁄ ∙ sin 𝜃1)] = (

𝑣𝑖
𝑣1⁄ ∙ sin 𝜃1) √1 − (

𝑣𝑖
𝑣1⁄ ∙ sin 𝜃1)

2
⁄ =

(𝑣𝑖 ∙ sin 𝜃1) √𝑣1
2 − 𝑣𝑖

2 ∙ 𝑠𝑖𝑛2𝜃1⁄ , which is only defined where  −1 < (𝑣𝑖 𝑣1⁄ ) ∙ sin 𝜃1 < 1 when 𝑣1
2 − 𝑣𝑖

2 ∙ 𝑠𝑖𝑛2𝜃1 >

0, since 𝑎𝑠𝑖𝑛(𝑥) is defined for − 1 ≤ 𝑥 ≤ 1 and 𝑡𝑎𝑛(𝑥) is continuous between − 𝜋 2⁄ < 𝑥 < 𝜋 2⁄ . This leads 

to determine the interval (𝑎, 𝑏) as: 

(𝑎𝑠𝑖𝑛 (−
𝑣1

max(𝑣𝑖)
) , 𝑎𝑠𝑖𝑛 (

𝑣1
max(𝑣𝑖)

)) (7) 

𝑒(𝜃1) is a continuous function, in the interval (𝑎, 𝑏). Figure 2 shows the typical shape of the curve associated to 

𝑒(𝜃1). The curve has been computed for an example multi-layered structure (Figure 1a) with 4 layers of 

thicknesses 𝑑1 = 10mm, 𝑑2 = 5mm, 𝑑3 = 8mm and 𝑑4 = 5mm, where the ultrasonic propagation velocities 

are 𝑣1 = 1.5mm/μs, 𝑣2 = 6mm/μs, 𝑣3 = 3.1mm/μs and 𝑣4 = 5mm/μs, respectively. 

 
Figure 2 – Typical shape of 𝒆(𝜽𝟏). 

The values 𝑒(𝑎) and 𝑒(𝑏) are of opposite sign. Thus, there is one zero crossing within the interval and the 

bisection method can be applied. Each iteration of the method performs these steps: (1) the midpoint of the 

interval 𝑐 =
𝑎+𝑏

2
 is calculated, (2) the function value at the midpoint 𝑒(𝑐) is computed, (3) if convergence is 
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satisfactory (that is, (𝑐 − 𝑎) and/or |𝑒(𝑐)| sufficiently small), 𝑐 is returned and the iteration stops; otherwise, the 

sign of 𝑒(𝑐) is examined and either (𝑎, 𝑒(𝑎)) or (𝑏, 𝑒(𝑏)) are replaced with (𝑐, 𝑒(𝑐)), so that there is a zero 

crossing within the new interval and all steps are repeated. Figure 1b illustrates the ray tracing relative to the 

initial guess for the zero of the function (𝜃1
0 = 𝑐 =

𝑎+𝑏

2
), the first three iterations of the method and the final 

result at the target, for the reference example. 

4. CURVED MATERIAL INTERFACES (BI-DIMENSIONALTWO DIMENSIONAL CASE) 

Perfectly flat interfaces are only a theoretical abstraction, since real interfaces always present some degree of 

roughness and deviation from flatness. Moreover, intentionally curved material interfaces are often present in 

parts that are designed to meet critical mechanical properties. Therefore, it is necessary to generalize the 

formulation in Section 3, to include the possibility to solve wave propagation through multiple media, separated 

by curved interfaces (Figure 3a). Equation 1 is still valid for this scenario. However, the variable thickness of the 

material layers does not allow to compute the length of the segments 𝑆𝑃1
𝑥̅̅ ̅̅ ̅, 𝑃𝑖−1

𝑥 𝑃𝑖
𝑥̅̅ ̅̅ ̅̅ ̅̅  and 𝑃𝑘−1

𝑥 𝑇𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅ as 𝑑1 ∙ tan 𝜃1, 𝑑𝑖 ∙

tan 𝜃𝑖 and 𝑑𝑘 ∙ tan 𝜃𝑘 respectively. Instead, introducing the function 𝑓1(𝑥) to describe the curved interface 

between the first and second layer, the first incidence point, 𝑃1 ≡ (𝑃1
𝑥 , 𝑃1

𝑦
), can be found through intersecting 

the propagation line in the first layer with the first interface 𝑓1(𝑥). 

 
Figure 3 – Annotated ultrasonic ray tracing for multiple material layers separated by curved interfaces (a) and convergence 

to solution through the bisecting method bisection method (b). 

Therefore, 𝑃1
𝑥 and 𝑃1

𝑦
 are the solution of the system containing the equation of the line for the source 𝑆 and the 

equation relative to the first interface,  𝑦 = 𝑓1(𝑥), as illustrated in Equation 8. 

if  𝜃1 ≠ 0 

 {
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                  𝑦 = 𝑡𝑎𝑛 (

𝜋

2
+ 𝜃1) ∙ (𝑥 − 𝑆

𝑥)  − 𝑆𝑦

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑦 = 𝑓1(𝑥)                                              
 

else 

 {
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                   𝑥 = 𝑆𝑥       

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑦 = 𝑓1(𝑆
𝑥)

 

end 

(8) 
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Throughout this paper, the assumption is that each interface surface is smooth and continuous with a local radius 

of curvature that is many times greater than the ultrasonic wavelength. Under these conditions, a ray-based 

approach is valid and the problem becomes one of computing the correct ray path between source positions and 

target within the component. Figure 4a illustrates the refraction of an incidence wave at point 𝑃1, on the first 

interface. 

  
(a) (b) 

Figure 4 – (a) Refraction at point 𝑷𝟏, on the first material interface and (b) approach used for defining the initial guess 

point and the domain interval for 𝜽𝟏. 

Whereas 𝜃1 and 𝜃2 are the angles that incidence and refracted wave form with the y-axis, 𝛼1 and 𝛼2 are the 

respective angles formed with the normal to the interface at the incidence point 𝑃1. These latter angles are 

constrained by the Snell’s law and obey to the following equation: 

sin 𝛼1
𝑣1

=
sin𝛼2
𝑣2

= ⋯ =
sin 𝛼𝑖
𝑣𝑖

=
sin 𝛼𝑘
𝑣𝑘

 (9) 

From Figure 4a, it is evident that: 

𝛼1 = 𝜃1 − atan(𝑓1
′(𝑃1

𝑥)) (10) 

𝛼2 =  𝜃2 − atan(𝑓1
′(𝑃1

𝑥)) (11) 

Replacing Equation 10 and 11 in Equation 9, it results: 

𝜃2 = 𝑎𝑠𝑖𝑛 {(
𝑣2
𝑣1
) ∙ sin[𝜃1 − 𝑎𝑡𝑎𝑛(𝑓1

′(𝑃1
𝑥))]} + 𝑎𝑡𝑎𝑛(𝑓1

′(𝑃1
𝑥)) (12) 

and generalising for the 𝑖th angle (𝜃𝑖) at the 𝑖th layer, and for the 𝑘th angle (𝜃𝑘) at the last layer: 

𝜃𝑖 = 𝑎𝑠𝑖𝑛 {(
𝑣𝑖
𝑣1
) ∙ sin[𝜃1 − 𝑎𝑡𝑎𝑛(𝑓1

′(𝑃1
𝑥))]} + 𝑎𝑡𝑎𝑛(𝑓𝑖−1

′ (𝑃𝑖−1
𝑥 )) (13) 

𝜃𝑘 = 𝑎𝑠𝑖𝑛 {(
𝑣𝑘
𝑣1
) ∙ sin[𝜃1 − 𝑎𝑡𝑎𝑛(𝑓1

′(𝑃1
𝑥))]} + 𝑎𝑡𝑎𝑛(𝑓𝑘−1

′ (𝑃𝑘−1
𝑥 )) (14) 

Therefore, the coordinates (𝑃𝑖
𝑥 , 𝑃𝑖

𝑦
) of the incidence points, from the 2nd to the (𝑘 − 1)th incidence points, are 

the solution of the system with the equation of the line for the source 𝑃𝑖−1 and the equation relative to the 𝑖th 

interface,  𝑦 = 𝑓𝑖(𝑥), as illustrated in Equation 15. 
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for  i = 2:(k-1) 

𝜃𝑖 = 𝑎𝑠𝑖𝑛 {(
𝑣𝑖

𝑣1
) ∙ sin[𝜃1 − 𝑎𝑡𝑎𝑛(𝑓1

′(𝑃1
𝑥))]} + 𝑎𝑡𝑎𝑛(𝑓𝑖−1

′ (𝑃𝑖−1
𝑥 ))  

if  𝜃𝑖 ≠ 0 

       {
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1:        𝑦 = 𝑡𝑎𝑛 (

𝜋

2
+ 𝜃𝑖) ∙ (𝑥 − 𝑃𝑖−1

𝑥 )  − 𝑃𝑖−1
𝑦

𝑖𝑡ℎ  𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:      𝑦 = 𝑓𝑖(𝑥)                                                   
 

      else 

       {
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1:        𝑥 = 𝑃𝑖−1        

𝑥   

𝑖𝑡ℎ  𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:      𝑦 = 𝑓𝑖(𝑃𝑖−1
𝑥 ) 

 

      end 

end 

(15) 

Finally, the coordinates (𝑇0
𝑥, 𝑇0

𝑦
) of the resulting target point related to the initial guess angle 𝜃1 (given as input), 

are the solution of the system with the equation of the line for the point 𝑃𝑘−1 and the horizontal line for 𝑇 (𝑦 =

𝑇𝑦), as shown in Equation 16. 

𝜃𝑘 = 𝑎𝑠𝑖𝑛 {(
𝑣𝑘
𝑣1
) ∙ sin[𝜃1 − 𝑎𝑡𝑎𝑛(𝑓1

′(𝑃1
𝑥))]} + 𝑎𝑡𝑎𝑛(𝑓𝑘−1

′ (𝑃𝑘−1
𝑥 )) 

if  𝜃𝑘 ≠ 0 

 {
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑘−1:                𝑥 = 𝑃𝑘−1

𝑥 + (𝑃𝑘−1
𝑦

− 𝑇𝑦) ∙ tan(𝜃𝑘)

ℎ𝑜𝑟𝑖𝑧. 𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑇:         𝑦 = 𝑇𝑦                                                  
 

else 

 {
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑘−1:                𝑥 = 𝑃𝑘−1  

𝑥

ℎ𝑜𝑟𝑖𝑧. 𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑇:         𝑦 = 𝑇𝑦     
 

end 

(16) 

Thus, the bisecting methodbisection method is applied to the error function, 𝑒(𝜃1), defined as: 

𝑒(𝜃1) = 𝑇𝑗𝑇̅̅ ̅̅ = 𝑇𝑥 − 𝑇𝑗
𝑥 (17) 

The identification of the correct domain for 𝑒(𝜃1) is crucial to make sure the application of the bisection method 

leads to convergence. Equations 13 and 14 are only defined where  −1 < (
𝑣𝑖

𝑣1
) ∙ sin[𝜃1 − 𝑎𝑡𝑎𝑛(𝑓1

′(𝑃1
𝑥))] < 1. 

This leads to determine the interval (𝑎, 𝑏) as: 

(𝑎, 𝑏) = (𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥) = (𝑎𝑠𝑖𝑛 (−
𝑣1

max(𝑣)
) + 𝑎𝑡𝑎𝑛(𝑓1

′(𝑃1
𝑥)),    𝑎𝑠𝑖𝑛 (

𝑣1
max(𝑣)

) + 𝑎𝑡𝑎𝑛(𝑓1
′(𝑃1

𝑥))) (18) 

It is clear that the extremities of the interval depend on the incidence point at the first interface, since the 

derivative of 𝑓1(𝑥) is computed for 𝑥 = 𝑃1
𝑥 in Equation 18. In this work, the intersection between the segment 

𝑆𝑇̅̅̅̅  and the first interface 𝑓1(𝑥) is used to guide the selection of such initial guess point. Indicating with 𝑃0 ≡

(𝑃0
𝑥 , 𝑃0

𝑦
) the intersection between 𝑆𝑇̅̅̅̅  and 𝑓1(𝑥), the initial guess point is chosen as: 𝑃1 ≡ (𝑃1

𝑥 , 𝑃1
𝑦
) ≡

(𝑆𝑥 +
𝑣1

𝑣𝑚𝑎𝑥
∙ (𝑃0

𝑥 − 𝑆𝑥)   ,   𝑓1 (𝑆
𝑥 +

𝑣1

𝑣𝑚𝑎𝑥
∙ (𝑃0

𝑥 − 𝑆𝑥))), as it is illustrated in Figure 4b. The function values 

𝑒(𝑎) and 𝑒(𝑏) are of opposite sign and there is one zero crossing within the interval. Therefore, the bisection 

method can be applied, following the same steps as for the case with flat interfaces until convergence is 

satisfactory (that is, (𝑐 − 𝑎) and/or |𝑒(𝑐)| sufficiently small), returning 𝑐 and stopping iterating. Figure 3b 

illustrates the ray tracing relative to the initial guess (𝜃1
0 =

𝑎+𝑏

2
), the first five iterations of the method and the 

final result at the target. 
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5. CURVED MATERIAL INTERFACES (TRI-DIMENSIONALTHREE DIMENSIONAL CASE) 

The propagation of a wave through a number (𝑘) of material layers, separated by curved interfaces in the tri-

dimensional three dimensional case, is the more general situation (Figure 5). Indeed, the previous bi-dimensional 

two dimensional problem can be solved as particular case of this general case. The modelling of the tri-

dimensional three dimensional problem is the main contribution of this work. 

 
Figure 5 – Annotated ultrasonic ray tracing for multiple material layers separated by curved interfaces in the tri-

dimensional three dimensional case (a) and convergence to solution through the bisecting method bisection method (b). 

Introducing the function 𝑓1(𝑥, 𝑦) to describe the curved interface surface between the first and second layer, the 

first incidence point, 𝑃1 ≡ (𝑃1
𝑥 , 𝑃1

𝑦
, 𝑃1

𝑧), is the solution of the system with the Cartesian representation of the line 

for the source 𝑆 and the equation relative to the first interface,  𝑧 = 𝑓1(𝑥, 𝑦). In the tri-dimensional three 

dimensional case it is easier to describe the direction of incidence through the unitary vector  �⃗� 1 = 〈𝑟1
𝑥 , 𝑟1

𝑦
, 𝑟1
𝑧〉, 

rather than an angle 𝜃1. Therefore, the coordinates of the incidence point (𝑃1), resulting from the system 

illustrated, are given in Equation 19. 

if (𝑟1
𝑥 ≠ 0, 𝑟1

𝑦
≠ 0, 𝑟1

𝑧 ≠ 0) 

{
 
 

 
 

𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                 

{
 
 

 
 
𝑥 − 𝑆𝑥

𝑟1
𝑥 =

𝑦 − 𝑆𝑦

𝑟1
𝑦

𝑦 − 𝑆𝑦

𝑟1
𝑦 =

𝑧 − 𝑆𝑧

𝑟1
𝑧

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓1(𝑥, 𝑦)           

 

(19) 

elseif (𝑟1
𝑥 = 0, 𝑟1

𝑦
≠ 0, 𝑟1

𝑧 ≠ 0) 

{
 

 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                 {

𝑥 = 𝑆𝑥                  
𝑦 − 𝑆𝑦

𝑟1
𝑦 =

𝑧 − 𝑆𝑧

𝑟1
𝑧

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓1(𝑥, 𝑦)           

 

elseif (𝑟1
𝑥 ≠ 0, 𝑟1

𝑦
= 0, 𝑟1

𝑧 ≠ 0) 

{
 

 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                 {

𝑦 = 𝑆𝑦                 
𝑥 − 𝑆𝑥

𝑟1
𝑥 =

𝑧 − 𝑆𝑧

𝑟1
𝑧

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓1(𝑥, 𝑦)           

 

elseif (𝑟1
𝑥 ≠ 0, 𝑟1

𝑦
≠ 0, 𝑟1

𝑧 = 0) 
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{
 

 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                 {

𝑧 = 𝑆𝑧                   
𝑥 − 𝑆𝑥

𝑟1
𝑥 =

𝑦 − 𝑆𝑦

𝑟1
𝑦

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓1(𝑥, 𝑦)           

 

elseif (𝑟1
𝑥 = 0, 𝑟1

𝑦
= 0, 𝑟1

𝑧 ≠ 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                 {

𝑥 = 𝑆𝑥        
𝑦 = 𝑆𝑦        

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓1(𝑥, 𝑦)
 

elseif (𝑟1
𝑥 = 0, 𝑟1

𝑦
≠ 0, 𝑟1

𝑧 = 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                 {

𝑥 = 𝑆𝑥        
𝑧 = 𝑆𝑧        

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓1(𝑥, 𝑦)
 

elseif (𝑟1
𝑥 ≠ 0, 𝑟1

𝑦
= 0, 𝑟1

𝑧 = 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑆:                 {

𝑦 = 𝑆𝑦        
𝑧 = 𝑆𝑧        

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓1(𝑥, 𝑦)
 

end 

Rewriting the equation relative to the first interface,  𝑧 = 𝑓1(𝑥, 𝑦), as 𝑓1(𝑥, 𝑦, 𝑧) = 0, the unit normal vector to 

the surface at the point 𝑃1 is given by �⃗⃗� 1 = 𝛁∆𝒇𝟏(𝑃1) ‖𝛁∆𝒇𝟏(𝑃1)‖⁄ . 

�⃗⃗� 1 =
𝛁∆𝒇1(𝑃1)

‖𝛁∆𝒇1(𝑃1)‖
=

〈
𝜕𝑓1
𝜕𝑥

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧),
𝜕𝑓1
𝜕𝑦

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧),
𝜕𝑓1
𝜕𝑧

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧)〉

√𝜕𝑓1
𝜕𝑥

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧)
2

+
𝜕𝑓1
𝜕𝑦

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧)
2

+
𝜕𝑓1
𝜕𝑧

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧)
2

= 〈𝑛1
𝑥 , 𝑛1

𝑦
, 𝑛1

𝑧〉 (20) 

Considering the refraction at the first interface, the unitary vector for the direction (�⃗� 2) of the refracted wave in 

the second layer lays on lies in the plane 𝜋1, which also contains the vectors �⃗� 1 and �⃗⃗� 1. Figure 6 introduces the 

notation of the geometric entities used to compute the refraction direction.  

 
Figure 6 – (a) Refraction in tri-dimensionalthree dimensional space and (b) projection onto the plane 𝒙′-𝒚′ (𝝅𝟏). 

The planes 𝜔1 is the horizontal plane that passes through 𝑃1 and has normal vector [0 0 1]𝑇, which is the 

plane described by the equation: 𝑧 = 𝑓1(𝑃1). The planeand 𝜏1 𝑖𝑠are, respectively, the horizontal plane for 𝑃1 and 

the plane tangent to the surface 𝑓1(𝑥, 𝑦, 𝑧) = 0 in 𝑃1, whose normal coincides with �⃗⃗� 1. The direction resulting 

from the intersection between 𝜋1 and 𝜔1 is indicated by the unitary vector �⃗⃗� 1. Instead, 𝒕 1 is the unitary vector 

resulting from the intersection between 𝜋1 and 𝜏1. Finally, the unitary vector perpendicular to 𝜋1 is indicated 

with �⃗� 1 and the vector perpendicular to �⃗� 1 and �⃗⃗� 1 is designated by �⃗⃗� 1. Mathematically, the components of these 

vectors are computed through the following equations: 
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�⃗� 1 = �⃗⃗� 𝟏𝑃1 × �⃗� 1 = (

𝑟1
𝑧𝑛1

𝑦
− 𝑟1

𝑦
𝑛1
𝑧

𝑟1
𝑥𝑛1

𝑧 − 𝑟1
𝑧𝑛1

𝑥

𝑟1
𝑦
𝑛1
𝑥 − 𝑟1

𝑥𝑛1
𝑦
) = (

𝑠1
𝑥

𝑠1
𝑦

𝑠1
𝑧

) (21) 

�⃗⃗� 1 = (
0
0
1
) × �⃗� 1 = (

𝑟1
𝑧𝑛1

𝑥 − 𝑟1
𝑥𝑛1

𝑧

𝑟1
𝑧𝑛1

𝑦
− 𝑟1

𝑦
𝑛1
𝑧

0

) = (

𝑜1
𝑥

𝑜1
𝑦

𝑜1
𝑧

) (22) 

𝒕 1 = �⃗� 1 × �⃗⃗� 𝟏𝑃1 = (

𝑛1
𝑧(𝑟1

𝑥𝑛1
𝑧 − 𝑟1

𝑧𝑛1
𝑥) − 𝑛1

𝑦
(𝑟1

𝑦
𝑛1
𝑥 − 𝑟1

𝑥𝑛1
𝑦
)

𝑛1
𝑥(𝑟1

𝑦
𝑛1
𝑥 − 𝑟1

𝑥𝑛1
𝑦
) − 𝑛1

𝑧(𝑟1
𝑧𝑛1

𝑦
− 𝑟1

𝑦
𝑛1
𝑧)

𝑛1
𝑦
(𝑟1

𝑧𝑛1
𝑦
− 𝑟1

𝑦
𝑛1
𝑧) − 𝑛1

𝑥(𝑟1
𝑥𝑛1

𝑧 − 𝑟1
𝑧𝑛1

𝑥)

) = (

𝑡1
𝑥

𝑡1
𝑦

𝑡1
𝑧

) (23) 

�⃗⃗� 1 = �⃗� 1 × �⃗⃗� 1 = (

(𝑟1
𝑥𝑛1

𝑦
− 𝑟1

𝑦
𝑛1
𝑥)(𝑟1

𝑧𝑛1
𝑦
− 𝑟1

𝑦
𝑛1
𝑧)

(𝑟1
𝑦
𝑛1
𝑥 − 𝑟1

𝑥𝑛1
𝑦
)(𝑟1

𝑧𝑛1
𝑥 − 𝑟1

𝑥𝑛1
𝑧)

(𝑟1
𝑧𝑛1

𝑦
− 𝑟1

𝑦
𝑛1
𝑧)
2
+ (𝑟1

𝑥𝑛1
𝑧 − 𝑟1

𝑧𝑛1
𝑥)2

) = (

𝑢1
𝑥

𝑢1
𝑦

𝑢1
𝑧

) (24) 

Therefore, it is possible to define the rotational matrix 𝑹1, which is used to transform the vectors �⃗� 1, �⃗⃗� 1 and 𝒕 1 

in the rotated vectors �⃗� 1
′ , �⃗⃗� 1

′  and 𝒕 1
′ . 

𝑹1 = [�⃗⃗� 1 �⃗⃗� 1 �⃗� 1] = [

𝑜1
𝑥

𝑜1
𝑦

𝑜1
𝑧

𝑢1
𝑥

𝑢1
𝑦

𝑢1
𝑧

𝑠1
𝑥

𝑠1
𝑦

𝑠1
𝑧

] (25) 

�⃗� 1
′ = �⃗� 1 ∙ 𝑹1 = (

𝑟1
𝑥

𝑟1
𝑦

𝑟1
𝑧

)

𝑻

∙ [

𝑜1
𝑥

𝑜1
𝑦

𝑜1
𝑧

𝑢1
𝑥

𝑢1
𝑦

𝑢1
𝑧

𝑠1
𝑥

𝑠1
𝑦

𝑠1
𝑧

] = (

𝑟1
𝑥𝑜1

𝑥 + 𝑟1
𝑦
𝑜1
𝑦
+ 𝑟1

𝑧𝑜1
𝑧

𝑟1
𝑥𝑢1

𝑥 + 𝑟1
𝑦
𝑢1
𝑦
+ 𝑟1

𝑧𝑢1
𝑧

𝑟1
𝑥𝑠1

𝑥 + 𝑟1
𝑦
𝑠1
𝑦
+ 𝑟1

𝑧𝑠1
𝑧

) = (

𝑟1
𝑥′

𝑟1
𝑦′

𝑟1
𝑧′

) = 

(26) 

= (

𝑟1
𝑥𝑟1

𝑧𝑛1
𝑥 − (𝑟1

𝑥)2𝑛1
𝑧 + 𝑟1

𝑦
𝑟1
𝑧𝑛1

𝑦
− (𝑟1

𝑦
)
2
𝑛1
𝑧

(𝑟1
𝑥)2𝑟1

𝑧(𝑛1
𝑦
)
2
− 2𝑟1

𝑥𝑟1
𝑦
𝑟1
𝑧𝑛1

𝑥𝑛1
𝑦
+ (𝑟1

𝑦
)
2
𝑟1
𝑧(𝑛1

𝑥)2 + (𝑟1
𝑧)3(𝑛1

𝑦
)
2
− 2𝑟1

𝑦(𝑟1
𝑧)2𝑛1

𝑦
𝑛1
𝑧 + (𝑟1

𝑦
)
2
𝑟1
𝑧(𝑛1

𝑧)2 + (𝑟1
𝑥)2𝑟1

𝑧(𝑛1
𝑧)2 − 2𝑟1

𝑥(𝑟1
𝑧)2𝑛1

𝑥𝑛1
𝑧 + (𝑟1

𝑧)3(𝑛1
𝑥)2

0

) 

�⃗⃗� 𝟏
′ = �⃗⃗� 𝟏 ∙ 𝑹𝟏 = (

𝑛1
𝑥

𝑛1
𝑦

𝑛1
𝑧

)

𝑇

∙ [

𝑜1
𝑥

𝑜1
𝑦

𝑜1
𝑧

𝑢1
𝑥

𝑢1
𝑦

𝑢1
𝑧

𝑠1
𝑥

𝑠1
𝑦

𝑠1
𝑧

] = (

𝑛1
𝑥𝑜1

𝑥 + 𝑛1
𝑦
𝑜1
𝑦
+ 𝑛1

𝑧𝑜1
𝑧

𝑛1
𝑥𝑢1

𝑥 + 𝑛1
𝑦
𝑢1
𝑦
+ 𝑛1

𝑧𝑢1
𝑧

𝑛1
𝑥𝑠1

𝑥 + 𝑛1
𝑦
𝑠1
𝑦
+ 𝑛1

𝑧𝑠1
𝑧

) = (

𝑛1
𝑥′

𝑛1
𝑦′

𝑛1
𝑧′

) = 
(27) 

= (

𝑟1
𝑧(𝑛1

𝑥)2 − 𝑟1
𝑥𝑛1

𝑥𝑛1
𝑧 − 𝑟1

𝑦
𝑛1
𝑦
𝑛1
𝑧 + 𝑟1

𝑧(𝑛1
𝑦
)
2

(𝑟1
𝑥)2(𝑛1

𝑦
)
2
𝑛1
𝑧 − 2𝑟1

𝑥𝑟1
𝑦
𝑛1
𝑥𝑛1

𝑦
𝑛1
𝑧 + (𝑟1

𝑦
)
2
(𝑛1

𝑥)2𝑛1
𝑧 + (𝑟1

𝑧)2(𝑛1
𝑦
)
2
𝑛1
𝑧 − 2𝑟1

𝑦
𝑟1
𝑧𝑛1

𝑦(𝑛1
𝑧)2 + (𝑟1

𝑦
)
2
(𝑛1

𝑧)3 + (𝑟1
𝑥)2(𝑛1

𝑧)3 − 2𝑟1
𝑥𝑟1

𝑧𝑛1
𝑥(𝑛1

𝑧)2 + (𝑟1
𝑧)2(𝑛1

𝑥)2𝑛1
𝑧

0

) 

𝒕 𝟏
′ = 𝒕 𝟏 ∙ 𝑹𝟏 = (

𝑡1
𝑥

𝑡1
𝑦

𝑡1
𝑧

)

𝑇

∙ [

𝑜1
𝑥

𝑜1
𝑦

𝑜1
𝑧

𝑢1
𝑥

𝑢1
𝑦

𝑢1
𝑧

𝑠1
𝑥

𝑠1
𝑦

𝑠1
𝑧

] = (

𝑡1
𝑥𝑜1

𝑥 + 𝑡1
𝑦
𝑜1
𝑦
+ 𝑡1

𝑧𝑜1
𝑧

𝑡1
𝑥𝑢1

𝑥 + 𝑡1
𝑦
𝑢1
𝑦
+ 𝑡1

𝑧𝑢1
𝑧

𝑡1
𝑥𝑠1

𝑥 + 𝑡1
𝑦
𝑠1
𝑦
+ 𝑡1

𝑧𝑠1
𝑧

) = (

𝑡1
𝑥′

𝑡1
𝑦′

𝑡1
𝑧′

) = 
(28) 

= (

−(𝑟1
𝑥)2(𝑛1

𝑦
)
2
𝑛1
𝑧 + 2𝑟1

𝑥𝑟1
𝑦
𝑛1
𝑥𝑛1

𝑦
𝑛1
𝑧 − (𝑟1

𝑦
)
2
(𝑛1

𝑥)2𝑛1
𝑧 − (𝑟1

𝑧)2(𝑛1
𝑦
)
2
𝑛1
𝑧 + 2𝑟1

𝑦
𝑟1
𝑧𝑛1

𝑦(𝑛1
𝑧)2 − (𝑟1

𝑦
)
2
(𝑛1

𝑧)3 − (𝑟1
𝑥)2(𝑛1

𝑧)3 + 2𝑟1
𝑥𝑟1

𝑧𝑛1
𝑥(𝑛1

𝑧)2 − (𝑟1
𝑧)2(𝑛1

𝑥)2𝑛1
𝑧

𝑟1
𝑧(𝑛1

𝑥)2 − 𝑟1
𝑥𝑛1

𝑥𝑛1
𝑧 − 𝑟1

𝑦
𝑛1
𝑦
𝑛1
𝑧 + 𝑟1

𝑧(𝑛1
𝑦
)
2

0

) 

Since 𝑟1
𝑧′ = 𝑛1

𝑧′ = 𝑡1
𝑧′ = 0, the rotated vectors can be represented on the 𝑥′𝑦′-plane, where the imposition of the 

Snell’s law is brought back to the bidimensional two dimensional domain, as illustrated in  Figure 6b. Beside the 

sign, the angle formed by 𝒕 𝟏
′  with the 𝑥′-axis is equal to the angle formed by �⃗⃗� 𝒊

′ with the 𝑦′-axis. Thus, this angle 

is indicated with 𝛾1 = 𝑎𝑡𝑎𝑛 (𝑡1
𝑦′
𝑡1
𝑥′⁄ ) = −𝑎𝑡𝑎𝑛 (𝑛1

𝑥′ 𝑛1
𝑦′

⁄ ). Therefore, rewriting Equations (13) and (14), which 

originate from the Snell’s law, using 𝛾1 in place of 𝑎𝑡𝑎𝑛(𝑓1
′(𝑃1

𝑥)), the angle formed by the rotated refracted 

vector (�⃗� 1
′ ) with the 𝑦′-axis results: 

𝜃2 = 𝑎𝑠𝑖𝑛 {(
𝑣2

𝑣1
) ∙ sin [𝜃1 + 𝑎𝑡𝑎𝑛 (

𝑛1
𝑥′

𝑛1
𝑦′
)]} − 𝑎𝑡𝑎𝑛 (

𝑛1
𝑥′

𝑛1
𝑦′
),       with:  𝜃1 = −𝑎𝑡𝑎𝑛 (

𝑟1
𝑥′

𝑟1
𝑦′
) (29) 

Thus, the components of the unitary vector �⃗� 2
′  in the two dimensional bidimensional domain and the components 

of �⃗� 2 in the original tri-dimensionalthree dimensional space are respectively: 



11 

 

�⃗� 2
′ = (

𝑟2
𝑥′

𝑟2
𝑦′
) = (

sin(𝜃2)

− cos(𝜃2)
) (30) 

�⃗� 2 = (

𝑟2
𝑥′

𝑟2
𝑦′

0

)

𝑇

∙ 𝑹−1 = (
sin(𝜃2)

− cos(𝜃2)
0

)

𝑇

∙ [

𝑜1
𝑥

𝑜1
𝑦

𝑜1
𝑧

𝑢1
𝑥

𝑢1
𝑦

𝑢1
𝑧

𝑠1
𝑥

𝑠1
𝑦

𝑠1
𝑧

]

−1

= (

sin(𝜃2) 𝑜1
𝑥 − cos(𝜃2)𝑜1

𝑦

sin(𝜃2)𝑢1
𝑥 − cos(𝜃2) 𝑢1

𝑦

sin(𝜃2) 𝑠1
𝑥 − cos(𝜃2) 𝑠1

𝑦

) (31) 

Generalising for the refracted direction in any 𝑖th layer (�⃗� I) and in the last layer (�⃗� k): 

�⃗� 𝑖 = (

sin(𝜃𝑖)𝑜𝑖−1
𝑥 − cos(𝜃𝑖)𝑜𝑖−1

𝑦

sin(𝜃𝑖) 𝑢𝑖−1
𝑥 − cos(𝜃𝑖) 𝑢𝑖−1

𝑦

sin(𝜃𝑖) 𝑠𝑖−1
𝑥 − cos(𝜃𝑖) 𝑠𝑖−1

𝑦

),        with:   𝜃𝑖 = 𝑎𝑠𝑖𝑛 {(
𝑣𝑖

𝑣1
) ∙ sin [𝜃1 + 𝑎𝑡𝑎𝑛 (

𝑛1
𝑥′

𝑛1
𝑦′
)]} − 𝑎𝑡𝑎𝑛 (

𝑛𝑖−1
𝑥′

𝑛
𝑖−1
𝑦′
) (32) 

�⃗� 𝑘 = (

sin(𝜃𝑘) 𝑜𝑘−1
𝑥 − cos(𝜃𝑘)𝑜𝑘−1

𝑦

sin(𝜃𝑘) 𝑢𝑘−1
𝑥 − cos(𝜃𝑘) 𝑢𝑘−1

𝑦

sin(𝜃𝑘) 𝑠𝑘−1
𝑥 − cos(𝜃𝑘) 𝑠𝑘−1

𝑦

),        with:   𝜃𝑘 = 𝑎𝑠𝑖𝑛 {(
𝑣𝑘

𝑣1
) ∙ sin [𝜃1 + 𝑎𝑡𝑎𝑛 (

𝑛1
𝑥′

𝑛1
𝑦′
)]} − 𝑎𝑡𝑎𝑛 (

𝑛𝑘−1
𝑥′

𝑛𝑘−1
𝑦′
) (33) 

Therefore, the coordinates (𝑃𝑖
𝑥 , 𝑃𝑖

𝑦
) of the incidence points, from the 2nd to the (𝑘 − 1)th incidence points, are 

the solution of the system with the equation of the line for the source 𝑃𝑖−1, whose direction is given by the unitary 

vector (�⃗� 𝑖), and the equation relative to the 𝑖th interface,  𝑧 = 𝑓𝑖(𝑥, 𝑦),. This system of equations is given in 

Appendix A. as illustrated in Equation 34. Finally, the coordinates (𝑇0
𝑥, 𝑇0

𝑦
, 𝑇0

𝑧) of the resulting target point 

related to the initial guess angle 𝜃1 (given as input), are the solution of the system containing the equation of the 

line for the point 𝑃𝑘−1 and the horizontal plane for 𝑇 (𝑧 = 𝑇𝑧), as shown given in Appendix B.Equation 35. 

Thus, the bisecting methodbisection method is applied to the two error functions, 𝑒𝑥(�⃗� 1) and 𝑒𝑦(�⃗� 1), defined as: 

𝑒𝑥(�⃗� 1) = 𝑇𝑥 − 𝑇𝑗
𝑥 

𝑒𝑦(�⃗� 1) = 𝑇𝑦 − 𝑇𝑗
𝑦
 

(34) 

As in the bi-dimensionaltwo dimensional case, it is crucial to determine the limits of the domain of these error 

functions to make sure the application of the bisection method leads to convergence. This means defining the 

interval for the components of the vector  �⃗� 1 = 〈𝑟1
𝑥 , 𝑟1

𝑦
, 𝑟1
𝑧〉. As 𝜃1 = −𝑎𝑡𝑎𝑛 (𝑟1

𝑥′ 𝑟1
𝑦′

⁄ ), Equations 32 and 33 are 

only defined where −1 < (
𝑣𝑖

𝑣1
) ∙ 𝑠𝑖𝑛 [−𝑎𝑡𝑎𝑛 (𝑟1

𝑥′ 𝑟1
𝑦′

⁄ ) + 𝑎𝑡𝑎𝑛 (𝑛1
𝑥′ 𝑛1

𝑦′
⁄ )] < 1. The following system brings 

together this latter condition and imposes the unitary modulus. 

{
−1 < (

𝑣𝑖
𝑣1
) ∙ 𝑠𝑖𝑛 [−𝑎𝑡𝑎𝑛(

𝑟1
𝑥′

𝑟1
𝑦′
) + 𝑎𝑡𝑎𝑛 (

𝑛1
𝑥′

𝑛1
𝑦′
)] < 1

‖�⃗� 𝟏‖ = 0                                                                                

 

(35) 

{
  
 

  
 −1 < (

𝑣𝑖
𝑣1
) ∙ sin [−𝑎𝑡𝑎𝑛(

𝑟1
𝑥𝑟1

𝑧𝑛1
𝑥 − (𝑟1

𝑥)2𝑛1
𝑧 + 𝑟1

𝑦𝑟1
𝑧𝑛1

𝑦 − (𝑟1
𝑦)2𝑛1

𝑧

(𝑟1
𝑥)2𝑟1

𝑧(𝑛1
𝑦)

2
− 2𝑟1

𝑥𝑟1
𝑦𝑟1

𝑧𝑛1
𝑥𝑛1

𝑦 + (𝑟1
𝑦)

2
𝑟1
𝑧(𝑛1

𝑥)2 + (𝑟1
𝑧)3(𝑛1

𝑦)
2
− 2𝑟1

𝑦(𝑟1
𝑧)2𝑛1

𝑦𝑛1
𝑧 + (𝑟1

𝑦)
2
𝑟1
𝑧(𝑛1

𝑧)2 + (𝑟1
𝑥)2𝑟1

𝑧(𝑛1
𝑧)2 − 2𝑟1

𝑥(𝑟1
𝑧)2𝑛1

𝑥𝑛1
𝑧 + (𝑟1

𝑧)3(𝑛1
𝑥)2
) +

                        +𝑎𝑡𝑎𝑛 (
𝑟1
𝑧(𝑛1

𝑥)2 − 𝑟1
𝑥𝑛1

𝑥𝑛1
𝑧 − 𝑟1

𝑦𝑛1
𝑦𝑛1

𝑧 + 𝑟1
𝑧(𝑛1

𝑦)2

(𝑟1
𝑥)2(𝑛1

𝑦)
2
𝑛1
𝑧 − 2𝑟1

𝑥𝑟1
𝑦𝑛1

𝑥𝑛1
𝑦𝑛1

𝑧 + (𝑟1
𝑦)

2
(𝑛1

𝑥)2𝑛1
𝑧 + (𝑟1

𝑧)2(𝑛1
𝑦)

2
𝑛1
𝑧 − 2𝑟1

𝑦𝑟1
𝑧𝑛1

𝑦(𝑛1
𝑧)2 + (𝑟1

𝑦)
2
(𝑛1

𝑧)3 + (𝑟1
𝑥)2(𝑛1

𝑧)3 − 2𝑟1
𝑥𝑟1

𝑧𝑛1
𝑥(𝑛1

𝑧)2 + (𝑟1
𝑧)2(𝑛1

𝑥)2𝑛1
𝑧
)] < 1

(𝑟1
𝑥)2 + (𝑟1

𝑦)2 + (𝑟1
𝑧)2 = 1                                                                                                                                                                                                                                                                                

 

Unfortunately, after replacing 𝑟1
𝑥′, 𝑟1

𝑦′
, 𝑛1

𝑥′ and 𝑛1
𝑦′

 with their respective expressions from Equation 26 and 27, 

which are functions of the sought values 𝑟1
𝑥, 𝑟1

𝑦
 and 𝑟1

𝑧 , it is not easy to isolate their domain intervals. In this 

work an alternative route is found and the domain intervals are approximated by building on the formulation for 

the two dimensional bidimensional case. The first two inequalities in the following system deriveare, 

respectively, corresponding to from the first inequality in Equation 3534), respectively written for the x-z plane 

and the y-z plane, where the ratio 𝑛1
𝑥′ 𝑛1

𝑦′⁄  is replaced with the partial derivatives of the first interface function 

for x and y (computed in 𝑃1).  
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{
  
 

  
 −1 < (

𝑣𝑖
𝑣𝑚𝑎𝑥

) ∙ sin [−𝑎𝑡𝑎𝑛 (
𝑟1
𝑥

𝑟1
𝑧) − 𝑎𝑡𝑎𝑛 (

𝜕𝑓1
𝜕𝑥

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧))] < 1

−1 < (
𝑣𝑖
𝑣𝑚𝑎𝑥

) ∙ sin [−𝑎𝑡𝑎𝑛 (
𝑟1
𝑦

𝑟1
𝑧) − 𝑎𝑡𝑎𝑛 (

𝜕𝑓1
𝜕𝑦

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧))] < 1

(𝑟1
𝑥)2 + (𝑟1

𝑦)2 + (𝑟1
𝑧)2 = 1

 

{
 
 
 
 

 
 
 
 −𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (

𝑣1
𝑣𝑚𝑎𝑥

) + 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑥

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧))] <
𝑟1
𝑥

𝑟1
𝑧 < 𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (

𝑣1
𝑣𝑚𝑎𝑥

) − 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑥

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧))]

−𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1
𝑣𝑚𝑎𝑥

) + 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑦

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧))] <
𝑟1
𝑦

𝑟1
𝑧 < 𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (

𝑣1
𝑣𝑚𝑎𝑥

) − 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑦

(𝑃1
𝑥, 𝑃1

𝑦
, 𝑃1

𝑧))]

𝑟1
𝑧 = −

√

1

(
𝑟1
𝑥

𝑟1
𝑧)
2

+ (
𝑟1
𝑦

𝑟1
𝑧)

2

+ 1

 

(36) 

Isolating the ratios 𝑟1
𝑥 𝑟1

𝑧⁄  and 𝑟1
𝑦
𝑟1
𝑧⁄  from the first two inequalities and expressing 𝑟1

𝑧  as a function of such ratios, 

from the unitary modulus condition, leads to obtaining the lower and upper domain interval values for the 

components of �⃗� 1, which are respectively 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 and 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧, as given in (37). 

(
𝑎𝑥

𝑎𝑦

𝑎𝑧
) =

(

 
 
 
 
 
 
 
 
 −𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (

𝑣1
𝑣𝑚𝑎𝑥

) − 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑥

(𝑃1))] ∙ {(𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1
𝑣𝑚𝑎𝑥

) − 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑥

(𝑃1))])

2

+ (𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1
𝑣𝑚𝑎𝑥

) − 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑦

(𝑃1))])

2

+ 1}

− 
1
2

−𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1

𝑣𝑚𝑎𝑥
) − 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑦
(𝑃1))] ∙ {(𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (

𝑣1

𝑣𝑚𝑎𝑥
) − 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑥
(𝑃1))])

2

+ (𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1

𝑣𝑚𝑎𝑥
) − 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑦
(𝑃1))])

2

+ 1}

− 
1
2

−{(𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1

𝑣𝑚𝑎𝑥
) − 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑥
(𝑃1))])

2

+ (𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1

𝑣𝑚𝑎𝑥
) − 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑦
(𝑃1))])

2

+ 1}

− 
1
2

)

 
 
 
 
 
 
 
 
 

 

(
𝑏𝑥

𝑏𝑦

𝑏𝑧
) =

(

 
 
 
 
 
 
 
 
 𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (

𝑣1
𝑣𝑚𝑎𝑥

) + 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑥

(𝑃1))] ∙ {(𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1
𝑣𝑚𝑎𝑥

) + 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑥

(𝑃1))])

2

+ (𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1
𝑣𝑚𝑎𝑥

) + 𝑎𝑡𝑎𝑛 (
𝜕𝑓1
𝜕𝑦

(𝑃1))])

2

+ 1}

− 
1
2

𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1

𝑣𝑚𝑎𝑥
) + 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑦
(𝑃1))] ∙ {(𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (

𝑣1

𝑣𝑚𝑎𝑥
) + 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑥
(𝑃1))])

2

+ (𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1

𝑣𝑚𝑎𝑥
) + 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑦
(𝑃1))])

2

+ 1}

− 
1
2

−{(𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1

𝑣𝑚𝑎𝑥
) + 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑥
(𝑃1))])

2

+ (𝑡𝑎𝑛 [𝑎𝑠𝑖𝑛 (
𝑣1

𝑣𝑚𝑎𝑥
) + 𝑎𝑡𝑎𝑛 (

𝜕𝑓1

𝜕𝑦
(𝑃1))])

2

+ 1}

− 
1
2

)

 
 
 
 
 
 
 
 
 

 

 

(37) 

It is clear that the extremities of the interval depend on the incidence point at the first interface, since the partial 

derivatives of the first interface function, 
𝜕𝑓1

𝜕𝑥
(𝑥, 𝑦) and 

𝜕𝑓1

𝜕𝑦
(𝑥, 𝑦), are computed for (𝑥, 𝑦) = (𝑃1

𝑥 , 𝑃1
𝑦
). Therefore, 

the choice of the initial guess for 𝑃1 is critical to ensure the convergence to the root solution, through the bisection 

method. Following the same approach used for the two dimensional bidimensional case, the intersection between 

the segment 𝑆𝑇̅̅̅̅  and the first interface 𝑓1(𝑥, 𝑦) is used to guide the selection of suchthe initial guess point. 

Indicating with 𝑃0 ≡ (𝑃0
𝑥 , 𝑃0

𝑦
, 𝑃0

𝑧) the intersection between 𝑆𝑇̅̅̅̅  and 𝑓1(𝑥, 𝑦), the initial guess point is chosen as: 

𝑃1 ≡ (

𝑃1
𝑥

𝑃1
𝑦

𝑃1
𝑧

) ≡

(

 
 

𝑆𝑥 +
𝑣1

𝑣𝑚𝑎𝑥
∙ (𝑃0

𝑥 − 𝑆𝑥)

𝑆𝑦 +
𝑣1

𝑣𝑚𝑎𝑥
∙ (𝑃0

𝑦
− 𝑆𝑦)

𝑓1 (𝑆
𝑥 +

𝑣1

𝑣𝑚𝑎𝑥
∙ (𝑃0

𝑥 − 𝑆𝑥) , 𝑆𝑦 +
𝑣1

𝑣𝑚𝑎𝑥
∙ (𝑃0

𝑦
− 𝑆𝑦))

)

 
 

  (38) 

Therefore, the bisection method can be applied, following the same steps as for the case with flat interfaces until 

convergence is satisfactory (that is, (𝑐𝑥 − 𝑎𝑥), (𝑐𝑦 − 𝑎𝑦), (𝑐𝑧 − 𝑎𝑧) and/or |𝑒𝑥(𝑐)| and |𝑒𝑦(𝑐)| sufficiently 

small), returning �⃗� 𝟏 = 〈𝑐𝑥 , 𝑐𝑦, 𝑐𝑧〉 and stopping iterating. Figure 5b illustrates the ray tracing relative to the initial 

guess for �⃗� 𝟏, the first four iterations of the method and the finale solution at the target. 
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6.  APPLICATION EXAMPLES 

The proposed mathematical model can be applied to several scenarios, to enable accurate ultrasound ray tracing 

and improve ultrasonic inspection. Multi-layered structures, such as composite parts and coated components, are 

becoming common in many fields, since they are appreciated for their unique mechanical properties. Also, any 

ultrasonic inspection performed through embedding the probe within a coupling wheel, whose rubber tyre has a 

significant velocity mismatch with either internal or external media (i.e. designed to withstand temperatures 

rather than optimal acoustic matching), should be considered as a multi-layered inspection [19]. The tri-

dimensional three dimensional tracing of ultrasonic rays is often approximated in these situations, with the result 

of compromising the effectiveness of ultrasonic inspection techniques used to detect cracks and defects. Robotic 

inspection systems have been developed in recent years to speed up the inspection of large parts made of 

composite materials [8, 20]. A robot manipulator usually moves an ultrasonic phased array probe along the 

contour of a surface, while pulse-echo signals are collected. However, when parts are thick and/or their thickness 

is variable, it is necessary to employ two manipulators, the first for holding the generating ultrasonic probe from 

one side of the part and the second for receiving the signal from the other side of the component respectively 

[21]. The presented mathematical model can be used to compute the direction of the transmitted ultrasonic ray, 

thus optimizing the orientation of the receiving transducer throughout the inspection of such complex geometries. 

The capability of the model to work in the tri-dimensional three dimensional space makes it suitable to be used 

for challenging-to-inspect parts with complex geometries. 

For the sake of presenting a practical application example of the model, the remaining part of this paper focuses 

on the field of in-process ultrasonic inspection of welded plates. Non-destructive evaluation (NDE) in the form 

of UT testing has become the industrial standard for welds to be tested in a safe, efficient and unobtrusive manner. 

Traditionally, fusion welding and NDE of welds are separate processes in the supply chain, which ultimately 

limit productivity, throughput and increase rework. Therefore, researchers are currently working hard to combine 

both of these practices directly at the point of manufacture through the use of new inspection, automation and 

control approaches [22-26]. The concept of inspecting the welding process in real-time offers the possibility to 

control, adapt and consistently ensure high-quality defect-free welding. Early detection of defects, in high-value 

thick complex welded components, would result in reduced rework requirements and hence improved component 

build time and overall cost. Inspection of each pass during the welding process would allow the early and efficient 

screening of each layer and detection of any flaws [23]. However, ultrasonic inspecting inspection of the welds 

at the point of manufacture is challenging, due to the high temperature of the welded parts. The speed of sound 

in a material changes with its temperature. Javadi et al. [23] demonstrated that the ultrasonic inspection results 

can be considerably influenced by the temperature. For example, a defect can be located with a position mismatch 

of up to 3 mm in two inspections carried out at 28° C and 164° C. Mild steel melts at around 1370 degrees C. 

Therefore, welded parts at the point of manufacture present a temperature gradient, with temperatures rising from 

room temperature to several hundreds of degrees C (depending on the time elapsed from the deposit of the 

welding material). It is notoriously difficult to predict the path that an ultrasound ray follows from a source to a 

target point, when it travels through a material with non-constant temperatures. This could be computed through 

Finite Element Modelling (FEM), but thermo-mechanic FEM simulations are usually very resource-demanding 

and time-consuming. This section demonstrates how the presented mathematical model can be used to 
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approximate the ultrasonic paths, by discretizing the material of a welded plate with a succession of constant 

temperature regions. Figure 7a shows the reference case used herein. The sample under consideration is a 15mm 

thick steel specimen with a 60 degrees single V-groove weld. Two mild steel 15mm thick plates are supposed to 

be butt-welded and the temperature of the deposited material is supposed to have cooled for 6 minutes after 

completion of the weld process. In order to consider the thermal distribution in the weldment, and the associated 

spatial variation in elastic properties, a finite element (FE)-derived thermal distribution map obtained from a weld 

model was corroborated experimentally using thermocouple measurements [27]. The resultant map comprises 

eleven temperature zones across the specimen, with relative sound speed in the material, to represent the effect 

of temperature variation on wave propagation.  

 
Figure 7 – (a) Discretization of welded plate through eleven regions with constant temperature, (b) representation of 

isothermal interfaces  and (bc) transversal section with key points used for computation of analytical surfaces.  

Figure 7b gives a transversal section of such interfaces, with the key points used to express the interfaces as 

analytical surfaces. Although the authors of this work want to demonstrate the use of the introduced the 

generalised mathematical model of Snell’s law for curved material interfaces (the tri-dimensionalthree 

dimensional case, described in Section 5), the observant reader will realize that any evolution of the temperature 

in the y-direction is neglected in this example. This is just for the sake of clarity, to make the example and the 

following figures more easily comprehensible. 

The ith horizontal superficial interface at the top of the welded plate, between the points 𝑃𝑖  and 𝑃𝑖+1, is represented 

analytically by the function: 

𝑧 = 𝑓(𝑥, 𝑦) = 𝑧𝑃𝑖   ;    for: {
𝑥𝑃𝑖 < 𝑥 < 𝑥𝑃𝑖+1
−∞ < 𝑦 < ∞    

 . (39) 

The ith volumetric tilted interface, between the points 𝑃𝑖  and 𝑃𝑖+10, is represented analytically by the function: 

𝑧 = 𝑓(𝑥, 𝑦) = 𝑚𝑥 + 𝑏  ;       with: {
𝑚 =  

𝑧𝑃𝑖+10
− 𝑧𝑃𝑖

𝑥𝑃𝑖+10
− 𝑥𝑃𝑖

𝑏 = − 𝑚 ∗ 𝑥𝑃𝑖

  ;        for: {
𝑥𝑃𝑖 < 𝑥 < 𝑥𝑃𝑖+10
−∞ < 𝑦 < ∞      

 . (40) 

Finally, the vertical surface corresponding to the root face at the bottom of the bevel is given analytically by the 

following function: 

𝑥 = 𝑓(𝑦, 𝑧) = 𝑥𝑃20  ;    for: {
−∞ < 𝑦 < ∞   
𝑧𝑃20 < 𝑧 < 𝑧𝑃21

 . (41) 
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While straight beam techniques can be highly effective at finding laminar flaws, they are not effective when 

testing many common welds, where discontinuities are typically not oriented parallel to the surface of the welded 

plates. The combination of weld geometry, the orientation of flaws, and the presence of the weld crown or bead 

require inspection from the side of the weld using a beam generated at an angle. Angle beam testing is by far the 

most commonly used technique in ultrasonic flaw detection in butt welds [28-30]. Angle beam probes consist of 

a transducer and a wedge. They use the principle of refraction and mode conversion at a boundary to produce 

refracted shear waves in the test piece [31, 32]. When using wide phased array probes, the wedge can be quite 

bulky and impede the generation of shear waves close to the edge of the weld crown. For this reason, the 

ultrasound waves arrive to the region to inspect after a single or double bounce at the back wall of the part, 

respectively known as V-transmission and W-transmission [32]. This work considers the case of the W-

transmission, since this is the case where the ultrasonic waves travel more distance. Pettigrew et al. demonstrated 

that it is acceptable and convenient to interpret the data obtained from reflected ultrasonic waves in mirrored 

schematic representation [33]. Therefore, for the preparation of this inspection mode and for the interpretation of 

its results, it is common practice to illustrate the propagation of the shear ultrasonic rays in a schematic 

representation obtained through mirroring the geometry (in Figure 7) twice, with respect to the bottom plane, and 

appending the resulting mirrored copies to the bottom of the original geometry. The result of this operation is 

shown in Figure 8. 
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Figure 8 – (a) Tri-dimensional Three dimensional view of all analytical interfaces in the final model, (b) interfaces 

intersected by the rays produced with the bisection method for the 15th element of the PA probe and (c) interfaces 

intersected by the final rays for the 1st and the 64th element of the probe.  

The final model contains 52 interface surfaces. The horizontal superficial interfaces at the top of the welded plate, 

analytically defined by Equation 41, are indexed with the numbers from 1 to 10. The remaining surfaces with 

indices from 11 to 20 and the root face indexed with the number 51, respectively defined by Equation 42 and 43, 

are mirrored twice with respect to the x-y plane and translated vertically, producing the analytical surfaces 

indexed with the numbers from 21 to 50 and 52. Figure 8a shows a tri-dimensional three dimensional view of the 

final model, where each analytical surface is plotted with its given index and with a different colour, to ease the 

individuation of all surfaces. Figure 8b shows a side view of the representation and illustrates how the surfaces 

intersected by the ultrasonic rays, computed through the iterations of the generalised bisection method, can be 
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different for each ray. The same applies to the final rays (originating from the convergence of the method), as 

shown in Figure 8c. The indices of the intersected surfaces are reported next to the relative intersection points. 

This work assumes the use of a 64 element 0.5mm pitch 5MHz PA probe, mounted on a wedge with a nominal 

incidence angle of 37.6 degrees. The centre of the first element of the array is located at 𝑥 = −93.65mm and 𝑧 =

17.68mm. The target (T) is located at 𝑥 = 0.00mm and 𝑧 = −55.00mm. It is assumed that the in-process 

inspection of the weld is executed by bringing the wedge into contact with the surface of the hot plate only for 

few seconds, the time required to trigger the elements of the probe and receive the returning ultrasonic echoes. 

For this assumption, the heat transfer between the wedge material and the plate is neglected. The wedge 

temperature is assumed to stay constant and the temperatures of the plate regions to be unaffected by the contact 

with the wedge. Table 1 gives the coordinates of all key points shown in Figure 7bc and the shear velocities 

indicated in Figure 8b. Whereas the shear velocity in the wedge is indicated with v1, the shear velocities in the 

welded plate regions are specified with v2, v3, …, and v12. 

Table 1 – Coordinates of key points of the welded sample model. 

Key point coordinates 

[mm] 

 Shear 

velocity 

[m/s] 

Point x z  Point x z   v1 2340 

P0 -150.0 0.00  P11 -78.27 -15.00  v2 3281 

P1 -85.68 0.00  P12 -68.53 -15.00  v3 3258 

P2 -73.98 0.00  P13 -58.62 -15.00  v4 3235 

P3 -62.85 0.00  P14 -48.07 -15.00  v5 3213 

P4 -52.79 0.00  P15 -40.34 -15.00  v6 3180 

P5 -42.92 0.00  P16 -30.73 -15.00  v7 3138 

P6 -34.59 0.00  P17 -24.37 -15.00  v8 3084 

P7 -27.63 0.00  P18 -18.47 -15.00  v9 3018 

P8 -21.57 0.00  P19 -12.01 -15.00  v10 2940 

P9 -16.33 0.00  P20 -3.46 -15.00  v11 2848 

P10 -10.80 0.00  P21 -3.46 -12.88  v12 2768 

Due to the limited size of the horizontal interfaces and the high tilt of the volumetric interfaces, each ultrasonic 

ray intersects a different subset of interface surfaces, as indicated above and shown in Figure 8b and Figure 8c. 

Therefore, the introduced generalization of the bisection method, described in Section 5, has been refined to cope 

with this additional challenge. For every refraction, the analytic equation of the line for the last intersection point, 

whose direction is given by the unitary refraction vector (�⃗� ), is intersected in turn with all the analytic functions 

of the interfaces. This operation gives one intersection point for each interface surface. The interface that 

produces the closest point to the last intersection point is selected as the correct intersection surface and the point 

is returned as the location where a new refraction takes place. This continues until the horizontal plane for the 

target (T) is reached. 

The generalized bisection method was first used to compute the ray tracing for three easy cases, assuming a 

constant temperature of 140°C, 460°C and 780°C (see Figure 9a-c). Respectively, shear velocities of 3281, 3180 

and 2940 m/s were used for the whole welded plate, for the three cases. The iterations of the bisection method 

were stopped at errors smaller than 0.01mm.  Obtaining a distance from target smaller than 0.01mm has been 

used as stopping criterion in our work, to stop the iterations of the bisection method. Note, the stopping criterion 

can be different, depending on the application. In practical applications of the method, a meaningful approach 

would be to stop iterating when the change in transit time is smaller than a defined fraction of a wavelength. 

Then, the resulting incidence vectors for the PA sources were propagated through the interface surfaces of the 
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reference model with multiple temperature (see Figure 9d-f). This demonstrates that, when assuming constant 

temperature for the welded plate, accurate ultrasonic focusing can be seriously compromised in in-process 

inspection scenarios. Indicating with 𝑂𝑚 the average minimum distance between the target point and the 

ultrasonic rays, the propagation of the incidence vectors produces, for the three cases, average distances equal to 

3.00, 5.93 and 13.71mm. 

 
Figure 9 – Ray tracing from all PA sources to the target point assuming constant temperatures of 140°C (a), 460°C (b) and 

780°C (c) for the welded plate. Propagation of the resulting incidence vectors to the reference model with multiple regions 

separated by interface surfaces (d, e and f). 

The introduced bisection method was applied to the reference model, considering all its 52 interface surfaces, to 

find the optimum incidence angle for all the ultrasonic rays originating from the phased array elements, in order 

to focus the ultrasonic waves at the target. As for the constant temperature cases, here also, the iterations of the 

bisection method were stopped at errors smaller than 0.01mm. Figure 10 gives evidence of the result. The method 

enabled the accurate computation of the PA rays to achieve optimum focusing at the target. The generalised 

bisection method was implemented in Matlab 2020b and tested in a computer with an Intel® i7-6820HQ CPU 

(2.70GHz, 4 Cores) and 32Gb of Random-Access Memory. Table 2 reports quantitative performance results for 

the execution of the generalized bisection method in the constant temperature models and in the variable 

temperature model, in terms of average number of iterations, average duration of each iteration, average 

convergence time per each ray and total elapsed. time at convergence, Table 3 reports the minimum and 

maximum travel times and distances for each test case and the relative errors, in terms of resulting mean and 

maximum and mean distances from target and shift in ultrasonic ray travel time. As expected the iterative method 

converges in less than 50sec 4sec when a constant temperature is assumed for the whole welded plate, since only 

one interface is present in this case (the interface between the wedge and the plate). However, the assumption of 

constant temperature causes distances as large as 19.3mm between the ultrasonic rays and the target point and 

shifts in travel time as big as 17.5μs. The maximum distance is kept below 0.01mm, when the bisection method 
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is applied to the full reference model with 11 temperature zones and 52 interface surfaces. In this case, the 

computation converges in 21 15 minutes and 10.519 seconds. In order to investigate the relationship between the 

computation time and the number of interfaces, an additional tests wereas carried out interpolatinghalving the 

number of the discreate temperature zones in the model, resultingin order to generate five additional test models 

in with 2, 4, 6, 8 and 10 zones and 7, 17, 27, 37 and 47 27 interfaces respectively. The temperature zones of the 

full model were merged two by two, removing the separation surfaces in the middle of each couple and assigning 

average propagation speeds to the resulting temperature zones. In this case, the method converged in slightly less 

than 8 minutes. This seems to suggest that the The resulting elapsed times in Table 2 show a quadratic dependence 

between the computation time of the current method and the number of surfaces in the model could be described 

by a linear or a sub-quadratic law.  

 
Figure 10 – Ray tracing from all phased array sources to the target point in the reference sample (a) and close up image of 

the area around the target (b). 

 
Table 2 – Quantitative performance resultsComputation times. 

Temperature of 

model used for 

computation 

Num. of 

interfaces 

Num. 

elem.rays 

Average num. 

of iterations 

Average 

duration of each 

iteration [ms] 

Average 

convergence 

time per ray [s] 

Total Eelapsed 

time at 

convergence 

Constant (140˚C) 1 64 13.20 3.98 0.0527 41.9 3.3753 sec 

Constant (460˚C) 1 64 13.51 3.87 0.0523 41.5 3.3451 sec 

Constant (780˚C) 1 64 13.45 3.91 0.0526 41.8 3.3645 sec 

2 zones 7 64 13.64 21.86 0.2982 19.0830 s 

4 zones 17 64 13.83 96.14 1.3295 1’ 25.0879 s 

6 zones 27 64 13.98 230.65 3.2255 3’ 26.4329 s 

8 zones 37 64 15.67 449.48 7.0443 7’ 30.8321 s 

10 zones 47 64 14.91 759.96 11.3281 12’ 5.0014 s 

Ref. model (11 zones) 52 64 14.95 960.36 14.3603 15’ 19.0600 s 
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Table 3 – Distances and transit times (absolute and relative). 

 Absolute travel distance and time Evaluation in reference model with 11 zones 

Temperature of 

model used for 

computation 

Min transit 

distance 

[mm] 

Max transit 

distance 

[mm] 

Min transit 

time [μs] 

Max transit 

time [μs] 

Mean 

distance 

from target 

(Om) [mm] 

Max 

distance 

from target 

[mm] 

Mean shift 

in transit 

time [μs] 

Max shift in 

transit time 

[μs] 

Constant (140˚C) 115.4547 119.5808 39.1287 40.3255 2.9995 4.5881 1.5774 2.4261 

Constant (460˚C) 115.3408 119.4464 40.0723 41.0339 5.9310 7.5542 3.4099 5.5051 

Constant (780˚C) 115.0820 119.1156 42.4144 42.8997 13.7115 19.2990 9.3275 17.4573 

2 zones 114.9971 118.9979 43.4097 43.7610 16.8022 25.4787 11.8421 25.5825 

4 zones 115.4540 119.7607 41.5273 42.9150 3.9199 5.9205 1.8740 2.8408 

6 zones 115.6486 119.8180 41.1850 42.6217 1.4377 2.1348 0.6899 1.1720 

8 zones 115.6218 119.7808 41.0746 42.5057 1.1135 2.6651 0.5349 1.2874 

10 zones 115.8426 119.7384 41.0016 42.4173 0.7981 2.1470 0.3735 0.7879 

Ref. model (11 zones) 115.7414 119.7349 40.9628 42.3805 0.0028 0.0062 null null 

 

Although the method has not been optimized for speed so far and more sophisticated implementations can 

minimize the execution time in the future, the current result is already a great advantage if compared to the time 

required by Finite Element models, which is in the order of few days, to perform ray tracing for the scenario 

examined in this work. Nevertheless, the proposed approach can be used to pre-calculate a number of focal laws 

for the geometry, but with differing temperature profiles. During the inspection, temperature sensors can be used 

to select the most appropriate match for the thermal profile. 

 
7. CONCLUSIONS 

Ultrasonic testing is still a hot research topic. The desire to apply ultrasonic testing to geometrically complex 

structures, and to anisotropic, inhomogeneous materials, together with the advent of more powerful electronics 

and software, is constantly pushing the applicability of ultrasonic ways to their limits. General ray tracing models 

are currently required, to support the development of new imaging techniques, such as Full Matrix Capture and 

Total Focusing Method, and the execution of challenging inspections. One existing solution is to implement the 

Fast-Marching Method (FMM) combined with Fermat's principle and Dijkstra's algorithm. This paper introduced 

a generalized iterative method for the computation of ultrasonic ray paths, when ultrasonic source and target are 

separated by multiple complex material interfaces in the bi- two dimensional and tri-dimensional three 

dimensional domains. The method was implemented in Matlab 2020b. Starting from a review of the well-known 

bisection method, this work extends the applicability of the method to cases with increasing complexity and to 

the tri-dimensional three dimensional domain. An application example, in the field of in-process weld inspection, 

was presented. The generalised bisection method enabled the computation of optimum incidence angles to 

achieve accurate ultrasonic focusing, through a 64-element phased array probe mounted on a wedge and a model 

with 52 interface surfaces. The maximum distance between the ultrasonic rays and the target is kept below 

0.01mm and the computation converged in 21 minutes. Although the implementation of the method was not 

optimized for speed, the current result is already a great advantage if compared to the time required by Finite 

Element models. Future work will focus on generating more sophisticated implementations of the method, 

capable of minimizing the execution time without compromising the accuracy. 
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APPENDICES 

Appendix A 

System with the equation of the line for the source 𝑃𝑖−1, whose direction is given by the unitary vector (�⃗� 𝑖), and 

the equation relative to the 𝑖th interface,  𝑧 = 𝑓𝑖(𝑥, 𝑦). The solution of this system leads to the coordinates 

(𝑃𝑖
𝑥 , 𝑃𝑖

𝑦
) of the incidence points, from the 2nd to the (𝑘 − 1)th incidence points. 

if (𝑟𝑖
𝑥 ≠ 0, 𝑟𝑖

𝑦
≠ 0, 𝑟𝑖

𝑧 ≠ 0) 

{
 
 

 
 

𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :    

{
 
 

 
 
𝑥 − 𝑃𝑖−1

𝑥

𝑟𝑖
𝑥 =

𝑦 − 𝑃𝑖−1
𝑦

𝑟𝑖
𝑦

𝑦 − 𝑃𝑖−1
𝑦

𝑟𝑖
𝑦 =

𝑧 − 𝑃𝑖−1
𝑧

𝑟𝑖
𝑧

𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:     𝑧 = 𝑓𝑖(𝑥, 𝑦)                 

 

 

elseif (𝑟𝑖
𝑥 = 0, 𝑟𝑖

𝑦
≠ 0, 𝑟𝑖

𝑧 ≠ 0) 

{
 
 

 
 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :     {

𝑥 = 𝑃𝑖−1
𝑥                     

𝑦 − 𝑃𝑖−1
𝑦

𝑟𝑖
𝑦 =

𝑧 − 𝑃𝑖−1
𝑧

𝑟𝑖
𝑧

𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:      𝑧 = 𝑓𝑖(𝑥, 𝑦)                

 

elseif (𝑟𝑖
𝑥 ≠ 0, 𝑟𝑖

𝑦
= 0, 𝑟𝑖

𝑧 ≠ 0) 

{
 
 

 
 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :     {

𝑦 = 𝑃𝑖−1
𝑦
                     

𝑥 − 𝑃𝑖−1
𝑥

𝑟𝑖
𝑥 =

𝑧 − 𝑃𝑖−1
𝑧

𝑟𝑖
𝑦

𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:      𝑧 = 𝑓𝑖(𝑥, 𝑦)                

 

elseif (𝑟𝑖
𝑥 ≠ 0, 𝑟𝑖

𝑦
≠ 0, 𝑟𝑖

𝑧 = 0) 

{
 
 

 
 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :     {

𝑧 = 𝑃𝑖−1
𝑧                      

𝑥 − 𝑃𝑖−1
𝑥

𝑟𝑖
𝑥 =

𝑦 − 𝑃𝑖−1
𝑦

𝑟𝑖
𝑦

𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:      𝑧 = 𝑓𝑖(𝑥, 𝑦)                

 

elseif (𝑟𝑖
𝑥 = 0, 𝑟𝑖

𝑦
= 0, 𝑟𝑖

𝑧 ≠ 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :      {

𝑥 = 𝑃𝑖−1
𝑥         

𝑦 = 𝑃𝑖−1
𝑦
        

𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓𝑖(𝑥, 𝑦)   
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elseif (𝑟𝑖
𝑥 = 0, 𝑟𝑖

𝑦
≠ 0, 𝑟𝑖

𝑧 = 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :      {

𝑥 = 𝑃𝑖−1
𝑥      

𝑧 = 𝑃𝑖−1
𝑧      

𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:        𝑧 = 𝑓𝑖(𝑥, 𝑦)

 

elseif (𝑟𝑖
𝑥 ≠ 0, 𝑟𝑖

𝑦
= 0, 𝑟𝑖

𝑧 = 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :      {

𝑦 = 𝑃𝑖−1
𝑦
    

𝑧 = 𝑃𝑖−1
𝑧     

  

𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒:       𝑧 = 𝑓𝑖(𝑥, 𝑦)

 

end 

 

Appendix B 

System containing the equation of the line for the point 𝑃𝑘−1 and the horizontal plane for 𝑇 (𝑧 = 𝑇𝑧). The solution 

of this system leads to the coordinates (𝑇0
𝑥, 𝑇0

𝑦
, 𝑇0

𝑧) of the resulting target point, related to the initial guess angle 

𝜃1 (given as input). 

if (𝑟𝑖
𝑥 ≠ 0, 𝑟𝑖

𝑦
≠ 0, 𝑟𝑖

𝑧 ≠ 0) 

{
 
 

 
 

𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :               

{
 
 

 
 
𝑥 − 𝑃𝑖−1

𝑥

𝑟𝑖
𝑥 =

𝑦 − 𝑃𝑖−1
𝑦

𝑟𝑖
𝑦

𝑦 − 𝑃𝑖−1
𝑦

𝑟𝑖
𝑦 =

𝑧 − 𝑃𝑖−1
𝑧

𝑟𝑖
𝑧

ℎ𝑜𝑟𝑖𝑧. 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑇:      𝑧 = 𝑇𝑧                           

 

 

elseif (𝑟𝑖
𝑥 = 0, 𝑟𝑖

𝑦
≠ 0, 𝑟𝑖

𝑧 ≠ 0) 

{
 
 

 
 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :               {

𝑥 = 𝑃𝑖−1
𝑥                     

𝑦 − 𝑃𝑖−1
𝑦

𝑟𝑖
𝑦 =

𝑧 − 𝑃𝑖−1
𝑧

𝑟𝑖
𝑧

ℎ𝑜𝑟𝑖𝑧. 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑇:      𝑧 = 𝑇𝑧                          

 

elseif (𝑟𝑖
𝑥 ≠ 0, 𝑟𝑖

𝑦
= 0, 𝑟𝑖

𝑧 ≠ 0) 

{
 
 

 
 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :               {

𝑦 = 𝑃𝑖−1
𝑦
                     

𝑥 − 𝑃𝑖−1
𝑥

𝑟𝑖
𝑥 =

𝑧 − 𝑃𝑖−1
𝑧

𝑟𝑖
𝑦

ℎ𝑜𝑟𝑖𝑧. 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑇:      𝑧 = 𝑇𝑧                         

 

elseif (𝑟𝑖
𝑥 ≠ 0, 𝑟𝑖

𝑦
≠ 0, 𝑟𝑖

𝑧 = 0) 

{
 
 

 
 
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :               {

𝑧 = 𝑃𝑖−1
𝑧                      

𝑥 − 𝑃𝑖−1
𝑥

𝑟𝑖
𝑥 =

𝑦 − 𝑃𝑖−1
𝑦

𝑟𝑖
𝑦

ℎ𝑜𝑟𝑖𝑧. 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑇:      𝑧 = 𝑇𝑧                          

 

elseif (𝑟𝑖
𝑥 = 0, 𝑟𝑖

𝑦
= 0, 𝑟𝑖

𝑧 ≠ 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :               {

𝑥 = 𝑃𝑖−1
𝑥         

𝑦 = 𝑃𝑖−1
𝑦
        

ℎ𝑜𝑟𝑖𝑧. 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑇:     𝑧 = 𝑇𝑧             

 

elseif (𝑟𝑖
𝑥 = 0, 𝑟𝑖

𝑦
≠ 0, 𝑟𝑖

𝑧 = 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :               {

𝑥 = 𝑃𝑖−1
𝑥      

𝑧 = 𝑃𝑖−1
𝑧      

ℎ𝑜𝑟𝑖𝑧. 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑇:      𝑧 = 𝑇𝑧         
 

elseif (𝑟𝑖
𝑥 ≠ 0, 𝑟𝑖

𝑦
= 0, 𝑟𝑖

𝑧 = 0) 

{
𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑃𝑖−1 :               {

𝑦 = 𝑃𝑖−1
𝑦
    

𝑧 = 𝑃𝑖−1
𝑧     

  

ℎ𝑜𝑟𝑖𝑧. 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑇:      𝑧 = 𝑇𝑧          

 

end 
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