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In this paper, the propulsion performance of a bio-inspired underwater robot with a pair 

of ray-supported undulating pectoral fins is numerically investigated with a fully coupled 

fluid-structure interaction model. In this model, the flexible fin rays are represented by 

nonlinear Euler-Bernoulli beams while the surrounding flow is simulated via solving the 

Navier-Stokes equations. Kinematically, each pectoral fin is activated independently via 

individually distributed time-varying forces along each fin ray, which imitate effects of 

tendons that can actively curve the fin rays. We find that the propulsion performance of 

the bio-inspired robot is closely associated with the phase difference between the leading 

edge ray and the trailing edge ray of the pectoral fin. The results show that with a 

symmetrical kinematics, the highest thrust is created when the phase difference is 90 

degree while the point maximizing the propulsion efficiency varies with the motion 

frequency. It is also found that there is a minimum frequency of generating net thrust for 

a specific parameter setup, which rises as the increase of phase difference. Compared 

with the symmetrical kinematics, the non-symmetrical kinematics generates more 

complicated hydrodynamic forces and moments which may be beneficial for the turning 

maneuver. 
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1. Introduction 

As the growing need for the performance of underwater missions such as ocean 

exploration, coastal inspection and environmental monitoring, autonomous underwater 

vehicles (AUVs) are playing an increasingly critical role in conducting these tasks [1]. 

Despite the wide use of conventional AUVs in ocean engineering, their performance 

declines significantly at low-speed maneuvering. Besides, the precise station-keeping is 

difficult to achieve in the presence of drifting currents [2]. To address these issues 

associated with conventional AUVs, scientists and engineers are seeking solutions from 

aquatic animals that have diversified into every corner of the ocean after millions of 

year’s evolution [3]. The propulsive mechanisms possessed by many aquatic animals are 

of great efficiency and maneuverability, which have become the source of inspirations for 

the design of a new generation of high-performance underwater vehicles. 

 

The locomotion modes of aquatic animals can be generally classified into two categories, 

namely, body-caudal fin (BCF) mode and median and/or paired fin (MPF) mode [4]. 

Although most aquatic species adopt the BCF mode to generate thrust, there are still 

approximately 15% of the fish species exclusively employ the MPF mode for locomotion 

[2]. Among the MFP locomotion modes, the propulsive mechanisms based on the 

undulatory fins (e.g., gymnotiform and rajiform) are attracting increasing attentions from 

researchers due to the capabilities of vectoring forces and retaining rigid bodies. Figure 1 

demonstrates two examples of aquatic swimmers adopting undulating fins for locomotion 

and the corresponding bio-inspired underwater robots. 

 

Due to the high performance and maneuverability of undulating fin-based locomotion, 

the kinematics, hydrodynamics as well as the force generation have been studied by 

previous research. Three different approaches are commonly used in the study of 

undulating fins, including live animal experiment [5–9], robotic prototype [2,10–14] and 

computational model [15–17]. With a mechanical prototype, Curet et al. [11] investigated 

how hydrodynamic forces and swimming speed of the robot change as some critical 

kinematic variables (e.g., frequency, amplitude and wavelength) vary. Liu et al. [14] 

examined the effects of fin ray stiffness as well as aspect ratio on the propulsion 
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performance of an undulating-fin-based robot. They concluded that an increase of ray 

flexibility leads to a decrease in both thrust and power consumption. But the propulsion 

efficiency can be improved by flexible rays. Additionally, they also suggested that there 

could be an optimal aspect ratio for a given fin kinematics. Computationally, Shirgaonkar 

et al. [15] examined the hydrodynamics of a stationary ribbon fin in still water and found 

the primary mechanism for thrust production of undulating fin is associated with the 

generation of a streamwise central jet and other attached vortex rings. Curet et al. [16] 

investigated the effect of counter-propagating waves with both a computational model 

and a biomimetic robot. They found that a mushroom-cloud-like flow pattern with an 

inverted jet was generated by inward counter-propagating waves, which created a high 

vertical force needed for hovering. 

 

The ability of actively and passively controlling the surface deformation and activation 

has the potential to improve the propulsion efficiency and maneuverability [18]. Ray-

finned fish have multi-degree-of-freedom control over their fins due to the capability of 

actuating the rays individually. They can modulate their fin deformations to create desired 

forces [19]. Morphologically, a fin ray consists of a central cartilage pad surrounded by 

paired, segmented bony elements called hemitrichs, which are connected with tendons at 

the ends. By pulling the tendons, a hemitrich can slide past the other one, creating a 

distributed bending moment along the length of a ray. This unique bi-laminar design of 

the fin rays [20,21] enables the ray-finned fish to have the ability of actively controlling 

the ray’s curvature, which may further enhance their propulsion performance. 

Youngerman et al. [9] experimentally measured and analyzed the kinematics of a ghost 

knifefish (Apteronotus albifrons) during four locomotor behaviors. They found that ghost 

knifefish were actively curving their rays in each considered behavior. Apart from the 

ray-finned fish (Actinopterygii), some swimmers belonging to Elasmobranchii (e.g., rays 

and skates) also have active curvature control over their fins. Di Santo et al. [7] studied 

the effect of swimming speed on the deformation of pectoral fin in the little skate 

(Leucoraja erinacea). They found that at higher speed, the little skate can cup the 

pectoral fin into the flow, implying the active curvature control and fin stiffening. 
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Figure 1 (a) Black ghost knifefish (Apteronotus albifrons, gymnotiform). Photograph courtesy of Per 

Erik Sviland. (b) Nanyang knifefish robot (NYF-I) [22]. (c) Bluespotted ribbontail ray (Taeniura 

lymma, rajiform). Photograph courtesy of Derek Keats. (d) Bio-inspired underwater robot with two 

undulatory fins [23]. 

Although the active control over the fin surface widely exists in aquatic animals, it has 

attracted very limited attention from the scientists and engineers [21,24,25]. Tangorra et 

al. [26] experimentally tested a mechanical pectoral fin, which was supported by seven 

flexible, bi-laminar rays. The rays were actuated individually by controlling the nylon 

tendons attached to the base of each ray. Such a novel design allowed active control over 

the fin’s deformation and motion. Numerically, Alben et al.  [20] developed a two-

dimensional linear elasticity model of a bi-laminar fin ray. The two hemitriches of the ray 

were represented by two identical, inextensible beams and the space between them was 

filled with incompressible linearly elastic material. They found that the ray with tapered 

tip can produce larger curvature near the tip while the curvature of the uniform ray is 

localized near the base. However, the interaction with an external fluidic environment 

was not investigated in their study. 

 

Bearing this in mind, we numerically investigate the propulsion performance of a bio-

inspired, skate-like underwater robot with a pair of ray-strengthened pectoral fins in the 

(a) (b)

(c) (d)
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present paper. The fluid dynamics around the robot is simulated by solving the Navier-

Stokes equations using a finite volume method. The flexible supporting rays are modeled 

as nonlinear Euler-Bernoulli beams while the constraint from the soft membrane is 

represented by distributed linear springs connecting neighboring rays. The rays are 

actuated by distributed external forces, mimicking the pulling effect from the tendons. 

The external load can modify/adjust the bending curvature of the fin rays individually 

and lead them to bend into the flow whereas the rays with purely passive deformation can 

only conform according to the surrounding fluid. This distinctive feature of the fin rays is 

rarely considered in previous papers. The objective of the present work is to investigate 

the propulsion performance of a bio-inspired underwater robot which has the ability of 

actively controlling the curvature of its fin rays. The novelty of the present study lies in 

the consideration of both the fluid-structure interaction and the active curvature control of 

ray-supported undulatory pectoral fins, which is rarely considered in previous numerical 

studies. The present work may provide some useful inspirations for the design of bio-

inspired underwater robots. 

 

The rest of this paper is organized as follows: in section 2, the geometry, material 

property, kinematics and actuation of the simplified underwater robot are described and 

the parameters which characterize the performance are defined. In section 3, the 

governing equations and numerical methods used in the present fluid-structure interaction 

solver are briefly introduced. In section 4, the numerical results, including fin 

deformation, force generation and near-body flow field are presented. The conclusions 

are drawn in the final section. 

2. Problem Description 

In the present study, a simplified bio-inspired underwater robot which is composed of a 

body and a pair of ray-strengthened pectoral fins (as shown in Figure 2 (a)) is 

numerically studied. The body is idealized as a rigid plate.  The length, width and 

thickness of the body are donated as Lbody, Wbody and h respectively, where Wbody = Lbody/3 

and h = 0.004Lbody. Each pectoral fin is modeled as a rectangular-shaped membrane 

supported by N evenly distributed flexible rays. The two fins are identical and have the 
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same dimensions as the body, i.e., Lfin = Lbody, Wfin = Wbody and Hfin = h. Each ray is 

structurally represented by a nonlinear Euler-Bernoulli beam with uniform flexibility. The 

non-dimensional bending stiffness is defined as 𝐾𝑖 ≡ 𝐸𝑖𝐼 𝜌𝑈∞
2 𝐿𝑟𝑎𝑦

3⁄ , (i = 1, …, N), where 

N = 11, Ei is the Young’s modulus of the ith ray, I is the second moment of inertia, ρ is the 

fluid density, U∞ is the freestream velocity and Lray = Wfin is the length of the ray. The 

mass ratio is defined as 𝑚𝑖
∗ ≡ 𝜌𝑠,𝑖ℎ 𝜌𝐿𝑟𝑎𝑦⁄ , where 𝜌𝑠,𝑖 is the density of the ith ray. In the 

present work, the bending stiffness of all rays is selected to be 𝐾𝑖 = 1.0 unless specified 

and the mass ratio of the ray are chosen as 𝑚𝑖
∗ = 0.2. 

 

Figure 2 (a) Simplified underwater robot model in the present study. (b) Illustration of the 

deformation of the pectoral fin. (c) Schematic view of the actuation of a ray, where the distributed 

external force models the pulling effect of the tendons. (d) Dorsal view of a fin ray with two 

hemitrichs [20]. 

In reality, the membrane connecting neighboring rays imposes complicated constraints on 

the dynamics of fin rays. However, in the present study, the bending stiffness of the 

membrane is assumed to be negligible, i.e., it cannot sustain any bending but only 
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stretching and compression. Therefore, the constraints provided by the membrane are 

simplified as distributed linear springs between the neighboring rays. As we are not 

aiming at entirely duplicating the biological details, the spring constant is selected to be 

0.02𝜌𝑈∞2 𝐿𝑓𝑖𝑛  based on the numerical tests, i.e., the springs are sufficiently rigid to 

prevent excessive expansion yet still flexible enough to allow large deformation. 

 

Kinematically, the body is fixed in space and all the basal ends of the ray are clamped to 

the body. With a uniform incoming flow, this is equivalent to the situation that the body is 

swimming at a constant speed. This approach is also widely used in similar biomimetic 

studies [19,27]. Each ray is actuated by independent external loads, mimicking the 

pulling effect of the tendons at the basal end of the ray (see Figure 2 (c) and (d)). The 

external force acting on the ith ray can be expressed as 

 𝐹𝑖(𝑡) = 𝐹0𝑠𝑖𝑛(2𝜋𝑓𝑡 − 𝜑𝑖) (1) 

where F0 is the magnitude of the external force, f is the frequency, 𝜑𝑖 is the phase and t is 

the time. In this paper, we choose 𝜑1 = 0 and 𝜑𝑖 = 𝜑𝑑(𝑖 − 1) (𝑁 − 1)⁄ , where 𝜑𝑑  is the 

phase lag between the leading edge ray and trailing edge ray. F0 is assumed to be uniform 

along the ray and its value is chosen based on numerical tests, i.e., the desired 

deformations can be accomplished while maintaining the numerical stability. Here, F0 is 

selected to be 2 𝜌𝑈∞2 𝐿𝑓𝑖𝑛2 . The reduced frequency based on the fin length Lfin, frequency f 

and incoming flow velocity U∞ is defined as 𝑓𝑟 ≡ 𝑓𝐿𝑓𝑖𝑛 𝑈∞⁄ . It should be noted that the 

present study is not aimed at duplicating the exact activation mechanism of real fish fins 

as shown in Figure 2 (d). Instead, we are inspired by the ability of actively changing the 

curvature of the ray. The external force is only used to achieve the desired undulating 

deformation. 

 

The propulsion performance of the fin is characterized by the mean thrust coefficient 𝐶𝑇̅̅ ̅̅ , 

the mean amplitude of the vertical force coefficient  𝐶𝑌̃ , the mean lateral force 

coefficient 𝐶𝑍̅̅ ̅̅ , the mean x-moment coefficient 𝐶𝑀𝑋̅̅ ̅̅ ̅̅ , the mean y-moment coefficient 𝐶𝑀𝑌̅̅ ̅̅ ̅̅ , 

the mean z-moment coefficient 𝐶𝑀𝑍̅̅ ̅̅ ̅̅ , the mean power expenditure coefficient 𝐶𝑃̅̅ ̅, and the 

propulsion efficiency η. These mean values are evaluated by averaging the instantaneous 
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coefficients over one motion period T.  𝐶𝑌̃ is defined as the average of the absolute values 

of the maxima and minima of the vertical force coefficient within one motion period. The 

instantaneous thrust coefficient is defined as  

 𝐶𝑇(𝑡) =
−𝐹𝑋(𝑡)

0.5𝜌𝑈∞
2 𝐿𝑓𝑖𝑛

2 , (2) 

where 𝐹𝑋(𝑡) is the x-component of the instantaneous hydrodynamic force F(t). The thrust 

direction is along the negative x-axis, thus a minus sign is included in Eq. (2). 

 

Similarly, we have  

 

𝐶𝑌(𝑡) =
𝐹𝑌(𝑡)

0.5𝜌𝑈∞
2 𝐿𝑓𝑖𝑛

2 ,

𝐶𝑍(𝑡) =
𝐹𝑍(𝑡)

0.5𝜌𝑈∞
2 𝐿𝑓𝑖𝑛

2 ,

𝐶𝑀𝑋(𝑡) =
𝑀𝑋(𝑡)

0.5𝜌𝑈∞
2 𝐿𝑓𝑖𝑛

3 ,

𝐶𝑀𝑌(𝑡) =
𝑀𝑌(𝑡)

0.5𝜌𝑈∞
2 𝐿𝑓𝑖𝑛

3 ,

𝐶𝑀𝑍(𝑡) =
𝑀𝑍(𝑡)

0.5𝜌𝑈∞
2 𝐿𝑓𝑖𝑛

3 ,

𝐶𝑃(𝑡) =
𝑃(𝑡)

0.5𝜌𝑈∞
3 𝐿𝑓𝑖𝑛

2 ,

 (3) 

where  𝐹𝑌(𝑡) and 𝐹𝑍(𝑡) are the components of the instantaneous hydrodynamic force F(t) 

in y and z directions respectively.𝑀𝑋(𝑡), 𝑀𝑌(𝑡) and  𝑀Z(𝑡) are the moments about the 

axis parallel to the x-, y-, and z-axis and through the center of the body respectively. P(t) 

is the instantaneous hydrodynamic power, which is evaluated as 

 𝑃(𝑡) = ∬ 𝐅(𝐱, 𝑡) ∙
𝑆

𝐕𝑔(𝐱, 𝑡)𝑑𝐱, (4) 

where 𝐕𝑔(𝐱, 𝑡) is the moving velocity of the fin. In reality, the input power from the 

actuation should be higher than the hydrodynamic power. However, here we assume that 

the power loss in the fin system is negligible, i.e., the input power from the muscle is 

very close to the hydrodynamic power calculated using Equation (4). Therefore, the 

propulsion efficiency η can be approximated as 
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 𝜂 =
 𝐶𝑇̅̅ ̅̅

 𝐶𝑃̅̅ ̅
 (5) 

3. Mathematical Formulation and Numerical Methods 

The current proposed problem involves the interaction between the flexible ray-supported 

fins and the surrounding flow, which needs to be addressed using a fluid-structure 

interaction solver tailored for this specific problem. The present fluid-structure interaction 

solver includes three key modules: a fluid dynamics solver, a structural dynamics solver 

and a fluid-structure coupling procedure. 

 

The fluid dynamics solver numerically solves the unsteady compressible Navier-Stokes 

equations, which is written in its integral form 

 
𝜕

𝜕𝑡
∭ 𝑼𝑑𝑉

Ω

+∬ 𝑮𝑑𝐒
𝜕Ω

−∬ 𝑯𝑑𝐒
𝜕Ω

= 0, (6) 

where 𝑼 = (𝜌, 𝜌𝒗, 𝜌𝐸)𝑇 is the conservative variable vector, Ω is the control volume, ∂Ω is 

the boundary surface enclosing the volume, and  𝑺  is the surface vector in outward 

direction. 𝜌 is the fluid density, 𝒗 is the velocity vector and E is the total energy. 𝑮 and 𝑯 

are the convective and diffusive flux vectors,  respectively.  

 

The fluid equation Eq. (6) is discretized by a cell-centred finite volume method based on 

an overset, multi-block structured grid system [28,29]. With a structured grid method, the 

fluid domain is divided into an array of hexahedral cells. Each grid cell is uniquely 

denoted by three computational coordinates i, j, k. For each hexahedral cell (𝑖, 𝑗, 𝑘), the 

conservation laws are applied and the following semi-discrete form can be derived 

 𝜕

𝜕𝑡
(𝑼𝑖,𝑗,𝑘∆Ω𝑖,𝑗,𝑘) − 𝑹𝑖,𝑗,𝑘 = 𝑫𝑖,𝑗,𝑘, (7) 

where 𝑹𝑖,𝑗,𝑘  measures the convective and diffusive fluxes entering the hexahedral cell 

through its surface. 𝑫𝑖,𝑗,𝑘  denotes the artificial viscosity that is used to stabilize the 

scheme and eliminate the spurious numerical oscillations [30].  

 

For time-dependent simulations, the dual-time stepping algorithm [31] is employed for 
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the temporal integration, where equation (7) is reformulated as a steady-state problem 

with a pseudo-time 𝑡̃: 

 𝜕

𝜕𝑡̃
𝑼𝑛+1 =

1

∆Ω𝑛+1
𝑹̃(𝑼𝑛+1), (8) 

where  

 
𝑹̃(𝑼𝑛+1) = 𝑹(𝑼𝑛+1) + 𝑫(𝑼𝑛+1)

−
3(𝑼ΔΩ)𝑛+1 − 4(𝑼ΔΩ)𝑛 + (𝑼ΔΩ)𝑛−1

2Δ𝑡
. 

(9) 

 

Equation (8) is then integrated by a hybrid multistage Runge-Kutta scheme. At each time 

step, the domain connectivity is accomplished by an overset grid assembler based on an 

implicit hole cutting technique [29].  

 

In the structural part, the dynamics of the nonlinear Euler-Bernoulli beam is governed by 

[32] 

 
𝑚𝑠

𝜕2𝒙

𝜕𝑡2
+ 𝐾𝑏

𝜕4𝒙

𝜕𝑠4
− 𝐾𝑠

𝜕

𝜕𝑠
{[1 − (

𝜕𝒙

𝜕𝑠
∙
𝜕𝒙

𝜕𝑠
)
−0.5

]
𝜕𝒙

𝜕𝑠
}

= 𝑭𝑓 + 𝑭𝑠𝑝 + 𝑭𝑎𝑐 , 

(10) 

where x is the instantaneous position of the ray, and s (0 < s < Lray) is the Lagrangian 

coordinate. 𝑚𝑠 = 𝜌𝑠ℎ is the mass per unit length, where 𝜌𝑠 is the density of the fin rays. 

𝐾𝑏 ≡ 𝐸ℎ3 12 ⁄ and 𝐾𝑠 ≡ 𝐸ℎ represent the bending and stretching stiffness respectively. 

On the right hand side, 𝑭𝑓 denotes the fluid load and 𝑭𝑠𝑝 represents the force exerted by 

the connecting linear springs which model the constraints from the collagenous 

membrane. 𝑭𝑎𝑐 is the distributed force along the beam, which models the pulling effect 

by the tendons at the basal end of the ray (see Figure 2 (c)). The material damping effect 

is considered by replacing the Young’s modulus E in 𝐾𝑏  and 𝐾𝑠 with 𝐸(1 + 𝜎 𝜕 𝜕𝑡⁄ ), 

where σ denotes the structural damping coefficient. In all present simulations, we 

select 𝜎 = 2𝐿𝑓𝑖𝑛 𝑈∞⁄ . Here, the material damping factor is considered as a very small 

value, which is only used to stabilize the beam model. Therefore, its effect on the power 

consumption is assumed to be negligible. 
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At the basal end (s = 0) of each ray, a fixed boundary condition is imposed, 

 
𝒙(0, 𝑡) = 𝒙(0,0)

𝜕𝒙(0, 𝑡)

𝜕𝑠
= [1,0]𝑇 

. (11) 

At the ray tip, the free boundary condition is employed, 

 
𝐾𝑏

𝜕3𝒙

𝜕𝑠3
− 𝐾𝑠 [1 − (

𝜕𝒙

𝜕𝑠
∙
𝜕𝒙

𝜕𝑠
)
−0.5

]
𝜕𝒙

𝜕𝑠
= 0

𝜕2𝒙

𝜕𝑠2
= 0

. (12) 

It is noted that the external forces have no influence on the boundary conditions of the 

nonlinear beam model. Equation (10), together with boundary conditions (11) and (12), 

are discretized using a second-order finite difference method and the resulting linear 

system is solved with an iterative Gauss-Seidel method [32,33]. 

 

In the present algorithm, the Navier-Stokes solver is coupled with the nonlinear beam 

model via a partitioned framework. Compared with a strongly coupled algorithm, which 

requires iterations within each time step, a loosely coupled method needs only a single 

data exchange between the fluid solver and structural solver in each time step so that it 

significantly reduces the computational expense. Despite the numerical stability issue 

associated with loosely coupled methods [34], this approach is still favoured due to its 

simplicity and efficiency. Since the caudal fin model is completely three-dimensional and 

requires plenty of computational time, a loosely coupled approach known as conventional 

serial staggered procedure [35] is used in the present work. A suitable value of mass ratio 

should be used in order to maintain the stability of this coupling scheme [34]. Due to the 

non-conformity between the fluid grid and structural grid, interpolations of fluid forces 

and structural displacements must be performed at the fluid-structure interface. For the 

force interpolation, both the fluid grid nodes on the wet boundary of the body and the 

structural grid nodes are firstly projected to a common planar plane, on which a bilinear 

interpolation is then performed [28]. Despite the simplicity of this interpolation method, 

the force conservativeness is not retained at the interface. The structural displacements 

are transferred to the fluid mesh by a conservative method known as constant volume 

tetrahedron [36,37]. 
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It is worth noting that no turbulence model is used in the present study, i.e., the flow is 

assumed to be laminar. In relatively low Reynolds number regimes (below or in the order 

of 103), the turbulence effect may play an insignificant role in the flow field. For these 

scenarios, laminar flow models are usually used for biomimetic problems (see examples 

in [27,38–40]. Additionally, the flow model is formulated with the compressible Navier-

Stokes equations. To ensure that the compressibility is negligibly small, the freestream 

Mach number (defined as M∞ = U∞/a∞, where U∞ and a∞ are flow velocity and speed of 

sound of the freestream respectively) is chosen to be 0.06, which is far below the critical 

value for pronounced compressibility effect (M = 0.3) but still sufficiently large for 

numerical stability. Besides, the local Mach numbers in the complete computational 

domain are monitored to guarantee that they are below the critical value. Therefore, for 

the present flow solver, Mach number is just a parameter and a change of its value within 

a reasonable range will not change the simulation results. The present compressible flow 

solver has been successfully applied to study different incompressible flow problems in 

our previous work [28,41–45]. 

4. Results 

The problem depicted in Figure 2 (a) is solved using the fluid-structure interaction solver 

described in Section 3. The computational domain used in the present paper are the same 

as that in our previous publication [28]. The Reynolds number based on the length of the 

fin is Re = 6000 unless specified. The height of the first grid layer off the wall (∆y) is 

choosing to be ∆y = 0.001Lfin.  

 

The present fluid-structure interaction solver has been validated via several canonical 

cases in our previous paper [28]. Specifically, the flow solver was examined by 

simulating the flow past a three-dimensional circular cylinder while the structural solver 

was validated by reproducing the 1st-order and 2nd-order bending modes of a cantilever 

beam. The coupled solver was then examined by predicting the dynamic response of an 

elastic cantilever immersed in the wakes of a square cylinder. All these cases showed 

good agreements with the results from literature.  
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A sensitivity study to the mesh density is carried out to demonstrate the suitability of the 

grid resolution. Three grids with different densities are generated, which are termed as 

Fine Mesh (5 million cells), Medium Mesh (3.7 million cells) and Coarse Mesh (2.8 

million cells). Particularly, the numbers of grid point along the fin are 101, 81 and 61 for 

the Fine, Medium and Coarse meshes respectively. Figure 3 illustrates the instantaneous 

thrust and vertical force coefficients obtained from three different meshes at 𝜑𝑑=180 

degree. It is seen that the result from Medium Mesh is almost the same to that from Fine 

Mesh, indicating the convergence of the flow field. The pressure coefficient (𝐶𝑝𝑟𝑒 ≡
𝑝−𝑝∞

0.5𝜌𝑈∞
2 ) contours from different mesh resolutions are demonstrated in Figure 4, from 

which we can see that little difference between the pressure contours can be observed. 

Based on this sensitivity study, the Medium Mesh is used for the rest simulations of the 

present paper. 

 

Figure 3 Sensitivity study of the present flow solver to the  CFD mesh density.   =180 and   =1.2. 

 

 

(a) (b)
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Figure 4 Pressure coefficients (    ) distributions at both sides of the robot at t = 0 for three different 
meshes, (a) Coarse Mesh, (b) Medium Mesh, and (c) Fine Mesh.   =180 degree,   =1.2. 
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4.1 Fin deformation and near-body flow field of symmetric fin kinematics 

 

Figure 5 Typical 3D fin deformations within one motion period, (a)   =90, (b)   =180, (c)   =360. 

  =1.2. 

 

Figure 6 Lateral veiw of the undulating fin’s deformation pattern at t = T/2, (a)   =90, (b)   =180, 

(c)   =360.   =1.2. 

Typical deformations of the undulating pectoral fins within one motion period are 

demonstrated in Figure 5. The two fins are labeled as Fin-L (left fin) and Fin-R (right fin) 

respectively. It is seen that with symmetric fin kinematics, the fin deformation patterns 

are also symmetrical against the middle line of the body. For small phase difference value 

( 𝜑𝑑 =90 degree), the pectoral fins actually undergo flapping motions rather than 

(a)

(b)

(c)

t=0 t=T/4 t=2T/4 t=3T/4

Fin-L

Fin-R

x

y

(a) (b) (c)



16 
 

undulating motions. As the increase of the phase difference, the undulating motions of the 

fins are more pronounced, particularly when 𝜑𝑑=360 degree. The undulating patterns of 

the fins can be better seen from the lateral views of the robot, which are demonstrated in 

Figure 6. As seen from this figure, there exists a clear traveling wave along the pectoral 

fin at 𝜑𝑑=360 degree. 

 

 

Figure 7 Top views of the iso-surfaces of the normalized vorticity magnitude 

(‖ ‖ =     √ 𝒙
 +  

 +  
 𝑼∞⁄ =3) behind the robot at t = 0. The iso-surfaces are coloured using 

normalized z-vorticity. (a)   =90; (b)   =180; (c)   =360.   =1.2. 

(a) (b)

(c)

2.4

-2.4

0

“Horn-like” 
structures 
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Figure 8 Flow vorticity of slice z = 0.6Lray of Fin-L within half motion period, (a)   =90, (b)   =180, 

and (c)   =360.   =1.2. 

The iso-surfaces of the normalized vorticity magnitude (‖𝜔‖ = 3) behind the bio-inspired 

robot are demonstrated in Figure 7. It is seen that the flapping motion at 𝜑𝑑=90 degree 

creates extended wake structures at both side and behind the pectoral fins when they are 

compared with those produced by the undulating motion at 𝜑𝑑=360 degree. Besides, the 

flapping motion generates “horn-like” wake structures that are not observed at higher 

phase difference values as demonstrated in Figure 7. The vortex shedding behind the 

pectoral fin can be more clearly observed in Figure 8. At 𝜑𝑑=90 degree, stronger counter-

clockwise and clockwise trailing edge vortices (TEVs) are generated and shed into the 

wake alternatively, whist the trailing edge vortices become weaker at 𝜑𝑑=180 degree. 

When the phase difference value reaches 360 degree, where the pectoral fin forms a 

(a)

(b)

(c)

=90

=180

=360
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complete trailing wave (the wave length equals one fin length), no clear trailing edge 

vortex is observed, which also implies less thrust force will be created in this case, which 

will be discussed in later section. It is also observed that the flow separates at the fin’s 

surface for all three 𝜑𝑑  values shown here. The flow separation will lead to pressure 

difference between the two sides of the pectoral fin. Figure 9 shows the pressure 

coefficient distributions at both sides of the robot at 𝜑𝑑=90 and 360 degrees. It is clearly 

seen that the flapping motion (𝜑𝑑=90) creates significantly larger pressure difference, 

which may contribute to the thrust generation if appropriately reoriented (see Figure 11 

(a)). On the other hand, the larger pressure difference also creates larger vertical force 

(see Figure 11 (b)), implying more power expenditure. In contrast, the pressure difference 

generated by the undulating motion (𝜑𝑑=360) is significantly smaller, as demonstrated in 

Figure 9 (b), which may attribute to relatively slow flow traveling speed along the fin’s 

surface. 

 

 

Figure 9 Pressure coefficients (    ) distributions at both sides of the robot for   =90 (a) and 360 

degrees (b) at t=0.2T,   =1.2. Note that the legend scales of plot (a) and (b) are diffenret. 
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4.2 Force generation and propulsion efficiency of symmetric fin kinematics 

Time averaged thrust coefficient 𝐶𝑇, mean amplitude of vertical force coefficient 𝐶𝑌̃ and 

propulsion efficiency 𝜂  as functions of 𝜑𝑑  at different reduced frequencies are 

summarized in Figure 10. The three reduced frequencies are selected to be large enough 

to generate positive net thrust force, yet not too high to cause numerical instabilities. For 

all three motion frequencies considered here, the thrust force rises first and then decreases 

with the increase of the phase difference between the leading and trailing edge rays and 

the peak value is achieved at 𝜑𝑑=90 degree, which corresponds to  a wavelength of 4Lfin. 

The mean amplitude of vertical force coefficient descends monotonously as 𝜑𝑑 increases 

from 0 to 360 degree, indicating the possible decrease of power expenditure. The 

propulsion efficiency undergoes a similar trend as the thrust, however, with the peak 

values accomplished at different 𝜑𝑑  for different reduced frequencies. Specifically, the 

highest propulsion efficiencies are reached at 𝜑𝑑=90, 135 and 180 degrees for fr = 0.8, 

1.0 and 1.2 respectively. Previous experimental study of an undulating fin [11] found that 

the largest thrust force is produced when the wave length is half of the fin’s length, which 

is different from the present study. This difference may be attributed to different aspects. 

The fin in the present study has an aspect ratio of 0.33 while the aspect ratio of the fin 

used in the experiment of Curet et al. [11] is around 0.1. Besides, Curet et al. [11] carried 

out a self-propelled study which is also distinct from the present work. Despite of the 

lowest thrust force produced by the undulating motion at 𝜑𝑑=360 degree, it requires the 

least power input as well, which may be advantageous under certain circumstances. 

 

The time histories of 𝐶𝑇 and  𝐶𝑌 for 𝜑𝑑= 90 and 180 degrees at fr = 1.2 are demonstrated 

in Figure 11. One obvious effect of increasing 𝜑𝑑 from 90 degree to 180 degree is the 

reduction in the generation of thrust peaks. It is seen that two much higher thrust peaks 

are produced within one motion period at 𝜑𝑑=90 degree compared with the case of 

𝜑𝑑=180 degree. Another effect is the significant reduction in the vertical force generation 

(force in y-direction), as shown in Figure 11 (b). This leads to a substantial decrease in 

power expenditure coefficient. The decreasing rate of the power expenditure is higher 

than that of the thrust force, leading to an increase in propulsion efficiency, as observed in 

Figure 10 (c). 
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Figure 10 Time averaged thrust coefficients, time-mean amplitudes of vertical force coefficient and 

propulsion efficiency as functions of the phase difference    at different reduced frequencies. 

 

Figure 11 Instantaneous    and    within one motion period at two various phase difference values. 

  =1.2. 

(a) (b)

(c)

=90
=180

=90
=180(a) (b)
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4.3 Effect of structural flexibility 

 

Figure 12 Schematic view of the deformations of the present flexible ray with actively controlled 

curvature and a rotational rigid ray. 

Figure 12 illustrates the difference between the flexible ray in the present work and a 

rotational rigid ray. The present flexible ray is actuated by a distributed external force 

which imitates the pulling effects of the muscles. This kind of activation leads to an 

actively-controlled curvature along the ray, i.e., the slope of the ray varies significantly 

from the ray base to the ray tip. However, for a rigid ray with the same effective 

rotational angle, the slope along the ray remains unchanged. In addition, the actively-

controlled ray is curved into the direction of motion, thus is also different from the case 

of purely passive bending in response to the surrounding fluid. This type of curvature 

changing is also observed in previous study of a live knifefish [9].  

 

Figure 13 demonstrates the time histories of 𝐶𝑇 and 𝐶𝑌 for rigid and flexible rays at three 

various 𝜑𝑑 values. The rotational angle of the rigid case is chosen to be the same as the 

effective rotational angle of the flexible case in order to have a reasonable comparison. 

As shown in Figure 13, the fins of flexible rays with active curvature control generate 

z/l

y/l
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considerable higher thrust force with a slightly increase in vertical force, especially for 

cases when 𝜑𝑑=90 and 180 degree. 

 

Figure 13 Instantaneous    and    within one motion period for rigid and flexible rays at various 
phase difference values.   =1.2. 

=90=90

=180=180

(a) (b)

=360=360

(c) (d)

(e) (f)
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Figure 14 Instantaneous    and    within one motion period at three different flexibilities. K=1.0 is 
the default bending stiffness in the present study.   =1.2. 

 

Figure 14 shows the instantaneous 𝐶𝑇 and 𝐶𝑌 at three different bending stiffness values. 

Both the thrust and vertical forces decline as the decrease of flexibility for both 𝜑𝑑=90 

and 180 degree. As observed from Figure 15, the decrease of the flexibility while keeping 

the magnitude of external force is equivalent to reducing the effective rotational angle of 

the rays, which results in a reduction of thrust generation [11]. 

 

(a) (b)

(c) (d)

=90=90

=180=180
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Figure 15 Lateral veiw of the undulating fin’s deformation pattern at t = 0, (a)   =90, (b)   =180. 
  =1.2. Red line: K=1.0, blue line: K=1.5, and green line: K=2.0. 

 

4.4 Effect of non-symmetric kinematics 

To examine the effects of non-symmetrical kinematics on the performance of this bio-

inspired robot, two additional simulation cases are performed. In the first case (Case I), 

the phase difference value of Fin-R is 90 degree (𝜑𝑑=90) while for Fin-L, the phase 

difference is 180 degree (𝜑𝑑=180). In the second case (Case II), the phase differences of 

both Fin-R and Fin-L are 90 degree, but the phase distribution of Fin-L is reversed while 

the phase distribution of Fin-R is the same as that of symmetric kinematics case. For both 

Case I and Case II, the reduced frequency is fr = 1.2 and Reynolds number is Re = 6000. 

 

Figure 16 demonstrates the time histories of 𝐶𝑇,  𝐶𝑌 and  𝐶𝑍 of Fin-L, Fin-R and body for 

Case I and II. It is seen that non-symmetrical kinematics leads to more complicated force 

generations on the pectoral fins. The forces generated in three directions by Fin-L and 

Fin-R are no longer symmetrical, which will create moments in x-, y- and z-directions. 

For symmetrical fin kinematics, the total force along z-axis is zero because the two fins 

generate forces of the same magnitude but in opposite directions. Due to the non-

symmetrical kinematics, the forces in z-axis have different magnitudes, which lead to a 

net force in z-direction. Compared with Case I, Case II not only creates non-equal thrust 

forces, but also in opposite directions. In particular, Fin-R generates net thrust while Fin-

L creates net drag with larger magnitude. This leads to a larger rotational moment along 

y-direction, as shown in Figure 17 (b), indicating faster turning maneuvering will be 

achieved compared with Case I. 

x

y

(a) (b)
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Figure 16 Instantaneous    ,    and    within one motion period for Case I and Case II.  

(a) (b)

(c) (d)

(e) (f)
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Figure 17 Time histroies of x-, y- and z-moment coefficients for Case I and Case II. 

Table 1 The time-averaged moment coefficients for Case I and Case II. 

  𝐶𝑀𝑋̅̅ ̅̅ ̅̅   𝐶𝑀𝑌̅̅ ̅̅ ̅̅   𝐶𝑀𝑍̅̅ ̅̅ ̅̅  

Case I -0.0017 0.0343 0.0010 

Case II -0.0003 0.1497 0.0007 

 

Figure 17 demonstrates the instantaneous moment coefficients in three directions for 

Case I and Case II and the time-averaged values are depicted in Table 1. Both cases 

produce considerable moments in all three directions and Case II generates relatively 

higher amplitudes. It is also observed from Table 1 that for both cases, the time-averaged 

moments in x- and z-directions over one motion cycle are close to zero whereas the time-

averaged y-moments have considerable values, which indicates that the x- and z-

(a) (b)

(c)
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moments may cause some periodical rolling and pitching motions of the robot, but the 

eventual consequence of the non-symmetrical kinematics studied here is the turning 

maneuver. Figure 18 illustrates the instantaneous 𝐶𝑇 and 𝐶𝑌 of Fin-L and Fin-R for Case I 

at symmetric and non-symmetric actuations. Compared with symmetric kinematics, the 

force generation is slightly influenced by the interaction of the two fins with different 

kinematics. 

 

Figure 18 Comparison of the instantaneous    and    of Fin-L and Fin-R within one motion period 
at symmetric and non-symmetric kinematics. Case I at   =1.2. 

 

4.5 Effect of Reynolds number 

Up to this point, our simulations are carried out at a fixed Reynolds number (Re = 6000). 

The effect of Reynolds number on the performance of the underwater robot is examined 

by performing the simulations at two additional Reynolds numbers (Re = 300, 1000). The 

two pectoral fins have symmetrical kinematics and the reduced frequency fr is fixed at 

1.2. The time averaged values of thrust, mean amplitude of vertical force coefficients and 

propulsion efficiency as functions of 𝜑𝑑 are demonstrated in Figure 19. It is observed that 

for the Reynolds numbers considered here, both the thrust and propulsion efficiency have 

been seen significant enhancements as the increase of Reynolds number. It is also seen 

that the differences of the mean amplitude of vertical force coefficient between various 

Reynolds numbers are marginal, especially when compared with those of thrust force.  

(a) (b)
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Figure 19 Time averaged thrust coefficients, time-mean amplitudes of vertical force coefficient and 

propulsion efficiency as functions of the phase difference    at different Reynolds numbers.   =1.2. 

 

(a) (b)

(c)
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Figure 20 Instantaneous    and    within one motion period at different Reynolds numbers.   =1.2 

and   =90 degree. 

The time histories of 𝐶𝑇 and 𝐶𝑌 within one motion period at different Reynolds numbers 

are shown in Figure 20. All cases at different Reynolds numbers produce both thrust and 

drag within one motion period. The drag accounts for higher percentage than the thrust at 

low Reynolds number (Re=300) while larger thrust force is produced at higher Reynolds 

number (Re=6000). 

 

Flow vorticity of slice z = 0.6Lray of Fin-L at t = 0.5T for different Reynolds numbers are 

shown in Figure 21 (a) and (b). It is observed that stronger trailing edge vortex is 

generated in the higher Reynolds number case, while the lower Reynolds number case 

has significantly thicker shear layer, which may be attributed to the more dominated 

effect of the viscosity. The pressure distributions at both sides of the robot at t = 0.5T are 

demonstrated in Figure 21 (c) and (d), from which we can see that only subtle differences 

can be observed, which may explain why the vertical force coefficients for the two cases 

are very similar to each other (see Figure 20 (b)). This also indicates that the larger shear 

stress in the lower Reynolds number case may be the primary reason for the increase of 

the drag force (see Figure 20 (a)). 

(a) (b)
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Figure 21 Flow vorticity of slice z = 0.6Lray of Fin-L (a) (b), and pressure coefficient distributions at 

both sides of the robot at t=0.5T (c) (d).  (a) (c) Re=6000, and (b) (d) Re=300.   =1.2 and   =90 

degree. 

5. Conclusions 

Ray-finned fish utilize their flexible fins as control surfaces to accomplish propulsion, 

station-keeping and maneuvering. The fins are structurally composed of a thin and soft 

membrane embedded with bony rays, resulting in a skeleton-strengthened bio-membrane 

system. Such a bio-system enables fish to have multi-degree-of-freedom control over the 

deformation and force generation of the fin.  

 

In the present paper, we numerically examine the propulsion performance of a 

biomimetic robot with two sided pectoral fins, which are supported by flexible rays with 

actively controlled curvatures. The fin rays are activated individually by time-varying 

distributed forces along each ray, which mimics the pulling effect from the tendons 

attached at the basal end of each ray. By controlling the phase difference (𝜑𝑑) between 

(a) (b)

(c) (d)
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the leading edge and trailing edge rays, the pectoral fins can achieve a flapping motion 

(smaller phase difference) as well as an undulating motion (larger phase difference). The 

present results demonstrate that for all three motion frequencies considered in this work, 

the largest thrust is generated when 𝜑𝑑=90 degree (corresponding to a wave length of 

4Lfin), where the pectoral fins are undergoing flapping motions. The maximum propulsion 

efficiency, in contrary, is accomplished at different 𝜑𝑑  values for various motion 

frequencies. Specifically, the peaks of propulsion efficiency are achieved at smaller 𝜑𝑑 

values for lower frequencies. Additionally, undulating motion creates significantly 

smaller pressure differences between the upper and lower sides of the fin, thereby leading 

to a significant decrease in power expenditure. By employing different  𝜑𝑑  values or 

reversing the phase distribution, the pectoral fins can generate more complicated 

hydrodynamic forces and moments. Specifically, non-equal thrust forces are created by 

the left and right fins, which creates considerable moments in all three directions. 

However, the x- and z-moments averaged over one motion cycle are close to zero, 

implying the moments created in these two directions may lead to periodical rolling and 

pitching motions of the robot. Moreover, the non-symmetrical kinematics also generates 

to a non-zero lateral force in z-direction, which, together with the considerable net time-

averaged y-moment, can be beneficial to the turning maneuver of the robot. 

 

Generally, the motion of the ray-supported fin can be categorized into flapping mode and 

undulating mode, according to the wave number existing along the fin. The present study 

suggests that the largest thrust force is produced by flapping mode (corresponding wave 

number is 0.25). However, this may not be a general conclusion for all different 

morphologies. An experimental study of Curet et al. [11] using a robotic knifefish found 

that the highest thrust was achieved at a wave number of two. As discussed in section 4.2, 

the difference may be caused by the aspect ratio of the fin. In the present work ,the aspect 

ratio of the fin is 0.33 while the aspect ratio of Curet et al. [11] is 0.1. Therefore, we 

anticipate that for ray-strengthened fins with larger aspect ratios, flapping mode may 

produce better propulsion performance, but for fins with smaller aspect ratios, better 

performance may be achieved by undulating mode. Besides, undulating mode may 

require more rays for actuation, e.g., the anal fin of the weakly electric ghost knifefish 
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(Apteronotus albifrons) is composed of approximately 150 individual rays [9], which 

enables the existence of multiple traveling waves along its fin. The present study also 

suggests that undulating mode needs much less power expenditure than flapping motion, 

which may be a significant advantage of undulating mode. 

 

Another important feature of fish fin is the ability of actively controlling the curvature 

and bending stiffness of the rays [9,20,21,46]. The actively controlled ray is able to curve 

into the flow, i.e., the bending direction of the ray is the same as its moving direction. 

This is significantly different with the rigid and passively deformed rays. The rigid ray 

does not change its curvature while the passively deformed ray bends in the direction 

opposite to the moving direction. It has been found in the present study that such a 

curvature change can augment the thrust production of the pectoral fin, especially at 

smaller 𝜑𝑑 values. Tangorra et al. [26] designed and tested a biomimetic pectoral fin with 

a novel actuation mechanism inspired by bluegill sunfish. However, the effects of active 

control over the curvature as well as the bending stiffness are still not fully studied and 

understood, which requires more work in the future research. 
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