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Abstract: 

This article proposes a new boundary condition using the web-spline that is formulated for a finite element space 

approximation. It enables to remedy the problems of constraints due to homogeneous and non-homogeneous 

Dirichlet boundary conditions. 

The 2D linear Navier- Lamé elasticity equation with the condition CA,B  is considered, which allows total insertion 

of the essential boundary conditions into the linear system obtained without the use of a numerical method such as 

the Lagrange multiplier. This development proposal of a mixed finite element method using B-splines Web-spline 

space offers an exact implementation of the homogeneous Dirichlet boundary conditions and eliminate the 

constraints imposed by the standard conditions. This offers proof of the existence and uniqueness of the weak 

solution, as well as convergence of the numerical solution for the quadratic case. The weighted extended B-spline 

approach is thus seen to offer a more practical solution. 

Keywords: Inf-Sup condition, Navier-Lamé equation, CA,B generalized condition, Finite element, WEB-Spline, 

MATLAB. 

 

1. Introduction 

The mixed finite element method is a robust technique to solve difficult challenges from engineering and physical 

sciences using the partial differential equations. Some of the important applications include structural mechanics, 
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fluid flow, thermodynamics, and electromagnetic fields [2] that are mainly based on the approximation of Lagrange. 

However, this type of approximation has experienced a great restriction in the level of domain modelling, especially 

in the case of complicated boundaries such as that in the form of curvilinear graphs. There are some papers in 

literature which refer to mixed finite element method that enable to solve problem from several fields of physics, 

using the Gâteaux differential [30, 31, 32, 33, 34, 35] . 

 Recently, the research community tried to develop a new way of approximation based on the so-called B-spline 

that seems to have superior results in solving the engineering problems. 

B-splines have become very important tools in approximation, computer graphics, design, and manufacturing. 

Recently, they have also been exploited to build basic functions for finite element methods. The resulting techniques 

combine the efficiency and simplicity of calculations on regular grids with the geometric flexibility of classical finite 

elements. Some key advantages are the freedom of choice of the order and the fluidity of calculations, this allows to 

obtain a simple data structure with one parameter per grid point and the exact representation of the boundary 

conditions. A type of B-spline is called (weighted extended B-splines) WEB-spline [11]. 

Researchers in the field of numerical methods have also developed a marked interest in meshless methods as a 

tool for solving problems with complex edges in science and engineering [24, 25, 26, 27, 36]. The main reason for this 

growing popularity is that these methods allow the use of trivial regular meshes where the elements of the mesh 

are uniform squares within an auxiliary domain of a simple form,  often a square, into which the real domain is 

plunged, a formulation that allows the use of fast solvers for higher dimensions. 

The main section of this report thus describes a situation in which a weighting function ω, is multiplied by the B-

spline functions to adapt the WEB-splines exactly to the homogeneous and non-homogeneous Dirichlet boundary 

conditions, as these have not been checked for other classic functions. WEB-splines are a good choice for problems 

related to mixed boundary conditions with natural (Neumann) and essential boundary conditions (Dirichlet), as 

they have the advantage of applying practical implicit description of an edge for all types of edge using R-functions. 

A more comprehensive treatment of the relevant theory has been provided in existing works [4, 5]. 

Isogeometric methods borrow from the WEB-spline technique to manage domains that are parametrized on 

rectangles or cuboids or which can be expressed as the union or intersection of parametrizations of this type, such as 

the NURBS approach for CAD/CAM applications. Some problems can also be solved by combining the advantages 

of both techniques [6]. 

In this research, weighted finite element methods are implemented to solve the Navier-Lamé system with a new 

boundary condition CA,B [21], which generalises several well-known cases, especially the Dirichlet and the 

Neumann conditions. This novel proposed boundary condition permits the use of a single MATLAB code to 

summarise multiple boundary conditions encountered in the system. Using this model thus offers savings in 

terms of both processing time and programming resources as well as allowing the collation of several programs 

in a single directory.  

The Navier equation contains only one unknown which is displacement. Further, in order to apply the method 

of the mixed finite element is required at least two unknowns. For that one creates another unknown which is 
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equal to the divergence of displacements, for instance. Besides, we have selected the application of a mixed 

method to prevent a large number of degrees of freedom, in turn it allowed us to have a good accuracy of the 

digital resolution. 

The outline of this article is as follows: In the next section, the modelling of the Navier-Lamé equation is 

offered alongside the variational problem that corresponds to this equation, to permit a review of the preliminary 

aspects of applying WEB-spline-based methods for Navier-Lamé equations. In Section 3, the inf − sup conditions for 

the variational problem are then proved for the two-dimensional case using the WEB-spline-based mesh free 

method, as these are necessary allow the problem to be well-posed. 

 

2. Navier-Lamé with novel boundary condition CA,B 

Linear elasticity as a mathematical study refers to how each point of a solid object may be displaced, producing 

a deformation, as the object becomes subjected to internal stresses due to the prescribed loading conditions. This is 

thus based on linear elasticity models of materials in a continuous state. Linear elasticity is a simple case of nonlinear 

elasticity theory and thus a branch of continuous domain mechanics. The basic theory of linear elasticity references 

the ideas that the strains (or stresses) involved are infinitesimal or small and that the relationships between the 

components of stress and strain are linear; in addition, linear elasticity is valid only for those states of stress which 

do not produce yield. These assumptions are reasonable for the analysis of many engineering materials and for use 

in technical design, and such analysis is often done using the finite element method. 

If Ω ⊂ R2 is a bounded Lipschitz domain with boundary condition Γ, which can be presented in a new form that 

generalises the Neumann and Dirichlet boundaries conditions, the Navier-Lamé equation governs all the assumptions 

previously noted about the linear relationship between strains and stresses. This section thus demonstrates the Navier-

Lamé equation. 

If a solid object is deformed under the action of forces applied, given f ∈ L2(Ω) and A, B ∈ L∞(Γ)2×2 are two 

invertible matrix functions, g ∈ H1(Γ) and the positive parameters are λ and µ. A point in the solid, originally in (x, 

y), will move to (X, Y) at some point in time, and the vector u = (u1, u2) = (X − x, Y − y) will represent the 

displacement. Where the movement is small and the solid is elastic, Hooke’s law gives the relationship between the 

stress tensor and the strain tensor. Such that σ =  λtr(ε)I2 +  2µε is the stress tensor, ε = 1/2 (∇u + (∇u)Γ ) is 

the strain tensor, I2 is the identity matrix, and µ is the shear modulus (or rigidity), where λ is Lam’s first parameter. 

The Navier-Lamé equation is then given by the law of conservation of moment, ρa =  divσ, where a is the 

acceleration and ρ is the density of material. On the other hand: 

divσ =  λdiv(tr(ε)I2)  +  2µdivε (1) 

which gives: 

divσ =  λdiv(tr(ε)I2)  +  µdiv(∇u )  +  µdiv(∇u )t (2) 

Thus, applying a simple calculation, we found 

     div(tr(ε)I2)  =  div(∇u )t   =  grad(div(u)) (3) 

Which further will generate  
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     ρa =  µ∆u + (λ +  µ)grad(divu) (4) 

If the solid is in dynamic equilibrium, ρa +  f =  0, where f refers to the external forces applied to the solid, finally, 

the equation becomes 

     f =  −µ∆u − (λ +  µ)grad(divu) (5) 

The work in [7, 8, 23, 22] offers more information on elasticity problems. 

2.1 Novel boundary condition CA,B 

To present the new boundary condition CA,B several specific lemmas are required to facilitate subsequent 

calculations where mathematical boundary conditions have a matrix conception. 

Lemma 1. Either n = (n1, n2) the normal vector on the edge of Ω faces outward. This allows assumption of the 

relationship 

   𝑛1
𝜕𝑢1

𝜕𝑥
= −𝑛2

𝜕𝑢2

𝜕𝑥
   (6) 

   𝑛1
𝜕𝑢1

𝜕𝑦
= −𝑛2

𝜕𝑢2

𝜕𝑦
  

The Neumann condition is then expressed in the form 

𝜇
𝜕𝑢

𝜕𝑛
+ λ∇. 𝑢𝑛 = g (7) 

Proof.  According to Hooke’s law the stress tensor is expressed as 𝜎 =  𝜆𝑡𝑟(𝜀)𝐼2 +  2µ𝜀, which give  

     σn =  λtr(ε(u))n +  2µε(u)n (8) 

This allows use of 

    λtr(ε(u))n =  λ(∇. u)n (9) 

On the other hand, 

     2𝜀(𝑢)𝑛 = (
2𝑛1

𝜕𝑢1

𝜕𝑥
+ 𝑛2

𝜕𝑢1

𝜕𝑦
+ 𝑛2

𝜕𝑢2

𝜕𝑥

2𝑛2
𝜕𝑢2

𝜕𝑦
+ 𝑛1

𝜕𝑢2

𝜕𝑥
+ 𝑛1

𝜕𝑢1

𝜕𝑦

) = (
𝑛1

𝜕𝑢1

𝜕𝑥
+ 𝑛2

𝜕𝑢1

𝜕𝑦

𝑛2
𝜕𝑢2

𝜕𝑦
+ 𝑛1

𝜕𝑢2

𝜕𝑥

) + (
𝑛1

𝜕𝑢1

𝜕𝑥
+ 𝑛2

𝜕𝑢2

𝜕𝑥

𝑛2
𝜕𝑢2

𝜕𝑦
+ 𝑛1

𝜕𝑢1

𝜕𝑦

)  (10) 

However, based on the relationship in (6), 

     (
𝑛1

𝜕𝑢1

𝜕𝑥
+ 𝑛2

𝜕𝑢2

𝜕𝑥

𝑛2
𝜕𝑢2

𝜕𝑦
+ 𝑛1

𝜕𝑢1

𝜕𝑦

) = (
0
0
)  (11) 

Thus, simple calculation shows that it follows  

 

     
𝜕𝑢

𝜕𝑛
= ∇𝑢. 𝑛 = (

𝑛1
𝜕𝑢1

𝜕𝑥
+ 𝑛2

𝜕𝑢1

𝜕𝑦

𝑛2
𝜕𝑢2

𝜕𝑦
+ 𝑛1

𝜕𝑢2

𝜕𝑥

)  (12) 

which offers a combination of (9), (11), (12), and (7). Throughout this work, the expression (9) is thus used to express 

the Neumann condition selected to simplify the calculations. 

The essential boundary conditions (Dirichlet boundary conditions) usually create problems with constraints that offer 

difficulties in terms of the insertion of these constraints into variational problems (the penalty method, Lagrange 
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multipliers, etc.) at each step of the resolution. The difficulties produced by these constraints, at the level of the weak 

problem, the level of the approximate problem can be severe. 

To remedy this, a new generalised condition, CA,B, is implemented. 

𝐶𝐴,𝐵: 𝐴𝑢 + 𝐵(𝜇
𝜕𝑢

𝜕𝑛
+ 𝜆(𝛻. 𝑢)𝑛) = 𝑔  on 𝜕Ω = Γ   (13) 

Where A and B are two invertible and bounded matrix functions belonging to 𝐿 ∞(𝛤), with Γ =  Γ𝐷  ∪  ΓN, the 

matrices are of order 2 when working in 2D models, and of order 3 in the case of 3D models. These new 

boundary conditions have been constructed in order to generalise any standard type of boundary conditions 

(Dirichlet, Neumann, Robin, etc.). For example, the Dirichlet condition occurs when ||| B ||| is negligible ||| A |||, while 

the Neumann is usually not the only boundary condition in practical terms, thus requiring the addition of the Robin 

condition or a similar state, any of which are well presented by the new boundary condition CA,B. 

To illustrate the operation of this boundary condition, the following example can be used. Consider a rectangular 

domain with Γ =  U4 and Γi as its edge. By setting ΓD = Γ3 and Γ𝑁   =  Γ1  ∪  Γ2  ∪  Γ4, the following boundary 

conditions are considered: 

{
 
 

 
 

𝑢 = (𝑎(𝑥, 𝑦), (𝑏(𝑥, 𝑦)), 𝑜𝑛 Γ3

𝜇
𝜕𝑢

𝜕𝑛
+ 𝜆∇. 𝑢𝑛 = (𝑐(𝑥, 𝑦), (𝑑(𝑥, 𝑦)), 𝑜𝑛 Γ1

𝜇
𝜕𝑢

𝜕𝑛
+ 𝜆∇. 𝑢𝑛 = 0 , 𝑜𝑛 Γ2

𝜇
𝜕𝑢

𝜕𝑛
+ 𝜆∇. 𝑢𝑛 = 0 , 𝑜𝑛 Γ4

  (14) 

Assuming that functions a, b, c, and d are non-zero and bounded on Γ, the system (14) can then be expressed as the 

boundary condition 

𝐶𝐴,𝐵: 𝐴𝑢 + 𝐵(𝜇
𝜕𝑢

𝜕𝑛
+ 𝜆(𝛻. 𝑢)𝑛) = 𝑔 on 𝜕Ω = Γ 

Setting displacement u to Ω then allows the matrix notation of the CA,B boundary condition to be written as 

(

1

𝑎(𝑥,𝑦)
0

0
1

𝑏(𝑥,𝑦)

)(
𝑢1 |Γ𝐷
𝑢2 |Γ𝐷

) + (

1

𝑐(𝑥,𝑦)
0

0
1

𝑑(𝑥,𝑦)

)(
𝜇
𝜕𝑢1

𝜕𝑛
|Γ𝑁 + 𝜆(∇. 𝑢 |Γ𝑁)𝑛1

𝜇
𝜕𝑢2

𝜕𝑛
|Γ𝑁 + 𝜆(∇. 𝑢 |Γ𝑁)𝑛2

) =

(
𝜉1(𝑥, 𝑦) + 𝜉3(𝑥, 𝑦)

𝜉1(𝑥, 𝑦) + 𝜉3(𝑥, 𝑦)
)                                           (15) 

 

For i = 1 or 3, the following functions are defined: 

𝜉𝑖(𝑥, 𝑦) = {
1           𝑖𝑓 (𝑥, 𝑦) ∈  Γ𝑖
0  𝑖𝑓 𝑛𝑜𝑡 (𝑥, 𝑦) ∉  Γ𝑖

  (16) 

According to the system (15) will enable 

𝐴 = (

1

𝑎(𝑥,𝑦)
0

0
1

𝑏(𝑥,𝑦)

), 𝐵 = (

1

𝑐(𝑥,𝑦)
0

0
1

𝑑(𝑥,𝑦)

)  (17) 

A new unknown, the relative increase of volume due to deformation (dilatation) 𝜓 =  ∇. 𝑢 =
𝜕𝑢1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑦
  that is equal 

to divergence of the displacement is set, and the Navier- Lamé equation thus becomes 
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{

−𝜇∆𝑢 − (𝜆 + 𝜇)∇𝜓           = 𝑓 𝑖𝑛 Ω
𝜓 − ∇. 𝑢                                 = 0 𝑖𝑛 Ω

𝐴𝑢 + 𝐵 (𝜇
𝜕𝑢

𝜕𝑛
+ 𝜆(𝛻. 𝑢)𝑛) = 𝑔 𝑜𝑛 Γ

 (18) 

This mathematical model is a Navier- Lamé system with a new boundary condition, CA,B such that A is a Dirichlet 

matrix and B is a Neumann matrix. There are two strictly positive constants α and β, such that 

𝛼𝑢. 𝑢 ≤  B−1Au. u ≤  𝛽u. u ∀u ∈  R2  (19) 

where ||| . ||| is a matrix norm, as defined below. 

Thus, if ||| A |||≪||| B |||, then CA,B is the Neumann boundary and if 

||| B |||≪||| A ||| then CA,B is the Dirichlet boundary. 

 

 

 

2.2 Weak problem of Navier-Lamé with new boundary condition CA,B 

Functional spaces and norms must be defined initially. 

ℎ1(Ω)  =  {𝑢 ∶  Ω →  𝑅 \ 𝑢,
𝜕𝑢

𝜕𝑥
 ,
𝜕𝑢

𝜕𝑦
 ∈  𝐿2(Ω)},                    (20) 

𝑉 (Ω)  =  𝐻1(Ω)  =  [ℎ1(Ω)]2                                                 (21) 

𝑀 (Ω)  =  𝐿2(Ω)  =  {𝑞 ∈  𝐿2(Ω)\ ∫ 𝑞 = 0
𝛺

                                        (22)  

|| 𝜈||1,𝛺 = {∫ 𝛻𝜐 ∶
𝛺

𝛻𝜐𝑑𝛺 + ∫ 𝜐𝜐𝑑𝛺
𝛺

}
1/2

                                (23) 

|| 𝜈||0,𝛺 = {∫ 𝜐𝜐𝑑𝛺
𝛺

}
1/2

                                                          (24) 

|||𝐴||| = 𝑚𝑎𝑥|𝑎𝑖,𝑗|  𝑖 = 1.2, 𝑗 = 1.2                                          (25) 

 

The variational formulation of the Navier-Lamé problem (18) is as follows: 

Determine (u, ψ)  ∈  V (Ω)  ×  M (Ω) such that 

{
 
 

 
 ∫ µ∇u ∶ ∇vdΩ + ∫ B−1 Au. vdΓ

ΓΩ

−∫ uψn. vdΓ
Γ

+ ∫ (λ + µ)ψ∇. vdΩ
Ω

= ∫ f, vdΩ
Ω

+ ∫ B−1 g. vdΓ
Γ

 

∫ (λ + µ)q∇. udΩ
Ω

− ∫ (λ + µ)ψqdΩ
Ω

= 0

 (26) 

The weak formulation (26) may be restated as: 

Find (u, ψ)  ∈  V (Ω)  ×  M (Ω)  

{
𝑎(𝑢, 𝑣)  + 𝑏Γ  (𝑣, 𝜓)  =  𝐿(𝑣) ∀𝑣 ∈  𝑉 (Ω)
𝑏(𝑢, 𝑞)  −  𝑑(𝜓, 𝑞)  =  0 ∀𝑞 ∈  𝑀 (Ω)

  (27) 

With bilinear forms as: 
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{
 
 
 

 
 
 𝑎(𝑢, 𝑣) = ∫ 𝜇∇𝑢 ∶ ∇𝑣𝑑Ω + ∫ 𝐵−1 𝐴𝑢. 𝑣𝑑Γ

ΓΩ

𝑏(𝑣, 𝑞) = ∫ (𝜆 + 𝜇)q∇. 𝑣𝑑Ω
Ω

𝑏Γ  (𝑣, 𝑞) = 𝑏(𝑣, 𝑞) − ∫ 𝜇𝑞𝑛. 𝑣𝑑Γ
Γ

𝑑(𝜓, 𝑞) = ∫ (𝜆 + 𝜇)ψq𝑑Ω
Ω

𝐿(𝑣) = ∫ 𝑓, 𝑣𝑑Ω
Ω

+ ∫ 𝐵−1 𝑔. 𝑣𝑑Γ
Γ

 (28) 

 

This allows total insertion of the conditions at the limits in the weak formulation of the problem, which allows a 

smoothing of the numerical calculations later in the context of the numerical resolution of the problem. 

The well-posed nature [1, 9, 10] of this formulation is demonstrated as follows: For variational problem (27), the 

mapping: 

Ł ∶  𝑉(Ω) ×  𝑀(Ω) −→ 𝑋∗
 
× 𝑀∗ (29) 

defines an isomorphism if and only if a, b, bΓ, and d satisfy assumptions (30) ... (35). 

Within the ensuing spaces, V*, M* are respectively the topological duals of the functional spaces V(Ω) and M(Ω), 

which are in turn respectively defined by the formulas (21) and (22). 

| b1(u, q) | ≤ ‖b1‖ ‖u‖1,Ω ‖q‖0, Ω ∀(u, q)  ∈  V0(Ω) ×  M0(Ω) 

| b2(u, q) | ≤  ‖b2 ‖  ‖u‖1, Ω ‖q‖0, Ω ∀(u, q)  ∈  V0(Ω) ×  M0(Ω)  (30) 

| d(q, p) | ≤ ‖d ‖ ‖q‖0, Ω ‖p‖0, Ω ∀(p, q)  ∈  M0(Ω) ×  M0(Ω) 

| 𝐿(𝑣) | ≤  ‖𝐿‖  ‖𝑣‖1, Ω  ∀𝑣 ∈  𝑉0(Ω) 

| 𝐺(𝑞) | ≤  ‖𝐺‖ ‖𝑞‖0, Ω  ∀𝑞 ∈  𝑀0(Ω) 

The following Hilbert spaces are also defined: 

𝐵𝑖 = {𝑢 ∈  𝑉0(Ω)\𝑏𝑖(𝑢, 𝑞)  =  0 ∀𝑞 ∈  𝑀0(Ω)}, 𝑓𝑜𝑟 𝑖 =  1, 2  (31) 

𝐷 =  {𝑝 ∈  𝑀0(Ω)\𝑑(𝑝, 𝑞)  =  0∀𝑞 ∈  𝑀0(Ω)}   (32) 

In addition to assumption (30), it is also assumed that 

𝑎(𝑣, 𝑣) ≥  𝛿  ‖𝑣‖1,Ω
2

 
  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈  𝑉0(Ω)    (33) 

bi, for i = 1, 2 satisfies the inf − sup condition such that there exists a constant  𝜚 > 0 

𝑠𝑢𝑝||𝑞||=1𝑏𝑖(𝑣, 𝑞) ≥ 𝜚𝑖||𝑣||1,Ω∀𝑣 ∈ 𝐵𝑖
⊥  (34) 

𝑠𝑢𝑝𝑣𝜖𝐵𝑖
⊥𝑏𝑖(𝑣, 𝑞)  >  0 ∀𝑞 ∈  𝑀0(Ω)  

and that the bilinear form d satisfies the condition of weak coerciveness, as there exists a constant ε > 0 such that 

       Sup𝑞𝜖𝑀0(Ω)
 𝑑(𝑝, 𝑞) ≥  𝜀 ‖𝑝 ‖0,Ω

2  ∀𝑝 ∈  𝑀0(Ω)   (35) 

 

3. WEB-Spline process 

B-splines are fundamental in almost all geometric modelling applications. Non-uniform rational B-spline 

representations (Nurbs) (Bazilevs et al. 2008, [22]) have become standard in CAD and CAM (Shah et al. 1995, [23]) 

work, and by applying the WEB method, B-splines have also been found to provide highly efficient finite element 
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approximations. The B-splines located near the edge of a domain offer very little relevant support and thus cause 

instabilities in the numerical solution; however, they cannot be omitted without affecting the order of approximation 

and producing a large number of conditions within the resulting linear system. The main remedy for this numerical 

instability is to join the external B-splines to the internal B-splines by forming appropriate linear combinations. 

To obtain a high-quality finite element approximation, the correct choice of coefficients for the required 

combination is necessary. By joining the external and internal B-splines, a new category of B-splines called extended 

B-splines is created, which are endowed with stability. They thus form a stable base with all the characteristic 

properties of finite elements. As stability is only necessary locally, near the edge B-splines, areas inside the domain 

are not modified. In particular, for small gate widths, the majority of internal B-splines remain unchanged.  

Building the WEB base is simple: the relevant B-splines are classified into internal and external B-splines, 

depending on the size of their support in the simulation region. To stabilise the base, the external B-splines are 

then joined to the internal B-splines by creating appropriate linear combinations. This is a crucial step, and the 

coupling coefficients are chosen so as to maintain local support and the approximation power of the selected B-

splines. In addition, optional weighting of the basic functions allows for more exact fulfilment of essential boundary 

conditions. Several types of non-mesh approaches have been proposed for this within various applications. A 

major problem with the Galerkin method without mesh is the requirement to insert homogeneous and 

nonhomogeneous Dirichlet boundary conditions, yet the extended weighted B-spline approximation not only 

manages the constraints arising from Dirichlet’s boundary conditions but also addresses the question of good 

conditioning for Galerkin systems [11]. 

Identifying the essential new characteristic for construction of a stable and suitable base using the part of the 

edge which presents the embedding (Dirichlet) is of capital importance in this work. The aim is to apply the 

approximation properties of the spaces generated by the web-splines to discretise the Navier-Lamé equations as has 

previously been done for the Stokes and Navier-Stokes [13] problems. 

The standard uniform B-spline of degree n is defined by the recursion [5] 

         𝐵𝑛(𝑥) =
𝑥

𝑛
𝐵𝑛−1(𝑥) +

𝑛+1−𝑥

𝑛
𝐵𝑛−1(𝑥 − 1)  (36) 

starting from B0, with the characteristic function of the unit interval between zero and one. Figures 1, 2, and 3 show 

uniform B-splines of one, two, and three degrees, also known as linear, quadratic, and cubic B-splines, respectively. 

The following notational conventions [5] are used to clarify the ensuing work. For functions f and g, we write: 

 𝑓  ≤  𝑔 ⇐⇒  𝑓 ≤  𝑐𝑔  (37) 

For k = (k0, k1) ∈ Z2 where h > 0, a B-spline in 2D is defined as 

𝐵𝑘(𝑥, 𝑦) ≔
1

ℎ
𝐵 (

𝑥

ℎ
− 𝑘0)𝐵(

𝑦

ℎ
− 𝑘1)  (38) 

B is the univariate B-spline of degree n with support [0, n + 1), and the B-splines Bk are polynomials on the h-

grid with vertices hℤ2 scaled such that the L2-standard, ||𝐵𝑘|| = ||𝐵0 ||0,Ω is independent of h. 

The tensor product B-spline is the extension of B-spline to higher dimensions; in general, it can be defined as  
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𝐵𝑘,ℎ
𝑛 = 𝐼𝐼𝑣=1

𝑚 𝐵𝑘𝑣,ℎ
𝑛𝑣   (39) 

Such that the B-spline  𝐵𝑘,ℎ
𝑛  is an m-variant of degree 𝑛𝑣 in the 𝑣𝑡ℎ variable, index 𝑘 =  𝑘1, . . . , 𝑘𝑚, and the 

width of the grid is h. 

 

Figure 1: Linear B-Spline 

 

Figure 2: Quadratic B-Spline 
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Figure 3: Cubic B-Spline 

Using the convention that 𝑛1 = . . . =  𝑛𝑚, unless otherwise indicated, for the sake of the problem, the element n can 

be taken as an integer, rather than an integer vector. 

For  𝐼 ∈  {0, . . . , 𝑛}𝑚, the cells of the grid are thus distributed as follows: 

                 𝑄𝐼  =  𝐼ℎ + [0, 1]
𝑚ℎ  (40) 

m = 2 in the case of 2D, and there are three types of Q cell: 

• interior cells: Q ⊂ Ω, 

• cells at the edge, where the inside of Q cuts ∂Ω, 

• outside cells: 𝑄 ∩  Ω =  ∅. 

The support for the B-spline Bk of order n in two dimensions is 

              𝑠𝑢𝑝𝑝 𝐵 𝑘 =  ℎ𝑘 + [0, 𝑛ℎ]
2 , 𝑘 ∈  ℤ2  (41) 

For 𝑘 ∈  𝐾:=  {𝐼 ∈  𝑍2: 𝑠𝑢𝑝𝑝(𝐵𝐼 )  ∩ Ω /=  ∅} (the relevant index defined for Ω). If supp(Bk ) has at least one 

grid cell completely inside Ω, then Bk is an internal B-spline; otherwise, it is external. The corresponding subsets 

of K are I and J such that: K = I ∪ J (see Figure 4). More details on the construction of the Web-Spline database are 

given by Höllig et al. in [5]. 

While it may seem tempting to use 𝐵ℎ:=  𝑠𝑝𝑎𝑛{𝐵𝑘 ∶ 𝑘 ∈  𝐾} as a finite element approximation space, this does not seem 

feasible initially, as the function Bk does not conform to the boundary conditions. This difficulty can be easily resolved by 

multiplying Bk by a smoothed distance function, however: 

                  𝜔(𝑥)  ∼  𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω)  (42) 

 

Then, the weighted space B-spline (WB-space) becomes 

 

                𝐵𝜔
ℎ : =  𝑠𝑝𝑎𝑛{𝜔𝐵𝑘 ∶  𝑘 ∈  𝐾}  (43) 

 

which is generated by weighted B-splines to create a possible finite element subspace for Dirichlet problems based 
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on optimal order approximations. 

Nevertheless, the condition number of the Galerkin matrix Gh can become extremely large in this manner due to 

external B-splines having only a small part of their support inside Ω.  

As this type of basic function does not contribute much to the approximation power, some researchers might assume 

it can simply be omitted. Unfortunately, this is not the case. However, an appropriate solution to the problem of 

controlling unstable external B-splines is provided by properly joining them to internal B-splines to preserve the 

power of approximation of the finite element subspace. 

                                   

Figure 4: Quadratic B-splines relevant to domain A, marked in the center of their internal B-spline supports with 

circles and the external ones with squares. 

 

Lemma 2. For i ∈ I, the Web-spline basis Bi is defined by 

 

𝐵𝑖 =
𝜔

𝜔(𝑥𝑖)
[𝑏𝑖 +∑ 𝑒𝑖,𝑗𝑏𝑗𝑗∈𝐽 ]  (44) 

where xi indicates the centre of a grid cell that is entirely located in the domain Ω. 

The coefficients 𝑒𝑖,𝑗  , satisfy |𝑒𝑖,𝑗| ≼ 1, 𝑒𝑖,𝑗 = 0 for || 𝑖 –  𝑗||  ≽ 1 and are chosen so that all weighted polynomials 

(ωp) of order n are contained within the spline web space: 

𝐵ℎ ∶=  𝑠𝑝𝑎𝑛{𝐵𝑖 ∶  𝑖 ∈  𝐼} (45) 

(see K. Höllig et al. 2001, [11]) 

Remark 1. The external B-splines are retained purely for reasons that have nothing to do with finite elements. 

Indeed, 
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∑ ∑ 𝑐𝑗,𝑘𝑏𝑗,𝑘
𝑁
𝑘=1

𝑁
𝑗=1   (46) 

with coefficients cj,k equal to 0, is easier to use than 

 

∑ cj(i),k(i)bj(i),k(i)
M
i=1   (47) 

 

This produces a simple data structure, a rectangular index table, without the need for connectivity lists (see Höllig et 

al. 2015, [15, 16, 17]). 

The theory underlying the use of ei,j is complicated. Fortunately, to achieve an optimal order of convergence, it is not 

necessary; it is only necessary to prove the stability of the B-spline base. Thus, it is possible to work with all the B-

splines that overlap the domain without modification. 

The square 4 is only the set used to define the base B-spline, with the field of FEM simulation being the curved set 

inside such a square. The B-splines are limited to this set in that only the part that overlaps the curved set is used. 

 

Theorem 3. For an external index 𝑗 ∈  𝐽 , let 𝐼(𝑗)  =  𝑙 + {0, . . . , 𝑛}𝑚 ⊂  𝐼, a dimensional array m of internal 

indices closest to j is assumed to exist wherever h is small enough for such an array to exist. This means that the 

coefficients: 

        𝑒𝑖,𝑗 = ∏ ∏
𝑗𝑣−𝜄𝑣−𝜇

𝑖𝑣−𝜄𝑣−𝜇
𝑛
𝜄𝑣+𝜇≠𝑖𝑣

𝑚
𝑣=1𝜇=0    (48) 

are eligible for the construction of WEB-Splines according to definition 2. (see Höllig et al.2001, [11]). 

4. CA,B boundary conditions with adapted resolution  

The imposition of inhomogeneous Dirichlet boundary conditions is essential in numerical analysis of a structure; 

however, this is not straightforward where non-conformal mesh is used to discretise a structure. One of the 

contributions of this paper is thus to develop a weighted extended spline basis with high computing accuracy 

appropriate for use with the new mixed formulation of boundary conditions, CA,B,  that generalises all the cases that 

may be encountered on the edge of Ω. 

𝐴𝑢 + 𝐵 (𝜇
𝜕𝑢

𝜕𝑛
+ 𝜆∇. 𝑢𝑛) = 𝑔 𝑜𝑛 Γ    (49) 

where A and B are two reversible square (in the case of 2D models) matrices. 𝐴,𝐵 ∈  𝐿∞(𝛤)2×2 

and 𝑔 ∈  𝐻1/2 (𝛤) where the function g is an a priori known function of spatial coordinates. The inhomogeneous 

Dirichlet condition is expressed in the case of B = 0, to obtain 𝑢 =  𝐴−1𝑔 on Γ. In general, a boundary condition 

function g may not be known explicitly or may not be prescribed globally; more typically, the boundary conditions 

are prescribed in a piecewise manner such that boundary conditions are specified by individual functions 𝑔𝑖 on each 

portion of boundary, 𝑢 =  𝐴−1𝑔𝑖  𝑜𝑛 𝛤𝑖 

such that i = 1, ...N and 𝛤𝑖,∩ 𝑖𝛤𝑖 =  ∅. If each Dirichlet boundary Γi is geometrically represented as 𝛤 = ∪𝑖=1
𝑁  ;                                       

 the implicit nature of function 𝜔i means that 𝜔i =  0 on Γ𝑖, [19] 
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𝑢 =  𝐴−1𝑔𝑖 , ∀𝜔𝑖 =  0   (50) 

 

As the weighting function and boundary value function are expressed in the form of implicit functions, no unique 

expressions exist; however, typical forms are given below. 

The weighting function ω(x) acts as a multiplier that modifies the original interpolation functions and thus disappears 

on any Dirichlet boundary (ωi(x) = 0). As implicit functions are not unique for this definition, weighting functions 

of different forms can be used, as discussed in [18]. Here, two construction techniques are presented.  

The first, a relatively straightforward method, constructs the weighting function by means of the product 𝜔(𝑥) =

∏ 𝜔𝑖(𝑥)
𝑚
𝑖=1 . Clearly, ω(x) =0 if any ωi(x) = 0 on Γi.  Nevertheless, a product of all implicit functions might lead to 

a surge of function values, causing a numerical overflow and resulting in poor computing accuracy and robustness. 

Each implicit function ωi should thus be normalised in advance based on the size of the physical domain. For 

instance, the implicit function of a circle can be normalised in terms of its radius. 

 𝜔(𝑥) = 1 − (
𝑥−𝑥0

𝑅
)
2

− (
𝑦−𝑦0

𝑅
)
2

                                                                                                                           (51) 

 

Web-spline basis functions must then be adopted. The basis these form will respond to any type of non-

homogeneous boundary conditions, especially CA,B in the case where B  = 0.  Let u be the displacement 

solution of the problem (27), to give 𝑢 =  𝑢0 +  𝑢𝛤,  with u0 as the solution of (27) in the case of a homogeneous 

Dirichlet boundary and 𝑢𝛤 = 𝐴
−1𝑔 where there is a nonhomogeneous Dirichlet boundary. Here,  u is written as a 

linear combination of the Bi web-spline family cited in definition (2) 

𝑢 = ∑ 𝑢𝑖𝐵𝑖
𝑁
𝑖=1 +𝐴−1𝑔  (52) 

This can thus be rewritten in the form 

u = ∑ uiBi
N
i=1 +∑ biA

−1gi
N
i=1   (53) 

 

where bi(x) denotes the ith weighting coefficient associated with A−1gi, where the basic properties of bi(x) are [19] 

that bi  = δij , i, j = 1, 2...N , with δij  denoting the Kronecker delta function. 

Under this condition, several different forms can be used for the definition of bi. 

In transfinite interpolation form, the weighting coefficients are defined by extending the transfinite interpolation 

developed by Rvachev et al. [20] in the CAD community. 

bi =
∏ ωj

θN
j=1,i≠j

∑ j=1,i≠jN
k=1

  (54) 

This equation holds the properties of symmetry and similarity, and 𝜔𝑗  (𝑥) is generally held to be positive in the 

physical domain to ensure a non-zero value of the denominator. Evidently, 𝑏𝑖 = 1, only if 𝜔𝑖 = 0, and the partition 

of unity holds with ∑ 𝑏𝑖
𝑁
𝑖=1 = 1. The value of θ, used to interpolate normal derivatives prescribed on Γ, must 

therefore be one greater than the order of the prescribed derivatives. This means that basis proposed for the non-
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homogenous boundary condition is : 

{𝜑𝑖}𝑖 = 1, . . 𝑁   =  {𝐵𝑖  +  𝑏𝑖}𝑖 = 1, . . 𝑁  (55) 

 

5. Discretization of the Navier-Lamé problem Using WEB-Spline Basis 

In the Navier-Lamé problem, ∆u and ∇ψ are the terms with derivatives of highest order for the displacement and 

dilatation (ψ), respectively. Thus, the orders of the differential operators differ by 1, which suggests a rule of thumb 

that the degree of the basic functions used to approximate the displacement should be one larger than that used for 

the approximation of the dilatation. To satisfy the Dirichlet boundary conditions, the displacement basis functions 

must also be multiplied by a suitable weight function, ω. This work uses a φj -linear weighted extended B-spline for 

displacement approximation along with a ϕi-Haar wavelet basis function for dilatation approximation as the linear-

constant element; for the quadratic-linear element, φj is used as the quadratic WEB-spline and ϕi as  the mean zero 

linear function (see Figures 1 and 2 ), as defined above. In the following section, the inf−sup condition is settled first 

for the linear-constant element and then for the quadratic-linear element, indicating that the discrete Navier-Lamé 

problem is well-posed. 

 

Linear constant element: More precisely, Vh and Mh, the displacement and dilatation finite element spaces respectively 

can be defined as follows: 

𝑉ℎ = {(𝑢1, 𝑢2) 𝑢𝑘⁄ = ∑ 𝛼𝑗
𝑘𝜙𝑗 , 𝛼𝑗

𝑘 ∈ ℝ, 𝑘 = 1,2𝑗=𝜖𝐼𝑢 }  (56) 

𝑀ℎ = {𝜓 𝜓⁄ = ∑ 𝛽𝑖
𝑘𝜑𝑗 , 𝛽𝑖 ∈ ℝ𝑗=𝜖𝐼𝜓 }  (57) 

A sufficient condition for (Vh, Mh) to satisfy the inf−sup condition is given in [13], and a similar result was proved 

in [14] for a different pair (Vh, Mh). 

 

Quadratic-linear element  for j ∈ Iψ
 

φj(x, y) =
1

h
φ(

x

h
− jO)φ(

y

h
− j1)  (58) 

where φ is as defined below: 

φ(x):= {

𝑥 𝑜𝑛 [0,1)

2 − 𝑥 𝑜𝑛 [1,2)
2 − 𝑥 𝑜𝑛 [2,3)
𝑥 − 4 𝑜𝑛 [3,4)

  (59) 

 

To construct the displacement approximation space, the following steps are required: For i ∈ Iu , let φi be a WEB-

spline of order 3, as given by (44) and (55) where φi is defined as in (58) as the tensor product of the scaled translation 

of the function φ,  
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h 

φ(x):=

{
 
 

 
 

𝑥2

2
 𝑜𝑛 [0,1)

1

2
+ (x − 1) − (x − 1)2 𝑜𝑛 [1,2)

(3−x)2

2
 𝑜𝑛 [2,3)

  (60) 

 

𝑉𝑏 ≔ ⨁𝑘𝜖𝑇ℎ 𝑉𝐾  (61) 

 

where the quadrangulation Th is the collection of all cells 𝐾 ⊂  Ω such that 𝐾 ∩  𝜕Ω =  ∅ (those which are fully 

inside the domain Ω) and 𝐾𝜕Ω ∶=  𝐾 ∩  Ω /=  ∅ such that 𝐾 ∩  𝜕Ω /=  ∅ (those portions which intersect the 

boundary ∂Ω) and VK is the one dimensional subspace spanned by the function bK , given by 

𝑏𝐾 ≔ 𝜔(𝑥, 𝑦)𝑏(
𝑥

ℎ
− 𝑘0)(

𝑦

ℎ
− 𝑘1)  (62) 

The function 𝑏(𝑥): =  𝑥(𝑥 −  1) is then chosen so that the bubble function 𝑏𝐾  vanishes on the edges of cell K. The 

node corresponding to cell K is (k0, k1), and the weight function w is multiplied to ensure that bubble function also 

vanishes on the boundary ∂Ω. The distance function is used near the boundary, where it is free of singularities and 

blends smoothly with a plateau inside the domain. 

More precisely, ω is defined as:𝜔 = 1 − ((
max(𝛿−𝑑(𝑥),0)

𝛿
)
𝑙

 𝑑(𝑥)  =  𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω), where δ controls the height of the 

plateau and l represents the smoothness of the weight function. The plateau facilitates the use of precomputed values 

during assembly of the Galerkin matrix and also avoids the use of high-order quadratures for the integration of the 

bubble functions supported on those cells which are fully inside the domain. 

The displacement approximation space is thus taken to be. 𝑉ℎ
2: = 𝑉ℎ ⊕  𝑉𝑏 

The pair (V 2, Mh) of discretization spaces thus satisfies the discrete inf − sup condition. 

 

Lemma 4.  A web- basis {Bi}i∈I is a stable basis with respect to  

L2 -norm, 𝐶1||{𝑎𝑖}𝑖∈𝐼|| ≤ || ∑ 𝐵𝐼𝑖∈𝐼 ||0 ≤ 𝐶2||{𝑎𝑖}𝑖∈𝐼||, where C1, C1 are constants.([11]). 

 

We can also bound higher order Sobolev norms in terms of the 2-norms of the coefficients. 

 

Lemma 5.  A web- basis {Bi}i∈I  satisfies 

‖∑ 𝑎𝑖𝐵𝑖𝑖∈𝐼 ‖1  ≤ |𝐶3ℎ
−1|‖{𝑎𝑖}𝑖∈𝐼‖, and C3 > 0 is a constant.([11]). 

Lemma 6. (Inverse estimate) 

Let Vh be the finite element space considered as in (56). There thus exists a constant C such that 

‖∑ 𝑎𝑖𝐵𝑖𝑖∈𝐼 ‖1 ≤ 𝐶6ℎ
−1‖∑ 𝑎𝑖𝐵𝑖𝑖∈𝐼 ‖0. 

 

The proof of this follows from Lemmas 4 and 5. 

Lemma 7.  Suppose Th is a family of uniform quadrilateral meshes on the domain Ω and ∏ℎ is the L2-projection 
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h 

h 

h 

h 

h 

1 

operator onto Vh ⊂ H1(Ω). Then 

‖∏ 𝑣ℎ ‖1 ≤ 𝐶 ‖𝑣‖1, ∀𝑣 ∈ 𝐻0
1(Ω)  (63) 

where C is a constant which is h-independent ([13]). 

Lemma 8. There exists an operator 𝑃ℎ: 𝐻
1(Ω)  →  𝑉 2 which satisfies the following properties: 

𝑏(𝑃ℎ𝑣, 𝑞ℎ)  =  𝑏(𝑣, 𝑞ℎ), ∀𝑞ℎ  ∈  𝑀ℎ  (64) 

𝑏Γ(𝑃ℎ𝑣, 𝑞ℎ)  =  𝑏Γ(𝑣, 𝑞ℎ), ∀𝑞ℎ ∈  𝑀ℎ  (65) 

‖𝑃ℎ𝑣‖1 ≤  𝐶 ‖𝑣‖1, 𝐶 >  0 independent of h (66) 

Proof. Let P 0: H1(Ω) −→ Vh be the usual L2− projection operator with: 

‖𝑃ℎ
0𝑣‖

1
   ≤  𝑐1 ‖𝑣‖1  (67) 

‖𝑣 − 𝑃ℎ
0𝑣‖

0
≤ 𝑐2ℎ ‖𝑣‖1  (68) 

The first inequality (67) follows from lemma (7) and the density of 𝐻0
1(Ω) in 𝐻1(Ω) ((𝐻0

1(Ω) ∩ 𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
||.||1,Ω

⊂ 𝐻1(Ω)), 

while the second (70) is an L2− error estimate. 

A linear mapping P 1 : L2(Ω) −→ Vb is then fixed such that: 

∫ 𝑃ℎ
1𝑣 = ∫ 𝑣

𝑘
, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐾 ∈ 𝑇ℎ𝑘

  (69) 

The map P 1 can be interpreted as a process with two steps. The L2− projection is first applied to the space of the 

piecewise constant functions; then, in each cell, the constant K is replaced by a bubble function with the same 

integral. This gives: 

‖𝑃ℎ
1𝑣‖

0
≤ 𝑐3 ‖𝑣‖0 (70) 

P 1 is thus defined as follows: 

 

Ph v|K (x, y) = β(K)bK (x, y) , for each K ∈ Th  (71) 

In view of condition (69), the constant β(K) is taken to be
∫ 𝑣𝑘

∫ 𝑏𝐾𝑘

 . 

This means that ∫ 𝑏𝐾
𝑘

= 𝑐4ℎ
2 and ∫ (𝑏𝐾)2

𝑘
= 𝑐5ℎ

2, where c4, c5 > 0 are constants. 

‖𝑃ℎ
1𝑣‖0

2 = ∑ ∫ |𝑃ℎ
1𝑣|2

𝑘𝐾∈𝑇ℎ
= ∑ ∫ 𝛽(𝐾)2(𝑏𝐾)2

𝑘𝐾∈𝑇ℎ
  (72) 

= ∑
∫ 𝑣𝑘

∫ 𝑏𝐾𝑘

∫ (𝑏𝐾)2
𝑘𝐾∈𝑇ℎ

  (73) 

≤
1

(𝑐4)
2ℎ4

∑ (∫ 𝑣2
𝑘

) |𝐾|𝑐5ℎ
2

𝐾∈𝑇ℎ
  (74) 

= (
𝑐5

(𝑐4)
2) ‖𝑣‖0

2  (75) 
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h 

The above inequality occurs due to Cauchy-Schwartz and | 𝐾 | =  ℎ2 with reference to the area of the cell K. 

Setting 

𝑃ℎ𝑣 = 𝑃ℎ
0𝑣 + 𝑃ℎ

1(𝑣 − 𝑃ℎ
0𝑣)  (76) 

 

thus, verifies the two properties in the statement of the lemma by the virtue of the construction of Ph. The term         

𝑣 − 𝑃ℎ
0𝑣 = 0 can then be imposed on ∂Ω. 

∫ (𝑣 − 𝑃ℎ𝑣)𝐾
= |∫ (𝐼 − 𝑃ℎ

1)(𝑣 − 𝑃ℎ
0𝑣)

𝐾
= 0 ∀𝐾 ∈ 𝑇ℎ  (77) 

Because qh is piecewise linear, Green’s theorem can be applied,  

𝑏(𝑣 − 𝑃𝑣𝑣, 𝑞ℎ) =  ∫ 𝑑𝑖𝑣(𝑣 − 𝑃𝑣𝑣)𝑞ℎΩ
  (78) 

= ∫ (𝑣 − 𝑃𝑣𝑣)𝑞ℎ∂Ω
− ∫ (𝑣 − 𝑃𝑣𝑣)∇𝑞ℎΩ

  (79) 

= −∑ 𝐶𝐾𝐾∈𝑇ℎ ∫ (𝑣 − 𝑃𝑣𝑣)Ω
= 0  (80) 

and it is easy to prove (65) by applying Green’s theorem and using (64): 

‖𝑃ℎ𝑣‖1 ≤ ‖𝑃ℎ
0𝑣‖

1
+ ‖𝑃ℎ

1(𝑣 − 𝑃ℎ
0𝑣)‖1   (81) 

≤ 𝑐1‖𝑣‖1 + 𝑐6ℎ
−1‖𝑃ℎ

1(𝑣 − 𝑃ℎ
0𝑣)‖0  (82) 

≤ 𝑐1‖𝑣‖1 + 𝑐6ℎ
−1𝑐3‖(𝑣 − 𝑃ℎ

0𝑣)‖0  (83) 

≤ 𝑐1‖𝑣‖1 + 𝑐6ℎ
−1𝑐3𝑐2ℎ‖𝑣‖1  (84) 

≤ 𝑐‖𝑣‖1 (85) 

This proves assertion (66) with 𝑐 =  𝑐1  + 𝑐6𝑐3 𝑐2, such as the 𝑐6 of lemma (6). 

Theorem 9. Let consider the space  

𝐵ℎ =  {𝑢 ∈  𝐻
1(Ω)\𝑏(𝑃ℎ𝑢, 𝑞ℎ)  =  0 , ∀𝑞ℎ ∈  𝑀ℎ(Ω)}  (86) 

such as 𝑉ℎ
2 = 𝐵ℎ ⊕ 𝐵ℎ⊥. The pair (𝑉ℎ

2, 𝑀ℎ) thus satisfies the discrete inf − sup condition: 

∃𝜆0 > 0, 𝑠𝑢𝑝||𝑞ℎ||0=1
𝑏(𝑣ℎ,𝑞ℎ)

||𝑣ℎ||𝑉ℎ
2 ≥ 𝜆0, ∀𝑣ℎ ∈ 𝐵ℎ

⊥  (87) 

𝑠𝑢𝑝𝑣ℎ∈𝐵ℎ⊥𝑏(𝑣ℎ, 𝑞ℎ) > 0, ∀𝑞ℎ ∈ 𝑀ℎ(Ω)  (88) 

Proof. Let Phv ∈ B⊥ be given.  Using the continuous form of the inf − sup condition (34) and (64), (65) from 

lemma 8, there exists a c > 0 and a 𝜚 > 0 such that: 

1

𝑐
||𝑃ℎ𝑣||𝑉ℎ

2 ≤ ||𝑣||
1,Ω

≤
1

𝜚
𝑠𝑢𝑝||𝑞ℎ||=1𝑏(𝑣, 𝑞ℎ) =

1

𝜚
𝑠𝑢𝑝||𝑞ℎ||=1𝑏(𝑃ℎ𝑣, 𝑞ℎ)  (89) 

Thus, 

𝑠𝑢𝑝||𝑞ℎ||=1𝑏(𝑃ℎ𝑣, 𝑞ℎ) >
𝑐

𝜚
||𝑃ℎ𝑣||𝑉ℎ

2 , ∀𝑃ℎ𝑣 ∈ 𝐵ℎ
⊥

  (90) 
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h 

According to (64) and the second condition of (34), this gives 

𝑠𝑢𝑝
𝑣ℎ∈𝐵ℎ

⊥𝑏(𝑣ℎ, 𝑞ℎ) = 𝑠𝑢𝑝𝑣∈𝐵⊥𝑏(𝑣, 𝑞ℎ) > 0, ∀𝑞ℎ ∈ 𝑀ℎ(Ω)  (91) 

 

Remark 2.  With a similar demonstration, the bilinear form b2 (28) on V 2 × Mh can be used to verify the inf − sup 

condition cited in theorem 9. 

 

6. Convergence of WEB-Spline 

In this section, a proof is offered that the numerical solution uh(uh
1 , uh

2) converges to a weak solution 𝑢(𝑢1, 𝑢2) as 

h → 0. Moreover, the preceding results are extended in a vector field. According to the inf − sup condition 

theorem (9) this gives 

λ0 || u − uh ||1,Ω ≤  b2(u − uh, ψ − ψh)  (92) 

In addition, according to lemma (8), b2(u − uh, ψ − ψh) = b2(Phu − uh, ψ − ψh), although, according to system 

(27), 

b2(Phu − uh, ψ − ψh) = a(uh − Phu, uh − Phu)      (93) 

= a(uh − u + u − Phu, uh − u + u − Phu)      (94) 

= a(uh − u, uh − u) + a(uh − u, u − Phu)      (95) 

+ a(u − Phu, uh − u) + a(u − Phu, u − Phu)      (96) 

= a(uh − u, uh − u) + a(u − Phu, u − Phu)      (97) 

+ 2a(uh − u, u − Phu).      (98) 

Using the absolute value gives 

λ0 || u − uh ||1,Ω ≤  |a(uh − u, uh − u)| + |a(u − Phu, u − Phu)| + 2|a(uh − u, u − Phu)|  (99) 

An estimate of the expression |a(uh − u, uh − u)| generates 

|𝑎(𝑢 −  𝑃ℎ𝑢, 𝑢 −  𝑃ℎ𝑢)| ≤ ∫ µ|∇(𝑢 −  𝑃ℎ𝑢): ∇(𝑢 −  𝑃ℎ𝑢)|𝑑ΩΩ
+ ∫ 𝐵−1𝐴(𝑢 −  𝑃ℎ𝑢). (𝑢 −  𝑃ℎ𝑢)|𝑑ΓΓ

  (100) 

Using Lemma 5 in paper [21] and Hölder’s inequality thus, generates 

 

|𝑎(𝑢 −  𝑃ℎ𝑢, 𝑢 −  𝑃ℎ𝑢)|  ≤  (µ + |||𝐵−1𝐴|||) ‖𝑢 −  𝑃ℎ𝑢‖1,Ω    (101) 

 

According to Jackson’s [5] inequality, this generates 



19 
 

|𝑎(𝑢 −  𝑃ℎ𝑢, 𝑢 −  𝑃ℎ𝑢)|  ≤  (µ + |||𝐵−1𝐴|||)𝐶ℎ|| 𝑢 ||2, Ω   (102) 

with a constant C that is strictly positive and independent of step h and the norm ||.  ||2,Ω corresponding to Sobolev’s 

space H2(Ω). 

Estimating the term |𝑎(𝑢 −  𝑢ℎ, 𝑢 −  𝑢ℎ)| gives 

|𝑎(𝑢 −  𝑢ℎ, 𝑢 −  𝑢ℎ)|  ≤  (µ + |||𝐵 − 1𝐴|||) || 𝑢 −  𝑢ℎ ||1, Ω   (103) 

Finally, the term 2|𝑎(𝑢ℎ −  𝑢, 𝑢 −  𝑃ℎ𝑢)| is estimated 

2|𝑎(𝑢ℎ −  𝑢, 𝑢 −  𝑃ℎ𝑢)| ≤ 2∫ µ|∇(𝑢ℎ −  𝑢): ∇(𝑢 −  𝑃ℎ𝑢)|𝑑Ω 
Ω

+ ∫ 𝐵−1𝐴(𝑢ℎ −  𝑢). (𝑢 −  𝑃ℎ𝑢)|𝑑Γ
Γ

  (104) 

 

≤     2(µ + |||𝐵 − 1𝐴|||) || 𝑢 −  𝑃ℎ𝑢 ||1, Ω|| 𝑢 −  𝑢ℎ ||0, Ω  (105) 

 

Assuming that 

 ‖𝑢 − 𝑢ℎ‖0,Ω ≤ 𝑐 𝑖𝑛𝑓𝑣∈𝑉ℎ(Ω)‖𝑢 − 𝑣ℎ‖0,Ω (106) 

 

the space Vh(Ω) is a finite dimensional subspace of Hilbert space V (Ω), and hence, the infimum is attained. As 

the infimum is the best approximation of Phu of u onto Vh(Ω), this creates: 

|| 𝑢 −  𝑢ℎ ||0, Ω ≤  𝑐 || 𝑢 −  𝑃ℎ𝑢 ||0, Ω                                                                                                 (107) 

The inequality in (105) implies that: 

2|𝑎(𝑢ℎ −  𝑢, 𝑢 −  𝑃ℎ𝑢)|  ≤ 2(µ + |||𝐵
−1𝐴|||)𝑐 || 𝑢 −  𝑃ℎ𝑢 ||1, Ω|| 𝑢 −  𝑃ℎ𝑢 ||0, Ω                                      (108)

  

≤ 2(µ + |||𝐵−1  𝐴|||)𝑐 || 𝑢 –  𝑃ℎ𝑢2 ||1,Ω                                                                                                                                                                                          (109)

  

while Jackson’s inequality supports the following estimate, and for step h tends to 0: 

2|𝑎(𝑢ℎ −  𝑢, 𝑢 −  𝑃ℎ𝑢)|  ≤ 2(µ + |||𝐵
−1𝐴|||)𝑐 ‖𝑢 −  𝑃ℎ𝑢‖1,Ω

2                                                                              (110) 

≤ 2(µ + |||𝐵−1𝐴|||)𝑐′ℎ‖𝑢‖2,Ω  (111) 

Using inequalities (102), (103) and (111), gives 

(λ0 − µ − |||B−1A|||) || u − uh ||1,Ω ≤ 2(µ + |||B−1A|||)c’ h  || u ||2,Ω +(µ + |||B−1A|||)Ch || u ||2,Ω  (112) 

allowing the following H1(Ω)-error estimates for u − uh to be generated: 

|| 𝑢 −  𝑢ℎ ||1, Ω ≤  𝛽ℎ  (113) 

This is true as long as 𝜆0 −  µ − |||𝐵
−1𝐴|||  >  0 and β is a positive constant strictly independent of step h. 

 

7. Matrix Form of the Navier Lamé Problem 

After establishing the discrete inf − sup condition, it is possible to prove both the existence and uniqueness of the 

discrete solution, common to both the linear-constant and quadratic-linear elements; thus, here, the finite element 

spaces are labelled Vh and Mh for general application. To find the discrete solution pair (𝑢ℎ,  𝜓ℎ)  ∈  𝑉 ℎ × 𝑀ℎ 
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i 
It is sufficient to find the coefficient vectors of displacement u:= (u1, u2)T where uα = (uα)i∈Iu )T , 

α = 1, 2 and dilatation ψ:= (ψj )j∈Iψ )T .  

Assuming that: 

(𝐵−1𝐴)𝛼𝛽 = 𝜉𝛼𝛽  (114) 

(𝐵−1)𝛼𝛽 = 𝜉𝛼𝛽 , ∀𝛼, 𝛽 =  1, 2  (115) 

Then defining: 

𝐴𝑖,𝑗
𝛼 = ∫ 𝜇∇∅𝑖 . ∇∅𝑘𝑑ΩΩ

+ ∫ 𝜉𝛼𝛼∅𝑖∅𝑘𝑑ΓΓ
  (116) 

𝐵𝑖,𝑗
𝛼 = ∫ (𝜇 + λ)𝜑𝑗

𝜕𝜙𝑖

𝜕𝑥𝛼
𝑑Ω

Ω
  (117) 

𝐵𝑖,𝑗
𝛼 = ∫ (𝜇 + λ)𝜑𝑗

𝜕𝜙𝑖

𝜕𝑥𝛼
𝑑Ω

Ω
+ ∫ 𝜇𝜑𝑗𝑛∅𝑖𝑑ΓΓ

  (118) 

𝐷𝑚,𝑛 = ∫ (𝜇 + λ)𝜑𝑚𝜑𝑛𝑑ΩΩ
  (119) 

𝐿𝑠
1 = ∫ 𝑓1ϕ𝑠𝑑ΩΩ

+ ∫ (𝜁11 + 𝜁21)𝑔1∅𝑠𝑑ΓΓ
  (120) 

𝐿𝑠
2 = ∫ 𝑓2ϕ𝑠𝑑ΩΩ

+ ∫ (𝜁22 + 𝜁12)𝑔2∅𝑠𝑑ΓΓ
  (121) 

Thus, the matrix form of the discrete Navier- Lamé equations can be written as: 

(
𝐴1 0 𝐵Γ

1

0 𝐴2 𝐵Γ
1

𝐵1,𝑇 𝐵2,𝑇 −𝐷

)(
𝑢1̅̅ ̅

𝑢2̅̅ ̅

𝜓̅

) = (
𝐿1

𝐿2

0

)  (122) 

By defining the assembled matrices A = Diag(A1, A2), BΓ = (B
1
Γ, B

2
Γ)
T B =  (B1, B2), and F =  (L1, L2)T

 
,  the 

matrix form can be rewritten as: 

(
𝐴 𝐵Γ
𝐵𝑇 −𝐷

)(
𝑢̅
𝜓̅
) = (

𝐹
0
)  (123) 

Theorem 10.  The decoupling of dilatation and displacement: Drawing from the matrix form defined above, 

{
𝐴𝑢̅ + 𝐵Γψ̅ = 𝐹

𝐵𝑇𝑢̅ − 𝐷ψ̅ = 0
   (124) 

Pre-multiplying the first equation by A−1 followed by BT, before using the second equation, thus gives: 

(D + BTA−1BΓ)ψ̅ = B
TA−1F  (125) 

The following section demonstrates that D + BTA−1BΓ is invertible, and that this equation can be solved for ψ̅. 

Proof.  The positive definiteness of this matrix follows from D + BTA−1BΓ 

Defining 𝐵Γ = 𝐵 + 𝑏Γ, with ∫ 𝜇𝜑𝑗𝑛∅𝑖𝑑ΓΓ
 

〈(D + BTA−1BΓ)𝜓, 𝜓〉ℝ𝑀 = 〈𝐷𝜓,𝜓〉ℝ𝑀 + 〈B
TA−1BΓ𝜓,𝜓〉ℝ𝑀  (126) 
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= 〈𝐷𝜓,𝜓〉ℝ𝑀 + 〈A
−1(𝐵 + bΓ)𝜓, 𝐵𝜓〉ℝ𝑀 (127) 

= 〈𝐷𝜓,𝜓〉ℝ𝑀 + 〈A
−1𝐵𝜓, 𝐵𝜓〉ℝ𝑀 + 〈A

−1𝑏Γ, 𝐵𝜓〉ℝ𝑀  (128) 

where M is the cardinality of Iψ. 

The positive definiteness of D + BTA−1BΓ follows from the positive definiteness of matrix A, which in turn is 

guaranteed by the coercivity condition. The following inequality is therefore an equivalent condition to the inf − sup 

condition (34): 

‖B𝜓‖ ≥ ϱ ‖𝜓‖  (129) 

Indeed, it gives: 

〈A−1𝐵𝜓, 𝐵𝜓〉ℝ𝑀 ≥ 𝛽||𝛽𝜓||
2
≥ 𝛽𝜚2||𝜓||2  (130) 

and condition (35) thus gives: 

〈𝐷𝜓,𝜓〉𝑅𝑀 ≥ 𝜀||𝜓||
2 (131)  

The Cauchy-Schwarz inequality then gives: 

〈𝐴−1𝑏𝛤𝜓,𝐵𝜓〉ℝ𝑀 ≥ −‖𝐴
−1𝑏𝛤𝜓‖‖𝐵𝜓‖  (132) 

On the other hand, 

‖𝐴−1𝑏𝛤𝜓‖ = [∑ ((𝐴−1𝑏𝛤𝜓)𝑖)
2

𝑖∈𝐼𝑢 ]1/2 = (∑ (∑ ∑ 𝐴𝑖𝑘
−1𝑏𝑘𝑚𝜓𝑚1𝑘∈𝐼𝑢𝑚∈𝐼𝜓 )2𝑖∈𝐼𝑢 )1/2  (133) 

≤ (∑ (𝑐𝑎𝑟𝑑𝐼𝑢𝑐𝑎𝑟𝑑𝐼𝜓𝑚𝑎𝑥𝑘∈𝐼𝑢𝑚𝑎𝑥𝑚∈𝐼𝜓|𝐴𝑖𝑘
−1𝑏𝑘𝑚|∑ 𝜓𝑚1𝑚∈𝐼𝜓 )

2
𝑖∈𝐼𝑢 )

1/2

  (134) 

≤ ((𝑐𝑎𝑟𝑑(𝐼𝑢))
2
𝑐𝑎𝑟𝑑(𝐼𝜓)𝑚𝑎𝑥𝑘,𝑖∈𝐼𝑢𝑚𝑎𝑥𝑚∈𝐼𝜓|𝐴𝑖𝑘

−1𝑏𝑘𝑚)|)
1

2 ‖𝜓‖   (135) 

By taking 𝑐𝑎𝑟𝑑(𝐼𝜓
 
)  =  𝑀 , 𝑐𝑎𝑟𝑑(𝐼𝑢)  =  𝑁 , 𝑚𝑎𝑥𝑘,𝑖∈𝐼𝑢𝑚𝑎𝑥𝑚∈𝐼𝜓|𝐴𝑖𝑘

−1𝑏𝑘𝑚)| = 𝛼,  it can be shown that  

〈𝐴−1𝑏𝛤𝜓,𝐵𝜓〉ℝ𝑀 ≥ −𝑁(𝑀𝛼)
1/2𝜚‖𝜓‖2  (136) 

and combining, (108), (109), and (114) gives: 

〈(𝐷 + 𝐵𝑇𝐴−1𝐵𝛤)𝜓,𝜓〉ℝ𝑀 ≥ (𝛽𝜚
2 + 𝜀 −𝑁𝜚(𝑀𝛼)1/2)‖𝜓‖2  (137) 

As soon as 𝛽𝜚2 + 𝜀 − 𝑁𝜚(𝑀𝛼)
1

2 > 0, this proves the existence of the discrete solution (uh, ψh). 
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8. Numerical results 

8.1. Numerical results in 2D 

The performance of the WEB-Spline method for Navier - Lamé problem (18) was tested by taking the centrifugal 

force || f||= r and the domain Ω (see fig. 5)  as a rotating steel disc defined by 

Ω = {(𝑥, 𝑦) (𝑥 −
1

2
)
2

⁄ + (𝑦 − 1/2)2 ≤ (
1

2
)2} \ (𝑥, 𝑦) (𝑥 −

1

2
+ 𝑑)

2

⁄ + (𝑦 − 1/2)2 ≤ (𝑟)2      (138)                                    

with r = 0.1, d = 0.06 and the edge of Ω consists of two disjoint parts in the form of two circles 𝜕Ω =  Γ =  Γ𝐷 ∪

 Γ𝑁  such as 

 Γ𝐷 = {(𝑥, 𝑦) (𝑥 −
1

2
+ 𝑑)

2

⁄ + (𝑦 −
1

2
)2 − 𝑟2 = 0}  (139) 

 Γ𝑁 = {(𝑥 −
1

2
)2 + (𝑦 −

1

2
)2 − (1/2)2 = 0}  (140) 

As in (49), the Dirichlet matrix is A = I2 on ΓD, 02 on ΓN and the Neumann matrix is B = I2 on ΓN , 02 on ΓD ; the 

traction force g = (0, 0) on ∂Ω. 

In this section we have tested the performance of the Web-Spline method for the Navier-Lamé (18) problem. Then 

we have compared the results obtained with those of Abaqus software. 

We consider the domain Ω is a rotating steel disk (see fig. 5) defined by (138): 

 

Figure 5: Rotating steel disc 

With r = 0.1, d = 0.06 and the edge of Ω consists of two disjoint parts in the form of two circles. 

𝜕Ω = 𝛤 =  𝛤 𝐷 ∪ 𝛤𝑁   (141) 
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The centrifugal force was considered as || 𝑓 || =  𝑟. 

We assign in (49) to the Dirichlet matrix A = I2 on Γ𝐷 and 02 on Γ𝑁 and we give the Neumann matrix: B = I2 on Γ𝑁, 

and 02 on Γ𝐷 , the tensile force g =  (0, 0) on ΓN . 

We refer to the combination of the specific integration rule and the partition of the domain into cells. Numerical 

integration rules approximate a continuous integral over a domain with a discrete sum: 

∫𝑓(𝜉)𝑑𝜉 =  ∑ 𝑓(𝜉𝑙
𝑁𝑞
𝑙=1

) 𝑤𝑙 

where 𝑁𝑞 is the number of quadrature points, 𝜉𝑙 is the coordinate of point l, and 𝑤𝑙 is the corresponding weight We 

restrict this paper to Gaussian quadrature, as it is the most commonly used rule in meshfree methods. The use of 

Gauss quadrature for arbitrary two-dimensional domains requires the partitioning of the domain into integration cells. 

Figures 6 and 9 illustrate the numerical solution of displacement for a steel rotating disk with E = 1, µ = 0.28 fixed 

on a slightly eccentric axis with radius r. The domain and the direction and size of displacement for each H = (8, 16, 

32, 64) cells in each direction are shown. The results are similar to those produced using Abaqus software, suggesting 

that the web spline approach is sufficiently effective for the resolution of linear elasticity. As noted in the table 1, the 

precision of numerical approximations was also checked for this example. 

To validate the performance of the mixed formulation, we have conducted verification against simulation for the 

quasi-incompressible material case (E = 1 and u = 0.449). In the end we made a comparison with the commercial 

software Abaqus as is shown in the figures 10, 11, 12 and 13. The results found show a good agreement with those 

of Abaqus software. 

 

 

Figure 6: Displacement obtained using the novel method (left), Abaqus (right) for H = 8 

As the weighted B-spline basic functions are continuously differentiable for n ≥ 2 and smooth, the point-by-point 

residuals for the Navier-Lamé (18) problem can be computed: 
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𝑒𝑟𝑟𝑜𝑟 𝑝𝑑𝑒 = ||  − µ∆𝑢ℎ − (𝜆 +  µ)𝛻𝜓ℎ −  𝑓 ||0  (142) 

Domain 5 has a smooth edge, and that after a refinement from H ≥ 8, the error: error pde converges rapidly to 0. For 

domains with corners, there are resulting singularities. This is due to the fact that the numerical integration used to 

compute the error integral takes into consideration only the fact that the functions involved are not integrable and the 

rate. 

𝑟 =  [𝑁𝑎𝑁 −  𝑑𝑖𝑓𝑓 (𝑙𝑜𝑔(𝑒))/𝑙𝑜𝑔(2)]  (143) 

The finite element approximation can be substituted for the partial differential equation in Navier-Lamé where g = 0 

for a rotating disk. This would not be possible for the standard finite element approximation usually attributed to 

H1(Ω). The relative residual for grid widths 1/H = 1/8, ..., 1/256 as thus used, and as the residuals decrease, the rate 

estimates are seen to show a pattern that increases steadily as H goes from 64 to 256, and the error pde increases 

from 1,118e+ 000 to 4,462e-004 when H goes from 8 to 256, which can be attributed to numerical stabilities. The 

main difficulty in solving a linear system is the constraints imposed by non-homogeneous Dirichlet conditions. These 

constraints create programming difficulties, resulting in the need to apply a Lagrange multiplier method, which in 

turn generates computational difficulties and enlarges the size of the matrix. This adds to the algorithmic complexity 

and requires application of iterative methods (Jacobi, Gauss-Seidel, GMRES, etc). The GMRES (Generalized 

minimal residual) developed by Yousef Saad and Martin H. Schultz in 1986 is a representative example, which gives 

an approximate solution with a minimal residual; however, this increases the gap between the digital solution and 

the exact solution. 

 

Figure 7: Displacement obtained using the novel method (left), Abaqus (right) for H = 16 
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Figure 8: Displacement obtained using the novel method (left), Abaqus (right) for H = 32 

 

Figure 9: Displacement obtained using the novel method (left), Abaqus (right) for = 64 

 

Figure 10: Displacement obtained using the novel method (left), Abaqus (right) for = 8 
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Figure 11: Displacement obtained using the novel method (left), Abaqus (right) for = 16 

 

Figure 12: Displacement obtained using the novel method (left), Abaqus (right) for = 32 

 

Figure 13: Displacement obtained using the novel method (left), Abaqus (right) for = 64 
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Domain and displacement  

Domain and displacement  
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Table 1: The table showing the different errors 

H Error of PDE Rate L2 error Classical method (Abaqus 

software) 

8 1.118e+000 NaN 3.81647e-002 3.9682e-002 

16 3.644e-001 1.618e+000 1.09184e-003 1.1876e-003 

32 1.831e-002 4.314e+000 1.13274e-005 1.2151e-005 

64 7.003e-003 1.387e+000 
  

128 1.775e-003 1.980e+000 
  

256 4.462e-004 1.992e+000 
  

 

8.2 Numerical results 3D 

An illustration of the feasibility of the 3D Web-spline method is seen in Figure 14, solving the Navier- Lamé system 

in three dimensions for a concrete dome under gravity. 

𝑓 =  −µ∆𝑢 − (𝜆 +  µ)∇(∇. 𝑢), 𝑢 =  (0, 0, 0) 𝑜𝑛 Γ  (144) 

 According to the physical model (144), with the boundary condition of Dirichlet u =  (0, 0, 0) on Γ,  

where u is the displacement, 𝑓 (𝑓1, 𝑓2, 𝑓3) the body force, Ω the volume occupied by the solid and Γ upper half space. 

The weight functions can be considered: 

𝜔Γ = 1 − (
𝑥−

1

2

𝑅1
)

2

− (
𝑦−

1

2

𝑅2
)

2

− (
𝑧

𝑅3
)
2

, 𝜔 = −(
𝑥−

1

2

𝑟1
)

2

− (
𝑦−

1

2

𝑟2
)

2

− (
𝑧

𝑟3
)
2

  

The geometric domain Ω is then represented by the set difference of two sets such as: 

Ω =  {(𝑥, 𝑦, 𝑧)  ∈  [0, 1]3/𝜔Γ(𝑥, 𝑦, 𝑧)  >  0}\{(𝑥, 𝑦, 𝑧)  ∈  R3/𝜔(𝑥, 𝑦, 𝑧)  >  0  (145) 

Similarly, the Γ edge of domain is represented by the following set: 

Γ =  {(𝑥, 𝑦, 𝑧)  ∈  [0, 1]3/𝜔Γ(𝑥, 𝑦, 𝑧)  =  0}  (146) 

Taking (𝑟1, 𝑟2, 𝑟3)  =  (5/20, 5/20, 10/20) and (𝑅1, 𝑅2, 𝑅3)  =  (9/20, 9/20, 18/20). 

The finite element approximation 𝜔Γ 𝑢ℎ has the form: 

𝜔Γ(𝑢ℎ
1 , 𝑢ℎ

2 , 𝑢ℎ
3) = 𝜔Γ∑ (𝑢ℎ

1 , 𝑢ℎ
2 , 𝑢ℎ

3)𝑘∈𝐾 𝐵𝑘  (147) 

which gives 

𝜔Γ(𝑢ℎ
1 , 𝑢ℎ

2 , 𝑢ℎ
3) = 𝜔Γ∑ ∑ 𝑢𝑖,𝑘

3
𝑖=1𝑘∈𝐾 𝐵𝑘𝑒𝑖  (148) 

with e1, e2, e3 as the unit vectors in R3. By retaining irrelevant B-splines (those with zero coefficients), the index set 

K becomes a rectangular array. 
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The cube [0, 1]3 is only the set used to define the B-Spline basis, with the domain for the FEM Simulation being the 

curved set inside this cube. The B-Splines are thus restricted to this set, and only the part which overlaps the curved 

set is used. 

 

Figure 14: Displacement for a concrete dome under gravity: H=5 (left), for H = 10 (right) 

Table 2: The table showing the different data and error of ls and pde 

H Inner cells Boundary cells Outer cells Error of linear system (ls) Error of PDE 

5 1 98 26 1.143e-006 1.584e+000 

10 120 428 452 4.484e-009 1.688e+000 

15 637 950 1788 3.508e-010 Out of memory 

 

As noted in table 2, the error of pde being greater than 1 is due to lack of regularity in the solution, and thus is not 

necessarily caused by a bad discretisation. 

For larger H, equivalent to smaller grid width, the linear system must be solved more accurately to reduce the finite 

element error. Ideally, ls = 0, indicating that the system is solved exactly; however, the number of unknowns makes 

this both not possible and not necessary. The linear system error must, however, be a bit smaller than the finite 

element error, and the smaller the better. 

  Web-Spline (Matlab) Abaqus Software 

Time (s)  19,8521  20,1489  

 

Conclusion  

This paper used the equations of linear elasticity to generate a model problem with a novel boundary condition CA,B. 

In order to validate the proposed condition, the proposed weighted B-splines were verified using a mixed finite 
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element approach as compared to the classical numerical finite element method applied in Abaqus software. The 

results shown that the WEB-spline based quadratic- linear finite elements satisfy the inf – sup condition necessary 

for the existence and uniqueness of a solution. This was demonstrated by proving the existence of the discrete 

solution, and full convergence was established using the numerical solution for the quadratic case. Due to the limited 

regularity of the Navier-Lamé problem, this is not changed by increasing the degree of the WEB-Spline.  

The computed relative errors and their rates indicate that they are of order 1/H. Thus, their theoretical validity for 

numerical solution stability is proved. The advantage of utilising a problem with the CA,B boundary condition was 

thus shown to be a reduction in MATLAB programming complexity, allowing the development of a single MATLAB 

file to solve a range of ordinary problems as Dirichlet and Neumann boundaries. 
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