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Abstract 19 

Microplastics are globally prevalent on a large scale in various marine and 20 

terrestrial environments, including Arctic snow and precipitation in protected 21 

areas of the United Sates. However, reports of microplastics from glaciers are 22 

rare, especially for the Tibetan Plateau (TP), which is widely known as the 23 

world's Third Pole and Asian Water Tower. Adjacent to human settlements in 24 

South Asia, East China, and Central Asia, the TP features regular cross-border 25 

air pollution (e.g., black carbon and mercury), which can affect its vulnerable 26 

and pristine environments. In previous studies, abundant microplastics have 27 

been reported from Tibetan rivers/lakes water and sediments, and surface soils. 28 

We detected microplastics in glacier surface snow on the TP, which were 29 

isolated from the impact of human activities, indicating that microplastics can 30 

be transported over long distances. This evidence is expected to be significant 31 

for understanding the atmospheric transport of microplastics to the TP, and 32 

provides a global perspective on the microplastic cycle. 33 

 34 

Main Text 35 

Microplastics (MPs) have been acknowledged internationally as pollutants 36 

and a significant environmental hazard since the 1960s (Kenyon and Kridler, 37 

1969; Revel et al., 2018; Zeng, 2018; Zhang Q. et al., 2020). To date, studies 38 

on MPs from atmospheric deposition and glaciers remain limited, and the 39 

magnitude of their environmental effects is yet to be assessed (Hale et al., 2020; 40 

https://doi.org/10.1016/j.scitotenv.2020.143634
mailto:shichang.kang@lzb.ac.cn


2 

Wright et al., 2020; Zhang Y. et al., 2020). Recently, abundant MPs have been 41 

detected from the supraglacial debris of the Forni Glacier (Italian Alps) 42 

(Ambrosini et al., 2019), European and Arctic snow (Bergmann et al., 2019), 43 

and precipitation in the protected areas of the United States (Brahney et al., 44 

2020). These results suggest that atmospheric long-range transport (or 45 

airborne pathways) and deposition can be a significant and nonnegligible 46 

pathway for MPs in the environment (Evangeliou et al., 2020; Hale et al., 2020; 47 

Wright et al., 2020). 48 

The Tibetan Plateau (TP), known as the world's Third Pole with limited 49 

anthropogenic activities, is extremely sensitive to global environmental 50 

changes because of its unique topography (Yao et al., 2012). It is surrounded 51 

by regions dominated by the production of plastics (China and other Asian 52 

countries) and the dismantling of commercial ships (South Asia, India, 53 

Bangladesh, and Pakistan) (PlasticEurope, 2019). The recognition of MP 54 

pollution in the remote area of the TP might be an important scientific issue and 55 

a relevant topic in addressing the global plastic cycle (Allen et al., 2019; 56 

Evangeliou et al., 2020; Bank and Hansson, 2019). However, studies on MPs 57 

in high-altitude glaciers of this remote area have not been reported yet. 58 

In this work, snow samples from two glaciers are studied. Laohugou glacier 59 

No.12 is located in the Qilian Mountains of the northern Tibetan Plateau. It is a 60 

large valley glacier with an area of 21.9 km2. Qiangyong glacier is located 61 

between the Himalayan ranges and the Yarlung Zangbo River in the southern 62 

Tibetan Plateau, with a length of 4.6 km and a total area of 7.7 km2. In snow 63 

samples collected from the Qiangyong glacier (QY) in the southern TP and 64 

Laohugou glacier No. 12 (LHG) in the northern TP (Text S1, Table S1, and Fig. 65 

S1 in the supplementary information (SI)), three shapes of MPs were detected 66 

(fiber, fragment, and film) using FTIR and Raman spectroscopy (Fig. 1a). For 67 

the measured MPs in snow, most fibers were black, similar to those detected 68 

from urban atmospheric deposition (Zhang Q. et al., 2020), whereas the films 69 

were of different colors (red, green, and blue). The polymers identified from the 70 

glacier snow samples included polyamide (PA), rubber, polypropylene (PP), 71 

polyethylene terephthalate (PET), polycarbonate (PC), polytetrafluoroethylene 72 

(PTFE), and polyethylene (PE) (Fig. 2a and Table S2 in SI). To date, fibers are 73 

the most common shape of MPs found in Tibetan glaciers. The latest studies 74 

on atmospheric MP indicate that the main shape of suspected MPs in urban 75 

areas was fiber (Liu K. et al., 2019; Liu C. et al., 2019). In rural and remote 76 

areas of Europe, fragment was the dominant shape from wet and dry deposition 77 

(Klein and Fischer, 2019; Allen et al., 2019). No spherical or pellet-shaped MPs, 78 

which are commonly found in seawater or freshwater, were found from the TP 79 

glaciers (Lambert and Wagner, 2017). From Alps glacier snow samples, it's 80 

reported that fibers represented 65.2% and fragments 34.8% of items in all 81 

samples pooled; both microplastic fragments and fibers were of diverse colour 82 

(Ambrosini et al., 2019). As to the snow samples from Andes glacier, 83 

transparent, blue, white and red mcroplastics were the morest abundant colors 84 
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(Cabrera et al., 2020). 85 

MPs in the environment vary in shape, size, and polymer composition 86 

depending on the sources, degradation and erosion processes, and residence 87 

time. For example, atmospheric MPs from different regions (urban, suburban, 88 

and remote locations) show large differences in size distributions and chemical 89 

compositions (Allen et al., 2019; Cai et al., 2017; Zhang Y. et al., 2020). Most 90 

fragment particles were usually less than 50 μm in size, but fibers were 91 

predominantly 100–300 μm in length (Hale et al., 2020). In this study, MP sizes 92 

less than 100 μm were predominant in the TP snow (Fig. S2 in SI). It was 93 

expected that the MP abundance increased as the fragment size decreased 94 

(Hale et al., 2020). This would correspond with the results of studies in the 95 

remote areas of Europe, where MP fibers were found to be larger than 2600 96 

μm, whereas MPs with sizes of 50–150 μm contributed to more than 50% of 97 

the total detected MPs (Allen et al., 2019). Approximately 60% of the MP 98 

particles in sea ice samples were approximately 11 μm in size, with 99 

approximately 30% of MP particles in the range of 11–25 μm (Peeken et al., 100 

2018). The size distribution of MPs in European and Arctic snow (11–500 μm, 101 

with 60% in the range of 11 μm) was unexpectedly similar to that found in Arctic 102 

sea ice and deep-sea sediments (Bergmann et al., 2017, 2019; Peeken et al., 103 

2018), indicating the presence of numerous particles below the detection limit 104 

of 11 μm. For Alps glacier snow, about 39% of plastic items could not be 105 

characterized because their size was below the limit of detectability (~100 mm) 106 

due to the limitation od measurements (Ambrosini et al., 2019). In the TP, the 107 

smallest MPs in glacier snow were less than 10 μm in diameter, although MPs 108 

up to 500 μm long were also detected (Fig. 1a). As the MP particles found in 109 

European and Arctic snow were quite small (60% were ~11 μm) (Bergmann et 110 

al., 2019), MPs in Tibetan glaciers may be similar due to the snow deposition 111 

of MPs onto glacier surfaces. Due to the limited data in this study, we cannot 112 

provide comprehensive MP size distributions. 113 

According to data released from PlasticsEurope (2019), plastic production 114 

reached 359 million metric tons in 2018 with an annual increase of 3%. Plastic 115 

production in Asia accounts for approximately 51% of global production 116 

(PlasticsEurope, 2019). Once these plastics have been released into the 117 

environment, the transportation of MPs through air and water flow is practically 118 

impossible to mitigate through regulatory measures. It has been estimated that 119 

long-range transport accounted for more than 1000 metric tons of plastic 120 

deposition on protected areas in the Western United States annually (Brahney 121 

et al., 2020). Wind transfer could deposit 7–34% of primary or waste MPs into 122 

the oceans (Boucher and Friot, 2017; Evangeliou et al., 2020), and a proportion 123 

of oceanic MPs can also be transported as atmospheric MPs (Allen et al., 2020). 124 

These findings further highlight the importance of atmospheric transport for MP 125 

deposition (Zhang et al., 2019). Atmospheric transport of MPs was also 126 

considered to be a major pathway into remote regions (Brahney et al., 2020; 127 

Evangeliou et al., 2020). 128 
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The potential sources and routes by which engineered MPs entered the TP 129 

have been discussed in previous studies (Zhang et al., 2019). I n the northeast 130 

part of the TP, MPs in water bodies mainly came from tourism. Activities such 131 

as agriculture and previous secondary industries were also found to be the 132 

major contributors to soil MPs (Feng et al., 2020; Xiong et al., 2018). Studies in 133 

river water and lakeshore sediments in the TP indicated the impact of human 134 

activities (e.g., solid waste and wastewater) (Jiang et al., 2019; Zhang et al., 135 

2016). Atmospheric MP deposition should also be considered in remote areas 136 

(Hale et al., 2020). In this study, tentative atmospheric particle modeling for 100 137 

μm MP particles suggested local input of MPs in the studied areas (Fig. 1b). 138 

However, particle dispersion modeling, undertaken to consider 10 and 1 μm MP 139 

particles, suggested that the atmospheric transportation of MPs deposited on 140 

the studied glaciers mainly originated from Central Asia, Northern Africa 141 

(autumn), across Central Europe and as far as the Atlantic Ocean (winter and 142 

spring), down over the northern Indian Ocean and up toward Russia (summer) 143 

(Fig. 1b). The simulation results may indicate that MPs arriving at the TP could 144 

have been transported from both, short- and long-range distances, because 145 

human activities at higher elevations of the plateau is minimal. 146 

The TP has ensured a permanent flow to Asia's major rivers, significantly 147 

influencing the socio-economic development of surrounding countries, which 148 

account for a fifth of the global population (Yao et al., 2012; Immerzeel et al., 149 

2019). The population density and gross domestic product were intensively 150 

distributed around the TP (Fig. 2a and b), suggesting that more plastic 151 

production, use, waste, and leakage occurred in these regions due to extensive 152 

human activities. Simulations of annual ERA-Interim mean wind indicated that 153 

one branch of the westerly was forced from a high terrain into a northwesterly 154 

path (along the Himalayas) (Fig. 2c). Particularly in the spring season, when 155 

atmospheric brown clouds occur over South Asia (Ramanathan et al., 2005), 156 

the polluted air masses could reach the southern Himalayas and are further 157 

carried by the mountain-valley breeze circulation into the TP (Fig. 2d). Glaciers 158 

and lakes in the TP are usually distant from major sources of pollutants. 159 

Previous studies also indicated that air pollutants from South Asia could be 160 

transported into the complex topography of the Himalayan-TP by local 161 

meteorological conditions and regional atmospheric flows (Kang et al., 2019). 162 

For instance, a majority of anthropogenic black carbon over the TP was 163 

transported from South Asia, which contributed to 40–80% of surface BC in the 164 

monsoon season (Yang et al., 2018; Zhang et al., 2018). Stable isotopes of 165 

mercury in sediments of Lake Gokyo at high elevations of the Himalayas 166 

suggested that transboundary mercury transport from anthropogenic emissions 167 

in South Asia was the dominant source (Huang et al., 2020). Based on this 168 

understanding and as an important air pollutant, MPs can be transported by 169 

atmospheric circulation and deposited on glaciers and lakes far from their 170 

source regions because of their buoyant and persistent properties, indicating 171 

that the long-range atmospheric transport of MPs is a significant source of their 172 
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deposition on the TP. As shown in Figs. 1b and 2c, especially in the summer 173 

season, the southern TP was mainly influenced by the South Asian monsoon, 174 

which brought excess precipitation to the plateau (Yao et al., 2012). “Plastic 175 

rains” (wet deposition), as mentioned by Brahney et al. (2020), may bring a 176 

large amount of MPs to the glacier surface. 177 

The TP contains the largest volume of glaciers outside the polar regions, 178 

most of which are undergoing rapid retreat (Yao et al., 2012). Glaciers can 179 

provide insight into the long-range (or global-scale) atmospheric transport of air 180 

pollutants (including MPs, or black carbon), owing to their extremely high 181 

elevation, meteorological (wind) conditions, and unique dry and wet (snow) 182 

deposition processes (Kang et al., 2019; Zhang Y. et al., 2020). MP deposition, 183 

accumulation in glaciers, or release from melting glaciers may provide 184 

important information that has so far been neglected, such as high-altitude MP 185 

transport dynamics (shape, size, ubiquity, and historical variations), and 186 

possible atmospheric source identification. As glaciers are currently retreating, 187 

these small particles will be released into aquatic ecosystems. The possible 188 

contamination and impacts of MPs on the ecosystems in the TP and other 189 

remote areas are increasingly concerning, and may pose a future climatic risk 190 

due to their ability to absorb solar radiation and accelerate melting (Bergmann 191 

et al., 2019; Brahney et al., 2020; Evangeliou et al., 2020). Technological 192 

developments will enhance the study of MPs in the cryospheric environment in 193 

the future, and provide inroads into nanoplastic analysis (Materic et al., 2020; 194 

Sun et al., 2020). Mitigating the emissions of polymers into the air and aquatic 195 

ecosystems should be a universal responsibility to avoid exceeding critical 196 

environmental threshold concentrations. 197 
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Figures 

Figure 1 

 

Figure 1 Microplastics measured from glacier snow in the Tibetan Plateau (a), 

and (b) atmospheric particle dispersion modeling of 100, 10, and 1 μm MP 

particles arriving at the Laohugou Glacier and Qiangyong Glacier. In part (a), 

the abbreviations for the measured polymers can be referred from Table S2 in 
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SI. In part (b), MP particles were modeled as spherical with a density of 1 

g/cm3, and settling velocities were calculated using the Stokes law (0.3, 

0.003, and 0.00003 m/s, respectively). Modeling was completed using 

HYSPLIT version 5 using the GDAS 1 degree archived global meteorology 

and run in the backward mode with a continuous tracer plume emission for 

168 h at 50, 100, and 500 m above ground level. 

 

Figure 2 

 

Figure 2 Distributions of (a) population and (b) gross domestic product 

around the Tibetan Plateau, and simulated ERA-Interim annual wind (c) and 

spring wind in the Tibetan Plateau and its surroundings. Population and GDP 

data shown in (a) and (b) were downloaded from Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP, https://esg.pik-potsdam.de/projects/isimip/) 

(Murakami and Yamagata, 2016). These data were then made by using 

software of PANOPLY (a Java application allowed users to make plots of data 

from netCDF, HDF, and GRIB dataset). ERA-Interim data of wind for (c) and 

(d) were made on line of the website of https://climatereanalyzer.org/. 
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