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The issue of vertical clearances along highway systems impact the functionality 

of the road network.  Extracting current routing clearances for each structure can be a 

challenging and hazardous task.  Pavement changes and roadway rehabilitation projects 

can alter roadway geometry, complicating efforts to maintain accurate clearance 

databases. Vertical clearance measurements may vary from one lane to another beneath 

overhead structures and are often difficult to obtain due to high traffic volumes.  

Inherently, traditional methods that are used to obtain the measurements routinely impede 

the flow of traffic and subject workers to dangerous environments.  This study will 

examine the use of a Mobile LiDAR system and its applicability and accuracy to obtain 

vertical clearances on bridge structures.  Further, the study will investigate the impact of 

utilizing a Mobile LiDAR system on traffic disruption and worker safety. The 

measurements extracted from LiDAR point clouds are compared to measurements 

obtained from traditional techniques using a laser tape meter and total station.  Results 

will be analyzed to assist in quantifying the potential error between field and LiDAR 

measurements. Furthermore, the impact on work zone safety and traffic disruption is 

investigated. The results obtained from this study can be used to help identify the most 

effective method to extract infrastructure clearances and aid in future assessments.   
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Problem Statement 

As of 2017, the state of Kentucky maintains a total of 14,265 bridges, supporting 

an estimated traffic volume of more than 64.3 million daily crossings (KY Chamber, 

2017).  Obtaining accurate clearances from overhead structures provides essential 

information for the safe routing of oversized vehicles, especially along highly traveled 

routes such as interstates and parkways.  According to the Bureau of Transportation 

Statistics (BTS, 2017) a total of 10,776 million tons of freight was transported using U.S. 

highways in 2015, with a projected growth to 14,829 million tons by 2045.  The Federal 

Highway Administration (FHWA) has established design guidelines for overhead 

structures which accommodate for the safe travel of most vehicles.  However, extracting 

current routing clearances for each structure can be challenging.  Pavement changes and 

roadway rehabilitation projects can alter roadway geometry, complicating efforts to 

maintain accurate clearance databases.   

 
Significance of the Research 

Although many technologies have been successful in extracting vertical 

clearances, a recommended methodology has not been established.  Current practices 

routinely involve disruptive lane closures, exposing workers and public motorists to 

dangerous environments.  A report published by the FHWA (2015), compiled data on the 

frequency of work zone crashes in the US.  The study found that in 2015 work zone 

accidents occurred once every 5.4 minutes.  Utilizing Mobile LiDAR technology greatly 

diminishes the need for work zones and may prove to be an alternative tool in Civil 

engineering practices. 
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Purpose of the Research 

The purpose of this study is to evaluate the extraction of vertical clearances along 

active highway systems using a Mobile LiDAR system (MLS).  Data collected from three 

overpasses using a laser tape, mobile LiDAR, and total station will be used to test the 

theory of utilizing MLS to determine safe routing clearances.  Measurements from each 

method will be recorded and categorized into three groups: (1) MLS, (2) total station and 

(3) laser tape.  A statistical analysis using a one-way anova model will be used to 

determine differences between methods.  The resulting relationship of data and collection 

procedures obtained from this study can help aid in future infrastructure assessments.  

 
 
Research Questions  

For the purpose of this study the following research questions will be determined to test 

the applicability of Mobile LiDAR.   

1. Does Mobile LiDAR technology provide an accurate alternative to traditional 

methods used to extract vertical clearances from civil infrastructures? 

2. Can Mobile LiDAR technology be recommended for future infrastructure 

assessments? 

3. How do traditional collection methods compare to MLS procedures? 

4. Does the use of Mobile LiDAR alleviate exposure to dangerous environments? 

5. Do Mobile LiDAR collection procedures impact routine traffic operations?  

6. Does the data collected represent an allowable accuracy in the extraction of 

overpass clearances? 
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Assumptions 

The following assumptions were made while conducting this study 
 

1. Processing software is able to accurately extract measurements. 

2. Traditional methods used adhere to known collection standards. 

3. Instruments have been properly calibrated for accuracy. 

Limitations  

The study had the following limitations: 
 

1. Proper weather conditions. 

2. GPS signal quality. 

3. LiDAR equipment is calibrated and functional. 

4. Limited traffic flow at testing locations. 
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List of Acronyms 

LiDAR - Light Detection and Ranging 

MLS- Mobile LiDAR System 

FHWA - Federal Highway Administration 

GPS - Global Positioning System 

IMU - Inertial Measurement Unit 

FOV - Field of View 

TOF - Time of Flight 

NCHRP - National Cooperative Highway Research Program 

CMV – Commercial Motor Vehicle 

MMS- Mobile Mapping System 
 
MLS- Mobile LiDAR System 
 
DMI – Distance Measurement Indicator 
 
GNSS- Global Navigation Satellite System 
 
DOT – Department of Transportation 
 
EDM – Electronic Distance Measurement 

REM – Remote Elevation Method 

TLS – Terrestrial Laser Scanning 

SBET- Smoothed Best Estimate of Trajectory 

CORS – Continuously Operating Reference Station 

SA- Selective Availability  
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Review of Literature 
 

 
History and Advancements 
 

In 1971, Apollo 15’s lunar module (Falcon) landed on the surface of the moon.  

Concurrently, the control center module (Endeavor) remained in orbit conducting tests 

using an array of cameras and sensors.  One of the mission’s objectives was to measure 

surface profiles of the moon using a laser measurement device.  NASA’s experiment 

emitted light pulses from a laser altimeter, recording the elapsed time of reflectance from 

the lunar surface.  The control center module carrying the device as shown in figure 1, 

obtained measurements approximately every 20 seconds for the duration of 4.5 orbits.  

The results provided spatial coordinates consisting of X, Y and Z values that were used to 

recreate lunar surface profiles.  Subsequent missions also carried the laser altimeter 

aboard Apollo 16 and 17 (Abshire, 2010).     

 
 

  
Figure 1. Apollo 15 mission carrying the laser altimeter.  Adapted from “NASA’s Space Lidar 
Measurements of the Earth and Planets” by J, Abshire, (2011).  Retrieved from 
http://ewh.ieee.org/r2/wash_nova/photonics/archive/IeeeSpaceLidAbshireFinal4-5-11.pdf 
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NASA’s experiment proved successful in remotely obtaining measurements to 

recreate surface profiles.  However, the lack of Global Positioning Systems (GPS) and 

Inertial Measurement Unit (IMU) solutions hindered the commercial development of 

sensor positioning technologies.  In 1983, President Reagan announced that the United 

States GPS would be made available for civilian use.  Although, due to national security 

concerns, the signal was intentionally degraded.  Known as selective availability (SA), 

consumers were unable to acquire location accuracies under 328 feet.  In efforts to 

improve upon the limitations of SA, the private market began developing DGPS or 

differential GPS in 1995.  By using a network of fixed ground-based reference stations, 

the difference between the GPS satellite signal and the known coordinates of the 

reference station could be identified and corrected, greatly improving accuracies (Cunha 

& LoPiccalo 2008).                                                                                                                

 By the late-1990’s laser scanner manufacturers were producing aerial LiDAR 

sensors capable of 2,000 to 25,000 pulses per second.  Outfitted to planes, the sensors 

could produce high resolution topographic maps that rivaled the established practice of 

aerial photogrammetry.  Although primitive by today’s standards, these instruments 

proved to advance the growing belief that LiDAR technology was the way of the future 

(Gaurav, 2017).                                                                                                                     

 In 2000, President Clinton announced that the US would eliminate intentional 

degradation of the GPS signal.  The decision was part of an ongoing effort to make GPS 

more responsive to civil and commercial users worldwide (Clinton, 2000).  Figure 2 

shows the horizontal and vertical positional errors before and after the transition.   
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Figure 2. SA Transition.  Retrieved from: 
https://www.gps.gov/systems/gps/modernization/sa/data/timeline.gif 
 

Glennie (2009), recounts the history of the first Mobile Lidar System (MLS).  

Constructed in 2003, sensors from a helicopter based aerial system were removed and 

mounted in the bed of a pickup truck.  The newly configured MLS system was used to 

survey Highway 1 in Afghanistan, a potentially dangerous corridor for helicopter-based 

scanning.  The initial system had many downfalls, primarily its limited field of view that 

accompanies aerial systems.  However, its successful implementation demonstrated the 

potential value of MLS (Williams, Olsen, Roe, and Glennie, 2013).  

Since the introduction of the laser altimeter by NASA, laser measurement systems 

have evolved to support an extensive array of platforms.  This study will focus on Mobile 

LiDAR, a term widely used for laser scanners that are deployed on a variety of vehicles 

such as cars, trains, boats and other land-based platforms.  
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Recent Studies 
 

Previous studies have shown promising results from LiDAR technology.  Coiner 

& Bruno (2002), found that when compared to traditional surveying methods, LiDAR 

data provides a significantly higher level of true geometric completeness and detail of the 

site.  Using a conventional total station or GPS equipment, the experienced surveyor 

typically captures the minimal amount of data needed to represent the targeted surface or 

feature.  As with all highway measurement techniques, this process is prone to costly 

errors and/or omissions in the data and can sometimes be impossible to collect due to 

traffic or inaccessible regions.  The authors state that laser scanning may eliminate many 

of these errors due to the high resolution of the point cloud.  Features or targets missed in 

the field can be extracted from the data without returning to the site.  Recommendations 

for use of LiDAR for are proposed, highlighting benefits such as lower costs, higher 

productivity, and increased safety conditions.  Furthermore, the authors state that LiDAR 

provides a detailed, reliable, and accurate solution to many surveying and measurement 

problems (Coiner & Bruno, 2002). 

A study by Chang, Findley, Cunningham and Tsia (2014), evaluated the use of 

Mobile LiDAR systems for transportation agencies.  The authors found that the use of 

LiDAR is becoming increasingly popular across the United States and agencies are 

adopting this technology for practical uses in transportation related applications.  The 

primary factors behind this trend are that surveyors, engineers, and technicians are 

becoming more educated and increasingly open to LiDAR and its applications, providing 

a cost-effective alternative to traditional surveying technologies.  Transportation agencies 

have discovered many benefits in using LiDAR technology such as higher levels of 
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safety, productivity, applicability, and detail acquisition.  A definitive advantage of 

mobile LiDAR over traditional methods is its ability to collect data from a distance at 

highway speeds, thus reducing or eliminating the need for lane closures and exposure to 

potentially hazardous environments.  Inherently, MLS technology improves the safety of 

field personnel as well as the traveling public during data collection efforts (Chang, 

Findley, Cunningham & Tsia, 2014). 

 The authors also explore challenges in utilizing LiDAR systems for 

transportation applications. The study found that as with many new technologies, 

widespread acceptance of laser scanning to replace traditional methods has not been fully 

embraced.  The main factors conveyed are that laser scanning systems are still expensive, 

workflows are complicated, and the size of collected data sets tend to be overpowering 

for most computer systems.  The data also requires the knowledge of trained staff and 

technicians to post-process and extract accurate deliverables.  The study concludes that 

there is little more than anecdotal evidence to determine when a specific LiDAR platform 

should be applied over traditional methods for various applications (Chang et al, 2014).  

Additionally, this study is unique in that it incorporates considering factors for 

transportation agencies such as budget restrictions, current methods/workflows, hardware 

and software costs, external contracts, employee training, and resource allocation. 

 

Work Zone Safety 

One of the key advantages in utilizing mobile LiDAR is its ability to collect data 

at highway speeds, resulting in minimal traffic impacts and diminishing the need for lane 

closures. Additionally, LiDAR systems are not limited to daylight conditions and are 
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capable of operating in dark environments when traffic flow is off-peak.  The mobility of 

the system allows for data to be collected without exposing workers to high speed traffic.  

Static LiDAR systems, total stations, and physical measurements all require personnel on 

the ground, requiring the support of work zones where areas are often established to 

provide a safety buffer between traffic and employees.  Statistics from an FHWA report 

state that in 2015 there were an estimated 96,626 crashes in work zones, an increase of 

7.8% over 2014. This continues a rise in work zone accidents since a low of 67,887 in 

2013.  The report also compiled data on the frequency of work zone crashes stating that 

in 2015, accidents occurred an average of once every 5.4 minutes (FHWA, 2015).  

Williams et al. (2008) found that drivers may become distracted by survey instruments, 

diverting their focus from safely passing through the workzone.  Additionally, surveyors 

routinely have no other option but to place themselves in precarious situations to acquire 

necessary measurements, whereas mobile LiDAR requires little to no need for surveyor 

and vehicular interaction.   

  The deployment of Mobile LiDAR systems will likely reduce or eliminate the 

need for establishing work zones, thus minimizing the threat of potential accidents and 

exposure to hazardous working environments.  Although traffic disruption is minimal, it 

should be noted that when utilizing Mobile LiDAR technology, heavily congested areas 

or vehicles traveling in the LiDAR sensor(s) FOV (Field of View) can obstruct the 

instrument from reaching the targeted surface.   

 
MLS technology 
 
Positioning components.  Mobile LiDAR Systems (MLS) can be broken down into two 

sub-systems, comprised of geo-positioning and LiDAR components.  The geopositioning 
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system is composed of Global Navigation Satellite System (GNSS) receiver(s), a Digital 

Measurement Indicator (DMI), and an Inertial Measurement Unit (IMU).  Geo-

referencing for MLS is determined by time variable position and orientation parameters.  

The three components of the geopositioning sub-system work together to synchronize 

outputs from the sensor(s).  The GNSS antenna(s) collect satellite positioning data, the 

IMU records inertial measurements and orientation such as pitch, roll and yaw, while the 

DMI collects speed and linear distance information (Sokolova, Morrison & Haakonsen, 

2015).  Post processing of data gathered by the positioning components yields an accurate 

representation of the vehicle’s orientation parameters along the traveled route. 

 
LiDAR components.  The LiDAR system is made up of laser scanner(s), a control unit, a 

logging computer for data synchronization, and a laptop PC used to control system 

functions.  Laser scanners measure surroundings using light pulses to obtain range and 

angle measurements.  Figure 3 illustrates common components of an MLS system.  Using 

Time-Of-Flight (TOF), the scanner sends a short laser pulse to the target, the time 

difference between the emitted and received pulses are used to determine the range from 

the scanner.  The range R can be calculated using the following expression: 

R = ⅟₂ c∆t 

Where c is the speed of light and ∆t is the time of flight of the pulse (Puente et. al 2013). 
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Figure 3. Typical MMS components. Retrieved from Guidelines for the use of Mobile 
LiDAR in Transportation applications, 2013, p.55 
 
 
 
 
MLS Operations 
 

During operational procedures the MLS system collects synchronized location 

and orientation data from the GNSS antennas(s), IMU and DMI along with spatial data 

from the LiDAR sensors.  Post processing navigational data produces a trajectory 

depicting a 3-dimensional representation of the traveled route.  The generated trajectory 

is then used to synchronize LiDAR scanner outputs correlating to the time of incidence.  

The resulting data is an accurate 3D collection of surface measurements also referred to 

as a point cloud.   

 In addition to spatial collection the LiDAR scanners(s) are also capable of 

extracting surface reflectance properties.  Each scanned point can be assigned an intensity 

value based off of the return strength of the pulse. Varying surface properties affect the 
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amplitude of the return pulses.  Intensity values are assigned within a defined numeric 

range which can be displayed over graduated color tables.  Intensity properties allow 

visualization software to differentiate between low reflectance surfaces such as pavement 

and structures with highly reflective surfaces such as lane striping and signage.  Figure 4 

shows the differences in point cloud data with and without intensity values. 

 

 

Figure 4. I-264 tunnel w/intensity and w/o intensity values. 

 
 
Guidelines for MLS Accuracy 

 
The National Cooperative Highway Research Program (NCHRP) report by Olsen 

et al. (2013), suggests guidelines for the use of Mobile Mapping systems in regards to 

specific applications.  The suggested accuracy and resolution requirements as shown in 

figure 5 for clearances suggest an accuracy of <0.16 ft. and point densities >9 points per 

square foot.  It should be noted the graphic indicates that accuracies may be relaxed for 

clearance applications are subject to change based on specific DOT requirements.   
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   Figure 5. Suggested accuracy Matrix. NCHRP guidelines, 2013, p.14 

 

It is important to note that the Kentucky Transportation Cabinet (KYTC) has also 

established certain guidelines for the use of MLS data.  Procedures outlined in HD-302.5 

of the Highway Design Manual require the data to be referenced to validation points 

spaced along 500’ intervals with respect to the KY Single Zone Coordinate System 

(KYTC, 2006).  This method requires the use of survey personnel to collect highly 

accurate coordinates and mark corresponding points on the roadway surface.  Painted 

chevrons are commonly used providing a visual location in the point cloud to reference or 

“tie” lidar data to known coordinates.  Control points are collected from a recognizable 

point such as the tip of a chevron, as shown in Figure 6.   
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Figure 6. Chevron representing control point location. Retrieved from: 
http://www.pobonline.com/articles/98850-three-acronyms-you-should-know-in-mobile-
mapping 

 

Establishing control points allows the point cloud data to be tested for accuracy against 

known coordinates.  Depending on the application, the guidelines state vertical and 

horizontal accuracies that should be met when utilizing LiDAR data for state level 

projects.                                                                                                                                         

 Clancy (2009), found that data used to determine under height clearances for 

bridge overpasses does not benefit from absolute accuracy provided by established 

control. The determination of minimum clearances only requires the data to have a high 

relative accuracy between points.  The data collected for this project is not subject to the 

guidelines discussed in HD-302.5.  This project will be analyzed from a Cartesian 

perspective.  Establishing control and aligning point cloud data to a defined coordinate 

system does not alter spatial point distances or aid in the intent of this study.     

Highway Design Guidelines 

A report published by the American Association of State Highway and 

Transportation Officials (AASHTO, 2016), established design guidelines for minimum 

vertical clearances allowed for each roadway type.  Regarding freeways, the report states 
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that the vertical clearance to structures passing over freeways should be at least 16 feet 

over the entire roadway width, including auxiliary lanes and the usable width of 

shoulders with an allowance for future resurfacing.  Additionally, because of their lesser 

resistance to impacts, vertical clearance to sign trusses and pedestrian overpasses should 

be 17 feet.  The study also establishes guidelines for minimum vertical clearances on 

arterial roads as 14-16 feet, and local roads as 14 feet in both rural and urban areas 

(AASHTO, 2016).  Table 1 illustrates the minimum vertical clearances allowed for each 

roadway design.  The guidelines specify that vertical clearances should provide additional 

height for future resurfacing, indicating that the allowable clearance is subject to change 

due to roadway maintenance or design alterations.   

Table 1. 

Minimum vertical clearances. 

Type of Roadway 
Rural Urban 

US (feet) Metric (meters) US (feet) Metric (meters) 

Freeway 14-16* 4.3-4.9* 14-16* 4.3-4.9* 

Arterial 14-16 4.3-4.9 14-16 4.3-4.9 

Collector 14 4.3 14 4.3 

Local 14 4.3 14 4.3 

* 17 feet (5.1 meters) for sign trusses and pedestrian overpasses. 

Oversize Load Impacts 

Impacts between vehicles and bridge components can result in damage or failure 

to the bridge structure, injuries, traffic hazards, and loss of lives.  Lee, Mai Tong, & Yen 
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(2006), compiled data on bridge failures and found that the second leading cause of 

bridge failure or collapse is due to collision damage from vehicle or vessel impacts.  

Currently, there is no nationwide database for tracking overheight collisions.  However, 

references to the problem appear frequently in related research.  Harik, Shaaban, Gesung, 

Valli & Wang (1990), studied U.S. bridge failures over a span of 38 years between 1951 

and 1988.  Of the 79 bridge failures analyzed, 11 (14%) were precipitated by truck 

collisions.  Hilton (1973), investigated bridge related accidents in Virginia and found 

“inadequate vertical clearance” as a key contributing factor.  In 1988 the Michigan 

Department of Transportation reported an increase of 36% in overheight collisions in a 

span of one year (MRC, 1988).  The Mississippi State Highway Department installed 

warning systems on some rural bridges after an increase in damage to bridge structures 

from overheight logging trucks (Hanchey and Exley, 1990).                                                

 A study by Fu, Burhouse and Chang (2004), quantifies the problem of over-height 

impacts using collision statistics for structures in Maryland.  The authors compiled data 

on 1496 bridges and found that 116 over-height collisions occurred between 1995 and 

2000, an increase of 81%.  Police reports were reviewed to classify the type of vehicles 

involved.  Results indicated that box trucks were involved in 36% of accidents, flatbed 

trailers carrying oversized loads such as construction equipment accounted for 31%, 

dump trucks 16% and 17% involved mobile homes, refuse trucks, and other large 

vehicles.                                                                                                                       

 A study by Agrawal, Xu and Chen (2011), discussed contributing factors to 

bridge impacts in the state of New York.  The authors found that impacts from collisions 

were the third leading cause of structure collapse, trailing flooding and overweight 
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vehicles.  In an effort to perceive the problem on a national scale the authors proposed a 

survey focused on bridge impacts at the state level.  The survey asked state transportation 

agencies, “Do you consider bridge hits to be a major problem in your state?”  Out of the 

50 states polled, 44 responses were received and analyzed.  The results were mapped 

along with bridge impact data from 2005-2008 as shown in figure 7.   

 

Figure 7. Bridge Impacts by State. Reprinted from “Bridge Vehicle Impact Assessment,” 
by A. Agrawal, X. Xu and Z. Chen, 2011, p.27  

The results of the survey show that over-height load strikes occur frequently with 

the majority of states considering it a major problem.  On average, roughly four 

overheight load strikes occurred per day in the United States during the 4-year period 

spanning 2005 –2008.  The results of this survey are somewhat skewed as each state 

records bridge impacts differently.  Louisiana for instance only reports impacts resulting 
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in serious damage, however, Missouri records all impacts. Furthermore, it is likely that a 

high percentage of minor bridge impacts are never reported (Agrawal et al. 2011).    

In March of 2015, the National Transportation Safety Board (NTSB) released a 

safety alert regarding the importance of preplanning and acquiring permits for oversized 

loads.  The report states that “Commercial motor vehicle carriers transporting oversize 

loads on the nation’s highway system are continuing to impact bridge structures.  These 

impacts often lead to catastrophic events that result in fatalities and injuries, as well as 

enormous costs to repair the bridge structures” (NTSB, 2015 p.1).  The report 

investigated two recent bridge impacts where vehicles transporting an oversized load 

collided with bridge structures resulting in partial collapses of the span.  

Skagit River Bridge.  The first instance in Mt. Vernon, Washington occurred on May 

23, 2013 when an oversized load collided with the Skagit River Bridge leading to 

collapse and a replacement cost of $8.5 million.  A follow up review by Stark, 

Benekohal, Fahnestock, LaFave, He and Wittenkeller (2006), investigated factors leading 

up to the incident.  The report states that a truck was hauling an oversized steel container 

traveling Southbound on Interstate 5 when it struck an overhead beam.  The impact 

caused a 160 ft. bridge span to collapse and fall into the Skagit River along with four 

other passenger vehicles.                                                                                                

 Permitting for oversized vehicle routing is not federally regulated, therefore states 

establish individual requirements.  Some states such as the Washington Department of 

Transportation (WSDOT) allow private companies to create their own oversize permit 

without agency oversight.  In this case, the truck shown in figures 8 and 9, obtained an 

oversized load permit for a maximum vertical clearance of 15’9” and a width of 11’6”.   
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Figure 8. Oversized Load.                                          Figure 9. Damage to trailer  

 

        Figure 10. Collapsed Bridge Span. Reprinted from “Collapse of the Interstate 5 
Skagit River Bridge,” NTSB, 2013, p.12  

 

The southbound portal dimensions, as shown in figure 11, show a published 

height of 17’9” above the left lane line and 14’5” above the right edge of the shoulder, a 

difference of 3’4”.  Vertical clearance variability, which changes based on roadway and 

overhead structure geometry was a major attributing factor in this incident.  The height of 

the oversized vehicle was greater than the minimum southbound vertical clearance of 

14’8” as listed in the WSDOT Bridge List (WSDOT 2015c, d).  Consequently, the 

potential for inadequate vertical clearance was not recognized.  The authors state that 

along a permitted route, different lanes may have different clearances.  The oversized 



21 

 

 

load measuring 15’9” vertical height exceeds the vertical clearance of the bridge over a 

portion of the right lane and all of the right shoulder, while it does not exceed the vertical 

clearance of the bridge over the left lane.  If the truck was travelling in the left lane, the 

bridge impact may not have occurred (Stark, et al. 2016). 

 

Figure 11. Southbound Portal Dimensions.  Reprinted from “I-5 Skagit River Bridge 
Collapse Review,” T. Stark, R, Benekohal, L. Fahnestock, J. LaFave, J. He, and C. 
Wittenkeller, 2016, Journal of Performance of Constructed Facilities, 30, p.3. 

Pilot vehicles provide an additional level of redundancy for identifying inadequate 

vertical clearances.  Using a height rod, pilot vehicles travel ahead of the oversized load 

and relay information about possible overhead obstructions.  The pilot vehicle in the 

Skagit River Bridge incident carried a height rod set at 16’2”, 5” higher than the 

oversized load (Stark, et al. 2016).  However, the rod was installed at an angle reducing 

the overall vertical height as shown in figure 12.  Given the variable bridge geometry, the 

height pole was not positioned to detect the inadequate clearance.  The NTSB report 

found that due to changing bridge geometry, the pilot vehicle was not positioned below 
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the lowest point of the structure along the right edge line and therefore was not alerted to 

the insufficient clearance (NTSB, 2015).  

  
Figure 12. Appoximate depiction of Pilot Vehicle. Reprinted from “Collapse of the 
Interstate 5 Skagit River Bridge,” NTSB, 2013, p.42  

 

The accident resulted in a replacement cost in excess of 8 million and induced a 

major economic impact for the state, however, no fatalities were reported.  The probable 

cause of the incident as stated in the NTSB report found multiple deficiencies: (1) 

insufficient route planning by the trucking company and the oversize combination vehicle 

driver; (2) failure of the certified pilot/escort vehicle to perform required duties and 

communicate potential hazards; and (3) inadequate evaluation of oversize load permit 

requests and no provision of low-clearance warning signs in advance of the bridge by 

WSDOT (NTSB, 2015).                                                                                                    

 The second incident occurred on March 26, 2015 in Salado, Texas.  The NTSB 

report states that a commercial vehicle transporting a boom lift was traveling northbound 

on Interstate 35 when it collided with bridge structures supporting the Farm-to-Market 

Road overpass.  The impact caused two concrete beams to collapse and fall into the travel 

lanes resulting in one fatality, three injuries, and about $150,000 of structural damage.  
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The report states that the vehicle was operating without a permit and was considered an 

over-height load, measuring approximately 14’-7” at its highest point. Under Texas law, 

no vehicles over 14’ may be operated on state highways without a permit.  Additionally, 

the truck was stated to have passed several low clearance signs indicating an approaching 

clearance of 13’6”.  Probable cause of the incident was attributed to the failure of the 

commercial motor vehicle carrier to obtain a permit for transporting the oversized load, 

stating that a permit would have included a route map illustrating detours around all 

bridges that had insufficient vertical clearances (NTSB, 2015). 

 

Figure 13. Salado, Texas overpass impact.  Retrieved from:   
http://www.statesman.com/news/local/bridge-collapse-near-
salado/JxaB1MxnFqOYjcDGxng6MK/   

According to the FHWA, there is no Federal vehicle height requirement for 

Commercial Motor Vehicles (CMV). Thus, states may set their own height restrictions. 

Most height limits range from 13’6” to 14’ with exceptions granted for lower clearances 

on designated roads. (FHWA, 2014).                                                                              

 Information regarding legal dimensions of overweight/oversized loads for the 



24 

 

 

state of Kentucky show that the allowable height is regulated at a maximum of 13’6” for 

all vehicles except car haulers which are allowed 14’ (Over-dimensional Legal 

Dimensions, 2020).                                                                                                           

 Most tractor trailers using the national highway system are similar in height.  The 

typical trailer height is 13’6” as shown in figure 14, allowing for the majority of freight to 

freely access road networks without obtaining a permit. 

 

Figure 14. Typical and Over dimensional load examples. Reprinted from “Collapse of the 
Interstate 5 Skagit River Bridge,” NTSB, 2013, p.12  
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Review of current and previous methods 
 

Design guidelines for minimum vertical clearances have been established but 

extraction methods have not been specified.  The decision has been left to state 

Department of Transportation (DOT) agencies to utilize the best method to obtain the 

necessary measurements.  Although a variety of tools and techniques exist for acquiring 

minimum vertical clearances, a defined approach has not been determined. As new 

technologies are introduced, these methods continuously change.  A review of previous 

and current techniques are outlined below.        

 

Grade Rods.  Most likely due to the simplistic approach, research for this method is 

sparse but mentioned as a previous extraction method and a current quality control 

technique.  Normally used for surveying applications, grade rods are an extendable 

measurement device with graduated units used to determine differences in elevation.  A 

study by Lauzon (2000), notes that vertical clearance extraction performed by ConnDOT 

utilized a fiberglass measurement rod to determine the minimum vertical clearances of 

overpasses.  Measurements were taken from each lane line and recorded to overhead 

clearance diagrams.  The study also notes that this method requires traffic protection, 

which can be substantial on interstates and in urban areas. 

 

Total station.   Total stations combine electronic EDM (Electronic Distance 

Measurement) technology and theodolites into a single unit, they are capable of digitally 

calculating horizontal, vertical and slope distances and angles.  Using an internal or 
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external microprocessor, these digital data observations can be adjusted and transformed 

to local X, Y, Z coordinates (US Army Corps of Engineers 2007). 

A few key measurements are required when utilizing a total station to determine 

the height of overhead objects.  The graphic in figure 15 illustrates the typical parameters 

needed to calculate object heights, also referred to as remote elevation (REM).   

 
 

 

Figure 15. Remote Elevation Method. Leica user Manual, 2014, Adapted from 
http://surveyequipment.com/PDFs/Leica_FlexLine_UserManual.pdf 

 

The principle of the REM method is explained through figure 15, where a base 

point P1 is positioned vertically below point P2.  From the instrument P0, a measurement 

is taken at the prism above base point P1, providing the slope distance d1.  A subsequent 

measurement at P2 is used to calculate the angular difference α, from P1.  Given the 

height of the prism, the height (a) can then be calculated internally by the total station.  

http://surveyequipment.com/PDFs/Leica_FlexLine_UserManual.pdf
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Traditional surveying techniques and equipment such as the total station are 

widely used and accepted by the Civil Engineering, surveying and mapping community. 

However, these operations often expose workers to dangerous conditions especially in 

highway applications.  The Kentucky Highway Design Manual states that “surveyors 

work in hazardous environments, such as rugged terrain or in the vicinity of construction 

equipment and high-speed traffic.  Working in these conditions requires a constant 

awareness of the need for safety” (KTC, 2006, p.812).  Additionally, safety measures 

taken to protect surveyors and field personnel can directly affect traffic flow. 

Laser Tape Measure.    Techniques commonly used to aid in structural measurement 

include tape measurements combined with hand recording and optical methods (Banister, 

Raymond & Baker, 1998).  Since the publication of this study in 1998, advancements in 

distance measuring devices such as the laser tape measure have been introduced.  

Utilizing laser tape meters has proven to be a more efficient and simplified method to 

extract vertical clearances over analog methods.  The device can be operated by a single 

individual providing quick and accurate measurements displayed in a digital format.  

Although an improvement over previous methods, extracting overpass clearances via 

laser tape is not without its challenges.  Accurate readings are obtainable, though many 

aspects of height extraction are subject to the individual operator.  Human error and 

judgement can adversely affect the quality of the data.  Visually assessing and 

determining the location of the lowest point overhead can be difficult, especially with 

changing roadway and structure geometry.  Additionally, failure to hold a perpendicular 

angle to the roadway can result in inaccurate measurements. 
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Terrestrial Laser Scanner. In recent years, the use of terrestrial laser scanners (TLS) in 

engineering surveys has gained an increasing interest due to the advantages of high 

accuracy and rapid data collection.  Millions of 3-D points can be delivered by this 

technology in a short period of time providing efficient data collection for large scale 

engineering applications such as roads, bridges and tunnels (Wang, Zhao, Huang, 

Vimarlund & Wang, 2014).                                                                                      

 Stationary terrestrial laser scanning technology refers to laser scanning 

applications that are performed from a static point on the surface of the earth (CDOT, 

2011).  Utilizing many of the same principles found in MLS systems, terrestrial scanners 

differ in their platform.  Often mounted atop a tripod, TLS scanners remain stationary 

during operation.  Due to its static location, TLS systems are capable of highly accurate 

and rapid data collection.  A study by Zhang, Arditi and Chen (2013), used a terrestrial 

laser scanner to measure the vertical clearances of thirty-seven bridges along the Circle 

Interchange in Chicago, IL. The study reports the data collection procedures undertaken 

to complete the project.  Over the course of a month, 150 scans were completed using a 

Leica C10 terrestrial scanner.  Scanning at midnight to avoid traffic disruption and data 

noise, each bridge consisted of four static scans per structure as depicted graphically in in 

figure 16. 
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Figure 16.  Representation of scan locations. Reprinted from “Applications of Terrestrial 
laser scanning,” by C. Zhang, D. Arditi, and Z. Chen, 2013, Journal of traffic and 
Transportation Engineering, 1(5), p. 328. 

Collected data was aligned and post processed to determine the minimum vertical 

clearances.  The extracted measurements were then compared to AASHTO design 

guidelines and published into clearance reports for the state DOT.  The authors state that 

data collection through the use of a total station would provide adequate results, although 

laser scanning is more accurate, generating millions of points as opposed to a limited 

number of specified points (Zhang et al, 2013).  The study also notes that due to security 

concerns, some of the data was not available to the public.  The scope of this study does 

not provide accuracy statistics, as structures were only tested to meet minimum clearance 

guidelines.  Additionally, while TLS scanners were proven effective in measuring 

vertical clearances, traffic disruption and employee safety were not discussed.   
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Additional Technologies.  Additional technologies have been developed; however, most 

are proprietary or developed privately.  Little research is available and therefore were not 

included in this review. 
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Methodology 

 

To compare differences between Mobile LiDAR and traditional methods, the 

research will identify procedures and workflows currently used to extract vertical 

clearances from civil infrastructures.  Three different locations will be chosen for this 

study.  Mobile LiDAR data will be collected using an Optech Lynx Mobile Mapping 

System, utilizing two V100 laser scanners.  Traditional extraction methods will utilize a 

Spectre laser meter and a Nikon NPL-332 total station.  Measurements extracted from the 

LiDAR data will be processed using CAD software.  Vertical clearances will be extracted 

from each outside beam using roadway edge lines as a perpendicular reference. This 

study will collect measurements obtained using each technique from the same location.  

Graphical representations of the data will be analyzed along with a review of collection 

procedures and its perceived impact on traffic and safety.   
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Software Tools.    Four software tools were used in this study: Microstation Connect Version 5, 

Topodot Version 3.7, Optech LMS Pro Version 3.2, and Applanix PosPac MMS Version 

7.2.  Microstation is a computer aided drafting program created by Bentley. PosPac MMS 

(Mobile Mapping Suite) is a software tool used in post processing GNSS data collected by the 

POS system (Positional Orientation System). Optech LMS Pro is a post processing platform 

which aligns laser scan data with trajectories exported from PosPac. Topodot is an add-on 

application running within Microstation used for extracting features, measurements, topographies, 

and 3D models from LiDAR point clouds. 

Hardware.    LiDAR Mobile Mapping System.  This study utilizes an Optech LYNX V100 

mapping system, as shown in figure 17.  The system uses dual 360° scanners, capable of a 

combined collection rate of 200,000 points per second with an absolute accuracy of ± 5cm (1 σ).  

An Applanix POS LV sub-system composed of an LN-420 IMU, DMI, and dual Trimble Zephyr 

2 GNSS antennas will also be used to log correlational position and orientation data. 

 

Figure 17. Optech LYNX Mobile Mapping System  
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Laser Meter.    A Spectra Precision QM55 Laser distance meter will be used to measure 

vertical clearances as shown in figure 18.  This device will be mounted to surveying 

prism pole as shown in figure 19 to provide perpendicular vertical measurements.  

Manufacturer’s specifications list a maximum range of 165' with an accuracy of ± 1/16". 

                                                              

Figure 18. Spectre QM55 Laser Meter Figure 19. Prism Pole attachment 

 

Total station. A Nikon NPL-332 total station will be used obtain vertical clearance 

measurements as shown in figure 20.  Manufacturers specifications list an accuracy of ± 

(2+2 ppm × D)mm for measuring distances, and a 5s resolution for measuring angles.  To 
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limit human error, a bipod and prism pole will be incorporated to aid in extraction of 

bridge clearances.  

 

Figure 20. Nikon NPL-332 Total Station 

Location Selection.  Three locations were chosen for this project as shown in figures 21-

23.  The areas were selected based on site conditions where safety concerns for the 

traveling public and researchers could be adequately managed.    

 
Figure 21. Cincinnati Rd at I-75 - Sadieville, KY. 
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Figure 22. Rogers Gap Rd at I-75 - Stamping Ground, KY.  
 

 

  

  
 

  
  
  

 

Figure 23. Alexandria Rd at New Circle - Lexington, KY. 
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Procedures 

The experimental procedures conducted are the same for each test area and are described 

as follows:     

Laser Tape.  The laser tape device was affixed to a survey rod and bipod to ensure level, 

perpendicular measurements from the roadway surface.  Through the use of the 

integrated laser, the center of each beam was located and measured from roadway edge 

lines.  In areas where no lane lines were present, a distance from 6” from the pavement 

edge was used.  A PK nail was driven into the asphalt to ensure location accuracy 

between methods.  The average of three measurements were taken from each location and 

recorded.  The height of the instrument was measured from the ground and added to each 

measurement to calculate total height. 

Total Station.   Using the PK nail as a reference, the pole, bipod, and prism were placed 

under the targeted beam as shown in figure 24.  The total station was set up and leveled 

as shown in figure 25.  Using the REM method, measurements were collected and 

recorded for each location.   
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Figure 24.  Survey Pole, prism, bipod set up. 

 

Figure 25. Total station setup. 

Mobile LiDAR.  An Optech Lynx Mobile Mapping System as shown in fig x was used to 

scan the project areas after the field measurements were completed.  A boresight 

procedure as discussed below was performed in order to calibrate the system for the 
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upcoming scan.  Travelling at a constant speed of 40MPH, data was collected from each 

structure.  

 

Figure 26. Optech Lynx Mobile Mapping System. 

 

Post Processing.  Trajectory and GPS information collected from the POS (Position 

Orientation System) during scanning operations was post processed through Applanix 

POSPAC MMS software.  Using data from continuously operating reference stations 

(CORS) to compute a set of corrections for the roving receiver, the software is capable of 

exporting an accurate overall position and orientation solution.  The exported smoothed 

best estimate of trajectory (SBET) file is GPS timestamped and used to align with 

correlational LiDAR outputs.  Data used in this study was processed with six CORS 
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stations, KYBO, KYTF, GRTN, KYTI, KYBU and KYTG as shown in figure 27.  The 

solution was then exported using the Kentucky Single Zone coordinate system.  

Additional metrics for the trajectory solution can be found in Appendix A. 

 

Figure 27. POSPAC Basestation control network 

System calibration/boresight.   System calibration parameters were obtained using a 

boresight scan.  Data was collected in order to calculate differences in like planar 

surfaces detected from each sensor.  Multiple passes produce a set of point clouds 

covering redundant surface observations.  Recommended conditions for the boresight 

area should include objects with multiple planar surfaces in various orientations.  Areas 

with tall buildings or tree canopies should be avoided in order to retain consistent GPS 

data.  During post-processing LMS software detects differences in planar surface 
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orientations.  Using the method of leastsquares, the software determines a set of unknown 

parameters from a set of redundant observations.  Misalignments between the 

measurement axes of the IMU and laser scanners are calculated. The software applies a 

correctional value to offset errors in laser range, scan angle, sensor position and 

orientation.  The values are then applied to the instrument in order to produce corrected 

data for the scan project (Optech LMS Manual, 2013).                                                      

 An urban intersection was chosen as the boresight location for this project.  This 

area provided multiple buildings with limited overhead obstructions.  Four passes were 

made in order to obtain planar surfaces from different orientations.  Figure 28 shows the 

point cloud of the scanned area.  Figure 29 shows planar surfaces extracted for 

boresighting calculations.  Using the corrected parameters from the boresight, LMS 

software was used to export the point cloud for each overpass.  Figure 30 shows an image 

of the exported point cloud for the Cincinnati Rd. location.   

 

Figure 28. Point cloud of boresight area 
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Figure 30. Cincinnati Rd. point cloud. 

 

Clearance Extraction.  A combination of Bentley Openroads Designer and TopoDOT 

software was used to extract minimum clearances from the point clouds.  Visualizing the 

Figure29. Detected planar surfaces extracted from boresight. 
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data by intensity values, exterior lane lines were used as a reference path for the 

extraction tools.  Given the referenced line, the software calculates the clearance values 

between the roadway and the above structure.  Cross section examples for each project 

location depicting minimum clearances are shown in figures 31-33.  Table 2 shows the 

clearance values for all measurement methods.   

Figure 31. Rogers Gap cross section. 

Figure 32. Alexandria Dr. cross section. 
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Figure 33. Cincinnati Rd. cross section 

Table 2. 

Measurement Results in feet 

Alexandria Dr. at New Circle Rd. 
Location LMS Laser Tape REM 

Southern Beam NB 15.615 15.655 15.609 
Northern Beam NB 20.963 20.977 20.910 
Southern Beam SB 16.125 16.182 16.125 
Northern Beam SB 21.393 21.412 21.317 

Cincinnati Rd at I-75 
Location LMS Laser Tape REM 

Southern Beam NB 17.626 17.646 17.588 
Northern Beam NB 21.877 21.888 21.810 
Southern Beam SB 16.701 16.723 16.664 
Northern Beam SB 20.824 20.837 20.789 

Rogers Gap Rd at I-75 
Location LMS Laser Tape REM 

Southern Beam NB 16.856 16.844 16.861 
Northern Beam NB 15.938 15.957 15.906 
Southern Beam SB 16.405 16.439 16.431 
Northern Beam SB 15.679 15.693 15.691 
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Method of Data Analysis 

The results of this study can be divided into two parts.  First a One-Way Anova test was 

run to statistically show how each method of clearance extraction performed relative to 

the others under the same conditions.  The researcher tested the hypothesis that the Laser 

tape, REM, and LiDAR methods did not show statistical differences between each 

collected dataset using an α=0.05.  Table 3 provides a summary of the defined alternative 

hypotheses (H1) as well as the null hypotheses (H0).  The null hypothesis (H0) will be 

rejected if the one-way ANOVA test falls into the rejection region (p<.5).  Otherwise, the 

null hypothesis would be retained.  The laser tape group is represented by μ1, REM 

method by μ2, and LiDAR by μ3.  Sample size for each group is represented by n.  Second, 

the researcher compared each method on operational procedures, impact on work zone 

safety and traffic disruption. 

Table 3 
Hypothesis Summary. 

 

 

 

Threats to Validity 

Several factors could threaten the validity of this study.  First, Mobile LiDAR 

technology can be affected by rain, fog, snow, or dust present in the scanning 

atmosphere.  Data collection performed during these conditions can adversely affect data 

quality.  Additionally, the GPS component is dependent on satellite coverage and signal 

H0: μ1 = μ2 = μ3  

H1: Means are not all equal            
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strength.  The precision of the GPS can vary day-to-day depending on atmospheric 

conditions.  Traffic can also affect the collection of LiDAR data; any surrounding 

vehicles can prevent the laser from reaching its target surface.  Laser tape and total 

station methods require precise setup and operational decisions that could impact the 

quality of data acquired. 

Results and discussion 

Statistical analysis.   A one-way ANOVA was conducted to determine if collected 

measurements were statistically different for groups using different collection methods. 

Methods were classified into three groups: Laser tape (n = 12), Mobile LiDAR (n = 12), 

and REM (n = 12). There were no outliers, as assessed by boxplot (Appendix B).  The 

mean of measurement increased from the REM (n = 12, M = 17.958, SD = 2.433), to 

Mobile LiDAR (n = 12, M = 18.00, SD = 2.481), to Laser Tape (n = 12, M = 18.021, SD 

= 2.477) measurement method groups, in that order, but the differences between these 

groups were not statistically significant, F(2, 33) = 0.002, p = .998.   The group means 

were not statistically different (p > .05). Therefore, we cannot reject the null hypothesis 

and we cannot accept the alternative hypothesis.  The second analysis looks to discuss 

operational procedures as well as each methods impact on traffic and safety.  Due to 

safety concerns, site selection for this project was based on locations with low traffic 

flow.  However, the procedures undertaken can be theoretically applied to high traffic 

areas.   

Remote Elevation Method.  Data collected using the REM method proved to be the most 

challenging.  The magnified sights of the total station limited the field of view, dark 
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conditions and similar materials made it difficult to distinguish features and locate 

individual beam centers.  Small changes in vertical inclination of the instrument can 

significantly change the result of the intended measurement, this effect was apparent 

when performing operations at close range.  Setup and data acquisition time was 

moderate, multiple setups for each structure were required in order to retain a line of sight 

to the intended target.  Multiple setups introduce a greater possibility for error.  Improper 

leveling and varying instrument heights can skew results.  This method requires workers 

to occupy areas of interest below the structure, potentially exposing them to hazardous 

situations.  Depending on site layout and bridge design this method may require the use 

of traffic control measures to provide a safe working environment.   

Laser Tape.    The laser tape proved to be the fastest method of acquiring vertical 

clearance data when a limited number of data points are needed.  Results are obtained in 

real time and the operation can be carried out by a single individual.  This method 

directly subjects workers to vehicular traffic hazards for the longest duration.  Individuals 

must level the instrument under the overhead target while acquiring measurements, 

potentially distracting them from surrounding hazards.  The Laser tape, when added to a 

bipod and prism pole can mitigate human error when used properly.  However, if the pole 

is out of level the correct value may not be obtained.  Depending on site conditions, this 

method may require additional traffic control measures. 

MLS.  This method did not require any workers to be present under the structures and 

had little to no impact on traffic.  Traffic control measures are usually not required unless 

needed under special circumstances.  Unlike the REM and laser tape method, LiDAR 
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technology does not provide real time data.  Additional time is needed to post process the 

trajectory and point cloud data before extracting results.  Boresighting procedures are 

also recommended before data collection.  Unforeseen complications in GPS signal 

quality or hardware components can negatively impact accuracies.  LiDAR systems 

require additional resources such as hardware, software, and trained personnel and 

therefore may not be always be a feasible option.                                                                                                                                       

 Data collected for this study concentrated on extracting clearance heights from 

exterior lane lines.  However, changing roadway geometry and bridge designs can result 

in overhead clearance variability, reducing minimum clearances in other locations below 

the structure.  In these scenarios, additional traffic control measures may be needed to 

properly access and measure these areas when using the REM or laser tape methods.   

Conclusion 

No significant statistical differences were observed between the laser tape, REM, 

and MLS methods.  Therefore, the study found that all three methods of vertical 

clearance extraction are capable of providing accurate measurements under the right 

conditions.  The selection of which technology to utilize involves multiple factors such as 

site conditions, time, environmental conditions, resource availability, and safety 

provisions.  The laser tape and REM methods provide a proven option to extract 

clearances on small scale projects in low traffic areas where safety concerns can be 

adequately managed.  Mobile LiDAR is best suited for projects involving multiple 

structures, variable overhead clearances, hazardous conditions or areas prone to traffic 

congestion such as interstates or parkways.   
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Future Research                                                                                                                         

 While the current research provides a solid basis for the use of MLS systems to 

determine minimum clearances for bridge structures, the technology is not a one size fits 

all approach.  This study identifies several key points; however, it does not discuss cost 

variability between methods.  A cost benefit analysis encompassing all aspects of various 

projects and methods would further aid in future decision-making processes.   
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APPENDIX A 

Trajectory and GPS Tracking information and metrics. 

 

Rover Data QC 
Raw IMU Import QC Summary 

 

IMU data input file imu_Mission 1.dat 
IMU data check log file imudt_Mission 1.log 
IMU Records Processed 275371 
Termination Status Normal 
IMU Anomalies 0 

 

 

 

 

Primary Observables & Satellite Data 
L1 Satellite Lock/Elevation 
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GPS L1 SNR 
 

 
 

GPS L2 SNR 
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Satellite Lock/Elevation 
 
 
 
 

Smoothed Trajectory Information 
Top View 
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APPENDIX B 

One-way Anova Descriptives and Boxplot. 

     
Measurement 

 Sum of Squares df Mean Square F Sig 
Between Groups .025 2 .012 .002 .998 
Within Groups 200.345 33 6.071   
Total 200.369 35    

 
 
Measurement                      95% Confidence Interval for Mean 

 N Mean Std. 
Deviation 

Lower 
Bound 

Upper 
Bound 

Minimum Maximum 

Laser Tape 12 18.02117 2.447189 16.44724 19.59510 15.655 21.889 
REM 12 17.95842 2.433109 16.41249 19.41249 15.609 21.810 
Mobile LiDAR 12 18.00058 2.481262 16.42406 19.57710 15.631 21.877 
Total 36 17.99339 2.392662 17.18383 18.80295 15.609 21.889 
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