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Abstract  
Accurate demand forecasting is a crucial component in building an efficient supply chain. Forecasting 
is a major determinant of inventory cost. Several methods and models for forecasting have been studied 
extensively over the last decades. In recent years, there has been a growing interest in the capabilities 
of Machine Learning algorithms in forecasting, and specifically in Neural Network models. Despite the 
expanding research on forecasting with Neural Networks, there have been only few studies focusing on 
the specific ramifications for forecasting demand of perishable products at the Stock Keeping Unit 
(SKU) level.  

Forecasting SKU-level demand for perishable products is a challenging task: time series for demand 
are volatile, skewed, subject to external factors, and frequently consist of only a few observations. 
Furthermore,  SKU-level demand forecasts are typically used for inventory management, which 
imposes additional requirements on the forecasting procedure. This study examines how to design 
Neural Networks that address the specific ramifications of inventory management for several thousand 
SKUs.  

This work identifies central issues in the field and compiles successful approaches to overcome them. 
Next, a Neural Network architecture is suggested that takes these special requirements into account, 
building on insights from the literature. Namely, it learns from multiple hundred time series, 
incorporates external data into the prediction, and provides quantile forecasts of cumulative demand. 
In a large-scale experiment, the model forecasted the demand for several hundred SKUs in the fresh 
product segment of a German wholesale company. These forecasts were subsequently used for 
simulating the inventory development at the company for three months under close-to-real-life 
conditions.  

This study shows that Neural Networks are a promising approach to deal with large-scale forecasting 
problems for perishable products. The main finding of this study is that within the experimental setting, 
the base form of the suggested model for accurate daily demand forecasting yielded superior results to 
an array of competing baselines. In terms of inventory performance, the results are mixed, but present 
exciting directions for further research. 
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1 INTRODUCTION 

Accurate demand forecasting is a crucial component in building an efficient supply 

chain. Forecasting is a major determinant of inventory cost, service levels, scheduling and 

staffing efficiency, and forecasting errors contribute to the bullwhip effect (Gardner, 

2006). The more accurately a company can predict demand, the less uncertainty it faces, 

and the better it can adapt to future developments. This especially true in the case of 

forecasting perishable products, where inaccurate forecasts lead to waste. 

Several methods and models for forecasting have been studied extensively over the last 

decades. In recent years, there has been a growing interest in the capabilities of Machine 

Learning algorithms (ML) in forecasting, and specifically in Neural Network models. 

Paraphrasing Mitchel’s (1997, as cited in Goodfellow et al., 2016, p. 99) definition, 

Machine Learning involves a computer learning through experience to perform a set of 

tasks with increasingly better performance. Though the first research on Machine 

Learning dates back to the 1950s, the field has seen a surge in popularity over the last 

decade.  

Advancements in computational capacity and data availability have made the training 

of deep, complex Neural Networks feasible and have led to breakthroughs in, e.g., image 

recognition and natural language processing. Neural Networks won the ImageNet 

Competition (Krizhevsky et al., 2012) and beat the world champion in the game of Go 

(Silver et al., 2016), which was long deemed unimaginable due to the complexity of the 

game. These breakthroughs have sparked the interest of forecasting researchers and 

created a need to explore the potential of Neural Networks in time series prediction. 
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There is a well-established body of literature tackling the problem of forecasting. Many 

standard procedures rely on constructing a mathematical model of the time series with 

statistical methods. These statistical models make assumptions about the underlying data-

generating process. Other than statistical models, Neural Networks make no a priori 

assumption but infer the underlying process from data. Another attractive property of 

Neural Network models is their ability to model complex non-linear relationships between 

variables. In contrast, traditional statistical models usually assume linear relationships 

between variables.  

Numerous papers have investigated the performance of Neural Networks for time 

series prediction. Though promising in theory, only a few studies found evidence to 

support the belief that Neural Networks outperform statistical models. The opposite is 

often the case (c.f. Carbonneau et al., 2008; Makridakis et al., 2018a). Considering the 

mixed results, the performance of machine learning algorithms in time series prediction is 

unlike the anticipated breakthrough they had in image recognition or Natural Language 

Processing. (Makridakis et al., 2018a). On top of that, even when Neural Networks 

succeed, their performance gains must be weighed against their fundamental drawbacks: 

They are computationally expensive and provide little insight, as they are black box 

models. (Carbonneau et al., 2008) 

Despite the expanding research on machine learning algorithms in forecasting, there 

have been few studies focusing on the specific ramifications for forecasting demand of 

perishable products at the Stock Keeping Unit (SKU) level. This study examines how to 

design Neural Networks that address the specific ramifications of inventory management 

for several thousand SKUs.  
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It seeks to answer the following questions: 

1. What are the specific ramifications for forecasting SKU-level demand of 
perishable products?  

2. How can the accuracy of SKU-level demand forecasts of perishable products be 
improved by using Neural Networks? 

3. Do accuracy improvements in forecasting accuracy translate to improved utility 
values in inventory management under real-life restrictions? 

With regards to question 1, this work reviews the literature on SKU-level demand 

forecasting to identify central issues and compile successful approaches to overcome 

them. Next, a Neural Network architecture is suggested that takes these special 

requirements into account, building on insights from the literature. Namely, it learns from 

multiple hundred time series, incorporates external data into the prediction, and provides 

quantile forecasts of cumulative demand. A subsequent experiment empirically evaluates 

the performance of the suggested model; the model forecasts the demand for several 

hundred SKUs in the fresh product segment for Lekkerland SE & Co. KG, a German 

wholesale company. To answer question 3, the inventory development of these SKUs will 

be simulated for three months. The model will be compared against a statistical baseline 

model to quantify the performance gain of using a more complex model, given there is 

one.  

This thesis is divided into seven chapters: This introductory Chapter 1 has described 

the need for further investigation on Neural Network models for demand forecasting in 

wholesale. Chapter 2 provides theoretical foundations on forecasting and Neural 

Networks. Chapter 3 reviews the literature on Neural Networks forecasting and introduces 

key issues of SKU-level demand forecasting and approaches to solve them. Building on 

the existing literature, Chapter 4 introduces a theoretical framework for forecasting under 

the specific requirements of demand forecasting. For the subsequent empirical part of the 
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thesis, the data from the case company is described and explored in Chapter 5. This chapter 

also outlines the process of designing and training the models, generating the forecasts 

based on the data, and finally, simulating the inventory development. Chapter 6 presents 

the findings from the simulation and analyses the performance of the model for different 

product groups and service levels. Chapter 7 discusses the findings and reconciles them 

with the results of previous studies. It presents their implications for practice, as well as 

their limitations, and show directions for further research.  
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2 THEORETICAL FOUNDATIONS 

The purpose of this chapter is to introduce central concepts for inventory management, 

forecasting and Neural Networks. The chapter is structured as follows: Section 2.1 

introduces a classic inventory management policy and illustrates the need for forecasting. 

Section 2.2 defines forecasting as a time series prediction problem and presents an 

overview of traditional forecasting methods. Chapter 2.3 provides theoretical foundations 

of Neural Networks.  

 INVENTORY MANAGEMENT 

Inventory Management is one of the most important and well-developed areas of 

Operations Management. Inventory management determines the amount and timing of 

orders for products and materials. The major reasons for keeping inventory are economies 

of scale, protection against demand fluctuations, and long lead times. (Thonemann, 2010, 

pp. 194–195) 

The two most common inventory management policies are continuous review policies 

and periodic review policies. This section will focus exclusively on the latter one, which 

arguably resembles the conditions for inventory management of highly perishable 

products best. The key idea of periodic review policy is to check demand at regular 

intervals, and to place orders to fill the gap between the current stock and the pre-defined 

target stock.  
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The notation used is as follows:  

R	 Review Period length, alternatively: the time between two orders 
r	 Product Lead Time 
S	 Order-up-to level 
𝐼!	 Inventory at the beginning of period t 
𝑋!	 Order quantity in period t 
𝑃𝑆!	 Pipeline stock of period t, i.e. orders that have not yet arrived  
𝐹"#$ Distribution of demand during the replenishment time 
𝜇"#$ 		 Expected demand during the replenishment time 
𝜎"#$ Standard-deviation of demand during the replenishment time 
𝛼 Target Cycle Service Level (CSL), i.e. probability of filling the full 

demand of a period 
  
Under periodic review, the inventory I of a product is checked every R periods. Orders 

are then placed, such that the order-up-to-level S is reached. Orders of previous periods 

that have not yet arrived, and the pipeline stock PS, are therefore considered as well. The 

order quantity of period t is described in Equation 1. (Thonemann, 2010, p. 224) 

 𝑋! = 𝑆 − 𝐼! − 𝑃𝑆! 
Eq. 1 

The basic assumption of this policy is that demand is stochastic. Given a target cycle 

service level α, the optimal order-up-to-level 𝑆∗ covers the demand during the 

replenishment time with probability α. The replenishment time has the length R+r. It 

describes the lead time of a product r plus the time until the next order arrives, which is 

equal to the review period R. 𝑆∗is found through solving the optimization problem: 

 min 𝑆	
𝑠. 𝑡. 𝐹"#$(𝑆) ≥ 𝛼 

Eq. 2 

Under the assumption of normally distributed demand with a constant mean and 

standard deviation, where demand of all periods is independent, S* can be computed 

directly. (Thonemann, 2010, p. 232) It consists of the expected demand during the 

replenishment time 𝜇"#$ plus a safety stock, which is computed by the standard deviation 
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𝜎"#$ times a z-score that corresponds to the value of the cumulative normal distribution 

function at the target CSL α.  

 𝑆∗ = 𝜇"#$ + 𝑧 ∗ 𝜎"#$ 
Eq. 3 

 𝑧 = 𝐹&'(𝑎) Eq. 4 

Because of seasonal effects, and exogenous influences,  it might be unrealistic to 

assume a constant demand distribution, let alone assuming normality. An alternative to 

estimating demand over the replenishment period is to predict the demand via forecasting. 

(Thonemann, 2010, pp. 251–253) 

 𝜇"#$ = <𝑦>!#(,!

"#$

(*'

 Eq. 5 

The uncertainty of demand is then directly linked to the forecast error, specifically its 

standard deviation, which can be estimated via the sample variance (Thonemann, 2010, p. 

253). For estimating the forecasting error over multiple periods, typically two assumptions 

are made: forecast errors are normally distributed, and they are stochastically independent. 

Given these assumptions, the multi-period forecast error can be estimated as:  

 𝜎>+ =
1

𝑇 − 𝑁	<
(𝑦! − 𝑦!B )+	

,

!*'

 Eq. 6 

 𝜎>"#$+ =	(𝑅 + 𝑟)𝜎>+ Eq. 7 

 

 FORECASTING 

This chapter will frame forecasting as a time series prediction problem. A forecast 𝑓!,- 	is 

made in period 𝑡 for a future period 𝑡 + 𝑘. According to Brooks (2008, p. 247), forecasts 
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are conditional expectations of the value 𝑦 the time series takes, given all information Ω  

available at period t. When referring to prediction, this thesis follows Brook’s notation:  

 𝑦>!#-,! = 𝑓!,- = 	𝐸(𝑦!#-|Ω!) Eq. 8 

While qualitative forecasting methods exist, the research has been much more 

concerned with quantitative forecasting. Quantitative forecasting is applicable if 

(numerical) information about the past is available, and past patterns of the series are likely 

to continue. (R.J. Hyndman & Athanasopoulos, 2018) 

Brooks (2008, p. 244) also distinguishes between forecasting with structural models 

and time series models. In a structured model, forecasts are made by relating the dependent 

variable 𝑦! to one or more independent variables 𝑥!(. With knowledge or predictions of the 

independent variables 𝑥!#-( , a forecast for 𝑦!#-is made. Structural models are popular in 

econometrics and, according to Brooks (2008, p. 244), often work well in the long run. 

However, they require a thorough understanding of the system, which may be hard in the 

first place. (R.J. Hyndman & Athanasopoulos, 2018)  

Time series models, on the other hand, try to predict the development of the time series 

given its historical records. A time series is a row of observations of one or multiple 

variables at several points in time. (R.J. Hyndman & Athanasopoulos, 2018) For instance, 

in demand forecasting, observations could be historical records of sales. The distance 

between single observations determines the time series frequency. Common frequencies 

are, e.g. annual, monthly or daily observations. With the increasing pace of business cycles 

and automation, even more granular forecasts are becoming more popular, e.g. intraday-

forecasting on an hourly basis. (Bandara et al., 2020). 
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Time series often exhibit certain patterns in their development over time, namely 

trends, seasonal and cyclic patterns. The following definitions, adapted from Hyndman & 

Athanasopoulos (2018), are applied for this thesis: 

• A trend exists when there is a long-term increase or decrease in the data. It does 

not have to be linear […] 

• A seasonal pattern occurs when a time series is affected by seasonal factors such 

as the time of the year or the day of the week. Seasonality is always of a fixed 

and known frequency [...] 

• A cycle occurs when the data exhibit rises and falls that are not of a fixed 

frequency. These fluctuations are usually due to economic conditions, and are 

often related to the “business cycle”. The duration of these fluctuations is usually 

at least two years. 

In order to come up with an accurate forecast, a model needs to capture these patterns, 

though these might not suffice in explaining the series’ variation on their own.  

According to Hyndman & Athanasopoulos (2018), in a time series context, the 

forecasting horizon refers to how far into the future a forecast is made. The horizon does 

not not necessarily refer to an absolute measure of time, but to how many steps of the 

series are forecasted: Models can forecast for a single step or multiple steps ahead. A 

forecast 𝑓!#'|!	is a one-step-ahead forecast, whereas a forecast 𝑓!#-|! , 𝑡 > 1 is a multiple-

step-ahead forecast. For example, given a time series of daily values, forecasting the 

demand for the upcoming week could be modelled as a seven-step ahead problem. In 

general, accuracy decreases with the length of the forecasting horizon (R.J. Hyndman & 

Athanasopoulos, 2018). In other words, the uncertainty associated with the forecast 

increases. The following section describes how to measure forecast accuracy. 
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The parameters and variables of a forecasting model are estimated based on past values 

of the time series to achieve a good fit, which means tuning the model such that the 

historical forecasts would be as accurate as possible. When forecasting future values under 

real-world conditions, this information would not be available.  

It is thus common practice to not estimate parameters based on the whole time series 

sample but only a subset of it, and to evaluate its forecast accuracy on previously unseen 

data (Brooks, 2008, p. 245). The data is divided into a training and testing set. The training 

data is used to choose and estimate the parameters of the model. In contrast, the test data 

is used to evaluate the model’s performance on previously unseen data to assess how well 

it generalizes. This two-step approach is crucial to prevent a model from overfitting. A 

model, given enough parameters, might achieve perfect accuracy on training data by 

memorizing the time series perfectly. Such a model would, however, perform poorly on 

unseen data and hence provide poor forecasts. In other words, it would not generalize well. 

 Forecasting errors are calculated based on out-of-sample forecasts.  

 𝑒,#0 = 𝑦,#0 − 𝑦>,#0|, Eq. 9 

These can be applied both to single-step and multi-step forecasts. Depending on the 

sample size and the forecasting horizon, the number of forecast errors can be quite high.  

Performance metrics are a way to summarize forecast errors in a single metric. Popular 

scale-dependent metrics are the Mean absolute error (MAE) and the Root Mean Squared 

Error (RMSE), as defined by the equations in horizon Hyndman & Athanasopoulos 

(2018): 

 MAE = mean(|e1|) 
Eq. 10 

 𝑅𝑀𝑆𝐸 = T𝑚𝑒𝑎𝑛(𝑒!+) 
Eq. 11 



 

11 
 

To compare forecasts over multiple time series of different scale, the percentage error 

𝑝! is used. The Mean Absolute Percentage Error (MAPE) is given by averaging the 

absolute percentage errors. This is not possible if the time series contains any zeros. 

Moreover, they penalize too small forecasts heavier than too high ones. To circumvent 

these limitations, Armstrong (1978, p. 384) suggested the symmetric MAPE (SMAPE): 

 𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛 YZ
100𝑒𝑡
𝑦𝑡

Z[ Eq. 12 

 SMAPE = meanY
200|y1 − 𝑦>!|
y1 + 𝑦>!

[ Eq. 13 

The SMAPE, unfortunately, also has its limitations when forecasting values close to 

zero, as the small denominator makes the calculation unstable. (R.J. Hyndman & 

Athanasopoulos, 2018) Concluding this section, each performance metric comes with 

strings attached. These limitations need to be accounted for when choosing a performance 

metric that is suitable for evaluating forecasts. There are several further measures found 

in the literature that try to overcome these limitations, but this overview is limited to the 

most popular measures. 

 TRADITIONAL FORECASTING METHODS 

This subchapter introduces traditional forecasting methods. The term ‘traditional’ used 

herein does not refer to commonalities in the models, but rather serves to differentiate 

them from machine learning methods. The methods discussed here were (and still are) 

widely popular in research and practice.  

 Simple Heuristic Forecasting Methods 

The methods presented here are widespread. The respective formulas are adapted from 

Hyndman & Athanasopoulos (2018). 
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A simple approach to forecasting given no other information is to assume, that there will 

not be any change in the generating process, i.e. the value of the next period is identical 

to the current one: 

 𝑦!#-|! = 𝑦! Eq. 14 

The name of this approach, ‘Naïve Forecasting’, alludes to its simplicity. Despite the 

name, Naïve Forecasting is still a popular benchmark for other methods. It serves as a 

sanity check for whether more sophisticated methods provide actual insight. A variant that 

accounts for seasonal patterns in the data is the Naïve Seasonal Forecast, that forecasts the 

value of the same period in the last seasonal cycle.  

 𝑦!#-|! = 𝑦!#-&2(0#') Eq. 15 

It is self-evident that the naïve approach is prone to fallacies when facing a time series 

with a lot of variance. For example, a peak in the time series is not necessarily followed 

by another peak. To smoothen out periodic volatility, one might want to average the 

demand for past periods. This approach is referred to as the Simple Moving Average.  

 𝑦!#-|! =
1
𝑛 ∗ < 𝑦(

!

(*	!&5

 Eq. 16 

Averaging can likewise be applied to seasonal forecasting. 

The heursitics presented here make no assumptions about the underlying process and 

thus are easily understandable and simple to implement. The next section describes a more 

sophisticated framework for time series analysis.  

 Statistical Forecasting Methods 

Following Hyndman & Athanasopoulos’ (2018) explanation, future values of the time 

series are unknown until they are observed, and are thus like random variables. The 
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random variables allow for many potential outcomes. As the true event approaches, the 

uncertainty about its potential outcomes decreases. This statistical perspective is at the 

core of the forecasting models introduced in this section. If the entire time series is a row 

of random variables, it can be understood as the realization of a stochastic process. 

Statistical forecasting models try to exploit the relationships between the individual 

random variables in the process, namely their covariance. The covariance of its series 

values with itself, based on their temporal difference, is called autocovariance.  

Box & Jenkins (1970) developed the framework for time series analysis with Auto-

regressive Integrated Moving-Average (ARIMA) models. The idea behind ARIMA 

models is to understand time series as a stochastic process, i.e. a sequence of random 

variables. ARIMA models find a linear representation of the stochastic process. They 

comprise Autoregressive and Moving Average parts. The formal definitions in this part 

are adapted from Hyndman & Athanasopoulos (2018) 

And Autoregressive (AR) models explain the value of the time series at point t as a 

linear combination of lagged values of the time series, i.e. it is a regression model, that 

explains the value 𝑦! by its past values. The autoregressive model of order p is given by:  

 𝑦! = 𝑐 + 𝜙'𝑦!&' + 𝜙+𝑦!&+ +⋯+ 𝜙6𝑦!&6 + 𝜀! Eq. 17 

In this equation, 𝑐 is a constant and ε! is a white noise process.  

Moving Average (MA) models model the time series as a result of past noise, i.e. past 

forecast errors. The value of 𝑦! is a weighted moving average of past forecast errors. MA 

models must not be confused with the averaging heuristic. The MA model of order q is 

given by: 

 𝑦! = 𝑐 + 𝜀! + 𝜃'𝜀!&' + 𝜃+𝜀!&+ +⋯+ 𝜃7𝜀!&7 Eq. 18 



 

14 
 

A model that incorporates both AR(p) and MA(q) components is called an ARMA(p,q) 

model. If differencing is applied to make the original series stationary, the model is an 

ARIMA(p,d,q), where d is the degree of first differencing applied. Differencing refers to 

subtracting every value of the series by its predecessor. 

 𝑦!8 	= Δ𝑦! 	= 	 𝑦! 	− 	𝑦!&' 
Eq. 19 

Combining all the model components, the full ARIMA model is given by: 

 𝑦!8 = 𝑐 + 𝜙'𝑦!&'8 +⋯+ 𝜙6𝑦!&68 + 𝜃'𝜀!&' +⋯+ 𝜃7𝜀!&7 + 𝜀! Eq. 20 

where 𝑦! is the differenced series. 

In their book, Box & Jenkins (1970) developed a three-step approach for fitting 

ARIMA models systematically.  

• Identification: Determining the order of the model via graphical methods as plots 

of autocorrelation and partial autocorrelation.  

• Estimation: The parameters of the chosen model are estimated using either least-

squares minimization or maximum likelihood estimation. 

• Diagnostic checking: The quality of the model is evaluated, either via residual 

diagnostics (searching for uncaptured linear dependencies in the residuals) or 

deliberate overfitting to check if additional components are significant.  

While this manual method is widely popular, it does not scale well. When forecasting 

hundreds of SKUs daily, this manual approach becomes infeasible. Moreover, model 

choice based on graphical models is somewhat subjective and ambiguous. For this reason, 

an information criterion can be used to choose a model. Information criteria were 

originally developed to prevent models from over-parametrization. They strive to balance 

model accuracy with parsimony in parameters by rewarding explanatory power (a lower 

residual sum of squares) and penalizing the use of additional variables (a represented by 
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lower degrees of freedom). Among the most popular ones is the Akaike information 

criterion AIC. (Akaike, 1974) 

 𝐴𝐼𝐶	 = 	𝑙𝑛(𝜎>+) +
2𝑘
𝑇  

Eq. 21 

𝑇	is the number of observations, 𝜎>+ is the residual variance (RSS/T) and k is the 

number of parameters estimated, that corresponds to the model orders (𝑝 + 𝑞 + 1). A 

lower value for each of these implies a better model.  

As an extension to this, Seasonal ARIMA models (SARIMA) allow for modelling 

seasonal data by including additional seasonal terms to the model. A SARIMA model is 

defined by the order 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚, where the part in the second set of 

brackets is the seasonal part. The seasonal part models seasonal components by applying 

a backshift of 𝑚 timesteps. The parameters (𝑃, 𝐷, 𝑄) are equivalent to the model 

components in the non-seasonal ARIMA models.  

Models of the ARIMA framework can also incorporate exogenous variables to include 

information from covariates, e.g. promotional campaigns. These models are called 

AR(I)MAX models. Through the incorporation of both covariates and lagged values of 

the time series, they blur the lines between simple time series models and structural 

models.  

 NEURAL NETWORKS 

This subchapter introduces the fundamental ideas of Neural Networks. The first section 

explains the broader paradigm of Machine Learning, under which Neural Networks fall. 

The remaining sections introduce two types of Neural Neworks. The purpose of this part 

is to establish a basic understanding of Neural Network, while not covering them 



 

16 
 

exhaustively. A solid idea of Neural Networks will facilitate understanding of the ideas 

introduced in later chapters. 

 Machine Learning 

While computers effortlessly solve complex, abstract computational tasks, they struggle 

with tasks that seem intuitive and simple to humans. It appears that performing seemingly 

simple tasks requires an immense amount of knowledge about the world. (Goodfellow et 

al., 2016, p. 2) One solution to this would be to hard-code a set of rules that puts 

knowledge about the world into a formal language. In contrast, another branch of research 

in Artificial intelligence seeks to enable systems to acquire knowledge by learning from 

data. This capability is known as machine learning. Mitchell (1997) provided a formal 

definition of Machine Learning:  

"A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P if its performance at tasks in T, 
as measured by P, improves with experience E.”(Mitchell, 1997) 

 

When it comes to forms of experience (E), Machine Learning knows three types of 

learning: supervised learning, unsupervised learning and reinforcement learning. These 

forms differ with regards to the information that the learning algorithm is presented with 

during the learning phase.  

In a supervised learning setting, the learner has access to a set of input-output pairs. 

Given an input, it learns a mapping of the input features to the output (Goodfellow et al., 

2016, pp. 105–106). Forecasting, for instance, can be framed as a supervised regression 

problem: Given input data, e.g. historical records, the learner learns to predict the output, 

which would be the next value in the time series.  
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Talking about tasks T, within the field of supervised learning, there two most common 

among them are classification and regression problems (Goodfellow et al., 2016, pp. 100–

103).  In a classification problem, the output the learner needs to produce is categorical, 

i.e. there is a finite amount of outputs. These categories could be labels for the cars 

depicted in a picture. A regression problem, on the other hand, allows for continuous 

outputs. This would correspond to counting the number of cars in a picture. Most 

applications of forecasting are regression problem, as exact values of a time series need 

to be predicted. 

Lastly, the performance of a learner is typically measured using some form of 

performance measure (P). If the performance measure is minimized, e.g. the number of 

errors, we refer to it as the loss function. Within the supervised learning setting, this loss 

function is usually minimized using an optimization algorithm. Optimization refers to the 

task of either minimizing or maximizing some function 𝑓(𝑥)by altering x.  

Putting the parts together and referring to Mitchel’s definition, forecasting can be 

tackled as a machine learning problem. A machine learning model can learn the task of 

generating forecasts by exposure to historical combinations of input variables and optimal 

forecasts. The model is supposed to learn a functional form that minimizes the 

performance measure, which would be for example the forecasting errors.  

In supervised learning settings, many of the ideas discussed in section 2.2 about 

overfitting apply. Given sufficient time and parameters, a machine learning model might 

find a perfect fit on the data by “memorizing” it. However, such a model would not 

generalize well and yield poor results on previously unseen data. 
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 Neural Networks 

Deep Learning is a subdiscipline of machine learning that applies Neural Networks for 

learning. The name Neural Networks stems from early efforts in the machine learning 

research to draw inspiration from the biological brain and imitate the structure of synapses. 

In simple terms, a neural network can be thought of as a function mapping of an input to 

an output. The classic example of a Neural Network is the Multilayer Perceptron (MLP), 

also known as feedforward-neural networks. Goodfellow et al. (2016, p. 168) write:  

“The goal of a feedforward network is to approximate some function 𝑓. 

For example, for a classifier,𝑦 = 𝑓 ∗ (𝑥) maps an input x to a category y. A 

feedforward network defines a mapping 𝑦 = 𝑓 ∗ (𝑥; 𝜃) and learns the value 

of the parameters 𝜃 that result in the best function approximation.”  

 

The name “networks” stems from the fact that the models are comprised of several 

simpler functions that are linked together or chained. Neural Networks find a good 

representation of a complex concept by expressing the problem in terms of simple 

concepts: They compose highly complex functions sometimes from hundreds of 

functions. (Goodfellow et al., 2016, p. 168) 

  



 

19 
 

 

 

Figure 1: Illustrative Example of a Multi-Layer-Perceptron for Image Classification.  Adapted from Goodfellow et al. 
(2016, p. 6) 

Each of this function generates a new representation of their input. These functions can 

be thought of as units, or neurons. Within one neuron, an input vector x is weighted by 

multiplying it with a weight vector W and adding a bias c. A non-linear activation function 

is then applied to the weighted inputs. By applying a non-linear transformation, the model 

can learn much more complex dependencies and approximate more complex non-linear 

functions (Goodfellow et al., 2016, pp. 174–175). A single neuron has very limited 

capabilities for modelling dependencies. To model complex dependencies, several 

neurons act in parallel, comprising a layer. These layers are then stacked on top of another. 

An MLP is typically made of an input layer, one or more hidden layers and an output 

layer. This layer architecture is shown in Figure 1. 

 As can be seen from the figure, in the input layer, each input feature 𝑥( is propagated 

forward to the neurons in the first hidden layer. The neurons in the hidden layer perform 

the computations described above and then propagate their output to each neuron in the 
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next layer. The final layer is called the output layer. Given the inputs from the final hidden 

layer, it calculates the final output of the network.  

The architecture described above is capable of approximating highly complex 

functions. In order to do so, it must learn an optimal set of parameters (W,c) to apply to 

the inputs. Via supervised learning, the network is taught to approximate the supposedly 

true input-output mapping by being exposed to a set of paired input-output samples. It is 

worth noting that the training examples do not define the desired output for the hidden 

layers but only for the output layer. During learning, the algorithm must learn how to use 

the hidden layers to minimize the loss at the output layer. (Goodfellow et al., 2016, pp. 

168–169)  

The MLP is also known as a feedforward network, as it propagates information only in 

one direction. The next section will cover a class of neural networks that allows for 

feedback connections and thus is capable of detecting temporal dependencies.  

 Recurrent Neural Networks  

While it is possible to model time series problems with MLPs, they are not particular 

suited for processing sequential data. Recurrent Neural Networks (RNN) are a family of 

NN that introduce a feedback loop mechanism, through which information of past inputs 

is retained. (Goodfellow et al., 2016, p. 374) After every input step, the network passes a 

vector through a special hidden layer to the next step. The special hidden layer is known 

as the hidden state	ℎ!. Through the hidden state, RNNs introduce some form of context 

for the interpretation of inputs, so they are not modelled in isolation. This way, they can 

process sequential information. Most recurrent networks can also process sequences of 

variable length. (Goodfellow et al., 2016, p. 384) 
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The basic architecture of a classic RNN is outlined on the righthand-side of Figure 2. 

In order to gain a better understanding of how information is passed over sequential inputs, 

the left-hand side depicts the network unrolled over time.  

 

Figure 2: A Recurrent Neural Network, unrolled over time, adapted from Bandera et al. (2020) 

 

The input at time 𝑡 is 𝑥!, the output is 𝑜!. The hidden state ℎ! is affected by 𝑥! and the 

previous hidden state ℎ!&', weighted by the respective weight matrices U and W. The 

output is calculated from the current hidden state and the weight matrix V. Mathematically 

this is expressed as 

 ℎ! = 𝑓9(𝑈𝑥! +𝑊ℎ!&'), 
Eq. 22 

 𝑜! = 𝑓:(𝑉ℎ!), 
Eq. 23 

where 𝑓9 , 𝑓: denote non-linear functions as the ReLu-function or the tanh-function. 

(Bandara et al., 2020) 

The hidden state introduces a way to pass information over time in processing 

sequential data. However, basic RNNs are not very effective at modelling long-term 
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dependencies. Their central problem is that gradient-based training techniques, as the 

backpropagation algorithm, determine the influence of a given input by measuring the 

sensitivity of network parameters on the output. (Goodfellow et al., 2016). For very long 

sequences, the initial inputs have a very small impact on the output, because they are 

propagated through many steps.  

In response to this problem, Hochreiter & Schmidhuber (1997) proposed the long short-

term memory (LSTM) model. This type of RNN is capable of retaining information over 

much longer periods of time. Moreover, it can learn when to forget information that is no 

longer relevant. Explaining the inner workings of the LSTM would go beyond the scope 

of this thesis. Interested readers can referGoodfellow et al. (2016, pp. 410–411) 

  



 

23 
 

3 LITERATURE REVIEW 

This section reviews the scientific literature on the research questions raised in Chapter 1. 

It tackles the questions from two perspectives: The first perspective emulates the 

researcher's view, who is investigating how Neural Networks perform in forecasting in 

general. Chapter 3.1 covers this perspective by reviewing the research on forecasting with 

Neural Networks, and trying to identify what contributes to their success or failure. 

The second perspective is the practitioner's view: it questions what makes a forecast 

good in the context of demand forecasting for perishable products. Chapter 3.2 introduces 

the specific issues of forecasting SKU-level demand, and reviews different approaches to 

overcome these.  

 FORECASTING WITH NEURAL NETWORKS 

This section covers previous research on forecasting with Neural Networks, spanning 

from the early applications in the 90s to recent state-of-the-art solutions. It splits the 

research into three periods, roughly based on the central insights won during each.  

 Early Applications 

Though the hype in Artificial Intelligence is a recent one, the idea of applying Neural 

Networks to forecasting problems has been around for decades. In their comprehensive 

literature review, Zhang et al. (1998) identify the first application of Neural Networks to 

forecasting back in 1964. Despite this, research was sparse before the conception of the 

backpropagation algorithm in the 1980s, which enabled the training of deep networks.  

This period of early research is characterized by enthusiasm for the new method, which 

is considered a capable method for modeling non-linear time series (Zhang et al., 1998). 
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In contrast, Chatfield (1993) regards Neural Networks with a fair share of skepticism, 

hypothesizing that they may become a ‘passing fad’. In an editorial for the Journal of 

Forecasting, he criticizes that many studies on NNs are lacking comparison against 

established forecasting methods like the statistical models from the Box-Jenkins 

framework, which chapter 2.3.2 covered. 

Sharda & Patil (1992) conducted some of the first large-scale empirical studies on 

forecasting with Neural Networks. They compare an MLP network against an automated 

Box-Jenkins forecasting system on a set of 75 time series. They find that the simple neural 

network model is on par with the Box-Jenkins forecasting system. In contrast, Foster et 

al. (1992) find that Neural Networks provide less accurate forecasts compared to 

traditional methods based on 384 economic and demographic time series. The networks 

provided worse forecasts than a linear regression model and a weighted average of six 

simple methods. 

Reviewing the literature up until this point, Zhang et al. (1998) conclude that Neural 

Networks are quite suitable and useful for forecasting tasks and give satisfactory 

performance. However, despite considerable research, they remain inconclusive on 

whether Neural Networks outperform classical methods. While they consider them 

promising alternative approaches to traditional linear models, they list several limitations:  

• Since NNs are nonlinear methods, they are less likely to be better at static linear 

processes.  

• They are essentially black-box models 

• Since they have many parameters, they tend to overfit and generalize poorly. 

• They require a higher amount of data and have higher computational costs 

• There is no structured method to determine the model architecture that allows for 

many designs. 
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Regarding the last point, the authors note that most researchers seem to follow a trial-

and-error-approach in their design. They draw a connection between the lack of a 

systematic approach and the inconsistent results in the literature. Likewise, 

doublechecking earlier studies on forecasting business time series with Neural Networks, 

Adya & Collopy (1998)found flaws in most of them. Out of 48 studies they checked, only 

eleven implemented and validated the Networks correctly, so these early results should be 

considered with caution. 

Moreover, this early research covers almost exclusively Multi-layer Perceptrons 

(MLP), not Recurrent Neural Networks. The MLPs are mostly applied to univariate 

forecasting problems, as if they were just another tool in the box of forecasting (c.f. 

Chakraborty et al. (1992) for an exception). They show promising results for non-linear 

prediction problems. 

 Research since the 2000s 

The early 2000s saw the biggest forecasting competition of its kind hosted so far: the M3-

competition. The purpose of the competition was to develop forecasting algorithms to 

predict 3003 time series of varying length and frequency from business and economics 

(Hibon & Makridakis, 2000). The only Neural Network contribution, the Automat ANN 

algorithm, delivered mediocre performance, and was seldom among the top contenders 

regardless of industry, time series frequency, and forecasting horizon.  

The M3 competition was replicated in 2011 to account for the research progress in 

Neural Network research. The ‘NN3’ competition accepted entries from the field of 

Neural Networks and Computational Intelligence. The models were evaluated based on 

111 series of the M3, with the SMAPE metric measuring their accuracy. Among the 59 
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submissions in the “NN3-competition” (Crone et al., 2011), only one beat the damped 

trend, a benchmark used in M3 that yielded surprisingly good results considering its 

simplicity. However, several models were able to beat the Automat ANN model submitted 

in the original M3 competition, making a case for research progress over the past decade. 

Furthermore, the NN3 saw several contenders that made use of Non-MLP architectures, 

e.g., RNNs.  

While Neural Networks seemingly fell short of expectations in the forecasting domain, 

research achieved tremendous breakthroughs in their application in other areas, e.g., in 

image classification (Krizhevsky et al., 2012) and learning complex games such as GO 

(Silver et al., 2016). The increasing popularity of Machine Learning, paired with the 

ubiquity of the term ‘Artificial Intelligence’, further fueled the research on forecasting 

with Machine Learning models. Makridakis et al. (2018a) conducted another large scale 

study on the M3 data. Their study empirically evaluated 10 Machine Learning algorithms' 

performance for time series forecasting on 1045 monthly series and compared them 

against eight statistical forecasting methods as a baseline. These algorithms included 

RNNs, and Long Short-term Memory Networks (LSTMs), a variant of Neural Networks 

that had recently become more popular in forecasting because of its supposed ability to 

capture long-term dependencies in sequences. All models generated forecasts for up to 18 

periods ahead, and different techniques for preprocessing the time series were tested, to 

facilitate learning for the Machine Learning algorithms. 

Once more, the study yielded sobering results for forecasting with Neural Network 

models. The statistical methods outperformed across all forecasting horizons. Moreover, 

the authors note that the computational complexity remains an issue with Machine 

Learning models and that more computational time does not necessarily improve 
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accuracy. They reinvigorate the idea that Machine Learning models might be beneficial 

for certain time series types, e.g., when non-linear characteristics are present in the data.  

This research period showed that, despite the use of more sophisticated model designs 

and increasing computational power, Neural Networks struggle to improve upon the 

performance of statistical baselines.  

 Recent Developments and the M4 competition 

In 2018, the M3’s successor extended the competition in multiple ways. The M4 

forecasting competition (Makridakis et al., 2018b, 2020) tested models on 100,000 time 

series. It is the most comprehensive competition to date. The 100,000 time series are 

sampled from several industries and of varying frequency. As with previous competitions, 

there was an emphasis on business-related time series.  

While pure Machine Learning methods performed poorly in general, a hybrid approach 

by Smyl (2020) of Machine Learning and a statistical method did exceptionally well 

(Makridakis et al.,2020). This model used a Neural Network to learn to predict 

seasonality. Interestingly, it did not learn this for each series individually, but from all 

series combined. This led Makridakes and his co-authors to hypothesize that using 

information from multiple series to predict individual series works well. 

The M4 entailed a series of comments critically discussing whether its conclusions can 

be generalized. Fry & Brundage (2020) point out that the design of the M4 did not 

resemble real-life conditions for forecasting properly. They point out that features beyond 

historical sales are available under real-life conditions, which Machine Learning models 

can utilize in the prediction process. Moreover, as Barker (2020) points out, the pure ML 

models entered in the M4 competition did not learn patterns globally, but modeled each 
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problem individually. The models did not cross-learn from different series as this is not 

encouraged by the design of the M4, which features diverse series. Smyl's (2020) top-

competing submission poses an exception. 

Barker (2020) interprets the poor performance of pure machine learning models as a 

failure to learn from the given data. Machine learning algorithms are interpolation models, 

but forecasting is an extrapolation problem. In other words, in a forecasting setting, the 

model must learn to model a situation which it has never seen before. An essential 

prerequisite for Machine Learning models to succeed is to create dense manifolds, i.e., 

creating data sets that resemble a wide range of possible situations. For a short time series, 

this can be achieved by modeling series with similar properties together.  

This idea of modeling series together, i.e. building one model for forecasting several 

series, is referred to as building global models. This approach is most likely to succeed if 

the forecasting problem involves a large number of related time series, the time series are 

hierarchical, and there are exogenous features available. (Fry & Brundage, 2020). In 

univariate forecasting problems, the number of historical observations is typically too 

small for complex models such as Neural Networks to fit their parameters and avoid 

overfitting (Bandara et al., 2020). Even for long series, the early observations in the series 

provide little useful information, as the underlying patterns and relationships are likely to 

change over time (Rob J. Hyndman, 2016). Other than traditional forecasting techniques, 

neural networks cannot only model problems globally, but the global modeling approach 

might fix the problems above, creating a niche for Neural Networks beyond non-linear 

forecasting. 

Only a few empirical studies so far provide evidence for the superiority of global 

learning. For instance, Bandara et al. (2020) propose a global LSTM model. As an 
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extension, they apply different clustering algorithms to identify similar time series and 

suggest training the models only on the clusters. They show that this clustering approach 

improves prediction. The proposed model yields competitive results on the data of two 

earlier forecasting competitions. Research in this field seems to be driven by practitioners, 

as most of the rare instances of global modeling for forecasting in the literature can be 

traced back to researchers at Amazon (Salinas et al., 2020; Wen et al., 2017) and Uber 

(Bandara et al., 2020; Zhu & Laptev, 2017). 

It appears that the perspective on Neural Networks has shifted towards understanding 

them as tools for modeling problems that traditional forecasting methods cannot represent. 

Namely, global modelling and the inclusion of external variables as features.  

 DEMAND FORECASTING AT THE SKU LEVEL 

Having provided a general overview of forecasting with Neural Networks in the previous 

section, this section narrows down the scope to SKU-level demand forecasting for 

perishable products. Typical settings for this type of forecasting problems are the retail 

and wholesale industry for foods.  

The large-scale studies introduced in the previous section have one thing in common. 

They focus on theoretical performance measures like the ones introduced in Chapter 2.2. 

These theoretical measures lend themselves to a general evaluation of forecasting 

accuracy. As explained in Chapter 2.1, forecasting accuracy is a pre-requisite for effective 

inventory management. Performance metrics provide a good indication for accuracy and 

are easy to calculate, so many organizations rely on them as ‘a suitable proxy’ (Davydenko 

& Fildes, 2013).  
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Demand forecasts for SKUs are primarily used to determine parameters for  inventory 

management. (Arunraj & Ahrens, 2015). For instance, they determine the order-up-to-

level in the periodic review policy described in Chapter 2.1. The forecasts are thus not 

used directly, but to determine the cumulative demand during the replenishment time. 

While performance metrics are popular in the research community, a practitioner will 

usually be interested in actual utility values, as the number of stock-outs or the required 

safety stock directly translates to operational costs. Gardner (2006) points out that 

forecasting is a primary determinant of inventory cost. Since forecasts are such crucial 

components in an operating system, he concludes that forecasting methods should be 

selected based on the benefits for the operating systems that come with them.  

In some cases, this can lead to contradictory evaluations: For instance, in his study of 

intermittent demand forecasting with a Neural Network, Kourentzes (2013) found 

evaluations based on performance measures and inventory metrics to allow for very 

different judgments of the model, respectively. Intermittent demand describes the 

phenomenon of sporadic demand with long periods of no demand at all. While the Neural 

Network model provided worse forecasts than the Croston method in terms of 

performance metrics, it achieved consistently higher service levels for the same stock 

levels in a subsequent inventory simulation. 

Apart from that, several other forecast traits that a single metric cannot capture are 

favorable from an inventory management perspective. For instance, Fry & Brundage 

(2020) point out that the forecasting literature has paid little attention to measuring the 

uncertainty of forecasts, which is crucial information in many inventory management 

applications as safety stock or reorder point calculations. The following sections will 

discuss some aspects that make demand forecasting perishable products at the SKU level 
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challenging. They will discuss how previous research efforts have sought to solve these 

issues. 

 Scale 

From a practical perspective, forecasting in a wholesale (or likewise retail) setting is 

subject to an additional set of challenges. An evident difficulty is the broad scope of the 

forecasting problem: The product range of wholesalers typically consists of several 

hundreds of SKUs. Each SKU poses an individual prediction problem or multiple 

predictions for forecasting several locations. Any solution needs to be scalable to a certain 

degree. For instance, expert-based adjustments are subject to human resource constraints. 

Automated solutions might thus be preferable, though they come with a caveat: The 

available computational resources limit them. Highly sophisticated automated procedures 

might take just too long to compute daily forecasts of hundreds of products.  

Several studies have pointed out the high computational effort of training and fitting 

Machine Learning models for large-scale forecasting problems (Carbonneau et al., 2008; 

Makridakis et al., 2018a). At the scale of SKU-level forecasting, the high computational 

effort for training Neural Networks might be problematic. The global modeling approach 

mentioned at the end of the last section might be a potential workaround. Salinas et al. 

(2019) claim that their global demand forecasting model for over 500.000 products at 

Amazon took only ten hours to train.  

 Including external data  

Daily sales of perishable food are usually highly volatile and skewed since they are 

subjected to several external factors that drive demand, such as holidays and temporary 

price reductions (Arunraj & Ahrens, 2015).  
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Figure 3: Demand driving factors, adapted from  (Arunraj & Ahrens, 2015) 

Figure 3 provides an overview of potentially influential factors. To account for these 

factors, a forecast model must allow for external inputs.Aburto & Weber (2007) 

investigated a model that, apart from past sales, includes price data and binary variables 

characterizing special days such as holidays, vacation periods, and employees' payment 

days. The model has a SARIMA component that models the regular time series. 

Subsequently, a Neural Network (MLP) is used to model the forecast error of the 

SARIMA component with both autoregressive features and the additional variables 

described above. Applied to sales forecasting at a Chilean supermarket, the model yields 

better forecast results and, consequently, lowers inventory levels and stockouts.  

Incorporating weather information can improve sales forecasts, as shown by Steinker 

et al. (2017). They suggest an ARIMAX model that uses weather forecasts as external 

variables. They use total daily sunshine hours, the average air temperature, and 

precipitation as features. Additionally, the model captures non-linear relationships 

through interactions with dummy variables for seasons and weekends. Apart from using 

absolute values, they also suggest using relative scores, which are supposed to make the 

weather comparable over different calendar months. They apply the weather-based 
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models to forecast sales for a large European e-commerce platform and find forecast errors 

to decrease by 8.6% to 12.2% on average.  

Arunraj & Ahrens (2015) conducted a study on forecasting with the help of several 

external variables. They utilize both external and autoregressive data to forecast quantiles 

of perishable food, i.e. the daily sales data of bananas from a typical food retail store 

situated in lower Bavaria. They fit a seasonal ARIMA model with external data 

(SARIMAX) and a Neural Network on calendar data, promotional and discount data, as 

well as the weather. They compare the models against a naïve Baseline and seasonal 

ARIMA without external data. The Neural Network outperforms both baselines, but the 

SARIMAX model yields the highest accuracy. Regardless of that, this provides evidence 

for how external variables can improve food items forecasting at the SKU level. 

Apart from external data, sales of related products within a group can serve as a useful 

predictor of demand. Ali et al. (2009) investigated how SKU-level demand forecasting 

during promotional periods can be improved. Their study does not use Neural Networks, 

but another Machine Learning class, Regression Trees. They find that incorporating 

additional features from sales and promotion time series of related products can 

significantly improve the forecasting accuracy in promotion periods. 

 For both promotion- and non-promotion periods, Ma et al. (2016) show models to 

benefit from capturing cross-effects of promotions within and among categories. They 

also address the problem of high dimensionality. When dealing with many SKUs, the 

number of potential predictors is high. High dimensionality makes it impossible to 

estimate the models because of the limited number of degrees of freedom. Thus, Ma et al. 

(2016) develop a multi-stage framework for selecting relevant features based on the 
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regularization techniques Lasso-regression and Principal Component Analysis for 

dimensionality reduction.  

 Uncertainty estimation 

As pointed out at the beginning of this subchapter, daily SKU-level forecasts are typically 

not used directly in the retail and wholesale industry. Instead, they are translated to 

inventory policy, i.e. determining the order size based on forecast and safety stock level 

(Arunraj & Ahrens, 2015). For adequate safety stock calculation, forecasts must come 

with some form of uncertainty measure. Thus, a strategy to estimate said uncertainty is 

indispensable. A textbook approach to this is to estimate uncertainty from past forecast 

errors. Many methods assume normally distributed errors to calculate prediction intervals 

(c.f. Chapter 2.1). 

These normality assumptions often do not hold for skewed, volatile and time-varying 

time series, like SKU-level demand. For instance, Taylor (2007) showed that methods 

based on normality assumptions provide inadequate confidence intervals on data from 256  

SKUs from a large UK supermarket chain outlet. In response to this, Taylor applied a non-

parametric method, exponentially-weighted Quantile Regression (EWQR), to develop 

robust point-estimates and quantile estimates. In terms of point forecasting, the robust 

forecasts from using EWQR outperform the level-smoothing methods. For the interval 

forecasts, EWQR also yields good results. 

EWQR is a particular case of the more general Quantile Regression (QR). Quantile 

Regression seeks to predict quantiles of a dependent variable based on a conditional 

quantile function of independent variables. (Koenker & Bassett and Jr, 1978) The p-
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quantile of a random variable X is defined as the real number 𝑥6, for which 𝑃v𝑋 ≤ 𝑥6x ≥

𝑝 and 𝑃v𝑥6 ≤ 𝑋x ≥ 1 − 𝑝 (Georgii, 2009). 

Quantile Regression avoids the need to make prior assumptions. It is a non-parametric 

method to estimate uncertainty, which is a desirable property given that the normality 

assumption often does not hold for SKU-level demand.  

In the study by Arunraj & Ahrens (2015) mentioned earlier, the authors subsequently 

used Quantile Regression to turn their SARIMA model's forecasts into quantile forecasts 

in a second step. They find their  SARIMA-QR model to identify extreme and sparse sales 

accurately and directly. Using this approach outperformed the confidence-interval 

estimation with standard Gaussian assumptions.  

With the right loss function, Neural Networks can perform Quantile Regression. Wen 

et al. (2017) propose a framework for general probabilistic multi-step time series 

regression using a sequence-to-sequence structure, which section 4 will discuss in detail. 

Their model is a series of LSTMS and MLPs that learns to forecast quantiles of time series. 

To achieve that, they use the Quantile Loss as the Loss function. Their model falls into 

the global model framework. The suggested model learns to forecast weekly demand 

series of around 60,000 sampled products on Amazon. There are two notable 

shortcomings to this work. The authors compare their model only against ML benchmarks 

(which they outperform), but not against statistical models. Moreover, their model cannot 

predict joint quantiles for two cumulative forecasts. 

In the operations literature, Quantile Regression has been used to solve the data-driven 

newsvendor problems. Huber et al. (2019) incorporate Machine Learning-based Quantile 

Regression into their optimization model for a single-period news vendor model. The 
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model learns to predict the optimal demand quantile from demand data directly. In classic 

newsvendor settings, demand prediction and quantile estimation usually constitute two 

separate stages. Firstly, one method provides a forecast and secondly, based on the 

forecast errors, a distribution is estimated. Given the critical fractile, the assumed 

distribution then determines the optimal order quantity. Incorporating both stages into one 

model avoids the need to make assumptions about forecast-error distribution. Based on 

point-of-sales data for a large German bakery chain, the authors find their suggested 

integrated approach to outperform the two-stage approach in terms of cost. Neural 

Networks performed exceptionally well in this analysis, even more so when trained on 

multiple time series. The performance of the Neural Network further makes a case for 

building global models. Like the study by Wen et al. (2017), this work does not cover the 

multi-period newsvendor problem, i.e., predicting quantiles of cumulative demand. 

 Multiple-step Ahead Prediction 

Strijbosch et al. (2011) pointed out that it is common practice to optimize forecasting 

models based on the one-step-ahead forecasting error, while many operational 

applications require forecasting for multiple steps ahead. For long lead times, a forecasting 

procedure needs to provide multiple-step-ahead forecasts. The forecaster needs to develop 

a strategy to generate forecasts for multiple periods, knowing that the sum of these 

forecasts is more relevant than the accuracy of individual forecasts.  

Within the realm of traditional forecasting techniques, models put out a single scalar 

value. Coming up with forecasts for multiple steps requires some form of strategy to 

predict multiple scalars. Commonly, two strategies are applied: The recursive strategy and 

the direct strategy (Ben Taieb et al., 2010). In the recursive strategy, forecasts are made 
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iteratively one-step-ahead. Predictions go back into the model between steps as if they 

were the series' actual value. This leads to the accumulation of forecasting errors over 

time, resulting in high uncertainty levels for long forecasting horizons (Ben Taieb et al., 

2010). The direct strategy avoids the error accumulation by turning the H-step-ahead 

forecasting into H independent problems: Each model exclusively predicts one of the H 

steps. Not only is this computationally expensive, but it also ignores the stochastic 

dependency between two steps (Ben Taieb et al., 2012). 

To avoid this tradeoff, Ben Taieb et al. (2010) suggest using models that predict 

multiple outputs (in a vector) at once. They refer to this as Multi-Input-Multi-Output 

(MIMO) modelling. The flexibility of Machine Learning models allows for this form of 

output. Under the MIMO scheme, the model provides forecasts for all periods in the 

forecasting horizon at once. 

One type of modeling approach that uses the MIMO scheme is sequence-to-sequence 

modeling (Seq2seq). The goal of sequence-to-sequence modeling is to find mappings from 

one sequence x to another sequence y, where the length of the sequence can vary from 

each other. (Goodfellow et al., 2016, pp. 396–397).  

Cho et al. (2014)and Sutskever et al. (2014) independently proposed an encoder-

decoder architecture for Seq2seq-modeling. The idea was initially conceived for a 

machine translation task to account for the fact that sentences of the same meaning can 

consist of a different number of words in different languages. 

Encoder-decoder architectures are comprised of two RNNs. The job of the encoder 

RNN is to find a representation of the input sequence that the decoder RNN can read and 

then process into an output sequence. (Goodfellow et al., 2016, pp. 396–397) In a 

translation context, the encoder understands what the input sentence, e.g., a French 
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sentence, says and translates it to an abstract language. The decoder understands the 

abstract language and translates it to Finnish. In its simplest forms, this works as follows: 

1) The encoder RNN gets the input sequence. After processing the whole input 

sequence, the encoder propagates its final context 𝐶, (or a transformation of it)  to 

the decoder RNN.  

2) The decoder RNN takes the context 𝐶, 	 as its initial hidden state, and iteratively 

generates the output sequence for n steps ahead, where n is an arbitrary number of 

steps.  

Training of the two RNNs happens simultaneously so that they learn to communicate 

with one another optimally (Goodfellow et al., 2016, p. 397). Since the idea of encoder-

decoder models is relatively young, it has not been discussed thoroughly in the forecasting 

literature yet. Many of the large-scale global models for time series forecasting referenced 

in earlier sections make use of the encoder-decoder structure. Salinas et al. (2020) leverage 

the encoder-decoder structure also to incorporate additional external variables about the 

known future into their forecasts. These additional variables are used in the decoder part 

of the model to generate the output sequence. This structure will be described more 

thoroughly in the upcoming chapter, as it serves as an inspiration for the model suggested 

in Chapter 4.  



 

39 
 

4 MODEL DESCRIPTION 

This section introduces a neural network demand forecasting model for inventory 

management: the Seq2Quant model. It lays out the theoretical contribution of this thesis. 

Building on previous research insights, the Seq2Quant model is a new demand forecasting 

approach that directly addresses the issues raised in section 3.1. The suggested solution is 

a global modeling approach that maps multivariate input sequences of historical records 

and covariates to a sequence of estimated quantiles of cumulative demand. Precisely, the 

model is: 

• A global sequence-to-sequence model  
• A multivariate-input model using external variables and covariates  
• A quantile estimator of cumulative demand  

The following section breaks down the details of the model further. 

 GLOBAL SEQUENCE-TO-SEQUENCE MODELING 

This section describes the general framework of the model. A significant issue in 

univariate forecasting with neural networks is the low amount of available data for 

individual time series. As pointed out by Hyndman (2016), time series are often too short 

to prevent Neural Networks from overfitting during training. Even if the model is trained 

on a long time series, data from years ago might not represent the time series' current 

behavior.  

Recent works discussed in chapter 3.1.3 and 3.2.1 suggest using one global forecast 

model to overcome these limitations. Instead of treating n time series as n independent 

problems with n underlying distributions, a global model assumes one common 

underlying distribution for every single time series. The global model understands the n 
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time series as n realizations of one underlying distribution, which can be explained by past 

observations and covariates.  

Smyl's (2020) top-contending entry in the M4 competition demonstrates the potential 

of global modeling. In a recently proposed framework, Mariet & Kuznetsov (2020) prove  

that the sequence-to-sequence approach provides superior generalization guarantees 

compared to modeling forecasts individually, given that  

• The number of time series is significantly larger than the number of observations 
per time series 

• The time series are weakly correlated  

Note that these guarantees refer to theoretical bounds on the capability of 

generalization, and are thus not a guarantee for superior performance. As discussed, 

inventory management typically deals with many SKUs, some of which have only a short 

history of observations. The fact that the demand for different SKUs is likely to share 

similar traits can be leveraged to create favorable conditions for Neural Network training, 

i.e., by creating dense manifolds by modeling series together (c.f. Barker, 2020).  

Consequently, the suggested model uses a global sequence-to-sequence structure, as 

defined in the recently proposed framework by Mariet & Kuznetsov (2020). It seeks to 

learn a hypothesis to map a sequence of m past demand observations to n future demand 

observations.  

 𝐻:	(𝑦!&; , … , 𝑦!&', 𝑦!) → (𝑦>	!#', … , 𝑦>!#<&', 𝑦>	!#<) Eq. 24 

Sequence-to-sequence models are Multi-Input-Multi-Output (MIMO) approaches to 

forecasting (c.f. Ben Taieb et al., 2012). Hence, they are optimized for multiple-step ahead 

predictions. During training, each entry in the output sequence contributes equally to the 

loss value the network seeks to minimize. Equally weighted steps are a desirable trait for 
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inventory management because the replenishment time typically includes multiple 

periods, each of which equally contributes to the order-up-to level calculation. 

 EXOGENOUS VARIABLES AND COVARIATES 

This section describes the architecture of the model. At the core of the suggested model 

are Recurrent Neural Networks. By design, RNNs can pass information through time (c.f. 

Chapter 2.4.3), which allows them to learn temporal structures. Moreover, RNNs make it 

possible to include multivariate-time-series as inputs seamlessly. The inputs are then not 

individual observations but a vector of multiple observations at each time step t.  

Chapter 3.2.2 presented successful examples of including exogenous variables to 

model external demand drivers in demand. The suggested model structure allows and 

advocates for including external variables. Commonly suggested external demand drivers 

in the literature include:  

• Price 
• Promotional campaigns and discounts 
• Holidays and events 
• Indicators of seasonality 
• Weather 
• Data on related SKUs / product groups 

The model uses RNNs for both the encoder and the decoder part to capture the temporal 

aspect of multiple input and output steps. The model is thus fed two-dimensional vectors, 

consisting of observations of V variables for M past periods and N future periods. The 

model input is thus a vector of vectors. The model can learn how these variables influence 

demand, given there are enough observations of them in the data (Wen et al., 2017).  
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For events that occur only once a year, learning might be difficult. For instance, 

Christmas is an annual event. If historical sales for two years are available, there are only 

two observations in each time series from which the model can learn the exogenous effect 

of Christmas sales. For a new product introduced in the current year, no observation is 

available. The global structure facilitates learning because the model is exposed to 

Christmas's effects in multiple time series and can learn to abstract the effect. 

In classical regression approaches, the future values of external factors must be known 

in order to generate forecasts. For sales of related SKUs, this is impossible at the point of 

forecast generation. If the future values of external variables are unknown, the model must 

be provided with forecasts of them. Forecasts introduce an additional source of uncertainty 

to the model.  

The suggested model uses an encoder-decoder structure to avoid this. Figure 4 

illustrates this structure. The encoder part encodes all known information about the past 

Figure 4: Suggested Seq2seq architecture with exogenous variables and an embedding layer 
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and provides the context to the decoder. The decoder generates forecasts, given the 

context, and provided with all information about the known future. The structure allows 

the inclusion of different variables for the encoder and the decoder part of the model, to 

represent which information is known for sure to generate the forecast. 

On top of external variables that change over time, the input includes static features of 

each time series, referred to as covariates. Covariates include e.g. 

• Location 

• Product Category 

• An index unique to each time series 

Including covariates allows the global model to bridge different sets of time series 

behaviours, e.g., effects of a holiday that only apply at a specific location (Wen et al., 

2017). Covariates are input to both the encoder and the decoder part of the model. Through 

the covariates, the model can learn behaviour that is unique to specific product groups.  

Drawing inspiration from Salinas et al. (2019), the model uses an embedding layer 

through which the model can identify unique time series. The embedding layer enables 

the model to learn unique behaviours for individual time series. During preprocessing, a 

unique index (e.g., for every SKU) is assigned to each time series. The embedding layer 

of the model maps the index to a unique vector of weights. The weights represent the 

series’s unique trait, and they are learned in the training process.  
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 FORECASTING QUANTILES OF CUMULATIVE DEMAND 

The last aspect of the suggested model concerns its output and its training scheme. As 

established before, the central purpose of demand forecasts under classic inventory 

management policies is to estimate the demand during the replenishment time. When 

forecasting for the replenishment time, ultimately, the accuracy of the cumulative forecast 

is what matters. In this regard, the accuracy of forecasts for individual days is secondary 

if the cumulative forecasting for the replenishment time is accurate.  

For this reason, the Seq2Quant modelling approach reframes the problem of 

forecasting demand multiple-steps-ahead to a cumulative demand forecasting problem. 

The output sequence consists of N entries, where each entry n in the sequence is a forecast 

of the cumulative demand up until this point. As such, the model seeks to learn a 

hypothesis H, such that: 

 𝐻:	(𝑦!&; , … , 𝑦!&', 𝑦!) → Y𝑦!#'},	< 𝑦!#=
+

=*'

}
,… , 	< 𝑦!#=

<

=*'

}
[ Eq. 25 

Since demand is always weakly positive, the cumulative demand up until the next period 

can never be lower than up until the current period. The temporal structure of RNNs lends 

itself to this framing, as the forecast of cumulative demand for one period directly affects 

the forecast of the following period. The cumulative forecast is fed back into the network 

to allow for consistency. 

Chapter 2.1 provided an introduction on how to determine the optimal order-up-to level 

S. The optimization problem stated in Eq. 2 corresponds to finding the p-quantile of the 

cumulative demand, where p is equal to the target CSL α. The capability of Neural 

Networks to adopt different loss functions allows the Seq2Quant model to regress for 

quantiles of cumulative demand directly. The pinball loss (also known as quantile loss) 
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function is used to obtain quantile forecasts. Citing Smyl (2020), the pinball loss is defined 

as follows: 

 𝐿!(𝑦! , 𝑦!B ) = 
(𝑦! − 𝑦!B )𝜏, 𝑦! ≥ 𝑦!B

(𝑦!B − 𝑦!)(1 − 𝜏), 𝑦!B > 𝑦!
 Eq. 26 

where 𝜏 corresponds to the target p-quantile. The pinball loss penalizes over- and 

underpredictions unequally, so a high 𝜏 would incentivize predicting too much over too 

little. Setting 𝜏 to 0.5 would result in a regression to the median. However, the overall loss 

is zero when the forecast errors 𝑦! − 𝑦!B  are eradicated, which maintains the overall 

incentive to forecast as accurately as possible.  

Note that this puts the model at the threshold from predictive to prescriptive modelling. 

The Seq2Quant model does not explicitly forecast future demands but learns to estimate 

an optimal, risk-adjusted order-up-to level 𝑆!,!#(∗  for every forecasting horizon 𝑖 within the 

following N periods.  

 𝐻:	(𝑦!&; , … , 𝑦!&', 𝑦!) → v𝑆!,!#'∗ , 𝑆!,!#+∗ , … , 𝑆!,!#<∗ x Eq. 27 

The goal of prescriptive modelling is not to predict the future but to derive optimal 

instructions on how to act. The model expands the research of Huber et al. (2019) to the 

multi-period case.  



 

46 
 

5 METHODOLOGY  

The Seq2Quant’s performance will be empirically evaluated in a quantitative experiment 

using real-world data. The model will forecast the demand for several hundred SKUs in 

the fresh product segment of a German wholesale company over three months. 

Subsequently, a simulation gauges the effects on the inventory development of this 

product segment under close-to-real-life restrictions. The model will be compared against 

a statistical baseline model to quantify whether a hypothetical gain in performance 

justifies the additional computational complexity. 

 CASE DESCRIPTION 

Most of the data for the experiment was provided by Lekkerland SE & Co. KG, a German 

wholesale company operating in the convenience sector in multiple European countries. 

Its primary customers Customers include petrol stations, kiosks, convenience stores, 

bakeries, food retailers and quick service restaurants. The company operates 14 logistic 

centers at several locations in Germany, five of which serve the role of a central 

warehouse. The central warehouses deliver both to customers and other logistic centres, 

which puts them at crucial points in the supply chain.  While it provides an array of product 

segments from tobacco products to beverages, the company is particularly interested in 

optimizing the forecasting process of its fresh products category. Products in the said 

category are perishable. The category is furtherly divided into five product segments:  

• Dairy products, fruits, and vegetables 
• Meat and cold cuts 
• Fast food 
• Bread 
• Sandwiches 
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Due to the perishable nature of these products, the company tries to keep their 

warehouse cycle times at a minimum. Many products come with a date of expiry. Upon 

delivery to customers, the case company guarantees a minimum remaining time range 

until the expiration date. Likewise, the company has negotiated a minimum remaining 

time with its suppliers. Thus, there is a natural upper limit to their storage time at the 

company’s warehouse. For products without an expiration date, e.g., many vegetables, 

excessive storage time makes them unsellable due to outer appearance and health 

concerns. For some products in the segment dubbed ‘ultra-fresh products’, the maximum 

acceptable time in the warehouse is as low as one or two days.  

Products exceeding the maximum acceptable time in the warehouse get discarded 

altogether. From an inventory management perspective, the company is facing overage 

costs due to waste. On the other hand, due to the market's competitiveness, providing a 

continuous and full supply of goods for their customers is part of the company’s strategy. 

Sufficiently high stocks are essential for that. Unfulfilled orders are associated with high 

perceived underage costs. Thorough inventory planning, and accurate forecasting of 

demand in particular, is vital for balancing this trade-off. 

Almost daily replenishment of product stocks is thus necessary. Moreover, the 

company handles the process with particular caution. For other segments, forecasting and 

replenishment of many product segments are handled mainly automatically by enterprise 

software. In contrast, the forecasting process for fresh products is highly manual: A group 

of material requirement planners determines the order quantity for every individual 

product daily. These dispatchers estimate the demand for the upcoming days. Order 

quantities are then calculated based on the expected demand during the product 

replenishment time, including the supplier lead time and the prespecified review period. 
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In that sense, the replenishment process follows the forecast-based periodic review policy 

outlined in Chapter 2.1.  

The forecasting process, on the other hand, is only weakly structured. When placing 

orders, the dispatchers examine daily product sales of the past couple of weeks. They then 

estimate the demand for the upcoming days, taking past sales and judgmental adjustments 

into account. Company executives provided me with a description of typical 

considerations for adjustments: 

1. Upcoming holidays that might shift demand  

2. Promotional activities at the customer site 

3. Increased travel activity due to regional events and school holidays 

4. Weather 

5. Safety stocks 

On top of that, the ordering process is subjected to a set of restrictions imposed by 

suppliers. These include minimum order quantities, minimum order values, and fixed 

weekdays for placing orders. According to company executives, the quality of forecasts' 

varies widely based on the dispatcher’s effort and experience. Learning to forecast takes 

a long time. Due to the German state's federal structure, public holidays and holiday 

periods for schools differ across the 16 federal states, which makes taking the local 

conditions into account a non-trivial task. Moreover, the lack of a structured process 

makes forecasting hard to scale. In conjunction with the high costs for inaccurate 

forecasting, the company has a genuine interest in optimizing its forecasting process. 
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 DATA DESCRIPTION 

For this experiment, the company provided comprehensive data on their fresh product 

segment. The data can be roughly divided into historical data, information on the logistical 

processes, and lastly, product individual article master data and logistical properties. 

The historical data covers the time of the 01st March 2018 to 31st March 2020, which 

was the maximum time range retrievable from the system at that point. The data is from 

the five central warehouses the company operates in Germany, serving both customers 

and other intermediate warehouses in the supply chain. Three data sets were provided, the 

first of which reports daily sales and the number of discarded products. The second data 

set reports customer orders for products and the respective degree of fulfilment. The third 

historical data set reports past promotional activities for the product.  

Information on the logistical processes come in the form of location-specific 

replenishment schedules. Each schedule provides information on the delivery lead time, 

possible order days, and order restrictions for each listed supplier. Another dataset 

contains a list of ZIP code areas to which the warehouses supply. 

Finally, the company provided several data sets containing general information and 

information on every SKU's logistical properties. The master data set contains each 

product’s IDs, its supplier, and a product description text. Some products are sold in 

bundles, meaning a sales unit consists of a fixed number of product units. This information 

was extracted from the article description text using regular expressions as filters. On top 

of that, for every product with a date of expiry, the maximum acceptable storage time is 

specified. Information on product weight, price, and size of some products round up the 

data set. 
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External data supplemented the company-internal data. Company executives suggested 

that the weather might influence sales. As discussed in chapter 3.2.2, including weather 

information has been shown to improve forecast quality. Steinker et al. (2017) have shown 

that while the weather within Germany varies a lot between different locations, the 

weather within a federal state is relatively homogenous. Records at a single location can 

thus represent the weather in each state. To model weather, historical observations from 

16 weather stations were obtained from the German weather service DWD. The 16 

weather stations correspond to one federal state and are the ones used in Steinker et al.’s 

model. 

It is worth noting that for this experiment, historical records of weather are used rather 

than historical weather forecasts. In practice, weather records would not be available when 

the forecast is made, but only weather forecasts. Using records might bias the analysis, as 

the quality of weather forecasting typically depletes with the forecasting horizon. The 

ultimate decision to use historical records instead of forecasts was made based on the 

following rationale: The required forecasting horizon for most products is less than a 

week. Within a week, weather forecasts are relatively accurate. Moreover, obtaining 

historical forecasts is a non-trivial task and would increase the complexity of the data. If 

the inclusion of actual weather data proves to improve the forecasting accuracy, a 

subsequent experiment with weather forecasts instead of records is possible. 
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Table 1: Overview of data used for the experiment 

Data Set Content  

Historical sales Daily sales, discarded units, inventory differences per product by location  

Customer orders Daily orders placed per products by location, degree of order fulfillment  

Promotional Activities Promotional activities for the fresh products segment  

Logistical schedule Supplier specific order days, lead time and order restrictions for every 
warehouse location  

Postal Code Mapping  Mapping of head warehouse to warehouse, list of postal codes of 
respective customers   

Article Master Data Product specific Product ID, article description, supplier, max time in 
warehouse, weights  

Product Price Price in € for selected products  

Product Size Information Units per palette/box for selected products  

Weather data Historical records for average temperature, hours of sunshine and amount 
precipitation from 16 weather stations  

School holiday periods List of school holiday periods by German Federal State for 2018 to 2020  

Holidays List of Holidays by German Federal State  

The full data set provides observations for 14 metrics at every station. To avoid 

problems with high dimensionality, only three of these are used in the final model: daily 

average temperature, hours of sunshine, and the total amount of precipitation. The python 

package ‘Holidays’ provided a list of federal state-specific holidays in Germany. School 

holiday periods for every federal state in the years 2018 to 2020 were taken from a web 

service and collected in an Excel file. Error! Reference source not found. provides an 

overview of all the data used for this experiment. 

 DATA CLEANING 

The data cleaning process was two-fold: On one hand, it involved making the data 

machine-readable. The original data came in mainly unstructured formats in CSV and 

Excel files. The data format was standardized to pickled data frame objects of the python 

library pandas, by applying appropriate formatting and a standard naming convention to 

features.  
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An initial visualization of sales data revealed outliers in the data that would distort the 

analysis, implying the data needs to undergo some preliminary filtering. A rolling window 

filter identified outliers in the sales records using z-scores. The sample mean �̅� , and the 

sample standard deviation 𝑆	were calculated for a rolling window of 20 steps. The z-score 

for an individual data point 𝑥 was given by: 

 𝑧 =
𝑥 − �̅�
𝑆  Eq. 28 

A z-score of 4 marks the threshold for data points to be an outlier. Applying the filter 

resulted in a list of 45 data points, which a dispatcher doublechecked. The dispatcher 

confirmed the majority of them to be mistakes in the data. These faulty data points are 

likely the result of human error during data acquisition. The identified faulty data points 

were eliminated from the data set. 

Furthermore, during data cleaning the data underwent some preliminary filtering, the 

goal of which was to drop the time series which had insufficient information to be used in 

the experiment. In the historical sales data, sales for 1029 SKUs were recorded at up to 

five locations over two years. This amounts to a total of 3882 unique time series, i.e., 

unique combinations of SKUs and locations. Not every product is delivered from every 

logistic centre, thus the discrepancy. Of the articles, 146 were identified as drop shipment 

articles by their product description. The company asked to exclude these from the 

experiment upfront. A total of 3408 unique time series remained. 

The time range from 12.01.2019 to 31.03.2020 constitutes the testing phase, for which 

the model is supposed to forecast demand. This way, the model makes out-of-sample 

forecasts for about 20% of the available historical records. Moreover, due to the German 

holiday season around Christmas and New Year, many sales anomalies occur in this time, 
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making it a suitable period to evaluate whether the model is capable of taking these into 

account. The remainder of the historical data serves as training data to fit and optimize 

models.  

The product range varies over time as some products are added to and dropped from 

the product range. In the testing set, there are 1438 series more than ten events of sales. 

Only these are kept from the original data set to exclude ultra-short time series. Moreover, 

to fit the model, a minimum amount of observations during the training phase is necessary. 

The threshold for this minimum amount is at 20 observations. Finally, for a small number 

of the products remaining in the testing set, no reliable information on best before date or 

logistical properties was available. They were excluded from the analysis as well.  

In total, for the final experiment, 1318 unique time series were considered. While this 

might seem like only a small subset of the roughly 3400 series in the original data set, the 

considered time series make up about 94% of the sales in the segment during the testing 

periods. Thus, they still constitute a representative sample of the overall sales. 

 PRE-PROCESSING  

The data underwent several pre-processing steps to make the input suitable for the Neural 

Network. This section describes all the steps taken.  

First, in order to make the observations in the time series equidistant, data was 

resampled to include one observation on every business day (Monday to Friday). The rare 

case of demand on Saturdays (due to delivery shifts after holidays) is treated as if the 

demand had occurred on Friday. 
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Figure 5: Standardized seasonality component for every individual time series in October 2019. 

 

For prediction, the model uses engineered features and exogenous features. Apart from 

the actual sales of the product, several categorical variables are passed to the model as 

covariates. These categorical variables include the product segment, the location where 

the product is sold, and an index unique to every series made up of the location name and 

the product ID, from which the time series can be identified.  

The forecasting literature suggests that Neural Networks provide better forecasts when 

the original time series is deseasonalized (Bandara et al., 2020). Figure 5 plots the 

standardized seasonality component, as extracted from trend-seasonality decomposition, 

for every single series. It shows that the overall seasonality pattern is quite regular among 

the series. Following a suggestion by (Barker, 2020), the model is thus supposed to learn 

the seasonality with the help of date features. Considering that most of the time series 

exhibit a similar weakly seasonal pattern, the model is more likely to succeed here than in 

forecasting series that exhibit varying seasonality, which Bandara et al., (2020) are dealing 

with. For this reason, additional features for the year, month, day of month and weekday 

were created.   
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In order to leverage the hierarchical structure of the sales data, sales of related products 

were included at different levels of aggregation. For every time series, apart from 

historical sales, the following observations were included: Total sales of the SKU at every 

location, total sales of the product segment, and total sales at the location. Apart from 

daily records of these values, biweekly means for every series were provided.  

In a traditional regression model, the inclusion of such features would be complicated, 

as future values are unknown. To incorporate future values into the model, they would 

have to be forecasted themselves, introducing additional sources of error to the forecast. 

The Seq2seq-structure of the model allows for including different features for the past and 

future. Thus, future values of related time series need not be known for them to be included 

in the model.  

The exogenous features from the weather observations and the holiday data were added 

to the model. An overview of all the features used by the Neural Networks is given by 

Table 2. 

 

Table 2: Overview of features used by the Neural Networks 

Feature Description Used in  

Time Series 
Observation 

Absolute Sales per SKU per Location Encoder 

Categorical Data Product Segment, Location and Index Encoder & Decoder 

Date Features Year, Month, Day, Weekday Encoder & Decoder 

Related Product Sales Daily and two-week-average of corresponding SKU, 
product segment, and location 

Encoder 

Promotional Activities Binary variable: promotional campaign active? Encoder & Decoder 

Weather Data Sunshine hours, average temperature and precipitation 
recorded at 16 weather stations 

Encoder & Decoder 

Holiday Sixteen binary variables: holiday? Encoder & Decoder 

School Holiday Period Sixteen binary variables: school holiday period? Encoder & Decoder 
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Categorical variables with a low amount of categories per feature were encoded using 

one-hot-encoding (OHE). OHE turns a categorical feature into a vector of binary variables 

with one entry for every possible category. The vector consists of zeros and ones, where 

one indicates that an observation falls into a specific category. OHE encoded features 

include the location (five categories), the product segment (five categories), the year (three 

categories), and the weekday (five categories) of the observation. 

OHE-encoding the time series index (1318 categories) would have drastically increased 

the model complexity; thus, the index was passed to an embedding layer, as described in 

chapter 4.2. The month and day of the month were encoded as combinations of sine and 

cosine values. This approach signals to the model that January and December fall in the 

same season, even though their numerical encoding (1 and 12) suggests they are far apart. 

All non-encoded additional variables, namely the engineered features for 

corresponding product groups and the weather data, were standardized to zero mean and 

unit standard deviation, as suggested by Wen et al. (2017). For the actual values of the 

time series, (Salinas et al., 2020) suggest letting the model learn the scaling itself, which 

means that the model learns to scale the time series at the input layer and inverses the 

scaling at the output layer. Learning the scaling complicates the training process, but 

preliminary testing results solidified the notion that scaling should not be handled as part 

of the pre-processing. While preliminary scaling accelerated the convergence in training 

time significantly, the resulting model yielded poor results on validation data.  
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Figure 6: An example of applying the moving window approach, adapted from Bandara et al. (2020) 

In order to train the models, each time series in the original training set was turned into 

multiple samples by applying the moving window approach. (Bandara et al., 2020; Salinas 

et al., 2020). While keeping the original order of observations, two fixed-length windows 

are used to sample input and output sequences from the original time series. Figure 6 

illustrates this process. The windows are moved one step ahead until the output window 

reaches the last date in the time series. Applying this approach to the 1318 time series 

yielded 446,862 training samples.  

The full pre-processing process is documented in Appendix A. 
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 IMPLEMENTATION 

The following section describes how the models were implemented.  

 Neural Network Models 

In total, four Neural Networks were trained:  

• A Seq2seq model for forecasting period-specific demand  

• A Seq2quant model for forecasting the medium cumulative demand 

• A Seq2quant model for forecasting 0.8-quantiles of cumulative demand  

• A Seq2quant model for forecasting 0.9-quantiles of cumulative demand  

The model consists of an encoder and a decoder part, each of which consists of stacked 

LSTMs. The model takes three sets of inputs: The first input — the time series index — 

is passed to an embedding layer that maps the index to a multidimensional vector. The 

encoder input is a sequence of past observations and additional features for 15 periods 

back. The decoder input is a sequence of deterministic future features for 15 periods 

forward. Additionally, both the encoder and the decoder process the embedding layer's 

output vector at every time step. The final layer is a time-distributed dense layer that 

applies a ReLu-activation to the output. The activation ensures that the output is non-

negative, and allows the network to predict the demand as precisely zero.  

During preliminary testing, several model architectures were tested and evaluated on 

the validation set. The final model was supposed to predict 15 business days ahead in time, 

as some products’ orders are placed only once a week, sometimes covering the 

replenishment time for two weeks, plus the lead time. Bandara et al. (2020) recommend 

choosing the input sequence length as 1.25 times the output sequence length, or at least as 

long as the output.   
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Table 3: Hyperparameters for the implemented models 

encoder length  15 periods 

Decoder length  15 periods 

# LSTM layers  3 encoder layers, 3 decoder layers 

# LSTM nodes  40 

# of training samples  446,862 

# of validation samples  9,125  

Batch size  64 

Optimizer  Adam optimizer with a learning rate of 1e-3 

To date, there is however no dedicated analysis of the optimal input-to-output length 

ratio. In preliminary testing, an input sequence of 15 steps yielded the best results. Table 

3 summarizes the ultimate choice for the hyperparameters. It is partly inspired by a similar 

setup that has been proposed by Salinas et al. (2019) in an experiment with an equally 

large number of time series and training samples. The suggested architecture and the 

hyperparameters are applied to all four networks. Figure 7 on the following page illustrates 

the model structure.  

Models were trained for a maximum of 20 epochs (i.e. iterations over the training set) 

with mini-batch learning. Early stopping was applied, which means that the training 

process is stopped when the loss on the validation set does not improve for two consequent 

epochs. A dropout layer with a dropout probability of 0.2. in both the encoder and the 

decoder part of each model prevented overfitting.  
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In an initial test, the Seq2Quant models failed to converge. To facilitate learning, each 

model reused the weights learned by its predecessor for initiation (‘warm-starting’). This 

training scheme reduces the complexity of the problem to learn for each model and 

accelerates the training process. The Seq2seq model needs to learn to predict the future 

demand. The Seq2Quant_Median model learns to add up demands over periods. The 

remaining models learn to adapt these cumulative demand forecasts to overpredict 

demand on average. 

The Neural Network Models were implemented in Python 3.7 using TensorFlow 2.1.0, 

using the Keras library (version 2.3.1). All models were trained on an HP laptop running 

on Windows 10 and using an eight-core Intel i5-8265u CPU. With this set-up, training the 

first two models took approximately 24 hours, whereas the other two took 14 hours and 7 

hours due to warm-starting. The code for the implementation can be found in Appendix 

B.  

 Baselines 

The experiment compares the performance of the Neural Networks against the following 

baselines:  

• Moving Average Forecast 
• Naïve Seasonal Forecast 
• Naïve Seasonal Forecast with Averaging over four periods 
• ARIMA 
• SARIMAX 

The Heuristic models approximate the current practice of manual forecasting by the 

company employees, i.e. the Naïve models for time series with steady demand and the 

Moving Average approach for when demand is erratic and follows no pattern. The 

ARIMA models provide a state-of-the-art statistical baseline. The SARIMAX model is an 
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extension with exogenous variables to show how external demand drivers can be 

accounted for in the statistical forecasting framework.  

The simple heuristics, i.e., the Moving Average and Seasonal Nãive forecasting 

approaches, were implemented as Python function. Their code can be found in the 

Appendix. The ARIMA and the SARIMAX models were implemented via the objects 

provided by statsmodels-library (v.0.10.1). The models are fitted with the help of the 

pmdarima library (v.1.6.1), a wrapper for the statsmodel implementation mimicking the 

behaviour of the famous R-function auto.arima  from the forecast package (Hyndman, 

Rob J. and Khandakar, 2008). The function fits several models with different orders and 

chooses the model that minimizes the AIC (c.f. Chapter 2.3.2) for the training period. 

Stepwise search is applied, with a maximum order of 𝐴𝑅𝐼𝑀𝐴(10, 𝑑, 10) and 

𝐴𝑅𝐼𝑀𝐴(10, 𝑑, 10)(4, 𝐷, 4)𝑚	respecitvely. The m component (seasonality) of the 

SARIMA models was fixed as 5, as the time series come in business day frequency. The 

function also applies appropriate differencing 

Furthermore, the SARIMAX models took the following features as exogenous inputs: 

weather data, holidays, vacation periods, and promotional activities. The high 

dimensionality of the exogenous covariates would have made fitting the model series with 

little observation impossible, as there would be fewer observations than variables, hence 

no degrees-of-freedom. To prevent this, the SARIMAX model uses only a subset of the 

data. This subset includes only observation from federal states that are relevant for the 

location the forecast is made for. The relevant federal states for each location were 

identified from ZIP codes of each central warehouse's clients.  
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After fitting on the training period, every method produced forecasts for 15 steps ahead 

for every date in the test period, having access to all the observations available up until 

this point. The code for the implementation can be found in Appendix C. 

 INVENTORY SIMULATION 

In response to the call for taking utility values from inventory management into account 

for evaluation (c.f. Chapter 3.2), the experiment involves a close-to-reality simulation of 

inventory development. The simulation covers the test period time from December 2019 

to March 2020 and uses actual sales data. However, orders and stocks are calculated based 

on forecasts generated by the models described in the previous section.  

The inventory management in this simulation follows a periodic review policy, as 

outlined in Chapter 2.1. Demand occurs every business day and is served immediately. To 

approximate the case company’s real-world conditions, the experiment settings impose 

two forms of restrictions on the orders: order date restrictions and order quantity 

restrictions.  

Though the company monitors stock development daily, daily orders are not always 

possible due to order date restrictions. Some suppliers only deliver products on certain 

weekdays. Thus, the review period differs between suppliers, and sometimes even varies 

over time for different suppliers. As a first step, the simulation algorithm calculates every 

possible order date and the corresponding replenishment time the order needs to cover.  

Subsequently, on every possible order day, the order-up-to levels for every product are 

determined. The order-up-to level is based on forecasts for the demand during the 

replenishment time, plus safety stock. For the baselines, the safety stocks are obtained 

from the forecast error, which was estimated from their performance during the month 
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before the test period (baselines) or their fitting residuals (ARIMA and SARIMAX). The 

Seq2Quant models incorporate the safety stock in their forecast, hence no additional 

calculation is necessary. The ordered amount is calculated by subtracting the current stock 

and the pipeline stock. Orders are rounded to sales unit level (i.e., the bundle of units the 

SKU is sold in). Orders placed arrive after a supplier-specific lead time, and in the  

meantime are considered part of the pipeline stock.  

For some suppliers, orders are subject to additional restrictions concerning the order 

quantity. In the data set provided, three forms of order quantity restrictions were present: 

Minimum order values, minimum order weights, and minimum order volumes. Upon 

calculating all products' optimal orders for a supplier, the simulation algorithm checks 

whether the ordered amount is sufficient to fulfil the restrictions. If not, the algorithm 

extends these products forecasting horizon so that it covers the demand for the following 

replenishment period as well. Consequently, orders for subsequent replenishment periods 

are brought forward. This process is repeated as often as necessary, but never beyond a 

forecasting horizon of three weeks.  

A crucial aspect of the evaluation is the amount of waste. Waste occurs when products 

exceed the maximum acceptable time in the warehouse, and are thus unsellable. During 

the simulation, the algorithm tracks incoming order batches per SKU independently. The 

expiration date is set to the arrival date, plus the maximum acceptable time in the 

warehouse. For products with no expiration date, the maximum acceptable time in the 

warehouse was defined manually, based on company employees' estimations. Sales are 

first served from the oldest order batch, following a first-in-first-out approach. At the 

beginning of each period, all remaining stocks of batches exceeding their expiration dates 

are discarded.  
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The simulation tracks the stock level at the beginning and end of the period, the number 

of discarded products, and the demand fill-rate on a product level. The simulation runs 

independently for each of the forecasting models introduced in the previous section. In 

total, the simulation is repeated three times, for the target service levels of 50%, 80%, and 

90%. The full code for the simulation algorithm can be found in Appendix D.  
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6 RESULTS  

This chapter summarizes the results of the experiment. The first section evaluates the 

models based on performance metrics, the second section based on the results of the 

inventory simulation. 

 DEMAND FORECASTING 

This section compares the results for forecasts of exact demand. The Seq2Quant-models 

forecasts cumulative demand; thus, this analysis excludes them. For each day in the 

training period, the models produced 15-day-ahead forecasts. Table 4Error! Reference 

source not found. summarizes the results for two performance metrics: The MAE and the 

SMAPE, as introduced in  Chapter 2.2. The metrics were calculated across all forecasting 

dates and forecasting horizons for every unique time series individually. The Average 

Value describes the mean of the metric over all products and locations. The Average Rank 

is the mean rank a model achieved within a ranking of models for time series.  

 

Table 4: Mean Performance Metrics for 15 step-ahead forecasts 

Model MAE   SMAPE  

 Average Value Average Rank  Average Value Average Rank 

MA 21.74 (6) 4.57 (6)  80.38 (6) 4.45 (6) 

Naïve 19.97 (5) 4.54 (5)  70.44(3) 4.34 (5) 

Naïve A. 18.42 (4) 3.11 (4)  69.19 (2) 3.24 (3) 

ARIMAX 18.09 (2) 2.95 (2)  76.87 (4) 3.17 (2) 

SARIMAX 18.33 (3) 2.73 (1)  79.68 (5) 3.60 (4) 

Seq2Seq 17.44 (1) 3.08 (3)  66.91 (1) 2.21 (1) 
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In terms of average values over all models, the suggested Seq2seq model is the most 

accurate. Based on the SMAPE rank, it also seems to be among the best models for most 

series. Interestingly, judgment based on the MAE favours the use of statistical methods, 

whereas the SMAPE favours the Naïve Methods. The Average SMAPE weights all the 

time series equally, as the metric is standardized between 0 and 200. The MAE, on the 

other hand, is not standardized; thus, single series with large volumes have a higher impact 

on the overall results. Intuitively, the statistical models might perform better on single 

series with high, regular demand, skewing the metric in their favour. In terms of all 

metrics, the simple moving average approach is the worst method.  

Judging from the ranked values, there is no single dominant model. Even the Moving 

Average, which ranked last in every metric, was found to yield the best forecasts for a 

small group of products. The relatively good performance of the Seq2seq model can be 

attributed to its ability to model multiple behaviours at once, due to its embedding layer. 

Nevertheless, the question remains whether the machine learning model would perform 

better on more homogenous sets of demand.  

Figure 8 shows the average SMAPE of all models for forecasting n steps ahead. As 

expected, the forecast accuracy decreases with the forecasting horizon. Seq2seq dominates 

for the majority of forecasting horizons. For short-term forecasts of less than a week 

ahead, the Seasonal Naïve method achieves a slightly better mean SMAPE. However, the 

accuracy of the method deteriorates for forecast horizons of more than a week.  
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Figure 8: Mean SMAPE per method over the forecasting horizon 

Note the apparent stepwise curve of the Naïve method (in orange). Averaging over 

multiple weeks smoothens out the curve (as in Naïve_Average, in green), but sacrifices 

short-term accuracy. Like the Näive forecasts, the ARIMA and Naïve Average methods 

show step-wise behaviour, with spikes after every seasonal cycle. The curve for Seq2seq 

resembles the Moving Average curve best.  

 INVENTORY SIMULATION 

Table 5 and Table 6 summarize the results of the inventory development simulation. In 

the first set, where a target service level of 50% is applied, effectively no adjustments are 

made. Interestingly, all of the models reach comparatively high service levels, even 

without any adjustment.  
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Table 5: Results of the Inventory Simulation for different target cycle service levels, part 1 

Model  Target CSL     

 
 

50%  80%  90% 

  
 

α β  α β  α β 

Moving_Average  0.76 0.84  0.89 0.92  0.9 0.92 

Naive 
 

0.76 0.83  0.88 0.91  0.9 0.91 

Naive_Average 
 

0.76 0.84  0.87 0.91  0.89 0.91 

ARIMA 
 

0.78 0.86  0.9 0.92  0.91 0.92 

SARIMAX 
 

0.79 0.86  0.89 0.91  0.9 0.92 

Seq2seq  0.82 0.87       

Seq2Quant_50 
 

0.81 0.87       

Seq2Quant_80     0.84 0.89    

Seq2Quant_90 
 

      0.86 0.9 

 

 
Table 6: Results of the Inventory Simulation for different target cycle service levels, part 2 

Model 
 

Target CSL     

 
 

50%  80%  90% 

  
 

Lost Sales Waste 
 
Lost Sales Waste 

 
Lost Sales Waste 

Moving_Average  449.121 141.894   237.561 300.458   225.457 359.917 

Naive  594.331 135.588   270.947 301.462   248.413 367.197 

Naive_Average  513.302 154.614   305.859 297.726   287.172 353.004 

ARIMA  529.092 136.521   315.452 234.564   288.009 273.137 

SARIMAX  449.015 157.706   262.073 281.310   245.329 330.413 

Seq2seq  398.193 149.700       

Seq2Quant_50  434.608 153.627       

Seq2Quant_80     400.090 193.934    

Seq2Quant_90        368.901 215.396 
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Figure 9: Ratio of lost sales nnumber of overall discarded Products for (Target CSL, Model Name) 

Note that the four Neural Networks are listed independently, as they are technically 

four models. The model did indeed adapt forecasts to account for the increase in target 

service level, which is reflected by the increase in the realized service level alpha. For the 

target CSL of 80%, the SeqQuant_80 is the most conservative method, reaching the lowest 

CSL but also the lowest level of waste. The baselines, however, massively overpredict 

and overshoot the 80% target by a margin. This implies that the calculation based on the 

normality assumption of forecasts error is inadequate.  

However, the Seq2Quant_90 fails as only one of two models to reach the target CSL 

of 90%. In terms of the fill rate, or beta level, all models are on par. It appears that the 

Quantile Loss function did not sufficiently incentivize the model to adjust the prediction.  

Figure 9 visualizes the results of Tables 5 and 6 by plotting the number of lost sales 

against the number of discarded products over the testing period. This visualization allows 

for checking for efficiency. A method is efficient if there is no other method that achieves 

better results for both utility values at the same time.   
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Figure 10: Ratio of realized CSL to number of overall discarded products for (Target CSL, Model Name) 

Since both values need to be as low as possible, the Seq2Quant_80, Seq2Quant_90, 

and the Seq2seq model are all part of the efficient frontier, i.e., the set of efficient methods. 

Among the models without safety stock adjustments, the Seq2seq model dominates the 

Seq2Quant_50, the SARIMAX and the Naïve model. This is somewhat counterintuitive, 

as the Seq2Quant_50 was explicitly trained to forecast cumulative demand. The Seq2seq 

model also achieves better lost sales values at only a slightly higher level of waste than 

the ARIMA, Naïve Average and Moving Average models.  

Judging from the shape of the efficient frontier, it appears, however, that the 

Seq2Quant_80 and Seq2Quant_90 are part of it, but have slightly worse ratios than other 

efficient methods. The comparatively simple seasonal Naïve Average models are part of 

the frontier too. Plotting the product waste against the CSL (Figure 10) reveals a similar 

image. As before, the Seq2seq-model dominates or nearly dominates other solutions with 

the target-service level of 50%.  
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Figure 11: Exemplary Plot of Sales, Orders and Discarded Products for two models from the 90% target CSL simulation 

The primary value of the Seq2Quant models in this setup is that they reached tradeoffs 

between product availability and waste that traditional methods did not. The question 

remains whether the baseline models could achieve similar trade-offs with more accurate 

methods to determine the safety stocks.  

Finally, the results provide some evidence for the value of intelligent models or models 

that are augmentable by external features. The upper plot of Figure 11 displays the 

development of the daily number of overall waste for two methods: The Naïve Average 

(90) and the Seq2Quant 90. The blue line plots total sales. It is added for visualization 

purposes because it shows the massive irregularities in demand during the holiday season. 
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The Naïve Average method has no way to model the extraordinary case of holidays. 

Thus the irregularities in the sales skew its forecasts, leading to high amounts of waste. 

For the Seq2Quant model, on the other hand, the amount of discarded products remains 

relatively stable over time, even during the holiday period.  

The lower part of the figure plots the orders placed. Note that due to the different scale, 

the blue line (sales) appears squished. Under the Naïve Average model, the simulation 

algorithm placed higher orders before Christmas. It likely misinterpreted the elevated sales 

in the pre-Christmas week and thus placed higher orders than necessary, which ultimately 

leads to products wasted. On the other hand, this implies that the Neural Network learned 

successfully to interpret the demand irregularities during the holidays. 
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7 DISCUSSION AND CONCLUSION 

This study shows that Neural Networks are a promising approach to deal with large-scale 

forecasting problems for perishable products. Forecasting SKU-level demand for 

perishable products is a challenging task: time series for demand are volatile, skewed, 

subject to external factors, and frequently consist of only a few observations. Furthermore, 

SKU-level demand forecasts are typically used for inventory management, which imposes 

additional requirements on the forecasting procedure, namely scalability, proper 

uncertainty estimation, multi-step-ahead accuracy and the inclusion of external demand 

driving factors.  

The suggested Seq2Quant model seeks to address these issues directly by allowing 

multiple types of external variables as inputs, and by predicting demand quantiles directly. 

To avoid common problems of forecasting with Neural Networks, the model learns 

globally from all the available time series. A large-scale experiment on the fresh products 

segment of a German wholesaler tested the model’s performance on real-world data.  

The main finding is that based on forecasts for over 1300 unique time series of demand 

at the SKU-level, the base form of the suggested model for accurate daily demand 

forecasting (Seq2seq) yielded superior results to all of its competitor baselines in terms of 

SMAPE and MAE. It outperformed all other methods for forecast horizons of more than 

a week, demonstrating the success of forecasting methods optimized for multiple-step-

ahead predictions.  

In terms of inventory performance, the results are mixed. The performance of the basic 

Seq2seq model without Quantile Regression translated directly to superior trade-offs for 

product availability and product waste over other baseline methods without safety-stock 
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estimations. There is, however, little evidence to prove that the Seq2Quant approach 

yields superior forecasts of demand quantiles. Totalled across all locations, the Seq2Quant 

model failed to reach the highest of the pre-defined target cycle service levels, 90%. On 

the other hand, Seq2Quant Networks found a fair tradeoff between product availability 

and product waste. None of them was dominated by a baseline model in terms of service 

level to discarded products ratio. Furthermore, the simulation provided evidence for the 

capability of the network to handle exogenous demand drivers appropriately. 

These findings provide further evidence for the promising forecasting capabilities of 

global sequence-to-sequence models. They lend support to, for example, Salinas et al. 

(2019) and Wen et al. (2017), who showed that global models improve forecasting for 

SKU-level demand. Moreover, the findings extend these studies by comparing the model 

against statistical baselines, and show that Machine Learning models perform best when 

additional features and sufficiently large data sets are available, as suggested by Barker 

(2020).  

In contrast to Huber et al. (2019), this study found the integrated quantile regression 

approach not to yield superior inventory performance. Note, however, that Huber et al. 

studied a comparatively more straightforward one-period-newsvendor problem. The 

Seq2Quant model in this study dealt with several multi-period prediction problems at 

once. Hence, the findings of this study do not necessarily contradict earlier findings on 

Quantile Regression, but may imply that the problem was too complex for the model to 

learn.  

The question of why the Seq2Quant model did not reach the target service level of 90% 

remains. In this setting, the learning algorithm had to be optimized for 15 quantiles at the 
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same time. Non-linear programming is, in general, not easy, so shortening the output 

sequence to reduce the complexity of the problem might be a first step.  

The practical implications of the study are two-fold: First, the results seem to indicate 

that global Neural Network models are a promising approach to deal with large scale 

demand forecsting problems of food products at the SKU-level. However, this study finds 

no sufficient support for integrating the safety-stock estimation into the prediction process. 

On the other hand, though theoretically appealing, well-known drawbacks of Neural 

Networks remain a problem: namely their poor interpretability due to their black-box-

nature, and their high computational complexity. From a practical perspective, the poor 

interpretability is secondary; daily forecasts for several hundred SKUs leave little room 

for in-depth evaluation, so from the practitioners’ perspective accuracy trumps 

interpretability. Nevertheless, the poor interpretability might be problematic in two ways: 

First, if the model provides poor forecasts, it may be hard to pinpoint the reason for the 

subpar performance. Second, as a direct consequence of this, building trust into this type 

of complex Neural Network is hard, which may prove to be a burden in fully automating 

such a crucial (and potentially expensive) aspect of inventory management.  

Another burden for adaptation in practice is the effort for setting up and maintaining 

the network. This is mainly the result of the high computational effort for training the 

model. The global modelling approach reduced the computational effort immensely, 

making it possible to train a large-scale forecasting network for several hundred time 

series on a regular laptop within a day. Still, in order to set up the network, relevant data 

had to be collected, cleaned and pre-processed. Preliminary testing to determine the most 

suitable structure and the set of hyperparameters was time-consuming as well. In total, the 

process took several months. Putting a network into production would require a high 
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degree of automation of the above-mentioned steps. Supply Chain Managers must weigh 

these additional efforts against the potential accuracy gain that comes with the large-scale 

and long-term implementation of a Neural Network. This study has provided some 

evidence for the competitiveness of Neural Networks, but the gains over the competing 

forecasting methods were overall not substantial.  

However, this study is exploratory in many regards. Global modelling is a relatively 

young phenomenon in forecasting. Moreover, to the author’s best knowledge, this is the 

first sequence-to-sequence model that forecasts the quantiles of demand simultaneously. 

This project was subject to time and computational constraints. Learning algorithms for 

Neural Networks are somewhat stochastic; thus it is usually worthwhile to train several 

versions of the model while altering the hyperparameters. The search process for the 

hyperparameters in the present study was not extensive and lacked a systematic structure, 

which leaves room for potential improvements.  

Likewise, the baseline methods were fit by automatic algorithms. The author tried to 

ensure a fair comparison against proper baselines. They were, however, not the primary 

focus of this work, so it cannot be ruled out that another established forecasting method 

might achieve better results on the data. Another limitation was that this experiment used 

historical weather records when they were technically not yet available. Further analysis 

should seek to replicate these results using historical weather forecasts instead. 

The limitations of the present study are closely linked to suggestions for further 

research. Obviously, the expansion of the input data set comes to mind. This refers to both 

the number of features, and the length of the historical records. The model was trained on 

only a bit more than one-and-a-half years of data. Many annual events like Christmas thus 

only appeared once in the data. Moreover, the model was trained over-proportionally on 
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data from summer months, which have higher sales on average. Extending the number of 

observations is desirable, as Neural Networks are Machine Learning models after all.  

The findings of this study imply, that there is no single dominant forecasting method 

for all products. Having one global model for one time series is convenient, but as 

mentioned in the literature review, Bandara et al. (2020) found evidence for the idea that 

segmentation improves the forecasts of global Neural Network models. A forecasting 

method should thus first seek to identify clusters of similar time series in the data, and 

then model multiple global models on these clusters. Applied to this case, this could 

involve clustering time series by mean sales or velocity, and fitting (smaller) models on 

them individually.  

In the operations research context, some of the ideas used in the Seq2Quant network 

can be applied in research on data-driven newsvendor problems. This study demonstrated 

how Neural Networks could forecast sequences of (cumulative) demand quantiles. This 

idea lends itself to solving multi-period newsvendor problems. Possible further studies 

could focus on applying this approach to inventory management problems to other 

industries.  

In conclusion, Neural Networks for demand forecasting remain an exciting field of 

research. Despite decades of prior work, researchers keep uncovering new application 

domains for Neural Networks. This study has shown that operations research has not yet 

utilized their full potential for forecasting extensively. It will be exciting to witness where 

the current advancements in Machine Learning will take us over the next years.  
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APPENDIX 

This thesis is supplemented by an electronical Appendix. It consists of parts of the code 

for the experiemnt, namely:  

A:  Pre-processing for Neural Networks 

B: Neural Network Training 

C: Baseline Training 

D: Inventory Simulation. 

The electronic Appendix that can be obtained by contacting the author of this thesis. 
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