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Abstract 

Maritime autonomous systems pose many challenges to their designers. A fully autonomous vessel 

must be able to handle everyday navigation and propulsion in addition to an extensive list of other 

tasks such as cargo handling, emergency maneuvering, ship-ship and ship-shore communications, 

situational awareness, and much more. If such systems are to be implemented for the sake of in-

creased safety, their operational risk and safety must be managed and assured.  

The goal of this thesis is to investigate how risk and safety of these systems can and should be 

managed. There are three categories of system modelling methods that can be used for this purpose. 

The oldest category is “sequential methods”, followed chronologically by the most popular category, 

called “epidemiological methods”, and then by the newest category, “systemic methods”. 

This thesis contains an overview of the three categories. Followed by a literature review that in-

vestigates the approaches to risk and safety management of autonomous systems that are taken 

within four transportation industries (aviation, railway, automotive, and maritime). Next are three 

SWOT analyses, one for each category of methods.  

For the role of autonomous maritime systems, the literature review and SWOT analyses indicate 

that STPA (a systemic method) is the optimal choice from the existing methods. This is because it is 

a comprehensive method that can handle complex socio-technical systems, such as those in ques-

tion, while providing useful safety improvement recommendations. 

However, no single method is better than every other in all situations, and STPA presents certain 

limitations and drawbacks. First, it is very resource intensive, demanding long time investments 

from expert personnel. Second, because few data on the proposed systems exist, it is very difficult 

to conclusively recommend a suitable method. Therefore, if practitioners decide to employ STPA, 

they should be open to considering other methods in case they can yield better results. Finally, STPA 

(and other systemic methods) cannot currently yield accident probabilities. This means that STPA, 

in its current form, is unable to entirely satisfy the IMO’s FSA, which is important for the future of 

autonomous ships. Conversely, the literature review and SWOT analyses indicate that methods that 

can satisfy the FSA are unsafe for this application. This is because they are too theoretically simplis-

tic and not comprehensive enough to produce trustworthy results. 

To solve this issue, one of the following should take place: (a) STPA (or another systemic method) 

is augmented to include probabilistic abilities; (b) STPA (or another systemic method) is combined 

with a sequential method to achieve the benefits of both categories (e.g. comprehensive and proba-

bilistic results); or (c) a new systemic method is created that provides the depth of analysis of STPA 

as well as the required probabilistic capabilities. 

However, barring the FSA issue, the enclosed analysis indicates that the optimal choice is a sys-

temic method (specifically STPA) despite its heavy burden to resources. This may seem like a cava-

lier recommendation, but it is the most comprehensive method and it produces the most safety im-

provement recommendations, thereby making it the optimal choice. It is recommended that system 

analysis is performed from the design concept stage through to system operation, regardless of the 

method chosen. This is so that the analysis can be improved as more system data are produced. 

Keywords  safety and security, maritime industry, autonomous vehicles, STAMP,  
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1 Introduction 

 

1.1 Background 

 

Nowadays, we are seeing an increase in the use of automated systems and the trend 

is moving towards autonomous means of transportation. Currently, we can find many pro-

jects working on autonomous transportation systems in different domains such as air, water, 

roadways, and railways. There is an increased interest in developing these autonomous trans-

portation methods due to the possibility of cost efficiency and improved safety.   

An autonomous transportation system is a complex system that serves for transport 

of passengers and/or goods and in many cases will work in the same environment as manned 

vehicles. It is believed that by developing autonomous vehicles we can improve safety (by 

limiting the effect of human error) and reduce costs (Department of Transportation, 2016).  

A contemporary example of autonomous systems in transportation is automated 

package delivery, with research and development being currently conducted by Project Wing 

(2018), Amazon Prime (2015), and others. 

But however beneficial automation in transportation might be, there are inherent 

risks to safety that must be addressed before these systems are fully deployed. These include 

the safety of the vehicle itself, of the passengers and/or goods, and of the environment. It is 

therefore necessary to understand and determine a proper methodology to apply when con-

ducting risk and safety management of an autonomous vessel. 

 

1.2.  Research Problems 

 

In general, there are many methods used to approach risk and safety management. 

However, there is no method designed specifically for use with autonomous systems, and 

there is also no agreement on the best method to use when dealing with autonomous systems. 

Method choice therefore varies between different industries. Even within a specific industry, 

different institutions or individuals will use different methods depending on their knowledge, 

training, and confidence in the use of a specific method (Underwood & Waterson, 2013). 

This extends to the maritime industry, in which there is no agreement on, or prece-

dent for, risk and safety management methods of autonomous systems. This raises the fol-

lowing research questions: 
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1. What methods and frameworks are implemented for the management of risk and 

safety in the different industries involving autonomous transportation systems? 

2. What are the key elements and issues for risk and safety management of autonomous 

transportation systems? 

3. What is the optimum method of risk and safety management for autonomous systems 

within the maritime industry? 

 

1.3.  Aims of the Study 

 

The aim of this project is to explore what methodologies and frameworks are imple-

mented for the management of risk and safety in different industries for autonomous sys-

tems. An understanding will then be sought for the reasons behind the use and preference 

for some methods over others. To compare the methods, a Strengths, Weaknesses, Opportu-

nities, and Threats (SWOT) analysis will be developed for each category of methods.  

After understanding the methods, the goal is to recommend a method or combination 

of methods for use in the risk and safety management of maritime autonomous ships. To 

achieve this, it is important to understand the key elements and issues pertaining to risk and 

safety management in the context of autonomous systems 

A desired outcome of the thesis is that research and development groups can use it 

in pursuit of risk and safety management within the maritime industry. The aimed practical 

outcome is the recommendation of an approach to risk and safety management based upon 

sound comparison and analysis of the various possibilities, so that future teams can confi-

dently employ a methodology in their own applications.  

 

1.4.  Scope, Limitations, and Outline  

 

In the following section, the scope of the research as well as the limitations encoun-

tered will be presented followed by the outline of the thesis. 
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1.4.1.  Scope 

 

This thesis will consist of review and analysis of the various risk and safety manage-

ment methods. These topics (review and analysis) will be conducted thoroughly and logi-

cally, and the result will be a recommendation of the method(s) optimally suited to automa-

tion in the maritime industry. 

This thesis will not, however, feature in-depth discussion of how to employ the var-

ious methods. Rather, it will focus on their strengths, weakness, and applications. There will 

be no guide for implementation, and employment of the methods will not be exemplified. 

Further, quantitative comparisons of the methods will not be given. 

 

1.4.2. Limitations  

 

The literature reviewed in this thesis has been collected from a variety of contempo-

rary sources and it contains a comprehensive list of the most popular risk and safety man-

agement methods used in various applications. The subsequent analyses have been con-

ducted thoroughly using the SWOT system. This is a popular and reliable tool for qualitative 

analysis (Paraskevas, 2013). 

But however thorough this work may be, the resultant recommendations and discus-

sions will naturally be affected by opinions of the authors, and they should not be accepted 

without examination. Additionally, while the literature review concerns various autonomous 

systems within the broad transportation industry, the final recommendations are specifically 

focused on autonomous maritime systems. So, because the basis for these recommendations 

is the maritime domain, they will not necessarily apply in any other contexts.  

 

1.4.3. Outline 

 

This thesis will feature a literature review of both the standard risk and safety man-

agement methods and also of the methods used for autonomous transportation systems. This 

includes history, current uses, and future uses of the methods in industry.  

Following that is a description of the analysis tool (SWOT) that will be used to com-

pare the methods and identify the optimal choice. This is then followed by the analyses itself. 

Recommendations will be made, and conclusions will end the thesis.



12 
 

2. Literature review 

 

This section provides a critical review of relevant literature that will help explain the 

most important and most commonly used risk and safety management methods in the field 

of autonomous systems. The objective of the literature review is to substantiate the research 

questions. It will provide a background to understand the development of the different risk 

and safety management methods and it will indicate the range of applications and uses of 

the different risk and safety tools. 

After explanation of these applications, we will focus on methods used in the trans-

portation domains (railway, automobile, aviation, maritime) with special regard to autono-

mous systems. This part of the literature review will improve the understanding of what is 

currently used by the different industries, and it will provide insight into the reasons for using 

and/or preferring one method over another within the domain of autonomous systems. 

 

2.1.  Important Definitions 

 

Throughout the following literature, there are several key words and phrases that will 

repeatedly surface. In this thesis, basic terminology is adapted from Aven (2015) and is de-

fined as follows: 

 

• Systems are combinations of components that can be physical, organizational, or 

human. Systems are simple if they are designed so that individual components affect 

other components in a progressive fashion to finally achieve desired results. As sys-

tems become more complex, interconnected components and variables create feed-

back loops that affect each other non-linearly.  

• Risk is consideration of the probability and the impact of an unfortunate and negative 

occurrence with respect to something humans value. Impact could include injuries, 

deaths, loss of money, loss of time, or something else.   

• Safety is the opposite of risk. Less risk means greater safety. 

• Models of systems can be created using the methods referred to in this thesis. Some 

are probability based and some are qualitative. In this sense, “model” is broadly syn-

onymous with “understanding”, and one of the purposes of using different methods 

is to gain understandings of different aspects of the system.  
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Automation in the maritime industry will include the implementation of autonomous 

systems. It is desired that risk and safety management of these systems is achieved. Risk and 

safety management can be considered a process of preventing and mitigating risks down to 

an acceptable level. The methods considered in this thesis are all tools that can be used in 

the management of risk and safety. Some of these methods identify hazardous situations, the 

sources of these situations, and probabilities of occurrence. Other methods give recommen-

dations of ways in which hazards can be mitigated. And yet even more methods can give 

different combinations of the above. So, as the methods can yield different types of results, 

they themselves are not representative of the process of risk and safety management. Rather, 

they are part of the process, and the scope of risk and safety management is ultimately de-

pendent on the situation. 

This variation of results is because the methods have different theoretical underpin-

nings, and as such, they do not all yield results in the same “format”. This is one of many 

reasons that different methods are picked for different situations; it depends on the user’s 

goals. These differences will be considered in the analysis section of this thesis, with special 

regard to the case of autonomous maritime systems.  

One final clarification is needed before the literature can be examined: The difference 

between accident analysis and risk and safety management. Much of the following literature 

is related to accident analysis rather than risk and safety management. This is because in 

some cases, methods that can be applied to risk and safety management can also be applied 

to accident analysis (this is more often true for older methods than for newer ones). Both 

processes involve hazard identification within the systems, and many cases of accident in-

vestigation are conducted with the intention of identifying hazards that can be remedied in 

similar systems. Therefore, a method’s successes and characteristics in one application are 

likewise often exhibited in the other. However, these two processes are not the same, and 

not every method can be applied to both cases. For example, one can use “STAMP-CAST” 

for accident analysis, but should use “STAMP-STPA” in the process of risk and safety man-

agement. These methods will be further discussed later. The purpose of mentioning them 

here is to acknowledge that there are some differences between accident analysis and risk 

and safety management.  
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2.2.  Risk and Safety Management Methods 

 

Risk and safety management systems are used to support an organization to operate 

in the safest possible way while performing the tasks and/or processes that are required of it 

to function. The application of risk and safety management methods can vary in degree. It 

can be applied to an organization or company at a high level but can also be used for the 

design and/or operation of specific systems (e.g. machines).  

According to Hollnagel (2008), safety is the absence of risk, and risk is usually as-

sociated with an event that could have a negative impact on the system being studied. The 

risk is possible, but it is not certain, and the extent of the negative outcome, before it happens, 

can only be estimated.  

Research on this topic is quite vast, and there are over 100 models in existence that 

can be used for system analysis (Underwood & Waterson, 2013). Appendix 1 contains a list 

of some of the existing models. The first model, for accident investigation, was the Domino 

Model, developed by Heinrich in 1931. Since then, different accident investigation methods 

have been developed to suit requirements demanded by evolutions in accident “type” 

(Hollnagel & Speziali, 2008). According to Hollnagel & Speziali, due to continuous and fast 

development of the socio-technical system, and as a result of technological innovation, com-

mercial opportunities, and user requirements, new methods for analyzing accidents are con-

sistently needed. This has also been asserted by Robertson et al. (2015), who state that as 

socio-technical systems become more complex, better-suited methods to analyze systems 

will be required.   

In comparison to investigation methods, risk assessment and safety management 

methods develop very slowly. This is because, historically, risk and safety management 

methods are only developed after new types of accidents have occurred and the correspond-

ing investigation methods are developed. These methods either try to explain a certain type 

of accident in a specific industry or they try to be as comprehensive as possible by including 

the collective knowledge of accidents and industries (Hollnagel & Speziali, 2008). Most 

analysis models and methods have therefore developed in reaction to the trends and needs 

of the period.   

Hollnagel & Speziali (2008) modified Perrow’s 1984 coupling interactive diagram 

to offer a matrix that can better identify the type of socio-technical system under investiga-

tion and advise on the methods applicable to that type of system. Perrow defined the systems 
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according to their coupling, tight or loose, and according to the manageability of the system 

being high (tractable) or low (intractable). Coupling refers to existing connections and de-

pendability in a system between its components or subsystems in terms of functionality. A 

system has a tight coupling, for example, when one subsystem depends on another to func-

tion. Tightly coupled systems also exhibit little or no delay between one process and the next 

one, and once a process sequence is established, it cannot be easily changed.  On the other 

extreme, a system with loose coupling is such that interactions between parts can be easily 

separated and there can be a delay when going from one process to the next.  

Regarding manageability, a tractable system is one whose principles of functioning 

are known, and it is such that it can be easily described, and it will not change while doing 

so. Conversely, an intractable system can change while being described, and its functions 

can be partly or completely unknown. Hollnagel exemplifies an intractable system by citing 

activities in the emergency department of a hospital.  

Figure 1 shows the systems characteristics according to their coupling and manage-

ability and Figure 2 shows the accident investigation methods that are better suited to differ-

ent types of socio-technical systems (Hollnagel & Speziali, 2008). Specifically, there are 

examples of some common socio-technical systems as well as some of the common accident 

investigation methods. These systems are positioned in the matrix depending on their man-

ageability and their tractability, and one can, by inspection of the figure, decide which in-

vestigative method is best suited to the different socio-technical systems. 

In 2013, Underwood & Waterson further developed the Hollnagel-Perrow matrix to 

classify the methods into three categories: Sequential, epidemiological, and systemic. This 

is a practical guide for safety professionals concerning the use of the different methods, 

showing under what circumstances each is preferable. Figure 3 shows the Underwood & 

Waterson matrix. 
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Figure 1: System Characteristics 

(Underwood & Waterson, 2013) 

 

                             

Figure 2: Characterization of accident analysis methods 

(Hollnagel & Speziali, 2008) 
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Figure 3: Categorization of accident analysis methods 

(Underwood & Waterson, 2013) 

 

2.2.1.  Sequential methods 

 

The first category is sequential methods. These describe a negative outcome as the 

result of a root cause event that produced a sequence of other discrete events which follow 

in a chronological manner. The result is a sequence of events that follow one after the other 

and that end up in an accident. There is therefore a linear correlation between the origin of 

the accident (the root cause) and the outcome (the accident). In sequential models, when the 

outcome becomes obvious, each step can be traced backwards to the origin (Hudson, 2014).  

The first sequential model was the Domino Model developed by Heinrich in 1931. 

Other commonly used methods in this category include Fault Tree Analysis (FTA), the 5 

Whys model, Failure Mode and Effect Analysis (FMEA), and Root Cause Analysis. These 

were the dominant models from the 1960’s to the 1990’s, and they are often recommended 

when analyzing simple systems where a physical component has failed or where human 

actions have caused an accident. However, as systems became increasingly complex, acci-

dents became inexplicable using sequential methods. This is because system failures began 

to involve complex organizational components, and sequential techniques could not account 
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for these factors. The need for new models therefore became apparent. This led to the advent 

of a second category of safety models called epidemiological methods. 

 

2.2.2. Epidemiological methods 

 

According to Underwood & Waterson (2013), these models view accidents as a com-

bination of “latent” and “active” failures within the system. Latent conditions are the norms 

(e.g. management, working practices, and organizational culture) that influence the working 

styles and that have effects like not following the intended working procedures or having 

employees exhausted from working overtime. 

These latent conditions set the scene for unsafe situations. Under such circumstances, 

errors can occur more easily and result in accidents or negative outcomes. Therefore, the 

latent conditions become obvious when combined with unsafe actions and breach of system 

defenses. The best-known epidemiological models are the Swiss Cheese Model (SCM) (Rea-

son, 1990, 1997), the Human Factor Analysis & Classification System (HFACS), and the 

ATSB accident investigation model. 

Epidemiological models, compared to sequential models, not only observe the con-

nection between a root cause and a negative outcome, but also take into consideration how 

the organization and working practices (the latent conditions) affect or influence the appear-

ance of an accident. Still, many of these methods are based on linear models and follow the 

cause-effects principle (Hollnagel, 2004). Therefore, as system complexity continued to in-

crease, involving more social, software, and otherwise non-physical components, some au-

thors began to argue that epidemiological methods were not capable of comprehensive sys-

tem analysis (Rasmussen, 1997; Leveson, 2004). Hence, new models were desired that could 

consider all the socio-technical aspects of the system. To meet this demand, systems theory 

was used to create new methods, leading to the advent of the third category of risk and safety 

models: Systemic methods. 

 

2.2.3. Systemic methods 

 

Systemic methods are based on the application of systems theory where the objective 

is to understand the structure and behavior of any type of system. Systems Theory studies a 

system as a hole, not decomposing it into separate physical components and analyzing the 



 
 

19 
 

behavior of each component and assuming that the operation of each component or subsys-

tem is not distorted (Levenson 2004a). When dealing with complex systems, these assump-

tions are not valid since the interaction of the components affects how the system operates. 

System theory examines the system as a whole and studies how the parts interact and fit 

together. This approach is useful when studying complex systems that involve physical com-

ponents, software and human interaction for example.  

Systemic methods describe accidents as “unexpected behavior of a system resulting 

from uncontrolled relationships between its constituent parts” (Underwood & Waterson, 

2013). For example, consider a large system of components consisting of humans, physical 

parts, and software. While each component operation may seem logical individually, they 

can still combine to create hazardous conditions. 

The objective of systemic methods is to identify the causal factors that can lead to 

hazardous conditions (Leveson & Thomas, 2018) and provide guidance for preventing or 

mitigating them. Examples of systemic methods are the Systems Theoretic Analysis Model 

and Process model (STAMP) (Leveson, 2011), AcciMap (Rasmussen, 1997), and the Func-

tional Resonance Analysis Method (FRAM) (Hollnagel, 2004).  

The systemic approach is advocated by many researchers who found that cause-ef-

fect approaches had theoretical limitations. For example, it was found that the process to 

discover the cause or combination of causes for an accident was stopped as soon as some-

one/something to blame was found (Allison, et al., 2017). The problem with sequential meth-

ods and finding someone/something to blame is that the opportunity to discover other pos-

sible unsafe actions and design problems, and to learn and improve the system, is lost 

(Leveson, 2011). 

In Hollnagel’s (2012) view, there is always some degree of uncertainty and ignorance 

about the way all complex socio-technical systems work. He developed the FRAM with this 

mind in order to have a method to emphasize that safety is something a system does and is 

not something it has. He believes that by focusing on what actually happens in the system 

we can reduce the unavoidable state of relative ignorance. In FRAM, the system is described 

by what it actually does and not by how it is imagined to work. 

In addition to the three groups mentioned over the previous pages, there is one more 

noteworthy approach to risk and safety management: A combination of methods.  
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In the view of Alexander et al. (2009), to approach risk and safety in autonomous 

systems, which are complex socio-technical systems, using just one model/tool is often not 

enough. A combination is a more effective approach.  

Likewise, Leong et al. (2017) propose the use of HOT-PIE, a technique to identify 

epistemic uncertainty, to augment other hazard analysis techniques such as STAMP-STPA 

(Systems Theoretic Process Analysis). By using HOT-PIE, they claim designers and safety 

engineers will be able to better track the uncertainties from design through the system life-

cycle. 

 

 2.3.  Risk and Safety Management Methods used by Industry 

 

Research on accident investigation and hazard analysis methods is quite vast. There 

is abundant research on the use of many specific methods and how they can be applied to 

different types of socio-technical systems in different industries. There have also been some 

investigations where several methods are compared and evaluated at a high level, as well as 

some research on the use of specific methods for particular types of autonomous systems. 

However, there is currently no research that specifically reviews the risk and safety manage-

ment methods utilized throughout the different industries that employ autonomous systems.  

Previously, some researchers have approached the topic of identifying the best 

method of accident analysis by comparing the performance of a select few methods when 

analyzing the same accident (e.g. Salmon et al., 2011; Yousefi, Rodriguez Hernandez, & 

Lopez Peña, 2018). In general, the findings have been that each method offers advantages 

and disadvantages in different areas. For example, some are better for finding possible causal 

factors while others are better for identifying opportunities to improve the system. Some 

researchers have also proposed new tools for analyzing accidents based on combinations of 

existing methods, such as the Bowtie Diagram, which is based on a combination of FTA, 

Event Tree Analysis (ETA), and Causal Factor Charting (CFC) (Blaauwgeers et al., 2013). 

Other researchers have proposed new tools that can be added as extra steps or processes to 

existing tools (e.g. Leong et al., 2017). 
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2.3.1.  General considerations   

 

Traditional approaches to safety analysis assume that accidents are caused by com-

ponent failures (Leveson, 1995; Roland & Moriarty, 1983). They therefore focus on relia-

bility analysis techniques, particularly FTA or ETA. The goal of these traditional approaches 

is to determine scenarios of component failures that together will lead to an accident or loss 

event.      

These approaches, by themselves, are becoming less effective because socio-tech-

nical systems are increasing in complexity and becoming more tightly coupled. This is in 

part related to an increased use of software in systems, which allows more complex and 

tightly coupled systems to be constructed. The potential for accidents arising from unsafe 

interactions among non-failed components (e.g. unplanned system and software behavior) is 

therefore increasing and traditional approaches to safety analysis are frequently inadequate.  

Another reason that traditional analysis methods are no longer appropriate is because 

modern systems evolve too quickly for reactive analysis. In other words, since traditional, 

linear methods are only suitable for analysis of mature systems, they cannot be used with 

new technology. Ishimatsu et al. (2010) wrote, “But system designs have become so complex 

that waiting until a design is mature enough to perform a safety analysis on it is impractical. 

The only practical and cost-effective safe design approach in these systems is to design safety 

in from the beginning”. 

There has been an increase in study within this topic in different industries over the 

previous few years. For example, the Safety of Autonomous Systems Working Group 

(SASWG) was created to study and provide guidance on how to manage safety methods/ap-

proaches when dealing specifically with the complex systems such as those alluded to by 

Ishimatsu et al., (2010) (Menon & Alexander, 2018). There has also been an increase in 

development, manufacturing, and field testing of these systems, such as the autonomous cars 

built by Ford (Ford Media Center, 2017).  

Alexander et al., (2008) wrote that people fear the reliability of autonomous systems 

when it comes to safety issues. Those fears are founded by several accidents with autono-

mous aircraft and automobiles, such as the 2018 fatality in Arizona involving an Uber au-

tonomous car (BBC, 2018). There has been a subsequent transition towards manufactures 

working together with authorities in order to certify the safety of their products in the case 

of autonomous systems.  
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To ensure an acceptable safety level for the operation of autonomous systems, they 

should “pass” or be certified against certain safety requirements (Alexander et al., 2009). 

These safety requirements need to be clearly stated for each autonomous system, and they 

should not be general requirements used for other “similar systems” that are manned or pi-

loted (Alexander et al., 2008). This would ensure a low level of risk to safety, and it should 

eliminate the necessity of maturity in the system (as is currently required). 

To this end, Alexander et al. (2009) propose the use of a combination of methods 

such as ETBA (Energy Trace and Barrier Analysis), FFA, and Hazard and Operability 

(HAZOP) analysis in order to identify and analyze the hazards from different perspectives. 

They then suggest using the Hall-May method to derive high level safety requirements.  

This approach of combining methods has been proposed in other instances, some of 

which were described on the previous page (namely Bowtie Diagrams). Despotou et al. 

(2009) propose a combination of Dependability Deviation Analysis with Simulation-based 

Hazard Analysis (HAZAN) for hazard identification during system development. In other 

cases, authors have proposed the incorporation of one method within the process of another 

to expand its capabilities. For example, Leong et al. (2017) proposed employment of existing 

hazard analysis techniques like STPA or FMEA in addition to HOT-PIE to improve the 

overall capability of tracing unknown uncertainties.   

In theory, combining methods would be effective because different methods present 

different strengths in analysis. For example, while one method might identify some types of 

hazards, it might miss other types of hazards that could be identified by another method. 

This tandem use is therefore effective in considering the largest possible number of hazards. 

However, one potential issue with this approach is that the use of multiple unrelated methods 

would most likely require more effort, time, skill, and data than using just one. This means 

it may not always be practical to use multiple methods.  

In both cases, whether a single method or a combination of methods is to be used, an 

important aspect of the system must be identified. Namely, before one can choose an ap-

proach, one must specify if the system in question is a System of Systems (SoS) and delimit 

the scope accordingly (Rae & Alexander, 2011). Although the definitions for SoS vary de-

pending on the author, Mitre (2014) provides the following definition, “a SoS is a collection 

of systems, each capable of independent operation, that interoperate together to achieve ad-

ditional desired capabilities.” 
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Systems of systems (SoSs) are complex and have many interacting components, so 

they are at risk from their environments. Additional risks pertaining to system security must 

also be considered. Causevic (2016) therefore suggests that in order to ensure safety and 

security, if a SoS is being analyzed, the systems should be analyzed together and not sepa-

rately. While this is only a recent field of study, a handful of other authors have also broached 

the subject. Alexander (2007), Despotou et al. (2009), and Young & Leveson (2013) have 

all proposed methods to analyze the systems from the perspectives of both safety and secu-

rity. The reason this topic is being mentioned is that, if autonomous maritime systems fit 

into this category, it will be an important indication that the scope of the chosen method will 

have to be comprehensive and not focused on individual components. 

Now that general, practical considerations regarding risk and safety management 

have been introduced, we will focus on their use with autonomous systems in various indus-

tries related to transportation. 

 

2.3.2. Railway 

 

Historically, other means of transport have lagged rail in the implementation of au-

tomated systems. Early automation in the rail industry dates to the 1910’s when magnetic 

track inspection systems were first developed to supplement human inspection (Boslaugh, 

2013). Over the past century, railway industry in the United States has embraced automated 

inspection systems and they now cover over 48,000 km of track annually.  

Early automatic train operations include the London Post Office Railway (1927) and 

the 42nd Street Shuttle in New York (early 1960’s). Since then, the scope of automatic sys-

tems in train operations has markedly increased, and fully automated metros can be found in 

Paris, Barcelona, Guangzhou, Budapest, Nuremberg, and elsewhere (Boslaugh, 2013). De-

spite full automation, many of these systems do still employ a driver for emergency control.  

 There are a number of factors that make automation of urban metro systems easier 

than other means of transport: Tracks offer guidance to the trains and their exclusive use 

means collisions with other means of transport are unlikely; metros transport people between 

a finite number of stops; many subsystems have already been automated for years; some 

train speeds are too high for human reaction times (they must be controlled automatically); 

and the rail industry features a culture of development that supports new technology 

(Boslaugh, 2013). 
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However, there are some safety concerns about automated rail systems and train op-

eration. Anecdotal accidents are the cause for a large amount of any public lack-of-confi-

dence in the safety of automated trains. However, this does not mean these safety concern 

should be ignored, since there are inherent risks to automated operations. 

To deal with these risks, publications from various railway regulatory bodies propose 

different approaches. The Federal Railroad Administration (2009) suggests the use of a lin-

ear method based on ETA. Likewise, the California High-Speed Rail Authority (2013) rec-

ommends linear methods like FTA and FMEA for hazard analysis. This is a noteworthy 

example because their purview is focused entirely on modern trains with relatively high lev-

els of automated control.  

Recommendations of linear methods are not unique to the US. HAZOP analysis, 

Process Hazard Analysis, ETA, FTA, and Failure Mode, Effects, and Criticality Analysis 

have all been specifically recommended by the European Railway Agency (2009). No single 

method was identified as the optimal choice.  

While there are many current uses of linear methods, as exemplified above, some 

authors have argued that these are no longer acceptable (e.g. Klockner & Toft, 2015; An et 

al., 2011). They wrote that as automation in the rail industry causes increased system com-

plexity and tightness of coupling, alternative methods of management and analysis must be 

employed. 

Belmonte et al. (2011) applied the Functional Resonance Accident Method (FRAM) 

to one aspect of the rail industry: Traffic supervision. Their study used automatic train su-

pervision systems linked to human operators within simulated accident situations. In other 

words, the experimental setup consisted of a complex socio-technical system within the rail 

industry. The purpose was to compare classic, linear approaches to safety analysis with sys-

temic approaches like FRAM. They concluded that FRAM is a good addition to the classical 

approach because it promotes the analysis of “other situations” that were not originally con-

sidered by the linear methods.  

In an attempt to study the interactions between different forces within a socio-tech-

nical system, Klockner & Toft (2015) used the SAFE-NET method to study railway safety 

occurrences. The SAFE-NET model was theoretically preceded by FRAM, and it was used 

by the authors to gain insight specifically into the relationships between contributing factors 

to major railway safety occurrences. This is another example of systemic approaches to risk 

and safety in the rail industry. 
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In another example, Dong (2012) applied STAMP to a rail accident that occurred on 

July 23, 2011, in which 40 people were killed and 120 people were injured. This example 

does not necessarily relate to automated train operation, but it does show a systemic method 

(STAMP) being used to identify relationships between the components of a socio-technical 

system that led to an accident. The result was a clear image consisting of a dangerous safety 

culture throughout the whole train organization. Managerial reorganization was strongly rec-

ommended. Another important recommendation from this thesis was that STPA should be 

included in the design of all safety critical railway systems.  

The above academic examples of systemic methods being applied to the rail industry 

might be indicative of a shift towards these methods. Conversely, linear methods were also 

shown to still be very popular within industry and regulatory bodies. It is therefore difficult 

to predict which methods will dominate the future of risk and safety management of auton-

omous systems within the rail industry. 

 

2.3.3. Aviation 

 

Traditionally, aviation and aerospace have used sequential and epidemiological 

methods such as FMEA and FTA (Ishimatsu et al., 2010; Fleming et al., 2012; Silva Castilho 

et al., 2018). Many institutions, like the National Aeronautics and Space Administration 

(NASA), the International Civil Aviation Organization (ICAO), the Federal Aviation Ad-

ministration, and Eurocontrol, have used or are using these methods.  

One germane example is the Bowtie method. It is widely used in the aviation industry 

for identification and management of risk, with such users as airport operators, aircraft op-

erators, ground service providers, militaries, and civil aviation authorities (Civil Aviation 

Authority United Kingdom [CAA UK], 2015). As previously explained, Bowtie combines 

three linear methods with some modifications: FTA, ETA, and CFC. It is barrier-based 

method following the idea behind Reason’s Swiss Cheese model. This method is also refer-

enced in Annex 19 of ICAO’s Safety Management Manual (2013).  

Some contemporary research also supports the use of linear methods. Ancel et al. 

(2017) propose the use of Bayesian belief networks to produce real time risk assessment of 

Unmanned Aircraft Systems (UAS). The starting point for constructing their model is to 

identify undesirable events and failures and their respective causal factors. For this purpose, 

they propose the use of ETA, FTA and/or FMEA. 
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The use of linear methods can be traced back through history. In the past, for piloted 

aircraft, the approach to risk and safety was based on lessons learned, and improvements to 

craft, pilot training, and maintenance regimes were only achieved after accidents had oc-

curred. Because today’s society is more risk-averse, this reactive approach to safety and risk 

is no longer acceptable (Clothier et al., 2006). Additionally, the rate at which Unmanned 

Aerial System (UAS) technology evolves might demand newer and faster approaches any-

way because reactive control is simply very slow. Practically, reactive management of risks 

posed by UAS is also hindered by a lack of information about accidents and incidents, which 

is in part due to a lack of reporting. 

Risk and safety management of UAS is an important area of study. This is because 

there has been a marked growth in interest in UAS as more commercial research and devel-

opment takes place and more applications for UAS are proposed. Possible uses include ag-

riculture, surveillance, parcel delivery (Amazon Prime, 2015; Project Wing, 2018), human-

itarian efforts (World Bank Group, 2017), ornithology (Wilson et al., 2017), and more.  

However, an increased presence of UAS in the National Airspace System (NAS) will 

create a more complex environment and increase the risk of hazardous situations (e.g. higher 

risk for mid-air collision). There are therefore a number issues and considerations that must 

be addressed before widespread use of UAS is allowed. Examples include risk mitigation 

measures such as complex on-board technologies, procedural controls, and air traffic sepa-

ration services, all of which would help achieve an acceptable level of airspace safety (Wil-

son et al., 2017).   

There are other UAS-specific risks. Non-verbal communication with Air Traffic 

Control (ATC) services is one of them. Currently, communication is conducted between 

humans over the radio (verbal communication). Attention must be duly paid to ensuring that 

communication between UAS and ATC will be reliable. 

Another issue is regulations for dealing with redundancies. For example, UAS will 

need to rely on external systems like the Global Navigation Satellite System (GNSS) in order 

to function as desired, but they will need to have a safety “backup” system that will allow 

continued functionality in case the GNSS connection is lost. Many other such redundant 

safety mechanisms will be required.  

On the topic of regulations, there are many within the aviation industry that have 

been developed over decades of commercial air travel. While these regulations are detailed, 

well-understood, and widely applied throughout traditional sectors, they are not applicable 
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to autonomous systems. The SASWG (2018) wrote that current “regulations and guidance 

are not well-suited to the type of software used in autonomous systems”. Despite this, there 

are cases of authorities applying the same regulations and certification methods to UAS as 

for Conventionally Pilot Aircraft (CPA). This is inadvisable because UAS and CPA are very 

different technologies used in different ways, and they cannot be treated the same. For ex-

ample, consider the variation in size and functionality between different UAS. It will be so 

great that different classifications and regulations will be warranted for different types of 

UAS (Washington et al. , 2017). By extension, applying CPA regulations to UAS is clearly 

inappropriate.  

The above regulatory issues are important topics of study for the aviation industry. 

Consequently, a large body of literature has been devoted to researching the presence that 

UAS will have in the NAS, recognizing the potential for mid-air collision with CPA and the 

risks posed to bystanders/third parties. Research of this kind has often tried to investigate 

ways in which the airworthiness of UAS can be satisfactorily certified, thereby allowing 

UAS and CPA to share airspace in a regulated manner. Examples of such literature includes 

Clothier et al., (2008), ICAO (2011), and Dalamagkidis et al. (2008). This is in line with 

Alexander et al. (2009), who wrote that autonomous systems should have to “pass” certain 

certification requirements to ensure they are safe to operate. 

Creating proper regulations for UAS is important because they will define standard 

procedures for the design, production, maintenance, and operation of the aircraft. Currently, 

there are no such regulations specific to UAS, but they are expected to be at least as safe as 

CPA. To err on the side of safety, regulators tend to place high restrictions on their operation, 

e.g. limiting the areas where they can fly to low populated regions (Clothier et al., 2011). It 

has been contended that having these extra restrictions will impair their development for 

commercial use (Dalamagkidis et al., 2008).  

Clothier et al. (2011) therefore proposed a possible framework for airworthiness cer-

tification of UAS. They also explained why the current CPA certification framework cannot 

be used for UAS (at least, not without modification). They wrote the following: 

• CPA certification must ensure the security of passengers and crew whereas UAS 

certification must not. 

• CPA certification must ensure the safety of third parties and bystanders. UAS are 

generally smaller than CPA (in some cases, much smaller). This means they pose a 
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lower threat to property and bystanders, and as such they should be categorized dif-

ferently.  

• When operating over uninhabited areas (such as sea/ocean), UAS pose no risk to 

humans but still pose risks to other aircraft. Regulations should reflect this. 

• Imposing the same regulations on UAS as on CPA would create unjustified costs to 

the UAS industry due to over regulation. 

• However, in some cases, using the CPA framework for UAS, when flying in partic-

ular regions, might present unacceptably high levels of risk. 

 

They therefore propose the use of a risk matrix that evaluates different types of UAS 

and the areas over which they fly. The level of risk depends on to whom or what the risk is 

imposed, such as people on the ground, third party property, or other entities of value. It is 

then possible to assign different types of certification depending on the identified level of 

risk.  

Another approach to certification was proposed by Gonçalves et al. (2017). They 

proposed the use of Petri Nets to prepare a safety assessment for UAS that can be accepted 

by certifying bodies to grant airworthiness. Their safety assessment process considers not 

only the airplane but also the control ground station, communication links, mission planning, 

air traffic control, and more, thereby helping with identification of the most feared events. 

Methods like FMEA, Failure Modes and/or Effects Summary, FTA, and Reliability Block 

Diagrams are suggested for evaluation of the failure conditions. Once the most feared events 

are found they proceed to apply Petri Nets. In order to use Petri Nets, data which comes from 

previous test flights for the specific UAS being evaluated is needed. It is worth noting that 

the above analysis methods are all linear, not systemic. Additionally, the amount of empirical 

data required may hinder its practical viability.  

In addition to airworthiness certification, there is a lot of literature concerned with 

overall safety analysis. The main risks posed by UAS are to other aircraft (mid-air collisions) 

and to third parties such as bystanders and property. The latter problem is inherent for all 

craft flying over populated areas, both conventional and autonomous. On account of these 

risks, it has been predicted that regulations for autonomous systems in aviation will be 

stricter than for autonomous systems in other domains (SASWG, 2018).  

Different approaches to generalized risk assessment of UAS have been proposed. 

Two such approaches, from Wilson et al. (2017), concern small Unmanned Aircraft Systems 



 
 

29 
 

(sUAS). The first is a qualitative process, and the second is a probabilistic-model-based risk 

estimation methodology that uses Bayesian Belief Networks. The starting point for both 

methods is to identify risks posed by UAS. These are typically found using data from acci-

dent and incident reports, but this can be challenging for UAS due to lack of reporting. 

Therefore, to improve their estimates, the authors propose employment of FMEA and FTA.  

Logan & Glaab (2017) also applied FMEA for small unmanned aircraft systems. 

With this approach they were able to find, with the help of subject matter experts, possible 

failure modes of the system in different operating conditions and define solutions to mitigate 

unwanted effects. In order to do an FMEA, the system was divided into subsystems that were 

then individually analyzed. Once the probable failure modes for each subsystem were iden-

tified, they were reviewed to find out how they could affect the overall system. 

Melnyk et al. (2014) proposed a framework for predicting UAS safety levels consist-

ing of a target level of safety and event tree framework. They wrote that many researchers 

support the use of event trees to predict casualties caused by UAS in the NAS. This is be-

cause event trees are well-established for helping to determine the probability and impact of 

specific failure events. What they propose is not a new method but the use of target level of 

safety and event trees together as a framework for analysis of sUAS which is more compre-

hensive than previous options. Theirs is a quantitative method and they used information 

from previous studies to populate the event tree. They also compared the results of using 

their framework with actual results from air carrier accidents and fatalities, and the model 

only differed by approximately 3%.  

Hirling & Holzapfel (2017) introduced O.R.C.U.S., a tool designed to evaluate the 

risks from UAS flights in Germany. It generates predictions on possible fatalities according 

to the flight plan even in cases when not much information about the UAS model is available. 

The tool is based on the combination of two event trees; one for the overall probability of a 

catastrophic event, and the other for the percentage individual failure of a subsystem in the 

UAS.   

One common trait shared between all the above risk and safety analysis methods is 

that they are all linear. This is not true throughout the whole aviation industry. For example, 

Rodrigues de Carvalho (2011) used FRAM to investigate a mid-air collision accident be-

tween two planes flying over Brazil. The purpose of the study was to analyze the resilience 

of the ATC system in Brazil. Although this study did not involve autonomous systems, it is 

a good example of the use of FRAM to analyze complex aviation systems.  Specifically, by 
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using FRAM, the author was able to demonstrate which controls were actually present in the 

Brazilian ATC system and how these controls changed overtime. These changes, which hap-

pened without being perceived, created a situation where an accident could have and did 

occur. Because the effects of the changes were non-linear, using traditional, linear methods 

may not have identified the issues.  

Another example of systemic methods used within the aviation industry involves the 

plan to transform air traffic management from being ground-based to satellite-based. 

“NextGen” will be the new air traffic management system and it is paramount that at least 

the current level of safety is maintained. The expected benefits of NextGen will be reduced 

delays, improved environmental impact by reducing CO₂ emissions, and a safer airspace. 

But because it is a more complex system, it will need better analysis tools to ensure its safe 

operation.  

Fleming et al (2013) propose the use of STPA for hazard analysis within NextGen, 

claiming that the subsystems will be complex and that failures will not only be due to com-

ponent failure but also due to the interactions of software, which in a tightly coupled system 

can create unpredictable results. Accidents can occur in situations where all parts are non-

failing, but unexpected interaction between them causes a failure. They wrote because 

STAMP is based on systems and control theory rather than reliability theory, it is therefore 

a better approach for such complex systems. In their comparison between system analysis 

using FTA and STPA, they found that STPA identified the same possible causal factors as 

FTA, but they also identified other factors not considered with FTA. This shows that STPA 

is a more “potent” tool for analysis of such systems, and according to the authors, it is easier 

to use. Results from the analysis can be used as requirements to improve the design of the 

ATC system. These results can also be used for training and to develop operational proce-

dures.    

Another example of systemic methods in the aviation industry is Allison et al. (2017), 

who applied the STPA method to an aircraft rapid decompression event. The purpose of their 

paper is to show the application of STPA in complex systems such as aviation. (The com-

plexity of aviation systems means they can be collectively considered a “system of systems” 

because they are a group of separate systems interacting to achieve a common goal. This 

topic is explored further later in the thesis.) By using STPA, Allison et al. (2017) were able 

to find many unsafe control actions for which safety constraints were then found. The safety 
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constraints varied according to individual needs, like redundancy in the system, improve-

ment of operating procedures, placement of warning alarms, etc. By analyzing the resultant 

safety constraints, improvements to training and future development of the system could 

then be achieved.  

Likewise, STPA was also used by a team of researchers testing a low-cost unmanned 

subscale blended-wing model demonstrator (Lu et al. , 2015). Their first approach risk and 

safety was a “fly-fix-fly” method, but after losing 3 demonstrators they realized it was not a 

viable approach because they were not learning enough from previous accidents and were 

thus unable to make improvements. Therefore, they adopted a systems theoretic approach 

that takes into consideration the social and technical aspects of their design, manufacturing, 

and operation processes. By using STPA during the design and manufacturing stages of the 

fourth demonstrator, they found that they were able to reduce the accident rate from between 

65% and 100% to less than 5%.  

STPA was also used by the Japan Aerospace Exploration Agency in a joint project 

with the Massachusetts Institute of Technology (MIT) to analyze system safety of a space 

vehicle in the early design phase (Ishimatsu et al., 2010). The vehicle in question is an un-

manned visiting vehicle that takes commodities and components to the International Space 

Station and is launched by the H-IIB rocket. Previously, such analysis had been done by 

NASA using FTA. In this project, the researchers decided to use STPA because the system 

is software intensive and analysis techniques like FTA and FMEA tend to focus on compo-

nent failure and are not efficient in evaluating software failure.  

Silva Castilho et al. (2018) also used STPA to study take-offs for light aircraft in 

crosswind conditions. Considering only the aircraft alone, it can be said that these are com-

plex systems with physical and software components. But during take-offs, this system will 

interact with the pilots, the external environment (wind), and ATC. These are also part of 

the system, and it is therefore quite complex. In light of this complexity, they found it ad-

vantageous to use STPA instead of other, linear methods. By using STPA, they identified 

new safety constraints that were not found with more traditional methods. The safer flight 

controls can be incorporated into use by manufactures, maintenance crews, instructors, and 

pilots. 

In conclusion, over the past several pages, examples of systemic methods being used 

in the aviation industry have been given, both with UAS and with manned aircraft systems. 

Such methods can be useful for the complex socio-technical systems within the aviation 
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industry. Conversely, linear methods have been used effectively for decades, so there are 

roles for all types of methods to play within the aviation industry.  

 

2.3.4. Automotive 

 

Automation in the automobile industry is a heavily researched topic within the pri-

vate sector. However, proprietary research and trade secrecy mean that little knowledge of 

this work exists in the public domain. Still, there are some publications that indicate the 

general challenges of, and approaches to, risk and safety management in the automation of 

automobiles. 

In its 2018 publication entitled Safety-Related Challenges for Autonomous Systems, 

the SASWG identifies several important challenges relating to safety risks posed by auto-

mation in the automotive industry. 

First, low level autonomous systems require the option that control of the vehicle can 

be deferred to the driver. This includes both planned and unplanned (emergency) handovers, 

meaning the driver must be aware, at all times, of the possibility that they will be required 

to control the vehicle. This presents a human factors risk where driver readiness must always 

be maintained by the vehicle. To avoid this problem, systems capable of handling emergen-

cies (or fully autonomous systems) must be developed.  

Second, if autonomous vehicles could be connected to their environments, or in other 

words, if they could communicate with other vehicles and infrastructure, their operation 

could be optimized. But this communication poses a challenge since it must (a) involve many 

systems in a seamless fashion while also (b) providing acceptable levels of security to the 

vehicles.  

Third, interconnection of autonomous vehicles will allow for cloud-based user anal-

ysis for the purpose of identifying and preventing hazards in real time. This poses a risk to 

personal information, since user data could be accessed through malicious attacks on such 

systems. Integrity and assurance requirements must therefore be implemented.  

Fourth, learning by the autonomous system of individual habits and behaviors might 

allow the creation of more refined experiences for the user. This learning must not, however, 

compromised safety in any other situations, such as those involving other vehicles where 

“non-learned” software is involved. Ensuring such learning does not negatively affect safety 

is yet another challenge. 
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Fifth, while learning by autonomous vehicle systems could be invaluable for improv-

ing safety of the system in real world situations, these data cannot be gathered before the 

systems have been launched. Reactive improvements to safety that occur only after accidents 

and problems occur are unacceptable, so the SASWG suggests that simulations should be 

employed as a substitute for real world experience. The simulations themselves must there-

fore be suitably validated and true to real world situations to ensure the safety of autonomous 

vehicles. 

Sixth and final, the overall number of risks and accidents can be expected to decrease 

with the use of autonomous vehicles. However, roadways and infrastructure used by these 

vehicles will also be shared with other demographics like pedestrians and property owners. 

Should any transfer of risk be experienced or expected (e.g. if overall risk decreases but risks 

to pedestrians increase), decisions must be made to accept or reject these transfers. This is 

another example of the challenges posed to autonomous vehicles involving risk and safety. 

An important question can now be asked: How can manufactures and regulators han-

dle the autonomous systems by which these risks will be posed?   

The US Department of Transportation (2016) recommends that autonomous vehicles 

follow a “robust design and validation process based on a systems-engineering approach 

with the goal of designing highly autonomous vehicle systems free of unreasonable safety 

risks.” This is in line with recommendations from Alexander et al. (2009), who call for cer-

tification of autonomous systems based on hazard identification and analysis.  

The Department of Transportation also recommends that the overall process should 

follow guidelines from the international regulations on the functional safety of road vehicles, 

ISO 26262.  

ISO 26262 is an important regulation for the current generation of piloted vehicles. 

However, it does not specify any method for safety analysis. Sequential methods like FTA 

and FMEA have been used for hazard analysis in recent applications of ISO 26262, but with 

automated systems, these methods may be unable to identify issues caused by dysfunctional 

component interactions, software failure, and human error (Abdulkhaleq et al., 2017). 

ISO 26262 is therefore an inadequate resource for safety standards in autonomous 

vehicles (Sabaliauskaite et al., 2018). To address this issue, it has been suggested that the 

safety scope of ISO 26262 should be extended to include support for the hazard analysis and 

risk assessment process of automated systems (Abdulkhaleq et al., 2017). 



 
 

34 
 

But this raises an important question: How should international standards and regu-

lations like ISO 26262 approach risk and safety management in autonomous vehicles? Fur-

ther, how should the private sector approach the safety of their own systems?  

Some current publications focus on systemic methods for uses relating to autono-

mous vehicles. Specifically, STPA has been recommended in several instances by research-

ers at the University of Stuttgart and Continental AG. For example, Abdulkhaleq et al. (2017) 

applied STPA to a fully autonomous vehicle at Continental AG, and they concluded that it 

was an effective and efficient approach to safety support of autonomous vehicles. This was 

after discounting sequential methods for use with such a complicated system. They also rec-

ommend updating ISO 26262 to include provisions concerning the use of systemic methods 

for safety management of autonomous vehicles. Likewise, Abdulkhaleq & Wagner (2013) 

employed STPA in adaptive cruise control to achieve an acceptable level of risk, and they 

concluded that it is a powerful tool for safety analysis in autonomous automotive systems. 

Sabaliauskaite et al. (2018) also considered safety and security of autonomous vehi-

cles. They explained that with increasing levels of automation, ISO 26262 is not an appro-

priate reference point for contemporary safety systems. Rather, they proposed an approach 

to safety and security processes that considers higher levels of automation. To this end, they 

wrote that STPA is a viable tool for autonomous automotive systems.  

There is therefore some reliable evidence that systemic approaches to risk and safety 

management can be, and are being, adopted by the automotive industry for use with auton-

omous systems. However, this trend is not necessarily valid across the industry, as much 

industry-led research is not published. 

 

2.3.5. Maritime 

 

Automation within the maritime industry has received increasing interest over the 

past few years. While the industry has historically adapted very slowly to technological ad-

vances, the possible benefits of automation have spurred research in both academia and in-

dustry. For example, it is thought that autonomous maritime projects have been undertaken 

by Finland, the European Union, the United States, Japan, the United Kingdon, and Norway 

(Wahlström et al., 2015).  

Schröder-Hinrichs et al. (2019) predict that in the future, ships will contain a plethora 

of automated technology. This includes everything from assistive vehicle functions (e.g. 
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track keeping and speed control) to full automation. They also predict that ship control will 

be centralized and that fully autonomous ships will exist within special autonomous ecosys-

tems. Hogg & Ghosh (2016) wrote that such ecosystems might consist of offshore ports, 

between which autonomous ships will sail under human supervision. While berthing will 

still be conducted by specialized crews, they predict that up to six ships could be remotely 

monitored by one shore-based officer, with all normal operations conducted without human 

input. Automated technologies will also be used for ship maintenance and port duties, where 

specialized robots and drones will eventually supplant human workers. 

Proponents of automated maritime vessels foretell two benefits of automation. The 

first is an increased level of safety for the crew, the ships, the environment, and coastal in-

frastructure. This is because autonomous systems mitigate (but do not eliminate) the possi-

bility of human error, such as fatigued officers making poor decisions. Additionally, elimi-

nating ship-based crews will prevent on-board accidents, injuries, and sicknesses while al-

lowing skilled mariners to work more typical, shore-based day jobs in shore control centers 

(Wahlström et al., 2015).  

The second benefit is a drop in costs as ship owners will need to employ fewer or no 

crew (Wróbel et al., 2016). In fact, it has been predicted that autonomous ships will reduce 

operating costs by 40% (Hogg & Ghosh, 2016) for three main reasons: A reduction in crew 

size means there will be fewer salaries to pay; elimination of bridge and accommodations 

means weight will be saved (making more room for cargo); and lower fuel consumption will 

be achieved due to slower sailing speeds. These speeds will be afforded because longer voy-

age times are typically opposed by crews, but with no crew, ships can spend longer at sea, 

thereby using less fuel. 

An important reason that automation in the maritime industry is emerging beyond 

the idea-formulation stage is that such vessels are foreseeable given current technological 

paradigms (Ding et al., 2012). However, there are problems that must be addressed before 

these systems can be implemented on a wide scale.  

First, there is a lack of supporting infrastructure for autonomous vessels, including 

the ports and communication systems that will be necessary for these ships to function. Ad-

ditionally, monitoring and emergency control of these ships will have to be conducted from 

shore control centers. This presents the possibility for human errors distinct from those pos-

sible on manned ships, and they must be prevented or mitigated before the centers become 

operational. Wahlström et al. (2015) identified the following human factors issues facing 
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operation of these centers: Information overload; boredom/fatigue; changeover mishaps; a 

lack of vessel feel; constant reorientation of new tasks; delays in control and monitoring; 

and the ability to understand humans (E.g. to distinguish help-seekers from pirates). Mari-

time autonomous support infrastructure will therefore have to be built with special regard to 

novel technologies and human factors so as to mitigate these issues. The lack of such infra-

structure is being addressed, for example, in the Baltic Sea, where industry (companies like 

Rolls Royce and ABB) is supporting an undertaking to prepare the area for autonomous 

shipping by 2025 (Haikkola, 2017).  

But perhaps an even bigger problem presented by automation within the maritime 

industry is the question of risk and safety. While automation promises many possible bene-

fits, it does not necessarily ensure greater levels of safety, and such complex systems can 

have revenge effects that actually increase accident severity. Risk and safety management 

of these systems is therefore paramount. Unfortunately, the novelty and uniqueness of these 

systems mean there is no empirical data on which to base their risk and safety management.  

Hogg & Ghosh (2016) wrote that an increased prevalence of automation will create 

a rise in disastrous partnerships between people and automated systems. Similarly, Ding et 

al. (2012) predicted that increased system complexity and tightness of coupling might in-

crease the risk of catastrophic accidents in certain abnormal situations. This prediction was 

supported by the results of a simulation-based study, where it was found that navigators 

frequently failed to notice subtle errors in their automated navigational system. This indi-

cates that automation decreases situational awareness. 

Another simulation-based study by Pazouki et al., (2018) yielded the same results: 

That automation diminishes situational awareness and the ability of operators to safely mon-

itor vessel progress. Similarly, these concerns have also been recognized in the aviation in-

dustry, where there are anecdotal examples of complex human-machine interactions leading 

to situations where recovery was impossible. Designing systems (including shore control 

center systems) that do not allow an unsafe drop in situational awareness is therefore para-

mount. 

The difficulties of implementing automation in maritime systems were also broached 

by Jalonen et al., (2017). In consideration of the feasibility of automating several common 

ship types, they explored high level concepts with regard to safety and security. They con-

cluded that automation could increase safety, but it is not guaranteed. They give three rec-

ommendations to achieve this result: (1) The minimum level of confidence in safety should 
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be equal to or greater than current levels; (2) automation should be introduced slowly and 

incrementally; (3) international co-operation (e.g. with the International Maritime Organiza-

tion (IMO)) should be pursued.  

Regarding this last point, Hogg & Ghosh (2016) also identified the lack of IMO reg-

ulations concerning autonomous systems as problematic, writing that its collision regula-

tions, for example, will have to be substantially updated before autonomous systems are 

implemented. There are further legal questions as well, such as how liability will be placed 

and how to decide which types of cargo are too hazardous for unmanned transport. 

Further, practical issues with automation have also been identified by the SASWG 

(2018). First, vessels navigate at long distances from land. For unmanned ships, this means 

vessel operators and the vessels themselves will be separated by extremely large distances. 

Delayed and/or intermittent communication would be problematic, so robust communication 

systems will be a necessary. Such systems will be costly because expensive, high-quality 

satellites will have to be operated in areas with few customers (open ocean), thereby increas-

ing costs for ships operators (Hogg & Ghosh, 2016). Additional precautionary systems in 

case of failed communications may also be necessary, such as a secondary independent com-

munication system and automatic emergency procedures (heaving-to, dropping anchor, or 

drifting (Hogg & Ghosh, 2016)). 

Second, weather is another challenge that autonomous maritime systems will face. 

While some autonomous systems (like planes) can often avoid inclement weather (by flying 

around storms), this is not an option for relatively slow and large maritime vessels. The 

autonomous systems must therefore maintain their capabilities throughout a range of ex-

treme weather conditions.  

Third, maritime vessels, like other autonomous systems, will be exposed to hostile 

actions. Data security will be one important consideration due to the volume of data gener-

ated by autonomous systems. Additionally, maritime systems are also threatened by physical 

piracy. The vessels should therefore have some defense mechanisms against piracy situa-

tions and any other unwanted/unapproved boarding. Importantly, these systems must be able 

to differentiate between piracy and approved/authorized boarding, such as of maintenance 

teams. 

Finally, access to remote or otherwise underdeveloped coastal areas that do not pos-

sess autonomous vessel infrastructure may be desired. Namely, this includes areas with poor 

communication/monitoring connections. Vessels accessing such areas must therefore be 
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somewhat self-reliant, and adequate levels of reliability must be achieved and demonstrated 

across a range of situations. 

The previous pages contain brief discussions of a handful of important problems and 

hurdles concerning autonomous maritime systems (Table 1) . But in addition to being a sim-

ple enumeration of issues, they also illustrate how little precedent autonomous systems have 

within the maritime industry (e.g. very few fully autonomous ships have been built). It there-

fore follows that there is little published literature focused on risk and safety management of 

autonomous maritime systems.  

 

No. List of system characteristics 

1 Increased prevalence of automation will create a rise in disastrous partnership between people and 

automated system 

2 Complex system 

3 Tight coupling  

4 Decrease of situational awareness due to automation 

5 Reduction of operators ability to monitor vessel progress due to automation 

6 Minimum level of confidence in safety should be equal to or greater than current levels 

7 Robust communication systems are necessary  

8 Maintain capabilities throughout a range of extreme weather conditions 

9 Data security 

10 Defense mechanism against piracy (unwanted/unapproved boarding)  

11 Self-reliant  

Table 1: List of characteristics of maritime autonomous vessels  

 

However, one related industry in which automation is common is that of Autono-

mous Underwater Vehicles (AUVs). Because these systems are often used to explore haz-

ardous environments, the risk of vehicle loss can be high. Brito et al. (2010) constructed a 

model for calculating the risk of losing an AUV by eliciting expert opinion on the probabil-

ities of loss in different situations. Their risk-of-loss model is one of few in the maritime 

industry that is used in real operations (the authors apply their model to their own AUV 

operations). While their model is not one of the common sequential, epidemiological, or 

systemic approaches, it is one example of risk and safety management of autonomous mar-

itime systems.  

Other authors have also approached this topic. Wróbel et al. (2016) recognized two 

problems regarding risk and safety for maritime autonomous systems. First, there is a poor 

understanding of what operational circumstances can be expected for these vessels. And 

second, there is a poor understanding of how these vessels will be designed. Thus, consider-

ing how little is currently understood about these systems, to ensure an appropriate level of 

safety, the authors conclude that intensive risk analysis should be performed before anything 
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is built. To this end, they present a hazard and consequence analysis performed using a 

Bayesian Network (BN). Their work illustrates the importance of risk and safety manage-

ment models of maritime autonomous systems.  

Likewise, Wróbel et al. (2018) consider a method for analysis of maritime autono-

mous systems, only they use a systemic method (STPA) instead of a BN. They wrote that 

the systems theory basis of STPA should allow it to handle complex systems, and that a lack 

of empirical data prevents the use of many other methods. They therefore used it to construct 

a model for safety analysis, and they found that it allowed them to make design recommen-

dations, despite a lack of data. They concluded that STPA is a useful tool for hazard mitiga-

tion within the autonomous maritime domain, but they also highly recommended further 

analysis once more data on these systems is gathered, and more still throughout the systems’ 

lifecycles. 

Another example of systemic methods in the maritime industry was given by Aps et 

al. (2016), who applied STPA to maritime traffic management systems. By using STPA, 

they were able to identify hazards and unsafe speeds/maneuvers as identified by the IMO 

collision regulations. The goal of this model was to improve ship-level situational awareness 

and to help enforce safety constraints. While their focus was not on autonomous systems, 

the researcher concluded with the following: “STPA has proved to be an effective and effi-

cient method to assess the safety management of a complex safety-critical sociotechnical 

system from the maritime domain.” 

And in a pertinent paper by Montewka et al. (2018), three approaches to ensuring 

maritime autonomous system safety were investigated. Namely, a framework for risk-based 

design was reviewed, as was a goal-based approach. A STAMP-STPA approach was the 

third method investigated. The authors wrote that the approaches are not interchangeable, 

and that they are actually all useful at different levels of risk management. As regards 

STAMP-STPA, they wrote that it (and systemic methods in general) present disadvantages 

such as non-intuitive presentation of results, a research-practice gap, and a low level of con-

fidence among users. However, as supported by expert elicitation and a literature review, 

they also wrote that its flexibility in analyzing hazards in a range of scenarios and its ability 

to guide early design will be useful for the future of autonomous shipping. They additionally 

noted that it is proficient in formulating safety controls, and that “these safety controls rep-

resent the basis for initiating the safety management strategy of MASS [Maritime Autono-

mous Surface Ships] and the entire autonomous maritime system(s)”. 
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In conclusion, there are many big issues concerning automation in the maritime in-

dustry that must be addressed. Additionally, the novelty, the high cost, and the complexity 

of large vessels mean there are few empirical data or past experiences on which engineers 

and safety professionals can base future designs and management approaches. Successful 

risk and safety management of these systems will therefore be a great challenge, and it pre-

sents many unknown variables to designers. However, there have been a few investigations 

into possible management and analysis methods, which seem to indicate a preference for 

systemic methods, at least in academia. It is difficult, however, to predict how industry will 

manage the risk and safety of these yet-to-be-designed systems, and what methods will pre-

sent the optimal trade-off between cost and effectiveness. 
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3.  METHODOLOGY 

 

From section 1.2.1, this thesis seeks to satisfy three goals:  

• Identify the methods and frameworks for risk and safety management of autonomous 

transportation systems; 

• Identify the key elements and issues for risk and safety management of autonomous 

transportation systems; and 

• Specify the optimum method of risk and safety management of autonomous systems 

within the maritime industry.  

 

Having completed the literature review of risk and safety management of autono-

mous systems, both in general and within different transportation sectors, the methods used 

have thus been identified. Additionally, key elements and issues for management of these 

systems have been recognized in the context of different transportation sectors. It is now 

necessary to consider how these methods might be applied to future autonomous systems 

within the maritime industry, and to compare them with the intention of identifying the op-

timal method(s). 

This comparison will be completed using a qualitative approach and following the 

inductive method. Material will be reviewed in order to find commonalities and patterns 

between methods and to analyze their relevance and usefulness for the particular case of 

autonomous systems in the maritime industry. Final recommendations of the optimal 

choice(s) will then be made. 

A qualitative approach is often viewed as the antithesis of a quantitative approach. 

That is, it forgoes empirical inquiry and instead focuses on observations of the subjects’ 

qualities (Donmoyer, 2008). Such an approach is useful because if offers the possibility to 

compare, in the case of this thesis, the range of different risk analysis methods used in in-

dustry. If this were undertaken using a purely quantitative approach, insights afforded by the 

analysis would be unlike those achieved over the following pages because they would be 

based on high level empirical study rather than on individual characteristics. Additionally, 

quantitative analysis might not even be possible because few empirical data exist for meth-

ods like FRAM and STAMP, thereby inhibiting analysis based on empirical study. Further, 
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and perhaps more importantly, the qualitative approach offers the possibility to analyze rea-

sons why certain methods were chosen. With this approach one can therefore obtain a work-

ing understanding of the various methods and their applicability to different circumstances. 

An inductive method will be used, where one first observes, continues by trying to 

find patterns or similarities, and then offers a proposition (Blackstone, 2014). Thus, one does 

not start with a theory which they then seek to prove or disprove, but rather, they develop a 

theory based on patterns recognized within their observations.  

 

 

Figure 4: Inductive Method 

Adapted from Trochim, William M.K. 
 

 

The first step in making a proposal is to “observe”, which has been completed in this 

case by conducting a literature review of the methods currently used for risk and safety man-

agement of autonomous systems. Next, an analysis is completed where “patterns” of use are 

identified within the previous observations. This will clarify the reasons for selecting one 

method over another as well as the advantages and disadvantages of one method compared 

to another. In this thesis, said analysis will be conducted using a SWOT methodology. Once 

the methods are understood, the final step is to “propose”, based on these findings, an opti-

mal risk and safety method (or methods) for autonomous maritime systems. 

As mentioned above, the following analysis will be conducted using the SWOT 

methodology. Paraskevas (2013) defines SWOT as “an analytical tool for strategic manage-

ment planning”. Simply put, it is a tool for analyzing Strengths, Weaknesses, Opportunities, 

and Threats that allows for consideration of all the important internal and external aspects of 

a subject. Once these have been identified, informed decisions on the subject can be made. 

Observation 

Proposition 

Pattern 



 
 

43 
 

In this case, this means risk and analysis management method(s) appropriate to autonomous 

maritime systems can be identified. 

When considering what method to use, surveys and interviews were considered but 

decided against. On one hand, surveys are a fast and cost effective way to gather great 

amount of data but at the same time can be inflexible, because the questions that have been 

set cannot be modified in case they were not clear and also the validity of the answers can 

be questioned since the options for answers are limited (Blackstone, 2014). So surveys are 

not very useful when analyzing complex topics that need deep scrutinizing of the research 

topic. On the other hand, interviews are limited to the number of interviewees the researcher 

has access and who are knowledgeable in the research topic. For the case of this research, 

experts in risk and safety management as well as autonomous maritime vessels would have 

been required. Since the research on autonomous maritime vessels is still quite limited, there 

pool of experts is small and most probably the results would have been biased to their pref-

erence in risk and management methods. SWOT analysis was chosen as the best method to 

compare the different risk and safety methods. It eliminated the bias of the researcher and 

compares in equal way all the methods. Also the researcher doesn’t need to be an expert in 

either, risk and safety methods or autonomous maritime systems.    
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4.  SWOT ANALYSES 

 

As we have seen, the different risk analysis methods can be divided into three cate-

gories: Sequential, epidemiological, and systemic. Methods in each category share founda-

tional concepts and have many similarities in the way they are applied. Methods in all three 

categories can be used in the process of risk and safety management.  

A high-level SWOT analysis of each category has been conducted and the results are 

presented to better understand the use of each category, and when to use them and why. 

Within each of the three analyses, a set of general characteristics is considered so that the 

results can be fairly compared. That is, the same properties and trade-offs are considered for 

all three methods. For example, in the “strengths” section, sequential methods are said to be 

not resource intensive. Similarly, epidemiological methods are not resource intensive (at 

least, when compared to systemic methods). Conversely, systemic methods are very resource 

intensive, and it is therefore categorized as a “weakness”. 

The mentioned set of characteristics was compiled so that the three final arguments 

contain all the general and important points shared across each category. The list was com-

piled based upon the literature review, where instances of an author noting something about 

a method were recorded. After thoroughly reviewing the literature, all the most important 

and defining characteristics of the three categories had been recorded and compiled. Because 

there are over 100 methods (Appendix 1), not all possible characteristics can be considered, 

but the analyses are generally comprehensive so as to define the popular methods from each 

category.  

In addition to the earlier example of “resource intensiveness”, further considerations 

for strengths and weaknesses are as follows: 

 

• What is the underlying theory? This affects the type of results produced. 

• How fast is it to use? 

• Are there clear guidelines and taxonomies available for use? This affects consistency 

of results and can have implications depending on the user’s intentions. If con-

sistency is required (e.g. for trend analysis), these are important considerations.  

• How much expertise is required (both for the method and regarding the system it-

self)?  
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• How comprehensive and thorough are the results? How deep is the resultant under-

standing?  

• How clear and easy to understand are the results, and are they presented in graphical 

format? 

• Can it consider different types of system components? E.g. physical, human, soft-

ware, and organizational. 

• How popular is it? 

• What kind of issues are identified? E.g. root cause, organizational problems, danger-

ous component interactions, or something else. 

• Is apportioning blame possible/inevitable? 

• Does it/can it yield probabilities of accident occurrence? 

 

Regarding considerations of opportunities and threats, many are related to the ap-

plicability of the method to the system at hand. Additionally, consideration of the setting in 

which the method is being used must be made.  They are as follows: 

 

• What are the system characteristics? Some methods can be used with certain systems, 

and some cannot. Additionally, if a method can handle a system, it might be overly 

powerful and therefore more resources-heavy than necessary. The system character-

istics are: 

o Complexity; 

o Component type (e.g. physical, software, human, and organizational); 

o Tightness of coupling; 

o Tractability (manageability); 

o How much, and what type, of data are known? Different methods require 

different types and amounts of data. 

• What are the situational characteristics?  

o What is the desired level of thoroughness compared with resource use (this is 

essentially a trade-off between money/time and thoroughness of results)? 

o Is it desired that blame can be apportioned (or conversely, is apportioning of 

blame is undesired)? 

o Are probabilities of accident occurrence desired? 

o What are the industry regulations? 
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o Are graphical and easy-to-disseminate results desired? 

o Is consistency necessary?  

o What is the level of user expertise and experience?  

 

• Finally, is it popular in industry? Underwood & Waterson (2013) wrote that new 

methods take time to be proved and accepted by practitioners. This threatens the 

overall use of the method. It should be additionally noted that some users simply do 

not like to learn new techniques, further stymying acceptance of modern methods. 

 

Having now explained the general considerations for the three categories of methods, 

the SWOT analyses can be found over the following pages. After these are the final recom-

mendations and conclusions. 

 

4.1.  Sequential Methods 

 

This category includes the Domino method and Fault Tree Analysis. It is the oldest 

category and these methods work well with simple systems consisting of mainly physical 

components. It is not effective for non-linear, complex systems that involve organizational 

and software components. According to sequential methods, accidents are resultant of a se-

quence of time-ordered, discrete events where a “root-cause” initiates the sequence in a de-

terministic and cause-effect fashion.  

 

Strengths 

• Simple, quick, and easy to use with guidance and taxonomies available. 

• Useable by non-experts. 

• First methods available; widely used and well-known. 

• Can very effectively model simple systems with mainly component failures and human 

actions (Underwood & Waterson, 2013). 

• Identifies root cause and allows apportioning of blame (Underwood & Waterson, 2014). 

• Can yield clear and graphical results that can be easily disseminated to, and understood 

by, non-experts. 

• Can yield probabilities of accidents (Alexander & Kelly, 2009). 
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• It is estimated that 96% of potential accidents can be captured by linear (sequential and 

epidemiological) methods (Hudson, 2014). 

 

Weaknesses 

• Do not identify issues pertaining to interactions of system components. 

• Poor handling of managerial, organizational, human, and software components (Under-

wood & Waterson, 2013). 

• Cannot comprehensively describe complex socio-technical systems, and the resultant 

understanding is not thorough. This is due to the linear thinking on which these methods 

are based (Yousefi et al., 2018). 

• Can lead to incorrect/unjustified apportioning of blame, which additionally “represents 

a missed opportunity to learn important lessons about system safety” (Underwood & 

Waterson, 2014).  

• Probabilities can be unrealistic and therefore dangerous. 

• Assumes component failure modes are independent. 

• Treats humans and software in the same way as mechanical hardware and assumes they 

fail in the same way (Fleming et al., 2013). 

 

Opportunities 

• These are optimal for systems with the following characterizes: 

o Simple (not complex); 

o Mainly physical components; 

o Loose coupling; 

o High manageability; 

o Empirical data are known. 

• These are optimal for situations with the following characteristics: 

o Limited resources (time and money); 

o Identification of root cause/blame is desired; 

o Regulations require sequential methods; 

o Probabilities of accident occurrence are desired; 

o Dissemination of results to non-experts is desired; 

o Consistency of results is desired (e.g. clear guidance and taxonomies are benefi-

cial); 
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o The user has little expertise. 

• These are popular methods in industry, meaning many users are comfortable with con-

tinuing to choose and use them. 

 

Threats 

• These are nonoptimal for systems with the following characteristics: 

o High levels of complexity in socio-technical systems; 

o Involving many human, organizational, and/or software components; 

o Tight coupling; 

o Low manageability; 

o Few empirical data known. 

• These are nonoptimal in the following situations: 

o It is desired that no blame is assigned; 

o Thorough results are desired more than efficiency; 

o Regulations require other methods; 

o A comprehensive list of safety improvements to the system is desired. 

 

SWOT: Sequential Methods 

Strength 

• Simple, quick and easy to use 

• Useable by non-experts 

• Widely used and well known 

• Effectively model simple systems with component 

failure and human actions 

• Identifies root cause 

• Can yield probabilities of accidents 

Weaknesses 

• Do not identify issues pertaining to interactions of 

system components 

• Poor handling of managerial, organizational, human 

and SW components 

• Cannot describe complex socio-technical systems 

• Can lead to incorrect appointing of blame 

• Probabilities can be unrealistic 

• Assumes component failure modes are independent  

• Treats humans and SW in the same way as mechani-

cal HW assuming they fail in the same way 

Opportunities 

• Optimal for system with following characteristics: 

o Simple 

o Mainly physical components 

o Loose coupling 

o High manageability 

Threats 

• Nonoptimal for system with following characteris-

tics: 

o High complexity in socio-technical systems 

o Involve many human, organizational, 

and/or SW components 
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o Empirical data known 

• Optimal for situations where: 

o Limited resources 

o Need to identify rot cause 

o Regulation requires the use of sequential 

method 

o Probabilities of accident occurrence are 

desired  

o Consistency of results desired 

o User has little experience 

• Popular methods used in industry 

o Tight coupling 

o Low manageability 

o Few empirical data known 

• Nonoptimal for situations where: 

o Assignment of blame is not desired 

o Thorough results desired 

o Comprehensive list of safety improvements 

to the system is desired 

o Regulation requires other methods 

Table 2: Sequential methods SWOT analysis summary  

 

4.2.  Epidemiological Methods 

 

The most popular method in this category, and across all categories (Underwood & 

Waterson, 2014), is the Swiss Cheese method (Reason, 1990, 1997). Like sequential meth-

ods, these are based on cause-effect relationships. However, they do not only identify one 

root cause; they consider both active failures (such as failing equipment) and latent failures 

(such as a dangerous safety culture). Newer methods that are based on the Swiss Cheese 

Method (such as the ATSB investigation analysis model) are popular in industry and it has 

been shown that they can sometimes yield similar results to systemic methods (Underwood 

& Waterson, 2014).  

 

Strengths 

• Compared to systemic methods: 

o Simple, quick, and easy to use; 

o Yield fairly reliable and consistent results with guidance and taxonomies availa-

ble; 

o Some more advanced methods can (in certain situations) approach similar results 

to systemic methods without the associated drawbacks (Underwood & Waterson, 

2014; e.g.  Sulaman et al., 2017); 

o Less resource intensive (money and time). 

• Identify both active failures (similar to sequential methods), and… 
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• Identify latent/organizational factors (thereby supporting a more comprehensive view 

than sequential methods). 

• Widely used in industry (Underwood & Waterson, 2014). 

• Can yield graphical outputs to aid in understanding/clarity of results and to aid in dis-

semination of results. 

• Identify root cause and allows apportioning of blame. 

• It is estimated that 96% of potential accidents can be captured by linear (sequential and 

epidemiological) methods (Hudson, 2014). 

 

Weaknesses 

• Not as comprehensive as systemic methods; cannot yield the same depth of results when 

considering complex socio-technical systems because they do not consider system dy-

namics and non-linear interactions between different components (Yousefi et al., 2018). 

o Underwood & Waterson (2014) wrote that some methods (namely the ATSB 

model) can blur the distinction between epidemiological and systemic methods 

by acting as a gateway for systems thinking. However, the closer one approaches 

to this effect, the more effort is required. 

• Focusing on the root cause can lead to incorrect/unjustified apportioning of blame. 

• Traditional epidemiological methods, like the Swiss Cheese Model, regard organiza-

tional mistakes as management errors. 

• Accidents have more than one contributing factor. 

 

Opportunities 

• These are optimal for systems with the following characterizes: 

o Involve physical, human, and organizational factors; 

o Relatively few software components; 

o Tight coupling; 

o High manageability; 

o Empirical data are known. 

• These are optimal for situations with the following characteristics: 

o Limited resources (time and money); 

o Identification of root cause/blame is desired; 
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o Regulations require epidemiological methods; 

o Dissemination of results to non-experts is required; 

o Consistency of results is desired (e.g. clear guidance and taxonomies are benefi-

cial). 

• Popularity in industry means many practitioners are comfortable with these methods and 

that they will continue to be chosen and used by such practitioners. 

 

Threats 

• These methods are nonoptimal for systems with the following characteristics: 

o High levels of complexity in socio-technical systems; 

o Involving many software components; 

o Low manageability; 

o Few empirical data known. 

• They are nonoptimal in the following situations: 

o It is desired that no blame is assigned; 

o Thorough results are desired more than efficiency; 

o A comprehensive list of safety improvements to the system is desired; 

o Regulations require other methods; 

o The user has no analysis experience. 

 

SWOT: Epidemiological Methods 

Strength 

• Compared to systemic methods: 

o Simple, quick and easy to use 

o Yield fairly reliable and consistent results  

o Some advanced methods can approach 

similar results to systemic methods 

o Less resource intensive 

• Can identify active failure 

• Can identify latent/organizational factors 

• Widely used 

• Can yield graphical outputs to clarify results 

• Identify root cause 

Weaknesses 

• Cannot yield same depth of results in complex so-

cio-technical systems compared to systemic methods 

• Focus on root cause identification can lead to incor-

rect blaming 

• Traditional epidemiological methods, like SCM re-

gard organizational mistakes as management errors 

• Accidents have more than one contributing factor 

Opportunities Threats 
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• Optimal for system with following characteristics: 

o Involve physical, human and organiza-

tional factors 

o Relatively few SW components 

o Tight coupling 

o High manageability 

o Empirical data known 

• Optimal for situations where: 

o Limited resources 

o Need to identify rot cause 

o Regulation requires the use of epidemio-

logical method 

o Dissemination of results to non-experts is 

required 

o Consistency of results desired 

o User has little experience 

• Popular methods used in industry 

• Nonoptimal for system with following characteris-

tics: 

o High complexity in socio-technical systems 

o Involve many SW components 

o Low manageability 

o Few empirical data known 

• Nonoptimal for situations where: 

o Assignment of blame is not desired 

o Thorough results desired 

o Comprehensive list of safety improvements 

to the system is desired 

o Regulation requires other methods 

o User has no analysis experience 

Table 3: Epidemiological methods SWOT analysis summary  

 

4.3.  Systemic Methods 

 

Two popular methods in this category are FRAM (Functional Resonance Analysis 

Method) and STAMP (Systems Theoretic Accident Model and Processes).  

Both methods were designed based on systems theory. The strength of systemic 

methods is their ability to identify hazards stemming from interrelations of components, 

which is possible because they do not consider systems on a local, component basis. This 

allows identification of hazards that can occur even when all the components are functioning 

correctly on a local level but in such a way that they combine to create hazardous situations.  

FRAM is a system modelling tool that can be used in the process of managing risk 

and safety. It identifies hazards by recognizing when variations in system functions affect 

each other and resonate to create noticeable hazards. This is something that sequential and 

epidemiological methods cannot detect because they are limited to cause-effect thinking.  

While STAMP is also a systemic method, it has different theoretical underpinnings, 

means of application, and output than FRAM (Underwood & Waterson, 2012). It is the basis 

of STPA, which can be used in the process of risk and safety management, and CAST, which 
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can be used for accident analysis (Thomas, 2014). It defines systems as “a hierarchy of con-

trol based on adaptive feedback mechanisms” (Leveson, 2004). The following SWOT anal-

ysis is focused more towards STPA than CAST because we are not interested in accident 

analysis. 

Despite their theoretical differences, these two methods are based on systems theory, 

and this is what sets them apart from other methods like Swiss Cheese and Domino. Both 

FRAM and STAMP-STPA can be used within the process of risk and safety management, 

and so they are two main methods considered within this analysis. 

 

Strengths 

• Systems theory permits a greater depth of understanding of complex systems than is 

possible using sequential and epidemiological methods (Underwood & Waterson, 

2013). This is because they consider non-linear relationships and the interactions of 

different components, recognizing that hazards and risks can arise even in situations 

where individual components are all acting correctly at a local level. They therefore en-

courage a comprehensive view of the system. 

• They can handle all types of components (physical, human, organizational, software, 

etc.) by considering their interactions, not their specific behavior (e.g. see comparative 

study between STPA and FMEA by Sulaman et al. (2017)). 

• These methods do not explicitly assign blame or identify singular root causes for acci-

dents. Rather, they emphasize a wider view and a focus on safety improvements (Under-

wood & Waterson, 2014).  

• They can be applied from an early stage of development onwards to eliminate or mitigate 

hazards (Abdulkhaleq et al., 2016; Ishimatsu et al., 2010). 

• Handbooks exist for both STPA (Leveson & Thomas, 2018) and FRAM (Hollnagel et 

al. 2014) that were written by the creators of the two methods. They both provide guid-

ance on how to employ the methods, although the FRAM handbook is specifically fo-

cused on healthcare whereas the STPA handbook is more general. Neither provide tax-

onomies. 

• Both methods are relatively open-ended and flexible.  

• They do not require empirical data. 
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• One instance of accident analysis (not hazard identification) by Yousefi et al. (2018) 

indicated that STAMP can identify far more safety recommendations and be more com-

prehensive than FRAM.  

 

Weaknesses 

• They are complicated to implement, meaning they can take longer to use and to learn, 

when compared with linear methods (Hollnagel & Speziali, 2008; Abdulkhaleq et al., 

2013). Expertise in both the domain of study and safety analysis is required. 

• They are more resource intensive (Underwood & Waterson, 2013; Abdulkhaleq & Wag-

ner, 2013). They also require extensive system information. 

• These methods do not focus on blame and they cannot (currently) yield probabilities of 

accident occurrence.  

• Results are generally difficult to disseminate to non-experts, especially compared to lin-

ear methods. For example, Abdulkahaleq & Wagner (2013) wrote that STPA “has no 

detailed description, however, how to present the final argumentation about the hazards 

avoided and remaining risks”. 

• Analyst bias is more likely in systemic methods than in linear methods (Yousefi et al., 

2018). 

• These methods are open and developmental. While the handbooks are useful, these meth-

ods still require imagination and concerted effort. 

o Several authors have written that FRAM could benefit from a more structured 

approach (Herrera & Woltjer, 2010; Stringfellow, 2010). While the handbook 

might help with the above (Hollnagel et al., 2014), the author still maintains that 

the purpose of FRAM is to guide/control an analysis, not automate it. He explains 

that FRAM provides analysts with clues where to look, but not answers 

(Hollnagel, 2016).  

o Abdulkahaleq et al. (2013) wrote that “STPA needs a systematic method to notate 

the relation between the process model variables, control actions and hazards”. 

However, they concluded that STPA generally has a systematic, step-by-step pro-

cess of implementation. These steps can be found in books by Leveson (2011) 

and Leveson & Thomas (2018).  
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• Systemic methods can sometimes be less effective than some linear ones at finding pure 

component failures. For example, in a comparison study, Sulaman et al. (2017) found 

that FMEA identified more component failure hazards than STPA.  

• These methods are qualitative and do not yield probabilities of accident occurrence. Al-

exander & Kelly (2009) contended that while quantitative modelling does have prob-

lems, abandoning it completely for qualitative methods is risky and unsafe. 

• There are no taxonomies for either method. 

 

Opportunities 

• Systemic methods are optimal for systems with the following characteristics: 

o Complex; 

o Tightly coupled; 

o Low manageability; 

o Physical, software, human, and organizational components; 

o Information on the system is known. 

• They are optimal for use in the following situations: 

o Ample resources are available; 

o Thorough results are desired; 

o System safety improvements are desired more than finding a root cause or as-

signing probabilities of accidents occurring; 

o Apportioning blame is not desired; 

o The user is very experienced in safety management and in the domain of analysis. 

• Hudson (2014) estimates that 4% of possible accidents can only be captured using non-

linear, non-deterministic thinking. 

 

Threats 

• These methods are nonoptimal for systems with the following characteristics: 

o Simple system; 

o Involving few human, software, and organizational components (e.g. mainly 

physical);  

o Loosely coupled; 

o High manageability; 
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o Little system design information is known. 

• They are nonoptimal in the following situations: 

o Efficiency is paramount (little time/money available); 

o Regulations require other methods (and they rarely recognize FRAM and 

STAMP-STPA); 

o The user is inexperienced; 

o If taxonomies are desired (e.g. for trend analysis); 

o If dissemination of results to non-experts is necessary (Underwood & Waterson, 

2014); 

o Probabilities of accident occurrence are desired or necessary. 

• These are less common than simpler methods, so their acceptance by safety professionals 

will be slow and it will be a long time before the methods can gain significant popularity 

in industry (Underwood & Waterson, 2012).  

 

SWOT: Systemic Methods 

Strength 

• System theory permits greater understanding of 

complex systems 

• Can handle all types of components 

• Focus on safety improvement instead of finding 

one root cause or assigning blaming 

• Can be used in early stage of development 

• Detailed handbooks written for both methods 

(STPA and FRAM) exist.  

• Methods are open-ended and flexible 

• Do not require empirical data 

Weaknesses 

• Complicated to implement 

• Resource intensive 

• Cannot yield probabilities of accident occurrence 

• Results are difficult to disseminate to non-experts 

• Analyst bias  

• Require imagination and concerted effort 

• Can be less effective than some linear methods at 

finding pure components failures 

• Do not yield probabilities of accident occurrence 

• There are no taxonomies for either method 

Opportunities 

• Optimal for system with following characteristics: 

o Complex 

o Tight coupling 

o Low manageability 

o Physical, SW, human and organizational 

components 

o Information on the system is known 

• Optimal for situations where: 

o Ample resources available 

Threats 

• Nonoptimal for system with following characteris-

tics: 

o Simple systems 

o Involve few human, SW and organizational 

components 

o Loosely coupled 

o High manageability 

o Little system design information known 

• Nonoptimal for situations where: 
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o Thorough results desired 

o System safety improvement desired  

o Blaming not desired 

o Regulation requires the use of epidemio-

logical method 

o User is very experienced in safety man-

agement and  the domain of analysis 

o Few resources available (time and money)  

o Regulation requires other methods 

o User is inexperienced 

o Taxonomies are desired 

o Dissemination of results to non-experts is 

necessary 

o Probability of accident occurrence is de-

sired 

Table 4: Systemic methods SWOT analysis summary  
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5.  RECOMMENDATIONS 

 

In this chapter, the recommended risk and safety method will be presented. In order 

to choose the most suitable method to be used in the maritime industry with autonomous 

vehicles, was important to take into account some considerations. These considerations will 

be presented below. Then the recommended method will be nominated with explanation for 

the recommendation. Also an explanation on alternatives to satisfy the FSA is presented as 

well as possible ways to handle uncertainty.  

 

5.1.  Considerations 

 

Before being able to recommend a risk and safety management method to be used 

when developing autonomous maritime vessels, it is important to take into account some 

considerations like the tractability and coupling of the system as specified by Underwood & 

Waterson (2013). Tractability and coupling of a system are not the only considerations, alt-

hough are a clear starting point to understand the system being studied. It is also important 

to answer some understand other questions: 

• Is the system to be analysed as a whole system, a system of systems or a subsystems? 

• What is the system level of complexity and can the proposed method handle such 

system? 

• What is the desired level of thoroughness in relation to the associated costs? 

• What information is demanded by the method, and what information currently exist? 

• What methods are currently in use? 

• How should the results be used? 

In the coming section the mentioned considerations will be explored in the case of 

autonomous maritime vessels. 

 

5.1.1. Tractability and coupling 

 

An important clarification must be made before a method can be proposed: What is 

the tractability and coupling of autonomous maritime systems? There is guidance in the lit-

erature for how to answer these questions. Underwood & Waterson (2013) describe a tightly 



 
 

59 
 

coupled system as one whose components and subsystems are interconnected so that some-

thing affecting one can easily spread to the others. More formally, tightly coupled systems 

will include redundancies in their designs; will feature few delays in processes; will feature 

invariant process sequences; and will feature few substitutions of, and little slack in, sup-

plies/equipment/personnel.  

They also describe future system tractability. They explain that a system is intracta-

ble if its principles of functioning are unknown; it cannot be described simply and with few 

details; and it quickly changes over time. For example, a post office, with its regimented 

order, would be tractable. Conversely, a hospital emergency room, with its flexible and ever 

changing functionality, and would be intractable.  

So, how can we describe maritime autonomous systems? While the vessels them-

selves do not yet exist, it is safe to say they will be intractable (low manageability) and tightly 

coupled. This is because these systems will be highly complex and self-reliant. They will 

also feature many redundancies and a wide range of advanced operational capabilities.  

In other words, if a system will handle cargo loading, machinery maintenance, navi-

gation, communication, security measures, emergency operations, and all the other neces-

sary (sub)systems, it must be tightly coupled. And it will also be intractable for similar rea-

sons. Its level of complexity, its number of interacting components, and its range of opera-

tional capabilities means it will be difficult to describe and that it will change quickly over 

time. These are the hallmarks of an intractable system.  

Why is this clarification important? This question is clearly answered by Hollnagel 

& Speziali (2008). Axiomatically, they explained that if a system is tightly coupled and in-

tractable, the methods used must be suitable for systems that are tightly coupled and intrac-

table. You must therefore consider tractability and coupling in order to select the correct 

method. According to the Underwood & Waterson framework in figure 2, air traffic control, 

railways, and marine transport are all in the upper left corner, meaning these are tightly cou-

pled systems with high manageability. For industries and processes in that space, epidemio-

logical methods are considered adequate for explaining accidents and analyzing the system. 

Indeed, we can see from the literature review that the transportation industry has historically 

favored sequential and epidemiological methods for system analysis. But do autonomous 

transportation systems fit into this space? 

Referring to the SWOT analyses, the opportunities/threats sections indicate the com-

bination of tractability and coupling that is most suited to each category. It can be concluded 
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that, on the basis of tractability and coupling alone, autonomous systems do not fit into this 

space. This indicates that systemic methods (and not epidemiological) are the best choice for 

analysis of maritime autonomous systems. 

 

5.1.2.  Other considerations 

 

However, tractability and coupling are not the only important considerations. Fol-

lowing is a list of questions (adapted from Underwood & Waterson (2013) and from the 

SWOT analyses in section 4) concerning both the context of autonomous maritime systems 

and the provisional category of choice; systemic methods. Answering these questions will 

indicate the optimal choice.  

Is the system to be analyzed a system of systems, a whole system, or a subsystem? 

Generally, automation in the maritime industry will encompass all three of these categories. 

In consideration of a fully autonomous vessel, it will contain many automated subsystems 

that will combine with other subsystems (e.g. navigation, propulsion, communications, etc.). 

Because these vessels will be operated in open ocean, they will interact with many other 

manned and autonomous systems (e.g. other ships, ports, and control infrastructure). In this 

respect, comprehensive analysis of autonomous vessels will mean analysis of a SoS, where 

the analyst must operate with a very wide scope. 

What is the system’s level of complexity and can the proposed method handle such 

systems? Maritime autonomous systems have the potential to be extremely complex, espe-

cially if considering their position within the broader maritime environment. In consideration 

of the maritime industry as a whole, the literature reflects this fact; that the size and com-

plexity of these autonomous systems will be great and, in some aspects, revolutionary (e.g. 

Jalonen et al., 2017; Wróbel et al., 2018). 

Even in consideration of only one independent vessel, the scope would include a 

range of physical, software, human, and organizational components. On this basis, some 

authors indicate that sequential and epidemiological methods would be insufficient (e.g. 

Stringfellow, 2010; Yousefi et al., 2018). Regarding accident models, Yousefi et al. 2018 

wrote, “Sequential and epidemiological accident models do not fully capture the dynamics 

and nonlinear interactions between system components in complex socio-technical sys-
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tems”. This idea is mirrored in the SWOT analyses. Therefore, the complexity of autono-

mous maritime systems seems to demand analysis using systemic methods, which are the 

only ones capable of capturing a comprehensive and dynamic view of such systems.  

What is the desired level of thoroughness in relation to the associated costs? As in-

dicated in the SWOT analyses, systemic methods are the most costly in terms of time, effort, 

required expertise (in both the domain and in system analysis), and monetary expenditure. 

However, the complexity of maritime autonomous systems is unavoidable, and comprehen-

sive, thorough, and safe analysis might necessitate the use of systemic methods, regardless 

of costs.  

What information is demanded by the method, and what information currently ex-

ists? The SWOT analyses indicate that empirical data/evidence are necessary for many se-

quential and epidemiological methods, especially those that are probability based. Con-

versely, systemic methods require a complete understanding of the system, but no empirical 

data. While such a thorough understanding of the system might be difficult to grasp, it is a 

beneficial trade-off for systems that do not yet exist because there will be little associated 

empirical data (only expert elucidation).  

Are there any regulatory constraints that prohibit or require certain methods over 

others? For ships on international voyages, it will be necessary that they comply with inter-

national regulations. This namely refers to the International Maritime Organization (Jalonen 

et al., 2017).  

So, future autonomous ships will have to be built and operated in accordance with 

IMO (and other international) regulations. However, there currently are no such regulations 

for dealing with autonomous maritime systems. The IMO’s Formal Safety Assessment 

(FSA) methodology (IMO, 2018) is meant to be employed in such circumstances, where it 

can guide the creation and proposal of regulations in terms of the costs/benefits associated 

with new maritime technologies. While it is not intended that the FSA is implemented in 

every proposal, its use is especially recommended in cases with far-reaching implications 

for cost to the industry and in terms of legislative/administrative burdens. In cases with un-

clear circumstances (such as the use of novel technologies), the FSA allows member states 

to more clearly understand the proposal and make the appropriate decision.  

Currently, the FSA requires probabilistic modelling. This is perhaps the greatest 

practical hurdle when it comes to safety analysis and management of autonomous maritime 

systems. This is because systemic methods cannot currently be used for quantitative analysis 
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and probability-based methods can seemingly not handle the wide scope presented by this 

new technology. This is a very noteworthy problem and it will be discussed later.  

What methods are currently in use? From the literature review, we know that histor-

ical analyses of transportation systems employed sequential or epidemiological techniques. 

Autonomous transport systems in all industries are too young to conclusively identify pref-

erence for any one method. However, examples of systemic methods used for analysis of 

complex autonomous systems in other industries (e.g. automobile) indicate possible applica-

bility in similar maritime systems. 

How shall the results be used? If the results must be disseminated to non-experts, 

systemic methods are not as suited to this purpose as simpler methods. This is related to the 

FSA issue because the reason it requires probabilities is so that analysis results can be pre-

sented clearly and understood by non-experts. However, this issue of ease-of-dissemination 

is practical rather than safety based. If the ultimate goal of risk and safety management is to 

make safety improvements to the system, this should be the deciding factor of which method 

to use.  

On that topic, another consideration is whether the goal is indeed to make safety 

improvements, or if it is identification of ostensibly clear root causes/issues that can be con-

veniently excised. Stringfellow (2010) wrote, “Many incident reporting and learning 

schemes used in organizations focus on identifying root causes. This is problematic because 

there is no such thing as a root cause. The selection of a root cause, like the selection of an 

initiating event in an accident, is a matter of convenience”. So if the ultimate goal is to im-

plement safety upgrades, desire of root cause identification should be ignored.  

A final practical consideration is if a taxonomy is desired. If results classification is 

paramount, methods with published taxonomies and rigid guidelines would be better (in this 

respect) than more open-ended systemic methods. However, the number of hazards and 

safety improvements that one identifies would most likely suffer. And conversely, the open 

and developmental nature of systemic methods may be preferred by some analysts if tradi-

tional guidance is not well suited to their application.  

 

5.2.  Which Method Should be Used? 

     

A wide majority of the important considerations mentioned above indicate that sys-

temic methods are the optimal choice. It is additionally indicated that STPA would produce 
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more comprehensive results than FRAM (or any other single systemic method). STPA is 

therefore the provisional recommendation. This does not, however, preclude future aban-

donment of STPA in favor of more effective alternatives. Rather, it has been shown that 

STPA is the optimal choice if one method (that currently exists) is to be used for establishing 

a risk and safety management strategy for autonomous maritime systems.  

In addition to the open possibility that something else could supplant STPA as the 

optimal choice, two additional concessions must be made. First the issue of the IMO’s FSA 

regulations will be discussed. Second, it is important to remember that “no specific method 

is the overall best in the sense that it can be used for all conditions” (Hollnagel & Speziali, 

2008). In other words, while STPA is the recommended choice, and while this recommen-

dation has been supported by various academic sources, it is not the necessarily optimal in 

all situations. Additionally, this recommendation does not mean that other methods could 

not be used for equal or even greater results, only that the analysis indicates that STPA is the 

optimal choice. 

The reasons for this choice are numerous. Recommendations of systemic methods 

for autonomous system analysis in the maritime industry can be found throughout the liter-

ature (e.g. Thieme et al. 2018; Jalonend et al., 2017). For example, while referring specifi-

cally to autonomous maritime systems, Jalonen et al. wrote, “the System-Theoretic Process 

Analysis (STPA, see Leveson (2011)) model is believed to give the most promising result.” 

Likewise, Thieme et al. postulated that the optimal risk model should be able to handle con-

trol and software systems, and that STPA or FRAM are two possible choices for this purpose.  

 In 2013, Underwood & Waterson published a review of 302 documents to find 

all explicit references of systemic models. They found that STAMP was referenced 52% of 

the time, while FRAM was mentioned 19.9% of the time. This relative popularity is not 

undeserved. In a 2018 comparative study of FRAM and STAMP accident analysis models, 

Yousefi et al. (2018) recommended STAMP for future accident modelling because it identi-

fied the most safety recommendations. They concluded that STAMP “is likely to be more 

instrumental and comprehensive in generation of recommendations” and urged its adoption 

in industry to demonstrate its capabilities. While STPA is not the same as STAMP, it is 

based on STAMP and so successes of STAMP do, to a degree, indicate the benefits of STPA. 

There are many other proponents of STAMP and STPA. For example, STPA has 

been used successfully for hazard and safety analysis of autonomous vehicles at Continental 

AG (Abdulkhaleq et al., 2016) and within software-intensive aerospace systems at MIT and 
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JAXA (Ishimatsu et al., 2010). Likewise, STPA was recommended for safety assurance pur-

poses in the aviation industry by Fleming et al. (2012).   

STPA has also found some support within the maritime industry. For example, Aps 

et al. (2016) wrote, “STPA has proved to be an effective and efficient method to assess the 

safety management of a complex safety-critical socio-technical system from the maritime 

domain”. Another example of its use, but concerning autonomous systems, is found within 

Wróbel et al. (2018), who successfully used STPA to compile a list of hazards and solutions 

related to the safety of autonomous vessels. 

A final example can be found in Valdez Banda & Goerlandt (2018), who proposed a 

STAMP-based approach to designing maritime safety management systems. They applied 

their process to vessel traffic services in Finland in an attempt to systematically represent its 

functionality and controls. The outcome of this case study culminated with a defined safety 

management system along with the provision of a tool for monitoring its performance.  

So, based on the above arguments, STPA is recommended over FRAM and all other 

sequential and epidemiological methods. This does not mean that STPA is objectively supe-

rior to FRAM, only that the literature and SWOT analyses indicate that it is the optimal 

choice for this application. The reasons systemic methods are recommended instead of se-

quential or epidemiological methods were explored in the previous subsection. To reiterate, 

it was shown that autonomous maritime systems will be tightly coupled and intractable. It 

was also concluded that to comprehensively and safely analyze the system, the scope of 

analysis must include the whole maritime environment. The system will therefore be a SoS 

and the analysis must have very wide boundaries. Further, the system will be highly complex 

and will include a variety of different components (human, physical, software, organiza-

tional, etc.). From the SWOT analyses, it can be seen that these system characteristics de-

mand systemic tools of analysis. Therefore, STPA (or FRAM) is the logical choice. 

However, there are associated drawbacks with analysis using STPA, hence the use 

of “provisional” to qualify earlier recommendations. First, systemic methods are the most 

costly in terms of time, effort, required expertise, and monetary expenditure (as shown in the 

SWOT analyses). The use of STPA will therefore require experienced, specialized profes-

sionals and greater financial investments than would be required for simpler methods.  

Second, very little is known about the designs and operational concepts of autono-

mous maritime systems. This means that it is impossible to conclusively recommend one 

method over another because assurance of a method in the stated role cannot be given 
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(Thieme et al., 2018). This is why Wróbel et al. (2018) recommended that further analyses 

(using STPA) should be conducted throughout the design, construction, and operational 

phases; as more system data is revealed, more reliable results will be achieved, and it will 

become possible to ensure that the chosen method is appropriate.  

Finally, and as previously explained, for the IMO to permit international use of au-

tonomous systems, the FSA will have to be applied. And because the FSA requires proba-

bilistic analysis, it cannot currently be satisfied by STPA (or FRAM). The important issue 

here is not that STPA cannot be used, but rather, that linear/probabilistic methods (some of 

which can satisfy the FSA) are not appropriate for this application.  

If international regulations were already in place, and if industry practitioners wanted 

to perform system analysis, STPA could be used very effectively. But for analyzing the mar-

itime autonomous ecosystem during application of the FSA, probabilistic methods must be 

used. And yet, neither do the necessary empirical data exist, nor can sequential/epidemio-

logical methods appropriately handle a technological paradigm with such a wide scope. 

 

5.3. Satisfying the FSA 

 

To satisfy the IMO while still conducting a safe and comprehensive analysis, there 

are several possible courses of action. Namely, either the probability requirement in the FSA 

should be altered/ignored by the IMO or a systemic method should be augmented with prob-

abilistic capabilities.  

For the FSA to be altered or for IMO member states to deem its probabilistic stipu-

lations unnecessary, it would (at least) have to be made very clear that probabilistic analysis 

is impossible and/or unsafe for autonomous maritime systems. In comparing, for example, 

STPA and the Domino Method, it is true that the former would be a safer choice than the 

latter. However, the distinction between methods is not always so obvious, and successfully 

arguing that quantitative modelling is categorically more unsafe than qualitative would be 

very challenging. Additionally, there are reasons to desire probabilistic results beyond 

simply satisfying the FSA. Montewka et al. (2018) wrote that quantitative analysis can pro-

vide valuable guidance to the designers of novel systems by reflecting available background 

knowledge and highlighting areas that require further research. Additionally, probabilities 

make prioritizing and disseminating results very clear because they show if something is 

more or less safe than something else. Quantitative system analysis is also supported by 
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Alexander & Kelly (2009), who argued that despite the drawbacks associated with probabil-

istic modelling, it would be dangerous to completely abandon it in favor of qualitative meth-

ods. So, foregoing the FSA requirements and avoiding probabilistic modelling might be very 

dangerous even if it were “permitted” by the IMO. 

Alternatively, to satisfy the FSA by obtaining accident probabilities, perhaps a sys-

temic method could be augmented with probabilistic capabilities. In this case, the model will 

most likely require empirical data, and efforts to obtain this data will be necessary (there are 

very few experts whose elucidation could be confidently relied upon, so empirical data are 

the only viable option for quantitative modelling (Wróbel et al., 2018)). One option is to use 

trial autonomous ships for beta testing to gather enough information for empirical analysis. 

These ships could be operated within national waters, bypassing IMO regulations altogether. 

Alternatively, the SASWG (2018) has proposed the use of simulations to gather empirical 

data for safety analysis within the automotive domain, thereby avoiding the need for test 

vehicles. Applying this idea to the maritime domain might help industry to obtain the nec-

essary data more easily than by using test ships. In this case, the simulations themselves will 

require suitable validation to guarantee trustworthy results. 

In addition to obtaining empirical data, finding a suitable probabilistic model for sat-

isfying the FSA will be another challenge. This is because, as previously explained, neither 

STPA nor FRAM can currently handle quantitative analysis (Hollnagel et al., 2014; Leveson 

& Thomas, 2018). If such an ability could be added to a systemic method, it could then 

potentially satisfy the FSA guidelines. Alternatively, novel systemic methods with probabil-

istic capabilities might work, as could a combination of a systematic method with a more 

traditional, probability-based method. These three possibilities are hypothetical, and would 

require research and assurance before they are used. Still, there are reasons to support the 

use of combined methods, as discussed below. 

Theoretically, combining methods is an effective way to ensure completeness of re-

sults. Because some methods have strengths in certain areas and weaknesses in others, 

choosing complementary methods allows the user to achieve more comprehensive results. 

A solution to the FSA problem might therefore be to combine the holistic modelling abilities 

of a systemic method with supplementary probabilistic modelling from a sequential or epi-

demiological method. This is not the first time that combining methods has been proposed. 

Underwood & Waterson (2013) explained that a combined sequential-systemic method 
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would benefit from the sequential method’s ability to analyze technical failures and the sys-

temic method’s strengths in analyzing wider issues. Similarly, for the purpose of hazard 

identification and management of general autonomous systems, Alexander et al. (2009) pro-

posed a combination of ETBA, FFA, and HAZOP for comprehensive analysis from different 

viewpoints. Practitioners have also exemplified the benefits of using multiple methods. In 

the aviation industry, the Bowtie method has seen use for risk assessment by several national 

aviation regulators and air navigation service providers (CAA UK, 2015). This is noteworthy 

because Bowtie is essentially a combination of FTA, ETA, and CFC, therefore demonstrat-

ing that several different methods can be combined for greater effectiveness. Unfortunately, 

the specific combination of methods that could be used to satisfy the FSA and produce safe 

results is unknown. Whether it would consist of two separate methods applied consecutively 

or an integration of multiple methods is also unknown. However, as we have seen, it is a 

viable proposal that deserves future consideration.  

 

5.4.  Handling Uncertainty 

 

One final recommendation for the use of STPA is that its users should remember to 

consider uncertainty in their results. If it is true that the purpose of risk and safety analysis 

is to help with underlying decision making, then it is logical that analysts should consider 

the consequences of their error. Uncertainties concerning their analyses must therefore be 

identified. Otherwise, unsafe decisions can inadvertently be made due to unsafe assumptions 

and untrustworthy data (Wróbel et al., 2018). By identifying uncertainties, better and safer 

decisions can be made, including implementation of protective measures. For methods to 

deal with uncertainty relating to STPA, see Wróbel et al. (2018) and Leong et al. (2017). 

Additionally, Montewka et al. (2018) wrote that for future quantitative and probabilistic 

analysis regarding the FSA, qualitative uncertainty in the data should be considered, and 

how risk is define and approached should be altered to suit the strengths of the data. 
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6.  CONCLUSIONS 

 

In conclusion, maritime autonomous systems are complex socio-technical systems 

that can pose severe risks to human safety. To handle such risks, three categories of system 

modelling methods exist that can be employed in the process of risk and safety management. 

They are sequential methods (the oldest category), epidemiological methods (the most pop-

ular category), and systemic methods (the newest category).  

Their evolution over time has coincided with advances in technology and socio-tech-

nical interactions. Originally, it was thought that accidents were unfortunate and inevitable 

events (Perrow, 1984). Sequential models portrayed them as the result of individual compo-

nent failures somewhere in the system. In recent years, the trend has moved towards viewing 

accidents as the result of dysfunctional interactions between system components. This 

marked the advent of systemic models. These models take better account of the complexity 

of modern socio-technical systems. In addition to physical components, these methods con-

sider the effects that humans, organizations, and software can have, thereby incorporating 

them into the system. 

A literature review was conducted to investigate both the general uses of each cate-

gory of method as well as the different approaches to risk and safety management that are 

taken within different domains of the transportation industry. These domains are aviation, 

railway, automotive, and maritime. Additionally, the prevalence of automation within these 

domains was considered along with the contemporary approaches to risk and safety man-

agement of these autonomous transportation systems. 

The literature review answered the first research question, “What methods and 

frameworks are implemented for the management of risk and safety in the different indus-

tries involving autonomous transportation systems?”. Although all categories of methods are 

used, there is a preference for the use of epidemiological methods due to them being simple 

to use, well know, no expertise required for their use and they are recommended by most 

regulatory organizations. It was also established, that in the case of autonomous systems, 

there is a tendency to use systemic methods which are newer and expertise is needed to apply 

them properly but are better able to handle such systems. 

The second research question, “what are the key elements and issues for risk and 

safety management of autonomous transportation systems”  was also answered by the liter-

ature review and summarized for maritime autonomous systems below: 
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• Complex system 

• Tight coupling  

• Decrease of situational awareness due to automation  

• Reduction of operators ability to monitor vessel progress due to automation 

• Minimum level of confidence in safety should be equal to or greater than 

current level 

• Robust communication system necessary 

• Maintain capabilities throughout a range of extreme weather conditions  

• Data security 

• Defense mechanism against piracy 

• Self-reliant 

Following this literature review are three SWOT analyses, one for each category of 

methods. The analyses contain the strengths, weaknesses, opportunities, and threats pre-

sented by each method. Following this is a consideration of the demands and requirements 

presented by automation within the maritime industry.  

In consideration of these demands, the optimal method for risk and safety manage-

ment of autonomous maritime systems was indicated by the literature review and the SWOT 

analyses to be STPA (Systems Theoretic Process Analysis). It was also shown that uncer-

tainty analysis is an important addition to STPA. This answered the third research question, 

“what is the optimum method of risk and safety management for autonomous systems within 

the maritime industry?”.  

This recommendation is not made without certain acknowledgements and conces-

sions. STPA (a systemic method) presents its own practical difficulties, including its re-

source-heavy nature and the necessity of analysts to be system experts. It also produces com-

plex results that are qualitative and not probabilistic, which can be problematic if the results 

must be disseminated to laymen and non-experts.  

Additionally, this recommendation is only provisional because little information on 

the system is known and there is little precedence on which to base the recommendation 

(only preliminary comparative studies and recommendations from other industries). Meth-

ods other than STPA should therefore not be excluded from consideration because they 

might be more effective choices for design, implementation and validation of future systems. 

It is also important that, regardless of the method chosen, continuous system analysis be 



 
 

70 
 

performed, from the concept stage to the implementation stage, as more system data are 

revealed and as more literature on the use of the method is produced. 

There is one final issue: For the future international use of autonomous maritime 

systems, a Formal Safety Assessment must be conducted. As per guidelines from the Inter-

national Maritime Organization (IMO, 2018), such an assessment must include probabilistic 

results. STPA in its current form is unable to satisfy this requirement, and it is believed that 

probabilistic methods (which can satisfy the FSA) are not comprehensive enough to produce 

trustworthy results. Unless the FSA guidelines are altered to permit purely qualitative anal-

ysis (which is not recommended), a new analysis method is necessary that can produce ho-

listic safety improvements (like STPA) while also producing accident probabilities to satisfy 

the FSA. Because this new method will produce probabilities, it will require empirical data. 

Two possible ways to obtain this data are using beta test ships or validated simulations. And 

whether this new method should be an augmentation of a systemic method like STPA or 

FRAM, a combination of a systemic method with a probabilistic method, or an altogether 

novel approach, is unknown.  

 

6.1 Recommendations for future research  

 

The development of autonomous vessels is still at an early stage but there is research 

devoted to this topic and there are institutions and companies working towards the develop-

ment of such systems. As future research, it would be useful to apply STAMP and FRAM 

during the design and development of autonomous systems and compare the outcomes with 

both models and the resource requirements. Going further, would be interesting to do a sim-

ilar research applied specifically to maritime autonomous vessels   

As development of autonomous systems increases, there will be more research done 

on the topic of risk and safety for such systems, therefore a comprehensive study of the 

methods used specifically for autonomous vehicles would improve the understanding of the 

strengths and weaknesses of the different methods classification and possibly support the 

conclusions of this thesis. 
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8. APPENDICES 

Appendix A: List of Risk and Safety Models 

 

Nr Acronym Name of Method

1 24Model 24 Model (24.0)

2 3CA Control, Change Cause Analysis, CCCA

3 3D Analysis 3 D Analysis

4 3 M / 5 M model 3 M / 5 M model

5 4M4E 4M4E

6 5 WHYS 5 WHYS

7 Accident Liability

8 Accident epidemiology

9 AcciMap AcciMap

10 AcciTree AcciTree

11 Achilles Achilles

12 AEB Accident Evolution and Barrier function

13 ArcGIS

14 Apollo RCA Apollo Root Cause Analysis / ARCA

15 APS Accident Prototypical Scenario

16 APT APT

17 ASSET Assessment of Safety Significant Event Team

18 ATHEANA A Technique for Human Event Analysis

19 ATSB Australian Transport Safety Bureau (ATSB) accident investigation model

20 BA Barrier Analysis

21 Birds model / Bird’s accident causation model

22 BN Bayesian Network

23 Bow-Tie model

24 CA Change Analysis 

25 CAS-HEAR Computer-Aided System for Human Error Analysis and Reduction

26 CASMET Casualty Analysis Methodology for Maritime Operations

27 CAST Causal Analysis using STAMP

28 CBA Cost Benefit Analysis

29 CCDM Cause-Consequence Diagram Method

30 CCF Common Cause Failure

31 CDM Construction Design and Management Risk Assessment

32 C-HFACF Complex Human Factor Analysis and Classification Framework

33 CFC Causal Factor Charting

34 CIAF Canadian Incident Analysis Framework

35 CIT Critical Incident Technique

36 COA Change Optimisation Algorithm

37 COCOM Contextual Control Model

38 CREAM Cognitive Reliability and Error Analysis Method

39 CRT Current Reality Tree

40 CTM Causal Tree Method

41 Domino Domino Theory

42 DREAM Driver’s Reliability and Error Analysis Method

43 DWACN Directed Weighted Accident Causation Network

44 ECFA Events and Casual Factors Analysis

45 ECFA+ Ecents and Conditional Factors Analysis

46 ECFC Events and Casual Factors Charting

47 ECFCA Events and Causal Factors Charting and Analysis 

48 EEA Elementary Event Analysis

49 ESReDA European Safety Reliability and Data Association

50 ETA Event Tree Analysis
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Nr Acronym Name of Method

51 ETBA Energy Trace and Barrier Analysis

52 ETT/ EARM

53 FFA Functional Failure Analysis 

54 FMEA Failure Mode and Effect Analysis 

55 FRAM Functional Resonance Analysis Method

56 FSA Formal Safety Assessment

57 FTA Fault Tree Analysis

58 Hale's model

59 HAZAN Hazard Analysis

60 HAZOP Hazard and Operability analysis 

61 HEP Human Error Probability

62 HERA HERA

63 HF Human Factors

64 HFACS Human factors Analysis and Classification System / Human Reliability Analysis

65 HFIT Human Factors Investigation Tool

66 HINT – J-HPES HINT – J-HPES 

67 HIP Human Information Processing

68 HOE Human and Organizational Errors

69 HOF Human or Organizational Factors

70 HOT-PIE Human, Organization, Technology, Process, information and Environment 

71 HPEP Human Performance Evaluation Process

72 HPES Human Performance Enhancement System

73 HPIP Human Performance Investigation Process

74 HRA Human Reliability Analysis

75 HSE256 HSE256 -Health and Safety Executive 

76 HSG245 Health and Safety Guidance

77 IAAM Incident or Accident Analysis Method

78 INES International Nuclear Event Scale

79 Influence Diagram

80 IPICA IPICA

81 IRS Incident Reporting System

82 ISIM Integrated Safety Investigation Methodology

83 JAGMAN Judge Advocate General method

84 Junior

85 Kitagawa's model / Kitagawa’s accident causation model

86 Lawrence's model

87 LEADSTO LEADSTO

88 Lee

89 LL Lessons Learned

90 LOPA Layer of Protection Analysis

91 MES Multilinear Events Sequencing

92 MIA Multi-Incident Analysis

93 MORT Management Oversight and Risk Tree

94 MTO Man, Technology and Organization analysis

95 OAC OAC

96 OARU Occupational Accident Research Unit

97 OOGM OOGM

98 OIT OIT

99 Orbit Intersecting theory

100 PEAT Procedural Event Analysis Tool 
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The table above shows many of the existing risk and safety models, it is not a com-

prehensive list. This list was compile taking into consideration the models mentioned in the 

books articles and publications reviewed for this thesis like, Underwood & Waterson (2013), 

Marhavilas et al. (2011), Qureshi (2007), Hollnagel & Speziali (2008), Wienen et al. (2017), 

Sklet 2004, Despotou et al. (2009), Hudson (2014), International Civil Aviation Organiza-

tion (2013) and Roland & Moriarty (1983). 

 

Nr Acronym Name of Method

101 PG Diagram PG Diagram

102 PRCAP Paks Root Cause Analysis Procedure

103 PRISMA Prevention and Recovery Information System for Monitoring and Analysis

104 PROSPER Peer Review of the Effectiveness of the Operational Safety Performance Experience Review

105 PSA Probabilistic Safety Assessment

106 PSF Performance Shaping Factor

107 PSO Particle Swarm Optimisation

108 RCA Root Cause Analysis

109 SAR Safety Analysis Report

110 SAFER SAFER 2007

111 SCAT Systematic Cause Analysis Technique 

112 SFA Safety Function Analysis

113 SHELL Software, Hardware, Environment, Liveware model 

114 SHIPP SHIPP

115 SIRE Systematische Incident Reconstructie en Evaluatie

116 SOAT Systemic Cause Analysis Technique

117 SOL Sicherheit durch Organisationales Lemen / Safety through Organizational Learning

118 SRM System-Theoretic Accident Model Processes

119 SRM Systematic Reanalysis Method

120 STAMP System-Theoretic Accident Model Processes

121 STEP/MES Sequentially Timed Events Plotting 

122 Stewart's model

123 Storybuilder/ ORCA

124 STPA Systems Theoretic Process Analysis 

125 Surry´s Model

126 SCM Swiss cheese model / Reason's Swiss Cheese model 

127 TapRoot TapRoot

128 Task Analysis

129 TeCSMART framework

130 TEM Threat and Error Management

131 TOP-SET Technology, organization, people, similar events, environment, time

132 TRACEr Technique for Retrospective Analysis of Cognitive Errors

133 Tripod TRACK Tripod beta model / Tripod Analysis Categorisation Kit

134 Variation Tree

135 VSM Viable Systems Model

136 WAIT Work Accidents Investigation Technique

137 WBA Why-Because Analysis


