
Ahmad Taherkhani

Static Program Analysis for
Recognizing Sorting Algorithms

May 26th, 2008

r
TERMI i .PVFN KORKFAROtrLU
T’i. I Ul t.K .iK A.N IA1XJN MXJ/vSTQ
KONhMIf H.-NIUi :

k«2tX> ESiAX,

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Information and Natural Sciences

Department of Computer Science and Engineering

HELSINKI UNIVERSITY
OF TECHNOLOGY
Faculty of Information and Natural Sciences

ABSTRACT OF THE
MASTER’S THESIS

Author: Ahmad Taherkhani

Title of the thesis: Static Program Analysis for Recognizing Sorting Algorithms
Date: May 26th, 2008 Number of pages: vii + 91
Department: Department of Computer Science and Engineering
Professorship: Software Technology Professorship code: T-106
Supervisor:
Instructor:

Professor Lauri Malmi
Docent Ari Korhonen

Automatic computer program analysis and code recognition is an interesting subject in com­
puter science. The reason for this can be found mainly from software industry, and particularly
from a certain phase of software life-cycle: maintenance.

By automatic computer program comprehension and code recognition we mean a system that
could tell us what does the input program appears to be trying to do, what algorithms does it
resemble and how closely, or what kind of structure and style does the program have.

If properly and comprehensively developed, such a system could help software developers gain
a quick understanding of the software they are maintaining, and thus save them from reading
the source code, which is a time-consuming task. A system of this kind could be well used in
other phases of software projects like verification and validation tasks as well.

Another use of such a system is automatic assessment of exercises in computer science courses.
There are a number of large size computer science-related courses at universities, which require
many exercises to be submitted by students. The system could take in an exercise on particular
subject, and tell the instructor, whether the exercise does what it is expected to do, and if not,
how close is it to the desired functionality.

Previous works on automatic program analysis and code recognition are surveyed and dif­
ferent approaches to the problem are explained and evaluated. As a new technique, a static
program analysis and code recognition based on the numerical and descriptive characteristics
of algorithms is presented. Roles of variables used in algorithms plays an important role in
the method. This work is limited to include only different well-known sorting algorithms, and
further developing the system to cover other algorithms is left to the future research. Finally,
other limitations of the work and some suggestions for future research are described.

Keywords: Program analysis, static program analysis, program recognition, sorting algorithms

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Informaatio- ja luonnontieteiden tiedekunta
Author:

Title of the thesis:

Ahmad Taherkhani

Ohjelman staattinen analyysi lajittelualgoritmien tunnistamiseksi
Päivämäärä: 26.5.2008 Sivumäärä: vii + 91
Laitos: Tietotekniikan laitos
Professuuri: Ohjelmistotekniikka Koodi: T-106
Työn valvoja: Professori Lauri Malmi
Työn ohjaaja: TkT Ari Korhonen

Automaattinen ohjelman analyysi ja ohjelmakoodin tunnistus on kiinnostava ongelma
tietotekniikka-alalla. Syy tähän löytyy ohjelmistoteollisuudesta, ja varsinkin ohjelmiston
elinkaaren yhdestä vaiheesta: ylläpidosta. Automaattisella ohjelman ymmärtämisellä ja ohjel­
makoodin tunnistuksella tarkoitetaan järjestelmää, joka voisi kertoa käyttäjälle, mitä syötteenä
saatu ohjelma näyttäisi tekevän, mitä algoritmia se muistuttaa ja kuinka paljon, tai millainen
rakenne ja tyyli ohjelmalla on.

Tällainen järjestelmä voi - hyvin ja laajasti kehitettynä - auttaa ohjelmistokehittäjiä ym­
märtämään ylläpidettävän järjestelmän toimintaa, ja säästämään heitä lukemasta
ohjelmakoodia, joka on aikaa vievää toimintaa. Tällaisella järjestelmällä olisi käyttöä myös
muissa ohjelmiston elinkaaren vaiheissa: järjestelmä voisi helpottaa ohjelmistokehittäjien työtä
ohjelmiston verifiointi- ja validointitehtävissä huomattavasti.

Kyseisestä järjestelmästä olisi apua myös yliopistoissa ja korkeakouluissa tarjolla olevien tie­
totekniikan kurssien yhteydessä suoritettavien tehtävien automaattisessa tarkastuksessa. Tie­
tyt tietotekniikan kurssit ovat yleensä laajoja, ja niiden suorittaminen vaatii opiskelijoilta mo­
nen tehtävän suorittamista. Järjestelmä voisi ottaa vastaan opiskelijan lähettämän tiettyyn ai­
heeseen liittyvän tehtävän, ja kertoa sitten opettajalle, onko tehtävä ratkaistu oikein, ja jos ei,
niin kuinka lähellä oikeaa ratkaisua se on.

Tässä diplomityössä tutkitaan aikaisempia automaattiseen ohjelman analyysiin ja ohjel­
makoodin tunnistukseen liittyviä töitä ja esitetään erilaisia lähestymistapoja ongelmaan. Uute­
na lähestymistapana esitetään mm. ohjelmakoodissa käytettyjen muuttujien lukumäärään ja
rooliin pohjautuva staattinen ohjelman analyysi ja koodin tunnistus. Tämä työ rajataan koske­
maan ainoastaan tunnettuja lajittelualgoritmeja, ja järjestelmän jatkokehitys ja sen toiminnan
laajentaminen muiden algoritmien käsittelemiseksi jätetään tulevalle tutkimukselle. Lopuksi
kerrotaan työn muista rajauksista ja esitetään muutama ehdotus tulevalle tutkimukselle.

Avainsanat: Ohjelman analyysi, staattinen ohjelman analyysi, ohjelman tunnistus, lajittelual­
goritmit

iii

Acknowledgements

This work was carried out at the Laboratory of Software Technology, Department of Com­
puter Science and Engineering at Helsinki University of Technology.

I would like to thank my supervisor, Professor Lauri Malmi, for giving me the opportunity
to do this work and for his great advices and highly respected guidance. I am sincerely
thankful to him.
I also want to thank my instructor, D.Sc. Ari Korhonen, for his fresh and valuable ideas and
suggestions, which were always of great help to find the way forward.

I am also grateful to Mikko-Jussi Laakso for his contribution to this work and for the help
he provided on the VILLE system along with Teemu Rajala. I appreciate their assistance.

I would like, however, express my greatest gratitude to my family for standing by me dur­
ing this work. My wife’s passionate attitude toward science has always been the greatest
support and encouragement. I dedicate this work to them.

Otaniemi, May 26th, 2008

Ahmad Taherkhani

Contents

1 Introduction 1

1.1 Complexity Concerns... 3

1.2 Thesis Outline.. 4

2 Objectives and Motivations 5

2.1 Background... 5

2.2 Requirements.. 3

2.3 Scope... 6

3 Related Work 8
3.1 T^pes of Program Analysis.. 8

3.2 Static Program Analysis ... 9

3.3 Knowledge-based Program Understanding... 10

3.3.1 PAT (Program Analysis Tool) .. 12

3.3.2 Flow Graph Parsing ... 13

3.3.3 PROUST.. 13

3.3.4 Concept Recognition System... 14

3.4 Using Fuzzy Reasoning in Knowledge-based Program Understanding ... 14

3.5 Techniques Used in Program Similarity Evaluation Systems 16

3.5.1 Methods Based on Attribute-counting... 17

3.5.2 Structure-based Methods... 26

3.6 Reverse Engineering .. 29

3.7 Other Techniques.. 34

3.7.1 Technique Used in Clone Detection Methods.................................... 34

3.7.2 Program Understanding Based on Constraints Satisfaction.............. 35

v

3.7.3 Task Oriented Program Understanding... 36

3.7.4 Data-centered Program Understanding... 36

3.8 Dynamic Program Analysis.. 37

3.8.1 Automatic Assessment Systems.. 37

3.9 Analysis and Conclusion... 39

3.9.1 Knowledge-based Approaches... 40

3.9.2 Using Fuzzy Reasoning in Program Understanding......................... 41

3.9.3 Program Similarity Evaluation Approaches...................................... 42

3.9.4 Reverse Engineering... 43

3.9.5 Other Approaches .. 44

3.9.6 Dynamic Program Analysis ... 44

3.10 Summary.. 44

4 Analysis 46

4.1 Roles of Variables.. 46

4.2 Characteristics of Sorting Algorithms ... 48

4.3 Other Characteristics.. 52

4.4 The Method... 52

5 Design and Implementation 54

5.1 The Architecture .. 54

5.1.1 VILLE... 54

5.1.2 Limitations of VILLE .. 57

5.1.3 The Analyzer.. 59

5.2 Implementation... 61

5.2.1 The Classes... 61

5.2.2 The Database Structure.. 63

5.2.3 The Dataflow.. 66

6 Results 68

6.1 The Process... 68

6.1.1 The Numerical Characteristics... 69

6.1.2 The Descriptive Characteristics .. 72

6.2 The Decision Tree.. 74

VI

7 Conclusion and Future Work 79

7.1 Discussion.. 79

7.1.1 Reliability.. 79

7.1.2 Evaluation ... 81

7.1.3 Applications .. 83

7.2 What Is Next?.. 84

7.2.1 Further Research... 84

vii

Chapter 1

Introduction

Automatic computer program comprehension and code recognition has been an interesting
subject for researchers and experts for a few decades. Many different approaches with more
or less success have been presented as a result of these years-long researches. But what the
program understanding problem really means and what aspects does it involve?

We can classify the problem of understanding a program roughly into the following three
main categories.
Understanding functionality: Perhaps the most obvious and straightforward meaning of
program understanding problem is, as the name suggests, simply understanding the mean­
ing of a program, i.e., what the program does. This is, in fact, at the same time the most
challenging and complex definition of the problem. In this sense, understanding a sorting
algorithm, for example, simply means that we can say the program executes the sorting
functionality, and its output would be a set of ordered digits.
Classifying algorithms: In this sense, understanding a program imply being able to classify
algorithms. Therefore, the process of understanding an algorithm involves finding out what
family of algorithms the understandable algorithm belongs to, or what kind of algorithm
does it resemble.
Analysing structure and style: Program understanding could mean to examine the structure
of the code to see, for example, how control structures are used. The coding style could
also be investigated in this process. The objective of these analyses could be, for example,
to monitor students’ progress or get a rough idea about efficiency.

The primary reason for extensive research on program understanding problem is that a good
program understanding tool could be beneficial for maintainers and developers working on
software projects and teaching staff offering courses at universities, in many different ways,
some of which are as follows.

Software verification and validation: Automatic program comprehension could be used
in the software verification and validation process along with or ideally replacing other
techniques like code review, inspection and walkthrough. Reading source code is a time-
consuming and error-prone activity. An automatic code recognition system could be of great

1

CHAPTER 1. INTRODUCTION 2

help in a situation where an inspector is expected to review thousands of lines of source
code in some short period. Moreover, an automatic code recognition system along with text
recognition techniques, such as LSI (Latent Semantic Indexing) [46], could be a helpful
and powerful tool to validate software systems and insure that they meet the specifications
throughout the whole project life-cycle. Source code could be verified against all kind of
available documents from requirements specifications to UML diagrams. Such a system
could be very helpful also in software testing activities.

Software maintenance: Software maintenance is, as well-known, the most expensive phase
in software life-cycle. This is particularly true if there is no adequate documentation about
the system to be maintained, and source code is not commented properly. In many cases,
maintainers are not the same people who have developed the system, which makes the
situation even worse, because they do not know what it is all about. Legacy codes and
different programming languages and programming paradigms increase the difficulty of
the maintenance phase. To be able to maintain a system, maintainers have to understand
the system first. When there is no proper documentation for a system, the only way to
understand it is to read the source code, which is a slow process. As a result, understanding
programs is the most time-consuming task in software maintenance [25]. Automatic code
recognition can help the maintainers in their work and reduce the cost of maintenance phase
significantly. Software maintenance has actually been pointed out in many researches as a
primary motivation and as an activity, which is supposed to benefit most from automatic
program comprehension tools [17,25, 27,39,42,64], In addition to helping the maintainers
to understand the code by telling them what the code does, automatic code recognition could
provide the maintainers with information about what is wrong with the code in question and
suggest some improvements [25, 33].
Automatic assessment: Computer science-related courses at universities are sometimes very
large [45], and passing them successfully often requires submiting a noticeable number of
homeworks and exercises. Evaluating all submitted exercises manually is a difficult and
error-prone task and takes a lot of time. Automatic code recognition could carry out the
assessment of exercises automatically, and thus help the teaching staff very much. For
example, the course Data Structure and Algorithms lectured at Helsinki University of Tech­
nology is a course with hundreds of attendees. Students are required to submit a number
of exercises on different subjects, for instance on sorting algorithms. Automatic code rec­
ognizer could take a submitted sorting algorithm in and give information to the instructor
as an output about whether the input program does what it is meant to do and to what ex­
tent. If the automatic code recognition system fully confirms the exercise doing what it is
expected to do, a complete score can be given to the student who submitted the exercise.
If the system does not fully confirm the exercise as being doing what is expected, it could
tell the instructor how the exercise differs from the right or standard answer. The exercise
could be scored based on these differences. Automatic code recognition could also be used
by novice students in their learning process, for example, by giving them information about
whether their program works correctly or not. This kind of automatic code recognition sys­
tem could use a knowledge base that consists of all algorithms it can recognize. As a result,
the system can recognize different implementation of a particular algorithm if that type of
algorithm is included in the knowledge base of the system. If the system does not recog­

CHAPTER 1. INTRODUCTION 3

nize an algorithm, either its knowledge base does not include the information about that
algorithm or the algorithm is implemented somehow differently than what the system has
knowledge about. In these situations, the instructor can carry out the recognition manually,
and extend the knowledge base of the system to cover that algorithm, if necessary.

In addition to the few abovementioned examples, program understanding could be used in
many other fields. Therefore, there is no question about the usefulness of such tools and
their applicability in solving various problems. The question, instead, is how effective these
tools can be and to what extent they can fit real life requirements? What about efficiency
and accuracy concerns? Is it theoretically possible to solve the problem of automatically
understanding a program?
These questions are discussed later on in this thesis. To distinguish between the process
of understanding a program by computer and by human in this thesis, we use the term
understanding for computer and the term comprehension for human.

Next, a brief argue about the complexity of the problem of understanding a program is
presented.

1.1 Complexity Concerns

There are many problems in computer science known as undecidable problems, meaning
that there is no provenly working algorithm that can solve them in finite time. The problem
of deciding the equivalency of syntactical definitions of programming languages, which is
also known as the equivalency problem of context-free grammars, is one of these problems.
This problem is, as described in [26], proven undecidable by Bar-Hillel et al. [5], The
undecidability of this problem means that there exists no algorithm which is able to tell in
a finite amount of time, whether two given syntactic rules describe the same language.

The problem of understanding a program can be considered equal to the problem of syn­
tactical equivalence of languages in the sense that in syntactical equivalency the problem
is to decide whether two given input set of syntax rules are equivalent, i.e., whether they
define the same language. The problem of understanding a program, on the other hand, can
be regarded to be a problem of deciding whether two given programs are equivalent, i.e.,
whether they do the same thing or solve the same problem. In order to be able to decide
whether two given programs solve the same problem, one must first understand what those
programs do. In other words, being able to say whether two given programs do the same
thing can be considered equal to being able to say what those two programs do. There­
fore, program understanding problem and syntactical equivalence problem seem to fall into
the same category, resulting in program understanding problem being considered as unde­
cidable problem, since syntactical equivalence problem is, as well known, an undecidable
problem.
Program understanding problem can also be regarded undecidable considering the halting
problem, which is proven undecidable by Turing [67], as likewise described in [26]: there
is no proof whether a program R will ever terminate in a finite time when running on some

CHAPTER 1. INTRODUCTION 4

input X. Even though some instances of the undecidable problems might be solvable, they
can not be generally considered as decidable in nature, since it has not been proven.

As a matter of fact, as Steven Woods and Qiang Yang notice, the previous researches on
program understanding problem rarely present a formal complexity analysis of the prob­
lem [70], Steven Woods and Qiang Yang prove the problem to be NP-hard, but their
proof, however, concerns knowledge-based program understanding approaches rather than
the problem itself. In knowledge-based program understanding approach, which is, as we
will describe later, a specific technique suggested as a solution to the problem, the program
understanding problem is converted into the problem of mapping the plans from the plan
library to the source code. Therefore, Steven Woods and Qiang Yang prove the knowledge-
based program understanding approaches to be intractable, and not the problem of program
understanding itself.

Having pointed out the complexity issue about the problem of understanding a program, one
can conclude that to solve the problem, it needs to be converted into a decidable problem,
which can be solved in an efficient manner. As an example, in the same way as is done in
knowledge-based program understanding approach or other techniques that we will discuss
later in Chapter 3. In this work, we consider the problem of understanding a program from
algorithm classification point of view, which can obviously be regarded as an easier problem
than, e.g., understanding functionality of a program.

1.2 Thesis Outline

In this thesis, we develop a static program analysis and code recognition system for recog­
nizing different sorting algorithms. Our approach is different from the previous work [10,
25, 30, 43, 51] in that we analyze the code from different point of view: our approach is
based on the number of variables used in the algorithm, roles of variables [59], number of
loops and blocks and so on. We will explain this in more detail in Chapter 4.

This thesis is structured as follows: Chapter 2 explains the background and the objectives
of the work. Chapter 3 introduces the previous work about program analysis and code
recognition, and explains their approach. Chapter 4 is an overview of our approach: we
present our approach in detail and explain the characteristics of the code we have used for
program analysis and code recognition. Chapter 5 outlines the method used in designing the
system emphasizing the database structure and briefly descries the application architecture
and class diagram. Issues related to the implementation of the system are also described
in this chapter. Chapter 6 discusses the results and finally Chapter 7 concludes the whole
thesis presenting some suggestions for future work.

Chapter 2

Objectives and Motivations

2.1 Background

This work is part of the TAPAS (Text and Program Analysis) project, which is a joint project
between the Laboratory of Software Technology at the Helsinki University of Technology
(HUT) and the Department of Computer Science at the University of Joensuu. The objective
of the project is to develop novel methods and tools for free text and program text analysis
and evaluation. Such methods and tools could be used for, e.g., comparing specifications of
a system with design diagrams and program code and developing feedback and information
for instructors and students.

In this work, we concentrate on the program code analysis part. Our objective is to examine
the possibility of developing a method for automatic algorithm understanding, which can
perform an analysis on the subject program and provide the user with the information about
what type the subject program seems to be or what algorithms does it look like. Therefore,
in this work, the problem of understanding a program is considered to be the problem of
classifying algorithms.

2.2 Requirements

As presented in Chapter 1, the problem on understanding a program can be divided into
many different categories. As will be presented in Chapter 3, each research on the field
is focused mainly on one particular aspect of the problem, leaving the other ones out of
consideration. For example, knowledge-based program understanding methods attempt to
provide a solution to the problem considering the problem as belonging to the first category,
and plagiarism detection systems regard the problem as belonging to the third category. In
this work, we consider the problem of understanding a program as a problem of classifying
algorithms.

We present a static analyzer that analyzes the program code in order to carry out afore­
mentioned tasks. The concept of "Roles of Variables", devised by Sajaniemi [59], plays

5

CHAPTER 2. OBJECTIVES AND MOTIVATIONS 6

an important role in our static analysis. Other than roles of variables, our analysis is also
based on other characteristics of the program code, such as the number of variables, infor­
mation about loops and information about blocks. We will present a detailed explanation
about the characteristics of the program code we have used in our approach in Chapter 4.
In addition, we will carry out a thorough literature survey and study the related previous
researches carefully in Chapter 3 to find out about the other possible approaches or code
characteristics we could use in our work.

The Analyzer will be built on top of the VILLE platform [48]. Developed at the Department
of Information Technology at the University of Turku, VILLE is a visual tool designed to be
used by teachers and students in programming courses. VILLE helps novice programmers
in learning programming by highlighting the code line that is being executed, and showing
how each line’s execution affects the program state.

The Analyzer will be implemented in Java and will process programs written in Java lan­
guage. There are several reasons for choosing Java, some of which are as follows:

• VILLE is written in Java.

• Java is a widely used programming language in computer science courses. At least
the programming courses taught at HUT which may use the Analyzer, use Java as
the programming language. Moreover, the TRAKLA2 system [40], into which the
Analyzer is likely to be integrated, is developed in Java. TRAKLA2 is an automatic
assessment system for data structures and algorithms, which is currently used at HUT
and some other universities.

• Java is also often used in software industry. Presumably, software projects using Java
make up a large proportion of whole new software projects, and according to author’s
experiences, the proportion seems to be changing constantly in Java’s favor.

• Other Java-related issues, like portability, complexity and implementation concerns.

The Analyzer should work as a text-based interface that takes the subject program file as
an input from the command line and outputs the textual results. The output should be as
concise as possible. This conciseness, however, should not result in losing any valuable
information which may be useful to the user. An example output would be: "The program
appears to be a Quicksort algorithm".

Considering the complexity issue of the problem of understanding a program discussed
in Chapter 1, the complexity issue must be taken into account in our approach, and the
Analyzer must be efficient enough.

2.3 Scope

Program analysis and automated program understanding is obviously an extensive research
field in computer since. As a result, we must carefully define the scope of our work. As the

CHAPTER 2. OBJECTIVES AND MOTIVATIONS 7

name of this master’s thesis suggests, our work is limited to process only sorting algorithms.
In particular, we will consider the following well-known sorting algorithms, leaving all
other algorithms out of scope of this work: Quicksort, Mergesort, Insertion sort, Selection
sort and Bubble sort.

In this work, we focus on the main subject, which is to analyze the subject program with
the purpose of extracting the information we need. Therefore, we will leave out of consid­
eration other features like user interface related issues, etc.

Chapter 3

Related Work

In this chapter, we will discuss various studies, techniques and methods related to code
analysis as thoroughly as it is possible in the scope of this work. The techniques and meth­
ods investigated here could be used as an input in the future work on the subject, although
again, taking all of them into account in designing and implementing of the system in this
work is probably not possible.
The structure of this chapter is organized as follows: an overview on different types of
program analysis is presented in the next section. Each of these types is then discussed in
its own section, and is divided into subsections if necessary. As an exception to this, the
categories under Section "Static Program Analysis" are sections themselves, which are in
turn further divided into subsections. This is done to improve readability, since the "Static
Program Analysis" is a lengthy chapter. The chapter will be closed with conclusion where
each presented approach is evaluated highlighting its strengths and weaknesses, and a brief
summary where the useful approaches for our purpose are presented.

3.1 Types of Program Analysis

Program analysis could roughly be divided to two main categories based on whether the
program is executed or not:

• Static program analysis

• Dynamic program analysis

In static program analysis, a program is analyzed without being executed. Static analysis
is a structural analysis, which describes the behavior of the program in a general manner,
regardless of what the input of the program possibly is. In this sense, static program analysis
could be referred to as a kind of analysis that runs the code with "all possible inputs".
Because static program analysis could be considered the way of analyzing the program
to comprehend its behavior at run-time without being restricted by using a specific input,

8

CHAPTER 3. RELATED WORK 9

it is regarded as a fast way to analyze the program thoroughly, but its accuracy has been
criticized [29]. This claim about the accuracy concern of static analysis is based on the fact
that static analysis examines the code with several inputs at the same time. As a result,
it can offer only information about upper and lower bound within which the output of an
imaginary input could occur. That is, the output cannot be verified, since there is no specific
input. Control flow and data flow are two most commonly used techniques in static analysis.

Dynamic program analysis, on the contrary, includes code execution. To understand the
program’s behavior, we execute it by some input, and then examine its output. In order
to understand the program better, we have to execute it using many different sets of input.
This makes dynamic program analysis slower than static program analysis. According to
the same aforementioned claim, dynamic program analysis is, however, more accurate than
static program analysis, since its output is resulted from a precise, concrete and verifiable
input, rather than a set of undefined and assumed inputs from which the resulted outputs
can not be verified [29].

3.2 Static Program Analysis

In static program analysis the program is analyzed using structural analyzing methods, with­
out running the code. Static analysis on a program code can be carried out in many different
ways, focusing on different features of the code. For example, the goal of static analysis
could be investigating the program’s control flow, investigating the program’s data flow,
investigating the complexity of the program using different metrics, etc.

Most of the researches on automatic program understanding or related subjects are based
on static program analysis. Program understanding and related works can be divided into
the following categories based on the techniques and the approaches used.

• Knowledge-based approaches

• Using fuzzy reasoning in program understanding

• Program similarity evaluation approaches

• Reverse engineering approaches

• Other approaches

Knowledge-based techniques are based on a knowledge base that stores predefined plans.
To understand a program, program code is matched against the plans. If there is a match,
then we can say what the program does, since we know what the matched plans do. The
plans can have other plans as their parts in a hierarchal manner. Based on whether the
recognition of the program starts with matching the higher-level plans first or vice versa,
knowledge-based approaches can be further divided into three subcategories: top-down,
bottom-up and hybrid approaches.

CHAPTER 3. RELATED WORK 10

The researches on knowledge-based techniques approaches started in the 1980’s and con­
tinued to the late 1990’s. These approaches have not been studied recently as extensively
as they used to be in the past two decades.

Program understanding approaches using fuzzy reasoning are essentially the same as know­
ledge-based approaches, in that they both use plan library as their knowledge base. How­
ever, they can be distinguished by the fact that purely knowledge-based approaches do not
use fuzzy reasoning in the process of deciding what the program does, whereas other ap­
proaches do. These approaches were researched in the late 1990’s when researchers sought
new methods to improve knowledge-based techniques.

As the name suggests, program similarity evaluation techniques, i.e., plagiarism detection
techniques are used to answer to the question about whether two given programs are the
same and to what extent. Although these approaches do not directly offer a solution to
the program understanding problem, they cover such techniques that might be applied to
find a solution to the problem. These approaches can be further divided into two subcate­
gories: attribute-counting approaches and structure-based approaches. In attribute-counting
approaches, some distinguishing characteristics of the subject program code are used to find
the similarity between the two programs, whereas in structure-based approaches the struc­
ture of the code is examined to solve the problem.
From these two approaches, researches on attribute-counting approaches were started ear­
lier. As a matter of fact, the researches on these approaches started shortly after Halstead’s
parameters and metrics were introduced in 1970’s. The researches on structure-based ap­
proaches, on the other hand, were started later in 1980’s and, although not as extensively as
before, still continues, whereas the latest researches on attribute-counting approaches can
be found from late 1990’s.
Reverse engineering approaches are used to understand a system in order to recover its
high-level design plans, generate documentation for it, rebuild it, extend its functionality,
and so forth. Reverse engineering approaches are the youngest methods employed in the
field of program understanding. The researches on these approaches were started in 1990’s,
and still continue extensively.
There have been many other attempts to develop a technique for understanding programs.
As will be discussed later in more details, these techniques include clone detection methods,
program understanding based on constraints satisfaction, task oriented program understand­
ing and data-centered program understanding. These approaches are introduced mainly in
1990’s and 2000’s.
In the following, we describe these approaches in more details.

3.3 Knowledge-based Program Understanding

Most of the tools developed for automatic program understanding use knowledge-based
program understanding techniques. The basic idea of knowledge-based program under­
standing is that we simply compare the input source code with the code snippets from the

CHAPTER 3. RELATED WORK 11

library, which are frequently used stereotype codes or idioms. These code snippets are often
called plans, clichés, chunks, etc. Since we know what the plans do, we can easily say what
a piece of source code does, if we find a match between that piece of the source code and a
plan.

Knowledge-based program understanding is often referred to as a cognitive process of pro­
gram understanding, suggesting that the process of understanding a program is about under­
standing the goal of that program, i.e., the intention of the programmer, which is achieved
using plans, that is, the techniques used for implementing the intention [50, 57]. In this
concept, writing a new program is a process of rewriting the goal of that program into a set
of subgoals using plans as the rules for this rewriting process. Program understanding can
be regarded as a reverse process: understanding the goal through understanding the sub­
goals using plans. In this reverse process of understanding a program, single plans that are
recognized from the subject program are combined in a hierarchical manner into plans with
higher-level abstraction. The final goal of the subject program is ultimately recognized by
continuing this process. Heuristics and artificial intelligent techniques are often exploited
in the process of concluding the goal of the subject program.

Separate and simple plans can be composed in a complex way to create a program. Algo­
rithms can be considered to be formed from plans. For example, as Letov sky and Soloway
describe [57], a mergesort can be thought of to be comprised from several plans: a plan for
recursion on a binary tree, a plan for splitting a sequence into two, a plan for sorting pairs of
numbers, and a plan for merging sorted lists. Therefore, plans are not to be confused with
algorithms or procedures since they are conceptually different.

Knowledge-based program understanding has been a subject of research for nearly two
decades, and there are different approaches developed around it aiming to make it more
efficient and more accurate. It is mostly a bottom-up approach, meaning that first we try
to recognize and understand the small pieces of code, i.e., basic plans. After recognizing
the basic plans, we can continue the process of recognizing and understanding higher-level
plans by connecting the meaning of these already recognized basic plans and by reasoning
what problem the combination of basic plans tries to solve. By continuing this process,
we can finally try to conclude what the source code does as a whole. Some top-down
approaches of knowledge-based program understanding have also been presented [33]. The
idea here is that by knowing the domain of our problem, we can select the right plans from
the library that solve that particular problem and then compare the source code to these
plans. If there is a match between source code and library plans, we can answer to the
question about what the program does. Since we have to know the domain, this approach
requires the specification of the problem.

In addition to these, some approaches hybrid top-down and bottom-up techniques. An ex­
ample of these combined approaches is [51], where programming plans are first recognized
in a bottom-up manner, after which general plans are suggested by the system to be matched
against the program in a top-down manner. These general plans are proposed by using a
well-organized plan library, where each plan is identified by an index, specialization and
implication links to the other plans. By using an indexing facility, the system is able to
quickly associate a piece of the source code with a plan in the knowledge base.

CHAPTER 3. RELATED WORK 12

Rudolph Seviora [63] has divided the knowledge-based program debugging systems into
three groups: Program analysis approach, I/O-based approach and Intemal-trace-based ap­
proach. In program analysis debugging, as the name suggests, the source code is analyzed
and matched against system’s knowledge base. This approach can be further divided into
two groups: bottom-up and top-down. I/O-based debuggers, e.g., Falosy, Fault Localiza­
tion System [62], execute the program and compare the output with the model output. In
Intemal-trace-based systems, like Message Trace Analyzer [23], debugging is carried out
by tracing transactions internal to the program.

In the following, we explain a few studies on knowledge-based program understanding.

3.3.1 PAT (Program Analysis Tool)

PAT (Program Analysis Tool) [25] is a system designed for assistance software maintainers.
It is a bottom-up approach for understanding programs functionality; the PAT builds events
from the program and matches these events to its plan library. If it finds a match based on
data and control flow, it can say what the subject program does. The PAT can answer to
following three questions: What does the program do, how does the program do it and is
the program buggy.

The main modules of the PAT are as follows:

Program Parser: Parses the given programs to the events and stores them in the Event Base.

Plan Parser: Parses the plans and stores them in the Plan Base.

Understander: Builds new high-level events based on the low-level events. These new high-
level events are derived using deductive-inference-rules based on program’s plan library
found in the Plan Base.
JTMS (Justification-based Truth-maintenance System): Records the new events found by
Understander and thus provides the PAT with ability to maintain the logical connection
between events. It also records the information about how the new events are derived. This
information can be used by Explanation Generator to answer the question about how the
program does what it does.
Explanation Generator: Explains in detail how a high-level event has been derived from
the low-level ones. To do so, it uses the information recorded by JTMS.

Paraphraser: Using the value of text field of each plan and the output of Explanation Gen­
erator on how a high-level event is derived from the low-level events, Paraphraser generates
program documentation in natural-language. It does so by exploring the JTMS from the
top.
Debugger: Finds and expresses program bugs by comparing the given program’s events to
the events of the plan from the system’s library that has been recognized by the system as a
match.
In PAT, the knowledge is represented using an object-oriented approach. The program has
been thought of as comprising from events. Each event is an instance of an event class.

CHAPTER 3. RELATED WORK 13

Each event has an attribute denoting the class it belongs to. Most common attributes are
defined in a top-level class, from where each event can inherit them. Each event has also an
interval, which can be either control interval (expresses the place of the event in the control
path) or lexical interval (expresses the place of the event in the program).

Each plan has 4 parts: path (event-path-expression), test (binding-constraints), text (docu­
mentation information) and miss (near-miss-expression). An event is recognized as a match
to a plan if the event’s interval meets the requirements of the path expression of the plan
and satisfies its test part. The text part of the plan contains the explanation of what it does,
and the miss part stores the information related to debugging.

Recognition of events in the PAT is heuristic-based in a way that the PAT recognizes an
event as a mach even though it does not go exactly like sequences in plan line by line, as
long as it meets control and lexical requirements of the path. In other words, PAT examines
the equivalency of the parts that look important, and ignores the rest.

3.3.2 Flow Graph Parsing

A different approach for program recognition is presented by Wills [17, 43]. In this ap­
proach, program is first analyzed. Analysing the program includes macro expansion, control
flow and data flow analysis. Macro expansion phase consists of transforming the program
into a more primitive form, which is argued to make the process of matching the program
and library plans easier. The output of analysis phase is the plan representation of the pro­
gram. In the second phase, a flow graph, which is a direct acyclic graph (DAG), is generated
from the program plans. After this, the flow graph is parsed with the grammar derived from
library plans. Derivation of the source code can help us understand the program, as we
know how it maps to the library of clichés [71]. The order of the statements and function
calls in the source code has no effect on recognition, since the method uses control flow and
data flow analysis.

3.3.3 PROUST

Developed by Johnson and Soloway, PROUST [33] is a knowledge-based system for de­
bugging and understanding Pascal programs written by novice programmers. PROUST
uses top-down approach, where the idea is based on the methods used by experienced pro­
grammers when they try to understand a given code with knowing the goal of the code:
from his experience, a programmer has some plans in his mind about how that goal can be
achieved. He breaks down the code into smaller pieces, i.e., plans and examines whether
those plans conform to the ones he expected. If the plans used in source code are different
from those the programmer expected, then there could be either a bug in the code, or a new
plan that the programmer was not aware of could be used in the code. In the latter case, the
programmer could learn from the new plan and add it into his knowledge base.

Johnson and Soloway argue that reconstructing the program written by novice programmers
is the best approach to understand the program and find its bugs, and they call this approach

CHAPTER 3. RELATED WORK 14

reconstructive program analysis. In PROUST paradigm, a program consists of goals, and
to achieve goals, program uses plans. To understand the program, PROUST selects a goal
from the program specification and then tries to match the plans implementing that partic­
ular goal that are stored in its knowledge base against the code. If the goal itself contains
other goals, the process is carried out recursively. After processing one goal, the next goal
is selected and this successive decomposition of goals is continued until all goals are pro­
cessed. The fact that PROUST needs the input program specification to select a goal from,
is one of its most important limitations [17]. Plans are designed and added to PROUST in
a manner that they can cover as much programs intention as possible. For example, plans
that novice and expert programmers use might be quite different. It must be taken into
consideration, however, that the more plans there are in the system the more difficult it is
to determine what plan the program has been aiming at to use. The order in which plans
occur is also important, since using the same plans in different order could result in different
outcome. In PROUST, a set of heuristics are used to decide between different possibilities
about what kind of bug may be in question, to evaluate matches, near-misses, misses, and
so on. At the moment this article was written, the knowledge base of PROUST was limited
to one novice program and it was to be extended to cover introductory programming tasks.

3.3.4 Concept Recognition System

Kozaczynski et al. [39] have developed a concept recognition system that is able to find the
concepts in a program and recognize these concepts from the lower-level concepts. It uses
a library of concept recognition rules as its knowledge base. Kozaczynski et al. argue that
their system is designed by taking into consideration the practical constraints that are typical
in automatic program understanding systems: usability, scalability and generality. Usability
means that it should be easy for a user to modify the knowledge base of the system and add
new concepts to it. By scalability they mean the ability of the system to handle real-world
programs rather than only "toy programs". Generality refers to the ability to understand a
wide range of different programs written in different languages.

3.4 Using Fuzzy Reasoning in Knowledge-based Program Un­
derstanding

BUG-DOCTOR [10, 11, 12] is a knowledge-based system for program comprehension and
fault localization. Instead of performing exhausting and costly task of comparing the code
to all plans, that is the approach commonly used in knowledge-based program comprehen­
sion, it first recognizes a group of statements as a partition of the code that can be mapped
to a higher level concept, and represents them as code chunks. Code chunks, or simply
chunks, are pieces of code that can be understood apart from other parts of code, and do
something meaningful independently. Chunk is sometime referred to as a cliché, a plan, a
schema, a slice or a prime [11]. An example of chunk is "swap values". Chunks, gener­
ated by BUG-DOCTOR, are abstraction sets of the program code, that help programmers in

CHAPTER 3. RELATED WORK 15

laborious task of understanding the program and supporting them to construct a comprehen­
sive and accurate mental model of it. The idea and the way of automated chunk generating
is consistent with the way that, according to empirical models, programmers gain under­
standing of program code: programmers start the process of understanding the unfamiliar
code by reading the individual statements and grouping them into a larger coherent com­
ponents, called chunks, that help understanding the whole picture. By producing chunks
in the same way, automated chunks generator could help programmers to build the men­
tal model of the program code. At the beginning, potential chunks are identified from the
source code. In larger programs, there might be a huge number of potential chunks identi­
fied. Thus, there is a need to somehow reduce this number by selecting the most promising
chunks from potential chunks. In BUG-DOCTOR, this is done by using some heuristics,
resulting in a smaller group of chunks, called candidate chunks [11]. Once the candidate
chunks are known, the system retrieves from the plan library only those plans that look
similar to these chunks. It ranks these plans according to their similarity to the code and
selects the highest-ranked plans to be more closely investigated and compared. This more
detailed investigation and comparison includes computationally more expensive operations,
and by not having to compare all plans to the code using these operations, a considerable
amount of time can be saved. Fuzzy reasoning is used for finding the most similar plans
and ranking them. In order to apply fuzzy reasoning, first we have to find those kinds of
code characteristics that could distinguish the codes to be compared, and thus help us to
effectively find the similarities between the plans and chunk.

In the BUG-DOCTOR, code characteristics studied by Berghel and Sallach [8] are used as
similarity measurements. These code characteristics are shown in Table 3.1. After selecting
suitable code characteristics as similarity attributes, the next step is to quantify them. There
are various approaches on quantification of the selected factors. The best and most suitable
approach should be selected based on common sense and with consideration of context and
the type of the problem. The next step is to convert the quantified factors to the linguistic
fuzzy set, using for example LOW, MEDIUM and HIGH indicating low, medium and high
percent of differences between the plans and the code chunk respectively. Moreover, each
member of this fuzzy set can be represented by a member of closed interval [0.0, 1.0]. When
the value of each factor is calculated, a set of rules are generated. These rules are then used
in reasoning: a single variable is derived from different values of various factors. This single
variable which can be named as, e.g., SIMILARITY, indicates the closeness of particular
plan to the code chunk. A rule, for example, can be as follows: if the value of number of
variable is LOW and the value of unique operands is MEDIUM, then the SIMILARITY is
MEDIUM. The last step in the process of reasoning includes combining the results of the
rules to one single digit that represents the final result: the similarity of the plan and code
chunk. Again, there are various methods for generating the rules and combining the results
to the single final digit, and the most suitable should be selected depending on the problem.

CHAPTER 3. RELATED WORK 16

Table 3.1: Code Characteristics Used by Berghel and Sallach
Code characteristics Effectiveness[0-1]
Total operators 0.99
Assignment statements 0.98
Total operands 0.95
Real variables 0.91
Initializations 0.90
Total variables 0.87
Unique operands 0.85
Total lines 0.78
Unique operators 0.75
Keywords 0.52
Others with lower effectiveness -

3.5 Techniques Used in Program Similarity Evaluation Systems

Detecting program similarity has been a subject of interest for a long time. The main prob­
lem in program similarity researches is to detect plagiarism. The goal is to develop methods
that can help the user with the problem of figuring out in an effective and accurate manner,
whether two programs are similar and how closely. These tools are mainly used at universi­
ties to reveal plagiarism between students’ submissions and prevent students from copying
other’s works. Therefore, these approaches do not attempt to solve the problem of under­
standing a program directly. Despite this, we will discuss program similarity approaches
here for the following reasons.
Program similarity approaches include various interesting methods. These methods per­
form such different interesting static analyses on the subject program that can be applied
in program understanding, too. These analyses include structural analysis, control flow
analysis and data flow analysis, to name a few. In addition, program similarity researches
examine the code from such point of view that can be useful in program understanding, as
well. For example, as will be discussed in the following in more details, attribute-counting
approaches that can be considered as a subcategory of program similarity researches, in­
vestigate the code with regard to metrics like operands, operations, assignment statements,
and so on. Especially in our approach, these metrics could perhaps be used in process of
recognition an algorithm. Thus, we find it well justified to discuss these approaches in more
details in this thesis.
Methods used in plagiarism detection researches vary from those which try to solve the
problem by counting the program attributes without considering the structure of the pro­
gram, e.g., [22], to those looking to the problem from structural analysis point of view
only, e.g., [69]. Some methods make use of both these two approaches. An example of
these methods is [18]. It is also possible to classify plagiarism detection systems based
on whether they are designed to examine natural languages, or program code. Detecting

CHAPTER 3. RELATED WORK 17

Table 3.2: The Halstead’s parameters
Symbol Explanation
n\ Number of unique operators
n2 Number of unique operands
M Total number of operators
n2 Total number of operands

plagiarism in natural language is generally considered to be more difficult, for example,
because of ambiguity and complexity of natural language [16]. Some tools, though, are
capable of carrying out both program code and natural languages plagiarism detection [47].

In the following, we present a survey on some researches on this field. We divide the re­
searches into two main categories, namely, attribute-counting methods and structure-based
methods. Those researches that use both methods are described in attribute-counting cat­
egory. It should be noted that since we are interested only in those aspects of plagiarism
detection techniques that could contribute in program understanding, we leave irrelevant
issues, like motivation and moral, out of our discussion. Also, those technically important
issues in plagiarism detection systems that are not relevant in program understanding, e.g.,
number of comment lines, number of indented lines and number of blank lines, are not
considered here. Moreover, the focus of this survey is, naturally, the systems processing
program code rather than natural languages.

3.5.1 Methods Based on Attribute-counting

Earlier studies focus mainly on attribute-counting methods, while later studies emphasize
the structural analysis. In attribute-counting methods some characteristics of program are
selected as being important factors in distinguishing programs. The most important charac­
teristics that have been used in researches, as we will explain in the following, are four Hal­
stead’s numbers. These characteristics are then counted from program code, and the result
is compared with the corresponding result obtained from another program code following
the same procedure. Finally, a number indicating the similarity between two programs is
derived from the results by applying some formula, which varies in different researches.

One of the earliest approaches based on this method is Ottenstein [49] approach that uses
the code characteristics mentioned in the Table 3.2 for detecting plagiarism. As Ottenstein
claims, these characteristics give us a good indicator to investigate how similar or different
two programs are.

In the following, we preset other researches that use these code characteristics to examine
program similarity.

CHAPTER 3. RELATED WORK 18

Donaldson et al.’s Approach

Donaldson et al. [18] criticize the Ottenstein method for being too broad, that is, the proba­
bility of two programs being tagged as similar using his method is high, even though Otten­
stein himself argues that there is a slight probability for this to happen. This is especially
the case in introductory level classes, where the students’ submissions are comparatively
simple. Donaldson et al. make use of structural analysis to determine the similarity be­
tween two programs. Using this approach, two programs can be considered as being the
same, even though a student may have tried to make them look different using some sim­
ple methods. Using these simple methods often results in the following simple differences
between the programs:

• Different name of variables

• Different order between statements when the order of statements does not change the
functionality of the program

• Different position and form of format statements

• Different appearance in single statements such as variable declaration and output
statements resulted from breaking it up

The system developed by Donaldson et al. is described in the following. Note that the
following analysis relates to FORTRAN language.

The system takes students’ submissions as an input file, analyzes each of them and gener­
ates a table containing information about the structure and content of each program. After
processing all submissions, the system then compares the content of the table generated
from each submission to all other submissions. If two submitted program differ from each
other only in one or more of the four ways mentioned above, they are tagged as similar and
suggested to the instructor. The system collects data from all submitted programs. Each
type of statement is given a counter. The value of the counter is incremented by one each
time the corresponding statement occurs in the program. The following are collected:

1. Total number of variables

2. Total number of subprograms

3. Total number of input statements

4. Total number of conditional statements

5. Total number of loop statements

6. Total number of assignment statements

7. Total number of calls to subprograms

CHAPTER 3. RELATED WORK 19

8. Total number of statements of type 2-7

From the different types of statements listed above, some are regarded to be more significant
in describing the structure of the program than others. These statements are processed, and
others are simply ignored. As the system continues to scan the input program, the order
of the statements is stored using the following coding method: A single letter is chosen to
refer to each statement. As a statement is read, the corresponding letter is added to the code
in such a way that the left-to-right order of the code corresponds to the top-to-bottom order
of the statement in the program. An example of such code is ’VVSD===HF, where the
code characters are assigned to statements as follows:

V Declaration statement

S Subroutine or function definition

D DO loop

I IF (conditional expression) THEN DO

H WHILE (conditional expression) DO

= Assignment statement

After an entire program is scanned, the generated code is added to an array, where the
corresponding code indicating the order of the statements in other programs will be added
too.
After data collection phase, the collected data is analyzed. Data analysis phase consists
of two phases itself: in the first phase the degree of difference or similarity between the
counters of any two statements are calculated. The result of this analysis is a digit indicating
the similarity between each pair of statements. In the second phase, the statement order of
each two pair of statements is compared.

The first phase contains the following methods:

• Calculating the sum of differences: The value of the counter of each pair statements
is subtracted and the absolute values of these subtraction results are summed. The
result indicates how different two programs are.

• Calculating the count of similarity: This method includes the calculation of the sim­
ilarity factor between two programs. Similarity factor indicating the similarity be­
tween two programs is established having zero as its value at the beginning. The
value of the similarity factor is incremented by one or remains unchanged depend­
ing of whether the corresponding counters between two programs are equal or not,
respectively.

CHAPTER 3. RELATED WORK 20

• Calculating the weighted count of similarity: This method is similar to the previous
one, except instead of incrementing the value of the similarity factor by one when
the corresponding counters are equal, the value of the similarity factor is increased
by a particular amount set by instructor. This makes the system interactive and al­
lows the instructor to emphasize the importance of some particular statement type or
vice versa. For example, if the program in question is very simple, students’ submis­
sions are unlikely to contain any subprograms. This would result in incrementing the
value of similarity factor by one, since the corresponding counters would be equals
in all programs. The instructor could eliminate the effect of this statement type by
assigning a value of zero to it.

The second phase, i.e., the comparison between the orders of the statements goes as follows:
First, the similar code characters are compressed so that there remains no identical charac­
ters in the result. For example, the code characters ’VVSD===HF become ’VSD=HI’.
Since one common way for students to make a copy program look different from the orig­
inal one seems to be breaking up single statements into multiple statements, this algorithm
reduces a succession of the same statement type to one, making this trick inefficient to af­
fect the results. After this, the process of comparing the code character begins. The process
of comparison stops, when the first difference between code characters occurs, resulting in
a mismatch. If the comparison ends without any difference occurring, a message is printed
indicating that a match is found.

Donaldson et al. conclude that especially in elementary programming course, the programs
might look alike according to the numbers generated by the algorithms. Therefore, the
results should be further evaluated by instructor and be considered as relative to the entire
class.
Donaldson et al. method looks simple and still efficient. Some points in their method seem
to be suitable to be applied in program analysis as well. However, it should be noted that
the second phase of their method, i.e., the reduction algorithms, could not directly be used
in program analysis purposes. This is because deletion of successive loops and conditional
statements in order to reduce the amount of them to one will lead into inaccurate results in
program analysis.

Berghel and Sallach’s Approach

Berghel and Sallach [8] have investigated the code characteristics and their effectiveness
in their research related to finding plagiarism, and have come up with the factors and their
effectiveness mentioned in Table 3.1.

Some of the code characteristics mentioned in Table 3.1 belong to the Halstead parame­
ters [22], which are shown in Table 3.2.
After the Halstead’s code characteristics shown in Table 3.2 are counted from the source
code, Halstead measures can be derived from them. Some most common Halstead mea­
sures, their symbol and the formula for each one describing how it is derived from Hal­
stead’s code characteristics are shown in Table 3.3.

CHAPTER 3. RELATED WORK 21

Table 3.3: The Halstead’s metrics
Measure Symbol Formula
Program Length N V,+M>
Program Vocabulary Size n n\ +«2
Program Volume V AHog2rt
Program Difficulty Level D m2 m
Program Level L —i

n
Effort to Implement E D* V
Time to Implement T t

18
Number of Delivered Bugs B misoon

Berghel and Sallach, on the other hand, have compared Halstead’s measurements against a
conceptually simpler alternative one in their study on program similarity [8], They have ap­
plied these two measurements to detect plagiarism in the students’ submissions. Their goal
was to find out how efficiently and accurately these two measurements work in comparison
to each other. The alternative measurements include metrics like numbers of Assignment
Statements and Total Variables among the others. They state that Assignment Statements
is a subset of Total Operators in Halstead measurements and that Total Variables could be
treated as a counterpart to Total Operands in Halstead measurements. Berghel and Sallach
then compared the number of Assignment Statements and the Total Variables with their
counterparts in Halstead measurements in regard to specificity and broadness/narrowness.
They explain that the number of Assignment Statements is more specific, or narrow, that its
counterpart, and that Total Variables is likewise narrower than its counterpart. The reason
why the Total Variable is narrower than its counterpart is that the former does not include
constants, whereas the latter does. It is noteworthy, that Berghel and Sallach state other
similarities between the metrics from the two measurements too, one of them being the re­
lationship between Keywords in alternative measurements, and Total Operators in Halstead
measurement. The difference between these two metrics in respect to specificity and broad­
ness/narrowness can not be, however, clearly expressed, since it depends on the situation
where they are used: some times Keywords is narrower than Total Operators, and some­
times vice versa. It thus seems to be reasonable to remove one of these similar pair from
the Table 3.1, and use only one that looks best to the purpose.
Berghel and Sallach conclude that there is no reason to distinguish the isolated Halstead
measurements as having unique features and regard them as absolutely more powerful than
others. The most suitable and efficient measurements must be selected according to and
depending on how broadly or narrowly the comparison between two program is intended to
be done.

CHAPTER 3. RELATED WORK 22

Robinson and Sofia’s Approach

Robinson and Soffa take a different approach in their work [55], In addition to plagiarism
detection task, the system developed by them, called ITPAD (Instructional Tool for Program
Advising), is designed to carry out the following tasks: investigating whether a student
has used some particular structure in his program or not, following the student’s progress
by monitoring whether he makes use of particular programming facilities, evaluating the
programming assignment, e.g., by ensuring that to accomplish a particular assignment, a
student must use a particular set of procedures that are intended to be taught by doing
that assignment, and finally giving suggestions for program improvement. It uses code
optimization techniques and software metrics in order to analyze the program. ITPAD
consists of three phases: lexical analysis, structural analysis and characteristic analysis. In
the following, each phase is discussed.

Lexical analysis includes data collection in order to be able to count code characteristics.
The code characteristics used by Robinson and Soffa to perform analysis are the
following.

1. Total number of unique variables
2. Total number of variables

3. Total number of unique operator
4. Total number of operator
5. Program length
6. Vocabulary of the Program
7. Volume of the Program
8. Level of the Program
9. Intelligence content

10. Effort of the Program
11. Total number of assignment statements
12. Total number and type of control structure
13. Total number and type of data structure
14. Total number of function and subroutines, i.e., subprograms

The first ten characteristics belong to Halstead metrics. It is noteworthy that Robin­
son and Soffa have used the terms unique variables and variables instead of the
terms unique operands and operands, which are the terms used in Halstead metrics.
Whereas, as can be seen in Table 3.1, Berghel and Sallach [8] distinguish between
total variables and total operands.
Robinson and Soffa use Ottenstein’s method [49] as a control method in their ap­
proach. As mentioned earlier, Ottenstein uses the first four characteristics listed above
in their method.

CHAPTER 3. RELATED WORK 23

In order to be able to carry out the tasks discussed earlier, ITPAD makes two profiles
using code characteristics: student profile and assignment profile. By comparing
each student’s solution with the model solution provided by instructor the system can
tell the instructor whether the student has been able to use the required programming
concepts in a successful way. The system is also able to report the student’s progress
by comparing his submission with previous ones during the term. The assignment
profile consists of the report generated by ITPAD about how student have solved
an assignment, i.e., how they have used control and data structures etc. This helps
the instructor to ensure that the assignment is suitable for teaching the intended pro­
gramming concepts to the students. The assignment profile phase employs program
optimization techniques.

Structural analysis includes the following steps. The system first breaks the input pro­
gram down into basic blocks. These basic blocks are then counted and compared
to the basic blocks of the model program. Big difference between these may sug­
gest that there is something missing from the student solution. The number of basic
blocks also provides the instructor with an idea of how difficult the assignment is.
The number of basic blocks is used in plagiarism detection too: if the number is the
same in two submissions, then those submissions are probably structurally similar,
and should be investigated more in details by instructor. Other steps in structural
analysis are constructing flow graph, constructing Direct Acyclic Graph (DAG), per­
forming data flow analysis and recognizing the loops. The results of these steps are
used in the next phase to provide students with some improvement suggestions, if
necessary.

Characteristic analysis Results of analysing the submission in the previous phase are in­
vestigated in this phase, and based on the result of this investigation and the result
of comparing the student profile and the model profile, improvement suggestion are
made to the student. As an example, improvement suggestion may be as follows:
unnecessary statement found, remove it.

As described above, the main purpose of ITPAD seems to be providing improvement sug­
gestions for students, although it is capable of detect plagiarism as well. Overall, it uses
a good combined method by employing the metrics and the graph representation of the
program.

Grier’s Approach

Grier [22] has developed a system, called Accuse, for detecting plagiarism in Pascal pro­
grams. In addition to the Halstead’s 4 parameters shown in Table 3.2, Accuse measures the
following 16 parameters as Grier lists: total lines, code lines, code comment lines, multiple
statement lines, constants and types, variables declared (and used), variables declared (and
not used), procedures and functions, var parameters, value parameters, procedure variables
(includes 9 and 10), for statements, repeat statements, while statements, goto statements,
indenting function.

CHAPTER 3. RELATED WORK 24

By testing different combinations of these 20 parameters, Accuse selects seven parameters,
which are used in computing a correlation number. Various counting heuristics are also
used in computing the correlation number. The correlation number determines the similar­
ity between programs. The process of selecting the seven parameters is not discussed in
more detail. The characteristics used in heuristics are total operators (excluding assignment
operator) and code line (excluding blank lines, command lines and declarations). Parame­
ters, like parentheses, that could sometimes be added to the program without changing the
functionality, are not included in counting the operators. The seven characteristics used to
compute the correlation numbers are total operators (5, 6), total operands (5, 6), unique
operators (3, 5), unique operands (3, 5), code lines (3, 5), variables declared (and used)
(2, 3) and total control statements (1,2). The first number in the parentheses indicates the
importance of the characteristic and the second number shows that how big the differences
between that characteristic in two programs can at maximum be in order to that character­
istic be taken into account in calculating the correlation number. The correlation number is
computed by adding together the subtraction result of the importance value of each charac­
teristic and the difference between that particular characteristic in two programs when this
is to be taken into account. The correlating number grater or equal to 29 suggests possible
plagiarism, with 32 being its maximum value. Grier admits that the correlating number is
computed in an ad hoc manner, and there are probably other ways to compute it in a more
efficient manner.

Rees’s Approach

STYLE [54] is a system developed by Rees, originally meant for checking coding style in
students’ submission. A plagiarism detection system called CHEAT was afterward added
to it. STYLE uses the following parameters for detecting similarity in programs:

• Total of non-comment characters

• Percent of embedded spaces

• Number of reserved words

• Number of identifiers

• Total number of lines

• Number of procedures/functions

Rees does not explain in detail how well CHEAT has been able to detect similar programs,
but he states that in one experiment, CHEAT detected 3 out of 100 students’ submissions
as being copied, and 2 other pairs suggested by CHEAT as being similar were proven not
to be copied after manual examination.

CHAPTER 3. RELATED WORK 25

Leach’s Approach

Ronald J. Leach [41] uses three complexity metrics in plagiarism detection: Halstead’s
metrics, McCabe complexity (Cyclomatic Complexity) and Conte, S. D., Dunsmore com­
plexity.

From Halstead’s metrics he uses effort metric (see the Table 3.3), as he points out as an
example.

As Leach explains, McCabe describes program complexity as a graph. Each statement is
a vertex of the graph. There is an edge from vertices A to B if B is executed immediately
after A, that is, either B occurs after A, or there is a connection between A and B through a
loop, condition branch or subprogram call. McCabe’s complexity is computed by formula
E-V+2P, where E is the number of edges, V is the number of vertices and P is the number
of separated parts, i.e., subprogram called.

The third group of measures used by Leach includes S. D., Dunsmore’s measures and
is about flow of information between program modules via subprogram’s parameters or
global variables. As Leach explains, S. D., Dunsmore defines 6 different levels regard­
ing to coupling between modules starting from no coupling and ending to content coupling.
Leach computes these couplings as function calling including both user-defined and system-
supplied functions.

Ronald J. Leach justifies his approach by the fact that the metrics he uses are not effective
enough if used alone, e.g., Halstead’s metrics takes into account only the number of operator
and operands, and ignores the structure of the program, or McCabe’s method considers only
the control flow ignoring the number of operator and operands of the program. According
to the results of his experiment, combination of these three metrics was proved to make a
good plagiarism detector.

Jones’s Approach

Edward L. Jones [35] uses the following characteristics of source code and Halstead’s met­
ric’s in his method: Number of characters (c), Number of words (w) and Number of lines
(1), Program length (N), Program vocabulary (n) and Program volume (V) (see Table 3.3).

He puts these two measurements together (1, w, c, N, n, V), what he calls composite pro­
file, code characteristics and Halstead’s metrics being called physical and Halstead profiles
respectively.

Similarity between two programs is expressed as the normalized Euclidean distance be­
tween their profiles, the value of which being zero for two identical programs. The value
indicating two programs being copied is not predefined, but varies from assignment to as­
signment.

Edward L. Jones admits that his method can be misled by student by, e.g., adding extra
command lines or splitting a line to many. He also states that the value of similarity com­
puted between two programs depends on programming language in question: programs
implemented using verbose and structured programming language like COBOL may ap-

CHAPTER 3. RELATED WORK 26

pear more similar than others.

Elenbogen and Seliya’s Approach

Elenbogen and Seliya [19] look at the plagiarism from a totally different point of view.
They have developed a tool to discover whether submitted solution to an assignment is stu­
dent’s own, or is it done by someone else outside the class, e.g., provided by some services
provider from the Internet. Other plagiarism detection tools fail to solve this problem, since
they detect similarity between programs submitted by students from the same class and on
the same course. The method is based on the assumption, that students’ programming style
remains quite the same and does not change dramatically in short time. The main idea is as
follows: the students’ programming style are studied from their several previous submis­
sions using the following metrics: number of code line, number of comment line, average
length of variables name, number of variables, number of for loops/number of total loops
and amount of bits in compressed program. Natural changing or improvement in program­
ming which is acquired on programming courses is taken into account by comparing the
changes in individual’s programming style during the semester with changes in all other
students’ programming style. This process provides information about the programming
style of each student. Having this information, the system investigates whether the program
submitted by the student is his own or not. This is down by comparing the style of the
submitted program with the programming style of the student known to the system. The
system uses data mining techniques.

Malmi’s Approach

Lauri Malmi’s study on detecting the similarity of Pascal programs [44] is unique and note­
worthy: to evaluate similarity between programs, it applies both attribute-counting and
structure-based analysis, and in addition, it performs a dynamic analysis, too. In Malmi’s
method, programs are first investigated using attribute-counting technique, which is not as
costly as two other techniques. After this, the investigations continues with structural-based
analysis, and at the end, with dynamic analysis. In dynamic analysis, programs are executed
using the same input, and the number of execution of some particular parts of the programs,
e.g., if-statement, are calculated and compared. In each phase, the similarity between pro­
grams is indicated by a percent number between 0 and 100. The results obtained by all
three analyses contribute to the final decision on how similar two programs are.

3.5.2 Structure-based Methods

Later researches on plagiarism detection focus on Structure analysis, rather than charac­
teristics analysis. This has been justified by claiming that attribute-counting methods fail
to detect the copied programs that have been modified even in textual manner, and that
structure-based methods are much more tolerant to different modifications imposed by stu­
dent to make the program look different [47]. Structure-based methods can be divided

CHAPTER 3. RELATED WORK 27

into two subcategories: string matching based systems and tree matching based systems.
As Maxim Mozgovoy describes [47], string matching based systems use different string
matching methods, such as the Running-Karp-Rabin Greedy-String-Tiling used, for exam­
ple, in [69] and parameterized matching algorithm used in [4],

Joy and Luck’s Approach

Mike Joy and Michael Luck [37] introduce a new approach in plagiarism detection problem.
They state that the lack of many desirable features in previous plagiarism detection systems
have motivated them to develop a new one. As an example of these lacking desirable
features they mention the fact that a plagiarism detection system should easily and without
a major effort be changeable from one language to another, since a student is likely to use
more than one language throughout their course. SHERLOCK, system developed by Mike
Joy and Michael Luck, compares two programs five times in the following steps:

• Original programs

• Programs with the maximum amount of whitespace removed

• Programs with all comments removed

• Programs with all comments and maximum amount of whitespace removed

• Programs translated into tokens

One or more matches between two programs during this five-step comparison indicates po­
tential similarity between those programs and gives a reason for further examination. All
comparable programs are compared with each other and similar sequences are saved in a
record file. Two sequences are considered similar if the difference between them does not
exceed a predefined value, which is changeable by the instructor. For example, 10-line-long
sequences are marked similar by default, if there is only one extra and one missing line in
one of them, but are not marked similar, if the number of extra and one missing lines are
3 and 3, respectively. They argue that building the system merely based on the compar­
ison between the token sequence would result in a false match especially in introductory
programming classes, where there are not so many alternative algorithms to implement an
assignment. This incremental comparison ensures that those unnecessary matches do not
occur.

After all programs have been compared, a neural-network is invoked to create a visual
PostScript file, where the similarities between programs saved in the record file are depicted.
In the generated PostScript file, the original files are shown as points and the similarity
between two points is illustrated by a line joining those points. There is no line between
totally different points. Length of the line drawn between two points indicates degree of
similarity between those two points: the shorter the line, the stronger the similarity. The
visualization of the result of the comparison between programs can help the instructor to
get a quick comprehension about similarities between programs and is thus very useful.

CHAPTER 3. RELATED WORK 28

Gitchell and Tran’s Approach

Sim [21] is a system developed for detecting similarity between C programs. Sim generates
a sequence of tokens from program code removing white spaces, comments and all other
dispensable parts. After this, Sim uses the string alignment algorithm to compare two
programs. The similarity between two programs is indicated by a number between 0.0
and 1.0.

Schleimer et al.’s Approach

MOSS [60] is a plagiarism detection system based on string matching. Three aspects was
deemed important by developers when designing the system: inessential characteristics,
like whitespaces and capitalization, should not have any effect on result, common words
and idioms should not imply plagiarism and changing structure of program code, removing
or adding parts to it should not affect result. These are taken into consideration as follows.
When tokenizing program code, all letters are converted to lower case and all inessential
characteristics including punctuations are removed. The string matching algorithm is then
applied to carry out the comparison. The second above-mentioned issue is solved by choos­
ing a sufficient long part of token sequence to compare, so that common words and idioms
are shorter than this chosen threshold.

A tree matching approach is presented in [38], In this method, first the program code is
parsed and an abstract syntax-tree is generated. Abstract syntax-tree is then arranged in
sequential order of nodes in a linear manner. This is done in a process, which Kim and
Choi call the "unparsing". The comparison between two programs is carried out on these
node strings. Similarity is indicated by values varying from 0 to 1, 1 meaning two programs
being completely similar. The method uses a faster algorithm in the beginning of process to
make sure that two programs are not completely different. Further detailed investigation is
carried out only if two programs appear to be similar to some extent. This way, the number
of comparisons is reduced resulting in improved efficiency.

Ji et al.’s Approach

Ji et al. [32] have recently introduced a method that they claim being more effective than
all other previously released plagiarism detection methods. In their method, first program
code is parsed and a symbol table is generated. After this, the program is statically executed
at syntax-level using what they call static tracing method, and then it is transferred to a
set of predefined sequences of tokens generated according to the executing order. These
sequences of tokens are then compared with each other to evaluate the similarity between
programs.

CHAPTER 3. RELATED WORK 29

Wise’s Approach

YAP3 [69] is an improved version of YAP [68] that is capable of detecting plagiarism both
in program code and natural language. It first tokenizes the source code removing, e.g.,
comments and performing some other changing on it, after which it compares the programs
using Running-Karp-Rabin Greedy-String-Tiling string matching algorithm.

Mozgovoy et al.’s Approach

Maxim Mozgovoy et al. [47] present a fast substring matching algorithm for plagiarism
detection. The algorithm uses a suffix array as an index data structure, making some im­
provement in efficiency of the previously known substring matching algorithms. In brief,
the method works as follows: it first produces a token sequence from the program code,
then selects neighboring parts of this token sequence in turn and tries to find a substring
match for it from the other programs. Every match has an increasing effect on the similar­
ity value. The similarity value is computed by dividing the number of matched tokens by
the total number of tokens in the program being compared.

Mozgovoy et al. introduce a new plagiarism detection tool that is based on the combina­
tion of this fast algorithm and a reliable plagiarism detection system called Plaggie [1].
Their method consists of two phases. In the first phase, all comparable programs are pro­
cessed using the fast algorithm, and in the second phase all suspicious programs found in
the first phase are investigated in more details using Plaggie. Mozgovoy et al. argue that
their combined approach is more efficient than earlier released tools. They also claim that
this efficiency is not achieved by the cost of reliability, since Plaggie, which is responsible
for more detailed comparison of the potentially similar programs, is one of the most reli­
able plagiarism detection systems ever released. Plaggie could be considered as an open
source version of JPlag regarding to its functionality, and JPlag is a well-known reliable
plagiarism detection system that uses enhanced Running-Karp-Rabin Greedy-String-Tiling
algorithm [47].

3.6 Reverse Engineering

Reverse engineering tools offer useful methods to maintainers to understand the code they
are maintaining. In reverse engineering the structure of the code is investigated by going
through the program code and analyzing, e.g., control flow, data flow and data structures in
the program. As a result of these analyses, various reports and documents can be generated
describing the functionality of the system, helping maintainers to gain a quick understand­
ing about the system and allowing them, e.g., to see directly what parts of the system are
going to be effected by the change they are about to make.

Since program understanding is, on one hand, an essential part of maintaining and reengi­
neering legacy systems [66] and reengineering and, on the other hand, forms the core part
of reverse engineering, program understanding and reverse engineering can be regarded as

CHAPTER 3. RELATED WORK 30

two very closely related research fields. Therefore, it is well justified to have a brief survey
on reverse engineering techniques here.

The word "reverse engineering" is usually used in its broader meaning, which can be articu­
lated as "reverse engineering approaches". However, as will be discussed in the following, it
has a precise meaning that can be distinguished from the other concepts of reverse engineer­
ing approaches, e.g., from "reengineering". Reverse engineering, in its broader meaning,
is a process of investigating a system in order to understand it for some particular purpose.
The purpose of reverse engineering a software can be, for example, to create high-level
documentation for it, to discover its design, to fix its faults, to enhance its functionalities,
to add a new functionality to it or to make a new software with the same functionality. The
subject system being reverse engineered can be either a hardware system or a software sys­
tem, although here we mean the latter one. In the following, we present a brief discussion
on reverse engineering, since it is about analyzing and understanding software.

Chikofsky and Cross [14] present a definition for six terms related to reverse engineering
approaches: forward engineering, reverse engineering, re-documentation, design recovery,
restructuring, and reengineering. In order to gain a better understanding about the exact
relationship between reverse engineering approaches and program understanding on one
hand, and the interrelationships among different concepts of reverse engineering approaches
on the other hand, it is worth having an overview of the definition of these terms.

Chikofsky and Cross explain these terms using software life-cycle concept represented as
the waterfall model, which they assume to consists of only three phases with different lev­
els of abstraction: requirements phase, design phase and implementation phase (including
coding, testing and deployment of the system). The definitions are as follows.

Forward engineering is the traditional way of developing the system: starting from the
requirements phase, i.e., the high-level abstraction and ending to the implementation phase.

Reverse engineering is the process of analyzing and examining the system in order to recog­
nize its components and interrelationships between those components. Reverse engineer­
ing, moreover, produces a specification with a higher-level abstraction from the system.
The output of reverse engineering process is thus an alternative way which the system can
be represented with. This alternative way is more understandable and less implementation-
dependent than the system itself. It must be noticed that in reverse engineering process the
subject system is only investigated, meaning that no action is taken in order to rebuild the
system, modify it, etc. Reverse engineering can, therefore, be thought of as a process be­
ing associated with actual understanding of the system more that other reverse engineering
approaches.

Re-documentation is the process of creating documentation within a phase with the same
level of abstraction. The main objective of re-documentation is to represent the system in
a way that is easier for a user to understand. This objective is often achieved by visualiza­
tion of the components of the system and interrelationships between them. Pretty printing
and control flow diagram are examples of re-documentation. Re-documentation is a very
useful process in maintenance activity, and as the name implies, is often used when there is
no documentation available. Re-documentation can be considered as a subarea of reverse

CHAPTER 3. RELATED WORK 31

engineering.

Design recovery can also be regarded as a subarea of reverse engineering which produces
a documentation that is more informative than what is possible to obtain by merely in­
vestigating the system. This informative documentation with the higher-level abstraction
is obtained by using domain knowledge, external information, deduction and fuzzy rea­
soning. As Biggerstaff expresses [9], knowledge base, or domain model, as he puts it, is
an important part of every design recovery tools, and this is actually what distinguishes
design recovery from reverse engineering. Personal experiences and existing design doc­
umentation are also employed in design recovery process. The output of design recovery
tools should be able to answer to the user’s questions about what program does and how or
why it does it. One can conclude that since design recovery process requires more detailed
input information, it is able to produce more detailed output information, respectively, in
comparison with, e.g., reverse engineering process.

Restructuring means to represent a subject system in a different way at the same level of
abstraction, so that the functionality of the subject system remains the same. Data normal­
ization is an example of restructuring in the database design process which aims at improv­
ing the logical data model. Restructuring does not necessarily require the understanding of
the subject system, as an example, many activities related to code refactoring can be carried
out without knowing what the program exactly does. As another example, restructuring the
subject system in a bid to make it compatible with the requirements of the new environment
does not necessitate the code or the problem domain being understood.

Reengineering usually consists of reverse engineering and forward engineering or restruc­
turing. It includes the investigation of a subject system to produce specification at a higher-
level abstraction (reverse engineering part), the possible modification of the acquired spec­
ification in order to transform the system into a new form, and the rebuilding of the system
in that new form (forward engineering or restructuring part). The purpose of reengineering
is usually to add new functionalities to the subject system. In this sense, reengineering is a
different process than reverse engineering, and must not be confused with it: in contrast to
reverse engineering, reengineering involves implementing the subject system. According
to Chikofsky and Cross, some confusion between reengineering and restructuring has been
observed too. Chikofsky and Cross argue that although reengineering includes both reverse
engineering and forward engineering, it must not be regarded as some supertype of these
two. These are different technologies that are evolving quickly and must be distinguished.

After presenting the aforementioned taxonomy of reverse engineering approaches, Chikof­
sky and Cross lists the following six key objectives for these technologies.

• Overcoming the complexity problem: Reverse engineering techniques provide soft­
ware developers and maintainers with a way to understand complex systems so that
maintaining them becomes easier. This is carried out through extracting the desired
information out of those complex systems.

• Representing the system in different ways: Representing the system in different
graphical ways can help in comprehension and verification the system. This is a

CHAPTER 3. RELATED WORK 32

valuable step in completing the system documentation, which can be achieved using
reverse engineering techniques.

• Updating design documentation: Especially in the case of legacy systems, design
documentation does not often reflect the correct and exact information about the sys­
tem. It is due to the fact that the system is modified during its life-cycle at the code
level, but not at the design documentation level. Design recovery techniques can be
used for recovering this missing information and updating the design documentation
to correspond to the code.

• Detecting ripple effect: Ripple effect, i.e., side effect that could occur as a result of
bad design or successive modification of the system, could be detected effectively
using reverse engineering techniques.

• Generating higher-level abstractions: Reverse engineering techniques can be used to
generate a higher-level abstractions as an alternative and more understandable view
of the system.

• Reusing software components: Reusable software components can be detected using
reverse engineering techniques.

Criticism of Reverse Engineering

Although reverse engineering techniques have become very popular during past two decades
and various useful tools have been developed based on these techniques to help maintainers
and developers in their work, some aspects of these techniques have also been criticized. As
briefly presented in the following, these criticisms mainly pertain to the generality, scope,
accuracy and efficiency concerns.

Holtzblatt et al. [30] criticize the reverse engineering tools on not being able to fully con­
tribute in automatic understanding of the program code, which include higher-level abstrac­
tions, such as distributed behaviour and interprocess communication and control; features
of the system that are not explicitly represented at the implementation level in the code.
The inability of reverse engineering tools comes from the fact that these tools are able to
analyze and extract information from the systems that function in a sequential manner, and
not in the way, where individual tasks are executed concurrently on different processors, or
on the same processor by interleaving the functions. Capability of reverse engineering tools
in analyzing the program code and extracting information from it is based on explicitly rep­
resented data in syntax of the program language. For this reason, reverse engineering tools
are not able to extract information from, e.g., concurrent systems since these systems can
not be fully understood by only gaining an implementation level understanding from them,
but understanding them requires a thorough understanding of their design, the processing
model they use, and the way this processing model is implemented in a particular operating
system. Holtzblatt et al. then conclude that as long as reverse engineering methods extract
information from program code based only on the implementation level, and do not go be­
yond the analyzing the code syntactically by using the design information, they will fail to

CHAPTER 3. RELATED WORK 33

offer proper information about concurrent, or any other kind of systems implemented using
a particular software architecture. They have developed a tool making maintainers able to
recover those aspects of system that reverse engineering tools are not able to understand
from the code. We will not explain this tool in more detail here, since it is out of the scope
of this work.

Quilici [52] criticizes the idea of completely automated extraction of abstract formal spec­
ification from a legacy system. He refers to the following definition of reverse engineering
presented by R. Arnold’s [3]: "The process of deriving abstract formal specifications from
the source code of a legacy system, where these specifications can be used to forward en­
gineer a new implementation of that system.". Quilici then asks a question about whether
reverse engineering a legacy code has any chance to succeed in the way that aforementioned
definition introduces it? He answers negatively to the question highlighting the following
three issues from the definition as the reasons why reverse engineering is likely to fail:
Firstly, the definition argues that the process of extracting abstract formal specifications
from source code is totally automatic. Secondly, according to the definition, the extracted
specifications are so accurate and at the proper level of abstraction that a new implementa­
tion can be carried out from them. And finally, the definition implies that the effort, time
and cost of completely automatic extracting of abstract formal specifications are less than
if the specifications were generated from the scratch without using the source code of the
legacy system.

Quilici argues that the situation in real-word confirms his claim: a tool that automatically
and cost-effectively derives abstract formal specifications needed for a new implementation
of a legacy system has not been presented yet. Quilici concludes that the goal of reverse en­
gineering should be extracting an informative knowledge base from a legacy system that can
help to forward engineer it, rather than extracting a complete abstract formal specifications.
Moreover, the process of extracting the knowledge should not be attempted to make totally
automated, but rather to be a combination of both automated and human phases. Quilici
presents the following definition of reverse engineering which he thinks have a chance to
succeed: "The automated or assisted process of deriving a knowledge base describing a
legacy system from its source code, where this knowledge base lessens the effort required
to forward engineer a new implementation of that system.".

Stroulia and Systä [65] criticize the using of static analysis in reverse engineering tech­
niques as traditional and insufficient technique that if used alone, can not lead to desired
results any longer. The reason they present is that many legacy system are nowadays object-
oriented and are used in distributed environments. Moreover, legacy systems today are more
complex than what they used to be. In the past, software systems were mostly written in
procedural languages and were run in a single computer. In those days, in order to under­
stand a system and extract abstract specifications required in reengineering or maintenance
activities, it was enough to investigate the components of the system and understand the
interrelationships between them. Today, situation has changed: legacy systems are used in
a distributed environment in connection with other systems. Therefore, the required result
of reverse engineering process is a specification of subsystems that function together. Their
solution to the problem is to investigate the system using a new approach: a combination

CHAPTER 3. RELATED WORK 34

of static and dynamic analysis. Using reverse engineering tools that show the system’s dy­
namic behavior as well as static diagrams will help maintainer gain more comprehensive
and deeper understanding of the system. In addition to reverse engineering and legacy sys­
tems, these kind of tools can be useful in forward engineering activities as well. We will
not discuss Stroulia and Systfi’s work in more details here, since it not within the scope of
this thesis.

Reverse engineering approaches have also been criticized of not making proper use of do­
main knowledge. Domain-based program understanding is a method suggested to be used
with program understanding techniques, like reverse engineering, in a bid to enhance the
accuracy and efficiency of these techniques. The idea is that while, for example, reverse en­
gineering technique is based on analysing the source code and tries to understand a program
basically by performing the control flow analysis of that program without taking advantage
of the knowledge about the purpose of the program, making use of the fact that what the
problem area, i.e., domain of the program is, can be of much help in understanding the
program [15, 56].

3.7 Other Techniques

In addition to researches presented above, there are other researches on different techniques
to understand program or discover similarities between two given programs. In the follow­
ing, we describe these approaches briefly.

3.7.1 Technique Used in Clone Detection Methods

Clone means the duplication of some piece of a source code which is either intentionally
copied by a programmer from somewhere else in the same system to be reused directly or
with some small modifications, or is created by him without awareness of the existence of
a code snippet elsewhere in the same system that solves the same problem and could have
been reused. Clones make the maintenance task even more difficult and time consuming
than what it is and it is thus important to find them in the system being maintained. The
clone detection problem is about searching for the same or almost the same code in program
and in this sense, it resembles the plagiarism detection problem. Since techniques used in
clone detection methods solves the problem of finding the similarity between two pieces of
code, it is well justified to be discussed here. In the following, we will briefly present some
researches on this field.

Marcus and Malefic [46] introduce a new approach to detect high-level clones in source
code. Their approach differs from other methods introduced previously in that the previous
clone detection methods mainly detect similar codes using structural analysis, i.e., structural
organization, control flow and data flow of the source code while the method presented
by them detects clones by identifying the implementation of similar high-level concepts.
Their method uses LSI (Latent Semantic Indexing) as an information retrieval technique to
statically analyze the software systems and to identify semantic similarity (similar words)

CHAPTER 3. RELATED WORK 35

among the code. Various files and documentations, as well as comments and identifiers
within the source code can be investigated using LSI when trying to find the similarity
between two programs and detect clones.

Marcus and Malefic have done an experiment on NCSA Mosaic as medium-size software.
They conclude that although the presented method leads to satisfying results, it should be
used along with other methods, such as methods based on structural information, to give
the best results.
Basit and Jarzabek [6] have designed a tool prototyped named Clone Miner for detecting
clones in a file, simple clone as they name it, and clones in different files, which they call
structural clones or design-level similarities. Simple clones are detected in a process where
source code is first tokenized and then similarities in token sequence are evaluated. After
this, data mining techniques are used to find structural clones. This is done by investigating
the pattern of co-occurring simple clones in different files. Basit and Jarzabek argue that ac­
cording to their experiments, their method is capable of successfully detecting design-level
similarities, which allows developers to understand and reuse software components affec­
tively. The approach is also claimed to be the first one employing data mining techniques
to detect design-level similarities, and being capable of scaling up to handle big systems.

3.7.2 Program Understanding Based on Constraints Satisfaction

Steven Woods and Qiang Yang [70, 72] claim that all program understanding is essentially
an NP-hard problem. They present a new approach, based on knowledge-based program un­
derstanding, to the problem by considering the problem as a Constraint Satisfaction Prob­
lem (CSP) and trying to solve it through a heuristic approach. In their view, a program
could be seen as a set of different components that are related to each other through vari­
ous constraints. Knowledge-based program understanding is then the process of explaining
and satisfying these constraints using plans. Plans can be viewed as domain values that
explain program components. There are two different kinds of constraints: knowledge con­
straints and structural constraints. Knowledge constraints describe how different plans can
be joined to form a larger plan, and structural constraints describe the relationship between
different programs components [72], Their solution to the CSP problem is briefly as fol­
lows. First an intermediate representation from the source code is made, including control
flow and data flow. After identifying program blocks, each block forms a variable of CSP.
Constraints between variables of CSP are derived from the relationship in the intermediate
representation of the source code and from the program plan library. Actual program un­
derstanding comes from the solution of the CSP, which is an assignment of one plan from
the program plan library to each variable in a way that all constraints are satisfied.

Steven Woods and Qiang Yang argue that their approach is usable and capable of producing
an understanding of larger programs, while some earlier plan recognition approaches have
been applied mostly to toy domains, as they put it, meaning that the knowledge base and
the search domain used in those approaches have been small and limited. Viewing the
problem as CSP provides us with the possibility to apply all well-known CSP algorithms to
the problem.

CHAPTER 3. RELATED WORK 36

3.7.3 Task Oriented Program Understanding

Erdem et al. [20] present a different approach in program understanding which they call
Task Oriented Program Understanding. They argue that understanding a program has dif­
ferent aspects, and that previous approaches do not take one important aspect into consid­
eration: the user. Their approach focuses on the user’s task, experience and expertise. They
believe that investigating users’ questions about a particular task and forming a task model
makes it possible to provide a user by an explanation more effectively. Erdem et al. present
a theoretical study on users’ behavior when they are given a certain task to solve. Users’
questions about the given task are studied and the similarities or differences between the
questions are evaluated. The results of these task studies are used for producing a task tax­
onomy. This task taxonomy can then be used, for example, to determine the user goal, and
thus to produce an explanation tailored to the user. Erdem et al. do not, however, explain
in a concrete manner or by using an example, that how a program can really be understood
using their approach.

3.7.4 Data-centered Program Understanding

Data-Centered Program Understanding, presented by Joiner et al. [34], starts the process
of program understanding by analysing the data flow of the program, in contrast to other
approaches, e.g., those used in reverse engineering, that analyze the control structure of the
program first. Joiner et al. justify their approach by the fact that by investigating variables
and interrelationship between them in a program a programmer can gain a quick under­
standing about that program. On the other hand, variable names are often very informative
as well. For example, variable name MIN often suggests that it holds a smallest element
of some set. In addition to this, an important question in maintenance tasks, i.e., what
other parts of program will be affected if the value of some variable is changed, can be
answered by analyzing the relationship between variables. Based on their method, Joiner et
al. have developed a program understanding tool environmental named DPUTE. As Joiner
et al. describe, techniques used in DPUTE consist of dependence analysis, variable classi­
fication, variable slicing, program slicing and ripple effect analysis. In the following, these
techniques are briefly explained.
Dependence analysis refers to the investigation on how the variables in the program affect
each other. Data-centered approaches maintain a variable dependence model that can ex­
plain the relationships among the variables so that the way each variable affects another one
is known.

In variable classification process, the variables are classified into different categories. The
goal of variable classification is to make the process of program understanding easier, es­
pecially in large programs that may have thousands of variables. In DPUTE, there are eight
variable classification categories: domain variables (variables related to the domain prob­
lem that are useful in understanding the program), program variables (variables used, e.g., to
hold the intermediate computation results and error handling), local variables, global vari­
ables, input variables, output variables (variables that are related to output events), constant

CHAPTER 3. RELATED WORK 37

variables (variables with fixed value) and control variables (variables used in predicates,
i.e., variables that control the execution sequence of the program).

Program slicing is a program analysis technique that transforms a given program to a new
one that includes only those parts (statements) of the original program that affect the value
of a variable in the slicing criteria, ignoring all other parts. Slicing criteria is a particular
place in the program where the variable of interest is located. Program slicing technique can
be applied in different ways, one of them being forward slicing. Forward slicing technique
discovers those parts (statements) of the program that are affected by a given variable.
Variable slicing, on the other hand, is also a program analysis technique that produces a
list of variables that affect the variables in the slicing criteria. The modules where these
variables are located are also listed in the output produced by variable slicing technique.
Forward variable slicing, respectively, finds all those variables that are affected by a given
variable.
Ripple effect analysis means the process of discovering and fixing the undesirable changes
that occur in a program as a side effect of particular change performed in that program.
The version of ripple effect analysis used in data-centered approach is variable ripple effect
analysis that, as the name suggests, is used for discovering and correcting the undesirable
changes in variables resulted from a deliberate changing of the value of a variable in the pro­
gram. Ripple effect analysis uses program slicing and forward slicing techniques, whereas,
variable ripple effect analysis uses variable slicing and forward variable slicing techniques,
respectively.

3.8 Dynamic Program Analysis

In dynamic program analysis, the program is executed by some test input, and the output is
then investigated in order to understand the functionality of the program. For analyzing the
program thoroughly and understanding its functionality comprehensively, lots of tests must
be done.
Dynamic program analysis is often used in automatic assessment systems, where the accu­
racy of students’ submissions is tested by running their program using some test input, and
comparing its output with the expected one. In addition to this, some debugging systems,
e.g., aforementioned Falosy [62] use Dynamic system analysis as well.

In the following, we present an overview of some automatic assessment systems. Since we
are primarily interested in static program analysis, we keep this presentation very brief.

3.8.1 Automatic Assessment Systems

Ala-Mutka [2] has investigated various automatic assessment systems, that can be used by
teaching staff at universities in students’ submissions assessment tasks. Student’s exercises
could be divided into several categories [2, 13] including multiple choice, programming
assignments, visual answers, text answers and peer assessment. Different automatic as­

CHAPTER 3. RELATED WORK 38

sessment systems are capable of assessing different types of exercises. In the following,
we discuss briefly some of the systems from the programming assignments category, since
they include analyzing and recognition of source code submitted by students.

ASSYST

Developed at the University of Liverpool, ASSYST [31] is an automatic assessment system
that grades the students’ submissions based on five measurements: correctness, efficiency,
complexity, style, and test data adequacy. It applies a dynamic analyzing method for eval­
uating the correctness of the code. First, the instructor writes a specification of a model
output that the correct program should produce. After this, the student’s submission is exe­
cuted and its output is compared to the model output using the pattern matching approach.
ASSYST uses Unix Lex and Yacc tools to examine whether the student-written program
output conforms to the model output. ASSYST does static analysis to some extent as well:
it analyzes program blocks and counts all statements in each block in order to measure the
efficiency and the test data adequacy of the students’ submission.

Ceilidh and CourseMarker

Ceilidh [61] is another automatic assessment system that like ASSYST, analyzes the stu­
dents’ submission dynamically. Like ASSYST, it runs the program with some test data,
and then examines the output to determine whether the output matches the model output
generated by model solution. For evaluation on complexity of the code, Ceilidh uses Unix
C lint tool to perform static analysis on the code and to count the number of conditionals,
loops, unused variables and so on.
CourseMarker (formerly known as CourseMaster) [28] is a successor of Ceilidh which
is improved by new features like network support, window interface, better performance,
better feedback system, maintainability and scalability. In addition, unlike Ceilidh which
runs only on UNIX platform, CourseMarker is portable and runs on UNIX and Window
platforms, since it is developed in Java.

Scheme-robo

Scheme-robo [58], a system for analyzing Scheme programs, is basically similar to previ­
ously mentioned other two systems: it does dynamic analysing on the code submitted by
students to assess them. Scheme-robo simply executes the code using different test runs
and examines the result. Scheme-robo, however, performs assessment based on the value
that the student-written program returns, and not by comparing the output of the program to
some model output. Scheme-robo performs static analysis, as well. For example, it exam­
ines the code to ensure that some particular keywords are not found in the submission. This
is because if students are asked to implement a particular functionality, and the language
has some built-in utility function to do that functionality, the students are not allowed to use
that utility. Scheme-robo uses static analysis to convert the code into an abstract syntax tree,

CHAPTER 3. RELATED WORK 39

as well. It then uses the abstract syntax tree to examine the program further, for instance, in
plagiarism detection tasks.

Boss

Developed by Joy et al., Boss [36] is an online and platform-independent automatic assign­
ment assessment tool that performs both dynamic and static analysis, e.g., in plagiarism
detection. Boss evaluates students’ submissions from several different point of views, for
example, it uses some metrics to check programming style, e.g., using comments, checks
the submissions to find plagiarized programs, checks for authentication, checks the submis­
sions for correctness after which it marks each submission and gives feedback to the sub­
mitter. The correctness of students’ submissions is tested using two different techniques:
running the submission using some test data and then investigating the output file and using
JUnit (when Java language is in question).

Web-CAT

Web-CAT [24] is an environment for software testing and automatic assignment assessment
environment developed at the Department of Computer Science, Virginia Tech. Web-CAT
is designed to encourage the students to use test driven development approach and test their
own solution thoroughly. The idea is that instead of assessing the students’ submissions
based on some predefined test produced by the instructor, the submissions can be assessed
by the students’ own tests. Practically this means that the student’s submission is tested
more thoroughly than if it was tested only by the instructor’s tests, because the student is
motivated to test his submission thoroughly since the student’s test completeness contributes
to his final grade: the more the student’s tests cover the code, the higher his score. In
addition to test completeness, the student’s final grade is computed from code correctness
and test validity. As mentioned earlier, in addition to instructor’s tests, code correctness
is measured by the student’s own test as well: the more tests the student’s code can pass,
the higher his score. Test validity refers to whether the student’s tests are accurate, i.e., do
they test the program in a right way. Web-CAT developer claims that the results of using
Web-CAT have been very promising: the students’ performance has been improved and
the amount of bugs in students’ submissions is reduced, students test their programs more
actively and in more accurate manner and have more positive attitude toward testing, and
finally, the students have adopted the test driven development approach.

3.9 Analysis and Conclusion

Here, we will present an analysis of previously discussed related work. We will evaluate
each of the categories listed above in turn, and explain which of these approaches we could
use and why.

CHAPTER 3. RELATED WORK 40

3.9.1 Knowledge-based Approaches

Most of the program understanding approaches fall into this category. Knowledge-base
program understanding approaches consider the problem of understanding a program as
understanding what it does, i.e., its functionality. There are number of various methods de­
veloped based on knowledge-base program understanding approaches in a bid to improve
previously released approaches regarding to effectiveness and scalability, among others, but
all of them use the same idea. The idea in program knowledge-based program understand­
ing is that the subject program is understood through mapping the program source code to
the plans in plan library. If a part of the source code match with a plan, then we know what
that part of source code does. This process is continued hierarchically in a top-down or
bottom-up manner until the whole code is understood.

Strengths

Knowledge-based program understanding approaches are the first, and perhaps the most
extensively researched and used approaches in program understanding field. As such, there
have been a lot of improvements suggested to these approaches. In addition, various ways
of using different heuristics have been presented and deemed useful in solving the problem.

A clear advantage of these approaches over others, say reverse-engineering approaches, is
that in these approaches the process of program understanding is totally automated. This
means that once a match between the code and the plans has been detected, the user can be
provided with the information about what the subject program does. On the contrary, the
process of understanding a program in reverse-engineering approaches for example, is not
fully automated: a reverse-engineering based system provides the user with a set of high-
level design documentations, diagrams and other information, but the final decision about
what the subject program does, is left to be made by the user. In other word, knowledge­
base program understanding approaches seem to be the only ones that focus directly on
what a program actually does and attempt to solve the problem fully automatically. In this
sense, knowledge-base program understanding approaches appear to be promising and are
worth to be further researched.

Weaknesses

Perhaps the most serious limitation of knowledge-based program understanding approaches
is the issue of scalability. In order to understand a piece of a source code, the corresponding
plan must be found from the plan library. This means that for each piece of a code, there
must be a plan in the plan library that recognizes it. This implies, in turn, that the more
comprehensive program understanding tool is desired to be, the more plans must be added
into the library. On the other hand, the more plans they are in the library, the more costly
and inefficient the process of searching and matching will get. Since we do not know the
domain of the program to be understood, we must add as much plans as we can into the
plan library. This results in the fact that even for understanding a relatively small program

CHAPTER 3. RELATED WORK 41

(100 lines of code or so), there must be hundreds of plans in the plan library to understand
the program. That is the reason why the tools using these approaches are often referred to
as being able to handle only "toy programs". Explicitly spoken, it seems somehow very
difficult, if not impossible, to provide the plan library with all necessary plans that can
guarantee a successful process of understanding a real-life program [52].

Complexity is another problem of the program understanding algorithms. Most of these
algorithms are NP-complete in the worse case, and this comes from the fact that these
algorithms must scale with the size of the subject program on one hand, and the size of the
library plan on the other hand [52],

The other limitation of these approaches is the maintenance issue of the tools based on these
approaches. As mentioned before, in order to extend the range of the programs that these
tools can understand, new plans needs to be added to the plan library. But in some cases,
adding new plans to the library is such a difficult and complex task that could not be carried
out by those other than the developers of the tool in question. An example of these kind of
tools is [53].
Another disadvantage of knowledge-based program understanding approaches is that there
is a possibility that plans can not be successfully matched to the subject program, even
though they both do the same thing. This can occur if plans are scattered across files, or if
the subject program code is an idiosyncratic code, that is, it is not written with conventional
and wildly-accepted programming style in mind. This is the case especially in legacy sys­
tems, since different maintained with different programming style and skill have changed
the code, resulting in a kind of spaghetti code. Since plans are designed to be matched
against stereotypical codes that follow these conventional and well-recognized program­
ming styles, they can not recognize the code that ignores those styles and is written in a
somewhat unusual way [50, 52].

Most of the tools based on these approaches are language-dependent, i.e., they are not able
to understand programs written in languages other than the language they are designed for.
In the literature, this issue is known as the generality problem. Although some efforts have
been made to improve these approaches in this regard [39], it is still considered as a serious
limitation of the tools.

3.9.2 Using Fuzzy Reasoning in Program Understanding

These approaches use a plan library as their knowledge base, so they can be considered
essentially the same as knowledge-based program understanding approaches. However,
they use fuzzy reasoning in making the decision about the functionality of the program to
be understood.

Strengths

In addition to the strengths explained for knowledge-based program understanding ap­
proaches, approaches based on fuzzy reasoning make use of fuzzy reasoning to make the

CHAPTER 3. RELATED WORK 42

final decision about what the subject program does. This could result in a more accurate
decision.
These approaches also present a method for improving the efficiency of the knowledge-
based program understanding approaches. Instead of comparing the whole code with the
whole plan library, that can be very inefficient especially if there are huge number of plans in
the library, these approaches carry out the process of matching in two steps. In the first step,
the coherent pieces of the code called chunks, that appear most likely to be successfully
matched are selected, and only those plans that look similar to these chunks are selected to
be matched. The second step includes the more detailed matching process of those plans
and chunks that successfully matched in the first step. This method can result in saving a
lot of time in the process of matching.
As these approaches share basically the same idea with knowledge-based program under­
standing approaches and, furthermore, attempt to improve the efficiency and accuracy, they
can be regarded as more promising approaches in understanding a program from the func­
tionality point of view.

Weaknesses

The weakness described for knowledge-based program understanding approaches can be
regarded being valid here as well, since these approaches are essentially the same.

3.9.3 Program Similarity Evaluation Approaches

Program similarity evaluation techniques could be considered as methods to analyze struc­
ture and style of a program. Therefore, they do not directly solve the problem of under­
standing a program from the functionality point of view. As a result, these approaches
should be evaluated in a different way using different criteria.
The two types of program similarity evaluation approaches, that is, attribute-counting ap­
proaches and structure-based approaches, are very different and thus, have different advan­
tages and disadvantages. In the following, we present an evaluation on strengths and weak­
nesses of both approaches. The following evaluation is valid also for hybrid approaches
that apply both techniques.

Strengths

Since attribute-counting approaches detect the similarity based on number of characteristics
of the code, changing the name of those characteristics or other alike changes has no effect
on the result. Some of the code characteristics used in these approaches can be used in our
approaches in recognizing a program too, since these characteristics offer a way to distin­
guish a program. These techniques are easy to implement and if desired, the Halstead s
measures based complexity of the subject code can also be evaluated while the similarity of
two programs is examined. These approaches are efficient, as well.

CHAPTER 3. RELATED WORK 43

Structure-based approaches are tolerant against changing the structure of the subject pro­
gram. Recently, there have been presented fast string matching algorithms, e.g., [47] that
make this approaches more efficient than they used to be.

Because methods using combination of these two approaches select the best features of
these, they often seem to be more effective than those making use of just one.

These methods are very helpful in investigating the structure and style of a program. Re­
searches on these methods continue (e.g., [47]), and these methods are very likely to become
much more effective and efficient in the future.

Weaknesses

Attribute-counting approaches are criticized to fail to detect the similarity between two
programs, if the structures of those programs are somehow changed. In addition, since
different attribute-counting approaches use different characteristics, it is often the case that
some of these approaches are less accurate or efficient than others. In these approaches,
moreover, there are often some type of ad hoc methods involved in making the final decision
about how similar two given program are. These ad hoc methods vary a lot and some of
them are not the best possible.
There exist many different structure-based approaches too, and some of these approaches
may suffer from efficiency issues. In addition, although string matching algorithms used in
these approaches have been improved constantly, their accuracy and efficiency need to be
further enhanced.

3.9.4 Reverse Engineering

Reverse engineering approaches try to understand a program in order to produce high-level
design documents, improve or extend the functionality of the program, etc. These methods
can be applied to solve various different types of problems. For example, they can be used
to understand both the functionality and the structure of a program. Like other approaches,
however, reverse engineering approaches have many pros and cons, as we describe in the
following.

Strengths

Perhaps the most important benefit of reverse engineering approaches is that they include
very powerful techniques that can be used in various fields and in many different ways.
Reverse engineering tools allow developers to produce useful and understandable docu­
mentation at high-level abstraction from a system that otherwise could be very difficult
to understand because of lacking of documentations. These techniques are very useful in
maintenance activity and can be used to understand the subject system, saving a lot of time
in the time-consuming task of reading the program code.

CHAPTER 3. RELATED WORK 44

Reverse engineering approaches are one of the most extensively researched subjects in the
field, and they are very likely to be developed further and fast.

Weaknesses

Reverse engineering techniques provide half-automated program understanding, leaving the
other half to be decided by the user. These techniques do not tell, directly and clearly, what
the subject program does, but rather provide the user with various high-level abstraction di­
agrams and specifications of the subject system, helping the user to make the final decision
on the system’s functionality. Therefore, instead of articulating the subject program’s func­
tionality, reverse engineering tools rely on user’s cognitive abilities to do the final decision
about what the subject program does. High-level documents and diagrams generated by
reverse engineering tools are certainly very precious to maintainers in the process of under­
standing the subject program, but ultimately the user will have to decide what the subject
program does using his or her experience and the problem domain knowledge. In other
words, program understanding is a collaborative effort between the user and the tool, and
the responsibility of understanding the program is left to the user.

3.9.5 Other Approaches

The other approaches on program understanding use basically one of the aforementioned
approaches, so the strengths and weaknesses of those approaches are valid here as well.
Program understanding based on constraints satisfaction, for example, uses plan library as
its knowledge base, and suffers from the same issues already stated for knowledge-based
program understanding approaches, although it makes an effort to improve the efficiency of
those approaches.
Task Oriented Program Understanding approach does not seem to be extensively researched,
and the authors do not actually present detailed information about how the process of pro­
gram understanding can be carried out using this approach.

Data-Centered Program Understanding approach seems to be suitable mainly in mainte­
nance work, but does not appear to offer a way for understanding a program automatically.

3.9.6 Dynamic Program Analysis

Since our method will be based on static program analysis, we will not discuss the strengths
and weaknesses of dynamic program analysis here.

3.10 Summary

Here, we present a brief discussion about techniques that can be used in our problem from
the techniques discussed above.

CHAPTER 3. RELATED WORK 45

As describe above, many interesting methods have been developed in order to understand
a program from different points of view. From all aforementioned techniques, however,
techniques used in attribute-counting program similarity evaluation approaches seem to
be most useful for our problem. The reason is that our approach is based on the code
characteristics: we want to examine whether it is possible to tell what an algorithm looks
like or appears to be, by investigating its characteristics, e.g., variables. Attribute-counting
techniques investigate precisely the same thing: distinguishing characteristics of a code.
We can use, as an example, Halstead’s measures in our problem.

If it seems useful, we can also make use of knowledge-based program understanding ap­
proaches: if necessary, we can use small plans to make sure about the functionality of a
piece of the code to make sure that our evaluation about type of algorithm is right.

The other techniques do not appear to be useful in our problem at this phase, although we
will keep them in mind during the design and implementation of our method.

Chapter 4

Analysis

As discussed in Chapter 2, by understanding an algorithm we mean recognizing the cate­
gory to which the algorithm belongs to. More precisely, our objective is to automatically
conclude the category that a sorting algorithm falls into.

In this chapter we present an analysis of our approach for recognizing algorithms. We will
describe all distinguishing characteristics that we have used to recognize different sorting
algorithms. We will, however, first describe briefly the concept of roles of variables as it
plays an important role in our method. Other concepts and characteristics are presented after
this. We close the chapter by describing the method we will use to achieve our objective.

4.1 Roles of Variables

As mentioned before, the concept of role of variables [59] is first introduced by Sajaniemi.
The idea behind roles of variables is that each variable used in a program plays a particular
role that is related to the way it is used. For example, a variable that is used for storing
a value in a program for a short period of time can be assigned a temporary role. As Sa­
janiemi argues, roles of variables are part of programming knowledge that have remained
tacit. Experts and experienced programmers have always been aware of existing of variable
roles and have used it, although the concept has never been articulated. Giving an explicit
meaning to the concept can make it a valuable tool that can be used in teaching program­
ming to novices, explaining to them the different ways in which variables can be used in a
program. Moreover, the concept can offer an effective and unique tool to analyze a program
with different purposes.
Currently, there are 11 different roles recognized for variables used in novice-level pro­
grams. In the following we will present these roles and describe each of them briefly. The
roles are listed loosely in order of frequency of appearance in sorting algorithms that were
analyzed in our study, with the most frequent roles first.

46

CHAPTER 4. ANALYSIS 47

Stepper

A stepper role is assigned to a variable that systematically goes through a succession of
values, e.g., values stored in an array. A loop counter, i.e., a variable of integer type used to
control the iterations of a loop is a typical example of a stepper.

Temporary

Variable that holds a value for a short period of time appears in temporary role. A typical
example of the temporary role is a variable used in a swap operation.

Organizer

A data structure holding values that can be rearranged is a typical example of organizer
role. For example, an array to be sorted in sorting algorithms has an organizer role.

Fixed value

As the name suggests, a variable has a role of fixed value if it keeps its value throughout the
program. The fixed value role can be thought as a final variable in Java which is immutable
once it has been assigned a value.

Most-wanted holder

A variable is said to have a most-wanted holder role if it holds a most desirable value that
is found so far. For example, if we find a minimum or maximum from a set of values and
assign it to a variable, that variable would have a most-wanted holder role.

Most-recent holder

Most-recent holder role is given to a variable that holds the latest value from a set of values
that is being gone through. Moreover, a variable that holds the latest input value is a most-
recent holder.

One-way flag

One-way flag is a role assigned to a variable that can have only two values and once its value
has been changed, it cannot get its previous value back again. This role usually appears in
a program to indicate, for example, whether an error has been occurred.

CHAPTER 4. ANALYSIS 48

Follower

Follower is a role indicating a variable that always gets its value from another variable. In
other words, its new values are determined by the old values of another variable.

Gatherer

A variable is said to play a gatherer role if it collects the values of other variables into itself.
A typical example is a variable that holds the sum of other variables in a loop and as a
result, its value is changed after each execution of the loop. When the loop is terminated,
the variable holds a total of other variables’ values.

Container

A data structure into which elements can be added or from which elements can be removed
if necessary, has a role of container. For example, all Java data structures that implement
Collection interface can be considered having container role.

Walker

As the name suggests, the walker role can be assigned to a variable that is used for going
through or traversing a data structure.

There are several other aspects associated with the concept of roles of variables that are not
presented here. More information can be found from [59].

4.2 Characteristics of Sorting Algorithms

At the beginning of our study, we analyzed 11 common sorting algorithms. These algo­
rithms and their characteristics are shown in Table 4.1. These versions were selected from
the course material on Data Structure and Algorithms lectured at the Department of Com­
puter Science and Engineering at the Helsinki University of Technology. From each algo­
rithm, eight characteristics are investigated. The name of each sorting algorithm is shown
in the first column of the table. The last column of the table depicts the structure of the
algorithms. This helps us to get a quick information about loops and blocks of each algo­
rithm. The dashed line in this column indicates the end of one method and the beginning
of another one. The characteristics of the algorithms are shown in the columns between the
first and the last columns. It must be noted that these algorithms are only one randomly
selected example of each corresponding type of sorting algorithm.

As can be seen from the table, the characteristics of these algorithms seem to be distin­
guishing enough to make us able to differentiate among them. Most of the characteristics
are different among algorithms, and if some characteristics happen to be the same or close,

CHAPTER 4. ANALYSIS 49

Number
of

variables
Roles of variables

Number
of loops

Nested /
sequential

loop

Number
of

blocks

Nested /
sequential

blocks
Recursive In-place

Depiction of nested /
sequential loops and

blocks

Insertion sort 3
2 Stepper

1 Temporary 2 Nested 2 Nested No Yes
for

Selection sort 4
2 Stepper

1 Temporary
1 Most-wanted holder

2 Nested 3 Nested No Yes
for

for
if

Quicksort 6

2 Stepper
2 Walker

1 Fixed value
1 Temporary

3
2 Nested

2 Sequential
5

2 Nested
3 Sequential Yes Yes

do

if

Bubble sort 3
2 Stepper

1 Temporary
2 Nested 3 Nested No Yes

for
for

if

Mergesort 6
3 Stepper
2 Walker

1 Fixed value
3 Sequential 7

3 Nested
4 Sequential

Yes No

if
for
for
for

if
else

Shell sort 6

2 Walker
2 Stepper

1 Temporary
1 Most-recent holder

3 Nested 3 Nested No Yes
for

for

Heap sort 9

3 Stepper
1 Walker

3 Fixed value
2 Temporary

3 Sequential 7
4 Nested

3 Sequential
No Yes

for

if
if

Straight Radix
sort

7
3 Walker
2 Stepper

2 Fixed value
5 Sequential 8 Sequential No No

if
if
5 for

Radix
Exchange

6
2 Stepper
3 Walker

1 Temporary
3

2 Nested
2 Sequential

6
3 Nested

3 Sequential
Yes Yes

if
do

if

BinQuickSort 5
3 Walker
2 Stepper

3
2 Nested

2 Sequential
6

3 Nested
3 Sequential

Yes Yes

if

if

Quick Select 8

2 Walker
3 Fixed value

2 Stepper
1 Temporary

3
2 Nested

2 Sequential
5

2 Nested
3 Sequential

Yes Yes

do

if

Table 4.1: The common characteristics of sorting algorithms

the collection of all characteristics shown in the table is unique for each algorithm making
that algorithm a distinguishable one.

Encouraged by this fact, we analyzed different versions of five sorting algorithm to see how
much different versions of the same algorithm type differ from each other. These five sorting
algorithms were Selection sort, Insertion sort, Bubble sort, Quicksort and Mergesort. These
versions were collected from randomly selected textbooks and course material on Data
Structure and Algorithms. These five sorting algorithms were analyzed based on the same
characteristics shown in Table 4.1, but in order to keep this thesis short, the characteristics

CHAPTER 4. ANALYSIS 50

of different versions of these sorting algorithms are not shown here. Instead, we will present
them in charts in Chapter 6. As somehow expected, different versions of the same sorting
algorithm were much more similar than different sorting algorithms. This means that if we
can recognize a particular type of a sorting algorithm from the other types, then we can
be quite sure that different versions of that particular algorithm are similar enough to be
recognized from the other types in the same way.

As expected, the more complex an algorithm is, the more different ways there are to im­
plement it. This means that different versions of a more complex algorithm like Quicksort
are more likely to differ from each other than different versions of a simpler sorting algo­
rithm like Insertion sort. For example, the Quicksort partitioning might be implemented in
a separate method in one version, while in another version it is located in the same method
with other statements. This causes differences in the number of variables and blocks in
different implementations. This kind of differences should be eliminated in order to get a
right statistics about different versions of the algorithms. To get rid of this, we performed
inline expansion before analyzing the algorithms.

It should be noted that since our goal is to perform static program analysis, we are only in­
terested in the characteristics of the sorting algorithms that can help us to distinguish them
without the need of running them, i.e., the static characteristics of algorithms. Sorting algo­
rithms have also dynamic characteristics, such as stability of algorithm, that can be useful
when trying to distinguish them. But because those kinds of characteristics are related to
the execution of the algorithm, we do not take them into consideration.

In the following, we explain each of these characteristics shown in Table 4.1. In addition to
these characteristics, we also describe two more characteristics that we found distinguish­
ing and useful in recognizing sorting algorithms, namely variable dependencies and the
information about whether a loop is incrementing or decrementing.

Number of variables

As the name suggests, this refers to the total number of variables that are used in the algo­
rithm.

Roles of variables

The role of variables is a key factor used as a distinguishing characteristic in our approach.
The concept of roles of variables and the classification of different roles were described in
the previous section.

Number of loops

This column indicates the amount of loops used in the algorithm is question. A loop can
be a for loop, a while loop or a do while loop. Other types of loops are not analyzed in this
work.

CHAPTER 4. ANALYSIS 51

Nested / sequential loop

This column indicates whether the loops used in an algorithm are nested or non-nested. It
appears difficult express the nested / sequential relation among loops in an unambiguous
manner using numbers, since the information about each loop’s position with regard to
others cannot be included in numbers. For example, let us suppose that there are total of
three loops, two of which are sequential with regard to each other, and both are located
inside the third loop. How this can be expressed in numbers? We can say that there are 2
nested and 2 sequential loops. But this makes the total number of loops four. As we will
present later in Chapter 5, the system is designed so that each loop has an unique ID and
an unique upper loop ID. This makes it easier to recognize nested and sequential loops and
distinguish between them.

Number of blocks

This column shows the number of blocks in the algorithm. A block refers to a sequence of
statements wrapped in curly braces. A block can be a method or a control structure (loops
and conditionals).

Nested / sequential blocks

This column shows the number of nested and non-nested blocks in the algorithm. The same
problem regarding ambiguity appears in definition of nested / sequential blocks, as it was
the case with loops. In implementation, this is dealt with in the same way as described for
loops.

Recursive

This column contains the information about whether the algorithm is recursive or not. For
example, as Table 4.1 shows, Quicksort algorithm analyzed in this study is a recursive
algorithm, while Insertion sort algorithm is not.

In-place

This column indicates whether the algorithm needs an auxiliary array to carry out the sort­
ing. In other words, it indicates the need of extra memory. For example, as can be seen
from the Table 4.1, Mergesort analyzed in this study is not an In-place algorithm, while
Quicksort is.

Variable dependencies

For each variable, direct and indirect dependencies on other variables are examined. If
variable X gets its value directly from variable Y, then X is said to be directly dependent

CHAPTER 4. ANALYSIS 52

on Y. Moreover, if there is a third variable Z on which Y is dependent (either directly or
indirectly), then X is indirectly dependent on Z. A variable may have both a direct and an
indirect dependency on another one.

Incrementing / decrementing loop

We also investigated loop counters in the algorithms to see whether a loop is an increment­
ing or decrementing loop. If a loop counter’s value increases after each iteration, that loop
is said to be an incrementing loop and, in the same way, if a loop counter’s value decreases
after each iteration, the loop is said to be a decrementing loop. As we will describe in
Chapter 6, this information is a valuable factor in recognizing some sorting algorithm.

4.3 Other Characteristics

In addition to the characteristics described in the previous section, we also use the follow­
ing characteristics: number of operators, number of operands, number of unique operators,
number of unique operands, program length, program vocabulary size, number of assign­
ment statements, line of code and McCabe cyclomatic complexity. These are Halstead’s
parameters and other characteristics used for evaluating program similarity as described in
Chapter 3.

4.4 The Method

Our approach in recognizing algorithms is based on investigating the characteristics of
them. By computing the distinguishing characteristics of an algorithm, we can compare
these characteristics with those collected from already recognized algorithms and conclude
if the algorithm falls into the same category.

The aforementioned characteristics can be divided into the following two types: numerical
characteristics and descriptive characteristics. Numerical characteristics are those that can
be expressed as positive integers, e.g., the number of loops, or the number of operators.
Descriptive characteristics, on the other hand, cannot be expressed in numbers. The de­
scriptive characteristics are the following: Recursive, In-place and Roles of variables. All
characteristics other than these three belong to the numerical characteristics.

The method we will use is as follows. In order to carry out the recognition, the charac­
teristics of the recognizable algorithm, both numerical and descriptive, are computed auto­
matically by the Analyzer. The only exception is the roles of variables which, as will be
described in the next chapter, is manually evaluated since the current role analyzer inte­
grated to VILLE do not generate the roles accurately enough. These characteristics are then
compared to the characteristics of different sorting algorithms that exist in the knowledge
base of the Analyzer. By performing this comparison, the Analyzer is able to make the
decision on whether the recognizable algorithm belongs to one of the categories existing

CHAPTER 4. ANALYSIS 53

in its knowledge base. In other words, the recognition is based on the calculation of the
frequency of occurrence of the numerical characteristics in the algorithm on one hand, and
the investigation on the descriptive characteristics on the other hand. We will describe this
in more detail in Chapter 6.

Chapter 5

Design and Implementation

In this chapter, an overview of the main features of the system is presented. In the first sec­
tion, we present the architecture of the system. Implementation related issues, description
of the classes and the detail structure of the database are presented in the second section.
We close the chapter by giving an example of the dataflow of the Analyzer and discussing
its limitations.

5.1 The Architecture

The Analyzer is built on top of VILLE, a visual learning tool. This decision was made
based on the fact that the Analyzer can use the output of the VILLE. This results in saving
time and effort, since there is no need to do all from the beginning. As we will discuss in
the next subsection, the Analyzer uses the set of the indexes generated by VILLE during
interpretation of a program. Using these indexes, the Analyzer knows what each line of the
program is about. The second reason for building the Analyzer on top of VILLE is that
the Analyzer can extend the functionality of VILLE in a logical way: VILLE can be used
by an instructor in teaching programming skills; the Analyzer can also be use by him, for
example, for verifying the student submissions.

Figure 5.1 shows the system’s architecture including the architecture of VILLE and the
Analyzer. The part below the dash line labeled as "Interface" is the architecture of VILLE,
and the part above it is the class diagram of the Analyzer. In the following, we first explain
VILLE, its architecture and functionality. The architecture of the Analyzer is described
after this.

5.1.1 VILLE

VILLE is a language-independent program visualization tool that is intended to be used
by a teacher in teaching programming skills, and to help students to understand the funda­
mental concepts of programs like variables, arrays, loops, conditionals and recursion, and

54

CHAPTER 5. DESIGN AND IMPLEMENTATION 55

to learn the basic programming skills. The VILLE architecture, partly based on technical
documentation written by its developers, is described in the following.

Broadly speaking, VILLE consists of three parts: the program Interpreter and the Visualizer.
The program Interpreter can be further divided into three modules which are, as shown in
Figure 5.1, as follows: the program interpreter, the methods determiner and the program
executer. In addition, VILLE has a Role Analyzer integrated to it as a separate module. We
will not explain the Role Analyzer in more details, as it is not a direct part of VILLE and
has not been investigated in our work. In the following, these parts are explained in turn. A
class diagram for VILLE is not presented, as it is not a part of this work.

-type: String

VariableCollection
-variableList: Vector

createVariable

+incrementing 0 ♦

BlockCoIlcction

1 update (Block)

Recursive (): boolean
+islnPlacc 0: boolean

AlgorithmCollection

—*Tind 0: Algorithm

_ Interface
"ville

-dcpcndcntVarid: ini
-dependedVarid: int
+add (Dependency)

-parameterTypes: Vector
-paramctcrNamcs: Vector
-argumcntsTypes: Vector
-argumentsTypes: Vector
-allMethodNames: Vector

+ analyze 0
«computeCharacteristics 0
> calculateHalsteadMctrics 0
+determincDircc Dependent)
«determinelndirecDepen 0
•-crcatcVariables 0
+idcntifyVariablcs 0

Interpret (User-defined program)
Program

Interpreter

Determine methods

Qg' Isfigli^. Role Analyzer

Execute (predefined example)
Visualizer Program

- Visualize Executer
*

Figure 5.1: The architecture of the system. The part below the line labelled by "Interface"
describes the architecture of VILLE, and the part above it describes the architecture of the
Analyzer

The Program Interpreter

The program Interpreter is the core of VILLE, which performs the following tasks.

Interpreting the program The first task the Interpreter performs is to read a Java program
in and interpret it to the other supported languages.

CHAPTER 5. DESIGN AND IMPLEMENTATION 56

VILLE interprets Java to other language in the following way. Each supported lan­
guage to which a Java program can be interpreted has its own syntax file that includes
the most essential commands and control structures of that language. The syntax
file can be regarded as the knowledge base of VILLE. Each line of syntax file has a
unique number called index. The lines of each syntax file are arranged in the same
order resulting in the fact that if two lines of two syntax files have the same index,
they also have the same meaning. When a Java program is read in, each line in the
input program is examined to find a match with a line from the syntax file. This
matching process is carried out using keywords. When a match is found the index
of the matched line from the syntax file is stored. Now when VILLE knows what
the line of the input program means, it can interpret it to any other language simply
by taking the corresponding line from the syntax file of the target language accord­
ing to the stored index. Once the corresponding line in the target language is found,
the parameters stored from the source language are assigned to that line in the target
language.
In VILLE, a user can define a new programming language and make the tool show
the execution of a program in that particular language. It can be done using the syntax
editor, where the user writes the syntax of his own language following the same order
and meaning of the indexes that appear on the left side of the syntax editor where
Java syntaxes are located. Each line of the new language must be written on the right
side of the same line where the corresponding Java command with the same semantic
is located. Since VILLE knows the meaning of that particular line from the index of
the line, it can understand the new user-defined languages. This is the meaning of
language-independency of VILLE. Using this feature, any kind of language can be
defined and be used to demonstrate the execution of a program, within the restriction
of VILLE in recognizing structural and syntactical features.

Determining methods After the interpretation is performed, the Interpreter determines the
methods of the input program. The following information about all methods in a
program is stored: name, type, starting line and ending line. This information is
needed in the next task, when the Interpreter executes the program.

Executing the program In this phase the program is executed. This is the most complex
part of the Interpreter, since it involves processing of the control structures, program
blocks, method invocations and changing of variables’ values. A program is executed
using the aforementioned indexes that tell the Interpreter what command is in ques­
tion. The execution starts from the main method and ends at the last line of it. All
blocks and method invocations within the main method are executed recursively.

As the output of this phase, a series of execution events are created. The Visualizer
uses these execution events to show the execution of the code line by line.

CHAPTER 5. DESIGN AND IMPLEMENTATION 57

The Visualizer

The Visualizer is an applet that, as its name implies, visualizes the execution of the pro­
gram. The state, value and roles of the variables are visualized during the execution of the
program. The Visualizer also shows the source code highlighting the line being executed
and the previously executed line in different colors. The outputs of the program are also
displayed. It is possible for a user to view the code execution in two different languages at
the same time. The Visualizer is also able to visualize the execution of different methods
using a call stack. This feature especially helps novice programmers to understand how
recursion works. In addition, an explanation in natural language is provided for each line
that is under execution. These explanations are created using indexes at the same time when
an input program’s lines are matched against syntax file, as was described before.

More information about VILLE can be found from the system paper of VILLE [48].

5.1.2 Limitations of VILLE

VILLE is intended to be used by novices, and as such, it does not support all structures and
features of Java language. Despite this, building the Analyzer on the top of VILLE is well
justified by the fact that the output of VILLE is a valuable input for the Analyzer. Using
VILLE, the Analyzer does not need to interpret Java itself. The Analyzer uses the set of
indexes generated by VILLE indicating what command is in question. This saved us from
the laborious task of building a Java interpreter for the Analyzer.

The version of VILLE, on top of which the Analyzer is built, has many limitations. Some of
these limitations and their impact on the Analyzer and its Implementation are discussed in
the following. It should be noted that these are only some examples of VILLE’s limitations,
discussing all limitations is beyond the scope of this work.

Perhaps the main limitation of VILLE is that it can only interpret the structures that are
located in its syntax files. The syntax files are by no means complete. There are many
features and structures of Java language missing from the syntax files. For example, the
switch statement is not supported. As a result, the Analyzer has no mechanism for pro­
cessing the switch statement either. VILLE crashes while processing the switch statement
and other structures it does not recognize. Moreover, among those structures recognized by
VILLE, only some particular kinds are supported. For example, only the basic form of the
for statement is supported. In other words, all three parts of a for statement, namely, the ini­
tialization part, the expression part and the variable value updating part must be presented
as follows: for(ForInit; Expression; ForUpdate). VILLE does not recognize the enhanced
for statement, or the for statement where the initialization part or the updating part are not
presented. In addition, there is no mechanism in VILLE to process objects.

In addition to the aforementioned limitations, there are some legal language syntactical fea­
tures of Java that are not supported in VILLE and cause it to crash. For example, comments
written at the same line in front of the for statement causes VILLE to crash. As another
example, one or more white spaces between the definition of a class and left curly bracket
cause problems, as well. During the implementation and testing phase of the Analyzer at

CHAPTER 5. DESIGN AND IMPLEMENTATION 58

least 15 of this kinds of limitations were encountered.

These limitations and shortages made the testing phase very difficult and laborious, since
extra effort was needed to provide a "clean" version of source code to VILLE so that the
execution could continue to the Analyzer, without crashing on the way before it. Although
the changes needed extra effort, the most time-consuming issue was to understand what
VILLE required to be changed in the first place. The reason is that there are no descriptive
error messages associated with these crashes to help the user to find the reason for crashes.
It was not easy to find the part that needed to be changed in order to make VILLE happy.
Thus, the "error" in the source code had to be found in a trial and error manner: change the
most suspicious part, run the application again and hope for the best! It should be noted,
however, that these changes were made carefully so that they do not significantly change
the numerical characteristics of the code, such as its length.

From the Analyzer point of view, however, the main problem with VILLE is that the role
analyzer integrated into VILLE does not work properly. It does not produce accurate in­
formation about roles. For instance, the loop counter of the inner loop in Bubble sort has
clearly a stepper role. VILLE believes, however, that it should have a role of temporary
holder. Likewise, the variable used in the swap operation in Bubble sort has clearly a tem­
porary role, while in VILLE’s opinion, it appears in most-wanted holder role. As we will
discuss in Chapter 6, the roles of variables plays an essential role in our recognition pro­
cess. As a concrete example, the appearance of a variable in the most-wanted holder role
is a distinguishing factor that helps us to differentiate Selection sort form Insertion sort and
Bubble sort (see the decision tree presented in Chapter 6). VILLE, however, returns a role
of Converter for that variable which is not even presented as a role in [59]. Therefore, we
could not afford to trust the roles produced by VILLE, and had to analyze all roles manually.

It is also noteworthy that not all indexes generated by VILLE are precise and unambigu­
ous. Some indexes should be examined by the Analyzer carefully to determine what their
exact meaning is. This is because some indexes can have more than one meaning from the
Analyzer point of view. For instance, the assignment statement is indicated by an index of
85, regardless of its right side. The right side of the assignment statement should be care­
fully investigated since it makes a big different to the Analyzer whether the right side is, for
example, a method call or a simple variable. Namely, if it is a method call, the Analyzer
should perform in-lining (if it is not already done to that invoked method), whereas if it is a
simple variable, it would be enough to process the dependency, as an example.

In this work, no attempt was made to improve VILLE or to extend its functionalities. It
was not within the scope of this work, nor did the author have the authorization to change
the VILLE. Instead, a list of these limitations and shortages was collected to be reported to
VILLE’s developers. However, the small changes were necessary to make to the interface
between VILLE and the Analyzer to make them work together. In addition to these changes,
a method was added to VILLE to make the system support method overloading. Before
making this change, VILLE returned only the information of the method with the same
name that appeared first in the source code, although information of all methods with the
same name was correctly collected. With the change made in this regard, VILLE can now
return the information of all methods with the same name according to the location of the

CHAPTER 5. DESIGN AND IMPLEMENTATION 59

method in the data structure were all methods are stored.

These limitations and shortages can partly be related to the fact that VILLE is designed and
intended to be used by novices, at the very beginning stages of learning programming skills.
Positive feedback from the students and considerable improvement in their programming
skills that have resulted from using VILLE keep the developers motivated to improve it.
Thus, VILLE is under constant development.

5.1.3 The Analyzer

A brief overview on application architecture and classes is presented in the following. More
explanation on classes is presented in the next section.

As was described previously, the Interpreter of VILLE performs mainly the following three
tasks: interpreting the program, determining methods and executing the program. The Ana­
lyzer is, as can be seen from Figure 5.1, located after the second task of the Interpreter, i.e.,
the determining methods task. Therefore, the output of VILLE that goes to the Analyzer
as an input, is a set of indexes that determine what command is in question. In addition,
the aforementioned information about the methods of a program is available to the Ana­
lyzer. This is the best the Analyzer way can make us of VILLE. The execution part of the
Interpreter involves computing the value of the variables and the other activities that are not
useful for the Analyzer.

The Analyzer was designed following the three-tier application model. This is the most
widespread use of multi-tier architecture that makes the maintenance of the system easier.
The three-tier application architecture consists of the following tiers: the presentation tier,
the logic or business tier and the data tier. The Analyzer works as a text-based interface
that takes the subject program file as an input from the command line and outputs the textual
results. Therefore, the presentation tier and GUI have no significant part in the system. As
a result, this tier is omitted from Figure 5.1. Moreover, the logic tier and the data tier are
annotated in the figure as two clear parts.

The logic tier contains the core of the system where actual analyzing of a program takes
place. The logic tier consists of the following classes: Algorithm, Block, Variable, Depen­
dency, AlgorithmCollection, BlockCollection, VariableCollection and TAPAS. The classes
AlgorithmCollection, BlockCollection and VariableCollection do not include other func­
tionality than the processing of a set of the objects that they hold. These classes contain
a data structure to store the corresponding objects, e.g., blocks, and the methods needed
for manipulating them, i.e., adding, finding and updating. The system could have been
designed and implemented without these classes as well: Algorithm, Block, Variable and
Dependency could have included a data structure and necessary methods to manipulate the
object inside them. The way the system is implemented, however, makes the architecture
more understandable and the maintenance easier, since these four classes contain only the
essential methods for carrying out the analyzing with routine methods for manipulating the
collection of objects located in their own separate classes.

Moreover, using the Algorithm, Block, Variable and Dependency classes can be justified

CHAPTER 5. DESIGN AND IMPLEMENTATION 60

by the fact that these are clearly different and independent concepts and therefore, could
be defined in different classes. One alternative solution in regard with the blocks could
have been to define a superclass and inherit the different types of blocks, e.g. loops and
conditional structures from it. This was not, however, considered necessary, because the
Block is a relatively small and well-maintainable class in its present form. In addition,
VILLE has also Variable class, and it was also considered to inherit the Variable class used
in the Analyzer from it. This was not deemed necessary either, since VILLE’s Variable
class is so different that there is not much to be reused in the Analyzer’s Variable class. The
classes belonging to the logic tier are located in a package named tapas jdomain.

The data tier consists of the database and the data access classes used to store and re­
trieve the information. The data access classes are the following: AlgorithmDao, Block-
Dao, VariableDao and DependencyDao. These classes are located in a separate package
named tapaspersistence. By locating these classes in a separate package and defining data
access objects that are used to create connection with the database, obtain and store data, it
is easier to delete or add new columns to the database when necessary. A separate data tier
makes the structure of the system clearer and improves scalability.

The data access classes use the objects of the classes from the logic tier in their load() and
loadAUO methods (the latter method is not shown in Figure 5.1) to store the information
retrieved from the database into them. This relationship is not shown in the figure.

It should be noted that, in addition to the description of the relationship shown in Figure 5.1
among the TAPAS and the other classes, the TAPAS class uses the other classes in many
other ways as well. This is not, however, shown in the figure. For example, the TAPAS uses
the Algorithm class to create an Algorithm object, to determining whether the algorithm is
a recursive and in-place, among others. While in the figure, the relationship is shown only
as "createAlgorithm".

We decided to use a database for the following reason. In order to perform the algorithm
recognition task, the Analyzer should have access to such data, which it can use to com­
pare the characteristics of the recognizable algorithm to those of the algorithms known to it.
Based on the result of this comparison, the Analyzer can then decide whether the algorithm
can be recognized as one of those it knows. Algorithms that are manually or automati­
cally recognized and verified as some particular type in the beginning, can be stored in the
database. Each time the Analyzer performs the recognition, it can retrieve the characteris­
tics of algorithms from the database and use it in the process of recognition. The database
is necessary in order to store the characteristics of different types of algorithms that the
Analyzer recognizes and, thus, to extend the knowledge base of the Analyzer.

Using a database in the system can also be justified from the instructor point of view. If
the system does not confirm an algorithm being a type what it is expected to be, an in­
structor can look at the source code and its characteristics from the database and verify the
Analyzer’s conclusion. Alternatively, if the instructor believes that the algorithm is of the
expected type, he can examine the characteristics of the algorithm from the database to see
whether the reason for rejecting the algorithm is related to the numerical characteristics
of the algorithm or to the descriptive characteristics of the algorithm. If the reason is that
one or more numerical characteristics of the algorithm do not fit within the minimum and

CHAPTER 5. DESIGN AND IMPLEMENTATION 61

maximum values located in the database, the instructor can correct the type of the algo­
rithm in the database. The knowledge of the system about that particular algorithm can be
extended this way resulting in a more accurate decision by the Analyzer in the future: the
same or similar algorithms would not be rejected for the same reason next time, since the
minimum and maximum values existing in the database are adjusted. If, on the other hand,
the reason is related to the descriptive characteristics, it should be investigated in more de­
tail with regard to the decision tree presented in Chapter 6. Changes of this kind require
the modification of the logic of the Analyzer. This is described in the next chapter in more
detail.

It should be noted that not all the attributes and methods of the classes are depicted in
Figure 5.1. We will discuss some important attributes and methods of the classes in the
next sections.

5.2 Implementation

In this section, a more detailed overview on classes is presented, following by a discussion
on the structure of the database and descriptions of it columns. At the end of the chapter,
the system and its functionality is described as a whole using an example of the dataflow.

5.2.1 The Classes

The classes used in the system are presented in the following. Some of the attributes of
the classes are described in the next subsection where the database and its columns are
discussed (see Table 5.3). We do not explain those attributes here again, but instead mention
those attributes that are not stored in the database and discuss some functionality of the
classes.

TAPAS This class contains the main-method, as well as many other attributes and methods
that carry out the analyzing. One of these is the recursive method that traverses
through the code determining new variables, statements and blocks and calculating
other characteristics. The efficiency can be improved by carrying out all these tasks
at the same time, rather than going the code through separately in order to compute
each of these characteristics in turn. Every time a method invocation is encountered,
the method performs in-lining by calling itself with appropriate arguments in order
to process the invoked method’s body.
Most of the functionalities of the Analyzer are located in the TAPAS class. In addition
to the recursive method, it contains many other methods to perform different tasks and
many attributes to store the information. Some of these class members are presented
in Figure 5.1, and to keep the scope of this thesis reasonable, we do not discuss all
these class members here.

Algorithm In addition to the columns described in Table 5.3, this class includes some other
attributes used in the application that are not stored in the database. For instance,

CHAPTER 5. DESIGN AND IMPLEMENTATION 62

the program length and the program vocabulary size which are used as algorithm
characteristics, are not stored in the database, but are calculated in the following way:
the program Length is calculated by summing the total number of operators and the
total number of operands, and the program vocabulary size is calculated by summing
the number of unique operators and the number of unique operands. Moreover, the
Algorithm class includes methods for computing other properties of an algorithm,
e.g., whether an algorithm is a recursive one, or whether it is an in-place algorithm.

The method that is used to determine whether an algorithm is recursive works as
follows. Each method of an algorithm is investigated in the order the methods appear
in the program. If a method invocation with the same amount of arguments and the
same types is found from the body of a method, the algorithm is labelled as a recursive
algorithm and its execution is terminated.

The mechanism of determining whether an algorithm is an in-place algorithm is as
follows. All methods of the algorithm are investigated in the order of their appear­
ance in the algorithm, in the same way as was described previously. When an array
definition and initialization is encountered within a method, it can indicate that an
auxiliary array is used. But the Analyzer continues its investigations to see whether
the auxiliary array is written and read as well. In other words, if the array that is
defined within the method is both written and read, the Analyzer can conclude that
the algorithm is not an in-place algorithm.

Block The attributes of this class were also introduced in the next subsection. In addition
to those attributes, this class includes some other attributes, that are not stored in the
database. For instance, the starting and ending lines of a block are also parts of the
attributes of this class. These two attributes are used for determining the block length.

The Block class also includes many methods for processing block-related issues,
among which the method for determining whether a loop is incrementing or decre­
menting. This is carried out in the following way. First, the loop counter is recog­
nized. Then the body of the loop is investigated to see whether it contains an assign­
ment statement where the value of the counter is incremented. If no such statement
is found, the false value is returned indicating that the loop is decrementing. Notice
that it is only a brief description of the functionality of this method. The method
considers many detail issues. As an example, for, while and do while loops are pro­
cessed differently. As another example, the possibility of changing the value of the
loop counter as an index of array is also considered.

Variable As is the case with other classes, the Variable class includes attributes that are
described in Table 5.3. However, here as well, there are some other attributes that are
not stored in the database. Each variable has an attribute named line, which refers
to the line number the variable was first declared. Each variable has also an attribute
named level that is used to indicate variable scope. Moreover, each variable has
two data structures: one to store its direct dependencies and one to store its indirect
dependencies.

As a variable declaration or definition is encountered in the TAPAS class, a new vari­

CHAPTER 5. DESIGN AND IMPLEMENTATION 63

able object is created storing its information such as the name, the type, the level,
the line and the block id within which it appears. If the line included only the vari­
able declaration, then after the variable is created, the next line is processed. If, on
the other hand, the variable is also assigned a value in the same line, then the right
side of the assignment statements is investigated and the appropriate action is taken
accordingly. For example, if the right side of the assignment statement is a method
invocation, the next step is to process the invoked method. If, alternatively the right
side of the assignment statement is another variable, then the variable calls its cor­
responding method to add the right side variable to the data structure that stores its
direct dependencies.

Dependency The attributes of the Dependency class are described in the next subsection.

In addition to the other class members, this class has a data structure to store all
dependencies among variables of an algorithms and a method for adding a new de­
pendency into it.

As can be seen from Figure 5.1, in addition to the aforementioned classes, the Analyzer in­
cludes classes AlgorithmCollection, BlockCollection and VariableCollection, that are used,
as their names suggest, to hold a set of algorithms, block and variables, respectively. These
classes have a data structure to store these objects and the necessary methods to manipulate
them. Using these methods, it is possible, for instance, add an object to these collections,
find an object by it name, type and scope, update an object, get all objects located in collec­
tions and examine whether these collections are empty.

For the database operation purposes the following classes are used: AlgorithmDao, Block-
Dao, VariableDao and DependencyDao. These classes include methods for saving, loading
and updating information from and to the database. Using these data access classes the
objects can be added, loaded or updated one at a time, or as a collection at the same time.

5.2.2 The Database Structure

The database consists of four tables, as Figure 5.2 shows: Algorithm, Block, Variable and
Dependency. PK and FK in the tables indicate primary key and foreign key, respectively.
We describe these tables briefly in the following.

Algorithm Table

Algorithm table contains general information about an algorithm. As can be seen from
Figure 5.2, most of the columns of the Algorithm table are characteristics of the algorithm
that are discussed in Chapter 4. Other columns of the Algorithm table are as shown in
Table 5.3.

CHAPTER 5. DESIGN AND IMPLEMENTATION 64

Block Table

The information about blocks of an algorithms are stored in the Block table. In addition
to the Algorithm id that is a foreign key in this table, the table includes, for example, the
information about a block type and length. These columns are shown in Table 5.3.

Variable Table

Variables of a program are stored in the Variable table. The Variable table includes algo­
rithm id and block id as its foreign keys. Role of variable is also stored in this table. In
addition to these, the Variable table includes other columns as shown in Table 5.3.

Dependency Table

The Dependency table stores the dependencies among variables in a program and contains
the id of two variables that have a direct or indirect dependency relationship. In addition to
these, the Dependency table includes other columns which are described in Table 5.3.

Algorithm

Algorithm
(text)

Algorithm Type Recursive
(Boolean)

lin-place
(Boolean)

Operators
(int)

Operands
(int) operators

(int)

L'niquc_
operands
(int)

statements of_code (int)P
Selected
(Boolean)

Manually

(Boolean)
(int)

Block
Algorithm
id-FK

Block id
(int) -PK

Upper block
id (int)

Type
(varchar) (Int)

I/D
(Boolean)

Length
(int)

Variable
Algorithm
id-FK

Variable
id (int) - PK

Role
(varchar) (varchar)

Type
(varchar)

ls_self-
dependent
(Boolean)

Block id
(Int) - FK

Dependency

Dependency
id (int) - PK

Dependent
variable
Id (Int) - FK

Depended
variable
id (int)

Type
(varchar)

Figure 5.2: The database tables

CHAPTER 5. DESIGN AND IMPLEMENTATION 65

The system uses MySQL 5.0 as its database. MySQL was selected because it is a widely
used, and as the vendor advertises, the world’s most popular open source database. The
other reason for choosing MySQL as the database is the author’s long experience of using

Tabic Column Description

Algorithm ID This is an auto incremented field that generates a unique id for each algorithm.

Algorithm The whole source code is also stored in the database.

Type

Type of an algorithm refers to the sorting algorithm that has been analyzed. At the moment, type
can have one of the following values: Selection sort, Insertion sort. Bubble sort. Quicksort and
Mergesort. If the system can not verify the algorithm, the value of this column would be
"Unknown".

Operators The number of total operators used in an algorithm. A Halstead’s parameter.

Operands The number of total operands used in an algorithm. A Halstead’s parameter.

E
U niqueoperators The number of total unique operators used in an algorithm. A Halstead’s parameter.

T U nique operands The number of total unique operands used in an algorithm. A Halstead’s parameter.

< Assigstatements The number of total assignment statements used in an algorithm.

Lincs_of_code The number of total code lines used in an algorithm.

McCabecomp McCabe’s cyclomatic complexity.

Selected
This Boolean type column indicates whether the algorithm is used in the process of recognition
an algorithm.

Manually verified As the name suggests, this column indicates whether the type of this algorithm is manually
verified by an instructor or it is recognized only by the system.

Version
This column refers to the version of the system that has evaluated and recognized the algorithm.
Alternatively it could refer to the instructor who has processed the algorithm either manually,
using the system or both.

Block ID This is an auto incremented field that generates a unique id for each block.

Upper block ID
This column contains the id of the upper block that encompasses this block. This column helps us
to determine the nested-sequential relationship between blocks and loops described in Chapter 4.
The upper lock id for the global block, i.e., the class in Java, is zero.

Type
This column refers to the type of the block, that is, whether the block is a global block, a loop
(and if yes, what kind of loop), a conditional or a method (and if yes, what kind of method).

s Level
This column contains information about the level of the block. The global block has a level of
zero. We can also use this column to determine the nested-sequential relationship between blocks
and loops.

I/D
The information about whether a loop is an incrementing loop or decrementing one is stored in
this column. The value is false for other kind of blocks since this information is not applicable for
those blocks.

Length The length of a block refers to the number of statements inside that block.

Variable ID This is an auto incremented field that generates a unique id for each variable.

Name This column stores the name of a variable.

T Type
The type of a variable, i.e., the information about whether the variable is an integer variable, an
array or of some other type, is stored in this column.

>

Is self-dependent
This column contains the information about whether a variable depends on itself or not. A
variable is considered to be self-dependent if it has either a direct or an indirect (or both)
dependency on itself.

u
! Dependency ID This is an auto incremented field that generates a unique id for each dependency.

i

S Type Information about whether the dependency is a direct dependency or an indirect one.

Figure 5.3: The database tables columns

CHAPTER 5. DESIGN AND IMPLEMENTATION 66

it.

5.2.3 The Dataflow

We present an example of the dataflow to describe the functionality of the Analyzer, and as
a verbal explanation of the system architecture discussed in the previous section.

The main method is located in the TAPAS class. Therefore, the Analyzer can be started
running the TAPAS class and giving a program file to it as an input. Right after the Analyzer
is started, the Interpreter module of VILLE is called and the input is passed to it as an
argument. The Interpreter reads the file in and interprets it by examining each line and
determining the corresponding index. The roles of the variables used in the source code are
also determined by the Role Analyzer module and the information of the methods used in
the program are stored. All this information is then returned to the TAPAS in an object of the
Interpreter class. In the next step, the class Algorithm is called to create an algorithm object
and examine the characteristics of algorithm, e.g., whether the algorithm is a recursive and
in-place algorithm or not. The information of algorithm is stored in the database using an
object of the AlgorithmDao class.

The next step is to determine the blocks and variables. These are investigated in a recursive
method located in the TAPAS class. The objects of blocks and variables are created and the
related characteristics of the blocks and variables are examined and stored in the databases
using the objects of BlockDao and VariableDao classes, respectively. These objects are
also added to their respective collections for the future use. Notice that each block and
variable object has to be stored in the database immediately after it is created. They cannot
be added at once after all objects are created. The reason for this is that, as was described
in the previous section, blocks and variables have a unique auto incremented id. Since each
block needs to know its upper block id, each block id must be retrieved from the database
before its inner block is created so that this id can be assigned to this just created inner
block as its upper block id. A variable id, on the other hand, is needed for determining
and storing the variable dependencies. Therefore, the variable id must be retrieved from
the database just after its creation so that it can be used to identify its dependencies. On
the contrary, all dependencies are stored at the end of the analysis, since there is no need
to know dependency id immediately after its creation. There are usually a large number of
dependencies (direct and indirect) among variables even in a small program. Moreover, as
well known, the database operations are expensive. Therefore, the way dependencies are
stored into the database could improve the efficiency.

Dependencies among variables are investigated at the same time as the analysis continues.
In addition, at the end of the analysis all dependencies among variables are processed in or­
der to update the indirect dependencies among old and recently created variables. The other
numerical characteristics, e.g., the Halstead’s metrics are computed in the same method as
they are encounterd.
After the characteristics of the algorithm are computed, the comparison of these character­
istics and those of the verified algorithms retrieved from the database starts. The Analyzer

CHAPTER 5. DESIGN AND IMPLEMENTATION 67

can decide based on this comparison, whether it recognizes the analyzed algorithm. The
process of comparison and recognizing an algorithm is described in detail in Chapter 6.

Limitations of the Analyzer

The Analyzer has also its own limitations. Part of these limitations is directly related to the
limitations of VILLE. For example, because VILLE cannot process objects, there was no
attempt made to add such ability to the Analyzer, since it is based on the indexes delivered
from the VILLE. The other part of the limitations comes from the Analyzer itself. These
limitations are due to the fact that the Analyzer was implemented primarily with common
sorting algorithms in mind. The most severe limitation is that it cannot process some of
those structures that VILLE can. As an example, the Analyzer cannot process multidimen­
sional arrays. It was implemented to support only single arrays, in addition to the Java
primitives commonly used in sorting algorithms. The Analyzer’s architecture, however,
allow it to extend its functionality easily if needed.

As the Analyzer was tested thoroughly in order to find its bugs, improve its robustness and
add supports for different syntaxes, it was not, however, possible to test it with those test
cases that caused VILLE to crash. This is because, when VILLE’s crashes, the program’s
execution is terminated before it reaches the Analyzer. Notice, however, that this only con­
cerns the syntactical issues. The functionality of the Analyzer was also test extensively,
showing high quality: it is able to analyze the discussed structures of a program and com­
pute all the aforementioned characteristics of it (except the roles of the variables, as was
discussed before).

In the next chapter, we discuss the functionality of the Analyzer more, focusing on the
process it uses to decide on the type of an algorithm it has analyzed.

Chapter 6

Results

In this chapter, we discuss the materials we used in or work and present an analysis of the
outputs of the Analyzer We divide the outputs into two groups: the numerical character­
istics and the descriptive characteristics. This division is based on, as the names suggest,
whether a characteristic is numerical or not. The numerical characteristics can be presented
by a positive integer, while descriptive characteristics cannot. Using the numerical and de­
scriptive characteristics, we developed a decision tree to recognize sorting algorithms. The
decision tree is also discussed later in this chapter.

6.1 The Process

As stated in Chapter 2, the scope of this work is limited to the following five sorting algo­
rithms: Bubble sort, Insertion sort, Selection sort, Quicksort and Mergesort. We collected
randomly a total of 51 sorting algorithms of aforementioned types for the analysis. All al­
gorithms were randomly selected from textbooks, course material on Data Structure and Al­
gorithms lectured at the Department of Computer Science and Engineering at the Helsinki
University of Technology (HUT) and other universities and from the students’ submissions
on the same course lectured in Spring 2008 at the same Department at HUT (only Insertion
sort and Quicksort).
Some of the selected algorithms, mainly those from the textbooks, were in pseudo language,
while the others were written in Java language. Each selected pseudo algorithm was im­
plemented in a Java class with the main method. Each implemented algorithm was located
within its own method, which was invoked from the main method. There were no printing
or other extra commands in the analyzed code. Notice that some implementations of Quick­
sort and Mergesort locate the whole algorithm into one single method, while the others split
it into two or more methods. For example, the partition part of a Quicksort might be located
in its own method, as well as the swap operation. In the process of analyzing, there was no
attempt made to gather these parts of an algorithm into one single method. These imple­
mentations was run by the Analyzer as such, with possible printing commands eliminated.
It should be noted, however, that because the Analyzer performs in-lining, splitting an al­

68

CHAPTER 6. RESULTS 69

gorithm into more methods has no effect on the amount of the characteristics other than
increasing the number of operators and unique operators by one, as a method invocation is
counted as an operator and an unique operator.

All algorithms were run by the Analyzer and their characteristics were stored in Microsoft
Excel. The collected characteristics were the same as shown in Table 4.1 and Figure 5.2.
The characteristics were divided into two different categories: the numerical characteris­
tics and the descriptive characteristics. The algorithms of the same type were listed in the
same sheet and the minimum, maximum and average of the numerical characteristics of
each algorithm type were calculated. A set of charts were created from the average of these
numbers and were compared with each others. For the sake of the readability and easiness of
comparison, the numerical characteristics of algorithms of each type were transferred into
two different charts, one containing the large numbers and another containing the smaller
numbers. Figure 6.1 shows the results for the numerical characteristics of the analyzed
Quicksort, Mergesort and Insertion sort. In this figure, however, all numerical character­
istics of Quicksort, Mergesort and Insertion sort are shown together in order to save the
space. It should be noted that those large numbers, which are the total number of operators,
the total number of operands, the program length and the lines of code, are divided by 10 in
Figures 6.1 to improve the readability. Notice also that the numerical characteristics shown
in the figure are average values.

All characteristics shown in Figures 6.1 are defined in Table 5.3. However, the program
length and the program vocabulary are not included in those definitions, because Table 5.3
contains only the characteristics that are stored in the database, whereas, as mentioned be­
fore, the program length and the program vocabulary are not stored in the database, but are
calculated from other parameters. Therefore, we define these characteristics in the follow­
ing again to make it easier for the reader to follow the discussion. The program length is
the sum of the total number of operators and the total number of operands, and the pro­
gram vocabulary is the sum of the number of unique operators and the number of unique
operands.

In addition to the numerical characteristics shown in Figure 6.1, the descriptive character­
istics were also evaluated for each algorithm. The evaluated descriptive characteristics are
as follows: recursive, in-place and role of the variables. In the following, we will present a
comparison of these five different algorithms in two different regards: the numerical char­
acteristics and the descriptive characteristics.

It should be noticed that all numerical and descriptive characteristics are computed auto­
matically by the Analyzer. However, because the role analyzer integrated to VILLE did not
generate the roles accurately enough, as described in Chapter 5, we had to evaluate the roles
of the variables manually.

6.1.1 The Numerical Characteristics

After generating the numerical characteristics for the five different algorithms, we analyzed
the results. The analysis showed that these five algorithms clearly fall into two groups, as

CHAPTER 6. RESULTS 70

expected: Bubble sort, Insertion sort and Selection sort, on one hand and Quicksort and
Mergesort, on the other hand. As the algorithms belonging to the former group are far
smaller in size than the algorithms belonging to the latter group, they can be distinguished
easily. This can be seen from Figures 6.1. In this figure, the numerical characteristics
of Quicksort, Mergesort and Insertion sort are depicted together to make the comparison
easier. Insertion sort is selected as a representative of the former group. Notice however,
that instead of Insertion sort we could have shown any other algorithm of this group in
the figure, i.e., Selection sort or Bubble sort, since as is described in the following, the
numerical characteristics of these three algorithms are very close.

The algorithms of the first group, i.e., Bubble sort, Insertion sort and Selection sort are
so close in the amount of their numerical characteristics (with the maximum difference of
6 units in program length), that it is not practical to try to distinguish them using these
characteristics. The numerical characteristics of these algorithms are shown in Figure 6.2.
It should be noted that in Figure 6.2, like it was the case in Figure 6.1, the total number
of operators, the total number of operands, the program length and the lines of code are
divided by 10 in order to improve readability. The numerical characteristics shown in the
figure are average values, as is the case in Figures 6.1.

Figure 6.1: The numerical characteristics of Quicksort, Mergesort and Insertion sort. These
characteristics are described in Table 5.3. The number of operators, the number of operands,
the program length and the lines of code are divided by 10. The values are average values

CHAPTER 6. RESULTS 71

Quicksort and Mergesort differ from each other with regard to the numerical characteristics
clearly much more than the algorithms of the other group do. As can be seen from Fig­
ure 6.1, there a relatively big difference between Quicksort and Mergesort especially with
regard to the number of operators, the number of operands and program length. However, it
is still not quite safe to consider these differences as distinguishing factors. Relying only on
these differences in the process of analyzing Quicksort and Mergesort can result in a wrong
conclusion if the recognizable algorithm is implemented in a idiosyncratic way.

Instead of using the numerical characteristics to compare the algorithms within these two
groups, we can, however, use them to compare the algorithms between these two groups.
This is because, as can be seen from Figure 6.1, the difference among the algorithms of
the two groups is much bigger than the difference among the algorithms within these two
groups, with regard to the numerical characteristic. For example, the numerical character­
istic for Mergesort in the order of appearance in Figure 6.1 are 120, 115, 13, 7, 235, 20, 18,
40, 7, 8, 3 and 7, whereas these numerical characteristic for Insertion sort are 49, 53, 5, 3,
101, 8, 10, 17, 5, 5, 2 and 5, respectively. In other words, it is very unlikely that a Quicksort
or a Mergesort algorithm could be implemented using only these amount of, e.g., operators,
operands or blocks.

Figure 6.2: The numerical characteristics of Selection, Bubble and Insertion sort. These
characteristics are described in Table 5.3. The number of operators, the number of operands,
the program length and the lines of code are divided by 10. The values are average values

CHAPTER 6. RESULTS 72

In the following, we describe how the numerical characteristics can be used to reject or
accept algorithms as known sorting algorithms by the Analyzer. In addition, a discussion
on how the knowledge base of the analyzer can be extended during its usage is presented.

Extending the knowledge base of the Analyzer

The numerical characteristics can be used to by the analyzer to decide whether an algorithm
could possibly be one of the algorithms that it knows.

Figures 6.3 show the minimum and the maximum values of the numerical characteristics
of all five analyzed algorithms. The upper figure shows the minimum values and the lower
figure shows the maximum values. The Analyzer has all these values in its database and can
use them in the process of analyzing an algorithm. After the Analyzer has analyzed the al­
gorithm, it compares each of its numerical characteristics to those minimum and maximum
values of the corresponding numerical characteristics retrieved from its database, in turn.
If one or more numerical characteristic of the analyzed algorithm is below the minimum
value obtained from the database for that particular numerical characteristic or above the
maximum value obtained from the database for the characteristic, the algorithm is labeled
as not belonging to any of these five types.

As were previously discussed, at the present moment, there are 51 different versions of
these five algorithms in the database of the Analyzer. Each of these algorithms has its name
in the Type column described in Table 5.3. When the Analyzer recognizes an algorithm as
a particular type, it assigns the appropriate value to the Type column of the algorithm and
stores it into the database. If, on the other hand, the algorithm is not recognized by the
Analyzer, its Type column gets a value of "Unknown". This way, it is possible to manually
examine the algorithm from the database and verify the decision made by the Analyzer just
by searching the algorithm from the database with Unknown type. In these situations, one
of the two following cases can be in question: true negative or false negative. The former
scenario indicates that the Analyzer has made an accurate decision, i.e., the algorithm is
correctly rejected and it does not belong to any category known to the Analyzer. The latter
scenario, which is more interesting, indicates that the algorithm does indeed belong to one
of the categories and thus, is mistakenly rejected. In these cases the type of the algorithm
can be changed from "Unknown" to the type it actually belongs to. The knowledge base of
the Analyzer can be extended this way. Next time, when performing the comparisons, the
Analyzer also uses the numerical characteristics of the algorithm that was manually labeled
to the correct type, and therefore, it can recognize the similar algorithm as that particular
type.

6.1.2 The Descriptive Characteristics

The descriptive characteristics of the algorithms analyzed in this work were the following:
whether the algorithm is a recursive one, whether the algorithm is an in-place one and the
roles of variables used in the algorithm. The descriptive characteristics appear to be very
useful and distinguishing characteristics. In the following, we will describe the way these

CHAPTER 6. RESULTS 73

characteristics can help in recognition of the algorithms. First, we will discuss the different
implementations of the same type, and after this, we will explain the case of distinguishing
among different types.

The descriptive characteristics appear to be very similar in different implementation of the
same algorithm. We will explain this separately for each of the five algorithms is the fol­
lowing. Note that since there is an array to be sorted in all examined algorithms, the role
organizer appears in all of them and, therefore, is not much informative for our purpose.
Thus, it is omitted from the following discussion.

Quicksort

All studied Quicksorts are recursive and in-place. The following roles appear together
almost in all of these algorithms: stepper, fixed value and temporary. There are only two
algorithms that do not have these roles all together. These roles are actually the only roles
that appear in examined Quicksort algorithms. Moreover, the role most-wanted holder
appears in two algorithms. Note that variables appearing in walker role shown in Table 4.1
are eliminated by Analyzer as the result of in-lining for the examined Quicksorts.

Mergesort

All examined Mergesorts are recursive and, except one, none of them are in-place, i.e.,
all of them need an auxiliary array to performing the sorting, except one. The variables
in all algorithms appear only in stepper and fixed value roles. As mentioned in the case of
Quicksorts, the variables playing walker role shown in Table 4.1 are eliminated by Analyzer
as the result of in-lining for the examined Mergesorts.

Selection sort

As expected, none of the Selection sorts is recursive, and all of them are in-place. The
following three roles appear in all of them: stepper, temporary and most-wanted holder.
The most-wanted holder role is a unique feature of Selection sort among the three algorithm
types of this group, and as we will see in the next section, it plays an important role in
distinguishing Selection sort from the other two.

Insertion sort

Again, as expected, all studied Insertion sorts are non-recursive and in-place. The roles
stepper and temporary are the only roles that variables play in all examined algorithm.
There is an extra variable appearing in fixed value role only in one of the algorithms.

CHAPTER 6. RESULTS 74

Bubble sort

As is the case for Selection and Insertion sorts, all examined Bubble sorts are non-recursive
and in-place algorithms. The variables in all algorithms appear only in stepper and tempo­
rary roles.

Now that different implementations of the same type are discussed, it is easy to notice that
descriptive characteristics really are quite reliable distinguishing factors for the five sorting
algorithm. It turns out that perhaps the most helpful and important distinguishing factor is
the role of variables used in the algorithms. Since the role of variables is the factor that our
work is based on, this looks like a good result with regard to our work. As we will see in
the next section, however, the roles of variables are not enough by themselves to recognize
algorithms. A combination of roles of variables and the other characteristics is needed.

In the next section, we present an overview of our method to recognize the five algorithms
examined in this work and discuss a decision tree that illustrates how the method can be
applied.

6.2 The Decision Tree

In this section we make use of a combination of the numerical and descriptive character­
istics to find the most reliable and distinguishing method that can be used in recognizing
algorithms using these characteristics.

At the moment that we were analyzing the results, there was not available an accurately
functioning role analyzer. Therefore, the roles of all variables in all 51 algorithms were
evaluated manually. All roles discussed in the following are, thus determined manually.

By analyzing the information we gathered from all five types of algorithms, we developed
a decision tree shown in Figure 6.4. The idea is that the closer we are to the root of the
tree, the more reliable the characteristics used for distinguishing among the algorithms are.
For example, in the root we have the characteristic of whether the recognizable algorithm
is a recursive one. This is a very reliable characteristic since Quicksort and Mergesort
are always implemented in a recursive way, and the other three algorithms, Selection sort,
Insertion sort and Bubble sort are not. Of course one can question the using of the word
always in this context arguing that since every recursive algorithm can be converted to a
non-recursive one and vice versa, there is no certainty here and our assumption can not
be backed. Although this is a valid criticism, we can answer to it by arguing that in this
sense, certainty is a relative concept, like many other concepts. Reasoning is always based
on some assumption. The question is how reliable that assumption is. We consider it very
rare that someone implements a, say Insertion sort in a recursive way or a Quicksort in a
non-recursive way.

As Figure 6.4 shows, we start the process of recognizing an algorithm by investigating
whether it is a recursive algorithm or not. If it is not, we can assume that the sorting al­
gorithm is one of the three non-recursive algorithms, namely, Selection sort, Insertion sort
or Bubble sort. In the next step, we examine whether the numerical characteristics of the

CHAPTER 6. RESULTS 75

algorithm are within the permitted limits. Permitted limits are, as was discussed in the pre­
vious section, values that are bigger than minimum values retrieved from the database and
values that are smaller than maximum values retrieved from the database. These minimum
and maximum values for the five studied algorithms are shown in Figure 6.3. If it turns
out that the amount of one or more numerical characteristics of the algorithm are bigger
than the biggest amount that exists in the Analyzer knowledge base, then we can conclude
that the algorithm in question cannot be of the type known to the analyzer. As a result, the
algorithm is rejected and labeled as unknown without any further examination. An error
message is given to the user and the analyzing process is terminated. If the numerical char­
acteristics of the algorithm are within the permitted level, the process continues. The next
step is to investigate whether the algorithm include a variable appearing in the most-wanted
holder role. As we explained in the previous section, among these three algorithms, only
Selection sort include this role, since it works so that the smallest (or the biggest) element
is selected from the array to be sorted, and added to an appropriate place (see the definition
of most-wanted holder role in Chapter 4). Therefore, if we find the most-wanted holder role
in the algorithm, we can conclude that it is a Selection sort. If the algorithm does not in­
clude most-wanted holder role, we continue the investigation to see whether the outer loop
is incrementing and inner one decrementing. As well known, all of these three algorithms
contain two nested loops. In our analysis, the outer loops in all Insertion sorts were incre­
menting and the inner loops were decrementing. On the other hand, in the case of Bubble
sorts there was only one implementation (namely Clifford A. Shaffer’s textbook) with this
kind of loops. So if the outer loop is incrementing and the inner one decrementing, we
continue our investigation. The last step in decision tree is to examine whether the counter
of inner loop gets its first value from the counter of the outer loop. This is the case for all
examined Insertion sort, but never occurs in the case of the Bubble sorts. In all examined
Bubble sorts, the counter of inner loop is always initialized to 0 or 1, or gets its first value
from the length of the array to be sorted.

The other branch from the root is the case of recursive sorting algorithms that, in our study,
are Quicksort and Mergesort. At the first step, we examine the numerical characteristics
in the same way that was discussed above for the algorithms of the other group, and if the
algorithm appears not to fit within the permitted limit, an error message is given printing out
the numerical characteristics that do not fit and the information about whether the analyzed
algorithm is recursive or not. If the numerical characteristics fit within the permitted level,
the process goes ahead to the next step. The next investigation to distinguish between
Quicksort and Mergesort is to see whether the algorithm includes a variable appearing in
temporary role. As was described in the previous section, all examined Quicksorts include
this role, but none of the examined Mergesorts does. It is somehow expected: Quicksort
includes a swap operation, but in Mergesort, since the merging is carried out, there is no
need for swapping. Temporary role appears often in swap operations (see the definition of
temporary role in Chapter 4). Therefore, if an algorithm does not include the temporary
role, we can conclude that it must be a Mergesort. But if it does, we can continue the
investigation to check the other descriptive characteristics instead of just concluding that
the algorithm is a Quicksort. This makes the system more precise, tolerant and robust in
the cases where an idiosyncratically implemented Mergesort happens to have a temporary

CHAPTER 6. RESULTS 76

role. The next step is to examine whether the algorithm is in-place. As commonly known,
Mergesort typically needs an auxiliary array to carry out the sorting, while Quicksort does
not. Because we encountered with one case where a Mergesort was implemented without
using an auxiliary array, we consider it possible that although the algorithm is an in-place
one, it still might be a Mergesort. The next step will ensure us. In the next step, we examine
whether the algorithm is a tail recursive. All examined Quicksorts are tail recursive, while
none of examined Mergesort is.

In the decision tree, the numerical characteristics are used to stop the recognition process if
the algorithm does not appear to fit within the permitted limit. The reason way the numeri­
cal characteristics are examined after the examination of whether the algorithm is recursive
or not, is that this allows us to retrieve only the numerical characteristics of the recursive,
or non-recursive algorithms from the database, since we know this in this step. It results in
considerable efficiency improvement, since we do not need to retrieve the information of
all algorithms from the database. It is enough to retrieve the information of half of the algo­
rithms from the database, if we assume that fifty percent of the algorithms in the database
are recursive, and other fifty percent are not. This could mean a noticeable improvement
in efficiency if the database contains a large number of algorithms. The other advantage of
investigating the numerical characteristics in this step is that this makes the Analyzer able
to generate more descriptive error messages. The Analyzer can tell to the user whether the
rejected algorithm is a recursive or non-recursive one.

The error message that the Analyzer gives to the use is informative. If one or more of
these numerical characteristics are above or below the permitted limits, the error message
includes the precise information about it. In addition to the information that the error mes­
sage gives about the algorithm (recursive or not), it also include the particular characteris­
tic/characteristics that is/are not within the permitted range. The information about whether
that/those different characteristic/characteristics is/are above the permitted limit or below it
is also included in the error message. For example, when the system was tested by a hybrid
algorithm consisting of Quicksort and Insertion sort, it gave the following error message:
"The algorithm seems to be a recursive algorithm that has the following characteristics out
of the permitted limit: Program vocabulary, Lines of code, McCabe complexity and Number
of blocks are above the permitted limit".

The decision tree appeared to work well with the algorithm we analyzed in this study. It
is clear, however, that the decision tree should be extended to include other algorithms as
well. Other reliable factors must be devised and used to make the results more convincing
and the method more extensive. We will discuss this in the next chapter.

CHAPTER 6. RESULTS 77

18

16-^

O Merge« «1

■ Insertion sort

□ Selection sort

■ Bubble sort

■ Quicksort

□ Merges ort

■ Insertion sort

□ Selection sort

■ Bubble sort

Figure 6.3: The numerical characteristics of Quicksort, Mergesort, Selection, Bubble and
Insertion sort. These characteristics are described in Table 5.3. The upper figure shows the
minimum values and the lower figure shows the maximum values

CHAPTER 6. RESULTS 78

Recursive algorithm?

Numeric characteristics Numeric characteristics
within permitted limit? within permitted limit?

Includes temporary role? Error Includes most-wanted Error
holder role?

In-place? Mcrgcsort

Tail recursive? Mergesort

Quicksort Mergesort

Outer loop incrementing,
inner decrementing?

Yes/ S. No

Inner loop counter initialized Bubble sort
to outer loop counter's value?

Insertion sort Bubble sort

Figure 6.4: Decision tree for determining the type of an sorting algorithm

Chapter 7

Conclusion and Future Work

In this chapter, we present a general discussion on our study from different points of view.
Issues related to the reliability of the system are also discussed explaining a set of tests that
were used to determine the Analyzer’s ability to recognize the sorting algorithms. We also
present some ideas and views about how the study could be continued.

7.1 Discussion

Although the objectives and the requirements set in Chapter 1 are met, the Analyzer could
not be tested thoroughly with other kinds of algorithms due to the lack of a properly working
role analyzer. This was a great disappointment and resulted in the fact that the reliability
of the result is yet to be more investigated. Despite this, the Analyzer is able to distinguish
and classify the sorting algorithms analyzed in this work and meet all those requirements
discussed in Chapter 1.

In this section, we discuss the functionality of the Analyzer by explaining how the reliability
of the decisions made by the Analyzer was tested using different test cases. A discussion
on the possible applications of the system is also presented.

7.1.1 Reliability

A set of different algorithms were run by the Analyzer to test its functionality and to ex­
amine how accurately and precisely it makes its decisions. The algorithms were randomly
selected mainly from the students’ submissions on Data Structure and Algorithms lectured
in Spring 2008 at the Department of Computer Science and Engineering at the Helsinki Uni­
versity of Technology. These algorithms included hybrid algorithm consisting of Quicksort
and Insertion sort, graph algorithms and some algorithms submitted by the students on ar­
bitrary precision calculator exercises. In addition, some other types of sorting algorithms
were used as test materials, as will be explained in the following.

The tests were designed to cover different cases. We divide the tests into four categories:

79

CHAPTER 7. CONCLUSION AND FUTURE WORK 80

true positive, true negative, false positive and false negative. This division allows us to
cover all aspects of the behaviour of the Analyzer. The true positive category was not
tested, since it has been tested already by the five sorting algorithms analyzed in this work as
described in the previous chapter. In order to cover all these categories, some manipulated
versions of the five sorting algorithms were used as well. These are discussed separately in
the following. It should be noted that the roles of variables was not part of the tests, because
as described previously, the role analyzer integrated into VILLE did not generate the roles
precisely. Notice also, that a part of these collected test files could not be tested mostly
because they contained such structures that was not supported, such as switch statement
(see the discussion on limitation of VIILLE from Chapter 5).

True Negative Cases

When Shell sort algorithm was given as input to the system, the Analyzer gave the following
error message: "The algorithm seems to be a non-recursive algorithm that has the following
characteristics out of the permitted limit: program length and the number of the loops are
above the permitted". It is a correct error message, since the Shell sort code was longer and
had three for loops.

Many algorithms that were tested fall into this category. For example, graph algorithms
and arbitrary precision calculator exercises are not recognized by the Analyzer as one of
the five sorting algorithms, since they are much longer algorithms. In these cases, the error
messages include almost all numerical characteristics as being above the permitted limits.

Many different versions of Heapsort were also tested resulted in correctly rejecting the al­
gorithm. The error message was as follows: "The algorithm seems to be a non-recursive
algorithm that has the following characteristics out of the permitted limit: Number of op­
erators, Number of operands, Number of unique operators, Number of unique operands,
Program length, Program vocabulary, Line of code, Assignment statement, McCabe com­
plexity, Number of blocks and Number of loops are above the permitted". In other words,
the error message includes almost all numerical characteristics except the number of vari­
ables. The numerical characteristics for the tested Heapsort that resulted in this error mes­
sage were as follows: 98, 94, 12, 6, 192, 18, 15, 36, 7, 8, 3 and 6. Note that the order is
the same as the order in Figure 6.2 presented in Chapter 6. As can be seen from Figure 6.2,
all numerical characteristics were above the maximum amount of those non-recursive sort­
ing algorithm shown in the figure except the number of variable, which is as same as the
maximum amount in the figure.

False Positive Cases

Due to the fact that the roles generated to the Analyzer are not precise, the false positive
cases did not occur. That is, although the numerical characteristics could have been adjusted
to fit into the limited range, because the roles did not happen to be those the Analyzer uses
in its conclusion (see Figure 6.4 presented in Chapter 6), none of tested algorithms that do
not actually belong to the analyzed sorting algorithms was falsely labelled as such. For

CHAPTER 7. CONCLUSION AND FUTURE WORK 81

example, the Heapsort described previously in connection with the true negative cases, was
changed so that no error message generated with regard to its numerical characteristics.
However, the algorithm was still labelled as "Unknown", because it did not include the
appropriate roles to be recognized as a Selection sort, nor it did meet the requirements to be
recognized as an Insertion or a Bubble sort.

One of the other tests was carried out by adding extra commands to the program that re­
cursively compute Fibonacci numbers, so that the numerical characteristics fit in the per­
mitted range of recursive algorithms, and make the Analyzer believe that a the algorithm
is a recursive sorting algorithms. The type of the algorithm was labelled, however, still as
"Unknown", since other requirements were not met.

False Negative Cases

It was easy to deceive the Analyzer to make it produce false negative cases. Simply by
adding some extra and irrelevant code, for example a swap operation, the Analyzer can be
made believe that the algorithm is not the type it actually is. This was tested by chang­
ing many algorithms that the Analyzer knows, resulted in rejecting the algorithm. As an
example for non-recursive algorithms, an extra for loop with empty body was added to an
Insertion sort, resulting in an error message that the algorithm is a non-recursive algorithm
that has the number of loop above the permitted level. The error message comes from the
fact that all three analyzed non-recursive algorithm that exist in the Analyzer knowledge
base are implemented using only two loops. Three lines of swap code were added to a
Selection sort, as another test of this category. The tested Selection sort was the algorithm
that has the maximum of the numerical characteristics depicted in Figure 6.2 in Chapter 6.
The results was an error message telling that all numerical characteristics were above the
permitted limit except the number of loops, which was not changed.

As another example for recursive algorithms, an extra for loop with empty body was added
to an Mergesort, that has the maximum values shown in Figure 6.1, resulting in an error
message that the algorithm is a recursive algorithm that has the number of operators and the
number of operands above the permitted level, among others.

These kinds of false negative occur as a result of a bad coding style or idiosyncratically
written code. We will discuss this later in more detail. The analyzer is made to recognize
sorting algorithms that are implemented with good coding style. It is not tolerant to the
changes that result from using an algorithm in an application. As was discussed in the
previous chapter, those algorithms that are mistakenly labelled as unknown can be corrected
manually in the database. This results in the fact that the Analyzer will learn from its
mistakes and will extend its knowledge base.

7.1.2 Evaluation

The most important result we have achieved is perhaps the fact that the role of variables can
indeed be applied in automatic program recognition tasks. Although we can not generalize

CHAPTER 7. CONCLUSION AND FUTURE WORK 82

this to other algorithms, we can argue that at least in the study of five types of sorting
algorithms the role of variables played a crucial role.

It is obvious, however, that the role of variables is not alone enough to distinguish algo­
rithms for the two following reasons. Firstly, two different algorithms may have exactly
the same amount of variables with the same roles, e.g., Insertion sort and Bubble sort, as
were discussed in Chapter 6. Secondly, the amount and roles of variables might be different
when an algorithm is used in an application. This can cause the system to make wrong de­
cisions. In other word, other distinguishing factors are needed. For example, as the results
of our work showed, investigation of loops can offer a unique and distinguishing way to
perform the task. Overall, we can cautiously claim that perhaps there exists a new method
to automatically recognize and maybe comprehend programs based on static analysis that
has not been studied or has not been presented in the literature yet.

Argument can be made about whether the numerical characteristics are more reliable as dis­
tinguishing factors than descriptive characteristics. Although it is not easy to give an exact
answer to this question, the following can be argued in this regard. As was discussed in the
previous chapter, it is difficult to distinguish the analyzed sorting algorithms using only the
numerical characteristics, as these characteristics are, especially among the non-recursive
algorithms, very similar (see Figure 6.2). Therefore, the numerical characteristics can be
best used in eliminating algorithms that do not fall within the range of those algorithms that
exist in the Analyzer knowledge base. However, it is well possible that false negative and
false positive errors occur if an algorithm is implemented in an idiosyncratic or different
way, as we explained previously. The descriptive characteristics, on the other hand, are
perhaps more reliable in this sense. For example, it is possible to implement a Quicksort in
a non-recursive way, but how often can this be the case in real life?

One can criticize our method arguing that, as Ben-Ari and Sajaniemi argue [7], the role of
variables is a cognitive concept. Algorithms, on the other hand, are not in the same sense
a cognitive concept, since they have a well-known type and functionality. The argument
can be made about whether a variable has a role of temporary or fixed value, but the same
argument can not be made about whether a sorting algorithm is, say Quicksort or not. Hav­
ing said this, can we base the recognition or understanding of an algorithm on a cognitive
concept in a reliable way? Let us assume the following scenario: on one hand, it is accept­
able that two different roles, X and Y, can be assigned to a variable by two different people,
and on the other hand, an algorithm is recognized assuming that the role of that particular
variable is X. The question is, how reliable the conclusion is? As a concrete example, we
can discuss the process of recognition a Selection sort. As can be seen from the decision
tree presented in Figure 6.4, the first step in the process of recognizing a non-recursive al­
gorithm is based on whether the algorithm includes a variable appearing in the most-wanted
holder role. If it does, then we conclude that it is a Selection sort. In order to be able to con­
clude this, we must trust that a variable that appears in this role cannot be regarded having
another role in the same location of the code. If we use a role analyzer developed by a per­
son who believes that the most-wanted holder cannot be assigned to that particular variable
in Selection sort, and it has actually, for instance, a temporary role, then our decision tree
does not work properly anymore. The assumption of our approach is that, a characteristic

CHAPTER 7. CONCLUSION AND FUTURE WORK 83

used in recognizing an algorithm is both distinguishing and unambiguous. According to the
definition of the most-wanted holder role presented in Chapter 4, we believe that, however,
that the particular variable in Selection sort can only be assigned a most-wanted holder
role, and not any other role. These kinds of questions should also be further researched and
considered in the future work.

7.1.3 Applications

Perhaps the most useful application of the system is verifying students’ submissions. As
stated before, there are many large size courses lectured at universities, where students are
required to submit a number of exercises in order to complete the course. The system can
be used to help instructors to verify the correctness of the type of the submission. As one
concrete example, in order to complete a course on Data Structure and Algorithms, the
students must submit many sorting algorithms. The system can be used to verify the type of
the algorithm that a student is supposed to submit. It is also possible to develop the system
to provide the students with detailed feedback about their submissions. As an example, if
a submission resembles an algorithm from a textbook, or if it differs from it in a particular
way, the student can be noticed about it. The system, at the present time, does not, however,
support these kinds of functionality, but these can be integrated into it.

It must be noticed that the system cannot make decisions about whether an algorithm works
accurately or whether it contains bugs. This was not a part of requirements in the first place.
The system can only inform the user, based on its knowledge base, what type of the sorting
algorithms the recognizable algorithms looks like. It is very difficult, if not impossible,
to verify the accuracy of an algorithm using static analysis. Although some tools try to
examine the correctness of programs by static analysis, the results are by no means thorough
and reliable. As an example, PAT, described in Chapter 3, is able to detect a wrong order in
a swap operation using the swap plan defined in its knowledge base. This is almost the best
what a static program analysis tool can do in order to verify the correctness of a program. It
is obvious that this is far away from verifying the correctness of, for example, a Quicksort.
In order to examine the accuracy of an algorithm in a reliable way, a dynamic analysis is
needed. Therefore, it can be claimed that only by using a hybrid analysis that includes both
static and dynamic analysis, a tool could perform both tasks: understanding or classifying
an algorithm and verifying its accuracy.

Moreover, the assumption in our study is that the input algorithm is coded in a sensible
way and according to common and well-established coding conventions. If an algorithm
is implemented in an odd way using, for example, a lot of unnecessary variables or state­
ments, it may well be that, as we discussed previously in connection to the reliability of the
system, the system does not recognize it as being a particular algorithm, even if it might
be, and vice versa. The system is not equipped by mechanism to detect the cheatings, like
some plagiarism detection systems do. As a matter of fact, as we mentioned in Chapter 3,
knowledge-based program understanding approaches have been criticized for the same lim­
itation.

CHAPTER 7. CONCLUSION AND FUTURE WORK 84

7.2 What Is Next?

Although the results we obtained have not been applied to other algorithms and their re­
liability, certainty and generalizability remains yet to be examined and tested further, they
were, however, promising enough to keep us encouraged to continue the research on the
subject.

In the future, a reliable role analyzer is needed. It is essential to our research. The VILLE
system has to be improved also. As was mentioned in Chapter 5, VILLE is indeed being
developed constantly.

In the following, we present some methods that can be used to confirm the results and
discuss some ideas that can be applied in the future work. These are left to be done later, as
they are beyond the scope of this work.

7.2.1 Further Research

Some ideas and suggestions for the future work are present in the following. Notice that
these suggestions are presented in a general manner, and their usefulness should be carefully
studied before applying.

In the future, more test materials are needed make us able to perform precise calibration.
Applying calibration methods can help the system to handle the false negative cases dis­
cussed in the previous section.

Each algorithm with its characteristics can be considered to belong to a particular popula­
tion. We can test the algorithms using, e.g. SPSS to see whether they belong to the same
population and if not, by what p-value they differ. A appropriate test for our purpose can be
chi-square, for instance.

Clustering can be used to classify the algorithms according to their characteristics.

We should also investigate the possibility of using data mining techniques to see whether it
can lead to results.

To evaluate the accuracy and reliability of the results, all appropriate methods, including
aforementioned methods can be applied to examine whether an algorithm is of a particular
type. If all these methods confirm the result, we can be convinced that results are correct.
Alternatively, we can accept the results based on whether the majority of these methods
confirmed that the algorithm indeed belongs to that particular population.

The study should be extended to include other well-known algorithms. In the future work, it
should be investigated, whether the role of variables and other characteristics can be applied
to recognize other algorithms, as well. In addition, more material for analyzing should be
collected.

The Analyzer should be developed to be able to detect especially false positive and false
negative cases better. The Analyzer should provide the user with more detailed information
and tell him, for example, to what extent a rejected algorithm differs from the category that

CHAPTER 7. CONCLUSION AND FUTURE WORK 85

it is near to. It should also be considered to put the different characteristics into order ac­
cording to their importance and reliability in recognition process. It could be done by giving
a particular value to each characteristic. Moreover, the tolerance of different characteristics
should be different according to how critical a particular characteristic is considered to be.

Bibliography

[1] Ahtiainen A., S. Surakka, and Rahikainen M. Plaggie: Gnu-licensed source code pla­
giarism detection engine for java exercises. In Proc. of the 6th Baltic Sea Conference
on Computing Education Research, Uppsala, Sweden, pages 141-142, 2006.

[2] Kirsti M. Ala-Mutka. A survey of automated assessment approaches for program­
ming assignments. In Computer Science Education, Vol. 15, No. 2, pages 83-102.
Routledge, part of the Taylor and Francis Group, 2005.

[3] R. Arnold. Software Reengineering. IEEE Press, 1992.

[4] B.S. Baker. On finding duplication and near-duplication in large software systems. In
Second Working Conference on Reverse Engineering, pages 86-95. IEEE, 1995.

[5] Y. Bar-Hillel, M. Perles, and E. Shamir. On Formal Properties of simple Phrase
Structure Grammaras. Zeit. Phonetik, Sprachwiss. Kommunikationsforsch. 14, 1961.

[6] Hamid Abdul Basil and Stan Jarzabek. Detecting higher-level similarity patterns in
programs. In Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 156-165. ACM, 2005.

[7] Mordechai Ben-Ari and Jorma Sajaniemi. Roles of variables as seen by CS educators,
volume 36, pages 52-56, New York, NY, USA, 2004. ACM Press.

[8] H.L. Berghel and D.L. Sallach. Measurements of program similarity in identical task
environments. In ACM SIGPLAN Notices archive, Volume 19, Issue 8, pages 65-76.
ACM Press, 1984.

[9] Ted J. Biggerstaff. Design recovery for maintenance and reuse. In Computer, Volume
22, Issue 7, pages 36-49. IEEE, 1989.

[10] Ilene Bumstein and Katherine Roberson. Automated chunking to support program
comprehension. In 5th International Workshop on Program Comprehension (WPC
’97), pages 40-49. IEEE, 1997.

[11] Ilene Bumstein, Katherine Roberson, Floyd Saner, Abdul Mirza, and Abdallah
Tubaishat. A role for chunking and fuzzy reasoning in a program comprehension and

86

BIBLIOGRAPHY 87

debugging tool. In 9th International Conference on Tools with Artificial Intelligence
(1CTAI '97), pages 102-109. IEEE, 1997.

[12] Irene Bumstein and Floyd Saner. An application of fuzzy reasoning to support auto­
mated program comprehension. In Proceedings of Seventh International Workshop on
Program Comprehension, 1999., pages 66-73. IEEE, 1999.

[13] J. Carter, J. English, K. Ala-Mutka, M. Dick, W. Fone, U. Fuller, and J. Sheard.
ITICSE working group report: How shall we assess this? SIGCSE Bulletin,
35(4): 107-123, 2003.

[14] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery:
a taxonomy. In IEEE Software, Volume: 7, Issue: 1, pages 13-17. IEEE, 1990.

[15] Richard Clayton, Spencer Rugaber, Lyman Taylor, and Linda Wills. A case study
of domain-based program understanding. In 5th International Workshop on Program
Comprehension, pages 102-110. IEEE, 1997.

[16] Paul Clough. Old and new challenges in automatic plagiarism detection. WWW site
at http://ir.shef.ac.uk/cloughie/papers/pas_plagiarism.pdf/.

[17] Ourston D. Program recognition. In IEEE Expert, Volume: 4, Issue: 4, Winter 1989,
pages 36-49. IEEE, 1989.

[18] John L. Donaldson, Ann-Marie Lancaster, and Paula H. Sposato. A plagiarism detec­
tion system. In Proceedings of the twelfth SIGCSE technical symposium on Computer
science education, pages 21-25. ACM, 1981.

[19] Bruce S. Elenbogen and Naeem Seliya. Detecting outsourced student programming
assignments. In Journal of Computing Sciences in Colleges, pages 50-57. ACM, 2007.

[20] Johnson W.L. Erdem A. and Marsella S. Task oriented software understanding. In
Proceedings. 13th IEEE International Conference on Automated Software Engineer­
ing, pages 230-239. IEEE, 1998.

[21] David Gitchell and Nicholas Tran. Sim: a utility for detecting similarity in computer
programs. In The proceedings of the thirtieth SIGCSE technical symposium on Com­
puter science education, pages 266-270. ACM, 1999.

[22] Sam Grier. A tool that detects plagiarism in pascal programs. In Proceedings of the
twelfth SIGCSE technical symposium on Computer science education, pages 15-20.
ACM, 1981.

[23] N.K. Gupta and R.E. Seviora. An expert system approach to real-time system debug­
ging. In Proc. First Conf. Artificial Intelligence Applications, CS Press, Los Alamitos,
Calif, 1984, pages 336-343. IEEE, 1984.

[24] Stephen h. Edwards. Improving student performance by evaluating how well students
test their own programs. In ACM Journal of Educational Resources in Computing,
Vol. 3, No. 3, Article No. I, September 2003. ACM, 2003.

BIBLIOGRAPHY 88

[25] M.T. Harandi and J.Q. Ning. Knowledge-based program analysis. Software IEEE,
7(4):74-81, January 1990.

[26] David Harel and Yishai Feldman. Algorithmics The Spirit of Computing. Addison-
Wesley, 2004.

[27] Mary Jean Harrold and Brian Malloy. A unified interprocedural program represen­
tation for a maintenance environment. In IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL 19, NO. 6, pages 584-593. IEEE. 1993.

[28] Colin Higgins, Pavlos Symeonidis, and Athanasios Tsintsifas. The marking system
for CourseMaster. In Proceedings of the 7th annual conference on Innovation and
Technology in Computer Science Education, pages 46-50. ACM Press, 2002.

[29] Vesa Hirvisalo. Using Static Program Analysis to Compile Fast Cache Simulators.
Phd thesis, Department of Computer Science and Engineering, Helsinki University of
Technology, Finland, 2004. Available online at http://lib.tkk.fi/Diss/2004/
isbn9512270137/isbn9512270137.pdf.

[30] Lester J. Holtzblatt, Richard L. Piazza, Howard B. Reubenstein, Susan N. Roberts, and
David R. Harris. Design recovery for distributed systems. In IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, VOL. 23, NO. 7, pages 461^472. IEEE, 1997.

[31] D. Jackson and M. Usher. Grading student programs using ASSYST. In Proceedings
of 28th ACM SIGCSE Symposium on Computer Science Education, pages 335-339,
1997.

[32] Jeong-Hoon Ji, Gyun Woo, and Hwan-Gue Cho. A source code linearization tech­
nique for detecting plagiarized programs. In Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer science education (ITiCSE’07),
pages 73-77. ACM, 2007.

[33] W.L. Johnson and Soloway E. Proust: Knowledge-based program understanding. In
IEEE Transactions on Software Engineering, Volume SE-11, Issue 3, March 1985,
pages 267-275. IEEE, 1984.

[34] J.K. Joiner, W.T. Tsai, X.P. Chen, S. Subramanian, J. Sun, and H. Gandamaneni.
Data-centered program understanding. In Proceedings of International Conference
on Software Maintenance, pages 272-281. IEEE, 1994.

[35] Edward L. Jones. Metrics based plagarism monitoring. In Proceedings of the sixth
annual CCSC northeastern conference on The journal of computing in small colleges,
pages 253-261. ACM, 2001.

[36] Mike Joy, Nathan Griffiths, and Russell Boyatt. The boss online submission and
assessment system. In ACM Journal on Educational Resources in Computing, Vol. 5,
No. 3, September 2005. Article 2. ACM, 2005.

BIBLIOGRAPHY 89

[37] Mike Joy and Michael Luck. Plagiarism in programming assignments. In IEEE
TRANSACTIONS ON EDUCATION, VOL 42, NO. 2, pages 129-133. IEEE, 1999.

[38] Young-Chul Kim and Jaeyoung Choi. A program plagiarism evaluation system. In
Computational Science and Its Applications - ICCSA 2005, pages 10-19. Springer
Berlin / Heidelberg, 2005.

[39] Wojtek Kozaczynski, Jim Ning, and Tom Sarven Program concept recognition.
In Proceedings of the Seventh Knowledge-Based Software Engineering Conference,
pages 216-225. IEEE, 1992.

[40] Mikko-Jussi Laakso, Tapio Salakoski, Ari Korhonen, and Lauri Malmi. Auto­
matic assessment of exercises for algorithms and data structures - a case study with
TRAKLA2. In Proceedings of Kolin Kolistetut / Koli Calling - Fourth Finnish/Baltic
Sea Conference on Computer Science Education, pages 28-36. Helsinki University of
Technology, 2004.

[41] Ronald J. Leach. Using metrics to evaluate student programs. In ACM SIGCSE Bul­
letin Volume 27, Issue 2, pages 41-43. ACM, 1995.

[42] Y. Limpiyakom and I. Bumstein. Applying the signature concept to plan-based pro­
gram understanding. In Proceedings of the International Conference on Software
Maintenance (ICSM’03), pages 325-334. IEEE, 2003.

[43] Wills L.M. Flexible control for program recognition. In Proceeding of Working Con­
ference on Reverse Engineering, pages 134-143. IEEE, 1993.

[44] Lauri Malmi. Pascal-ohjelmien samankaltaisuuden tutkimisesta. Licenciate’s thesis,
Helsinki University of Technology, Finland, 1989.

[45] Lauri Malmi, Ari Korhonen, and Riku Saikkonen. Experiences in automatic assess­
ment on mass courses and issues for designing virtual courses. In Proceedings of The
7th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer
Science Education, ITiCSE'02, pages 55-59, Aarhus, Denmark, 2002. ACM Press,
New York.

[46] Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept clones
in source code. In 16th IEEE International Conference on Automated Software Engi­
neering, pages 107-114. IEEE, 2001.

[47] Maxim Mozgovoy. Enhancing Computer-Aided Plagiarism Detection. Doctoral dis­
sertation, University of Joensuu, 2007.

[48] Department of Information Technology at University of Turku. Ville - visual learning
tool, http://verkkoopetus.cs.utu.fi/Research/VILLE/index_en.html.

[49] Karl J. Ottenstein. An algorithmic approach to the detection and prevention of plagia­
rism. In ACM SIGCSE Bulletin, Volume 8, Issue 4 (December 1976), pages 30-41.
ACM, 1976.

BIBLIOGRAPHY 90

[50] Santanu Paul, Atul Prakash, Erich Buss, and John Henshaw. Theories and techniques
of program understanding. In Proceedings of the 1991 conference of the Centre for
Advanced Studies on Collaborative research, pages 37-53. IBM Press, 1991.

[51] Alex Quilici. A memory-based approach to recognizing programming plans. In Com­
munications of the ACM, Volume 37, Issue 5, pages 84-93. ACM, 1994.

[52] Alex Quilici. Reverse engineering of legacy systems: a path toward success. In
Proceedings of the 17th international conference on Software engineering, pages 333-
336. ACM, 1995.

[53] Alex Quilici and David N. Chin. Decode: a cooperative environment for reverse­
engineering legacy software. In Proceedings of 2nd Working Conference on Reverse
Engineering, pages 156-165. IEEE, 1995.

[54] Michael J. Rees. Automatic assessment aids for pascal programs. In ACM SIGPLAN
Notices Volume 17, Issue 10, pages 33-42. ACM, 1982.

[55] Sally S. Robinson and M. L. Soffa. An instructional aid for student programs. In
Proceedings of the eleventh SIGCSE technical symposium on Computer science edu­
cation, pages 118-129. ACM, 1980.

[56] Spencer Rugaber. The use of domain knowledge in program understanding. In Jour­
nal Annals of Software Engineering, Issue Volume 9, Numbers 1-4, pages 143-192.
Springer Netherlands, 2000.

[57] Letovsky S. and Soloway E. Delocalized plans and program comprehension. In Soft­
ware, IEEE, Volume: 3, Issue: 3, pages 41 —49. IEEE, 1986.

[58] Riku Saikkonen, Lauri Malmi, and Ari Korhonen. Fully automatic assessment of
programming exercises. In Proceedings of The 6th Annual SIGCSE/SIGCUE Con­
ference on Innovation and Technology in Computer Science Education, ITiCSE’01,
pages 133-136, Canterbury, UK, 2001. ACM Press, New York.

[59] Jorma Sajaniemi. An empirical analysis of roles of variables in novice-level procedu­
ral programs. In Proceedings of IEEE 2002 Symposia on Human Centric Computing
Languages and Environments, pages 37-39. IEEE Computer Society, 2002.

[60] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for docu­
ment fingerprinting. In Proceedings of the 2003 ACM S1GMOD international confer­
ence on Management of data, pages 76-85. ACM, 2003.

[61] S.D.Benford, E.K.Burke, and E.Foxley. Courseware to support the teaching of pro­
gramming. In Proceedings of the Conference on Developments in the Teaching of
Computer Science, pages 158-166. University of Kent, April 1992.

[62] Robert L. Sedlmeyer, William B. Thompson, and Paul E. Johnson. Knowledge-based
fault localization in debugging: preliminary draft. In Proceedings of the ACM SIG-
SOFT/SIGPLAN software engineering symposium on high-level debugging, pages 25-
31. IEEE, 1983.

BIBLIOGRAPHY 91

[63] R. E. Seviora. Knowledge-based program debugging systems. In IEEE Software,
Volume 4 , Issue 3, pages 20-32. IEEE, 1987.

[64] M.-A.D. Storey, K. Wongb, and H.A. Muller. How do program understanding tools
affect how programmers understand programs? In Science of Computer Programming
36 (2000), pages 183-207. IEEE, 2000.

[65] Eleni Stroulia and Tarja Systä. Dynamic analysis for reverse engineering and program
understanding. In ACM S1GAPP Applied Computing Review archive, Volume 10 ,
Issue 1, pages 8-17. ACM, 2002.

[66] Scott R. Tilley, Dennis B. Smith, and Santanu Paul. Towards a framework for program
understanding. In 4th International Workshop on Program Comprehension, pages 19-
28. IEEE, 1996.

[67] A. Turing. On computable numbers with an application to the entscheidungsproblem.
In Proc. London Math. Soc. 42 (1936). Corrections appeared in: ibid., 43 (1937), pp.
544-6., pages 230-265, 1936.

[68] Michael J. Wise. Detection of similarities in student programs: Yap’ing may be prefer­
able to plague’ing. In ACM SIGCSE Bulletin, pages 268-271. ACM, 1992.

[69] Michael J. Wise. Yap3: improved detection of similarities in computer program and
other texts. In Proceedings of the twenty-seventh SIGCSE technical symposium on
Computer science education, pages 130-134. ACM, 1996.

[70] S. Woods and Qiang Yang. The program understanding problem: analysis and
a heuristic approach. In 18th International Conference on Software Engineering
(1CSE'96), pages 6-15. IEEE, 1996.

[71] Steven Woods and Qiang Yang. Program understanding as constraint satisfac­
tion. In Seventh International Workshop on Computer-Aided Software Engineering
(CASE’95), pages 318-327. IEEE, 1995.

[72] Steven G. Woods and Qiang Yang. Constraint-based program plan recognition in
legacy code. In Working Notes of the Third Workshop on Al and Software Engineering:
Breaking the Toy Mold (A1SE-95), 1995.

