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errors. In this thesis, 3 different long-term prediction strategies are presented
and compared: Recursive, Direct and Dirrec.

Two local model families, the k&-NN and the Lazy Learning, are presented and
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Another problem closely related to the time series prediction is the selection
of appropriate inputs. This aspect is also dealt in this thesis by improving the
original local methods by including the input selection in them.
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Tyo6n nimi:
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Tyo6n ohjaaja: tohtori Amaury Lendasse

Aikasarjan arvojen ennustaminen pitkin matkan pdidhdn on erittdin vaikeaa
ja useita ongelmakohtia on otettava huomioon. Siksipi onkin tdrkedd kehit-
tédéd hyvid ja tarkkoja keinoja péédstikseen ennustamisessa hyviin tarkkuuteen
ja pitadkseen virheet mahdollisimman pienina. Téssd diplomityossi esitelldin
kolme erilaista pitkin matkan ennustusstrategiaa: rekursiivinen (Recursive),
suora (Direct) sekd nédiden yhdistelmé (Dirrec).

Tyossd kidytetddn kahta ennustusmenetelm#d: k:n lahimmén naapurin
menetelmdd ja menetelmdd nimeltd Lazy Learning ("laiska oppiminen").
Molempien menetelmien kohdalla esitellidn ja vertaillaan alkuperiisia
menetelmid sekd niihin tehtyja parannuksia. Kaikki menetelmit tarvitsevat
mallinvalintatyokaluja, joista 4 seuraavaa esitelldédn tarkemmin: k-kertainen ris-
tiinvalidointi, Leave-one-out ristiinvalidointi, Bootstrap sekid Bootstrap 632.

Toinen tiiviisti aikasarjaennustamiseen liittyvd pulma on oikean sy6tteen valinta.
Tésséa tyossé syotteen valinta on sisdllytetty edelld mainittujen menetelmien
parannuksiin.

Kaikkien mainittujen menetelmien ja strategioiden toimintaa on vertailtu kol-
men eri aikasarjan avulla: Santa Fe, Darwin Sea Level Pressure sekid Poland
Electricity Load. Lopuksi otetaan osaa CATS Benchmark -kilpailuun parhaaksi
todetulla menetelmalla.

Avainsanat: Aikasarjat, aiksarjaennustaminen, pitkin matkan ennustus-
strategiat, syotteen valinta, paikalliset mallit, Lazy Learning,
k:n ldhimmén naapurin menetelma

Kieli: Englanti
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Chapter 1

Introduction

Many fields of science use time series and time series prediction [1]. In
finance, specialists predict stock exchange courses or stock market indices
for the following days or weeks, data processing people predict the flow of
information on their networks and electricity producers predict the electricity
load of the following day. The common point to all fields is the following
problem: "How to use the knowledge of the past to predict the future?"

In the field of time series prediction, the goal is to predict the future values of
the time series using the previous values. In meteorology, it is very common
to register the temperature every day and then predict the next days tem-
perature from the gathered data. In the same way the meteorologists predict
the cloud movement, the air pressure change and other weather phenomena
and finally show the results in the nine o’clock news for everybody.

Previous example might sound quite straightforward and easy, but there is
huge amount of calculation and modeling behind all that. In many cases,
even if we know that it is possible to mathematically derive the dependencies
between the measurements and the time spaces, formulation can be very hard
task and sometimes the complexity makes it almost impossible. Maybe the
underlying phenomenon is not only a function of the previous states and
values of the single time series, but also of some unknown states or external
variables. Finding the states and the variables makes the formulation task
even harder and increases the complexity exponentially.

To start the prediction process the first task is to choose an appropriate
model family. There are many different model families to choose from such as
linear methods (autoregressive (AR) models, moving-average (MA) models)
[2] and non-linear methods (artificial neural networks (ANN)) [1]. In order
to select the most optimal family, one can use some prior knowledge of the
problem or to do some preliminary tests to have some insight of the nature
of the time series. If the group of models is too large or the models are too
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complex, it takes too much time to test all of them. On the other hand,
simple models allow a larger group of models to be tested in a reasonable
time.

In many cases, the methods try to build a model of the underlying process
and then use the acquired model and the last values of the time series to pre-
dict the future values. In order to do this, the method must overcome a large
number of obstacles, in example the selection of the relevant information to
use in the prediction, the selection of method-specific structural parameters
and finally optimizing the parameters of the selected model using a learning
procedure.

Input selection is the most troubling obstacle. Usually the number of previ-
ous values needed for the prediction increases according to the complexity of
the time series. Some values are more important (contain more information)
than others and sometimes unnecessary inputs even decrease the accuracy of
the prediction and increase the calculation time needlessly. Input selection
is especially needed, when the number of data is too few compared to the
number of possible inputs. On the other hand, too few inputs are not enough
to build an accurate model of the underlying system.

In this thesis, two families of models are selected: local constant models (k-
NN) and local linear models (Lazy Learning). The first one is very simple
approximator family with only one structural parameter to select. The sec-
ond one is more time taking, but more accurate approximator. Both families
can use input selection methods as part of the routine itself.

For the k-NN, four ways to select the inputs are presented: Exhaustive
Search, Backward Selection, Forward Selection and Forward-Backward Se-
lection. The last one is a combination of the Forward and the Backward
Selection methods.

The Lazy Learning model family uses Backward Selection method to select
the inputs. The selection is done locally and globally and the performances
are compared. Also continuously selected inputs are used and compared.

The prediction problem comes even more complex and demanding when the
prediction is needed for several steps ahead, called a long-term prediction.
Reaching for further to the unknown future increases the amount of uncer-
tainty, which comes from many sources, in example from the accumulation
of the prediction errors and the lack of relevant information. Also the cal-
culation time and the total number of parameters, which need to be chosen,
increase.

The selection of the prediction strategy becomes even more important the
further in time the prediction is done. In this thesis, three different long-term
prediction strategies are compared: Recursive, Direct and Dirrec. From these
strategies, the Recursive is the fastest, but it suffers from the accumulation



CHAPTER 1. INTRODUCTION

of the prediction error. The Direct strategy avoids the accumulation effect
with the cost of increase in the calculation time. Finally the Dirrec strategy
combines the Recursive and Direct strategies into one.

Section 2 defines the basic concepts related to the time series, some means
of manipulation necessary for the time series prediction and the different
strategies to manage long-term prediction. Section 3 describes in more de-
tail the structure selection methods, the k-NN approximator and various
Lazy Learning methods. All presented methods are applied to the long-term
prediction problem using three data sets and the results are presented in
Section 4.

1.1 Publications

Short descriptions of the publications [3, 4, 5, 6, 7] related to the thesis work
in a chronological order:

Publication [3| describes how to use the LL methods in classification and
function approximation. The task is to classify business plans into two cat-
egories: successful and unsuccessful ones. This is done by using the LPLL
method, which combines locality with input selection. This publication has
been selected for a special issue in International Journal of Neural Systems.

Publication [4] takes the LL methods further away from the original one.
The input selection is done globally and the performance is compared to LL
without input selection and to the k-NN method.

In publication [5] the k-NN is used as an input selection method with three
different structure selection methods: Leave-one-out, Bootstrap and Boot-
strap 632. After the input selection, the k-NN is also used as an approximator
to compare the structure selection methods.

Publication [6] is a joint venture between the k-NN and the Mutual Infor-
mation. Here the k-NN is used to tune the Mutual Information procedure
and to evaluate its input selection performance in a long-term prediction
problem.

Publication [7] compares three different input selection criteria: k-NN, Mu-
tual Information and Nonparametric Noise Estimation. FEach criteria is
used to select the inputs based on three methods: Forward, Backward and

Forward-Backward selection. Input selection performance is evaluated using
LS-SVM.



Chapter 2

Time Series Prediction

2.1 Time Series

Even there exists many different time series with many different properties,
we have to define some ground rules in order to use the methods described
later. This first chapter defines the basic notations and assumptions about
the series we are using in this thesis.

Single value of the time series is denoted as z(t) and, given the definition of
time ¢, we have a total of N values of the series z, that is from (1) to z(N),
from the oldest measurement to the newest one, which can be considered to
be the present measurement of the series. Formal definition of a time series
is given in Equation 2.1.

{z@)}Y,, z(t)eR, 1<t<N. (2.1)

If the present or current time is denoted with ¢, the future is then denoted
with £+n and the past time as t—n, where n can be any positive integer with
maximum of N — 1 when denoting the past time. Time is always considered
to be divided into steps, time steps, of equal length. The length can be
almost anything from a few microseconds up to several years, but always a
constant throughout the series.

2.2 Time Series Prediction

All the methods described in this thesis can be applied to a time series with
external inputs. They can be described as some other related time series,
than the one being predicted, like humidity in the case of predicting the
temperature. External inputs can also be other kind of information, not
only the type of time series, in example a working state of a machine.
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However, in order to avoid complex notation we do not include the use of
the external inputs in this thesis. Therefore, all the approximations and
selections in the experiments are based only on the measured values of the
time series itself. From this measured data, the methods try to approximate
the future after some structural and parametrical finetuning called learning.

First phase is to select a class of models, in example Multi-Layer Perceptron
networks [8] or Radial Basis Function networks [9]. The classes of interest
in this thesis are local linear models and local constant models.

After the definition of the class, or classes, we can define all the models in
the classes, as

fa(%,68(), 1< g < Q, (2.2)

where ¢ is the index number of a model structure from all the classes with
the total number of structures @), x is the vector of time series values and
0(g) includes the parameters of the model f,. It is essential to clarify, that
structure becomes a model after all the parameters are defined or fixed one
way or the other. If one of the parameters is changed, the model is definitely
changed, but the structure can remain the same.

The ultimate goal is to find the best model f; among the @ possible struc-
tures to best fit our prediction purposes. At the same time one has to consider
the problem of finding the optimal parameters 0(g) for each structure to be
able to rank the structures and find the best one. Then the best structure
with corresponding parameters is used to predict the needed values of the
time series.

In order to do the ranking of the structures and models, we need a definition
of prediction error, which comes from the inaccuracy of the approximation,
presented as

2t +1) = fo((t), z(t - 1), ..., x(t —d + 1),6(q)), -
or 2.3
x(t + 1) = fq(a:(t),m(t = l)a -..,IL‘(t e 1)7e(q)) + €t+1,

where Z(t 4+ 1) denotes the approximation at time ¢ + 1, €;41 denotes the
approximation error and d is the number of previous time series values used
in approximation. From these two representations of prediction we can derive
a formula for the prediction error

€t41 = IZI(t -+ 1) — .’i‘(t o 1) (24)

If this error is zero, there is no noise in the time series and the approximation
is exactly the real value. In the presence of noise, there should always be a
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small error in the prediction, or we’ll be dealing with overfitting. It means,
that we have also modeled the error in the time series and that should be
avoided or the accuracy of the prediction is degraded in the long run. This
happens because time series are not completely deterministic, they are at
least partly stochastic processes.

The approximation error can also come from other sources, in example from
incorrectly selected parameters or structure or the insufficient number of
learning data available.

Models from different classes can have totally different properties, such as
computational load, simplicity, robustness and tolerance of noise. It is not
obvious how to choose the best structure among many different classes. Some
classes have certain limitations and may be harder to implement due to
the number of free parameters to tune or the assumptions made about the
underlying noise in the time series. Selection of the classes can be based on
the prior knowledge about the type of the problem itself or many different
classes should be tested and validated to find the most optimal one.

Structure selection methods used in this thesis are described more deeply in
Section 3.1.

Although no external information or variables, besides the time series itself,
are used, we can use some heuristics to decide how to preprocess the data
[10]. Preprocessing methods include in example removing the mean of the
data set

1 N—1 N-1
{mzeromean(t S n) = :L'(t = n) e N :L‘(t = h)} ) (2'5)

h=0 n=0

removing the trend

{Znotrend(t — n) = z(t —n — 1) — z(t — n)}N 2 (2.6)

and scaling the sample variance to one

N-1
{xunitvariance (t i n) = II?(t - n) } 3 (27)

Nl—l ZhN:_Ol T zeromean (t — h)2

n=0

In above equations, h is used as a temporary variable. Note that removing
the first order trend makes Zpotrend One value shorter than the original time
series. It is also possible to use higher order trend removal with trivial
changes to Equation 2.6 [10].

Many approximation methods have hard time dealing with trends or non-
zero means in the data and benefit vastly from the applied preprocessing.
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After the approximation of the future values, it’s many times necessary to
reverse the preprocessing in the approximations to see the real prediction
and to evaluate the prediction error.

2.3 Long-Term Prediction Strategies

In many occasions, it’s fairly easy and straightforward to predict the next
value of the time series. But the further we delve into the future, the more
uncertain we are and the bigger prediction errors we get.

The concept of Long-Term is not precise. It somewhat describes the amount
of timesteps to be predicted toward the unknown future. One can find or
create many different interpretations and definitions to the concept long-
term. In this thesis the term is used when the prediction is done further
than one step ahead. Maximum horizon of prediction used is 20 steps ahead
and based on any definition that is considered to be long-term.

In the next sections, three different prediction strategies are explained and
their pros and cons discussed from a theoretical point of view. In Section 4
these strategies are compared and the performances evaluated from a prac-
tical point of view.

2.3.1 Recursive

In the Recursive prediction strategy the same model is used over and over
again and the previous predictions are used with the original data set as
inputs to evaluate the next prediction. In this way, we are actually applying
one-step-ahead prediction many times, recursively.

If we use a continuous input set of size 4, we can write the Recursive strategy
as

:i:(t+1) = fq(x(t),x(t—1),a:(t—2),a:(t—3)),6(q)),

Bt+2) = fo(@(t+1),2(),2(t - 1), (t - 2)),6(q)),

B(t+3) = fo@(t+2),5(t+1),a(t),z(t - 1),6(q)),

Bt+4) = fo(a(t+3),5(t+2),8(t+1),2(t)),6(q)), (2.8)
B(t+5) = fo(@(t+4),3(t+3),a(t+2),8(t+1)),0(q)),

The further we go, the more approximations are introduced to the input set
and after ¢ + 4 all the inputs are approximations. Here the model structure
g stays the same in each timestep.

Because the approximation is not perfect, there’s some prediction error in
the approximations, so we can write the above equations as
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Et+1) = fo(z(t),z(t —1),z(t — 2),z(t — 3)),0(q)),

B(t+2) = folalt+1)+ erss,a(t), zt — 1), 3(t — 2)), 0(g)),

B(t+3) = fyla(t+2)+ eera 2t + 1) + exv1, 2(8), (¢ — 1)),0(q)),

Z(t+4) = fq(a:(t +3) + €143, 2(t + 2) + €142, 2(t + 1) + €441,
z(t)), 6(q)),

E(t+5) = fo(z(t+4)+ €r4a,2(t + 3) + €143, 2(t + 2) + €42,
z(t+1) + €¢41),0(a)),

(2.9)

If the prediction errors are all zero, the Recursive strategy is very fast and
accurate in the prediction of the future values, even in long-term. It needs
only one model to be learned and after that any number of timesteps can be
predicted.

But if the errors are non-zero and the approximations are used as inputs
again and again, the more and more cumulative prediction error is included
in the approximations. In practice, this is the normal case, there is some
error in every approximation, because the time series are partly stochastic
processes.

2.3.2 Direct

Comparing to the Recursive strategy, the Direct strategy uses different model
for each time step but always the real measured data as inputs. No approx-
imations are introduced to the input set.

Again, if we use a continuous input set of size 4, we can write the Direct
strategy as

Et+1) = folx(t),z(t—1),z(t —2),z(t - 3)),6(q1)),
foo(2(2), z(t — 1), z(t — 2), 2(t — 3)), 8(g2)),
qu(l‘(t)a .’E(t - 1),.’1)(t i 2),.’13(t = 3))a e(q3))7
fau(@(t),2(t = 1), 2(t - 2),2(t - 3)),0(aa)), ~ (210)
qu(.’IJ(t), .’L‘(t - l)v x(t - 2)7 .’B(t o 3)), 9(‘]5))7

=
o~
+
)
N
Il
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In this strategy, there’s no cumulative error introduced through the inputs,
because only original data set values are used in the approximation of future
values. Each time step only the normal prediction error e;;, is present.

Every time step incorporates its own model and may also have its own se-
lection of inputs, if the input selection is used. These selections increase
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the calculation time considerably, but in practice give better results in the
long-term prediction due to the lack of cumulative error [11].

2.3.3 Dirrec

The Dirrec strategy combines aspects from both, the DIRrect and the RE-
Cursive strategies. It uses a different model at every time step and introduces
the approximations from previous steps into the input set.

If we use a continuous input set of size 4, we can write the Dirrec Strategy
as

Bt+1) = fo(z(t),2(t —1),z(t — 2),2(t — 3)),0(q1)),
Bt+2) = fu(@(t+1),z(t),z(t —1),2(t — 2),2(t - 3)),
0(q)),
‘Ii‘(t+3) = fqa(j(t-i-z),(i‘(t-f'1),$(t),.’13(t—1),1’(t-—2),
z(t — 3)),8(g3)),
Bt+4) = fou(B(t+3),2(t+2), 8+ 1),2(t),x(t - 1), (2.11)
.’L‘(t-—2),.’13(t—3)),6(q4)),
Et+5) = fo (Bt +4), 2+ 3), &+ 2),2(t+ 1), 2(2),
ot — 1),z(t — 2), z(t — 3)), 8(gs)),

Every time step the input set in increased with one more input, the ap-
proximation of the previous step. When we use the input selection, we can
determine if the approximation is accurate enough to be included in the next
step and so on. So in a way, the Dirrec strategy gives not only the prediction
of each step, but also information about the validity of the approximations
done in the previous steps.

If no input selection is used, the complexity of the model increases linearly
and more and more inputs with prediction error are fed into the model. The
cumulative prediction error increases also linearly, but is always less than in
the Recursive strategy, because the real measurements remain as inputs.



Chapter 3

Approximation Methods

This section describes four model structure selection methods, k-fold Cross
Validation, Leave-one-out, Bootstrap and Bootstrap 632, and two classes of
models, k-Nearest Neighbors and Lazy Learning. The first model class in-
cludes local constant models and the latter one local linear models. Both
classes include input selection methods inside the structure selection if needed.
So there is no need for external input selection, but it can be used if available.

For all the methods, we need to transform the time series prediction problem
to a function approximation problem and by that make it more usable for
the models and the learning process. In order to do so, we construct an input
matriz, or regressor matriz (also known as regression matriz), and an output
vector, denoted X and Y respectively. They are illustrated as

z(1) z(2) e z(d)
. x(2) x(3) x(d.-i— 1) ’
SN —d) o(N—d+1) or HN—1)
(3.1)
z(d+1)
' z(d + 2)
w(}V)

where d is the maximum number of input variables (or inputs) and N is the
number of values in the time series.

From this point on, each row of X and the corresponding value of Y is called a
data sample or a sample. Each sample consists of d-dimensional input vector
and an output scalar, denoted with x; and y; respectively, where i denotes
the row of X and Y. Approximation of one output scalar will be denoted

10
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with §;. The columns of the matrix X will be denoted with superscript x"
for the nt* column.

Another interesting aspect in the time series prediction is the input selection.
It is neither computationally efficient nor necessary to use all the possible
past values of the time series in the evaluation of the future values, but
instead select only the most relevant ones and build the model using them.
The selected inputs finally form the regressor matrix that is used in the
prediction.

In this thesis, the input selection is included in the structure selection of the
model, and few different input selection approaches are compared with each
other.

3.1 Structure Selection Methods

Structure selection methods try to determine the structure, which is able to
approximate as accurately as possible an unknown function. The structure
is selected from a group of predefined structures, which can come from many
different classes.

In many cases the selection of the structure is based on the generalization
error [12], defined as

i (fa(xi 0(2)) — )
E 0)= 1 Lo k.

gen(¢,0) = lim 7 (3.2)
where x; is d-dimensional input vector to the model f;, 8(g) holds the model
parameters and y; is a scalar output corresponding to x;.

The data set of measurements is usually divided into two sets, to the learning
set (or the training set) and to the test set. The structure of the model and
the model parameters are selected and tuned or learned in the learning set.
The test set is then used to estimate the overall model performance.

According to Equation 3.2, the generalization error is a mean square error of
a model, computed on an infinite sized test set. Such a set is not available in
practice, so we must approximate the generalization error. The best struc-
ture f, is the one that minimizes the approximation of the generalization
€error.

The next four subsections present several generalization error approximation
methods, which will be used in the structure selection process.

11
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3.1.1 k-fold Cross-Validation

The k-fold Cross-Validation [13] (k-fold) is one of the resampling methods
constructed to ease the problem of not having infinite learning data available.
It is based on a simple Cross-Validation and can be used in the selection of
structures, models and their parameters.

In the k-fold Cross-Validation, the training samples are divided into k ap-
proximately equal sized sets. One of the sets at a time is used as a learning
set and all the rest as a validation set. The learning set is used to tune the
parameters of the model and the validation set is used to approximate the
validation error.

This procedure is repeated k£ times, for each structure until each of the k
sets have been used once in the learning. The sets should be the same
for all the structures included in the selection procedure, so no extra bias
will be introduced to the approximations, if some folds are more difficult to
approximate than others. For the same reason the folds should be as equally
sized as possible in order to rank the structures correctly.

The final approximation of the generalization error is calculated as a mean
of all k validation errors. The whole procedure is summarized as

o1 [Tl fa(xi, 83(0)) — 3)7]
5 o s=1 i¢s\Jq ]
EkCV(q,e ) b N )

gen

(3.3)

where s denotes the current fold and 03(gq) holds the model parameters cal-
culated using the samples in the st fold.

3.1.2 Leave-one-out

The Leave-one-out (LOO) [13, 14, 15, 16] is a particular case of the k-fold
Cross-Validation resampling method. The LOO procedure is the same as
the k-fold with k equal to the size of the training set N.

For each model to be tested, the LOO procedure is used to calculate the
generalization error estimate by removing one sample at a time from the
training set, building a model with the rest of the samples and calculating
the validation error with the one taken out. This procedure is done for
every sample in the training set and the estimate of the generalization error
is calculated as a mean of all k, or N, validation errors. The process is
summarized as

100 gv) = Loz (fa(xi, 07 (0)) = 9)’

gen N (34)
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where 07(g) holds the model parameters without using #** sample in the
learning process.

Empirically, the Leave-one-out is found out to be better approximation
method than the k-fold Cross-Validation. That is because of the almost
entire use of the given training samples in tuning the parameters and the
large number of repetitions. On the other hand, the number of repetitions
makes the LOO slower than the k-fold.

In the experiments, LOO is often used method in the selection of the parame-
ters for the structures and the structures themselves. Despite the simplicity,
it’s one of the most reliable approximation methods and widely used in the
field.

3.1.3 Bootstrap

The Bootstrap [17] is another resampling technique originally developed to
estimate some statistical parameters, in example the mean of some popu-
lation or the variance of it. In the case of a model structure selection, the
parameter to be estimated is the generalization error.

When using the Bootstrap, the generalization error is not estimated directly.
Rather the Bootstrap estimates the difference between the generalization er-
ror and the training error, or apparent error according to Efron [17]. This
difference is called optimism. The final estimation of the generalization er-
ror will be the sum of the apparent error, Equation 3.5, and the estimated
optimism, Equation 3.8.

The apparent error is computed using all the available samples on the train-
ing set as

N I px* N2
1,1 " i—1(fa(x;,0%(q)) — vi)
EA‘\Pparent(q’6 J=ian = 1_]\}' =,

(3.5)

where I denotes the original training set samples.

The optimism is estimated using a resampling technique, based on a random
drawing with replacement from the training set. This randomly created
Bootstrap set is as large as the original training set with its participants
drawn randomly from the training set. This random drawing is done many
times in order to get an accurate approximation of the optimism.

A model is trained using one Bootstrap set at a time. the Learning error,
Equation 3.6, is calculated in the Bootstrap set where the model is trained.

Bi s B;
EBj;Bj 0*) — Zz‘lil(fQ(xi R ej (9)) — Y; 1)2
Learning,j (Q7 ) N N )

(3.6)
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where Bj; is the ji* Bootstrap set, xfj is the i** input vector from the
Bootstrap set and yiB 7 is the corresponding output.

The Validation error, Equation 3.7, is calculated in the original training set
using the same model as in the calculation of the learning error.

Sy (fa(x1,03(a)) — )
N b

B\ haation (4, 6") =

Valldatlon, J (3 . 7)

The optimism is calculated as the difference between the learning error 3.6
and the validation error 3.7 and this calculation procedure is repeated as
many times, or rounds, as possible considering linearly increasing computa-
tional time. The final approximation of the optimism for each structure is
calculated as a mean of the difference of the two error functions, the learning
error and the validation error as

J B;,I
g=1 (EV;lidation,j (q’ 9*) ELearmng ]( 4, e*))
J )

optimism(q) = (3.8)

where J is the number of bootstrap rounds done.

The final generalization error estimate is the sum of the apparent error,
Equation (3.5), and the optimism estimate, Equation (3.8), as

E?e%"t(q) = optimism(q) + E’{‘rla.mmg(q’ 0%). (3.9)
The Bootstrap does not produce comparable estimations of the generaliza-
tion error, because it is biased [17]. Of course, it is usable as a structure
selection method, where the errors are compared with other errors estimated
by the Bootstrap using the same Bootstrap sets and so all the errors are
biased in the same way. But with other generalization error approximation
methods it cannot be compared directly.

The Bootstrap is also quite heavy method with a big computational load
and thus, it is not good to use it in exhaustive structure selection, where all
the possible structures are compared. The Bootstrap should be used in the
validation of a smaller subgroup of structures or model parameters.

Every problem needs to have enough Bootstrap rounds and the same number
of rounds may not be the best number for all the problems. Too many rounds
increase calculation time needlessly and too few rounds give varying results
with a large variance.

14
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3.1.4 Bootstrap 632

Bootstrap 632 [18] is a modified version of the original Bootstrap. Where
the original Bootstrap gives biased estimation of the generalization error,
the Bootstrap 632 is not biased [18] and thus is more comparable with other
methods estimating the generalization error.

The main difference in the calculation between the standard Bootstrap and
the Bootstrap 632 is the estimation of the optimism. In the original Boot-
strap the optimism is calculated as the difference between two errors, the
learning error and the validation error, Equation 3.8. The Bootstrap 632
estimates the optimism using data points not drawn into the bootstrap set.
The model is trained using a set of data points, which are not selected to a
bootstrap set, and the error is evaluated on the same bootstrap set.

J B;,B;
> j=1 EBootes2,j(2: 0%)

o) = 8 , (3.10)

optimism

where the error function is the same as the learning error, Equation 3.6,
except the model is trained using Bj, the complement of the bootstrap set
By

The estimation of the generalization error of the Bootstrap 632 is calcu-
lated as a weighted sum of the training error and the approximation of the
optimism as

EBoot32(q) — 0.368 optimism’(g) + 0.632 Eflining(@0%).  (3.12)

From the above equation it is quite clear to see, that the name of the Boot-
strap 632 comes from the weighting coefficient of the training error term.
The value 0.632 is the probability of a single sample to be drawn into the
bootstrap set from the training set [17, 18]. The weight of the optimism is
1 —0.632, so that the total weight of the terms sum up to 1.

Because of the simpler optimism estimation formula, the Bootstrap 632 is al-
most twice as fast as the original Bootstrap. At the same time, the Bootstrap
632 provides unbiased estimation of the generalization error, so in theory it
sounds much better and more reliable method than the Bootstrap.

3.2 k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) approximation method is a very simple,
but powerful method. It has been used in many different applications and
particularly in classification tasks [8]. The key idea behind the k-NN is that
similar training samples have similar output values. One has to look for a

15



CHAPTER 3. APPROXIMATION METHODS

certain number of nearest neighbors, according to the Euclidean distance
[8], and their corresponding output values to get the approximation of the
desired output.

We calculate the estimation of the output simply by using the average of the
outputs of the neighbors in the neighborhood as

5 Zl?=1 YpP(j
g = =520 G), (3.12)
where g; represents the output estimation, P(j) is the index number of the

4" nearest neighbor of sample x; and k is the number of neighbors used.

It is possible to use some weighting of the neighbors in the neighborhood,
different distance measure or more sophisticated neighbor selection methods,
but these aspects are not considered here.

We use the same neighborhood size for every data point, so we use a global
k, which must be determined beforehand.

The k-NN has to somehow deal with the input selection problem, but in the
case of k-NN, it is not so big problem, thanks to the simplicity of the k-NN.
Only thing that is influenced by the input selection is the distance between
samples, instead of influencing to the parameters of the model at the same
time. Indeed, the k-NN is a method with no parameters whatsoever: only
the structural aspects, the number of neighbors and the inputs, need to be
determined. After that, the k-NN is ready to be applied to the problem at
hand.

The following four sections describe the four different input selection meth-
ods: Exhaustive Search, Backward Selection (or pruning), Forward Selection
and Forward-Backward Selection.

3.2.1 Exhaustive Search

In the Exhaustive Search, all the 2¢ possible input variables are built and
evaluated. d represents the maximum number of variables to be used in the
evaluation. This kind of search is very time consuming, but it is guaranteed
to give the global optimum in the defined search space.

In practice, the k-NN is almost only method simple enough to be able to use
the Exhaustive Search. There are many methods, which are too complicated
and time consuming to use this kind of search. Even with the k-NN, there
might be a more optimal way to select the inputs in order to reduce the
calculation time.
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3.2.2 Backward Selection or Pruning

Each variable from z! to z¢ is taken out one at a time. The k-NN is applied
to each different pruned input set. Then the pruning that minimizes the error
approximation is selected and the corresponding input is permanently taken
away. This operation is repeated until there are no inputs left in the set. The
optimal set of inputs is the one that gave the smallest error approximation.

In the Backward Selection, only d(d — 1)/2 different input sets are evaluated
with the k-NN. This is much less than the number of input sets evaluated
with the Exhaustive Search.

On the other hand, optimality is not guaranteed. The selected set on inputs
may not be the global optimal one, but instead the selection procedure can
be stuck on some local minima. This disadvantage is common to all pruning
methods [19].

3.2.3 Forward Selection

The Forward Selection is effectively the opposite of the Backward Selection.
The initial input set is an empty set whereas with the Backward Selection
the initial set was full.

Each variable from z! to z9 is put into the input set one at a time and the one
that gives the smallest error after the k-NN approximation, is selected and
permanently inserted into the set. This is continued until all the inputs are
inserted into the set. The input set that gave the smallest error is selected
to be used in the final evaluation.

The Forward Selection evaluates the same amount of input sets than the
Backward selection, d(d — 1)/2. Also the same restriction apply, optimality
is not guaranteed.

3.2.4 Forward-Backward Selection

The Forward-Backward Selection combines both methods described in previ-
ous sections. It can start from any input set, even from randomly initialized
set.

The state of each variable is changed one at a time: if a variable was already
selected into input set, it is removed, and if not, it is put into the input set.
This is done for all the inputs from z! to z% and the error approximation
using the k-NN is calculated with every selection. Then the action that gave
the smallest error is done permanently to the input set.

In example, if we use non-continuous regressor of size 4 and describe the
process of approximating one time step ahead as
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2t +1) = fo(z(t), z(t — 1), z(t - 3), z(t - 5)), 6(q))- (3.13)

The Forward-Backward Selection tests all the following input sets and ap-
proximations presented in Table 3.1.

Change # Input, t-{...}
Try 1 1 3 5
Try 2 0 3 5
Try 3 o 1 2 3 5
Try 4 0 1 5
Try 5 0 1 3 4 5
Try 6 0o 1 3

Table 3.1: Forward-Backward Selection example.

The change that gives the smallest error is permanently done to the input
set and the process continues by estimating the next set of inputs.

In this way it is continued until a stopping criteria is fulfilled and the input
set giving the smallest error is selected. The criteria used in the experiments
is to take the lowest error and try three steps further. If one of these steps
gives smaller error than the previous smallest one, we try again three steps
further from the new smallest one. If a smaller error is not achieved, then the
input set giving the minimum error is selected and the selection procedure
is terminated. The procedure is illustrated in Figure 3.1.

x 10~

e
o0
T

)
[=))
T

Prediction error

8 9 10 11 12 13 14
Forward—Backward actions

1 1

e
Ul'h
o_
~3 b

Figure 3.1: Example of Prediction error with the Forward-Backward Selec-
tion. Even the error increases after the action in step 8, according to the
stopping criteria we try 3 steps further and find even smaller error in step
11, in this case the global minimum.

With this kind of stopping criteria, it is possible to ‘leap over’ some local
minima and have ’more global’ minimum, see Figure 3.1. Still, it is not

18



CHAPTER 3. APPROXIMATION METHODS

guaranteed that in all cases this selection method will find the global optimal
input set, even in theory it should be closer to the global optimum than the
Backward or the Forward methods alone.

The number of different input sets evaluated varies. It’s dependent from the
initialization on the input set, the stopping criteria and the nature of the
problem. Using some heuristics in the choices of initialization, it is possible
to decrease the number of evaluated input combinations considerably.

3.3 Lazy Learning

The Lazy Learning (LL) models are linear piecewise approximation models
based on a recursive least squares algorithm introduced by Aha [20]. Around
each sample, the k-nearest neighbors are determined and used to build a local
linear model. This approximation model is presented as

§ = LL(z",2%,--- ,2%), (3.14)

where § is the approximation of the real output y and z! to 2 represent the
d selected inputs.

For the original Lazy Learning the inputs are selected in a continuous fashion.
Therefore, only the number of inputs is needed to be determined beforehand.
In general case, it is not necessary to use all the inputs from 1 to d, but
instead select the most necessary ones in a non-continuous fashion. In both
cases, the input selection must be done before the LL model can be used in
the prediction.

The optimization of the number of neighbors is also crucial. When the
number of neighbors is small, local linearity assumption is valid. On the
contrary, if the number of neighbors is large, the local linearity assumption is
not valid anymore and the linear model fails to provide good approximations.
The choice of the number of neighbors is illustrated in Figure 3.2.

For an increasing size of the neighborhood, the Leave-one-out procedure,
described in Section 3.1.2, is used to evaluate the generalization error of
each different LL model structure [17]. Once the generalization error for each
neighborhood size is approximated, the number of neighbors that minimizes
the approximation is selected.

There is a recursive formula to speedup the calculation of the LOO estima-
tions based on PRESS statistics. It will be presented in Section 3.3.1.

The main advantages of the LL models are the simplicity of the model itself
and the low computational load. Furthermore, the local model can be built
only around the sample for which the approximation is requested. This gives
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o 970 980 990 1000 1010 1020
X

Figure 3.2: Toy example demonstrating the effect of different sizes of the
neighborhood. The best approximation is achieved with the line in the mid-
dle. The ones above it have too few neighbors and the lines below it have
too many.

the name to the Lazy Learning: there’s no need to do anything before the
approximation is requested.

It is also possible to use a global neighborhood, where the number of neighbors
is the same for all the data points. In order to use the LL with the global
neighborhood, the global size of the neighborhood must be determined be-
forehand. Each neighborhood size for each sample is evaluated and the size
minimizing globally the estimation of the generalization error is selected.

If the density of the training samples is fairly constant, the use of global
neighborhood really speeds up the calculation process and makes the ap-
proximations more accurate. If the density varies, it is wiser to use local
neighborhood to get good approximations.

Unfortunately, as already mentioned, the inputs have to be known a priori.
Several sets of inputs have to be evaluated to select the optimal one. The
error has to be evaluated around each data point for each set of inputs. The
optimal input set is the one that gives the smallest approximation of the
generalization error. This procedure is quite long and reduces considerably
the advantages of the Lazy Learning methodology.

The Lazy Learning and its improvements are briefly summarized in Figure
3.4 in the end of this section.

3.3.1 PRESS Statistics

The PRESS statistics [21] gives the tools to calculate the Leave-one-out
Cross-Validation errors for linear models without excessive computation.
When we add this remarkable mathematical derivation to the standard re-
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cursive least squares algorithm, introduced by Biermann [22], we have a nice
and fast way to validate and select the LL structures.

This combination of methods and mathematical derivation is introduced in
[23] and only briefly summarized here.

Everything starts by defining a prediction error for the linear model in the
case of one sample left out in the same way than in the Leave-one-out. This
prediction error is called the PRESS residual

€ip0 = i — fi—i = ¥i — Xib_;. (3.15)
where 7 is the index number of the sample and —i means the i** sample is
left out, x is the input vector, y is the output and b includes the linear model
parameters. Then the PRESS, or PREdiction Sum of Squares, is defined as

N N
PRESS = ) “(&;,-i)%> =) (v — xib_y)?, (3.16)
i=1 1=1

which is effectively the same as the generalization error approximation (MSE)
by the Leave-one-out in Section 3.1.2 multiplied by N, which is the overall
number of the samples.

The power of the PRESS residuals is really understood when the possibility
to calculate them without explicitly identifying the linear model parameters
b_; is introduced. For that, we need some mathematical derivation from [21]
to get the final PRESS residual formula

PRESS _ Ui —%b_ (3.17)

€ - e
H=s 1-xPx;

where P = (X'X)~! and X contains all the neighbors in the neighborhood.
The above formula can be understood as the linear model error in the point
x; divided with one minus the estimated prediction variance in the point x;.
The point x; is the one left out and the linear model is calculated from all
the points in the neighborhood. The prediction variance cannot be greater
than one or smaller than 1/k, where k is the number of neighbors in the
neighborhood. Greater prediction variance leads to greater PRESS residual,
which in turn increases the LOO error of the neighborhood size in question.

Introducing the recursive formulas from the least squares algorithm

P(k)x(k+1)x'(k+1)P(k
P(k+1) = P(k)— SEEGHREEED,
y(k+1) = P(k+1)x(k+1),
e(k+1) y(k +1) — x'(k + 1)b(k),
bk+1) = bk)+y(k+1)e(k+1),

(3.18)
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where x(k + 1) is the next nearest neighbor when the neighborhood size is
enlarged.

Finally, we have the recursive way to calculate the LOO errors for each
neighborhood size of the LL structure.

prESS _ Y — Xjb(k+1)
i 1-xP(k+1)x;

€ (3.19)

In each neighborhood size the PRESS residuals are evaluated. Then the LOO
error of the neighborhood size is the mean of all k residuals. The parameters
for the next neighborhood size are evaluated using recursive least squares
formulas and again the PRESS residuals are evaluated. This is continued for
all the necessary neighborhood sizes and the one giving the smallest PRESS
is the chosen neighborhood size. The algorithm is summarized in Figure 3.3.

1. Initialization

e Calculate initial linear model parameters using the smallest
possible amount of neighbors, not smaller than the number of
parameters in the linear model.

e Calculate the initial P.

e Calculate the LOO error using the standard LOO approxima-
tion method.

2. Use Equation 3.18 formulas to calculate parameters for the next
neighborhood size.

3. Calculate LOO error using Equation 3.19.
4. Repeat from step 2 until all neighborhood sizes are done.

5. Select the neighborhood size with the smallest LOO error.

Figure 3.3: Recursive PRESS statistics.

3.3.2 Globally Pruned

Globally Pruned Lazy Learning (GPLL) method [4] is a modified version
of the LL that has been presented in Section 3.3. This method uses input
selection to prune out the least important input variables in the same way
as the Backward Selection or pruning method presented in Section 3.2.2.

The initial structure is built according to Equation 3.14 in Section 3.3 using
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some maximum number of inputs d. Selection of the initial number of inputs
is highly problem dependent and varies from application to another.

Each input variable from z! to z¢ is taken out one at a time. The Lazy
Learning is applied to each pruned input set and the approximation of the
generalization error is obtained. Then, the pruning that minimizes the error
approximation is selected and the corresponding input is permanently taken
away. This operation is repeated until there are no inputs left to prune. The
selected set of inputs is the one that gave the smallest error approximation.

With this method d(d — 1)/2 different input sets are built and evaluated.
This is significantly less than the number of all possible input sets (29) that
could be built. However, it is not guaranteed that the selected input set is

globally the most optimal one. This disadvantage is common to all pruning
methods [19].

3.3.3 Locally Pruned

Basically, Locally Pruned Lazy Learning (LPLL) method [3] is the same
method as the GPLL presented in the previous section. The difference is
that the LPLL prunes the inputs locally, around each sample one at a time.
Thus each sample can have not only a different number of neighbors, but
also different inputs, which are pruned when the approximation is needed. In
this case, only the maximum number of inputs is needed to fix beforehand.

This method is more like-minded with the original Lazy Learning, it does not
need so much work before the approximation is needed. All the necessary
inputs, variables and parameters are tuned "on the fly".
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La

zy Learning

Globally Pruned

Global Neighbors

Same structure used
in every prediction

Local Neighbors
Same inputs
Number of Neighbors selected
for every prediction

Locally Pruned
No learning needed

Local Neighbors
Inputs and Number of Neighbors
selected for every prediction

Continuous
Original LL

Local Neighbors
Inputs must be known a priori
Number of Neighbors selected
for every prediction

Figure 3.4: Lazy Learning method summarized.

24



Chapter 4

Applications to Long-Term
Prediction of Time Series

The very first thing to do is to select a structure selection method for the
k-NN. The possible choices are the Leave-one-out, the Bootstrap and the
Bootstrap 632, presented in Section 3.1. k-fold Cross Validation is not con-
sidered to be reliable enough [13] and therefore, it is not included in the
comparison. Essentially, the Leave-one-out is the same as the k-fold with
the number of folds equal to the number of samples.

After that, all approximation methods are used with 3 time series. For each
benchmark two prediction strategies are used, the Recursive and the Direct
strategy. The Dirrec strategy needs so much more computational time that
it cannot be used with all the methods and therefore it is handled separately.

The last part of the chapter is an application to a competition task using
the best method, selected using the performances in the three benchmarks.

The k-NN Selection inholds all the selection schemes except the Exhaustive
search (Section 3.2). The input set with the smallest LOO error is selected
and then used in the test of the k-NN Selection.

All time series have different properties and maximum bounds (maximum
number of neighbors, maximum number of inputs, etc.) are also different
for the tested structures. The bounds used in each case are given in the
description of the time series in question.

For comparison, a continuous Linear model and the Linear model with in-
put selection (the Backward Selection, 3.2.2) are presented. In the model
structure selection of the Linear models, the Bootstrap 632, Section 3.1.4, is
used.

To evaluate the accuracy of the predictions, Mean Square Error (MSE) is
used in all test error tables as the measuring criteria.
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4.1 k-NN Structure Selection Method

In order to choose the method for the k-NN structure selection, we use
two time series. First one is the Poland Electricity Load data set, which
is described and introduced more deeply in Section 4.4. The test errors,
the selected inputs and the number of neighbors are presented in Table 4.1.
The LOO and Boot 632 selection method is using the LOO as the input
selection method and then the Bootstrap 632 in the selection of the number
of neighbors.

Test Errors
LOO 1,8495-1073
Boot 2,8482.1073
Boot 632 2,8482-1073
LOO and Boot 632 | 2,8482-1073

Inputs M
LOO
Boot
Boot 632

0 8 t-

\I\Iﬂg
o

el
s
o

k Max: 100
LOO

Boot

Boot 632

LOO and Boot 632

— = N

Table 4.1: k-NN structure selection using Poland Electricity Load. The LOO
and Boot 632 means that LOO is used for the input selection and then the
Bootstrap 632 for the selection of k.

According to the performance of the four selection schemes in the Poland
Electricity Load data set, three methods are selected to the next round. In
the next round, Santa Fe time series is used. The Santa Fe is described and
introduced more deeply in Section 4.2. The test errors, the selected inputs
and number of neighbors are presented in Table 4.2.

From the experiments above, the Leave-one-out structure selection method
is clearly the best one according to the test errors in both time series. It is
also the fastest method, which makes it the most preferable one to use in
the input selection. Therefore the LOO is selected to be used with the k-NN
in the following experiments as the input selection method as well as in the
selection of k.
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Test Errors
LOO 53,64
Boot 632 58,92
LOO and Boot 632 | 58,92

Inputs Max: 12 t-{..}

LOO 11 1 0
Boot 632 11 1 0
k Max: 100

LOO 3

Boot 632 1

LOO and Boot 632 1

Table 4.2: k-NN structure selection using Santa Fe. The LOO and Boot 632
means that the LOO is used for the input selection and then the Bootstrap
632 for the selection of k.

4.2 Benchmark 1: Santa Fe

The Santa Fe is a widely used benchmark and it was generated using an
infrared laser in a chaotic state. It’s originally introduced as one of the
Santa Fe competition data sets [24]. It inholds over 10 000 values from
which the 1000 first values, called Santa Fe A series in the literature, are
used for learning and the rest, little bit over 9000 values, are used for the
testing.

For the learning, maximum of 100 neighbors and maximum of 30 inputs
are used for every method. Only exception is the k-NN with Exhaustive
Search, which had to be limited to a maximum of 17 inputs, because of the
calculation time limitations. Each input more doubles the calculation time
needed in the case of Exhaustive Search.

The learning set is shown in Figure 4.1. The test errors are shown in Tables
A.1 and A.2 using the Recursive and the Direct strategies respectively.

From the two tables it can be seen that the Direct strategy is many times
better than the Recursive one. Overall best method is the GPLL with global
k, but the k-NN with the Exhaustive Search is not far behind even the
maximum number of inputs is only 17. Third best method is the GPLL
with local k. The test errors of the best GPLL method are plotted in Figure
4.2.

Almost all methods except the Linear ones got better error using the Direct
strategy than the Recursive. The prediction with the three best methods
is presented in Figure 4.3 using the Direct prediction strategy. The inputs
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Figure 4.1: Santa Fe A, the learning set.
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Figure 4.2: Santa Fe test errors using the GPLL with global k£ and the Direct
prediction strategy.

used in the prediction are shown in Tables B.1 and B.2.

4.3 Benchmark 2: Darwin Sea Level Pressure

The Darwin Sea Level Pressure data set (called Darwin later on) consists
of 1400 sea level air pressure values collected monthly from the Darwin Sea.
The data can be found from [25]. This time series is the hardest benchmark
from the three presented here. 1300 first values are used as the learning data

and the 100 rest are used for testing. The learning set is shown in Figure
44.

For the learning, maximum of 500 neighbors and maximum of 30 inputs are
used for every method. Only exception is the k-NN with the Exhaustive
Search, which had to be limited to a maximum of 17 inputs, because of the
calculation time limitations. Each input more doubles the calculation time
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Figure 4.3: Santa Fe data 10 steps ahead prediction using the Direct predic-
tion strategy. Solid line represents the real values, dashed is the GPLL with
global k, dotted is the k-NN using the Exhaustive Search and dash-dotted is
the GPLL with local k.

needed in the case of Exhaustive Search.
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Figure 4.4: Darwin learning set.

The test error values are in Tables A.3 and A.4, the first table using the
Recursive strategy and the latter using the Direct strategy. From the two
tables it is quite evident and easy to see the trend, where the Direct strategy
gives smaller errors more often than the Recursive one. It is also very sur-
prising how well the Linear models perform against the local linear models
and the k-NN.

If we consider timesteps from 1 to 5, the GPLL with global k is the best
on average, but somehow the timesteps from 6 to 10 decrease the overall
performance. On the other hand, the Darwin test set has only 100 values,
which is too small to make very reliable conclusions. The lack of test data
gives the test results more variance and makes the results more unstable and
vague. At the same time, a huge number of neighbors needed suggest the
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Darwin time series to be mostly linear, which would also explain the good
success of the Linear models.

The test errors of the GPLL with global k are plotted in Figure 4.5. Fig-
ure 4.6 shows 3 best predictions, according to the mean MSE, over all 10
prediction steps. Tables B.3 and B.4 show the inputs used in the 3 best
predictions.

2.5 T T T T T T T T

Test error

1 Il 1

1 2 3 4 5 6 7 8 9 10
Timesteps

Figure 4.5: Darwin test errors using the GPLL with global k£ and the Direct
prediction strategy.

14

Darwin Prediction
—_ o
o o
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Timesteps

Figure 4.6: Darwin data 10 steps ahead prediction using the Direct prediction
strategy. Solid line represents the real values, dashed is the Linear, dotted is
the Linear with pruning and dash-dotted is the LL with global k. First two
use the Direct strategy and the LL uses the Recursive strategy.

4.4 Benchmark 3: Poland Electricity Load

This data set describes the daily average of electricity load in Poland for
over four years of time in the 1990’s. The data set can be downloaded from
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[26]. The data set is divided into a learning set, including 1400 values, and a
separate test set, containing 201 values. The learning set is shown in Figure
4.7.

=
i

—
e}

Poland Electricity Load
=
o0 e

0 200 400 600 800 1000 1200 1400
Days

Figure 4.7: Poland Electricity Load learning set.

Tables A.5 and A.6 show the test errors using the Recursive and the Direct
strategies respectively. In the tests the number of neighbors is limited to 200
and the number of inputs to 14.

It is quite surprising how well the Linear models perform with this time series
and the fact that the smallest mean test error is achieved with the Recursive
strategy and not with the Direct. It is true that the time series itself is fairly
easy even for the basic Linear models to predict the future values and the
Lazy Learning or the k-NN have very little left to improve in the prediction
process.

x 10~

Test error
(3] w

1 1 1 1 1 1

1 2 3 4 b 6 7 8 9 10
Timesteps

Figure 4.8: Poland Electricity Load test errors using the LL with global k
and the Recursive prediction strategy.

However, the best method according to the mean test error is the LL with
global k. The GPLL is not far from the LL, but the fact that the LL without
the input selection gives better performance than with the input selection
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can be due to a small maximum number of inputs. The test errors of the
best LL method are plotted in Figure 4.8.

From the test error tables, three best methods according to the mean test
error are selected to predict 10 steps of the test set. The prediction results
are shown in Figure 4.9 and the selected inputs in Table B.5

13 T o T T T T T T
1:2F 1

|

Electricity Prediction

2 3 4 5 6 i 8 9 10
Timesteps

Figure 4.9: Poland Electricity Load 10 steps ahead prediction. Solid line is
the real values, dashed is the LL with global k, dotted is the Linear with
pruning and dash-dotted is the Linear continuous. The first method is done
using the Recursive strategy and the two last ones with the Direct strategy.

4.5 Dirrec prediction strategy

In this section, the third prediction strategy, Dirrec strategy, is tested with
two time series: the Santa Fe data set and the Poland Electricity Load data
set. The Darwin series requires so many neighbors in the LL methods that
it is too calculation intensive to use with the Dirrec strategy. Where the two
other benchmarks use a maximum of 200 neighbors, the Darwin uses 500.

The criteria to select the methods to be used in the Dirrec experiments is
based on the calculation time requirements. Methods selected must be able
to produce all needed models for the 10 time steps in a reasonable time. Some
methods take way too long time to be able to handle the linearly increasing
regressor size of the Dirrec strategy.

With the Dirrec strategy the following methods are compared: the first one
is the combination of the k-NN and the Leave-one-out, the second one is the
joint venture of the k-NN and the Lazy Learning, third one is the continuous
LL and finally the fourth one is the GPLL. In both combinations involving
the k-NN, the used input selection method is the Forward-Backward Selec-
tion. The other participant in the group is used as the approximator. Both
LL based methods use global k.
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In Table A.7 the test errors of the 10 prediction steps are presented for both
time series, the Santa Fe and the Poland Electricity Load. In Tables B.6
and B.7 are the selected inputs of Santa Fe and in Table B.8 are the selected
inputs of Poland Electricity Load. In all the tables presenting the inputs,
the worst method, according to the mean test error, has been left out.

From the results in Table A.7, the best overall results for both time series
can be found. The mean test errors over all 10 prediction steps are smaller
than with the Direct or with the Recursive strategy for both time series.

For the Santa Fe, the best method, according to the mean test error, is the
k-NN with the LOO. The GPLL method does not perform as well as the
k-NN or even as well as the GPLL with the Direct method. This can be
due to the inefficient input selection which is in critical role, because of the
increasing number of inputs. The prediction of the best method is shown in
Figure 4.10.

200 T T T T T T T T

150

100

Santa Fe Prediction

50

01 2 3 4 o 6 7 8 9 10

Timesteps

Figure 4.10: Santa Fe prediction with the Dirrec strategy. Solid line repre-
sents the real values and dashed one is the prediction using the k-NN with
the LOO.

As a comparison of the overall performances of the Dirrec and the Direct
strategies, the test errors of are shown in Figure 4.11. The strategies use
different approximation methods, so the comparison is a bit tricky. But
what can be said, is that the overall performance with the Dirrec strategy is
clearly better than with the Direct strategy.

For the Poland Electricity Load the best method is the continuous LL with
global k. With this time series, the same kind of effect exists than in the Santa
Fe case; the GPLL performs well in the first timesteps, but then at timestep
8 the continuous LL begins to give better performance. The prediction of
the best method is shown in Figure 4.12.

In Poland Electricity case, the same method gives the best overall perfor-
mance with the Dirrec strategy as well as with the Recursive strategy. The
test errors of both strategies are shown in Figure 4.13. In this case, the
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Figure 4.11: Santa Fe test errors of the Dirrec and the Direct strategy. The
solid line represents the Dirrec and dashed line the Direct strategy. The
Dirrec strategy uses the k-NN with the LOO and the Direct strategy uses
the GPLL with global k.
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Figure 4.12: Poland Electricity Load prediction with the Dirrec strategy.
Solid line represents the real values and dashed one is the prediction using
the continuous LL with global k.

difference is not big, but still in overall performance the Dirrec strategy is
better than the Recursive.

From these experiments it can be said that the Dirrec strategy outperforms
both the Recursive and the Direct strategies in these time series. But the
selection of the method must be done carefully or the performance is de-
graded.
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Figure 4.13: Poland Electricity Load test errors of the Dirrec and the Re-
cursive strategy. The solid line is the errors of the Dirrec and dashed line
the Recursive. Both strategies use the LL with global k.

4.6 Application: CATS Competition

The CATS Competition was arranged in 2004 as a special session of IJCNN,
International Joint Conference on Neural Networks [27]. The data set con-
sists of 5000 values from which 100 values are missing. The missing values
are divided into 5 "holes", the first hole covering values from 981 to 999,
second from 1981 to 1999 and so on until the data set ends with the last hole
of 20 values. This means that we have 4 separate missing value subproblems
and one ordinary 20-step ahead prediction problem.

As mentioned earlier, only one method was used in solving all the subprob-
lems. Based on the experiments done with the 3 benchmarks, the GPLL
method with global & is selected to be used for the CATS Competition data
set.

All the available data, 4900 values are used as the learning set, shown in
Figure 4.14 and a close-up to the second hole in Figure 4.15.

Because of the need for the 20 step ahead prediction and the calculation time
limitations, the Direct prediction strategy is used. For the CATS data set,
the maximum number of neighbors is set to 300 and the number of inputs
to 15. The first order trend removal is used before the actual learning and
it is reversed afterwards.

For the four missing value subproblems the following procedure is used: for
each hole 20 step ahead prediction is done from both sides of the hole. Then
the predictions are weighted according to the inverse of the prediction step
and averaged.

The results of the predictions of each hole and the pure 20 step ahead pre-
diction in the end of the data set are presented in Figures from 4.16 to 4.20.
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Figure 4.14: CATS Benchmark learning set.
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Figure 4.15: Close-up to the CATS Benchmark learning set, values from
1900 to 2100 with values missing from 1981 to 1999.
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Figure 4.16: CATS Benchmark prediction, first hole. Solid line represents
the real values and dashed one the prediction. The prediction MSE in this

hole is 125.
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Figure 4.17: CATS Benchmark prediction, second hole. Solid line represents
the real values and dashed one the prediction. The prediction MSE in this

hole is 168.
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Figure 4.18: CATS Benchmark prediction, third hole. Solid line represents
the real values and dashed one the prediction. The prediction MSE in this

hole is 1650.

The first two holes are predicted very well by the GPLL, but the rest is
not so good. Final result in the competition [27] would be 11** place with
overall M SFE, value of 747. In order to enhance the performance, the Direct
strategy could be replaced with the Dirrec and the initial number of inputs

increased.
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Figure 4.19: CATS Benchmark prediction, fourth hole. Solid line represents
the real values and dashed one the prediction. The prediction MSE in this

hole is 572.
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Figure 4.20: CATS Benchmark prediction, end part. Solid line represents
the real values and dashed one the prediction. The prediction MSE in the

end part is 1220.



Chapter 5

Conclusions

The Lazy Learning is a good method. It provides accurate approximations
in a reasonable time. But with the original LL, the problem is the input
selection. The GPLL fixes the problem and makes the approximations even
better. In both methods, global k gives better performance than locally
selected one. Maybe the number of local neighbors is too unstable and
therefore gives not so accurate results.

Anyhow, with both improvements to the original LL, the input selection
and the global £, it can be said that "it’s not good to be Lazy". One must
do some calculation and structure and input selection before the LL can be
efficiently used as an approximator.

Despite the simplicity, the k-NN is quite accurate and reliable method. The
simplicity allows wider search for model structures and different input sets.
In many time series prediction problems it is very important to be able to
use the past values very far from the current time point, and so k-NN can
use the much needed information further than more complicated methods.

In general the Direct strategy is better than the Recursive. Even if each
prediction step further to the future needs it’s own model structure selection
and parameter tuning phase, it is an acceptable cost in order to get better
prediction performance.

But if the input selection method is good enough, the Dirrec strategy out-
performs both, the Direct and the Recursive strategies. In a way, the Dirrec
has captured the best aspects from both strategies. Hence, the Dirrec is a
union of the Direct and the Recursive, DIR U REC.

If the input selection used with the Dirrec is not powerful enough or the
approximator cannot provide accurate enough approximations, it might be
better to use the Direct strategy instead. Increase in the regressor size is of
no use, if the increasing part is inaccurate. Therefore, it is quite surprising
to see that the very simple k-NN model can give satisfying input selections
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and accurate enough approximations with the Dirrec strategy. It is also the
fastest combination used with the Dirrec.

From the input tables in the appendix B it can be seen that the time space
between some selected inputs and the timestep to be predicted stays con-
stant. It means that there is some dependency at the same distance in time
in the time series dealt here. That information could be used as prior knowl-
edge of the time series, in example when initializing the input set for the
Forward-Backward method.
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APPENDIX B. SELECTED INPUTS

Timestep
t={..} 1 2 3 4 5 6 7 8 9 10
A A A A A A A
0 B B B B B B B B
C C C C C C C
A A A A
1 B B B B B B B B
C C C C C
A A A A A
2 B B B B
C C C C
A A A A A
3 B B B B B B
C C C C C
A A A A
4 B B B
C (& C
A A A A A
5 B
C C C C
A A A
6 B
C C C C
A A A
7 B B
A
8 B B B
C C
9 B B
A
10 B B B B B B
C C
11 B B
A
12 B B
13 B
14 B

Table B.1: Santa Fe prediction selected inputs from ¢t —0 to t—14. A denotes
the GPLL with global &, B denotes the k-NN using the Exhaustive Search
and C denotes the GPLL with local k. All methods use the Direct strategy.
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Timestep
t-{.} 1 2 3 4 5 6 T 8 9 10
15 B B
C C
16 B B B
17
18
C
19
20
21
A
22
C C C C
A A
23
A
24
C
25
C
A A
26
C
A A A
27
C C C
A A A
28
C C C
A A A
29
C C C

Table B.2: Santa Fe prediction selected inputs from ¢t — 15 to t — 29. A
denotes the GPLL with global &, B denotes the k-NN using the Exhaustive
Search and C denotes the GPLL with local k. All methods use the Direct
strategy.
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Timestep
t-4{..:} 1 2 3 4 5 6 7 8 9 10

A A A A A A A A A A
0 B B B B B B B B

C

A A A A A A A A A A
1 B B B B B B B

C

A A A A A A A A A A
2 B B B B

C

A A A A A A A A A A
3 B B B B B B

C

A A A A A A A A A A
4 B B B

C

A A A A A A A A A A
5 B B B B B B B

C

A A A A A A A A A A
6 B B B B B

C

A A A A A A A A A A
T B B B B B B

C

A A A A A A A A A A
8 B B B B B B B

C

A A A A A A A A A A
9 B B B B

C

A A A A A A A A A A
10 B B B B B B B

C

A A A A A A A A A A
11 B B B B B B B B

C

A A A A A A A A A A
12 B B B B B B B

C

A A A A A A A A A A
13 B B B B B B B B

C

A A A A A A A A A A
14 B B B B B

C

Table B.3: Darwin prediction selected inputs from ¢ — 0 to ¢ — 14. A denotes
the continuous Linear model, B denotes the Linear model with pruning and
C denotes the LL with global k. First two methods use the Direct strategy
and the LL uses the Recursive strategy. Therefore, the LL has only one set

of selected inputs.
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Timestep
t-{..} 1 2 3 4 5 6 7 8 9 10

A A A A A A A A A A
15 B B B B B B

C

A A A A A A A A A A
16 B B B B B

C

A A A A A A A A A A
17 B B B B B

C

A A A A A A A A A A
18 B B B B B B

C

A A A A A A A A A A
19 B B B B B B B

C

A A A A A A A A A A
20 B B B B B B B B

C

A A A A A A A A A A
21 B B B B B

C

A A A A A A A A A A
22 B B B B B B

C

A A A A A A A A A A
23 B B B B B

C

A A A A A A A A A A
24 B B B B B B

C

A A A A A A A A A A
25 B B B B B B

C

A A A A A A A A A A
26 B B B B

C

A A A A A A A A
27 B B B B B B

C

A A A A A A
28 B B B

C

A A A A

29 B B B B B

Table B.4: Darwin prediction selected inputs from ¢ —15 to t—29. A denotes
the continuous Linear model, B denotes the Linear model with pruning and
C denotes the LL with global k. First two methods use the Direct strategy
and the LL uses the Recursive strategy. Therefore, the LL has only one set
of selected inputs.
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Timestep
t={..0) 1 2 3 4 5 6 7 8 9 10
A
0 B B B B B B B B B B
C C C C C C C C C C
A
1 B B
C C C C C C C C C C
A
2 B B B B
C C C C C C C C C C
A
3 B B B
C C C C C C C C C C
A
4 B B B B
C C C C C C C C C C
A
5 B B B
C C C C C C C C C C
A
6 B B B B B B B
C C C C C C C C C C
A
7 B B B B B B B B B B
C C C C C C C C C C
A
8 B B
C C C C C C C C C
9 B B B
C C C C C C C C
10 B B B
C C C C C C C
11 B B B B B B
C C C C C C
12 B B B B B
C C C C C
13 B B B B B B
C C C C C

Table B.5: Poland Electricity Load prediction selected inputs. A denotes the
LL with global k, B denotes the Linear model with pruning and C denotes
the Linear model with continuous input. The LL uses the Recursive strategy
and therefore, it has only one selected set of inputs. The Linear models use

the Direct strategy.
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Timestep

t-{} 1 2 3 4 5 6 7 8 9 10
A
-9 B
c
A A
-8 B
(o} C
A A A
-7 B
(o] (o]
A A A
-6 B
(o] C C
A A A A
-5 B B B
C (e] C
A A A
-4 B B B
C C c
A A A A A A
-3 B B B B B
¢ C C
A A A A A A
-2 B B B B B B
(] (o]
A A A A A A A
-1 B B B B B
(e] ¢} (e c (o]
A A A A A A A A
0 B B B B B B B
C [e] (o) C C
A A A A A A A A
1 B B B B B B
(e] C C
A A A A A
2 B B B
c C
A A A
3 B B
c
A A
4 B B B
c & C
A A A
5 B B
(e] C [e]
A A A
6 B B
Le] c C [e]
A A A
7 B
A A
8 B
A
9
(]
A
10
(o)

Table B.6: Santa Fe selected inputs from ¢+9 to ¢t — 10 of the Dirrec strategy.
A denotes the k-NN with the LOO combination, B denotes the k-NN with the
LL combination and C denotes the GPLL with global k. The approximated
inputs are denoted by the hat symbol.
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Timestep
T (P 1 2 4 % 8 9 10
A A A
11 B
C C
12 B
C
13 B
14 B
A
15 B
A A A
16 B B B
C
A A
17 B B B
C
A A A
18 B
C
A A
19 B
A A
20 B
A A
21 B
]
A A A
22 B
A
23 B
C
A
24
C
A
25 B
C
A
26
[¢]
A
27
A
28 B
C C
A
29
C C (o]

Table B.7: Santa Fe selected inputs from ¢—11 to t—29 of the Dirrec strategy.
A denotes the k-NN with the LOO combination, B denotes the k-NN with
the LL combination and C denotes the GPLL with global k.
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A denotes the LL with global k, B denotes the GPLL with global £ and C
denotes the k-NN with the LL combination. The approximated inputs are

Table B.8: Poland Electricity Load selected inputs of the Dirrec strategy.
denoted by the hat symbol.



