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Aikasarjan arvojen ennustaminen pitkän matkan päähän on erittäin vaikeaa 
ja useita ongelmakohtia on otettava huomioon. Siksipä onkin tärkeää kehit­
tää hyviä ja tarkkoja keinoja päästäkseen ennustamisessa hyvään tarkkuuteen 
ja pitääkseen virheet mahdollisimman pieninä. Tässä diplomityössä esitellään 
kolme erilaista pitkän matkan ennustusstrategiaa: rekursiivinen (Recursive), 
suora (Direct) sekä näiden yhdistelmä (Dirrec).
Työssä käytetään kahta ennustusmenetelmää: k\n lähimmän naapurin
menetelmää ja menetelmää nimeltä Lazy Learning ("laiska oppiminen"). 
Molempien menetelmien kohdalla esitellään ja vertaillaan alkuperäisiä 
menetelmiä sekä niihin tehtyjä parannuksia. Kaikki menetelmät tarvitsevat 
mallinvalintatyökaluja, joista 4 seuraavaa esitellään tarkemmin: ^-kertainen ris- 
tiinvalidointi, Leave-one-out ristiinvalidointi, Bootstrap sekä Bootstrap 632.
Toinen tiiviisti aikasarjaennustamiseen liittyvä pulma on oikean syötteen valinta. 
Tässä työssä syötteen valinta on sisällytetty edellä mainittujen menetelmien 
parannuksiin.

Kaikkien mainittujen menetelmien ja strategioiden toimintaa on vertailtu kol­
men eri aikasarjan avulla: Santa Fe, Darwin Sea Level Pressure sekä Poland 
Electricity Load. Lopuksi otetaan osaa CATS Benchmark -kilpailuun parhaaksi 
todetulla menetelmällä.
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Chapter 1

Introduction

Many fields of science use time series and time series prediction [1]. In 
finance, specialists predict stock exchange courses or stock market indices 
for the following days or weeks, data processing people predict the flow of 
information on their networks and electricity producers predict the electricity 
load of the following day. The common point to all fields is the following 
problem: "How to use the knowledge of the past to predict the future?"
In the field of time series prediction, the goal is to predict the future values of 
the time series using the previous values. In meteorology, it is very common 
to register the temperature every day and then predict the next days tem­
perature from the gathered data. In the same way the meteorologists predict 
the cloud movement, the air pressure change and other weather phenomena 
and finally show the results in the nine o’clock news for everybody.
Previous example might sound quite straightforward and easy, but there is 
huge amount of calculation and modeling behind all that. In many cases, 
even if we know that it is possible to mathematically derive the dependencies 
between the measurements and the time spaces, formulation can be very hard 
task and sometimes the complexity makes it almost impossible. Maybe the 
underlying phenomenon is not only a function of the previous states and 
values of the single time series, but also of some unknown states or external 
variables. Finding the states and the variables makes the formulation task 
even harder and increases the complexity exponentially.
To start the prediction process the first task is to choose an appropriate 
model family. There are many different model families to choose from such as 
linear methods (autoregressive (AR) models, moving-average (MA) models) 
[2] and non-linear methods (artificial neural networks (ANN)) [1]. In order 
to select the most optimal family, one can use some prior knowledge of the 
problem or to do some preliminary tests to have some insight of the nature 
of the time series. If the group of models is too large or the models are too
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CHAPTER 1. INTRODUCTION 2

complex, it takes too much time to test all of them. On the other hand, 
simple models allow a larger group of models to be tested in a reasonable 
time.
In many cases, the methods try to build a model of the underlying process 
and then use the acquired model and the last values of the time series to pre­
dict the future values. In order to do this, the method must overcome a large 
number of obstacles, in example the selection of the relevant information to 
use in the prediction, the selection of method-specific structural parameters 
and finally optimizing the parameters of the selected model using a learning 
procedure.
Input selection is the most troubling obstacle. Usually the number of previ­
ous values needed for the prediction increases according to the complexity of 
the time series. Some values are more important (contain more information) 
than others and sometimes unnecessary inputs even decrease the accuracy of 
the prediction and increase the calculation time needlessly. Input selection 
is especially needed, when the number of data is too few compared to the 
number of possible inputs. On the other hand, too few inputs are not enough 
to build an accurate model of the underlying system.
In this thesis, two families of models are selected: local constant models (k- 
NN) and local linear models (Lazy Learning). The first one is very simple 
approximator family with only one structural parameter to select. The sec­
ond one is more time taking, but more accurate approximator. Both families 
can use input selection methods as part of the routine itself.
For the fc-NN, four ways to select the inputs are presented: Exhaustive 
Search, Backward Selection, Forward Selection and Forward-Backward Se­
lection. The last one is a combination of the Forward and the Backward 
Selection methods.
The Lazy Learning model family uses Backward Selection method to select 
the inputs. The selection is done locally and globally and the performances 
are compared. Also continuously selected inputs are used and compared.
The prediction problem comes even more complex and demanding when the 
prediction is needed for several steps ahead, called a long-term prediction. 
Reaching for further to the unknown future increases the amount of uncer­
tainty, which comes from many sources, in example from the accumulation 
of the prediction errors and the lack of relevant information. Also the cal­
culation time and the total number of parameters, which need to be chosen, 
increase.

The selection of the prediction strategy becomes even more important the 
further in time the prediction is done. In this thesis, three different long-term 
prediction strategies are compared: Recursive, Direct and Dirrec. From these 
strategies, the Recursive is the fastest, but it suffers from the accumulation
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of the prediction error. The Direct strategy avoids the accumulation effect 
with the cost of increase in the calculation time. Finally the Dirrec strategy 
combines the Recursive and Direct strategies into one.
Section 2 defines the basic concepts related to the time series, some means 
of manipulation necessary for the time series prediction and the different 
strategies to manage long-term prediction. Section 3 describes in more de­
tail the structure selection methods, the &-NN approximator and various 
Lazy Learning methods. All presented methods are applied to the long-term 
prediction problem using three data sets and the results are presented in 
Section 4.

1.1 Publications

Short descriptions of the publications [3, 4, 5, 6, 7] related to the thesis work 
in a chronological order:

Publication [3] describes how to use the LL methods in classification and 
function approximation. The task is to classify business plans into two cat­
egories: successful and unsuccessful ones. This is done by using the LPLL 
method, which combines locality with input selection. This publication has 
been selected for a special issue in International Journal of Neural Systems.
Publication [4] takes the LL methods further away from the original one. 
The input selection is done globally and the performance is compared to LL 
without input selection and to the &-NN method.
In publication [5] the å>NN is used as an input selection method with three 
different structure selection methods: Leave-one-out, Bootstrap and Boot­
strap 632. After the input selection, the fc-NN is also used as an approximator 
to compare the structure selection methods.
Publication [6] is a joint venture between the &-NN and the Mutual Infor­
mation. Here the A>NN is used to tune the Mutual Information procedure 
and to evaluate its input selection performance in a long-term prediction 
problem.

Publication [7] compares three different input selection criteria: fc-NN, Mu­
tual Information and Nonparametric Noise Estimation. Each criteria is 
used to select the inputs based on three methods: Forward, Backward and 
Forward-Backward selection. Input selection performance is evaluated using 
LS-SYM.



Chapter 2

Time Series Prediction

2.1 Time Series

Even there exists many different time series with many different properties, 
we have to define some ground rules in order to use the methods described 
later. This first chapter defines the basic notations and assumptions about 
the series we are using in this thesis.
Single value of the time series is denoted as x(t) and, given the definition of 
time t, we have a total of N values of the series x, that is from x(l) to x(N), 
from the oldest measurement to the newest one, which can be considered to 
be the present measurement of the series. Formal definition of a time series 
is given in Equation 2.1.

. x(t) € », 1 < t < N. (2.1)

If the present or current time is denoted with t, the future is then denoted 
with i+n and the past time as t — n, where n can be any positive integer with 
maximum of N — 1 when denoting the past time. Time is always considered 
to be divided into steps, time steps, of equal length. The length can be 
almost anything from a few microseconds up to several years, but always a 
constant throughout the series.

2.2 Time Series Prediction

All the methods described in this thesis can be applied to a time series with 
external inputs. They can be described as some other related time series, 
than the one being predicted, like humidity in the case of predicting the 
temperature. External inputs can also be other kind of information, not 
only the type of time series, in example a working state of a machine.

4



CHAPTER 2. TIME SERIES PREDICTION 5

However, in order to avoid complex notation we do not include the use of 
the external inputs in this thesis. Therefore, all the approximations and 
selections in the experiments are based only on the measured values of the 
time series itself. From this measured data, the methods try to approximate 
the future after some structural and parametrical finetuning called learning.
First phase is to select a class of models, in example Multi-Layer Perceptron 
networks [8] or Radial Basis Function networks [9]. The classes of interest 
in this thesis are local linear models and local constant models.
After the definition of the class, or classes, we can define all the models in 
the classes, as

Л(х,е(<?)), l<q<Q, (2.2)

where q is the index number of a model structure from all the classes with 
the total number of structures Q, x is the vector of time series values and 
6(g) includes the parameters of the model fq. It is essential to clarify, that 
structure becomes a model after all the parameters are defined or fixed one 
way or the other. If one of the parameters is changed, the model is definitely 
changed, but the structure can remain the same.
The ultimate goal is to find the best model fq among the Q possible struc­
tures to best fit our prediction purposes. At the same time one has to consider 
the problem of finding the optimal parameters 0(g) for each structure to be 
able to rank the structures and find the best one. Then the best structure 
with corresponding parameters is used to predict the needed values of the 
time series.
In order to do the ranking of the structures and models, we need a definition 
of prediction error, which comes from the inaccuracy of the approximation, 
presented as

x{t + 1) = fq(x(t), x(t - 1),..., x(t-d+ 1), 0(g)),
or (2.3)

x(t + 1) = x{t - 1),..., x(t-d+ 1), 0(g)) + et+1,

where x(t + 1) denotes the approximation at time t + 1, et+i denotes the 
approximation error and d is the number of previous time series values used 
in approximation. From these two representations of prediction we can derive 
a formula for the prediction error

et+i = x{t + 1) - x(t + 1). (2.4)

If this error is zero, there is no noise in the time series and the approximation 
is exactly the real value. In the presence of noise, there should always be a
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small error in the prediction, or we’ll be dealing with overfitting. It means, 
that we have also modeled the error in the time series and that should be 
avoided or the accuracy of the prediction is degraded in the long run. This 
happens because time series are not completely deterministic, they are at 
least partly stochastic processes.
The approximation error can also come from other sources, in example from 
incorrectly selected parameters or structure or the insufficient number of 
learning data available.

Models from different classes can have totally different properties, such as 
computational load, simplicity, robustness and tolerance of noise. It is not 
obvious how to choose the best structure among many different classes. Some 
classes have certain limitations and may be harder to implement due to 
the number of free parameters to tune or the assumptions made about the 
underlying noise in the time series. Selection of the classes can be based on 
the prior knowledge about the type of the problem itself or many different 
classes should be tested and validated to find the most optimal one.
Structure selection methods used in this thesis are described more deeply in 
Section 3.1.
Although no external information or variables, besides the time series itself, 
are used, we can use some heuristics to decide how to preprocess the data 
[10]. Preprocessing methods include in example removing the mean of the 
data set

•Z-zeromean
1 N-l

(t-n) = x(t-n)- — '^2 ~ ^
v h=0

JV-1

>
n=0

removing the trend

(2.5)

{^notrend(í - n) = X(t - П - 1) - x(t - n)}»J (2.6)

and scaling the sample variance to one

x(t — n)
y^v-1 TZ_^h=0 ^zerornean

In above equations, h is used as a temporary variable. Note that removing 
the first order trend makes xnotrenc¡ one value shorter than the original time 
series. It is also possible to use higher order trend removal with trivial 
changes to Equation 2.6 [10].
Many approximation methods have hard time dealing with trends or non­
zero means in the data and benefit vastly from the applied preprocessing.

л 3-unitvariance (t 71 ) —
(t-hy

N-1

71=0

(2.7)
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After the approximation of the future values, it’s many times necessary to 
reverse the preprocessing in the approximations to see the real prediction 
and to evaluate the prediction error.

2.3 Long-Term Prediction Strategies

In many occasions, it’s fairly easy and straightforward to predict the next 
value of the time series. But the further we delve into the future, the more 
uncertain we are and the bigger prediction errors we get.
The concept of Long- Term is not precise. It somewhat describes the amount 
of timesteps to be predicted toward the unknown future. One can find or 
create many different interpretations and definitions to the concept long­
term. In this thesis the term is used when the prediction is done further 
than one step ahead. Maximum horizon of prediction used is 20 steps ahead 
and based on any definition that is considered to be long-term.
In the next sections, three different prediction strategies are explained and 
their pros and cons discussed from a theoretical point of view. In Section 4 
these strategies are compared and the performances evaluated from a prac­
tical point of view.

2.3.1 Recursive

In the Recursive prediction strategy the same model is used over and over 
again and the previous predictions are used with the original data set as 
inputs to evaluate the next prediction. In this way, we are actually applying 
one-step-ahead prediction many times, recursively.
If we use a continuous input set of size 4, we can write the Recursive strategy 
as

£(< + !) = /g(x(i), x(t - 1), x(t - 2), x(t - 3)), 6(g)),
x(t + 2) = fg(x(t + 1), z(t), x(t - 1), x(t - 2)), 6(g)),
x(t + 3) = fq(x(t + 2), x(t + 1), z(t), x{t - 1)), 9(g)),
x{t + 4) = fq(x(t + 3), x(t + 2),x(t + 1), x(t)), 6(g)), v2-8)
x(t + 5) = fq{x(t + 4), x(t + 3), x(t + 2), x(t + 1)), 6(9)),

The further we go, the more approximations are introduced to the input set 
and after t + 4 all the inputs are approximations. Here the model structure 
q stays the same in each timestep.
Because the approximation is not perfect, there’s some prediction error in 
the approximations, so we can write the above equations as
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x(i + l) = fq(x(t), x(t - l),x(t - 2), x(t - 3)), 6(g)),
x(t + 2) = fq(x(t + 1) + et+i,x(t), x(t - 1), x{t - 2)), 9(g)),
x(i + 3) = fq(x(t + 2) + et+2, x(t + 1) + et+i, z(i), x(t - 1)), 6(9)),
x(i + 4) = fq(x(t + 3) + et+3, x(t + 2) + 6<+2, x(t + 1) + 6t+l,

æ(*))»6(g))»
x{t + 5) = fq(x(t + 4) + £t+4, x{t + 3) + et+3, x(t + 2) + et+2, 

x(t + 1) + et+i), 9(g)),

(2.9)
If the prediction errors are all zero, the Recursive strategy is very fast and 
accurate in the prediction of the future values, even in long-term. It needs 
only one model to be learned and after that any number of timesteps can be 
predicted.

But if the errors are non-zero and the approximations are used as inputs 
again and again, the more and more cumulative prediction error is included 
in the approximations. In practice, this is the normal case, there is some 
error in every approximation, because the time series are partly stochastic 
processes.

2.3.2 Direct

Comparing to the Recursive strategy, the Direct strategy uses different model 
for each time step but always the real measured data as inputs. No approx­
imations are introduced to the input set.
Again, if we use a continuous input set of size 4, we can write the Direct 
strategy as

x(i + l) = fqi (x(t), x(t — 1), x(t — 2),x(t — 3)), 0(gi)),
x(t + 2) = fq2(x(t),x(t - 1), x(t - 2),x(t - 3)), 6(g2)),
x(t + 3) = fq3(x(t),x(t - l),x(t - 2),x(t - 3)),9(g3)),
x(t + A) = fq4(x(t), x(t - 1), x(t - 2),x(t - 3)), 9(q4)), (2Л0)
x(t + 5) = fq5(x(t), x{t - 1), x(t - 2),x(t - 3)), 0(g5)),

In this strategy, there’s no cumulative error introduced through the inputs, 
because only original data set values are used in the approximation of future 
values. Each time step only the normal prediction error et+n is present.
Every time step incorporates its own model and may also have its own se­
lection of inputs, if the input selection is used. These selections increase
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the calculation time considerably, but in practice give better results in the 
long-term prediction due to the lack of cumulative error [11].

2.3.3 Dirrec

The Dirrec strategy combines aspects from both, the DIRrect and the RE- 
Cursive strategies. It uses a different model at every time step and introduces 
the approximations from previous steps into the input set.
If we use a continuous input set of size 4, we can write the Dirrec Strategy 
as

x(t + 1) == fqi (x(t),x(t - 1),ж(г — 2), x(t -3)) ,0(91)),
x(t + 2) == fq2(x(t + 1), x(t), x(t - l),x(t -2), x(t -3)),

9(92)),
x(t + 3) =~ /<73 T 2), x(t + 1), x(t), X(t -1), x(t -2),

— 3)), 0(93)),
x(t + 4) == Л?4(£(* + з), x(t + 2), x(t + 1), x(t), x(t -1),

x(t — 2 ),x(t -3)),0W),
x(t + 5) == /<75(£(*+ 4), x{t + 3), x(t + 2), x(t + 1), x(t),

x(t — 1 ),x(t — 2 ),x(t -з)),0Ы),

Every time step the input set in increased with one more input, the ap­
proximation of the previous step. When we use the input selection, we can 
determine if the approximation is accurate enough to be included in the next 
step and so on. So in a way, the Dirrec strategy gives not only the prediction 
of each step, but also information about the validity of the approximations 
done in the previous steps.
If no input selection is used, the complexity of the model increases linearly 
and more and more inputs with prediction error are fed into the model. The 
cumulative prediction error increases also linearly, but is always less than in 
the Recursive strategy, because the real measurements remain as inputs.



Chapter 3

Approximation Methods

This section describes four model structure selection methods, fc-fold Cross 
Validation, Leave-one-out, Bootstrap and Bootstrap 632, and two classes of 
models, ^-Nearest Neighbors and Lazy Learning. The first model class in­
cludes local constant models and the latter one local linear models. Both 
classes include input selection methods inside the structure selection if needed. 
So there is no need for external input selection, but it can be used if available.
For all the methods, we need to transform the time series prediction problem 
to a function approximation problem and by that make it more usable for 
the models and the learning process. In order to do so, we construct an input 
matrix, or regressor matrix (also known as regression matrix), and an output 
vector, denoted X and Y respectively. They are illustrated as

x(d) 
x(d + 1)

1) ••• x(N-l)
(3.1)

1) '
2)

x(N)

where d is the maximum number of input variables (or inputs) and N is the 
number of values in the time series.
From this point on, each row of X and the corresponding value of Y is called a 
data sample or a sample. Each sample consists of d-dimensional input vector 
and an output scalar, denoted with x¿ and y-t respectively, where i denotes 
the row of X and Y. Approximation of one output scalar will be denoted

X =

®(1)

x(2)
x(2)
x(3)

x(N — d) x(N — d +

Y =

x(d + 
x(d +

10
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with The columns of the matrix X will be denoted with superscript xn 
for the nth column.
Another interesting aspect in the time series prediction is the input selection. 
It is neither computationally efficient nor necessary to use all the possible 
past values of the time series in the evaluation of the future values, but 
instead select only the most relevant ones and build the model using them. 
The selected inputs finally form the regressor matrix that is used in the 
prediction.
In this thesis, the input selection is included in the structure selection of the 
model, and few different input selection approaches are compared with each 
other.

3.1 Structure Selection Methods

Structure selection methods try to determine the structure, which is able to 
approximate as accurately as possible an unknown function. The structure 
is selected from a group of predefined structures, which can come from many 
different classes.

In many cases the selection of the structure is based on the generalization 
error [12], defined as

ESen(q,Q)= limМ—юо
Ег=1 (/<г(хЬ%)) -Уг)2

M (3.2)

where x¿ is d-dimensional input vector to the model fq, Q(q) holds the model 
parameters and is a scalar output corresponding to x¿.
The data set of measurements is usually divided into two sets, to the learning 
set (or the training set) and to the test set. The structure of the model and 
the model parameters are selected and tuned or learned in the learning set. 
The test set is then used to estimate the overall model performance.
According to Equation 3.2, the generalization error is a mean square error of 
a model, computed on an infinite sized test set. Such a set is not available in 
practice, so we must approximate the generalization error. The best struc­
ture fg is the one that minimizes the approximation of the generalization 
error.

The next four subsections present several generalization error approximation 
methods, which will be used in the structure selection process.
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3.1.1 A:-fold Cross-Validation

The А-fold Cross-Validation [13] (A-fold) is one of the resampling methods 
constructed to ease the problem of not having infinite learning data available. 
It is based on a simple Cross-Validation and can be used in the selection of 
structures, models and their parameters.
In the fc-fold Cross-Validation, the training samples are divided into к ap­
proximately equal sized sets. One of the sets at a time is used as a learning 
set and all the rest as a validation set. The learning set is used to tune the 
parameters of the model and the validation set is used to approximate the 
validation error.
This procedure is repeated к times, for each structure until each of the к 
sets have been used once in the learning. The sets should be the same 
for all the structures included in the selection procedure, so no extra bias 
will be introduced to the approximations, if some folds are more difficult to 
approximate than others. For the same reason the folds should be as equally 
sized as possible in order to rank the structures correctly.
The final approximation of the generalization error is calculated as a mean 
of all к validation errors. The whole procedure is summarized as

4eCnVM*)
eLi e5s(/9(x¿, øs(9)) - Vi?

N (3.3)

where s denotes the current fold and 6*(q) holds the model parameters cal­
culated using the samples in the sth fold.

3.1.2 Leave-one-out

The Leave-one-out (LOO) [13, 14, 15, 16] is a particular case of the A-fold 
Cross-Validation resampling method. The LOO procedure is the same as 
the fc-fold with к equal to the size of the training set N.

For each model to be tested, the LOO procedure is used to calculate the 
generalization error estimate by removing one sample at a time from the 
training set, building a model with the rest of the samples and calculating 
the validation error with the one taken out. This procedure is done for 
every sample in the training set and the estimate of the generalization error 
is calculated as a mean of all k, or N, validation errors. The process is 
summarized as

ÈgL.«°b’e*) =
N (3.4)
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where 0*(g) holds the model parameters without using ith sample in the 
learning process.
Empirically, the Leave-one-out is found out to be better approximation 
method than the /с-fold Cross-Validation. That is because of the almost 
entire use of the given training samples in tuning the parameters and the 
large number of repetitions. On the other hand, the number of repetitions 
makes the LOO slower than the fc-fold.
In the experiments, LOO is often used method in the selection of the parame­
ters for the structures and the structures themselves. Despite the simplicity, 
it’s one of the most reliable approximation methods and widely used in the 
field.

3.1.3 Bootstrap

The Bootstrap [17] is another resampling technique originally developed to 
estimate some statistical parameters, in example the mean of some popu­
lation or the variance of it. In the case of a model structure selection, the 
parameter to be estimated is the generalization error.
When using the Bootstrap, the generalization error is not estimated directly. 
Rather the Bootstrap estimates the difference between the generalization er­
ror and the training error, or apparent error according to Efron [17]. This 
difference is called optimism. The final estimation of the generalization er­
ror will be the sum of the apparent error, Equation 3.5, and the estimated 
optimism, Equation 3.8.
The apparent error is computed using all the available samples on the train­
ing set as

E1'1"'"'Apparent to.e1) N (3.5)

where / denotes the original training set samples.
The optimism is estimated using a resampling technique, based on a random 
drawing with replacement from the training set. This randomly created 
Bootstrap set is as large as the original training set with its participants 
drawn randomly from the training set. This random drawing is done many 
times in order to get an accurate approximation of the optimism.
A model is trained using one Bootstrap set at a time, the Learning error, 
Equation 3.6, is calculated in the Bootstrap set where the model is trained.

Eääns>e*) = Ей,(Л(хГ,9-М)-у°')
N

Bi
(3.6)
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where Bj is the jth Bootstrap set, xfJ is the ith input vector from the 
Bootstrap set and yfj is the corresponding output.

The Validation error, Equation 3.7, is calculated in the original training set 
using the same model as in the calculation of the learning error.

Evííd,,,„„>e-) - IX,№(*,',ay?))- y/)2
N (3.7)

The optimism is calculated as the difference between the learning error 3.6 
and the validation error 3.7 and this calculation procedure is repeated as 
many times, or rounds, as possible considering linearly increasing computa­
tional time. The final approximation of the optimism for each structure is 
calculated as a mean of the difference of the two error functions, the learning 
error and the validation error as

. , , £/-, KiLio„,j<9,6*) - 8*))
ophmism(q) =-------- ------------------- —-------------------------- — (3.8)

where J is the number of bootstrap rounds done.
The final generalization error estimate is the sum of the apparent error, 
Equation (3.5), and the optimism estimate, Equation (3.8), as

£ge°n0t(g) = optimism(q) + Criming(9, 0*)- (3.9)

The Bootstrap does not produce comparable estimations of the generaliza­
tion error, because it is biased [17]. Of course, it is usable as a structure 
selection method, where the errors are compared with other errors estimated 
by the Bootstrap using the same Bootstrap sets and so all the errors are 
biased in the same way. But with other generalization error approximation 
methods it cannot be compared directly.
The Bootstrap is also quite heavy method with a big computational load 
and thus, it is not good to use it in exhaustive structure selection, where all 
the possible structures are compared. The Bootstrap should be used in the 
validation of a smaller subgroup of structures or model parameters.
Every problem needs to have enough Bootstrap rounds and the same number 
of rounds may not be the best number for all the problems. Too many rounds 
increase calculation time needlessly and too few rounds give varying results 
with a large variance.
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3.1.4 Bootstrap 632

Bootstrap 632 [18] is a modified version of the original Bootstrap. Where 
the original Bootstrap gives biased estimation of the generalization error, 
the Bootstrap 632 is not biased [18] and thus is more comparable with other 
methods estimating the generalization error.
The main difference in the calculation between the standard Bootstrap and 
the Bootstrap 632 is the estimation of the optimism. In the original Boot­
strap the optimism is calculated as the difference between two errors, the 
learning error and the validation error, Equation 3.8. The Bootstrap 632 
estimates the optimism using data points not drawn into the bootstrap set. 
The model is trained using a set of data points, which are not selected to a 
bootstrap set, and the error is evaluated on the same bootstrap set.

.. - . 632 Ej
optimism (q) = —-

ßBj ,Bj ,(<?, e*)
j (3.10)

where the error function is the same as the learning error, Equation 3.6, 
except the model is trained using Bj, the complement of the bootstrap set 
By
The estimation of the generalization error of the Bootstrap 632 is calcu­
lated as a weighted sum of the training error and the approximation of the 
optimism as

£gBent632(9) - 0.368 optimism632(q) + 0.632 E^aining(q, 0*). (3.11)

From the above equation it is quite clear to see, that the name of the Boot­
strap 632 comes from the weighting coefficient of the training error term. 
The value 0.632 is the probability of a single sample to be drawn into the 
bootstrap set from the training set [17, 18]. The weight of the optimism is 
1 — 0.632, so that the total weight of the terms sum up to 1.
Because of the simpler optimism estimation formula, the Bootstrap 632 is al­
most twice as fast as the original Bootstrap. At the same time, the Bootstrap 
632 provides unbiased estimation of the generalization error, so in theory it 
sounds much better and more reliable method than the Bootstrap.

3.2 fc-Nearest Neighbors

The fc-Nearest Neighbors (fc-NN) approximation method is a very simple, 
but powerful method. It has been used in many different applications and 
particularly in classification tasks [8]. The key idea behind the fc-NN is that 
similar training samples have similar output values. One has to look for a



CHAPTER 3. APPROXIMATION METHODS 16

certain number of nearest neighbors, according to the Euclidean distance 
[8], and their corresponding output values to get the approximation of the 
desired output.

We calculate the estimation of the output simply by using the average of the 
outputs of the neighbors in the neighborhood as

Vi - i У PU) 
к (3.12)

where у, represents the output estimation, P(j) is the index number of the 
jth nearest neighbor of sample x¿ and к is the number of neighbors used.
It is possible to use some weighting of the neighbors in the neighborhood, 
different distance measure or more sophisticated neighbor selection methods, 
but these aspects are not considered here.
We use the same neighborhood size for every data point, so we use a global 
k, which must be determined beforehand.
The Л-NN has to somehow deal with the input selection problem, but in the 
case of fc-NN, it is not so big problem, thanks to the simplicity of the Jfc-NN. 
Only thing that is influenced by the input selection is the distance between 
samples, instead of influencing to the parameters of the model at the same 
time. Indeed, the fc-NN is a method with no parameters whatsoever: only 
the structural aspects, the number of neighbors and the inputs, need to be 
determined. After that, the fc-NN is ready to be applied to the problem at 
hand.
The following four sections describe the four different input selection meth­
ods: Exhaustive Search, Backward Selection (or pruning), Forward Selection 
and Forward-Backward Selection.

3.2.1 Exhaustive Search

In the Exhaustive Search, all the 2d possible input variables are built and 
evaluated, d represents the maximum number of variables to be used in the 
evaluation. This kind of search is very time consuming, but it is guaranteed 
to give the global optimum in the defined search space.
In practice, the k-NN is almost only method simple enough to be able to use 
the Exhaustive Search. There are many methods, which are too complicated 
and time consuming to use this kind of search. Even with the fc-NN, there 
might be a more optimal way to select the inputs in order to reduce the 
calculation time.
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3.2.2 Backward Selection or Pruning

Each variable from x1 to xd is taken out one at a time. The k-NN is applied 
to each different pruned input set. Then the pruning that minimizes the error 
approximation is selected and the corresponding input is permanently taken 
away. This operation is repeated until there are no inputs left in the set. The 
optimal set of inputs is the one that gave the smallest error approximation.
In the Backward Selection, only d(d— l)/2 different input sets are evaluated 
with the fc-NN. This is much less than the number of input sets evaluated 
with the Exhaustive Search.
On the other hand, optimality is not guaranteed. The selected set on inputs 
may not be the global optimal one, but instead the selection procedure can 
be stuck on some local minima. This disadvantage is common to all pruning 
methods [19].

3.2.3 Forward Selection

The Forward Selection is effectively the opposite of the Backward Selection. 
The initial input set is an empty set whereas with the Backward Selection 
the initial set was full.
Each variable from x1 to xd is put into the input set one at a time and the one 
that gives the smallest error after the fc-NN approximation, is selected and 
permanently inserted into the set. This is continued until all the inputs are 
inserted into the set. The input set that gave the smallest error is selected 
to be used in the final evaluation.
The Forward Selection evaluates the same amount of input sets than the 
Backward selection, d(d — 1)/2. Also the same restriction apply, optimality 
is not guaranteed.

3.2.4 Forward-Backward Selection

The Forward-Backward Selection combines both methods described in previ­
ous sections. It can start from any input set, even from randomly initialized 
set.

The state of each variable is changed one at a time: if a variable was already 
selected into input set, it is removed, and if not, it is put into the input set. 
This is done for all the inputs from x1 to xd and the error approximation 
using the fc-NN is calculated with every selection. Then the action that gave 
the smallest error is done permanently to the input set.
In example, if we use non-continuous regressor of size 4 and describe the 
process of approximating one time step ahead as
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x(t + 1) = fq(x(t), x(t - 1), x{t - 3), x(t - 5)), 6(g)). (3.13)

The Forward-Backward Selection tests all the following input sets and ap­
proximations presented in Table 3.1.

Change # Input, t-{...}

Try 1 1 3 5
Try 2 0 3 5
Try 3 0 1 2 3 5
Try 4 0 1 5
Try 5 0 1 3 4 5
Try 6 0 1 3

Table 3.1: Forward-Backward Selection example.

The change that gives the smallest error is permanently done to the input 
set and the process continues by estimating the next set of inputs.
In this way it is continued until a stopping criteria is fulfilled and the input 
set giving the smallest error is selected. The criteria used in the experiments 
is to take the lowest error and try three steps further. If one of these steps 
gives smaller error than the previous smallest one, we try again three steps 
further from the new smallest one. If a smaller error is not achieved, then the 
input set giving the minimum error is selected and the selection procedure 
is terminated. The procedure is illustrated in Figure 3.1.

Forward-Backward actions

Figure 3.1: Example of Prediction error with the Forward-Backward Selec­
tion. Even the error increases after the action in step 8, according to the 
stopping criteria we try 3 steps further and find even smaller error in step 
11, in this case the global minimum.

With this kind of stopping criteria, it is possible to ‘leap over’ some local 
minima and have ’more global’ minimum, see Figure 3.1. Still, it is not
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guaranteed that in all cases this selection method will find the global optimal 
input set, even in theory it should be closer to the global optimum than the 
Backward or the Forward methods alone.
The number of different input sets evaluated varies. It’s dependent from the 
initialization on the input set, the stopping criteria and the nature of the 
problem. Using some heuristics in the choices of initialization, it is possible 
to decrease the number of evaluated input combinations considerably.

3.3 Lazy Learning

The Lazy Learning (LL) models are linear piecewise approximation models 
based on a recursive least squares algorithm introduced by Aha [20]. Around 
each sample, the fc-nearest neighbors are determined and used to build a local 
linear model. This approximation model is presented as

y = LL^jX2, ■ ■ ■ ,xd), (3.14)

where y is the approximation of the real output y and xl to xd represent the 
d selected inputs.

For the original Lazy Learning the inputs are selected in a continuous fashion. 
Therefore, only the number of inputs is needed to be determined beforehand. 
In general case, it is not necessary to use all the inputs from 1 to d, but 
instead select the most necessary ones in a non-continuous fashion. In both 
cases, the input selection must be done before the LL model can be used in 
the prediction.
The optimization of the number of neighbors is also crucial. When the 
number of neighbors is small, local linearity assumption is valid. On the 
contrary, if the number of neighbors is large, the local linearity assumption is 
not valid anymore and the linear model fails to provide good approximations. 
The choice of the number of neighbors is illustrated in Figure 3.2.
For an increasing size of the neighborhood, the Leave-one-out procedure, 
described in Section 3.1.2, is used to evaluate the generalization error of 
each different LL model structure [17]. Once the generalization error for each 
neighborhood size is approximated, the number of neighbors that minimizes 
the approximation is selected.
There is a recursive formula to speedup the calculation of the LOO estima­
tions based on PRESS statistics. It will be presented in Section 3.3.1.
The main advantages of the LL models are the simplicity of the model itself 
and the low computational load. Furthermore, the local model can be built 
only around the sample for which the approximation is requested. This gives
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Figure 3.2: Toy example demonstrating the effect of different sizes of the 
neighborhood. The best approximation is achieved with the line in the mid­
dle. The ones above it have too few neighbors and the lines below it have 
too many.

the name to the Lazy Learning: there’s no need to do anything before the 
approximation is requested.
It is also possible to use a global neighborhood, where the number of neighbors 
is the same for all the data points. In order to use the LL with the global 
neighborhood, the global size of the neighborhood must be determined be­
forehand. Each neighborhood size for each sample is evaluated and the size 
minimizing globally the estimation of the generalization error is selected.
If the density of the training samples is fairly constant, the use of global 
neighborhood really speeds up the calculation process and makes the ap­
proximations more accurate. If the density varies, it is wiser to use local 
neighborhood to get good approximations.
Unfortunately, as already mentioned, the inputs have to be known a priori. 
Several sets of inputs have to be evaluated to select the optimal one. The 
error has to be evaluated around each data point for each set of inputs. The 
optimal input set is the one that gives the smallest approximation of the 
generalization error. This procedure is quite long and reduces considerably 
the advantages of the Lazy Learning methodology.
The Lazy Learning and its improvements are briefly summarized in Figure
3.4 in the end of this section.

3.3.1 PRESS Statistics

The PRESS statistics [21] gives the tools to calculate the Leave-one-out 
Cross-Validation errors for linear models without excessive computation. 
When we add this remarkable mathematical derivation to the standard re­
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cursive least squares algorithm, introduced by Biermann [22], we have a nice 
and fast way to validate and select the LL structures.
This combination of methods and mathematical derivation is introduced in 
[23] and only briefly summarized here.
Everything starts by defining a prediction error for the linear model in the 
case of one sample left out in the same way than in the Leave-one-out. This 
prediction error is called the PRESS residual

= Vi- Vi-i = Vi~ Xjb_j. (3.15)

where г is the index number of the sample and —i means the ith sample is 
left out, x is the input vector, у is the output and b includes the linear model 
parameters. Then the PRESS, or PREdiction Sum of Squares, is defined as

N N
PRESS = - x¿b_¿)2, (3.16)

i=i i=i
which is effectively the same as the generalization error approximation (MSE) 
by the Leave-one-out in Section 3.1.2 multiplied by N, which is the overall 
number of the samples.
The power of the PRESS residuals is really understood when the possibility 
to calculate them without explicitly identifying the linear model parameters 
b_¿ is introduced. For that, we need some mathematical derivation from [21] 
to get the final PRESS residual formula

PRESS
H-*

Vi - Xjb
1 - X'PXi ’ (3.17)

where P = (X'X)-1 and X contains all the neighbors in the neighborhood. 
The above formula can be understood as the linear model error in the point 
x, divided with one minus the estimated prediction variance in the point x,. 
The point x¿ is the one left out and the linear model is calculated from all 
the points in the neighborhood. The prediction variance cannot be greater 
than one or smaller than l/к, where к is the number of neighbors in the 
neighborhood. Greater prediction variance leads to greater PRESS residual, 
which in turn increases the LOO error of the neighborhood size in question.
Introducing the recursive formulas from the least squares algorithm

P(fc + 1)
У (к + 1) 
e(k + 1) 
b(fc + l)

p/,4 _ P(fe)x(fc+l)x'(fc+l)P(fe)
' ' l+x'(fc+l)P(fc)x(fc+l) 1

P (k + l)x(/c + 1), 
y(k + 1) - x'(fc + l)b(fc), 
Ъ(к) + y{k + 1 )e(k + 1),

(3.18)
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where x(k + 1) is the next nearest neighbor when the neighborhood size is 
enlarged.
Finally, we have the recursive way to calculate the LOO errors for each 
neighborhood size of the LL structure.

press _ Ш ~ + !)

1 -xJP(fc + l)Xi'

In each neighborhood size the PRESS residuals are evaluated. Then the LOO 
error of the neighborhood size is the mean of all к residuals. The parameters 
for the next neighborhood size are evaluated using recursive least squares 
formulas and again the PRESS residuals are evaluated. This is continued for 
all the necessary neighborhood sizes and the one giving the smallest PRESS 
is the chosen neighborhood size. The algorithm is summarized in Figure 3.3.

1. Initialization

• Calculate initial linear model parameters using the smallest 
possible amount of neighbors, not smaller than the number of 
parameters in the linear model.

• Calculate the initial P.
• Calculate the LOO error using the standard LOO approxima­

tion method.

2. Use Equation 3.18 formulas to calculate parameters for the next 
neighborhood size.

3. Calculate LOO error using Equation 3.19.

4. Repeat from step 2 until all neighborhood sizes are done.

5. Select the neighborhood size with the smallest LOO error.

Figure 3.3: Recursive PRESS statistics.

3.3.2 Globally Pruned

Globally Pruned Lazy Learning (GPLL) method [4] is a modified version 
of the LL that has been presented in Section 3.3. This method uses input 
selection to prune out the least important input variables in the same way 
as the Backward Selection or pruning method presented in Section 3.2.2.
The initial structure is built according to Equation 3.14 in Section 3.3 using
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some maximum number of inputs d. Selection of the initial number of inputs 
is highly problem dependent and varies from application to another.
Each input variable from x1 to xd is taken out one at a time. The Lazy 
Learning is applied to each pruned input set and the approximation of the 
generalization error is obtained. Then, the pruning that minimizes the error 
approximation is selected and the corresponding input is permanently taken 
away. This operation is repeated until there are no inputs left to prune. The 
selected set of inputs is the one that gave the smallest error approximation.
With this method d{d — l)/2 different input sets are built and evaluated. 
This is significantly less than the number of all possible input sets (2d) that 
could be built. However, it is not guaranteed that the selected input set is 
globally the most optimal one. This disadvantage is common to all pruning 
methods [19].

3.3.3 Locally Pruned

Basically, Locally Pruned Lazy Learning (LPLL) method [3] is the same 
method as the GPLL presented in the previous section. The difference is 
that the LPLL prunes the inputs locally, around each sample one at a time. 
Thus each sample can have not only a different number of neighbors, but 
also different inputs, which are pruned when the approximation is needed. In 
this case, only the maximum number of inputs is needed to fix beforehand.
This method is more like-minded with the original Lazy Learning, it does not 
need so much work before the approximation is needed. All the necessary 
inputs, variables and parameters are tuned "on the fly".
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Lazy Learning

Globally Pruned

Continuous
Original LL

Locally Pruned
No learning needed

Local Neighbors
Inputs and Number of Neighbors 

selected for every prediction

Global Neighbors
Same structure used 

in every prediction

Local Neighbors
Inputs must be known a priori 

Number of Neighbors selected 
for every prediction

Local Neighbors
Same inputs

Number of Neighbors selected 
for every prediction

Figure 3.4: Lazy Learning method summarized.



Chapter 4

Applications to Long-Term 
Prediction of Time Series

The very first thing to do is to select a structure selection method for the 
fc-NN. The possible choices are the Leave-one-out, the Bootstrap and the 
Bootstrap 632, presented in Section 3.1. fc-fold Cross Validation is not con­
sidered to be reliable enough [13] and therefore, it is not included in the 
comparison. Essentially, the Leave-one-out is the same as the &-fold with 
the number of folds equal to the number of samples.
After that, all approximation methods are used with 3 time series. For each 
benchmark two prediction strategies are used, the Recursive and the Direct 
strategy. The Dirrec strategy needs so much more computational time that 
it cannot be used with all the methods and therefore it is handled separately.
The last part of the chapter is an application to a competition task using 
the best method, selected using the performances in the three benchmarks.
The &-NN Selection inholds all the selection schemes except the Exhaustive 
search (Section 3.2). The input set with the smallest LOO error is selected 
and then used in the test of the fc-NN Selection.
All time series have different properties and maximum bounds (maximum 
number of neighbors, maximum number of inputs, etc.) are also different 
for the tested structures. The bounds used in each case are given in the 
description of the time series in question.
For comparison, a continuous Linear model and the Linear model with in­
put selection (the Backward Selection, 3.2.2) are presented. In the model 
structure selection of the Linear models, the Bootstrap 632, Section 3.1.4, is 
used.

To evaluate the accuracy of the predictions, Mean Square Error (MSE) is 
used in all test error tables as the measuring criteria.

25
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4.1 k-NN Structure Selection Method

In order to choose the method for the fc-NN structure selection, we use 
two time series. First one is the Poland Electricity Load data set, which 
is described and introduced more deeply in Section 4.4. The test errors, 
the selected inputs and the number of neighbors are presented in Table 4.1. 
The LOO and Boot 632 selection method is using the LOO as the input 
selection method and then the Bootstrap 632 in the selection of the number 
of neighbors.

Test Errors
LOO 1,8495-10~3
Boot 2,8482-КГ3
Boot 632 2,8482-КГ3
LOO and Boot 632 2,8482-КГ3

Inputs Max: 8 t - {--}
LOO 7 6 4 1 0
Boot 7 6 4 1 0
Boot 632 7 6 4 1 0

к Max: 100
LOO 4
Boot 1
Boot 632 1
LOO and Boot 632 1

Table 4.1: fc-NN structure selection using Poland Electricity Load. The LOO 
and Boot 632 means that LOO is used for the input selection and then the 
Bootstrap 632 for the selection of k.

According to the performance of the four selection schemes in the Poland 
Electricity Load data set, three methods are selected to the next round. In 
the next round, Santa Fe time series is used. The Santa Fe is described and 
introduced more deeply in Section 4.2. The test errors, the selected inputs 
and number of neighbors are presented in Table 4.2.
From the experiments above, the Leave-one-out structure selection method 
is clearly the best one according to the test errors in both time series. It is 
also the fastest method, which makes it the most preferable one to use in 
the input selection. Therefore the LOO is selected to be used with the fc-NN 
in the following experiments as the input selection method as well as in the 
selection of k.
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Test Errors
LOO 53,64
Boot 632 58,92
LOO and Boot 632 58,92

Inputs Max: 12 t
LOO 11 1 0
Boot 632 11 1 0

к Max: 100
LOO 3
Boot 632 1
LOO and Boot 632 1

Table 4.2: Zc-NN structure selection using Santa Fe. The LOO and Boot 632 
means that the LOO is used for the input selection and then the Bootstrap 
632 for the selection of k.

4.2 Benchmark 1: Santa Fe

The Santa Fe is a widely used benchmark and it was generated using an 
infrared laser in a chaotic state. It’s originally introduced as one of the 
Santa Fe competition data sets [24]. It inholds over 10 000 values from 
which the 1000 first values, called Santa Fe A series in the literature, are 
used for learning and the rest, little bit over 9000 values, are used for the 
testing.

For the learning, maximum of 100 neighbors and maximum of 30 inputs 
are used for every method. Only exception is the Zc-NN with Exhaustive 
Search, which had to be limited to a maximum of 17 inputs, because of the 
calculation time limitations. Each input more doubles the calculation time 
needed in the case of Exhaustive Search.
The learning set is shown in Figure 4.1. The test errors are shown in Tables 
A.l and A.2 using the Recursive and the Direct strategies respectively.
From the two tables it can be seen that the Direct strategy is many times 
better than the Recursive one. Overall best method is the GPLL with global 
k, but the &-NN with the Exhaustive Search is not far behind even the 
maximum number of inputs is only 17. Third best method is the GPLL 
with local k. The test errors of the best GPLL method are plotted in Figure 
4.2.
Almost all methods except the Linear ones got better error using the Direct 
strategy than the Recursive. The prediction with the three best methods 
is presented in Figure 4.3 using the Direct prediction strategy. The inputs
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300

200 400 600
Timesteps

800 1000

Figure 4.1: Santa Fe A, the learning set.

Timesteps

Figure 4.2: Santa Fe test errors using the GPLL with global к and the Direct 
prediction strategy.

used in the prediction are shown in Tables B.l and B.2.

4.3 Benchmark 2: Darwin Sea Level Pressure

The Darwin Sea Level Pressure data set (called Darwin later on) consists 
of 1400 sea level air pressure values collected monthly from the Darwin Sea. 
The data can be found from [25]. This time series is the hardest benchmark 
from the three presented here. 1300 first values are used as the learning data 
and the 100 rest are used for testing. The learning set is shown in Figure 
4.4.

For the learning, maximum of 500 neighbors and maximum of 30 inputs are 
used for every method. Only exception is the fc-NN with the Exhaustive 
Search, which had to be limited to a maximum of 17 inputs, because of the 
calculation time limitations. Each input more doubles the calculation time
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Timesteps

Figure 4.3: Santa Fe data 10 steps ahead prediction using the Direct predic­
tion strategy. Solid line represents the real values, dashed is the GPLL with 
global k, dotted is the fc-NN using the Exhaustive Search and dash-dotted is 
the GPLL with local k.

needed in the case of Exhaustive Search.

0 200 400 600 800 1000 1200
Months

Figure 4.4: Darwin learning set.

The test error values are in Tables A.3 and A.4, the first table using the 
Recursive strategy and the latter using the Direct strategy. From the two 
tables it is quite evident and easy to see the trend, where the Direct strategy 
gives smaller errors more often than the Recursive one. It is also very sur­
prising how well the Linear models perform against the local linear models 
and the fc-NN.
If we consider timesteps from 1 to 5, the GPLL with global к is the best 
on average, but somehow the timesteps from 6 to 10 decrease the overall 
performance. On the other hand, the Darwin test set has only 100 values, 
which is too small to make very reliable conclusions. The lack of test data 
gives the test results more variance and makes the results more unstable and 
vague. At the same time, a huge number of neighbors needed suggest the
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Darwin time series to be mostly linear, which would also explain the good 
success of the Linear models.
The test errors of the GPLL with global к are plotted in Figure 4.5. Fig­
ure 4.6 shows 3 best predictions, according to the mean MSE, over all 10 
prediction steps. Tables B.3 and B.4 show the inputs used in the 3 best 
predictions.

Timesteps

Figure 4.5: Darwin test errors using the GPLL with global к and the Direct 
prediction strategy.

Timesteps

Figure 4.6: Darwin data 10 steps ahead prediction using the Direct prediction 
strategy. Solid line represents the real values, dashed is the Linear, dotted is 
the Linear with pruning and dash-dotted is the LL with global k. First two 
use the Direct strategy and the LL uses the Recursive strategy.

4.4 Benchmark 3: Poland Electricity Load

This data set describes the daily average of electricity load in Poland for 
over four years of time in the 1990’s. The data set can be downloaded from
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[26]. The data set is divided into a learning set, including 1400 values, and a 
separate test set, containing 201 values. The learning set is shown in Figure
4.7.

Figure 4.7: Poland Electricity Load learning set.

Tables A.5 and A.6 show the test errors using the Recursive and the Direct 
strategies respectively. In the tests the number of neighbors is limited to 200 
and the number of inputs to 14.
It is quite surprising how well the Linear models perform with this time series 
and the fact that the smallest mean test error is achieved with the Recursive 
strategy and not with the Direct. It is true that the time series itself is fairly 
easy even for the basic Linear models to predict the future values and the 
Lazy Learning or the fc-NN have very little left to improve in the prediction 
process.

x 10'3

Timesteps

Figure 4.8: Poland Electricity Load test errors using the LL with global к 
and the Recursive prediction strategy.

However, the best method according to the mean test error is the LL with 
global k. The GPLL is not far from the LL, but the fact that the LL without 
the input selection gives better performance than with the input selection
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can be due to a small maximum number of inputs. The test errors of the 
best LL method are plotted in Figure 4.8.
From the test error tables, three best methods according to the mean test 
error are selected to predict 10 steps of the test set. The prediction results 
are shown in Figure 4.9 and the selected inputs in Table B.5

Timesteps

Figure 4.9: Poland Electricity Load 10 steps ahead prediction. Solid line is 
the real values, dashed is the LL with global k, dotted is the Linear with 
pruning and dash-dotted is the Linear continuous. The first method is done 
using the Recursive strategy and the two last ones with the Direct strategy.

4.5 Dirrec prediction strategy

In this section, the third prediction strategy, Dirrec strategy, is tested with 
two time series: the Santa Fe data set and the Poland Electricity Load data 
set. The Darwin series requires so many neighbors in the LL methods that 
it is too calculation intensive to use with the Dirrec strategy. Where the two 
other benchmarks use a maximum of 200 neighbors, the Darwin uses 500.
The criteria to select the methods to be used in the Dirrec experiments is 
based on the calculation time requirements. Methods selected must be able 
to produce all needed models for the 10 time steps in a reasonable time. Some 
methods take way too long time to be able to handle the linearly increasing 
regressor size of the Dirrec strategy.
With the Dirrec strategy the following methods are compared: the first one 
is the combination of the fc-NN and the Leave-one-out, the second one is the 
joint venture of the fc-NN and the Lazy Learning, third one is the continuous 
LL and finally the fourth one is the GPLL. In both combinations involving 
the A-NN, the used input selection method is the Forward-Backward Selec­
tion. The other participant in the group is used as the approximator. Both 
LL based methods use global k.
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In Table A.7 the test errors of the 10 prediction steps are presented for both 
time series, the Santa Fe and the Poland Electricity Load. In Tables B.6 
and B.7 are the selected inputs of Santa Fe and in Table B.8 are the selected 
inputs of Poland Electricity Load. In all the tables presenting the inputs, 
the worst method, according to the mean test error, has been left out.
From the results in Table A.7, the best overall results for both time series 
can be found. The mean test errors over all 10 prediction steps are smaller 
than with the Direct or with the Recursive strategy for both time series.
For the Santa Fe, the best method, according to the mean test error, is the 
fc-NN with the LOO. The GPLL method does not perform as well as the 
fc-NN or even as well as the GPLL with the Direct method. This can be 
due to the inefficient input selection which is in critical role, because of the 
increasing number of inputs. The prediction of the best method is shown in 
Figure 4.10.

Timesteps

Figure 4.10: Santa Fe prediction with the Dirrec strategy. Solid line repre­
sents the real values and dashed one is the prediction using the fc-NN with 
the LOO.

As a comparison of the overall performances of the Dirrec and the Direct 
strategies, the test errors of are shown in Figure 4.11. The strategies use 
different approximation methods, so the comparison is a bit tricky. But 
what can be said, is that the overall performance with the Dirrec strategy is 
clearly better than with the Direct strategy.
For the Poland Electricity Load the best method is the continuous LL with 
global k. With this time series, the same kind of effect exists than in the Santa 
Fe case; the GPLL performs well in the first timesteps, but then at timestep 
8 the continuous LL begins to give better performance. The prediction of 
the best method is shown in Figure 4.12.
In Poland Electricity case, the same method gives the best overall perfor­
mance with the Dirrec strategy as well as with the Recursive strategy. The 
test errors of both strategies are shown in Figure 4.13. In this case, the
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Timesteps

Figure 4.11: Santa Fe test errors of the Dirrec and the Direct strategy. The 
solid line represents the Dirrec and dashed line the Direct strategy. The 
Dirrec strategy uses the A-NN with the LOO and the Direct strategy uses 
the GPLL with global k.

Timesteps

Figure 4.12: Poland Electricity Load prediction with the Dirrec strategy. 
Solid line represents the real values and dashed one is the prediction using 
the continuous LL with global k.

difference is not big, but still in overall performance the Dirrec strategy is 
better than the Recursive.
From these experiments it can be said that the Dirrec strategy outperforms 
both the Recursive and the Direct strategies in these time series. But the 
selection of the method must be done carefully or the performance is de­
graded.



CHAPTER 4. APPLICATIONS TO LONG-TERM PREDICTION OF TIME SERIES 35

x 10~3

Timesteps

Figure 4.13: Poland Electricity Load test errors of the Dirrec and the Re­
cursive strategy. The solid line is the errors of the Dirrec and dashed line 
the Recursive. Both strategies use the LL with global k.

4.6 Application: CATS Competition

The CATS Competition was arranged in 2004 as a special session of IJCNN, 
International Joint Conference on Neural Networks [27]. The data set con­
sists of 5000 values from which 100 values are missing. The missing values 
are divided into 5 "holes", the first hole covering values from 981 to 999, 
second from 1981 to 1999 and so on until the data set ends with the last hole 
of 20 values. This means that we have 4 separate missing value subproblems 
and one ordinary 20-step ahead prediction problem.
As mentioned earlier, only one method was used in solving all the subprob­
lems. Based on the experiments done with the 3 benchmarks, the GPLL 
method with global к is selected to be used for the CATS Competition data 
set.
All the available data, 4900 values are used as the learning set, shown in 
Figure 4.14 and a close-up to the second hole in Figure 4.15.
Because of the need for the 20 step ahead prediction and the calculation time 
limitations, the Direct prediction strategy is used. For the CATS data set, 
the maximum number of neighbors is set to 300 and the number of inputs 
to 15. The first order trend removal is used before the actual learning and 
it is reversed afterwards.
For the four missing value subproblems the following procedure is used: for 
each hole 20 step ahead prediction is done from both sides of the hole. Then 
the predictions are weighted according to the inverse of the prediction step 
and averaged.
The results of the predictions of each hole and the pure 20 step ahead pre­
diction in the end of the data set are presented in Figures from 4.16 to 4.20.
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4000
Timesteps

Figure 4.14: CATS Benchmark learning set.

U 200-

2000
Timesteps

Figure 4.15: Close-up to the CATS Benchmark learning set, values from 
1900 to 2100 with values missing from 1981 to 1999.

990
Timestep

Figure 4.16: CATS Benchmark prediction, first hole. Solid line represents 
the real values and dashed one the prediction. The prediction MSE in this 
hole is 125.
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1990
Timestep

Figure 4.17: CATS Benchmark prediction, second hole. Solid line represents 
the real values and dashed one the prediction. The prediction MSE in this 
hole is 168.

Timestep

Figure 4.18: CATS Benchmark prediction, third hole. Solid line represents 
the real values and dashed one the prediction. The prediction MSE in this 
hole is 1650.

The first two holes are predicted very well by the GPLL, but the rest is 
not so good. Final result in the competition [27] would be 11th place with 
overall MSEi value of 747. In order to enhance the performance, the Direct 
strategy could be replaced with the Dirrec and the initial number of inputs 
increased.
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3990
Timestep

Figure 4.19: CATS Benchmark prediction, fourth hole. Solid line represents 
the real values and dashed one the prediction. The prediction MSE in this 
hole is 572.

-100-

Timestep

Figure 4.20: CATS Benchmark prediction, end part. Solid line represents 
the real values and dashed one the prediction. The prediction MSE in the 
end part is 1220.



Chapter 5

Conclusions

The Lazy Learning is a good method. It provides accurate approximations 
in a reasonable time. But with the original LL, the problem is the input 
selection. The GPLL fixes the problem and makes the approximations even 
better. In both methods, global к gives better performance than locally 
selected one. Maybe the number of local neighbors is too unstable and 
therefore gives not so accurate results.
Anyhow, with both improvements to the original LL, the input selection 
and the global k, it can be said that "it’s not good to be Lazy". One must 
do some calculation and structure and input selection before the LL can be 
efficiently used as an approximator.
Despite the simplicity, the &-NN is quite accurate and reliable method. The 
simplicity allows wider search for model structures and different input sets. 
In many time series prediction problems it is very important to be able to 
use the past values very far from the current time point, and so fc-NN can 
use the much needed information further than more complicated methods.
In general the Direct strategy is better than the Recursive. Even if each 
prediction step further to the future needs it’s own model structure selection 
and parameter tuning phase, it is an acceptable cost in order to get better 
prediction performance.
But if the input selection method is good enough, the Dirrec strategy out­
performs both, the Direct and the Recursive strategies. In a way, the Dirrec 
has captured the best aspects from both strategies. Hence, the Dirrec is a 
union of the Direct and the Recursive, DIR U REC.
If the input selection used with the Dirrec is not powerful enough or the 
approximator cannot provide accurate enough approximations, it might be 
better to use the Direct strategy instead. Increase in the regressor size is of 
no use, if the increasing part is inaccurate. Therefore, it is quite surprising 
to see that the very simple fc-NN model can give satisfying input selections

39
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and accurate enough approximations with the Dirrec strategy. It is also the 
fastest combination used with the Dirrec.
From the input tables in the appendix В it can be seen that the time space 
between some selected inputs and the timestep to be predicted stays con­
stant. It means that there is some dependency at the same distance in time 
in the time series dealt here. That information could be used as prior knowl­
edge of the time series, in example when initializing the input set for the 
Forward-Backward method.
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t
Timestep

123456789 10

0
AAA A AAA
B B B B BB BB
c c c c c c c

1
A AAA
В В В в в в в в
с с с с с

2
А А А А А

В В В в
с с с с

3
А А А А А

В В В в в в
с с с с с

4
А А А А
В В в

с с с

5
А А А А А

В
С с с с

6
А А А

В
С С с с

7
А А А

В В

8
А

В В В
с с

9 в в

10
А

В в в в в в
с с

11 в в

12
А

В в

13 в

14 в

Table B.l: Santa Fe prediction selected inputs from t — 0 to t —14. A denotes 
the GPLL with global к, В denotes the åj-NN using the Exhaustive Search 
and C denotes the GPLL with local k. All methods use the Direct strategy.
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t-{•••}
Timestep

123456789 10

15 В В
C C

16 В В В

17

18
C

19

20

21

22
А

С CC c

23
А А

24
А

С

25
С

26
А А

С

27
А А А

С С С

28
А А А

С С С

29
А А А

С С С

Table B.2: Santa Fe prediction selected inputs from t — 15 to t — 29. A 
denotes the GPLL with global к, В denotes the &-NN using the Exhaustive 
Search and C denotes the GPLL with local k. All methods use the Direct 
strategy.
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t-{...}
Timestep

123456789 10

0
AAAAAAAAAA
BBBBBBBB
c

1
AAAAAAAAAA
В В В В В В в
с

2
AAAAAAAAAA
В В В В
с

3
AAAAAAAAAA
В В В в в в
с

4
AAAAAAAAAA

В В В
с

5
AAAAAAAAAA
В В В В В в в
с

6
AAAAAAAAAA
В В в в в
с

7
AAAAAAAAAA
В В В В в в
с

8
AAAAAAAAAA
В В В В В в в
с

9
AAAAAAAAAA

В В в в
с

10
AAAAAAAAAA
В В В в в в в
с

11
AAAAAAAAAA
В В В В В В В В
с

12
AAAAAAAAAA

В В В В В В В
с

13
AAAAAAAAAA
В В В В В В В в
с

14
AAAAAAAAAA
В В В в в
с

Table B.3: Darwin prediction selected inputs from t — 0 to t — 14. A denotes 
the continuous Linear model, В denotes the Linear model with pruning and 
C denotes the LL with global k. First two methods use the Direct strategy 
and the LL uses the Recursive strategy. Therefore, the LL has only one set 
of selected inputs.
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t
Timestep

123456789 10

15
AAAAAAAAAA
B B B B BB
c

16
AAAAAAAAAA

В В В В В
С

17
AAAAAAAAAA

В В В В В
с

18
AAAAAAAAAA
В В в в в в
с

19
AAAAAAAAAA

В В В В В В в
с

20
AAAAAAAAAA
В В В В В в в в
с

21
AAAAAAAAAA
В В В В в
с

22
AAAAAAAAAA
В В В в в в
с

23
AAAAAAAAAA
В В в в в
с

24
AAAAAAAAAA
В В в в в в
с

25
AAAAAAAAAA
В В в в в в
с

26
AAAAAAAAAA
В В В в
с

27
А А А А А А А А

В В в в в в
с

28
А А А А А А
В В В
с

29
А А А А
В В В В в

Table B.4: Darwin prediction selected inputs from t —15 to t — 29. A denotes 
the continuous Linear model, В denotes the Linear model with pruning and 
C denotes the LL with global k. First two methods use the Direct strategy 
and the LL uses the Recursive strategy. Therefore, the LL has only one set 
of selected inputs.
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t-{...}
Timestep

123456789 10

0
A
BBBBBBBBBB
cccccccccc

1
A
в в
cccccccccc

2
A
в в в в
cccccccccc

3
А

вв в
cccccccccc

4
А

вв в в
cccccccccc

5
А
в в в
cccccccccc

6
А
в в в в в в в
cccccccccc

7
А
BBBBBBBBBB
cccccccccc

8
А

в в
с с с с с с с с с

9 в в в
с с с с с с с с

10 в в в
с с с с с с с

11 в в в в в в
с с с с с с

12 в в в в в
с с с с с

13 в в в в в в
с с с с с

Table B.5: Poland Electricity Load prediction selected inputs. A denotes the 
LL with global к, В denotes the Linear model with pruning and C denotes 
the Linear model with continuous input. The LL uses the Recursive strategy 
and therefore, it has only one selected set of inputs. The Linear models use 
the Direct strategy.
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t-
Timestep

123456789 10

-9
A
В
C

-8
A A
В
C C

-7
AAA

В
C C

-6
AAA

В
CC C

-5
AAA A

В В В
CGC

-4
А А А А

В В В
С С с

-3
А А А А А А
В В В В В
С С С

-2
А А А А А А
В В В В В В
С С

-1
А А А А А А А
В В В В В
С С С С С С

0
АААААААА А
В В В В В В В
С С С С С

1
А А А А А А А А
В В В В В В
С С С

2
А А А А А

В В В
С С

3
А А А

В В
С С

4
А А

В В В
С С С

5
А А А

В В
С С с

6
А А А А
В В
С С С с с

7
А А А

В

8
А А

В

9
А

В
С

10
А А

С

Table B.6: Santa Fe selected inputs from t + 9 to t —10 of the Dirrec strategy. 
A denotes the Л-NN with the LOO combination, В denotes the Л-NN with the 
LL combination and C denotes the GPLL with global Л. The approximated 
inputs are denoted by the hat symbol.
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t-
Timestep

123456789 10

11

о 
ш 
> > >

о

12 в
с

13 в

14 в

15
А

В

16
А А А

В В В
С

17
А А

В В В
С

18
А А А

В В
С

19
А А
В

20
А А
В

21
А А

В
С

22
А А А

В

23
А А

В
С с

24
А

С
25

А
В

С
26

А

С
27

А

28
А

В
С С

29
А

С С С

Table B.7: Santa Fe selected inputs from t—11 to t—29 of the Dirrec strategy. 
A denotes the fc-NN with the LOO combination, В denotes the fc-NN with 
the LL combination and C denotes the GPLL with global k.
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Timestep
t- {...} 1 2 3 4 5 6 7 8 9 10

А
-9 В

С
А А

-8 В
С

А А А
-7 В В

С С
А А А А

-6 В
С С С

А А А А А
-5

С
В

С
A А А А А А

-4 В В В В
C с С

A A А А А А А
-3 В В В В В В

C С С С
A A A А А А А А

-2 В В В Вc C С С С С
A A A A А А А А А

-1 В В В В В В
C c c С С С С

A A A A A А А А А А
0 В В В В В В В В

C C c C С С С С
A A A A А А А А А А

1 В В В В В В
C C С С

A A A A А А А А А А
2 В В В В В В

C c C С
A A A A А А А А А А

3 В В В В
C c

A A A A А А
4 В В В В

C C С
A A A A А А

5 В В В В
C C С
A A A A А А

6 В В В В В В В
C C С
A A A A А А

7 В В В Вc С
A A A А А

8 В
С С

A A А А
9 В В В

C С
A A А А

10 В в
C C С
A A А А

11 В В в
C C С с

A A А
12 Вc C С с с

A A А
13 В в В В В в В вc с С с

Table B.8: Poland Electricity Load selected inputs of the Dirrec strategy. 
A denotes the LL with global к, В denotes the GPLL with global к and C 
denotes the k-NN with the LL combination. The approximated inputs are 
denoted by the hat symbol.


