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la eli pienillä bias-jänitteen arvoilla. Lisäksi mode matching -menetelmällä las­
kettu piistä valmistetun (3D) kvanttipistekontaktin (QPC) konduktanssikuvaaja 

vastaa muodoltaan mitattuja tuloksia.

Työn jälkimmäisessä osassa kuvataan Coulombin saarto -ilmiö sekä yhden elekt­
ronin transistorin (SET) rakenne ja toiminta. Lisäksi Monte Carlo (MC) - 
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Chapter 1

Introduction

In mesoscopic conductors the transport of electrons is limited to channels 
having a diameter of few to few tens of atom sizes. There are three different 
length scales that characterize mesoscopic systems:

1. The de Broglie wavelength: Л = h/p = 2iт/к.

2. The mean free path which is the average distance that an electron 
travels before being scattered into a different wavevector direction i.e. 
its initial momentum is destroyed. It is defined as A = vpT [1], where 
vp is the Fermi velocity and r is the relaxation time.

3. The phase relaxation length, which is the average distance that an 
electron travels before its initial phase is destroyed, is 1ф — AWt^/t [1], 

where Тф is the phase relaxation time.

These length scales are material and temperature dependent and also an 

external electro-magnetic field has an affect on them. The relation of system 

size L and mean free path Л divides the transport into the ballistic and 
diffusive transport regimes. The transport of the electrons is ballistic if L <C 
Л and it is diffusive if L Л. On the other hand the phase relaxation 
length is associated with inelastic scattering. The phase of an electron can 
be destroyed e.g. by scattering from other electrons or lattice vibrations.
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A mesoscopic system can be roughly categorized depending on the relative 

magnitude of the dimensions of the device (a system is confined into a box 

with sizes Lx, Ly and Lz) and the Fermi wavelength \F — /kF as follows
[1]:

(0 XF < Lx , Ly, Lz

(*0 XF ~ Lx < Ly, Lz
(iii) Lx < XF Ly, Lz
(iv) Lx < Ly ~ XF <c,
(v) Lx -, Ly < XF <C, Lz
(vi) Lx 5 Ly, Lz < XF

3D (bulk)
quasi 2D (thin films)
2D (MOSFETs)
quasi ID (quantum wires)
ID
OD (quantum dots).

1.1 Drude Model

The Drude model is based on the ideal gas approximation, where the energy 
distribution of electrons follows Boltzmann statistics. The Drude model was 
developed to explain the microscopic details of macroscopic experiments of 
current flow, heat flow and effects of magnetic field in a phenomenological 
way.

The current in metals is described by the Ohm’s law

/ = iy (U)

where the resistance R depends on the length of the wire L, on the cross- 
section area of the wire A and on the resistivity of the material p. Thus it 
is reasonable to write the Ohm’s law by using the electric field E and the 
current density J as follows

J — -E = crE, (1.2)
P

where the relations V = EL, R = pL/A and / = JA has been used and 
a denotes the conductivity of the material. In the Drude model it is as­
sumed that free electrons collide with immobile positive ions on an average 
when a time r has elapsed after previous collision. Furthermore, between
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these collisions electrons are assumed to move without any interaction with 
the ions or other electrons. Since it is also assumed that immediately after 
collisions electrons have the velocity corresponding to the thermo-dynamical 
equilibrium at certain temperature, the average velocity v is zero at zero 
field. Thus the average velocity in an external electric field can be obtained 
directly from Newton’s equation of motion

vaye = • (1-3)m

According to classical electromagnetism the current density in an applied 

electric field can be represented by using the electron density, the average 
velocity of electrons and the elemental electric charge:

J = — nev. (1.4)

Now by substituting the velocity given in equation (1.3) into the current 
density (1.4) we get

J =
пе2т-E.

m
(1.5)

Comparing this to equation (1.2) we obtain the conductivity

пе2т
a =

m
(1.6)

The average time between collisions can be estimated from measured con­
ductivity or resistivity. The mean free path, which is the distance traveled 
by an electron between two subsequent collisions, can be calculated by using 
r and the thermodynamic equilibrium velocity [2]

\mv2 = \kBT (1.7)

and it is given by
l = VT. (1.8)

The order of magnitude values of the relaxation time, Fermi velocity, the 

mean free path and the conductivity in metals are 10-14 s, 106 m/s, 1СГ9 m 

and 108 1 /(fim) [3, 4], respectively.
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1.1.1 Hall Effect

In the Hall experiment we consider a wire with a current flowing through 
it. Let the current flow into x-direction and the applied magnetic field to be 
perpendicular to the wire, say into z-direction, as shown in figure 1.1. The 

magnetic field causes a Lorentz force on free moving charged particles. This 

force drives electrons into negative y-direction leaving positive charge on the 
opposite side. The oppositely charged edges of the conductor produce an 
electric field Ey parallel to negative y-direction. The charge separation con­
tinues to grow until the transverse forces caused by the electric and magnetic 
fields cancel each other.

Figure 1.1: Relative directions of the magnetic and electric fields and the Lorentz 
force in a conductor.

The Hall effect is associated with two characteristic quantities, 
magneto-resistance [2]

p = T
and the other is the Hall coefficient [3, 5]

One is the 

(1.9)

Rh —
Ey

Jx\B\ ne' (1.10)

where В is the magnetic flux density, and n is the electron density. Relations 
(1.9) and (1.10) can be derived from the Drude model. The important re­
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suits are (1) that the magneto-resistance is independent of the magnetic flux 
density and (2) that the Hall factor depends only on the electron density.

1.2 Quantum Mechanical Treatment of Elec­
trons

The eigenstates of electrons are solutions of the (time independent) Schrôdinger 
equation

+ + v(x’y’z)]*(l' у. *) = V. *)• (in)

For free electrons the potential energy is zero; V(z, y, z) — 0. In this case 

the general solution of the Schrôdinger equation is given by

1
Ф(г)

х/1Л
лкг (1.12)

The L? in equation (1.12) represents the volume of the conductor and it is 
included for the purpose of normalization: fL3 |Ф(г)|Ь3г = 1.

There are two kind of possible boundary conditions for Ф(г) corresponding 
to the physical conditions that we want to examine. For the standing wave 
solutions the wavefunction is zero at the boundaries and for the propagating 
electrons the periodic boundary conditions are used. In the first case the 
solutions of wavefunction are sine or cosine and the allowed values for к are

7Г 2?r 3tt
k = Z’T’T’'"’ l = x,y'z-

In the latter case the periodic boundary conditions require that 

Ф (x + L,y,z) = Ф (x,y + L,z) = Ф (x,y,z + L) = Ф (x,y,z),

which yield to following allowed values for к
2тгп,-

ki — г = x,y,z, rii G Z,

(1.13)

(1.14)

(1.15)

where к has an cut of at the boundary of Brillouin zone. The volume that 
each electronic state takes in the fc-space is (2tt/L)3 in both cases.
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1.2.1 Density of States

The density of states (DOS) N(£) gives the number of electronic states per 
unit volume and unit energy around the energy £. The number of states 
per unit volume in the energy interval £, £ + d£ is N(£)d£. Wavefunction 
for free electrons was given in equation (1.12) as a solution of Schrôdinger 
equation. Corresponding energy eigenvalues obey the parabolic relation

h2k2
£ =

2m
(ив)

from which we get

к =
l2mS

(1.17)

(1.18)

, ft2

d* =
2'h2' Vf

In three-dimensional (3D) case the volume between к and к + dk in the k- 
space is a volume of a spherical shell AV = ink2dk. Similarly in 2D and 
ID the area and the length between к and к + dk are AA = 2irkdk and 
AL = 2dk, respectively. The number of states between к and к + dk is the 
total space between к and к + dk divided by the space of one state. Thus 
the number of states per unit energy and unit volume, area or length are

2 47rk2 dk к2 dk
7Г2 d£

_ kdk
7Г d£

2 dk 
ñd£'

n3D(£) =
N2D(£) = 

NlD(£) =

V (2tt)3/V d£
2 2irk dk 
A(27r)2/Adf
2 2 dA:

(1.19)

(1.20) 

(1.21)
L (27t)/L df

where the factor of two is included because of spin degeneracy. Now by 
substituting equation (1.18) into above equations we get the density of states 
functions

><o =N;3 D\

n2D(£) =

2tt2 ' H2 '
1 /2 m\
2^W>
1 /27П\ i 1

(1.22)

(1.23)
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1.2.2 Electron Density

In quantum mechanics particles are divided into two categories according to 
their spin angular momentum quantum number. For bosons like photons 
and phonons the spin quantum number is an integer and for fermions like 
electrons, protons and neutrons the spin quantum number is an odd multiple 

of an half.

According to the Pauli exclusion principle only one fermion can occupy one 
quantum state. It follows that the energy distribution which minimizes the 
free energy of the system is the Fermi-Dirac distribution

№ = -¡à-----• (1-25)
еквт + 1

The chemical potential ц is defined as [6]:

Ц = (1.26)

where n is the number of particles, V is the volume and S is the entropy. Thus 

the chemical potential shows how much the internal energy changes when one 
electron is added to the system without changing its thermodynamical state.

By using Fermi-Dirac distribution function the electron density and the total 
energy of an electron gas can be calculated from

roo
n = / N{£)f(£) d£

Jo
(1.27)

and
roo

Stot = / £N{£)f{£) d£. (1.28)
Jo

At zero temperature (T — OK) it follows from equation (1.27) that ц — £р = 
^(Зтг2п)з, which corresponds to Fermi wave-vector kp — (Зтг2п)з and Fermi 

velocity vp = ^(Зтг2п)5.
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1.3 Effective Mass Theory

1.3.1 Bloch’s Theorem

The Bloch’s theorem generates a model for description of electrons in a pe­
riodic potential structure like a crystal. According to Bloch’s theorem the 
solutions of the Schrôdinger equation in a periodic potential are products of 
a plane wave егк г and a periodic function unk(r) with the latter having the 
same periodicity as the crystal potential. Therefore the eigenfunctions can 
be written as [3, 2]:

^nk(r) = eikrunk(r), (1.29)

where unk(r + R) = unk(r) if R is the lattice vector.

By substituting Bloch’s functions into Schrôdinger equation and dividing by 

the plane wave part gives

-¿^vr«nk(r) - ~Vrunk(r) + [^- + V(r)]unk(r)

= <?«nk(r), (1-30)

which depends also on k. Thus the eigenfunctions and eigenenergies are
functions of к and furthermore there exist multiple solutions for each value 
of k, indexed with n. Therefore the eigenfunctions has been written as:

Ф„к(г) = e*krn„k(r). (1.31)

The eigenenergies are given by

£ = £„(k). (1.32)

1.3.2 Semiclassical Equations of Motion

The group velocity of a wave-packet is defined as
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Because the wave-packet corresponds to a classical particle, the velocity of
a particle can be derived from above equation by using relation £ = two as
follows:

1 d£(k) 
h dk

^Vk£(k).
n

(1.34)

From Newton’s second law of motion dp/dt = F we get

-<?(E + v x B), (1.35)

where relations p = fik and Lorentz force have been used. The acceleration 
is obtained from equation (1.34) by derivating:

a = Ai = iv‘v*£<k>§ (L36>
= ^VkVk£(k)-h)[E + vxB]^F. (1.37)

The effective mass is then obtained from above equation as follows

A = ¿VkVk£(k). (1.38)
m* n

1.3.3 Envelope Function Approximation

Calculations of the electronic structure in semiconductors can be done by 
using к • p or effective mass theory, which assumes a parabolic carrier dis­
persion relation £ = h2k2/(2m*). The effective mass method is a reasonable

approximation close to the band edges. Most optical and electronic devices 
operate in this regime. In the effective mass theory the periodic crystal 
potential is accounted for trough the effective mass

m* — h2
'd2£(k) 

dk2 '
(1.39)

For materials which have anisotropic equal energy surfaces equation (1.38) 
must be generalized for the effective mass tensor as follows [5]:

J_ _ 1 d2£(k) 
m*j h2 dkjdk f ’

(1.40)
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where i, j are Cartesian coordinates. In the bulk semiconductor the wave- 
function has the Bloch form (1.29), where the rapidly varying periodic crystal 
potential part u„k(r) is modulated by a slowly varying plane wave егкг. The 
multiband к • p method accounts for mixing of the zeroth order states. The 
multiband wavefunction is given by J2n сп(к)егкгмпо(г), where the sum is 
taken over the leading conduction and valence bands and cn(k) are the weight 

factors, which are obtained by diagonalizing the multiband Hamiltonian for 

fixed k.

In a heterostructure two approximately lattice matched III-V compound 
semiconductor materials M¡ and Mu having different bandgaps but the same 
crystal symmetry form an abrupt heterointerface. The interface causes a dis­
continuity in the conduction and valence band edges. As an example we 
consider a simple quantum well shown in figure 1.2. This corresponds to

z

Figure 1.2: A schematic picture of quantum well: a narrow layer of well material 
(M//) (shaded area in the figure) is between bulk material (M/).

a structure where an external one-dimensional potential £pot (z) is added to 
the crystal potential £cry(r) of the bulk material in order to account for the 
band edge discontinuity. Therefore the heterostructure can be described by 

Schrôdinger equation

-НФ(г) = [ - + Scry(r) + £ро4(2)]Ф(г) = £Ф(г), (1.41)
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where £ is the energy eigenvalue. The plane wave motion normal to the plane 
of the interface is not affected by the ID heterostructure potential £pot (z) ■ By 
assuming that the atomic Bloch states at Г point are continuous across the 
interface: (r) = u^1 (r) for all strongly coupled valence and conduction

bands n, the wavefunction in either material can be expressed as weighted 
sum of atomic Bloch states u„o(r) as follows [7]:

Ф(г) = £un0(r)e¿kiiTFn(z), (1.42)
П

where кц is the wavevector in the interface plane and Fn(z) is the envelope 
function. In analogy to the к • p theory equation (1.42) is a good approx­
imation close to the band edges: |fcx|,|fcy| <C 4?r/o, where a is the lattice 
constant. If the band coupling is neglected, inserting equation (1.42) into 
equation (1.41) leads to Schrôdinger like equations for the envelope func­
tions Fn(z). These are called as the envelope Schrôdinger equations and 

they can be written as

[ " + адКИ = SFn(z), (1.43)

where the electron mass is still equal to the rest mass. It can be shown that 
if the coupling with other bands is included the rest mass in equation (1.43) 
has to be replaced by the position dependent effective mass. The calculations 
done in chapters 4 5 excludes the band coupling.

1.3.4 Effective Mass in Silicon

In bulk silicon the indirect conduction band consists of six equivalent anisotropic 
valleys in the k-space. These anisotropic valleys have minima on the [100], 
[010] and [001] axes. The distances of the minima measured from the Г-point 
are denoted by a æ 1010 m_1. The minima are located at [±a, 0,0], [0, ±a, 0] 
and [0,0, ±a\. The equipotential energy surfaces of these minima or valleys 
have a shape of a rotational ellipsoid. The axis of rotation coincides with the 
axis on which the valley is located. These valleys are characterized by two
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different effective masses, the longitudinal effective mass and the transverse 

effective mass. The longitudinal mass corresponds to motion in the direc­
tion of the axis of rotation and the transverse mass corresponds to motion 
orthogonal to the axis of rotation (see figure 1.3). In these valleys the lon­
gitudinal effective mass is m¡ — 0.98m0 and the transverse effective mass is 
m*t = 0.19mo along equivalent (100) directions.

Figure 1.3: Six constant energy ellipsoids for electrons in silicon with = 0.19mo 
and rri¡ = 0.98mo.

Let us assume that there is a quantum wire on the xy-plane and it forms an 

angle в counterclockwise with у-axis, so we have rotated the x- and y-axes 

counterclockwise around the 2-axis by в. We can write the effective mass 

Schrödinger equation for each six valleys on rotated coordinates as follows 
[8]:

h2 d2 h2 d2
2mi dx2 2ml dz2

+ V(x, г)]ф(ж, z) = £Ф(:г, z). (1.44)

We have three separate cases [8]:

1. For the [0, 0, ±a] valleys effective masses are

m*x = m*t — 0.19mo
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m* — m¡ — 0.19гпо 

m* - m* — 0.98m0

2. For the [0, ±o, 0] valleys effective masses are

=

m;

m

cos2 9 sin2 в 
------ :—I--------1

Til* m

-l

m¡ cos2 9 + m*t sin2 9

= m,

3. For the [±o, 0, 0] valleys effective masses are

mx =
sin2 9 cos2 01 
----i—Ь mi .

m* = m*, sin2 9 + m*f cos2 9

mz = mt.



Chapter 2

Conductance

2.1 Ballistic Transport

Let us consider a device where a conductor connects two electron reservoirs. 

In the ballistic transport approach it is assumed that particles move trough

this channel region without scattering. This assumption holds true if the 
relative magnitude of the mean free path A and the system size L is such that 
L <C Л. The conductor region is modeled by transmission and reflection of

Figure 2.1: A scatterer is connected to electron reservoirs with ideal leads. The 
bias voltage eVb = ßs ~ llD separates the chemical potentials of the reservoirs.

the incoming waves at the contacts of conductor and reservoirs. Let reservoirs
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have different Fermi levels SF\ and £F2 separated with a small bias voltage 
Vb. Then £Fi = £f2 + eVb. The current is carried only by electrons which 
flow from occupied states in the source reservoir into unoccupied states in the 
drain reservoir. At zero temperature the current is carried by the electrons 
with energies between £F2 and £F\ since each state below the Fermi energy 
is occupied and each state above Fermi level is empty. On the contrary at 
nonzero temperatures the Fermi-Dirac distribution function has to be used: 
The initial state is occupied with the probability fi{£) and the final state is 

unoccupied with the probability 1 - //(<?).

2.2 Two-Terminal Conductance

Let us consider a case where a scatterer is connected at both ends to electron 
reservoirs with ideal leads. Also the electron reservoirs are assumed to be 
ideal so that they satisfy the following conditions [9]:

1. The reservoirs are in equilibrium with a given electrochemical potential 
p¿ (which is different for the various reservoirs attached to the conduc­
tor).

2. They are large enough such that the currents flowing in or out are

negligible deep within the reservoirs (i.e. they stay in equilibrium with 
unchanged /q even in the presence of the current flow).

3. Electrons entering the reservoirs are not reflected back into the con­
ductor before equilibration.

Let ßs and represent the chemical potentials at the source and drain 
reservoirs, respectively, and eVb = ßs — Hd (see figures 2.1 and 2.2). At zero 
temperature with a negligible bias voltage the conductance is given by the 

Landauer formalism [10, 11, 9]:

(2.1)
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Figure 2.2: Left: Schematic picture of the energy distributions of figure 2.1 at 
zero temperature. Right: The same at nonzero temperature. The shaded areas 
represent the conducting energy channels in the conductor.

where T denotes the total transmission through the scatterer (i.e. the sum of 
the transmission probability of all conducting channels) at the Fermi energy.

On the contrary at the nonzero temperatures the energy distribution of elec­
trons must be taken into account and the situation becomes more subtle. 
The influx of electrons per unit energy from an ideal source lead can be writ­

ten by using the velocity of electrons v, the density of states function N(£)\
/ x —1

the Fermi-Dirac distribution /¿(<f) = ^1 + e квт J and the transmission 
coefficient:

i*(£) = \-e-vN(£)-fs(£)-T(£)

=

= ~fs(£)T(£), (2.2)

where the factor \ is included because we take into account only those states 
that corresponds to electrons propagating to right. Similarly the influx form 

ideal drain lead is given by

i~{£) = ^fo(£)T(£). (2.3)
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The total current trough the wire is obtained by integrating the difference 
i+(£) — i~{£) over the relevant energy range:

op rfis+^eT
I = T T(£){fs(£) - h(£))d£, (2.4)

tl Jfi£)—nkßT

where n is a positive constant stating that the relevant energy range is a few 
kBTs around the chemical potentials.

In equation (2.4) it is assumed that the transmission coefficient for electrons 
propagating from left to right is equal to the transmission coefficient for 
the electrons which are propagating from right to left. That assumption 
holds true if there is no inelastic scattering inside the device. Finally the 
conductance can be calculated when the current and the applied bias voltage 
are known:

/ 2e2 гцз+пквТ
G = V = Tl-----------T / Т(£Ж£) - fD(£))d£. (2.5)

И n(ßs - До) Jm-nkBT

At the linear transport regime it is assumed that eV¡, = ßs~ I¿d is very small. 
Thus we can write as a good approximation:

, M£) - !d(£) = .. № + evb) - fs(£)
VW" 14 - II.„ VW« eVb

- ■ (2.6)

Hence the conductance can be written as follows:

G
2e2
h

(2.7)

Thus, if Vb is very small, it follows from equations (2.5) and (2.7) that the 
conductance is independent of the bias voltage Vb and that the current de­
pends linearly on it.

Although it is sufficient to assume that Us ~ Hd is very small for the current 
to depend linearly on the bias voltage this is not a necessary condition. We 
will next derive the necessary condition for linear relationship between the
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current and the applied bias voltage. Let us write

fus —(Á.£ ~ ß) ! № вТ)
ís(£)-íd(£) = - í

J U
-á/ißD (1 + e{£-ß)/kBTy

/: [¿(iw-^rid,
rvs r d 1

JßD I- d(£ — ц) 1 + е(£-РМ(квТ)

IßD [“dil + eNl/tW)]'1'1 
rßs

]d/i

rus
= F(€- zr)dp,

JßD

where
F(£) =

d£ 1 + е£/(*вГ)
Thus the current in equation (2.4) can be rewritten as

2eI = j f T(£)[fs(£) - M£)]á£

= ^ JT(£)(J"‘ F(£ - ß)dß)d£

= Ц (j j T(£)F(£ - ß) d£)dß. 

By comparing the above result with the current formula

(2.8)

(2.8)

(2.10)

I = GVb = G ßS - ßD
(2.11)

it is seen that in the linear transport regime the conductance is given by

G = G(ß) = Ц- f T(£)F(£ - ß)d£

2e2 /" r d 1= x/T(£)i- d£ 1 +
d£ (2.12)

which agree with our previous result. It follows from equations (2.10) and 
(2.10) that the current will respond linearly to the applied bias voltage if 
the conductance function G(p) is independent of energy in the energy range 

liD<H< цБ.
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2.3 Multi-Terminal Conductance

The conductance of multi-terminal scatterer can be calculated by using two- 
terminal conductances. The total current between terminal i and every other 
terminal j is a sum of two terminal currents:

Ii = (2.13)

As in the two-terminal case, if there is no inelastic scattering, the following 
relation holds [11]:

Ета(£) = Ег«(£). (2.14)
3 3

Thus we can simplify the current formula to read

h f f Y,T,A£)№)-fÁWs. (2.15)

Equation (2.15) is equivalent with

и = XT,#, - 4 (2.16)
j

where Gij is the two-terminal conductance between terminals i and j.

2.4 Scattering Matrix

Let us consider a multi-channel (multi-mode) system in which the input and 
output leads are identical conductors. Furthermore it is assumed that the 
number of channels (modes) N is the same in both leads. An incoming wave 
at mode i in the left lead has a probability T)¿ = |tj¿|2 to be transmitted into 
mode j in the right lead, and it has a probability = |r^|2 to be reflected 

back to the left lead into the mode j. The S-matrix is defined in terms of 

the transmission and reflection amplitudes, tji and rJ¿, as follows

S =
r t' 
t r'

(2.17)
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In equation (2.17) submatrices t, r, t' and r' are N x N matrices and t' 
and r' represents the transmission and reflection amplitudes from the right 
lead into the left and right leads, respectively. If the outgoing amplitudes 

are represented with N x 1 matrices b and b' and the incoming amplitudes

similarly with a and a' on the left and right sides of the scatterer, respectively, 
the system can be described with equation

(2.18)
" b ' — Q . a с-

ц __
i

a
b'

— и
a' t r' a'

a ' b '
ä =

a'
and b =

b'

Let us denote

The probability-flux conversation requires that [11]

2 N 2 ЛГ

E Ы2 = EIU2
m=1 m=l

which can be written by using adjoint vectors as follows

¿do = b*b.

By using equation b = Sä we can write

cdo = (Sä^Sä = ä^ SS^ä, 

from which we see that the S-matrix is unitary i.e.

SSf = SfS = I.

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Thus we have the following conditions for elements of S

2 N 2 N
E |Sm„|2 = E Km|2 - I- (2-24)
m= 1 m= 1

Above relation shows that for a given input mode n the sum of the transmis­
sion probabilities to all possible output modes m is unity. Equation (2.24) 
also shows that summing over all possible inputs m for a fixed output n gives 
as well unity.



Chapter 3

Tunneling Trough Planar Barriers

3.1 Theoretical Model

In the following we consider calculation of transmission coefficient in an ar­
bitrary one-dimensional (ID) potential profile. The aim is to solve the wave- 
function on the left side of the barrier (see figure 3.1) when the wavefunction 
on the right side is known as a boundary condition. The wavefunction on

w

Figure 3.1: ID rectangular potential barrier.

the l.h.s. of the potential barrier is

Ф/(х) = Aeikx + Be~ikx ? (3.1)
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where A and В are the amplitudes of the incoming and reflected waves, 
respectively. On the r.h.s. of the potential barrier the wavefunction is given 

by
Ф/Дя) = Ceikx, (3.2)

where the amplitude C is set equal to one. Wavefunctions (3.1) and (3.2) 
fulfill the Schrôdinger equation

(-¿¿+ад)фм=£фм=£фм’ (3-3)
where £ is the total energy of particle and £p(x) is the potential energy 
function. In general, the amplitudes A and В in equation (3.1) and the 
amplitude C in equation (3.2) are complex constants (C — 1 was chosen):

A = ar + io¿ (3.4)

B = br + ibi (3.5)

C = 1. (3.6)

The amplitudes A and В can be solved by using equation (3.2) as a boundary 
condition for equation (3.1). Let us write equation (3.1) as

Ф/(аг) = Aeikx + Be~lkx = {ar + щ)е1кх + {br + ibi)e~ikx. (3.7)

By taking the real and imaginary parts of equation (3.7), following equations 
are obtained:

Re(4>j(x)) = [ar cos (kx) — di sin(A:z)] +

+ [br cos(kx) + bi sin(Å;x)] (3.8)

Im(tyj(x)) — [ar sin(A:z) + o¿ cos(fcz)] +

+ [—bT sin (kx) + bi cos(kx)]. (3.9)

The derivatives of above equations are

-р-Де(Ф/(я)) = [—karsm(kx) — kdiCos(kx)] + 
ax

+ [~kbr sin(kx) + kbi cos(fcx)] (3.10)
-^-/ш(Ф/(ж)) = [kar cos (kx) - /со, sin(fcx)] + 
dz

+ [—kbr cos (kx) — kbi sin(fcz)]. (3.11)



3.2 Calculations 23

The goal is to calculate the transmission probability which is equal to the 
square of the ratio of the incoming and transmitted amplitudes:

(3.12)

3.2 Calculations

Numerical solutions for the real and imaginary parts of Ф/(ж) and their 
derivatives are obtained by writing the Schrôdinger equation (3.3) as a system 
of two first order coupled differential equations which are solved by using 
finite difference methods. Furthermore the equation (3.2) is used as boundary 
condition at xo = x& (see Fig. 3.1) and the real and imaginary parts of the 
solution are calculated separately. The system of two first order equations is

' Ф'(ж) = Ф{х)
(3.13)' Ф'М = -£]*(*).

The first step is calculated with the forward Euler method [12, 13]:

(3.14)У\ = Уо + ôf(x0,y0).

And the other steps (n > 2) are calculated with the midpoint method [12,13]:

(3.15)Уп = Уп-2 + 2<5/(xn_i, yn-1).

In the above equations S (=xn+i — xn) is the step size and f{xn,yn) corre­

sponds to the r.h.s of equations (3.13).

The real and imaginary parts of T/(z) and their derivatives are denoted by

R(x) = Де(ф/(х))
I(x) = /тп(Ф/(х))

DR(x) = dR(x)/dx 
DI{x) = dl(x)/dx

(3.16)
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By setting equation (3.1) equal to numerical solution at some point x — xa 

which is located on the l.h.s. of the barrier (see Fig. 3.1), A and В can be 

solved. Thus the following system of equations is obtained:

R(xa) = (ar + br) cos(kxa) + (—a* + b¿) sin(A;a;a)
I(xa) = (aT - bT) sin(fo;a) + (a¿ + ft¿) cos(kxa) ^ ^

DR(xa) = k(—ar — br) sin(kxa) + k(—ai + 6¿) cos(kxa)
DI(xa) = k(ar — br) cos(kxa) + k(—a¿ — b¿) s\n(kxa)

Now we can solve ar,br, o¿ and Ьг from above system of equations. We get

kR(xa) + DI(xa) = 2kar cos(kxa) — 2kat sin(kxa) 
kl(xa) — DR(xa) = 2kaT sin(kxa) + 2kai cos(kxa) 

kR(xa) - DI(xa) = 2&6r cos(/czQ) + 2kb{ sin(kxa) 

kl(xa) + DR(xa) = -2kbr sm(kxa) + 2kbi cos(kxa)

kR(xa)+DI{xg) . kI(xa)—DR(xg) 
sin(fcxa) ' cos(fcza)

kR(Xg ) + DI(Xg)   kI(Xg) — DR(Xg)
COS(fcXo) sin(fcxa)

kR(Xg)-DI(xa)   fcJ(Xq) + jPfl(Xa)
sin(fcxa) COs(kxa)

kR(xa)-DI(xg) . kI(xa)+DR(xa) 

, cos(fcxa) sin(fcXo)

= 2Å:or[cot(fcxa) + tan(fcx0)]
= —2kcii [cot(Å:za) 4- tan(fcxa)] 

= 2/cbr[cot(/cza) + tan(fcza)]
= 2/c^[cot(/cza) + tan(/c:ra)]

(3.18)

(3.19)

a,

br

Ьг

2k

J_
2k

J_
2k

/ KnyXa)-\-UiyXa) i 
' SÍn(fcXa)

Ki l^X'a ) и пух a ) X 1
COs(fcXa) / cot(fcxa)+tan(fcxa)

1 /kR(xa) + DI(x o) kI(xa)-DR(xa)\ 1
2к V cos(ha) sin(fcxa ) * cot(fcxa)+tan(fcxa )
rkR{xa)-DI[x a) kI(xa)-\-DR(xa)\ 1

: t sin(fcx0) cos(fcxa) 1 COt(fcxa)+tan(kxa)
/ kR(Xg)-Dl(xa) 1 kI(Xg) + DR(xa)\ 1

(3.20)

By substituting a¿ and ar into equation (3.12) we get the transmission coef­
ficient.

3.2.1 Single Potential Barrier

A comparison of numerically and analytically calculated transmission proba­
bilities is represented in figure 3.2. The analytic solutions for the transmission
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coefficients through the single rectangular potential barrier are [14]:

Ts>£p —
1

1 +
£2IE1

4 £(£-£P, sm
(3.21)

U<£p
1 + 1

£2cp
\£{£v-£) sinlr 2m(£v-£) a

(3.22)

where a and £p are the width and height of the potential barrier, respectively. 
The numerical and analytical solutions agree within the numerical accuracy 
of the calculations.

— Numerically solved T 
• Analytically solved T

barrier

Figure 3.2: Transmission probability for a single potential barrier. The width of 
the barrier is 2 nm and the the potential energy of the barrier is 1 eV. For the 

electron mass we used the rest mass mo-

3.2.2 Double Barrier

The ID double potential barrier structure is also known as a resonant tunnel­
ing diode. Figure 3.2 represents the transmission in a double barrier struc-
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ture. Note the prominent resonant tunneling effects.

barrier

Figure 3.3: Transmission probability for double potential barrier. Two 1 eV high 
and 1 nm wide barriers are separated with 1 nm. The used mass was the electron
rest mass



Chapter 4

Mode Matching Method

4.1 Introduction

First the mode matching method [15, 16, 17] is formulated for systems where 
the Schrödinger equation is two dimensional and subsequently the method 
is generalized for conducting channels where electron wavefunctions depend 

on all three spatial coordinates.

Structures where the electrons are confined in 2D are treated in section 4.2. 
This corresponds to situation e.g. in MOSFETs. In quantum wires (QWR) 
and quantum point contacts (QPC) the movement of electrons is confined in 
ID. This kind of conducting channels are treated in section 4.3.

4.2 Mode Matching Method in Two-Dimensional 

Structure

4.2.1 Technique for Single Junction

In a uniform quantum waveguide the Schrödinger equation can be separated 
to transversal (z-coordinate) and propagating (^-coordinate) parts and its
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solution is (see figure 4.1) given by

(4.1)

To analyze a nonuniform waveguide configuration with the mode match­

ing method, the structure must be divided into uniform waveguide sections. 

Then each section can be characterized by a generalized scattering matrix 
(GSM) whose elements are the modal scattering parameters including those 
for evanescent modes. The GSM of the nonuniform waveguide structure is 
obtained by combining the GSMs of the uniform sections.

III!

Z

Figure 4.1: 2D rectangular potential stub. Potential energy is infinite in the 
shaded areas and zero elsewhere.

First we derive the GSMs for a uniform waveguide and for a single junction 
and in the next section for the whole conducting potential structure. In 
general the wavefunctions on different sides of the junction are (see Figure
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4.1)

V>1 = ^(PiOi + Pf^i) and (4.2)

02 = Ф2 (P2ti2 + P2 ^2), (4.3)

where oii2 and ¿>li2 are column vectors whose elements are the amplitudes of 
the corresponding modes and Pi_2 are diagonal matrices defined as

Pi,2(n,n) = elfcl’2(n)z. (4.4)

The elements of the column vectors øi)2 are orthonormal eigenfunctions which 
are defined as

<Ai,2 (n) = (4.5)
V Wl,2 ^1,2

where ici)2 are the widths of the channel in the ^-direction (i.e. perpendicular 
to propagation direction) on different sides of the junction. The wavevectors 
in equation (4.4) are defined as

*■»=^ -v) - O- (4-6)

where m* is the effective mass (see section 1.3), V is the potential energy 
and 6 is the total energy of particle. The continuity condition for the wave- 
functions and its normal derivative at the junction gives us the following two 

equations for junction A in Fig. 4.1 when the junction is located at z = 0:

Ф2 (°2 + b2)
i øf (a 1 + b\), C\ < X < Ci + Wi (4.7)
1 0, otherwise

= 0^2(b2 — a2), Ci < X < Ci + Wi, (4.8)

where /\j,2 are diagonal matrices whose elements are defined in equation
(4.6) .

Next we construct the GSM for a single junction A by multiplying equation
(4.7) by ø2(m) and equation (4.8) by øi(m), by integrating with regard to x 
and by using the orthonormality of the eigenfunctions </>1 and ф2- Thus we
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get

H\(a\ + b\) — 02 + ^2

fli — bi H2(a2 — b2),

(4.9)

(4.10)

where
Hi = C (4.11)

and
H2 = -K^CTK2. (4.12)

Above the C matrix characterizes the mode coupling due the step disconti­
nuity. It is defined in terms of the overlap integrals as follows:

rw
Cmn = y (t>i(n)(j)2(m)dx. (4.13)

Now the generalized scattering matrix for a single junction is obtained from 
equations (4.9) and (4.10). The GSM for the step discontinuity fulfills

'bf ' SÅ sft"

>2A. . $21 $22 . . °А .

where the submatrices of GSM for the junction A are

Sil = (/-Я2Я,)-‘(/ + Я2Я,), 
sft = -2(1 - Я2Я,)-'Я2,

S21 = H¡(I + Sn),

Sâ = HiSn-I.

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

Similarly we obtain the generalized scattering matrix for the junction В in 
Fig. 4.1. The continuity conditions for the junction В (the junction В is 
located at z = 0) lead to equations

<ft{a i +bi)

</>i Ki(ai - i>i)

J ф2 (a2 + b2), c3 < x < c3 + w3 
I 0, otherwise

4>2K2(b2 — a2), c3 < x < c3 + w3.

(4.19)

(4.20)
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Next equation (4.19) is multiplied by ф\{т) and equation (4.20) is multiplied 
by ф2(т), and both equations are integrated with regard to x. As a result 
we obtain

Qi T b\ — H\{a2 + b2) (4.21)

Я2(о1 — bi) — b2 - o2, (4.22)

where
Hi = CT (4.23)

and
H2 = k;1ckv

The matrix equation for the junction В is given in analogy to equation 

by
'bf 'Sf, ss' a?

.Sf, SfL . °i .

(4.24) 

(4.14)

(4.25)

with submatrices

пБ
°11 = (I + HiH2)-\-I + HiH2), (4.26)
r-B
°12 = 2 (I + HiH2)~xHu (4.27)
QB
°21 = H2(I-Sn) (4.28)
cB
°22 = I-H2sl2 (4.29)

Thus we see that the equations depend on which side of the junction is 
narrower. Therefore from here on we will always denote the narrower side of 
the junction as the "side 1" and use equations (4.15)-(4.18).

The GSM for a uniform waveguide section of length L2 (the middle section 

in figure 4.1) is a special case and can be expressed as follows

" Su Sl2 ’ 0 p '

. s21 s22 p 0

where 0 is the null matrix and F is a diagonal matrix given by

(4.30)

P(n,n) = eit(n)4 (4.31)
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This can be verified with the following reasoning: Let us locate the junction 

A at z = 0. Then the junction В is located at z - L2 (see figure 4.1). The 

wavefunction of the middle section on the edge A is «^(bf + of) and on the 

edge В it is <f>T(P(z = L2)af + P~x(z = L2)bf). Thus bf = P(z = L2)af 
and bf = P(z = L2)af and equation (4.30) follows.

4.2.2 Technique for 2D Potential Stub

The total number of modes on each side of the junction A (Nf and Nf) 
may, in general, be different depending on how many evanescent modes in 
each junction is taken into account to obtain the required accuracy. We use 
К < minjiVf, N%} modes in the calculations. Thus the mode vector of, 

which represents the incoming amplitudes on the left side of the junction A,

is partitioned into the mode vector of with elements of (i = 1,..., K) and 
into the mode vector of with elements of (г = К + 1,..., Nf). Vectors of, 
bf and bf are partitioned in a similar manner (see figure 4.1).

The partitioned GSM of the junction A can be expressed as

^ ti
-0 to to to to g> Г aA 1ua

bf ■ bf c A qA qA о A 
‘-’ba ^bb Jbc Jbd «f

bf. bf qA qA qA qA ^ca cb ^cc ^cd af
.bf . to to to to . ad .

qA qA 
°11 °12

1----

qA qA 
°21 °22 of

The corresponding partitioned GSM for the junction В is

"bf" qB qB qB qB 
^aa ab ^ac ^ad aa

bf " bf qB qB qB qB 
^ba ^bb *-*be bd «f

bf bf qB qB qB qB 
^ca Jcb of

.bf . qB qB qB qB
L ^ da *->db dc à dd . .«f.

qB qB 
°12 "of"

qB qB 
°21 °22 of

(4.33)
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Now by using equation (4.32) for the junction A, equation (4.30) for the 
uniform waveguide and equation (4.33) for the junction B, we get the GSM 
for the whole structure. The matrix equation can be written as

-0

аа

h " К Su S12 аъ
bi ЬВа сч

^сч
со^сч
со <

-О

. аь .

S'il Si2

S21 S22

a 1 
02

where the submatrices of the GSM are given by [15]:

Sn =
oA oA 
Jaa Jab
о A cA 
°ba öbb

+
SiP(I - SBPS*P)-'S0,P 

S¿P(I - SBPS¿P)-'SZP

çA çA 
^ca ^cb

5 A oA
ca ^cb

S12 —

S'21 —

' S¿P(/ - S£PS¿P)"! qB qB 
^ca Jcb

. S&P(I - SgPS£P)-' CB qB 
^ca ^cb

' S£P(/ - S?CPS°P)-' cA cA 
^ca ^cb

S»P(Í - S*PS°P)~' cA q A 
*^ca ^cb

S22 —
qB çB 
^aa Jab

O B qB 
°ba Jbb

+
>s S(*
>5 Scb

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
SBP(I - S*PSBP)~'S*P 
SbBcP(I - S*PSgP)-lS*P

The transmission coefficient can now be calculated by using equation (4.37) 

and equation (4.6) as follows

Em S21 {m, n)S^ (m, n)(kg(m) + kf*(m))
ki(n) + kf*(n) (4.39)

Previous derivation is valid for cases like the one seen in figure 4.1, but if the
l.h.s. of the junction A is wider than the r.h.s. the GSM for the junction 
A must be reorganized. Correspondingly, if the l.h.s. of the junction В is 
narrower than the r.h.s., the GSM for the junction В must be reorganized. 
The need to reorganize the matrix equations (4.32) and (4.33) is that they 
were established by considering the structure as in figure 4.1. However we 

always denote the mode vectors of the narrower side of the junction as ai and 

bi and furthermore we want to represent the outcoming mode amplitudes bi
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and &2 of the scatterer as function of the incoming mode amplitudes a\ and 
o2. Thus, if for example W\ > ги2 for the junction A (see figure 4.1) the 
matrix equations must be written as

t>2 S22 S21 02 S22 S21 a[

b Sv2 S'il Oi S\2 Sn a2
(4.40)

From equation (4.40) it follows that the reorganized matrices are

GSM* =
qA qA 
°22 °21
qA q a 

‘-’12 ° 11

(4.41)

and

GSM* =
oB cB °22 0г>л21
cB cB 
°12 °11

(4.42)

where the submatrices 5ц, Su, S21 and S22 were defined in equations (4.15)- 
(4.18).

4.2.3 2D Potential Structure

In the case of arbitrary number of junctions the mode matching method 
is used recursively: the method of section 4.2.2 is used for the first two 
junctions, then step by step the previously computed GSM and the GSM for 
the next junction are combined by using methods described in the preceding 
section. This procedure is continued until GSM for the whole structure is 
computed. It has to be emphasized that the submatrices in equations (4.15)- 
(4.18) are derived for the waveguide depicted in figure 4.1. When needed the 
generalized scattering matrices must be reorganized as mentioned at the end 
of section 4.2.2.
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4.3 Mode Matching Method in Three-Dimensional 

Structure

4.3.1 Transversal States

Now the solution for Schrôdinger equation depends on all three spatial coor­
dinates

The method of calculations of the 3D case is the same as in the 2D case 
except that the transversal states are now functions of two coordinates. In 
arbitrary case фп(х,у) in equation (4.43) can not be solved analytically. We 
use finite difference method for solving фп(х,у).

For finding фп(х,у) in equation (4.43), we must solve 2D Schrôdinger equa­

tion

This is done by using the five point finite difference scheme for V2 in (4.44) 
i.e. by using

V72 J. _ Фг,]+1 201J- + ØiJ-1 Фг+l,]
V VíJ — Г9 + Г9 ’ (4.45)

where S is the step length and j and i are the coordinate indexes i.e. the 
discretized coordinates. Solving equation (4.44) as a boundary value problem 
(at the boundaries ф = 0) leads us to an eigenvalue problem

^Фп — £пФт (4.46)

where

Фп — (4.47)

Ф\Imax чЗтах
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and

2 h2
mS2

+ Vl,i h2
2 mS2

h2
2 mS2

h2 2ft2 1 t /
+ '/1,2

ft2
2 mô2 2 mö2

ft2
2 mS2

2ft2 1 Tz ft2
mô2 2 mô2

. (4.48)

ft2
2 mö2

In equation (4.48) 6 is the step size and is the potential energy at point
(U)-

4.3.2 Generalized Scattering Matrix

The GSM is build up with the same algorithm as in the 2D case. First we 
form GSMs for the first two single junctions and combine those to one GSM. 
Then step by step the GSM for the next single junction is formed and it is 
combined with the existing GSM. This is continued until the GSM for the 
whole structure is formed. Overlap-integrals must now be calculated over the 
whole area where the transversal states at opposite sides of junction overlap. 

Thus the integral is two dimensional:

Cmn= ф1{п,х,у)ф2{т,х,у)АП, (4.49)
J n

where Í2 is a set of such points (x, y), where the transversal state n at the 
l.h.s. of the junction and the transversal state m at the r.h.s. of the junctions 
overlap each other. Also the equation for the wavevector is now chanced into 
form

/9777*k(n) = ]]—(S-v-£n), (4.50)

where £ is the total energy of the particle, V is the potential energy and £n 
is the energy of the nth transversal state.
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4.4 Results of Calculations

4.4.1 T-Stub

Figure 4.2 represents the transmission probability in the T-stub as a function 
of energy. The dimensions in the T-stub corresponding to the figure 4.1 are 
ci = c3 = 0 nm, wi = |ги2 — w3 — 10 nm and L\ — L2 = T3 = 10 nm. For 
the effective mass we used a value m* = 0.05mo.

H 0.5

Energy [eV]

Figure 4.2: The total transmission probability from mode 1 (ground state) to any 
transverse mode on the other side of the scatterer. The waveguide is 10 nm wide 
and the size of stub is 10 nm x 10 nm. The zero of the energy axis corresponds 
to ground state energy of the lead: S\ = Тг2тг2/[2m*w\) « 75 meV, m* — 0.05mo- 
The present results agree very well with those obtained in reference [18].
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4.4.2 Resonance

Let us consider a two-dimensional potential structure where a constriction 
is between 200 nm wide leads. The length and width of the constriction are 
altered between 0 and 200 nm. In figure 4.3 the conductance (the relation 

between conductance and transmission coefficient was derived in chapter 2.2) 

is plotted as function of the width and length of the constriction. Clear

Figure 4.3: Above: The constriction is located between 200 nm wide leads. Below: 
The conductance of the constriction as a function of the width (IF) and length (L) 
of the constriction at T = 0 K. The energy of particles is £ — 5 meV and the 
effective mass is m* = 0.067mo.

resonance effects are seen with long constriction, but those totally vanish 
when the constriction become shorter.
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4.4.3 Quantum Point Contact

Our goal was to calculate the conductance of silicon quantum point contact 

(QPC) shown in figure 4.4. Because the channel is in the [110] direction we 
rotate the coordinate system so that z is in the [001] direction, y is along the 
channel, and x is perpendicular to the wire (i.e. ж-axis was rotated in the 
(001) plane by angle of в from [100] towards [010]). Therefore the effective 
masses of silicon was calculated by using в — тг/4 (see section 1.3.4). The

Side View

Top View

JU L______ I_______ I_______ I_______ I_______ I_______
-60 -40 -20 0 20 40 60

Figure 4.4: Structure of the modeled QPC. Dimensions are in nanometers.

calculations were performed by using the 3D mode matching method, which 
was introduced in section 4.3. The calculated conductance at zero tempera­
ture is given in figure 4.5 and at 1.5 К in figure 4.6. Clear conductance steps 
are seen at T = 0 К but at T — 1.5 К the steps are smoother.
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0.004
E [eV]

4.5: Calculated conductance of the QPC in fig. 4.4 at T = OK.

0.0080.002 0.004 0.006
E [eV]

Figure 4.6: Calculated conductance of the QPC in fig. 4.4 at T — 1.5K.



Chapter 5

Lattice Green’s Function Method

5.1 Introduction

The Green’s function method [13, 17, 19] offers an alternative method for 
solving inhomogeneous linear partial differential equations with homogeneous 
or inhomogeneous boundary conditions.

5.2 Single-Particle Green’s Function

The time-independent Schrödinger equation can be written as

№ = £Ф (5.1)

or equivalently
[£l-n\4f = 0, (5.2)

where H is the single-particle Hamiltonian and Í is the total energy of the 
particle. The Hamiltonian operator % is a Hermitian operator and it obeys 
eigenvalue equation

Я|Ф„) =£„!»„), (5.3)
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where all eigenvalues £n are real and eigenfunctions |ФП) (see appendix A for 
more details about the "bracket" notation) form a complete set of states:

Í Е'„1фп)(Фп| (completeness) ^ ^

[ (Ф„|Фт) = ônm (orthonormality).

In the completeness relation Y!n indicates a sum over the discrete eigenstates 
as well as an integration over the continuous part of the spectrum. X denotes 

the identity operator.

The Green’s function operator corresponding to equation (5.2) is defined by

[£Z-U\G{£) =Z, (5.5)

where the Green’s function operator G(<?) fulfills the same boundary condi­
tions as the wave-function Ф in equation (5.2) and it can be written as

G{£) = [£X -П]-1. (5.6)

Because G(£) has singularities at energies Í = £n, we must define

G±(^) = lim G{£±irj). (5.7)
?j->0+

If we furthermore assume that rj is infinitesimal, we can write

G ±{£) = [(£±ir1)Z-'H}-1. (5.8)

Next we want to express the Green’s function by using the eigenvalues and 
the eigenstates of H. The spectral representation of the Green’s function is

G*^) = [(£ ± ¿4)1 - W]-1 = ¿ JîAîA- <5-9)

Equation (5.9) can be verified by using 4 — ^ £„|ФП)(ФП|, 1 = Yln |Фп)(Фп| 
and the following reasoning:

= (¿(£-£„)|Ф„>(Ф„|)(Ё
^ n ' ^ m

|Фщ)(Фт1\
£ - £m /

{£I-n)G{£)
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= ÉÉ(f-f„)|4-„X4v

пт C'
i

|Фщ)(Фщ
s - s 

£

= E 1ф»Хф»1=x-
П

(5.10)

From equation (5.10) one obtains equation (5.9) by substitution £ := £ ±гг/.

The + and — signs at G±(f ) correspond to different boundary conditions 
and are called retarded and advanced Green’s functions [17, 11], respectively.

5.3 Tight-Binding Model

The tight binding model is a numerical model which can be used to find the 
eigenfunctions of one electron Schrödinger equation (5.2). The Hamiltonian 

of an electron is discretized by using the complete set of states |r) formed by

the lattice site vectors r. This is called as the tight-binding Hamiltonian and
it can be written as

ft = 53 lr)£r(r| + 53 k)K,r'(r'|, (5.11)
Г r,r'

where £T is the on-site energy at lattice site r, VTy is the hopping energy 
between lattice sites r and r', and r = (m,n,l) is determined by the site 
indices. By using these site indices, we can write the state kets of the system 
as

|r) = NHIO- (5.12)

The commonly used assumption in the tight-binding model is that only the

nearest neighbor interactions have to be taken into account. Furthermore it 
is convenient to represent the tight-binding Hamiltonian by using the second 
quantization (see appendix B): For each state |r) there exists bosonic site 
annihilation and creation operators ôr and ô£, respectively. By using these
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operators we get

where r' represents nearest neighbors of r.

The Green’s functions for tight-binding Hamiltonian can, in general, be ob­
tained by matrix inversion in the equation (5.8). Furthermore we can form 
the Green’s functions for any r and r' by calculating the matrix elements

G±(r,r',£) = (r|G±(£)|r'). 

It is sufficient to solve only G+(r, r',£) because

(5.14)

G (r>,£) = [G+(r, r',£)]* (5.15)

due to definition of G±(£) i.e. equations (5.8) and (5.9).

For later use, the mixed representation is introduced: The longitudinal lattice 
location is presented by the lattice site index m while the transverse state is 
presented by the transverse mode numbers /л. Therefore matrix elements of 
the operator G can be written as

(5.16)

These elements are also matrices with rank defined by the total number of 
modes.

5.4 Analytic lattice Green’s functions

5.4.1 Finite ID Tight-Binding Chain

Matrix Form of Green’s function

Let us consider a finite one-dimensional tight-binding chain of N sites. In 
this special case the Hamiltonian can be written as

П 71

(5.17)
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where n € [1, N], The matrix form of the Hamiltonian (5.17) is

U =
^3,2 ¿3 ^3,4 (5.18)

Vnun-2 £n-i V)v-i,jv 

Vn,n-\ £n

where only the nonzero elements are shown. The matrix form of the Green’s

function corresponding to the Hamiltonian (5.17) is given by equation (5.8) 
as follows:

G±{£) = [{£ ± irj)I - H]-1 (5.19)
-l

— VnuN-2 £'n- 1 —Vn-1,N
—Vn,n-i £'n

where £'n = Í - £n ± ir].

Solving the tight-binding Hamiltonian is equivalent to solving the Schrôdinger 
equation for a free particle in the hard wall boundaries by using the finite 
difference method. Thus the hopping energies V between adjacent sites and 
the on-site energies £n are chosen so that the continuous and discretized 
problems give the same zero of energies. The values are [20]:

V
2 m*62

(5.20)

(5.21)

where 5 is the grid spacing.
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Analytic Forms of Green’s function

The Green’s function for finite tight-binding chain (of N lattice sites) can 
also be written in analytical form. The analytical Green’s functions between 
the endpoints of the lattice are [20]:

= sin {N9)
11 Fsin[(jV + l)0]

sin(fl)
1N V sin[(A + 1)0] '

The в in equations (5.22)-(5.23) is a function of propagation energy £ and it 
is different for propagating and evanescent modes [20]:

£
Oprop = arccos (—+ 1) (5.24)

Sevan = ¿cosh_1(—+ 1), (5.25)

where the first one is for propagating modes and the latter one is for evanes­

cent modes.

5.4.2 Green’s Function for Semi-Infinite Chain

In the semi-infinite tight-binding lattice, with the lattice sites n — 1,..., oo 
(or equivalently n = -1,..., —oo), the Green’s function cannot be repre­
sented in matrix form due to the infinite size of lattice. The analytical forms 
of the Green’s function in the semi-infinite lattice are [20]:

Gn =
¿e

V (5.26)

ßi\n\0

IIe
d

V
(5.27)

Gnn —
ei\n\e sjn(|n|0)

(5.28)
V sin($)

where в is defined in equations (5.24)-(5.25) and it must be positive for

n — —1,..., —oo.

(5.22)

(5.23)
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5.5 Recursive Green’s Function Method

In the recursive Green’s function method [17, 21, 20] the entire lattice is 

divided into uniform subsections with a constant potential, whose Green’s
functions can be solved exactly. Let us denote the Hamiltonian of the isolated 
sections (i.e. the unperturbed Hamiltonian) by Tío- Furthermore the coupling 
between each pair of isolated sections is taken as perturbation. It is denoted 
by V and defined as [20]

2m* a2 ’
where a is the lattice constant. Thus the total Hamiltonian is

(5.29)

n = nQ + V. (5.30)

Let us further assume that the Green’s functions G° of separate regions are 

known. Then the Green’s function of a system consisting of the connected 
regions can be calculated from Green’s functions G° of individual slices by 
using the Dyson’s equation

G = G° + G°FG, (5.31)

where G is the total Green’s function, G° is the Green’s function of sin­
gle subsections and V is a small perturbation, which describes the nearest 
neighbor hopping between two adjacent sections.

From now on the earlier discussed mixed representation for Green’s function

is used: In the propagation direction each index i,j,... represents transverse 
slice and the transverse slice is represented by its transverse modes p, zv,.... 
Thus matrix G,j denotes Green’s functions from site i to site j and its matrix 
elements

MG ij\v) = (G ij)^ = (n,i\G\u,j) (5.32)

correspond to mode /j at site i and mode v at site j.

Let us now consider the system shown in figure 5.1. The uniform region A 
from site i to site j is connected via the hopping interaction V to uniform
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section В which goes from site к to site l. Green’s functions GA for region 
A must be known exactly but GB for region В can also be calculated from 
Dyson’s equations previous iteration steps.

Figure 5.1: Schematic picture of sections of recursive Green’s function method. 
Sections A and В are connected via hopping interaction V.

Let us now apply the Dyson’s equation. We get

Gu = <*|G|Z)

= <»|G°|0 + (t|G°VG|0 

= (ï|G°|/) + ^(z|G°|m)(m|y|n)(n|G°|Z)

= (i\G°\j)(j\V\k)(k\G°\l)

= GijVjkGkh (5.33)

where perturbation V acts only between sites j and k, and G° are defined 

only in isolated sections. Similarly for G¿¿:

Gü = <*|G|*>
= (*|G°|*) + (t|G°VG|i)

= (z|G°|z) + ^(z|G°|m)(m|y|n)(n|G°|i)

= <»|G°|i> + <«|Go|j>0'|V|fc><fc|G°|i>

= G?, + G¡jV¡tGki. (5.34)

We are interested in G¿¿ and G¿¿ because with those the transmission and 
reflection parameters can be calculated as will be seen later. By taking the 

elements of the Green’s function GA+S of the connected system (superscripts 

A and В denote the Green’s functions of the isolated sections and superscript
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A + В denote the whole system), we get the following system of matrix 
equations

Gá+B = G4^Gâ+B (5.35)
/-ч A+B Gkl

_ Г' Fl i pi В т/ pi А+В— ^kl +'^kkVkj'^jl (5.36)

GfB = Gf¡VjtGfrB. (5.37)

GyB _ (~iA i рАт/ (~iA+B (5.38)
Г-А+В Gki

_ лВт/ pA+B - ^kkVkj^ji (5.39)

G Í+B = Gft + Gf}VjkGi\+B (5.40)

Substitution of equation (5.37) into equation (5.36) and equation (5.40) into 
equation (5.39) gives

Gi,+B = (5.41)

G= [I - (5.42)

Thus the substitution of equation (5.41) into equation (5.35) and the sub­
stitution of equation (5.42) into equation (5.38) gives G(|+s and G^+s, re­

spectively:

Gti+B = G$VJkp - G&VbiGfjVjd-'GZ (5.43)

Gi+B = Gt + Gp^I - G^Gf^-'G^G^. (5.44)

This procedure is continued until each section is included in the total Green’s 
function. In the first iteration В and correspondingly in the last iteration 
A must be perfect semi-infinite leads because they model electron reservoirs
[17]. In other iteration steps A is a finite uniform lead and В is previously 
iterated sections. When the Greens function of the whole system is obtained, 

the transmission and reflection coefficients can be calculated from Gu and 

as will be seen in the next section.
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5.6 Transmission and Reflection Coefficients

The rigorous wave packet analysis of the relation between Green’s functions 

and the scattering matrix is represented in [22]. The transmission coefficient 
from mode ц at lattice site i into mode v at lattice site l is [20]:

= —i21/^sin(fc„a) sin(V)ei(fc"e¿~fc"a0</-dG¿/H (5.45)

and the reflection coefficients from mode ß at lattice site i back to the lattice 
site i into mode v is [20]:

= -\Js\u (k„a)/sin (kßa)el2('k,,+k,1'>ai

*(i2V sm(kßa)(ß\Gu\i>) + Svli). (5.46)

In the above equations kß is the wave vector available for longitudinal motion 

at transverse mode ß and a is the longitudinal distance between the lattice 
points i.e. the longitudinal grid spacing and i = y/—l.

5.7 Results of Calculations

5.7.1 T-Stub

The conductance of the same T-stub as in figure 4.2 was calculated by using 

the Green’s function method as well as the mode matching method. The 

comparison of these methods is represented in figure 5.2. We see that the 
conductance curves are almost identical (note that the zero of the energy in 
figure 5.2 corresponds to a ground state energy S\ « 75meV).
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Green’s function method

Mode matching method 10—* 10

E[eV]

Figure 5.2: The conductance of the T-stub. The shape of the T-stub is shown in 

the inset. The waveguide is w = 10 nm wide and the size of the stub is 10 nm x 
10 nm. The zero of the energy axis corresponds to the ground state energy of the 
lead: £(n = 1) = h2n2n2/(2m*w2) « 75 meV, m* = 0.05mo-



Chapter 6

Single Electron Tunneling

6.1 Introduction

A single electron circuit is based on one or more tunnel junction. The equiv­
alent circuit of a tunnel junction has parallel connected capacitance C and 

resistance fíT. Theoretical studies as well as experimental tests have shown 

that a necessary condition for observing single electron charging effects is

that the tunneling resistance is much higher than the quantum resistance i.e. 
RT > ^ й 25.8Ä.TL This minimum tunnel resistance requirement suppresses 
the quantum mechanical uncertainty of electron location i.e. electrons need 
to be well localized on the islands.

If the junction is small and the insulator between the electrodes is not ex­
tremely thin, the capacitance of the tunnel junction is small and the charging 
energy

£C = ¿ (w)

corresponding to a single electron can be as large as the Boltzmann constant 

times temperature (kBT). Thus the charging energy is not negligible and the

tunneling occurs only if the voltage V over the junction is large enough for 
the charging energy to be compensated by the energy of e x V.
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In nanometer scale systems the motion of electrons can be blocked by the 
charging energy. This phenomenon is called the Coulomb blockade.

О

Figure 6.1: A picture of an island between tunnel junctions and the equivalent 
circuit of the tunnel junction.

The capacitance of the tunnel junction can be calculated from [23]:
eAC =

47Г of
(6.2)

where e is the dielectric constant of the highly resistive oxide layer, A is 
the junction area and d is the thickness of the oxide layer. The number of 
electrons in an island that is electrically isolated from the rest of the circuit, 
is an integer. The charging energy of a system depends on the amount of 
electrons in different parts of the system and on the applied voltages.

Single electronics is described by a model called the Orthodox theory in the 

literature. This theory is based on the following three assumptions [24, 17, 

25, 26]:

1. The electron charging energy must be greater than the thermal energy 
£ch > квТ. This conditions ensures that the electrons are well localized. 
It follows from Eq. 6.1 that to make single electronics observable at 
room temperature the capacitances must as low as 10~18F.
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2. The charge relaxation time and the tunneling time (i.e. the time that 

an electron spends in the barrier) are assumed to be negligible small

in comparison with other time scales (including the time interval be­
tween neighboring tunneling events). Furthermore it is assumed that 
the tunneling and relaxation are independent processes and that after 
tunneling the charge is relaxed before next tunneling event. The tun­
neling and relaxation times are of the order of few femtoseconds and 
few picoseconds, respectively.

3. Coherent quantum processes consisting of several simultaneous tunnel­
ing events ("co-tunneling" see e.g. [26, 17, 9, 27]) are ignored. This 

assumption is valid if the resistances Rt of all the tunnel barriers of 

the system is much higher than the quantum unit resistance Rt > 

This latter relation is of principal importance for single electronics as a 
whole because it also ensures that quantum fluctuations are negligible.

6.2 Elemental Single Electron Devices

6.2.1 Single Electron Box

Let us consider a single electron box (see figure 6.2), which consists of a 

small metallic island coupled via tunnel junction to an electrode and via 

the capacitor Cq to a gate voltage source. The capacitance of the tunnel 
junction is denoted by CV and the resistance by Rt- If the gate voltage is 
zero, then the number of excess electrons in the island is zero at the lowest 
energy state of the system i.e. the system is charge neutral. Therefore this 
state is usually taken to be the reference state. For nonzero gate voltages the 
number of excess electrons in the island can change in discrete steps. This is 
a consequence of tunneling of electrons trough the junction.

The total excess charge in the box can be split into two parts Ql and Qr. 
Here Ql is the charge related to capacitance Cj of tunnel junction whereas
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Figure 6.2: Single electron box

Qr is the charge related to the capacitance CG of the gate. Thus we can write 
—ne = Ql — Qr- According to the Kirchoff’s law VG = Ql/Cj — Qr/Cg. 

Furthermore the charging energy is Q2l/2Cj + Q2R/2CG. By using —ne = 
Ql — Qr the charging energy can be written as [26, 9]:

£ch(n,QG)= (Пе~с^-’ (б-3)

where Ce — Cj + CG and QG = CGVG- On the average the number of excess 
electrons in the island at the thermal equilibrium is given by [28]:

™ hMg)
< n >= 2_v ne квТ

n=—oo
E e ‘»T (6.4)

In figure 6.3 the charge of the electron box of circuit in figure 6.2 is plotted 
as a function of the gate voltage. All the following single electron circuit 
simulations were carried out by using a software called SIMON [29].

6.2.2 Single Electron Transistor

In the equivalent circuit of a single electron transistor (SET) an island is 
coupled via tunnel junctions to the source and drain and it is also capacitively 

coupled to the gate voltage VG (see figure 6.4). The gate capacitor CG is 

assumed to be ideal i.e. it has infinite tunnel resistance.
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Figure 6.3: The charge of the single electron box as function of gate voltage at 
T = OK. Note that n — -Qisiand/e.

Let us denote the voltages of the left and the right tunnel junctions and 
the gate by VL, VR and VG, respectively, and furthermore let V0 denote the 
voltage at the island (see figure 6.4). An additional charge Qg is produced 
to the island by the gate voltage:

Qg = Cg(Vg-V0). (6.5)

Thus the charge in the island obeys equation

Qr — Ql — Qg — ~ne + Qpi (6.6)

where Qp represents both the unintentional background polarization charge 

that usually exists in real structures due to the work-function differences 
and the random charges trapped near the junctions. The voltages across the 
tunnel junctions are [27]

VL-V0 = ~[{Cg + Cr)Vl - CGVG - CrVr + ne - Qp\ (6.7)
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VL
o-

^L> R rx

VD

Cr> ^ТД

1 'cI I^G

OVr

Figure 6.4: Single electron transistor

Vo-V„ = 4-[Ctti + CaVa - (CL + Сс)У„ - ne + Q„], (6.8)
V£

where the equivalent capacitance Cs is a sum of all the capacitances:

Cz = CL + CR + CG. (6.9)

Furthermore the energy change of the system for tunnel events across left 
and right junctions are [27]

A5± = 71(Cg + CR)VL - CGVG - CRVR + ne- Qp}) (6.10) 
Cs

A£± = ± [CLVL + CGVG - (CL + CG)VR - ne + Qp\), (6.11)

where the superscripts + and - correspond to forward and backward tunnel­

ing, respectively. At zero temperature only events that decrease the energy

of the system are allowed i.e. A<?£fi < 0 (at higher temperatures thermal 
fluctuations in energy of the order of kRT weaken this condition). By setting 
AS^R equal to zero we obtain the linear equations for the boundaries of the 
stable regions i.e. the coulomb blockades, where no current flows.

Let us assume that Cl = CR = C,T = OK and that the gate voltage is zero 
and furthermore that the applied drain source voltage is below the threshold 
of tunneling Vt = е/2Ст. (see Eqs. (6.10) and (6.11)). Thus tunneling cannot
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occur and no current flows due to Coulomb blockade which is a direct result 
of the additional Coulomb energy e2/(2Ce) that has to be gained by an 

electron in order to tunnel into or out of the island.

Figure 6.5: Energyband diagram of a double junction system. In the left figure 
all applied voltages are set to zero and no current flows through the SET. In the 
right figure electrons can tunnel into the island and out of it because the excited 
state of the island due to the Coulomb charging lies between the Fermi energies of 

the left and right leads.

When all applied voltages are set to zero (in analogy to the intrinsic semi­
conductors) one half of the Coulomb gap e2/Cs, which has opened at the 
Fermi energy of the metal island, is below the original Fermi energy and one 
half is above it (see figure 6.5). Therefore there are no states available in the 

island for electrons to tunnel into from source or drain. Furthermore there 

is no empty states in the leads for electrons in the island to tunnel.

On the other hand if the applied bias voltage is over the threshold voltage an 
electron can tunnel from the source into the island raising the Fermi energy 
of the dot by e2/Cs and preventing other electrons to tunnel until the applied 
bias voltage is over 3e/(2C) (cf. Eqs. (6.10) and (6.11)) or an electron is 
tunneled from island to the drain.

The gate voltage allows us to tune the device from one constant charge regime 
to another by adding one electron at the time into the island.

We can eliminate the offset charge Qp by defining a new voltage V¿ = Vg + 

Qp/Cg, because Qp can be treated as an effective offset of the gate voltage.
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In figure 6.6 the drain-source current and the charge of the single electron 
transistor in figure 6.4 is plotted as function of the gate voltage. This simu­
lation was done by using SIMON.

о —

Vr [mV]

Figure 6.6: The drain-source current (the left vertical axis) and the charge of a 
metallic island (the right vertical axis) as a function of the gate voltage in SET 
at T — OK. Rt,d = Rt,s - 1.0 • 105fi, CD = Cs = CG = 5.0 • 10"17F and 
Vds = 0.5mV.

6.3 Transfer Hamiltonian Method

6.3.1 Single Junction

In the transfer Hamiltonian method the tunneling barrier is treated as a per­
turbation. The current can be calculated from the transfer rates of electrons 
which are obtained by using the time independent perturbation theory.

In the tunneling Hamiltonian approach the Hamiltonian operator is divided 
into three parts. On the left and right leads we have the unperturbed Hamil­
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tonians Hl and Hr, with known eigenvalues and eigenstates i.e. Hl,r^l,r = 
£l,r^l,r- The total Hamiltonian is given by

H = Hl + Ht + 'Hr, (6.12)

where Hr is the tunneling Hamiltonian. Let us now write these operators 
in the second quantized form by using the Fermionic annihilation and cre­
ation operators (see appendix B). The unperturbed Hamiltonians and the 
tunneling Hamiltonian in the second quantization form are

Ho = Hl+hr = y, + E £„>!,>« (6.13)
кд кд

Ht = 53 ^kikflöj^öicjr, + 53 ^â^âk«, (6-14)
к^кд кх,кд

where £^ is the energy of corresponding electronic state k, and Tkk- is the 
transmission probability between states к and k'. In equations (6.13) and
(6.14) the product of the creation (âj^ R) and the annihilation (ôkL „) oper­

ators represents the occupation or the number operator

4м=а^,д<д. (6.15)

For fermions the values of the number operators can only be zero or one. The 
expectation value of number operator gives the Fermi-Dirac distribution.

6.3.2 Hamiltonian for SET

The Hamiltonian operator for the whole single electron transistor (see figure 

6.4) is given by

H = H0 + Ht — Hl + Hr + Hj + Нсь + Ht, (6.16)

where the Hamiltonians are [30, 31, 32]:

= 53 ^k,n^L,k,n^L,k,n
k,n

%R = 53 £k,n^R,k,n^R,k,n
k,n

(6.17)

(6.18)
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%c/t

Пт

У S1 c1 c°q,ni'q,nLq,n

q,n

-(TV - Nef2 (Cl + Cr + Cg)

E E rfcr;X,k,À,n + E E T¡>n¿í>rA,?v
r=L,R k,q,n r—L,R k,q,n

(6.19)

(6.20) 

(6.21)

Above and describe the noninteracting electrons in the left
and right leads and in the island, respectively. Furthermore the index n = 
1,..., TV (TV 1 for metallic island) is the transverse channel index including 
the spin degeneracy and the wavevectors к and q numerate the eigenstates 
of the electrons within one channel. In HCh, which describes the Coulomb 

interaction of the electrons in the island, TV denotes the excess electron num­

ber operator and eNc represents the charge induced by the applied gate and 

transport voltages: Nc = {ClYl + C rVr+CgVg) / £■ Thus Nc is the classical 
number of excess electrons in the SET and furthermore it is the charge that 
minimizes the electrostatic energy. The matrix elements in the tunneling 
Hamiltonian Hr are assumed to be constants [9, 30, 27] and are related to 
the tunneling conductance of the junctions as follows

1 0«7t
s- = -¡-KMo\r\\ (6.22)
H,T,r П

where TVr0 and TV/0 are the density of states functions at the Fermi level in 

leads and island, respectively, and r = L,R.

6.4 Transition Rate

Let us denote the energy change of the system for tunneling events across the 
junction r (= L, R) by A£* as before (see equations (6.10)-(6.11)), where ± 
signs refers to the forward and reverse tunneling, respectively. The tunneling 
rate can be written by using the Fermi golden rule as follows:

9-r
гдл^) = TY. Kr„k,l2/to)[i - №/))№ -Sj- лг?), (6.23)

hf
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where г and f represents the initial and final states, respectively. Further­
more the argument of the ¿-function includes the total energy change caused 
by the single electron tunneling. The usual approximation is that the varia­
tion of the tunnel transmission coefficient is assumed to be negligible. Thus 
ITk. k/|2 = |Tr|2 can be taken outside of the summation in equation (6.23).

Next we want to convert the sums over momentum in equation (6.23) to 

integrals over energy. In a small energy interval d£ the number of electron 

states is given by N(£)d£. Thus the transition rate can be written as
9tt foo rooГГ(Д£±) - —ITr\2 J£' J£ fNi(£t)Nf(£f)

x/(£)[ 1 - /(£/)]<$(£,■ -£f- A£±)d£fd£i, (6.24)

where £c¿ is the conduction band edge of the side where electron resides 
initially and £cj is the conduction band edge of the side the electron is tun­
neling to, furthermore iV¿(£¿) and N¡{£¡) are the density of states functions 
for the initial and final sides, respectively. The density of states functions can 
be taken as constants because the main contribution of the integral comes 
from narrow energy range around the Fermi energies which is defined by the 

product of the two Fermi-Dirac distribution functions. After integrating the

¿-function the transition rate becomes
9tr roo

ГГ(Д5±) = —ITr\2NiNf / /(£)[! - f(£ - A£±)]d£, (6.25)
П J£™

where £™ is the bigger of the two conduction band minima £Ci¿ and £cj. For 
metallic tunnel junction £p >> £c- Thus the integral in equation (6.25) can 
be approximated as follows:

/
OO ГОО

/(£)[1 - f(£ - A£)]d£ = /
-oo J —OO

f(£)-f(£-A£)
1 - eA£/(kBT)

kBT
1 _ ед£/(kBT)

In
1 + e

£-£pkRT A£

T + e
£-A£

kDT-JA A£
1 — еквт

(6.26)

By using the above result and the expression of the tunneling resistance 

(equation (6.22)) we obtain

Гг(Д^) =
A£±

-A£JTe2f?x,r(e квТ — 1)
(6.27)
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At low temperatures |Д£^| >> /cßT and the transition rates are reduced to

Í Гг(Д^) = for Д£± < О
\ Гг(Д£±) = 0 for Д£± > 0.

6.5 Master Equation Approach

6.5.1 Single Island

Let us assume that the tunneling rates between the left lead and the island 
(F¿) and between the right lead and the island (Гд) (+ signs correspond to 
the electron tunneling into an island) are known (see figure 6.4). Further­
more, let p(n, t) represent the probability to find the island in a state n at 
time t. Hence the Master equation can be written as

| p(n,t) = -Fi(n) + rz(n) + ri(n) + ri(n)]p(n,t)

+FÍ (n -!) + гя(п - !)Mn - M)

+[Г1(п + 1) + Гд(п + 1)]р(п + М). (6.29)

The first row on the right hand side of the equation (6.29) corresponds to 
the transitions from the state n to the state n ± 1. It represents processes 
which remove the system away from the state n and has therefore negative 
sign. The second row of (6.29) corresponds to a transition from the state 
n — 1 to the state n and the last row a transition from the state n + 1 to the 
state n. These rows represent processes which bring the system to the state 
n and hence have positive signs.

Current trough the tunnel junction can now be calculated using the known 

values of the transition rates and probabilities. The current is obtained by 

summing over all the possible states:

Ib,RÍt) = -eJ2p{n,t)[rl R{n) - Гд д(п)]. (6.30)
П

When the applied voltages are direct-current voltages only the stationary 
solution (i.e. equation (6.29) is set equal to zero) of master equation is 

needed and / = II — Ir-
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6.5.2 System of Tunneling Junctions

The master equation approach of the previous section can easily be extended 
to the case of M islands. Let p(ni, n2, ■ ■ ■, Пм, t) denote the normalized 
probability to find the system in a state, where island i has an occupancy n¿. 
Then the master equation for the system can be written as follows [33]:

dt
Y rt(ni- 1 )p(n1,...,nj

j=l,M

+Г,- (nx,..., rij + l)p(ni, +

-Г+ K,..., nj)p(nb ..., njt..., t)

-Г■(n1,...,ni)p(ni,...,nJ-,...,i) . (6.31)

In the above equation the tunneling rates are obtained from (6.27) by setting
A£ as a change in the free energy during a corresponding tunneling event.

6.6 Monte Carlo Method

Numerical methods that involve sampling of random numbers are called 
Monte Carlo methods (see e.g. [34, 35, 36]). These simulation methods 
are common in engineering. In the following Monte Carlo (MC) method is 

used in the simulations of single electron circuits [27, 37, 38, 24]. The MC 

methods are very effective in simulations of single electron tunneling effects

because of the strong quantum confinement of electrons in the islands. This 
allows the tunneling of electrons to be modeled accurately as discrete events.

The probability that a tunneling event occurs exactly at the time t is obtained 
from the Poisson distribution

(6.32)

where Г is the transition rate (see equation(6.27)). Thus the times t of the 
tunneling events are obtained from evenly distributed random numbers r by
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taking the inverse of distribution function (6.32) as follows:

t =
ln(r)
~Y~ (6.33)

where 0 < r < 1.

The schematic flow chart of the MC method is represented in figure 6.7. The 
algorithm of the method consists of the following steps [27]:

1. Form the capacitance matrix C of the circuit. Сц represent the total 

capacitance of conductor i and Cÿ is the negative capacitance between 

conductors i and j, (i,j G [1, N]).

2. Calculate for each possible tunnel event:

• Free energy change (for constant temperature)
AF = Ff-Fi = Uf-Ui + Wi- Wf, where 

W = Esources f F and
U = I Eili Ef=i (Cd1 = (C-1)«).

• Tunneling rate

Г(Д^) = e2«r(eiF/føT)_ i)

3. Calculate the exit tunnel time, íei¿t = out of the current state
k. (ri G (0,1] is evenly distributed random number)

4. Let r2 be an evenly distributed random number and r2 G [0, E¿ F¿fc].
Select the winning event n that actually happens. The condition for n 
to be the winning event is E”E]1 < r2 < E"=i ^ik-

5. Update node charges
Qi = Ef=i CijVj, where Vj is the potential of node j.

6. If the ending conditions (time, accuracy and event limits) are reached, 

terminate calculations. Otherwise go back to 2.



6.7 Higher-Order Effects 66

The number of events must be large enough to ensure that equilibrium is 
reached. Let us assume that there is very large capacitance Cmax in the 
circuit and that the applied voltage over the capacitance is altered with 
small discrete steps AV. Thus the capacitor has to be charged by CmaxAV, 
which means that at least CmaxAV/e tunneling events have to be simulated. 

In reality more events must be taken into simulations because events will 

happen elsewhere in the circuit too.

6.7 Higher-Order Effects

The orthodox theory presented previously in this chapter neglects many sec­
ond order effects. In the following we briefly list the most prominent higher 
order effects because for a complete single electron device analysis some of 
these effects can be important.

6.7.1 Co Tunneling

The transition rate in section 6.4 was derived from the first order perturbation 
theory. In the Coulomb blockade regime, where the first order transition 
rate is low (or even zero at zero temperature), the higher order tunneling (со 
tunneling, [27, 39, 9, 26]) processes may become important, especially when 
the tunnel resistance is small and close to the fundamental resistance e2//i.

Let us consider a system of two tunnel junctions. A second-order tunneling is 
possible for bias voltages Vf, below the Coulomb blockade because the change 
in the free energy for a tunneling process trough the whole two junction 

system is negative, although the change in the free energy for independent

tunneling in either tunneling junctions is positive. The change in the free 
energy is —eVb, because the electron is transferred trough the whole bias 
voltage drop.
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Time limit? 
Accuracy limit?

Event limit?

Parse the circuit.

Choose the winning event 
and update charges 
according to the event.

Build capacitance matrix and prepare 
for computation of node potentials 
and charges and free energy.

For each possible tunnel event:
- compute free energy change
- compute tunnel rate. 
Calculate the exit time.

Figure 6.7: Flow chart of the Monte Carlo method.
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The second-order со tunneling rate is given by [26]:

r<2> = ^|T1|2|T2|2 
n +

1

AF2
(6.34)

In practice for a system of N junctions in series the Nth order со tunneling 
can be important in suitable circumstances. The rate for this tunneling event 
is [27]:

p(N) _ —(T\ -___j [ у TT _________ í____
h V ¡¿ 2тгe2RTi > J v{¿íkN) ¿i AFk + E?=i wa-i

x ¿(AFív + IK1 -/(^¿))dw,

+ ^21

(6.35)
i=l i—1

where are the intermediate energy levels to and from which the electrons 
tunnel, p(fci,..., км) denotes all permutations of numbers ki,... ,kN and 
AFX = Fx — F0. Furthermore F0 is the energy level from which iVth order 
со tunneling process starts.

6.7.2 Electro-Magnetic Environment

The orthodox theory assumes that charges relax instantaneously i.e. the 

charge imbalance caused by the tunneled electron reaches immediately the 

equilibrium configuration. This would be a good assumption for strictly ca­
pacitive circuits, but that is not the case if also resistors and/or inductors are 
present. There are two theories which take the electro-magnetic environment 
into account:

The Quantum Langvevin Theory couples the thermal noise of normal 
resistors to charge fluctuations at tunnel junctions. The effective tunnel rate 
under the influence of electro-magnetic environment is obtained by convolv­
ing the transition rate (6.27) with the probability distribution of the charge 
fluctuations [27]:

/
00 1 g2

W + i) h , a e-*frd<,
-oo y Z7T *C Q
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zRtCsJï-k < q2 >
-f T Q-q/OO

-oo 1

where

< <f >=/"

_ ee(e/2±Q+q)/(CkBT)

^coth(^)

e 2<52>dç,

-do».

(6.36)

(6.37)
-oo (C^1 + C-1 - L£u;2)2 + R\^

The subscript E denotes the electro-magnetic environment that is connected 

to tunnel junction.

The Phase Correlation Theory models the tunnel junction capacitance 
and its electro-magnetic environment with infinite number of harmonic oscil­
lators and accounts for the tunneling as a perturbation. The tunneling rate 
in the phase correlation theory is [27, 26, 9]:

eroo £ 1 /’c

r(AF) = VRt Loo 1 - e-f/(^T) h L
X e

е/(квт)

-^^du-i(S+AF)t/ndtde, ^63g)

where Zt{uj) is the total impedance seen by the tunneling electron.

6.7.3 Alternating Density of States

In the derivation of tunneling rate it was assumed that the density of states 
function is constant N(E) = iV0, where N0 denotes the density of states at 
the Fermi level. In materials with a bandgap (such as semiconductors and 
superconductors) more accurate analysis requires that the energy dependence 
of DOS is taken into account. The density of states functions for different 
material types are [27]:

^metal(^)

-^semic.(^) —

£>£c

£ < £v

(6.39)

(6.40)
0 £v < £ < Ec
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Í Np , |g~g4— \£-£F\ > A
/Vsuperc.(i) = { '/(£_£f) д (6.41)

I 0 |£ - £f| < Д.

In the above equations A is the half width of the superconducting gap [39].

In metals the Fermi energy is several eVs and approximately independent 

of temperature. Furthermore £F > kBT is a good approximation also at 
room temperature. Thus the Fermi-Dirac distribution function is close to 
a stepfunction also at room temperature and only electrons in the narrow 
energy range near the Fermi energy can be excited to higher states. Therefore 
the density of states in metals can be considered as constant: N = N(£F).

6.7.4 Superconducting Junctions

In a small temperature range near the critical temperature Tc, which is mate­

rial constant, the electrical resistance of various metals completely vanish and 

the material become superconductor. The superconductivity causes several 
tunneling effects:

Quasiparticle Tunneling differ from the non-superconducting tunneling in 
that the density of states functions 6.41 must be used for the superconducting 
electrode(s).

Parity Effect [39, 27]takes place in tunnel junctions between normal and 
superconducting electrodes. The superconductor is in its ground state when 
all electrons near Fermi level are paired. If now a quasiparticle tunnels from 

normally conducting side into the superconductor, the state of the supercon­

ductor becomes excited with one extra electron. This unpaired electron has
increased probability to tunnel out from the superconductor.

Andreev Reflections is a coherent second order process and it takes place 
in a tunnel junction between a normal- and superconductor [39, 27]. An 
electron coming from the normal side pulls another electron with it forming 

a Cooper pair [40, 39] into the superconductor.
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Coherent Cooper Pair Tunneling [9, 27] is a process that is free of dis­

sipation. The transferred charge is 2e.

Incoherent Cooper Pair Tunneling is an event where the phase-coherence 
is destroyed e.g. by an external impedance Z(oj). The transition rate can 
be derived by using perturbation theory, but it has to be noted that the 
transferred charge is 2e instead of e. The tunneling rate is given by [9, 39]:

= -( Oh V
h

2h^RTA2e2 )

x if
hi-

OO 2e± f°

e л J-
—OO

(6.42)

where AF2e is the free energy change of the tunneling process of two electrons.

6.7.5 Self-Heating

The free energy difference which is released in the tunneling process must be 
dissipated for each tunnel event in either of the electrodes of the tunneling 
junction. Thus the tunneling electron thermalizes via the electron-electron 
interaction which is so fast process in metals that after the tunneling electron 
becomes instantly in thermal equilibrium. The self-heating induced by this 
fast relaxation process can cause different electron temperatures on differ­
ent sides of the tunnel junction. This has to be taken into account in the 

tunneling rate [41, 27]:

1 r°°Г (AF) = —- / f(£, Ti)(l - - Д/, 7»)d£, (6.43)
eziLT J—oo

where and T¡ are temperatures of initial and final sides of the tunnel 
junction, respectively.

Electrons can also exchange energy with the lattice by emitting or absorbing 
phonons. However the electron phonon interaction is weak at low tempera­
tures.
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6.7.6 Polarization of Electrodes

The potential barrier is modified by the electrons that tunnel trough it be­
cause the tunneling charges polarize the electrodes. The polarization of the 
electrodes exert a force back on the electron. Effect of this force (or electric 
field) can be expressed by a potential which is a correction to the potential 
of the potential barrier. This effect can be taken into account by the image 

charge method [27, 42].

6.8 Array of Tunnel Junctions

By connecting several tunnel junctions in series and in parallel one obtains 
some advantages compared to single SET. The tunnel junction arrays are 
more tolerant to background charges and in the arrays it is easier to avoid 
stray capacitances and decouple the system from environment. Furthermore 
many of the single electron effects are more pronounced in tunnel junction 
arrays.

6.8.1 One-Dimensional Array

Let us consider an ID array of N (N ;§> 1) tunneling junctions. Let us 
furthermore, for simplicity, assume that the array is homogeneous i.e. the 
junctions are identical each having a capacitance C and a tunnel resistance 
RT. The self capacitance of each island is Co- An array with N — 11 
tunnel junctions (10 islands) is plotted in figure 6.8. By assuming that other 
than the nearest neighbors coupling capacitances are negligible, the coupling 
capacitances can be written in a matrix form as follows:

Ca

C0 for i = j 

< C for i = j ± 1 

0 for \i — j\ > 1.
(6.44)



6.8 Array of Tunnel Junctions 73

C,RT

X
TTTTTTTTTTr -x

Figure 6.8: Schematic picture of ID array of tunneling junctions with eleven 
equivalent tunneling junctions and ten islands.

Let us now assume that an electron is put into the jth island. Thus a 
potential (¡)j = — e/Ce// will be generated. Here the effective capacitance 
is given by Ceff = Co + 2C/j, where Ch is the total capacitance of the half 
infinite array. The same capacitance is also seen from the next island so it 
can be written as

c* = c-1 + (cUcTï = ^c° + 4CC°-co (6.45)

Thereby the effective capacitance is given by

Ceff = s]c% + AC CQ. (6.46)

At the arbitrary island i the potential caused by the charged island j is 
[43, 26]:

where

Фг

a — In

£_e-a|i-j'l
Ceff

Ceff + Co

(6.47)

(6.48)
'Ceff - Cq,

The potential decays exponentially on both sides of island j. If the electron

tunnels from the island j to j±l, also the potential distribution will move one 
step to right or left (corresponding to ±) keeping its from. This potential 
distribution is called a soliton. The range of the soliton is approximately 
2a-1 junctions. Similarly, if an electron is removed from the jith island, the 
result is an anti-soliton, which has the same form but an opposite sign. The 
energy of a soliton is S$ = e2/(2Сец).
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If large enough voltage is applied to the array, a single electron will eventually 

tunnel into the first island i.e. a soliton is injected into the array. The 

threshold voltage for the soliton to be injected is given by [26]:

Vt = (1 ') = (6.49)
2Ce//V ' Ceff + Co

When the applied bias exceeds Vt, solitons are injected into the array. Since 
they repeal each other, they start to move and create a current. If the other 
end of the array is biased with a voltage equal in magnitude but opposite in 
sign, then anti-solitons are injected into one end of the array and solitons into 
the other end of the array. Thus, when a soliton and an anti-soliton encounter 
at the middle of the array they annihilate. In the case of symmetric bias, the 

threshold voltage for the current is

Vs = 2Vt = 2e _ 2

Ceff + Co ~ VCC^’
(6.50)

where the last form holds if the self capacitance is much smaller than the 
capacitances of the tunnel junctions i.e. if Co <C C.

I-V curve of the ID array with N = 11 tunnel junctions is presented in figure 
6.9.

6.8.2 Two-Dimensional Array

A parallel coupling of ID tunneling junction arrays forms a 2D tunnel junc­

tion array. 2D arrays are more reliable than ID arrays because chain of arrays 
is only as good as the weakest link in it. Thus if one junction (and conse­
quently the whole chain) breaks the other chains take over and the current 
continues to flow.

The length of the two-dimensional array determines the threshold voltage Vt 
and the width of the array determines its resistance R. Thus resistance and 
threshold voltage of 2D tunnel junction arrays can be optimized separately.
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Figure 6.9: I-V curve of array of N = 11 tunnel junctions at T — OK. All tunnel 
junctions are identical and also self capacitances are identical with each other. 
RT = 1.0 • 106fl, C = 1.0 ■ 10-16F and C0 = 1.0 ■ 1(T18F.

6.8.3 Applications of Arrays.

One promising future application of tunnel junction arrays is the single elec­
tron memory circuit. An interesting possibility is to use single electron de­
vices as a memory cells in circuits where the conventional CMOS technology 
is used in the peripheral circuit [44].

The conditions for a good single electron memory cell are [45, 46]:

• The memory cell must operate at room temperature or at least at the 
liquid nitrogen temperature (77 K).

• The bit-error rate must be reasonable.

• Robustness to random background charge.

• Low power consumption.
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• Manufacturability.

6.9 Multigate Single Electron Transistor

A multigate SET can be considered as a realization of neuro SET. These float­

ing gate structures can be adapted to common neural network architectures 

e.g. to cellular neural network (CNN) architecture. Furthermore multigate 
single electron transistor may provide means to overcame the degradation of 
switching speed of logic application of multi SET circuits [47, 48] and fur­
thermore the use of multigate SETs reduce the number of transistors in some 
logic applications [49].

The equivalent circuit of a multigate single electron transistor is represented 
in figure 6.10. The drain-source current of the metallic two-gate SET is 
plotted in figure 6.12 at T — 0 К and in figure 6.13 at T — 4.2 К . The 
other gate is used as a control gate with a constant voltage.

Source

' 1 Gates 1 w 1

Figure 6.10: Equivalent circuit of multigate single electron transistor. Two gates 
are drawn.

6.10 Multigate SET XOR

There has been several experimental and theoretical studies of logic circuits 
based on single electron transistors [48, 50, 49, 47]. One possible exclusive 
OR (XOR) gate, which is based on multigate SET, is represented in figure
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6.11. It has two input nodes i.e. the gates of the SET and the output node 
is the source of the SET. The switching characteristics of such a XOR gate 

is depicted in figure 6.14. It is seen that the drain-source current flows as a 

XOR function of the two gate voltages.

SourceDrain
Output

Gates

Figure 6.11: Equivalent circuit of a single electron transistor exclusive OR gate.
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Figure 6.12: The drain-source current and the charge of the island of a two-gate 
SET as a function of the gate voltage at T = 0 K. The voltage of the other gate is 
constant V = 65 mV and the drain-source voltage is V = 10 mV. The tunneling 
and gate capacitances are C — 1.0 x 10“18 F and the tunneling resistances are 
R = 1.0 x 106 a

Figure 6.13: The drain-source current and the charge of the island of a two-gate 
SET as a function of the gate voltage at T = 4.2 K. Parameters are the same as 

in figure 6.12.
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Figure 6.14: The switching characteristics of XOR gate at T — 40 K. The drain- 
source voltage is Vos — Ю mV, the tunneling junctions have parameters C = 10-18 

F and Rt = 105 Í2 and the gate capacitances are Cqi — Cq2 — 2x 10-18 F.



Chapter 7

Summary and Conclusions

In the first part of this master’s thesis we have presented methods for cal­
culation of transmission in channels where the quantum confinement is one- 
or two-dimensional. Also the relation between the transmission and con­

ductance at zero and non-zero temperatures has been discussed within the 

Landauer-Biittiker formalism. We have furthermore calculated the conduc­
tances of the 2D and 3D channels in various geometries.

The latter part of this master’s thesis deals with the Coulomb blockade and 
the Coulomb oscillations phenomena. We have also simulated selected sin­
gle electron transistor based circuits by using the single electron device and 

circuit simulator called SIMON.

The step like behavior of conductance was seen in the analyzed rectangular 
constriction and in the silicon quantum point contact. The calculated con­
ductances of the silicon QPC agree qualitatively with the measured results 

(see e.g. reference [51]).

The analysis of the constriction in a two-dimensional waveguide showed also
clear resonance effects in each conductance step.

We have analyzed the operation of a SET as well as the operation of a 
multi-gate SET. Furthermore the multi-gate SET based exclusive-OR device 
was simulated as an example of logic application of devices that utilize the
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Coulomb blockade and Coulomb oscillation phenomena. We also showed that 

with a proper choice of the capacitance and resistance values the Coulomb 

blockade behavior can also be detected at nonzero temperatures. The func­
tionality of the XOR SET was simulated at 4OK.

We conclude that the SET circuits are a promising area of future logic cir­
cuits. The neuro-SET based neural networks might offer a fast and power 
efficient tool for signal processing. Furthermore remarkably high storage den­
sities at low power consumption may be achieved with a SET based memory 
circuits.



Appendix A

Dirac’s Bracket Notation

A.l Definition

Let us consider two state functions ф(г) and ф(т). The representation inde­
pendent notation called Dirac’s bracket notation gives a monogram to the 
integral of the product of the two state functions as follows [52]:

/
OO

<(r)ø(r)dr. (A.l)
-OO

The (ф\ is called as a bra vector and the |t/>) is called as a ket vector. Their 

product (фЩ forms a bra-ket. If ф and ф are such that

[ гр*(т)ф(т)Аг < oo (A.2)
J —OO

and c is any complex number, the following rules for integral operator (A.l) 
holds [52]:

(ф\сф) = с(ф\ф) (А.З)

(сф\ф) = с*(ф\ф) (А.4)

ш* = (ф\ф) (А.5)

{ф + ф\ = {ф\ + {ф\ (А.б)
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/(V’i(r) + V>2(r))*(<Mr) + <Mr))dr
= (V’l +'02^1 +Ф2) (A-7)

= (V’il^i) + ("øl IØ2) + (V'al^i) +

A.2 r and p Representations

The eigenstates of position operator f are

VVo(r) = 5(r0-r), (A.8)

where r0 is continuous 3D variable. The states corresponding to r0 fulfill

(r|r') = 0(r — r') (A.9)

IV) = J ø(r)|r)dr, (A.10)

where
V(r) = (r|V). (A.ll)

Similarly the eigenfunctions of momentum operator p are

Mr) = (¿),,2=‘Pr/‘- (A'12>

where p is continuous 3D variable and states corresponding to it obey

(P|P') =¿(p-p') (A.13)

V(p) = (p|V), (A.14)

where
№) = /í>(p)|p)dp (A.15)

and V>(p) is the Fourier transformation of wavefunction V(p) corresponding 
to state \,ф).



Appendix В

Second Quantization

B.l Occupation Number Formalism

The purpose of second quantization formalism [53, 54, 55] is to find simpli­

fied and systemized representation for the state vectors. In this occupation 
number representation one works with the state vectors which specify the 
single particle states which are occupied and uses creation and annihilation 
operators to change the occupancy of single particle states by one.

Let us begin by denoting the orthonormal basis of single particle states in 
lexical order as follows |a), \ß), ¡7), |5).... Next we construct the states of 
A-fermion system by using single particle states and occupation number 
formalism. The state of the N-particle system is specified by determining 
the N occupied single particle states: Ф = |..., v,...).

B.2 Ladder Operators for Fermions

Ladder operators are introduced for characterizing the relationship between 
different occupation number states. The annihilation operator äß annihilates 
or removes the single particle state |p) from occupied states. On the contrary,
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the creation operator âj, creates or adds the single particle state |ц) into 

occupied states. Thereby the creation and annihilation operators are each 

others adjoint operators.

The formal definition of annihilation and creation operators for fermions are 
[53]:

= (-IM- .., А,/г, i/,...) (В.1)

«íl •••> = 0 (В.2)

• ■, А, и,...) (В.З)

åp]... ,\,v,...} 0, (В-4)

where nß is the number of occupied single particle states that lexically precede 

|/r) in the adjacent |..., Л, ц, и,...). The anticommutation rules for and 
are:

{äßä„} = 0 (B.5)

= 0 (B.6)

{à А) = (В-7)

These rules can be verified as follows:
Rule (B.5):

{à^àv}\..., Ц, ",■■■) =
(_l)ni.(_l)n*-1|...) + (_1)п,(_1)"д|...) = Q.

Rule (В.6):

• - •) =

(_l)n,(-l)n„| + (-1)"м(-1)п,+1| . . . , /i, I/, . . .) = 0.
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Rule (В.7) (¿¿ ф и)\

(_1)",(-1)п„| .., Vj...) + = О

{«X }!•••) =
(-i)^(-i)n"|...) + o = i-!•••)

{â„ât }| =
(_l)n,(_l)n„+l| + (_l)n,(_l)n,|_.., . . .) = 0

Other combinations of rule (В.7) are obvious.

B.3 Number Operator

An operator which operates in N-fermion system can be represented as a 
sum of single-particle operators that operate to certain single-particle state. 
Therefore an operator Ö can be written as

0 = 2>„ (B.8)
ß

where operates to single particle state |/r). These operators can be written 
in basis |/r) as

(B-9)
Ct

Now operating with Ö to multi-particle state leads us to sum of operations 
with single particle state operator о as follows:

0\p, =

IOpfi, v,..., ш) + |¿¿, o„zv,..., w) + ... + |/i, v,..., ouu).
(B.10)

This can simplified further by substituting expansion (B.9) into above sum. 

Thus we obtain
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+ £(a|0i»|aí,a,---,w)
А

+ 5^(A|oùj|w)|/î,i/,...,A). (В.11)
л

Realizing that by using correct annihilation and creation operators in each 

term of above sum we can modify it so that the original state ket appears 
in each term. Thus the simplified, ladder operators including, form of sum 
(B.ll) is

A

+ J2(X\°uW)à\âu\
A

+ Y,(X\°Mâ\àu\n,v,...,uj). (В.12)
A

We can add terms into above sum corresponding to all possible states, be­

cause the corresponding annihilation operator has vanishing effect on unoc­
cupied states as a result of its definition. Also A goes trough every existing 
state due to expansion of operator о in equation (B.9). Thus operator О can 
be written as

O = ^(A|ok|/c)4ôk. (В.13)
А,к

The number operator can now be obtained from О as a special case wherein 
|A) are eigenfunctions of operators о i.e. од|А) = £\\X). Therefore Ö simplifies 
into form

О = £(А|ел|А)аЗЛл = £ ¿a^a, (B.14)
A A

where the operator product â^ôx|A) equals |A) if the single-particle state is 
occupied and zero otherwise. This means that eigenvalues (i.e. number of 
fermions at |A)) of number operator for fermions are 0 and 1 as they, by Pauli 
exclusion principle, should be. If О is diagonal as in (B.13) it yields

A A

(B.15)
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where Л goes trough every occupied single-particle state. This shows that 

I...) is eigenstate of Ö with an eigenvalue which is a sum of the eigenvalues 

of о that corresponds occupied states. Thus we can define the total number 
operator as

Ñ = Y^àxà л- (B.16)
A

Eigenvalues of this operator are the number of occupied single-particle states:

ЛГ|...) = £а1ал|...) = ЛГ|...). (B.17)
A

B.4 Ladder Operators for Bosons

The bosonic ladder operators fulfill following commutation relations:

[0М0„] = О (В.18)
[ôtât] = О (В-19)

[äßä[] = 5„v. (В.20)

And as for fermions the number operator for bosons at state \fi) is a product 
of creation and annihilation operators

Ñ, = ä^äß, (В.21)

whose eigenvalues nß give the number of bosons at state \ц).
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