
HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and Communications Engineering

Kimmo Mattila

Telecommunications platform productisation for 
horizontal markets

Thesis submitted for the degree of Master of Science in Engineering 
in Espoo 14th April 2003

ikö- ja

Supervisor Raimo Kantola, Professor 

Instructor: Esa Nurmi, Master of Science

tietolükebçetÊluiükan kirjasto-А 
Ctakaari 

[02150 Eß

89 -05-2803



Il

HELSINKI UNIVERSITY OF TECHNOLOGY Abstract of the Master’s Thesis

Author: Kimmo Mattila

Name of the Thesis: Telecommunications platform productisation for horizontal 
markets

Date: 14.4.2003 Number of pages: 104

Department: Department of Electrical and Communications Engineering

Professorship: S-38 Networking Technology

Supervisor: Raimo Kantola, Professor

Instructor: Esa Nurmi, Master of Science

The telecommunications industry is moving to a separation of the user and control plane 
servers. The traffic in both of them is expected to use the IP-protoco I for the transmission 
of information. The trend is to use and to make it easy to use modules provided by third 
parties as parts of these network elements. It has also been suggested that current players 
in the telecommunications industry could act in a horizontal business model, where they sell 
their components as parts of products made by other vendors.

The above mentioned business model and the ongoing standardisation work in the industry 
yield common, standard-based platforms for telecommunications systems. A platform is a 
set of subsystems providing application programming interfaces for application developers 
of derivative products. These kinds of platforms have previously been proprietary for each 
vendor. The case company is planning productisation of such a platform for the horizontal 
markets.

The possibility and interest of a vendor to buy a platform from a peer in the markets is 
based on the fact that when platforms are common and fulfil the same standards, the 
differentiation of products is done with the applications. Buying a platform from outside 
releases the resources of a vendor to focus on the application development.

In this thesis, the general requirements for a telecommunications platform, especially in 
horizontal markets, are studied. The focus is on the requirements that are not related to the 
actual functionality of the platform, since the internal customers and standardisation work 
in the industry have presented and will present the most important functional requirements. 
However, a challenge in the productisation work is to implement processes for handling the 
functional requirements of horizontal customers.

The study defines the terms 'telecommunications platform' and 'productisation'. 
Productisation means the definition work of sellable entities. The study presents the current 
situation of the platform in the case company and the organisation that is developing it. The 
study defines what actions belong to a productisation process and derives an action plan for 
the case company on how to solve the detected problems. It compares the present situation 
to theories found in the literature and to two product offerings in the market segment, 
which are used as examples.

Keywords: Productisation, horizontal markets, platform, telecommunications platform



TEKNILLINEN KORKEAKOULU Diplomityön tiivistelmä

Tekijä: Kimmo Mattila

Työn nimi: Tietoliikennejärjestelmäalustan tuotteistaminen 
horisontaalimarkkinoille

Päivämäärä: 14.4.2003 Sivumäärä: 104

Osasto: Sähkö- ja tietoliikennetekniikan osasto

Professuuri: S-38 Tietoverkkotekniikka

Työn valvoja: Professori Raimo Kantola

Työn ohjaaja: Diplomi-insinööri Esa Nurmi

Televiestintäteollisuudessa ollaan siirtymässä erillisiin verkkoelementteihin käyttäjä- ja 
kontrollikerroksilla. Liikenteen molemmissa oletetaan näissä molemmissa siirtyvän IP- 
protokollan päällä kuljetettavaksi. Yleisenä suuntauksena on käyttää näissä 
verkkoelementeissä kolmansien osapuolien tuottamia ohjelmistokomponentteja ja tehdä 
niiden sovittaminen näihin tuotteisiin helpoksi. On myös esitetty, että nykyiset toimijat 
televiestintäteollisuudessa voisivat toimia horisontaalisessa liiketoimintaympäristössä, missä 
ne toimittaisivat omia komponenttejaan osaksi muiden valmistajien tuotteita.

Edellä mainittu liiketoimintamalli sekä käynnissä oleva standardointityö teollisuudenalalla 
tuovat esiin tarpeen televiestintäjärjestelmien yhteisille, standardipohjaisille 
järjestelmäalustoille. Järjestelmäalusta on joukko alijärjestelmiä, jotka tarjoavat 
sovellusohjelmointirajapintoja lopullisten verkkoelementtituotteiden kehittämiseen. Tällaiset 
alustat ovat aiemmin olleet valmistajakohtaisia. Toimeksiantajayrityksellä on suunnitelmia 
tällaisen järjestelmäalustan tuotteistamisesta horisontaalisille markkinoille.

Valmistajien kiinnostus ostaa järjestelmäalusta toiselta toimittajalta perustuu siihen, että 
alustojen ja niiden rajapintojen ollessa standardien mukaisia, tuotteiden erottuminen 
toisistaan saavutetaan sovelluksilla. Näin ollen Järjestelmäalustan hankkiminen toiselta 
toimittajalta mahdollistaa valmistajan intensiivisemmän keskittymisen omien sovellusten 
kehittämiseen.

Tässä työssä tutkitaan, mitkä ovat yleiset vaatimukset tuotteistetulle tuotteelle ja erityisesti 
sovellettuna televiestintäjärjestelmäalustoihin. Tutkimus painottuu järjestelmäalustan ei- 
toiminnallisiin vaatimuksiin, sillä alustan sisäiset asiakkaat ja teollisuudenalan 
standardointityö ovat jo esittäneet ja tulevat esittämään tärkeimmät toiminnalliset 
vaatimukset. Tuotteistamistyön yhtenä haasteena on kuitenkin muodostaa käytännöt 
horisontaaliasiakkaiden toiminnallisten vaatimusten käsittelylle.

Tutkimus selvittää termien televiestintäjärjestelmää lusta sekä tuotteistaminen merkityksen. 
Tuotteistamisella tarkoitetaan myytävissä olevien kokonaisuuksien määrittelemistä. Tämä 
työ esittelee toimeksiantajayrityksen nykyisen järjestelmäalustan sekä sitä kehittävän 
organisaation. Työssä määritellään mitä toimenpiteitä tuotteistamisprosessiin kuuluu sekä 
annetaan ehdotuksia siitä, miten toimeksiantajayrityksen tulisi ratkaista nykyisen 
järjestelmäalustan puutteet. Järjestelmäalustan nykytilaa on verrattu kirjallisuudessa 
annettuihin vaatimuksiin sekä kahteen esimerkkeinä käytettyyn saman teollisuudenalan 
tuotteeseen.

Avainsanat: tuotteistaminen, horisontaali markkinat, tietoliikennejärjestelmät,
järjestelmäalustat



IV

ACKNOWLEDGEMENTS

Many people have supported me during the process of writing this Master’s Thesis. I am very 
grateful for them, as they have made it possible for me to work within an interesting subject and
without having to think other difficult issues. Especially I want to thank the following people:

Mr. Kari Seppälä for being my co-worker and instructor in the early phases of this project,

My line manager Ville Makkonen for giving me the opportunity to concentrate on this thesis 
and keeping my other responsibilities as minimal as possible,

Ms. Tarja Miettinen for her patient help in the documentation issues, for giving me hints on 
how to proceed and for forwarding me to the right people when necessary.

My instructor Esa Nurmi for lots of time given for this project and for his supportive and 
friendly attitude also towards my simple questions,

My folks Aila and Harri back home for frequently asking how I am doing but at the same 
time keeping the safe distance from commenting my daily work,

And last, but not least, my soon-to-be wife Satu for keeping the low profile when I have 
been frustrated with the work and for doing our wedding-arrangements practically on her 
own during this spring.

Espoo, April 13, 2003

Kimmo Mattila



1

TABLE OF CONTENTS

Table of contents................................................................................................................................................. 1
Glossary............................................................................................................................................................... 3
1. Introduction.................................................................................................................................................. 4

1.1 Background...........................................................................................................................................4
1.2 Research problem and objectives of the study................................................................................ 4
1.3 Methods and structure of the thesis...................................................................................................5

1.3.1 Methods..........................................................................................................................................5
1.3.2 Structure........................................................................................................................................ 6

1.4 Introduction of the case company...................................................................................................... 6
2. Server platforms and horizontal markets................................................................................................. 8

2.1 Introduction of the application domain............................................................................................... 8
2.2 Telecommunications platform products.......................................................................................... 10
2.3 Entering new markets........................................................................................................................11
2.4 The idea of horizontal markets......................................................................................................... 13

3. Products and productisation.................................................................................................................... 17
3.1 Building a product............................................................................................................................... 17

3.1.1 Components of a product.......................................................................................................... 17
3.1.2 Product categorisation...............................................................................................................20
3.1.3 Product requirements................................................................................................................21
3.1.4 Discovering successful products, product strategy...............................................................22

3.2 Productisation..................................................................................................................................... 24
3.2.1 Term definitions..........................................................................................................................24
3.2.2 Reasons and benefits of productisation................................................................................. 25
3.2.3 Product development.................................................................................................................26
3.2.4 Productisation process............................................................................................................. 28
3.2.5 Productisation plan.................................................................................................................... 30
3.2.6 Documentation........................................................................................................................... 32

3.3 Product management and services................................................................................................. 34
3.3.1 Configuration control and release policy................................................................................34
3.3.2 Customisation............................................................................................................................. 35
3.3.3 Product services.........................................................................................................................37
3.3.4 Product management organisation......................................................................................... 38
3.3.5 Sales support.............................................................................................................................. 39

3.4 Summary of the productisation models.......................................................................................... 40
4. Platform and software products.............................................................................................................. 42

4.1 Platforms for products........................................................................................................................42
4.1.1 Effective application development........................................................................................... 42
4.1.2 Strategic viewpoints for platforms........................................................................................... 43
4.1.3 Platform architecture and modularity.......................................................................................44
4.1.4 Building a platform..................................................................................................................... 46
4.1.5 Interfaces.....................................................................................................................................49
4.1.6 Standardisation........................................................................................................................... 50

4.2 Software platform products...............................................................................................................52
4.2.1 Nature of software products......................................................................................................52
4.2.2 Required components of a software product......................................................................... 53
4.2.3 Software platform........................................................................................................................53
4.2.4 Software architecture, modularity and interfaces...................................................................54
4.2.5 Development environment........................................................................................................56



2

5. Examples of product solutions in industry segment..............................................................................59
5.1 IBM WebSphere product in general................................................................................................59
5.2 Components and services of the WebSphere Application Server offering............................... 60

5.2.1 Documentation...........................................................................................................................60
5.2.2 Support Services....................................................................................................................... 60
5.2.3 Education....................................................................................................................................61
5.2.4 Development environment........................................................................................................61
5.2.5 Consultation................................................................................................................................ 62

5.3 Fujitsu-Siemens Resilient Telco Platform (RTF).......................................................................... 62
5.3.1 Product and target group in general........................................................................................63
5.3.2 Suggested benefits and value of the RTP..............................................................................64
5.3.3 Parts of the product...................................................................................................................65
5.3.4 Standards and interfaces..........................................................................................................66

5.4 Summary of product concepts.........................................................................................................66
5.5 Service Availability Forum.................................................................................................................67

6. The current platform of the case company............................................................................................70
6.1 Product................................................................................................................................................ 70

6.1.1 Overview..................................................................................................................................... 70
6.1.2 Modularity and configuration.................................................................................................... 71
6.1.3 Interfaces..................................................................................................................................... 73
6.1.4 Standards....................................................................................................................................74

6.2 Internal customers of the platform................................................................................................... 75
6.3 Current solutions for other than product functionality issues......................................................76

6.3.1 Documentation...........................................................................................................................76
6.3.2 Interfaces and Application Programming Interfaces.............................................................78
6.3.3 Third party components and tools........................................................................................... 79
6.3.4 Application development environment................................................................................... 79
6.3.5 Services....................................................................................................................................... 81
6.3.6 Product management............................  83

7. Suggestions............................................................................................................................................... 85
7.1 Productisation process...................................................................................................................... 85
7.2 Documentation...................................................................................................................................86
7.3 Third party components and tools................................................................................................... 88
7.4 Development environment................................................................................................................88
7.5 Interfaces and standardisation.........................................................................................................89
7.6 Modularity, configurations and customisation................................................................................90
7.7 Customer services............................................................................................................................. 90

7.7.1 Training....................................................................................................................................... 91
7.7.2 Consultation services.................................................................................................................92

7.8 Summary............................................................................................................................................. 93
8. Applicability analysis.................................................................................................................................94
9. Conclusions and further study.................................................................................................................96
References......................................................................................................................................................98
Appendix A......................................................................................................................................................103



3

GLOSSARY

3GPP 3rd generation partnership project
ADI Application Development Interface
API Application Programming Interface
ARPU Average Return Per User
BCR Basic customer requirements
BHCA Busy hour call attempts
CORBA Common Object Request Broker Architecture
COTS Commercial Off The Shelf
EJB Enterprise Java Beans
FSN Full Service Network
GUI Graphical user interface
IP Internet Protocol
IPR Intellectual Property Rights
IRP Integration Reference Point
ISO International Organization for Standardization
ISV Independent Software Vendor
IT Information Technology
ITU International Telecommunication Union
J2EE Java 2 Enterprise Edition
OEM Original Equipment Manufacturer
OSA Open Service Architecture
PDF Portable Document Format
PDM Product Data Management
PDMA Product Development and Management Association
PTO Public Telecommunication Operator
R&D Research and Development
RPM RedHat Package Manager
SAF Service Availability Forum
SCTP Stream Control Transmission Protocol
SEE Software Engineering Environment
UML Unified Modelling Language
VAR Value Added Reseller
XML Extensible Markup Language



4

1. INTRODUCTION

1.1 Background

There is a trend towards a convergence of communication networks, where all traffic is based on 
the IP protocol. Drivers for this development are the desire to reduce system complexities and to 
decrease the cost of ownership. This development has raised a need for standardised 
telecommunications platforms. Services are built on top of these platforms. They offer standardised 
computing services that help the application developers, as they do not have to build basic 
functionalities themselves. These kinds of platform products must fulfil industry standards and offer 
common application programming interfaces (API) for developers.

For telecommunications equipment vendors this is a new playground, as products are no longer 
offered only through vertical proprietary routes. Instead, there is a new horizontal mode of business, 
where parts of products can be offered as platforms for the end products of other companies. These 
platforms must offer a standardised API for developers and ensure interoperability with co- 
operators and even with competitors. The customers in this business are different, because they are 
the developers of the end products, not their end users as before.

Fulfilling the expectations and requirements of horizontal markets is a new challenge for 
telecommunications equipment vendors. This thesis introduces the requirements for a product in 
this business area and gives suggestions for the case organisation on how to ensure the acceptance 
of its product in it.

1.2 Research problem and objectives of the study

The objective of this thesis is to define the requirements for a telecommunications platform in order 
to call it a complete product. The main problem is to find out what defects the platform under 
development in the case organisation has compared to the general requirements and some similar 
products in the industry.

The concern of the case organisation is that its telecommunications platform is currently designed 
for in-house use. It wants to find out what modifications and enhancements have to be made to be 
able to sell the platform as a complete product in horizontal markets.

The research problems can be categorised as two main problems and their subproblems as follows:

1. What are the general requirements for a telecommunications industry platform product?
a. What are the general requirements for a product, especially in the 

telecommunications industry?
b. What kind of concepts do other vendors provide?

2. What modifications and enhancements have to be made to the in-house platform in order to 
sell it as a product to the horizontal markets?

a. What deficiencies does the current platform of the case organisation have compared 
to sellable products in the industry segment?

b. How to solve the present situation’s gap in a systematic way?



5

Solving the research problems through their subproblems gives a guideline for the case organisation 
of what requirements a telecommunications platform must fulfil in order to be successful in the 
horizontal markets of the new network infrastructure.

1.3 Methods and structure of the thesis

1.3.1 Methods

The literature research in the beginning of the thesis concentrates on defining some of the terms and 
trends in the industry segment. It is done to clarify the environment for both the author and the 
reader. The literature part is rather large, although there is an attempt to keep the size of each 
subsection compact. The reason is that the thesis combines issues from several domains to 
understand the whole scope of the study.

Business science is by its nature mostly a science of planning. Therefore, ideal normative methods 
and results are rarely available. Olkkonen (1993) says that it is more a question of planning and 
evaluating plans against present reality. Hirsjärvi et al. (1998) list features of applied research. 
Those features indicate that applied research is rather solving problems than gaining knowledge, 
rather generating broad effects than measuring and testing variable relationships and rather 
developing programs or services than developing and testing theories. Applied research has little 
similarities to other research and researchers in it are generalists rather than specialists (Hirsjärvi et 
al., p 128).

Olkkonen presents a formula for science of planning, which contains four stages (Olkkonen, pp 32- 
33):

1. Define the concept of the design in hand accurately and preferably in your own words. It is 
important to set goals for the design and to define its relationship to actions.

2. From definitions, criteria for the design's goodness are derived using literature and common 
sense. Using these criteria, it should be possible to evaluate whether a design is better or 
worse than some other.

3. Using Step 2, the characteristics of a good design are developed.
4. Finally, the results of Step 3 are compared to the present situation and new, advantageous 

features are seen. If possible, this is verified by testing.

The structure of the empirical part of the thesis follows the technical norm of economics science, 
originally referred to as technical norm of practical syllogism by von Wright. In this technical norm, 
the situation is A, it is wanted to be B, and therefore actions X have to be taken (see Figure 1). In 
this thesis, situation A is known, although it is not very clear, but it is explained in as much detail as 
possible. Situation В in the future is also presented briefly, as there is a clear vision of it. The 
problem is to define the actions X that have to be taken to change the situation from A to В 
(Olkkonen, p 57).



6

Figure 1: Technical norm of practical syllogism (Olkkonen, p 57, originally Wright)

1.3.2 Structure

The thesis is divided into 9 chapters, which form up a logical insight into the problem at hand.

In Chapter 2, the current trends in server markets and the idea of horizontal markets is introduced to 
give an overview and reasoning of what a telecommunications platform is needed for and why it is 
developed. Chapter 3 presents general requirements for an industry product and describes the 
various approaches for productisation, which are found from the literature. Chapter 4 introduces the 
idea of product platforms and especially telecommunications platforms. It also describes the 
characteristics of software products and platforms as well as their development work.

Chapter 5 studies some products in the market segment to give an idea of what are the 
characteristics for a product usually in this area. The products are studied in the sense of what are 
the non-technical features that make them products rather than their technical functionalities. The 
chapter also introduces one important standardisation work that is ongoing in the 
telecommunications platform area and the requirements it induces to a platform product.

In Chapter 6, a platform currently developed by the case company is introduced. Its core features 
are presented but its non-technical features are studied more carefully. In addition, the problems it is 
likely to face in the market area are compared to the requirements of the literature references and to 
the solutions of other vendors.

Finally, in Chapter 7, suggestions are given to the case company on activities that have to be done 
in order to define a sellable platform product for horizontal markets. It includes defining the areas 
where most of the defects occur and giving a plan on how these gaps should be solved.

Chapters 8 and 9 discuss the applicability of the results, give a conclusion to the thesis and present 
some thoughts on further study in the area.

1.4 Introduction of the case company

The case company is an international telecommunications equipment vendor. One of its several 
business groups provides mobile, broadband and IP networks and services related to them. This 
business group consists of several different divisions.

The division in question develops radio access, mobility core and wireless broadband network 
solutions. It also produces mobile Internet and multimedia enablers and operations support systems 
for network providers and operators in their transition from voice communication to the mobile 
Internet business. In the core networks area, it develops circuit switched and packet switched



7

solutions, offering both evolutionary and revolutionary paths to all-IP networks (Case company 
intranet, 22.10.2002).

This thesis is done for one of the units of the above-mentioned division. The purpose of the unit is 
to create enabling platforms for application, control and gateway layer products for other units both 
inside and outside of the division. This thesis is a part of their study about moving to a horizontal 
business mode and selling the platforms also outside the company (Case company intranet, 
22.10.2002).



8

2. SERVER PLATFORMS AND HORIZONTAL MARKETS

2.1 Introduction of the application domain

In next generation networks, all traffic is expected to be based on the Internet Protocol (IP). In 
technological visions, the core network consists of an IP backbone, which is surrounded by an 
intelligent edge of access gateways for different terminals. Customers are no longer distinguished 
based on the access medium but on the services they use. A concept of global reachability requires 
access independent systems. Intelligent edge connects users to different services, which are 
implemented in service point servers (MITA, pp 19-21, 239).

There are currently many different kinds of networks, such as mobile, fixed and the Internet. As the 
traffic type in these is merging, so has to do the technology. A general industry view assumes all 
traffic being IP based. It allows all communication services to be carried over a single transport 
network. This enables the integration of voice, data and multimedia services, which offers operators 
new revenue possibilities in addition to cost savings, scalability, flexibility and efficient network 
operations. It is seen as the only solution for handling the constantly increasing traffic volumes and 
changing demand for data rate in the service-based network (MITA, p 239).

Server types in the network include (MITA, p 30):

Access network servers (e.g. Radio Network Controller (RNC), Media Gateway (MGW) or 
Gateway GPRS Serving Node (GGSN)),

Connectivity servers (e.g. Home Location Register (HLR) or Connection Processing Server 
(CPS)),

Application servers (e.g. Web or Email servers),

Enabling service servers (e.g. directory, presence or content delivery servers).

Three main roles can be identified from communication technology: access, transmission and 
services. In telecommunications, operator organisations have so far been rather vertically oriented, 
as they have kept all three roles. In the Internet, however, the approach has right from the beginning 
been to divide these three, which has given opportunities for new, smaller players to enter the 
market (Webb, p 229).

Regulators have noticed the benefits of this development also. A European Union policy is that 
networks should be open to all users and service providers so that any willing party can attach to the 
existing infrastructure. This requires rules by which networks become interconnectable and 
interoperable, i.e. standard solutions are needed (EU, p 10).



9

Benefits for operators from new network architectures are (Webb, pp 67-69):

Reduced cost of operation, because only one core network has to be maintained for different 
kind of access methods.

Ability to carry a variety of traffic types through one network.

Simple access to already available Internet-based applications.

Quick provision of new services since multiple third party suppliers can produce them. They 
do not have to care about the underlying network architecture, because they use a common 
protocol.

Cost and flexibility are the drivers for the transition from circuit-switched networks to all-IP ones. 
This philosophy will bring besides the IP-protocol also modularity and end-to-end approach to the 
telecommunications. IPv6 is even more suitable for wireless Internet. Its benefits are better 
scalability, a huge address space and integrated security support (Webb, p 241).

The deregulation of telecommunications sector benefits the users by more choice, more solutions 
that are standard based and lower prices. Arrival of new companies means more products and 
services, they are of better quality and their prices are cheaper (EU, p 9).

Today vendors still often introduce specialised and proprietary designs and operating systems for 
specialised workloads, which makes it impossible to gain economies of scale and application 
portability (Weiss, p 1). Fabricius (1998) expects the telecommunications vendors to split into three 
segments (Fabricius, p 1):

Full service network (FSN) solutions vendors (e.g. system providers like Ericsson, Nokia or 
Siemens),

Niche and original equipment manufacturer (OEM) companies, whose products are parts of 
the FSN product offerings,

Component and OEM vendors, who sell components to the two former ones.

As a future trend Fabricius sees that large FSN vendors are moving from full in-house product 
concepts to outsourcing strategies to avoid losing their focus or competitiveness by choosing the 
wrong technology. At the same time, niche or OEM vendors have an opportunity to enter the 
business as they can fulfil the gaps that bigger vendors have left open due to their outsourcing 
(Fabricius, p 5).

For niche and OEM vendors staying at the leading edge of development is of key importance. That 
is because their customers, bigger vendors or telecommunications operators tend to buy the 
components or solutions that are technologically best and of cheapest price. Niche and OEM 
vendors are characterised by their innovative organisation, high performance of research and 
development (R&D), strong product management, outstanding logistics and clean standardised 
software interfaces to the products of other vendors (Fabricius, pp 7-8).

In reshaping the business, the telecommunications providers have a foundation role. They are the 
coordinators and guarantors of service quality across the network. They must learn to co-operate



10

with providers of other layers of infrastructure to assure the effective delivery of services across the 
network (Wainewright, p 15).

2.2 Telecommunications platform products

Experts in MITA (2001) suggest that there are three principles according to which a network 
architecture model should be designed. These principles are (MITA, p 27):

Architecture is divided into independent sub-architectures.

Architecture is open, modular and hierarchical.

Architecture can tolerate different technological changes of individual components. Change 
inside a component should not affect the whole architecture.

The Internet value added services era that we are facing requires ever more powerful and flexible 
software. During the coming decades, new areas of functionality and value added services are 
expected to emerge. Focus of information technology (IT) industry will move from dealing with 
platforms to fully exploiting them and making products on top of them. Similarly, the focus of 
embedded software is moving from producing software for specific hardware to building software 
platforms for others to use. Application developers can more easily build intelligence to new 
machines, as they do not have to worry about the platform. One type of software platforms is 
expected to be the standardised operating systems that are ported to new types of machines to help 
in building embedded software (Hoch et al., pp 217-219).

Meyer and Lehnerd (1997) stated that the work put on the development of a platform pays well off, 
as new market segments can be addressed with it and the development of new derivative products is 
easier and cheaper. The latter comes true as developers of derivative products have familiar basic 
blocks, a common look and feel, which they can use to build new products (Meyer & Lehnerd, pp 
35-37).

A common view in designing network elements is to use a layered element model. In this model, 
the architecture is divided into three layers: the application, middleware and platform layers (see 
Figure 2). The application layer contains user interfaces, application logic and support functions for 
them. Middleware layer isolates the application layer from the platform and thereby allows the 
application layer to be built on top of multiple platforms. It provides tools for application designers 
to implement new services without touching the platform. The platform layer contains operating 
system specific software and hardware.

In order to fully separate these layers, interfaces between them must be well defined and they 
cannot overlap. Typically, interfaces are provided to other layer programmers as application 
programming interfaces (API) (MITA, pp 27-28). The word ‘platform’ is nowadays used much in 
different contexts and the assumed meaning of it varies a lot. In this thesis, the word refers to a 
telecommunications platform that offers a set of APIs for developers of different 
telecommunications applications. From the viewpoint of the case organisation, a platform contains 
both the platform and the middleware layer of the view in MITA.



11

Content

Protocol

Platform Layer

Application Layer

Platform Layer

Application Layer

Middleware Layer Middleware Layer

Application Programming Interface

Platform Adaptation Interface

Element

Application Programming Interface

Platform Adaptation Interface

Element

Segment Segment

Figure 2: Layered elements and interaction between them (MITA, p 28).

In the MITA view, the middleware layer contains two parts, the operating system part and the 
platform support stack and Internet protocol stack part. The layer uses services provided by the 
platform layer through platform adaptation interface.

The platform layer consists of operating system core modules, device drivers and other more 
hardware related functions. It provides a platform adaptation interface to upper layers for local 
resources and as well an access independent interface for accessing network resources (MITA, pp 
35-36).

The middleware and application layer communicate also through their external interfaces with their 
peers in other network elements, using of course resources from their lower layers. The application 
layer interchanges application content between elements and the sessions are build up with protocol 
interfaces between middleware layers of different elements.

Supporting new requirements of applications comes from the fact that the content and applications 
are separated in the future. As applications are distributed over the network, the infrastructure must 
ensure the principles of consistency, authenticity, timeliness, integrity and persistency to complete 
the action processes between them (Wainewright, pp 6-7).

A success recipe for the future is to use standardised components on top of standard platform 
architectures. Technical infrastructure for ‘componentware’ shall be a platform and its extensions 
that are compound from components and their interfaces (Sallinen & Seppänen, p 17).

2.3 Entering new markets

In rapid technological and economical change, a company cannot solely rely on its existing 
products. It must have an innovative new-product development process. Product innovations 
include improvements to existing products, designing new ones and making extensions to make 
new product lines and enter new market segments. Kotler et al. (1999) call this process new-product 
development. They explain a product innovation to be a new idea, a product or technology that is 
delivered to customers who perceive it novel or new. The innovation process identifies, creates and 
delivers a product or service that has not been in the market area before. It should not be mixed with



12

invention, which is a new idea or technology that may or may not deliver benefits for any customer 
(Kotler et al., pp 603-604).

Technological changes shape the levels of business and can give new opportunities for 
organisations to address completely new markets. Projecting new markets and opportunities 
requires co-operation from various entities in a company, including marketing, sales, finance and 
product development (O’Grady, pp 147-148).

According to Cooper and Edgett (1999), the word ‘new’ in product development means a product 
that represents a change from the customer’s perspective. It is a change that is noticeable. They also 
mention, that a project can be new either from internal (company) or external (marketplace) 
perspective. Cooper and Edgett provide six classifications of what can be treated as new. The 
approach is derived from the service sector (Cooper & Edgett, pp 10-13):

New to the world services, that have never been seen anywhere else before,

A new service line that is not new to the markets but to the company,

Addition to an existing service line of a company,

Improvements to existing services,

Repositioning of services to new markets or customers,

Cost reductions, which are modifications to services that are not visible to the customers.

In the service sector, a transformation is a process where a company composes new service products 
from its existing knowledge and experience to a new common knowledge. It is not a complete 
process, but a set of actions for product development to use as a means to develop different services 
(Vaattovaara, p 3). Cooper and Edgett remind that probably most of the companies use a mix of the 
above-mentioned new-projects all the time (Cooper & Edgett, p 13). The service sector is also used 
as an example in this thesis, because there too the productisation means packaging the existing 
knowledge of a company in to sellable entities.

There are many examples of how new products that were thought to be good, fail. Reasons for this 
can be in wrong estimates of markets, designing the product for wrong target group or failures in 
the product pricing or marketing. Kotler et al. list success factors that are common to new products 
that have succeeded (Kotler et al., pp 604-605):

Unique superior product (quality, new features, higher value for users),

Well-defined product concept before development,

Meets market needs,

Technology and marketing synergy,

Quality of execution,

Market attractiveness.



13

Fulfilling market needs and finding good enough quality in horizontal markets is an even bigger 
challenge, as the customers can be company’s own competitors in the end products. They must be 
ensured that there are true benefits for them to start using a platform made by an other vendor.

2.4 The idea of horizontal markets

Concentration on the core competencies has replaced the vertical integration as an organisational 
principle in telecommunications industry (see Figure 3). One reason for this development is that as 
business is global, companies do not have to secure their backs by attending a large number of 
different industries. Instead, they take the advantage from regional balancing globally. Global 
competition requires them to focus more on the core functions. One cannot afford to oversee much 
functionality with little time given to all of them (Lillrank and Forssen, p 19). The rapid 
development of technology requires companies to focus on their core businesses and seek for 
opportunities to concentrate only on a part of the value-chain. The same development allows other 
firms to find their opportunity in other segments or in tying up these segments together 
(Vaattovaara, p 1). Creating an integrated, end-to-end delivery infrastructure requires close co­
operation between these providers and enterprises (Wainewright, p 7).

ProprietaryProprietary Proprietary Proprietary ProprietaryProprietary

Hardware

Network
Applications

Middleware
Proprietary

Proprietary

Proprietary

Proprietary Numerous hardware 
module vendors

Numerous middleware 
module vendors

Network 
Element 1

Proprietary

Proprietary

Network 
Element 2

Network 
Element 3

Network 
Element 1

Network 
Element 2

Network 
Element 3

Vendor 1 Vendor 2 Vendors Vendor! Vendor 2 Vendors

Figure 3: From proprietary to standard based model of the telecom equipment markets

The strategic positioning definitions by Porter ( 1996) introduce different approaches for the product 
or service portfolio of a company. One approach is that it tries to serve all the needs of a certain 
customer group in the industry segment, which is called needs-based positioning. Another approach 
is to provide a subset of products or services to the whole industry segment. This is called variety- 
based positioning (Vaattovaara, p 26, originally Porter 1996).

It is commonly believed that large telecommunications companies can do almost any projects they 
want, that they have infinite resources for building and selling complex systems. This is not true, 
because large companies have many different projects ongoing at the same time and must 
constantly allocate resources between them according to priorities. The recent economical recession 
in the industry segment has even accelerated this development. As a result for this, smaller 
companies are sometimes more capable of developing some specific technology. In larger 
companies, especially new innovative technology areas are harder to get through because these



14

companies have to concentrate also on maintaining the existing products. For smaller companies the 
development strategy is much simpler. They cannot afford having specialists for several different 
technology areas in their payroll. Instead, they concentrate on the chosen product and the chosen 
technology and can be very efficient in implementing it (Webb, pp 150-151).

Wainewright explained what is happening in the pure software industry. His list of three types of 
independent software vendors (ISV), which operate in different levels of the software architecture, 
can be adapted to telecommunications also (Wai ne wright, p 17):

Application IS Vs who deliver complete packages of software to perform a certain action as 
a whole.

Infrastructure ISVs who develop platforms and tools, which are used to design, build and 
manage components and applications.

Web service ISVs who develop software for single simple functions that are a part of the 
offerings of application ISVs.

A company should fit itself to one or several of these categories. It is seen wise that companies try 
to do co-operation in these fields and not to compete in every one of these sectors. Instead, they can 
provide partial solutions to a competitor and similarly buy some parts from their competitors. 
Markets that are structured this way are called horizontal markets.

A part of the horizontal approach originates from the critical importance of partnering. Successful 
companies admit that they cannot do everything on their own. Partners are used to fulfil technology 
and time-to-market gaps. It is important to have strong partners and many of them. Successful 
companies have partner webs that include several informal but yet performance-driven partnerships 
(Hoch et al., p 181).

Companies must ensure that their solutions are not tied to near partners only. A common trend in 
the software business is that end-users pick their favourite combination of suppliers to form their 
final implementation. In this sense, it is critical to use standard-proof interfaces and listen to the 
end-user requirements and expectations (Hoch et al., pp 190-191).

As partner webs are formed, they must also compete against other webs. There is usually no single 
monopolistic solution worldwide for any application. Webs are competing with each other, which is 
called inter-competition. At the same time though, companies that are committed to the same 
partner web using a certain technology, compete against each other inside the web for their share of 
the pie. This is called intra-competition. A stiff intra-competition actually helps companies to give 
their best and therefore provides good enough solutions to win the inter-competitive battle (Hoch et 
al., pp 200-202).

As webs are formed, some companies always put larger effort on them than others. They are called 
the web shapers, as they establish the platform and control the key components (for example 
Microsoft with Windows and SUN with the Java platform). Other companies follow these shapers, 
adapt the technology and expand the web. They are called the web adapters. They are attracted by 
the growing revenue potential inside the web and are keen to join it (Hoch et al., pp 203-204).



15

Division can also be made to module providers and integrators. Module providers produce modules 
that integrators integrate into their products. O’Grady (1999) stated that an integrator usually 
determines the architecture of the product (acting as a web shaper). However, the current trend is to 
work on the architecture together with the suppliers, customers and competitors, and to this way 
create a mutual marketplace together (O’Grady, pp 18-20). One could think that, in the end, shapers 
still do better since they can control the web infrastructure. In fact, this is not necessarily the case, 
because some companies are better in shaping the web while others are in adapting it. The situation 
can go vice versa when companies play different roles in different webs (Hoch et al., pp 203-204).

According to Hoch et al., although shapers always give away some value when letting in some 
adapters, the growth of the web is the only way to grow the shaper company’s own business. This 
kind of approach often pays back big over the time. For example, Sony got huge revenues from its 
PlayStation game console by giving away the development of games for it to independent 
developers. In some cases, resistance to give away value to partners can collapse the web 
thoroughly (Hoch et al., pp 204-206).

Organisations must decide where they are in the module support chain, are they module suppliers or 
integrators. Integrators assemble final products from modules provided by suppliers and are 
responsible for products meeting the customer requirements. The task of the suppliers is to provide 
modules that are compatible with required standards and interfaces. Naturally, some companies can 
belong to both of these groups (O’Grady, pp 43-47). There are problems in this approach, though. 
Offering a platform in a segment where a company itself competes results in “church and state” 
dilemma. For example, SUN Microsystems owns the Java and J2EE standards but has also an own 
competitive J2EE solution (SUN ONE Application Server) (Natis, p 4).

Integrators can either use commercial off the shelf (COTS) modules or use specially developed 
modules from an internal or external supplier. The specially developed modules may still be based 
on industry standards. Using internal suppliers makes the organisation to act as both a supplier and 
an integrator (O’Grady, pp 43-47).

The generic COTS modules are usually a safer choice, because they have already been in use and 
tested in practice, unless of course it is the first user in question. They also are likely to face 
competition, which reduces development times and costs and which should increase quality. There 
are, however, problems related to them. Suitable COTS modules might not always be available, so 
product cannot solely be based on those, which makes the architecture planning difficult. Relying 
solely on COTS components opens the product also to more probable competition, as there are no 
proprietary entry-barrier elements. In a COTS-based product environment, competitive advantage is 
often achieved through other aspects of a product such as support services, quality or reliability. 
Using specially developed modules gives the integrator a possibility to implement the functionality 
of the product just as it wants. It also makes it possible to retain the intellectual property rights 
within the integrator company and to address a part of the variable and capital costs of development 
to the supplier. By combining both approaches, an integrator can achieve faster development cycles 
and lower costs by using COTS modules and gain competitive advantage and barriers to entry the 
market with the special modules (O’Grady, pp 45-48).



16

Component and OEM vendors are seen as sub-suppliers of components and part products to other 
vendors. They do not have a relationship with the final customer at all. Their strategy is to gain as 
many big vendors for their customers as possible to gain the economies of scale and therefore 
competitive prices. Characteristics for this kind of a vendor are OEM partnerships, a generic 
product platform with standard hardware and software interfaces that enable easy integration with 
third party elements and a focus on high volumes and low costs, which means a little smaller 
margins and a strong product management (Fabricius, p 8).

One problem for the industry with increasing use of platforms and partner webs comes from the 
issue of who owns the customer interface, especially in embedded software. Especially this applies 
to the maintenance phase of relationships. If the value chain of a product is very long, it can be 
problematic for the customer or the nearest provider to define where, for example, noticed problems 
regarding a certain part of the product are reported. New types of licence and service agreements 
must be negotiated for these relationships (Hoch et al., p 220).



17

3. PRODUCTS AND PRODUCTISATION

3.1 Building a product

3.1.1 Components of a product

What is a product? Kotler et al. define it to be anything that can be offered to a market for attention, 
acquisition, use or consumption and that might satisfy a customer want or a need. The term 
'product’ means more than just tangible objects. Besides physical objects, a product offering can 
mean services, persons, places, organisations, ideas or a mix of these (Kotler et al., 561). Clarke 
(1997) puts it even simpler, as he states that a product is a normal offering of a supplier, which can 
be ordered by nominating the product identifier. Product Development and Management 
Association (PDMA) term definitions define the term ‘product’ to describe all goods, services and 
knowledge that can be sold. Products are collections of attributes (features, functions, benefits and 
uses) and they can be either tangible, as in the case of physical goods, or intangible, as in the case of 
services, or they can be combinations of those two (PDMA glossary).

A company must decide what are its core products and what can be left optional. A product is 
composed of core features, that give the product its main functionality and the main benefit for the 
user, enabling features that are not core features but are required in order for the core feature to 
function and supporting features that can be left optional and priced separately (Sipilä 1996, p 64).

Mattila (2000) defines the same division in service sector so, that a product contains (Mattila, pp 
35-36):

The core service, which is the one that the customer really wants and which delivers the user 
need,

Support services that make the use of the core service easier,

Additional services that are optional parts in the offering and enrich the value of the product 
to the customer.

Additional service packages are seen as an essential part of the offering. Customers want to get the 
additional and extra services from the same provider as the basic service (Mattila, pp 35-36). 
Besides the core product itself, Vitikainen (1995) included into a product an imaginary product and 
additional services and reserved a possibility for some new solutions also. To the imaginary product 
she included the product name, trademark, outfit, package, perceived quality and the product 
description. To the additional services she included the delivery, installation, training, warranty, 
finance, service, user instructions and the spare part support (Vitikainen, pp 42-43).

Kotler et al. divide a product similarly into three levels: the core product, the actual product and the 
augmented product (see Figure 4). Core product is the one that the customer is really buying. It 
gives the problem solving entities or core benefits for the user. The actual product is what the 
producer really produces and what the customer really sees. It is built around the core product. Core 
product has attributes like quality level, features, styling, brand and packaging. In a technical 
product, features are the ones that implement the core problem solving functionality. The 
augmented product is finally built by adding consumer services and benefits on top of the core and



18

actual products. Services and benefits are, for example, warranty, training, maintenance and 
installation as well as after sales customer support. These augmented features eventually become an 
essential part of the product for the customer and they cannot be left out from later versions (Kotler 
et al., p 561).

User instructions / installation
Credit / Finance

Features Enabling supportive services / 
Imagenary product

Package Warranty

Core product 
or service TrainingStyling / Outfit

Product / brand 
name

Product
Description Additional supportive services

Delivery
After sale service and spare parts

Figure 4: Three levels of a product (modified from Sipilä 1996 p 64, Vitikainen p 43 and Kotler et al. p 
562).

One approach is to treat the components as individual products and sell them separately. Packaging 
these components into a sellable entity is seen only as a means to help the buying decision of the 
customer (Sipilä 1996. p 65).

Requirements for an industry product in general are (Junttila, p 30, originally Jaakkola & Tunkelo, 
1987):

- Customer required features,

- Price/quality ratio,

- Usability,

- Maintainability,

- Usage security,

- Design,

- Ease of installation,

- Applicability and environment,

Performance,

Reliability,

Human factors,

Ergonomic factors,

Production issues,

Packaging and distribution channel 
requirements,

Interfaces to near environment, 

Product’s effect on environment.- Environments effect on the product,
All of the above-mentioned issues are in some sense applicable also for the software and 
telecommunications industry, if some special conditions are taken into account. A successful product 
must fulfil minimum requirements from all categories and beyond that have some superior features to 
gain competitive advantage (Junttila, p 31)

Besides product functionality, a vital issue for a product to be accepted by the customers is that it is 
easy for them to buy the product. That is, there has to be an effective distribution channel. There has to



19

be personnel that take care of the effective delivery of the product to a customer. Delivery can be 
handled by the producer company itself and leave only the marketing and negotiation tasks to the 
distribution organisation. Junttila states that in a software company the distribution organisation is also 
responsible of the training, seminars and guidance that is defined in contracts (Junttila, pp 75-76).

For the distribution channel, the sales organisation for a product must be chosen. It can affect the sales 
results of the product considerably. It must be noticed, that the sales organisation probably also needs 
training and consultation about the product in various points of their sales process.

Product branding is vital when selling and marketing products, though it is more important in 
consumer markets. It can help in differentiating the products. Brand is a name, a symbol, a design or a 
combination of these that identifies a product and differentiates it from its competitors. Brands, unlike 
other IPRs, do not have expiration days; they are dedicated to their owner forever (Kotler et al., pp 
570-575). There are four options on how branding can be done (Kotler et al., pp 579-580):

Using manufacturer’s own brand,

Using a private brand (owned by a middleman, a distributor or a store),

Licensing a brand (used in royalty products, for example Porsche sunglasses),

Co-branding (usually done under license terms, for example Kellogg’s Healthy Choice).

When delivering a platform product for horizontal markets, i.e. also for possible competitors, branding 
is somewhat a problem. It is possible that the customers do not want to be identified by a brand of the 
original company. On the other hand, the product must have a name in order to sell it to any customers, 
since it is not only a simple part or raw material. However, the brand of a platform shall be recognized 
on its target market, among the network application developers, not among the end users of a network 
element.

Significantly important factors for any product are the decent user, installation, service and system 
manuals. They are important, for example, in adapting to different market environments (Vitikainen, p 
20). Documentation items that are required for a software system product include (Junttila, p 61):

Installation guides,

User guides,

Documentation of services.

Training material,

Marketing material,

Maintenance and other information material for internal or distribution channel use, 

Agreements, licences and registration documents.

Target groups for documentation are the customers, the marketing and distribution channels, trainers, 
the maintenance and product support as well as the management and product development. Above- 
mentioned documents exclude technical documentation, which is meant for internal use only (Junttila, 
p 61). However, in the case of a platform, some technical documents must be provided, since the target



20

customers are application developers. Part of the documentation can nowadays be in electrical form. In 
theory, all documentation, starting from the source code in a software product, can be implemented as 
a big amount of hypertext documents that are linked together (Haikala & Märijärvi, p 65). Junttila 
includes into the product documentation also online helps in the software, but for a horizontal platform 
product, that is more a functional requirement, although the trend for software products is to move 
from paper versions of user guides to online helps (Junttila, pp 66-67).

3.1.2 Product categorisation

A product is an article, a service or a combination of them provided for a customer. It can be divided 
into pieces and its contents and structure can be presented based on different criteria, for example by 
its bill-of-material or functionality structure. A product can be understood in a broad or in a narrow 
sense. In the narrow approach, all subcomponents are products themselves whereas the broader view 
emphasises the total offering produced for the customer (Lahtinen, p 35). Tiihonen (1998) reminds that 
a product is not necessarily an end product sold to the customer. Instead, it can be a component of a 
larger product that is sold to another unit in the same or another company (Tiihonen I, p 2).

Products can be categorized in a number of ways. One of the most obvious ones is the division to 
consumer and industrial products. Consumer products are bought by their final users whereas 
industrial products are bought by businesses for further processing. Thus, the purpose of the product is 
different than in consumer markets. Using this categorisation, a same product can be an industrial 
product in one occasion and a consumer product in another. Industrial products can be further divided 
into three categories (Kotler et al., pp 563-566):

Materials and parts are goods that become a part of the final product through processing or as a 
component. OEM products belong to this category.

Capital items are products that help the manufacturer in the process as installations. Examples 
of these are factories or accessory equipment like drills or computers.

Supplies and services are products that are not in touch with the actual product at all. Supplies 
are operational facilities like heat, electricity or paper and repair or maintenance items like 
paint or nails. Services can further be divided into maintenance and repair services and business 
advisory services.

Traded items generally can be categorised by the degree to which they are productised. Clarke defines 
four classes of products:

Standard products are items that can be ordered from a supplier catalogue. It is common for 
goods and services that they are productised, because it usually reduces their unit cost.

Commodities are products that exist in an identifiable form and are available from a variety of 
sources. Typical examples are stocks and other financial instruments and primary products like 
crude oil or coffee.

Custom-build products, which are designed to meet the specific needs of a specific customer 
for a specific purpose and are bought through a tendering process.



21

Customised products, which are used in situations, where the product or service does not 
exactly solve the needs of a customer, but they can be fulfilled by modifying the basic product. 
This is especially true when the product is a combination of goods and services.

A telecommunications platform can be thought to belong to Kotler et al.’s category ‘materials and 
parts’. Selling it to another vendor for application development requires of course also repair services 
and advisory consulting.

3.1.3 Product requirements

There are several different requirements for a product in order it to fulfil all the expectations of a 
customer and to be suitable for the use that it is meant. For example, there can be preferred production 
costs, selling price or quality requirements defined (Lahtinen, p 36). Those are defined to help the 
comparison of different products and their business cases. The customer requirements must also be 
categorised. There is always both a positive and a negative side of customer requirements, things that 
the customers want and things that they especially do not want (Junttila, p 29).

Liukko (1994) categorises the contents of a product into three categories: minimum requirements, 
additional features and new features. Minimum requirements are things like security, faultlessness and 
reliability so that the user can do the tasks he or she assumed to do with the product. These are also 
called the basic customer requirements (BCR). Additional features are not necessary but customers are 
positively surprised having them. New features are the ones that differentiate products from each other. 
They are features that are not required in the cheapest basic products (Junttila, p 29, originally Liukko 
1994).

Meyer and Lehnerd propose that customer requirements should be clear to all levels of an organisation, 
no one organisational part should own the customer. There are two kinds of customer requirements, 
perceived and unperceived. The latter ones are also called latent needs. The perceived needs are 
directly required by the customers but the latent ones are often discovered somewhere totally outside 
of market researches. Often the engineers themselves discover these needs as users of the product. In 
the case of the horizontal markets, the fact of having internal customers helps a lot in discovering these 
needs. Meyer and Lehnerd present that the goal of understanding the customer requirements should be 
common to both the marketing and the R&D. Too often, they say, it happens that junior marketing 
managers are in contact with the R&D to discuss customer requirements and improving a product. 
Those meetings are the places where most experienced marketing people should give their effort to the 
product (Meyer & Lehnerd, pp 44-45).

Requirements for a system may be either functional or non-functional. The formers are statements of 
services that the system should provide, how the system should respond to inputs and how it should act 
in certain situations. Non-functional requirements are constraints for the services. They can be 
constraints for timing or for the development process or statements about the supported standards 
(Sommerville, pp 118-119).

The non-functional requirements can sometimes be more important than the functional ones. If some 
constraints are not met, customers might not accept the system. In extreme cases, it cannot be taken



22

into use at all. The non-functional requirements reflect often to the process rather than the product 
itself. They are presented from system quality or system maintainability points of view. Sommerville 
(1995) divides the non-functional requirements into three categories (see Figure 5, Sommerville, pp 
130-131):

Product requirements,

Organisational requirements,

External requirements.

Non-functional ц 
requirements

■

Product
requirements

Efficiency
requirements

Organisational
requirements

Reliability
requirements

Portability
requirements

External 1requirements

Interoperability
requirements

Ethical
requirements
■■■

Usability
requirements Delivery Implementation Standard

Performance
requirements

Space
requirements

Privacy
requirements

Legislative
requirements

'

Safety
requirements

'

Figure 5: Types of non-functional requirements (Sommerville 1995, p 131).

In this thesis, the emphasis is mainly on the organisational and external requirements, as pure product 
requirements for the system in this case are already derived from the needs of the internal customers. 
In fact, as a mostly existing product is productised to a new market, the product decisions already 
made for it act as constraints for the new product. One must also notice that the internal customers 
have not presented all the requirements there are. The platform development engineers discover the 
latent needs also themselves and there are requirements that originate from standards.

3.1.4 Discovering successful products, product strategy

Successful enterprises must be evolutionary; they must make new products to hit new markets. This is 
achieved through periodic enhancements to the product and its manufacturing technologies. Some of 
them are breakthroughs while others are only incremental enhancements. To be successful, a company 
must produce a continuous stream of new products.

The traditional approach of firms has been quite the opposite, concentrating only on a single product at 
a time. This results in a bad organisation, as projects must compete against each other inside a firm for 
resources. Measurements for the budget, lifecycle and product breakeven are made on a single product 
focus. This results in lack of commonality, compatibility, standardisation and modularity. A solution 
for this situation, presented by Meyer and Lehnerd, is to turn the whole portfolio of business segment



23

into a common platform and a stream of derivative products built on top of it. They presented a range 
of successful companies, like Black & Decker or Compaq, who have renewed their product portfolio 
this way. Although their approach concentrates on the own products of a company, the ideas of 
building a good platform can be adopted also to selling the platform itself (Meyer & Lehnerd, pp 1-2).

Final value to the user is realised only when the product is sold. Knowledge products resemble the 
packaged products. They do not transmit the information to users, but enable them to use knowledge in 
new ways (Lillrank & Forssen, p 15). In a similar way, a telecommunications platform does not 
necessarily give any applications to horizontal customers, but it improves their product development 
process with the basic functionality already implemented.

Kotler et al. say that there are three attributes for a product: quality, features and design. Quality is the 
ability of a product to perform its functions. It includes the overall durability, reliability, precision and 
the ease of operation and repair for the whole product or its services. These attributes of quality must 
always be viewed from the customer point of view; what level of quality they want and are willing to 
pay for. After the selected quality level is reached, it must be consistently kept there. Otherwise, the 
perceived quality of the product is not good enough anymore (Kotler et al., pp 566-567).

Vaattovaara (1999) talks about total perceived service quality, which is the difference between the 
expected and the experienced quality. The expected quality is derived from the promises of market 
communications or word of mouth as well as from the own needs of a customer. To the experienced 
quality image affects the technical (what) and the functional (why) quality of a service (Vaattovaara, p 
9, originally Grönroos 1990). Quality is a part of the total value of the service perceived by the 
customer. Value can be defined with the following equation (Vaattovaara, 14, originally Heskell et ah, 
1997):

Results produced for the customer + quality of the process
Value = ------------------------------------------------------------------------- (Eq. 1)

Price to the customer + costs of acquiring the service

Features of a product are the attribute that is usually looked at most. They are the ones that are seen to 
differentiate the products from their competitors. One of the most challenging things for a company is 
to derive what are the right features that should be implemented into a product. It is seen that the best 
method is to do customer surveys and to find the information there. The customers can be asked what 
features are most important now and what would they like to have in the future. All features should 
then be evaluated based on what customers are willing to pay for them and compare it to the cost of 
producing them (Kotler et al., pp 567-569). For the case company, the fact that there are already 
vertical in-house customers helps in defining a part of the features that the customers want. Effective 
use of this information requires of course that it is adequately documented and managed.

The last attribute in the list of Kotler et al. is the product design. It means the look and feel of the 
product and the way how they affect to the functionality of the product. This attribute is usually 
connected to consumer products, but also industrial products have their design. Most industrial 
products are used by the experts of their field in the companies, and their judgement on how the



24

product fits for its purpose, on its architectural elegance and on its ease of use should be thought in the 
design of a product (Kotler et al., pp 569-570).

Meyer and Lehnerd also talk about the elegance of a product design. It means that the product is easy 
to use and it serves its purpose without complications. According to Donald A. Norman, well-designed 
objects are easy to understand and interpret whereas poorly designed ones are frustrating and difficult 
to use. For engineers, elegance can mean both inner and outer qualities. They consider deeper issues 
like appropriateness of the selected components and the way that those work together, how they are 
integrated. For software products, engineers try to implement intuitive user interfaces, which make the 
simple tasks easy and give possibilities for users to do more complicated tasks (Meyer & Lehnerd, pp 
82-83).

3.2 Productisation

3.2.1 Term definitions

A traditional view to productisation is that it is a function, which is done after the product 
development. It is seen as a distinguished part of the processes, separate from the product 
development. In rare cases, especially in service sector, the activities of a firm have developed to a 
level where the productisation is only trimming these activities into a superior product entity. Mostly 
still, the productisation approach should be in mind throughout the whole product development process 
(Vitikainen, p 22, Junttila, pp 18-19 and Sipilä 1996, pp 33-34).

Seppänen (2002) stated in his thesis that productisation is a phase in the product development process, 
where the cost and price structure is defined to a product or to a service and the necessary marketing 
activities are done (Seppänen, p 4). Also Vitikainen used a narrower approach as she stated that 
productisation is understood to include:

1. Market analysis,
2. Technical analysis,
3. The product development itself,
4. Organising the product training,
5. Producing the marketing material,
6. Creating an installation organisation.

In general she said that the productisation contains documentation of everything important related to 
the product (Vitikainen p 6, 22).

Mattila (2000) understood that productisation as a function starts from the product idea. After the 
product idea is accepted, it must be produced to meet the target market and its delivery must be 
planned. Before productisation, its benefits and risks must be identified. She refers to Sipilä (1996), 
whose definition for the professional services productisation is: “Defining, designing, developing, 
describing and producing a service provided for a customer in such a way that the customer benefits 
are maximal and the goals of a professional company are achieved”. Vaattovaara states, that in the 
manufacturing industry, productisation is just seen as a part of the product development, where an 
innovative idea is made commercially viable (Vaattovaara p 22, Mattila p 20 and Sipilä 1996 p 36).



25

Productisation is a process where knowledge is packaged into sellable entities. It results in a product 
that is multipliable, protected, usable, individually defined and that is sellable. It helps in assuring the 
quality of service given for the customer. It is by its nature mostly standardisation and defining of the 
user interface and documentation of a product, protecting the product and implementing things related 
to distribution, customer support and product management. The level of productisation increases as the 
approach is moved from a tailored product via a customised to a pure mass product (see Figure 6). A 
company tries to form repeatable entities, whose cost per performance ratio is optimal and which are 
made as ready as possible to wait only for an order from a customer. Highly product!sed entities are 
complete customer solutions and require only few additional services (Junttila, pp 13-15 , Nybom, p 3 
and Hoch et al, p 34).

Tailored Customised Mass-product

Level of productisation

Figure 6: Level of productisation (Junttila, p 15).

Mattila (2000) refers to ISO standardisation criteria, where productisation is defined to be defining, 
clarifying, specifying and profiling the customer services that an organisation is producing. It is not 
just defining products, which can be goods or services, but clarifying the whole production of the 
customer service in to a more controllable form. Better product defining and clarification leads to the 
customer being more aware of what he or she is buying. In practical terms this means, for example, 
producing the product description and sales documentation (Mattila, p 21).

Productisation can be divided into external and internal parts. A customer sees only its external results,
i.e. the products and their versions and all the supporting functions around it. Internally, productisation 
is a question of organising the functions more effectively and efficiently (Sipilä 1996, p 47).

3.2.2 Reasons and benefits of productisation

The task of productisation is to make a product easy to implement and sell. Productisation should be 
clearly in mind during the whole development process. Goals for different products are derived from 
the business strategy of a company (Vitikainen, pp 16-17, originally Voipio 1995).

Benefits from productisation to customer are clearly defined elements of a product, better quality 
assurance and clearer pricing. Reliability of the organisation is improved since the customer 
expectations and the quality are easier to measure in productised entities (Mattila, pp 22-23). In the 
case of this thesis, these same benefits come naturally also to the internal customers as the case 
company productises its telecommunications platform.

Productisation helps product pricing, as a price tag is easier to put on a well-defined entity. It must be 
decided, what is the price for additional or support services. In addition, the customised parts of the 
product are essential to be priced separately (Mattila, p 40). After all, in a productised product the 
customised parts generate most of the costs with a new customer.



26

A well-defined product makes comparison of alternatives easier for a customer. It helps the marketing 
department to promote a product and the sales department to get better margins from it. Customers 
trusts the product and the company more, when the goods or services are productised and they can be 
sure that they are not used as a pilot group for the product. Putting a fixed price tag for a product is 
easier than just for a set of goods or services. When the items are productised, they can be put also to a 
product catalogue, which in turn helps the nowadays important electronic business (Sipilä 1996, pp 19- 
20).

In an engineering company studied by Vaattovaara, the productisation of services created following 
benefits (Vaattovaara, p 8):

Improved customer satisfaction as perceived quality of service is increased,

Clarified marketing and sales activities.

Improved efficiency and effectiveness of the service production activities,

Improved manageability of operations.

Productisation decreases the development costs in a long time-scale and in most cases also increases 
the price asked for the product. That way, the margins of the product for the company increase. On the 
other hand, productisation helps the comparison of different products, which tightens the competition 
and can have the opposite effect (Sipilä 1996, pp 20-21).

Productisation leads to better-defined organisation and processes. It also forces to think through all the 
property rights inside a company in advance to avoid conflicts later on. Overall, according to Sipilä 
(1996), productisation can be the factor that puts the company to the so-called circle of success (see 
Figure 7).

Figure 7: The circle of success (Sipilä 1996, p 22).

3.2.3 Product development

Product development is a function, whose purpose is to develop a new or an enhanced product. 
Development is a multistage process that contains tasks from finding information to the development 
of manufacturing processes. The task can also be developing an existing product to be better or to be



27

cheaper to produce. It can also mean applying existing product to a new environment, where certain 
parts have to be redesigned (Jokinen, pp 9-10).

Jokinen (2001) divides product development work into four stages with decision points between them. 
The stages are start-up, sketching, development and finalisation. As a result for the start-up phase, 
there is a decision made of whether the development is started or not. After sketching, one draft for the 
product is selected, which is then improved in the development stage into a final construction 
suggestion. In the finalisation phase, details are checked and final documentation for the product is 
made (Jokinen, pp 14-17).

New product development decision requires always a customer need for the product and a possibility 
to implement it. Without these conditions, it is not reasonable to start a new development project. 
Sometimes these conditions appear by accident but in most cases through a systematic work (Jokinen, 
pp 17-18).

Test
marketing

Marketing
strategy

Business
analysis

Product
development

Idea
screening

Idea
generation

New product 
strategy

Commercialisation

Concept development 
and testing

Figure 8: Steps in new-product development (Kotler et al., p 607).

For creating a successful new product, Kotler et al. present a new-product development process, which 
contains nine stages (see Figure 8 above). The process starts with defining a new product strategy, 
generating new product ideas and then screening them and dropping the poorer ones out. From the 
selected possible product ideas, a more detailed concept is developed and it is tested with target 
customers. After that, a marketing strategy and a business analysis are done before the actual product 
development. Before the full launch, test marketing is done in a more realistic environment (Kotler et 
al., pp 606-623).

Industrial products have a little different test marketing methods than consumer products. Industrial 
products can be promoted in distributor premises or the sales and marketing can be given a full 
advertising, sales and marketing support for a certain restricted geographical area. These are used to 
determine the customer reactions and they do not differ a lot from the consumer product promotion as 
such. Test marketing in this particular case is somewhat easier, as the case company has also internal 
customers, who can give the required feedback for the platform product (Kotler et al., pp 621-622).

Final stage in the list of Kotler et al. is commercialisation, which means introducing the product to the 
markets. Issues to be considered are timing, the place of launch, the target customer groups and the 
action plan on how to bring the product into markets. In this stage, full manufacturing power must also 
be in use to meet the expected demand. The PDMA term definitions define commercialisation to be a 
process of taking a new product from the development to the market. It generally includes production



28

launch and ramp-up, developing marketing materials and programs, developing a supply chain and the 
sales channel, and developing the training as well as support and services (PDMA glossary).

Cooper and Edgett introduced a similar 13-stage process for new-service development. In addition to 
the above-mentioned issues, it included the development of the process in parallel with the system 
design and training of the own personnel before the launch. It can clearly be seen, that their model is 
created for the service sector since the process itself is actually the product that the service company is 
selling (Cooper & Edgett, p 30).

3.2.4 Productisation process

Many authors have described different kinds of productisation processes. Recently the term has mostly 
been used in the service sector. In technology and manufacturing driven businesses, the approach 
emphasises more that the productisation should be in mind during the whole product development 
process. Still, especially in the case of this thesis, similarities can be found from the service sector 
approach of packaging and commercialising the existing company internal knowledge or product.

Vaattovaara describes a four-stage productisation model for engineering services in his dissertation. 
The stages are (Vaattovaara, p 38):

1. Product screening,
2. Product analysis and concept construction,
3. Development of the service package,
4. Development of the service implementation processes.

In the first stage, the existing services are analysed and the parts to be productised are found out. It is 
not generating of new products, but conceptualising of the existing businesses or products. The second 
stage analyses the customer requirements, markets and competencies together with constructing the 
new product (Vaattovaara, p 38).

When developing the service package, the contents of the product are defined. The product is divided 
into modules to communicate the features to the customers and to help its implementation. This 
includes presenting the key value from the product or service for the customer. In this stage the 
necessary enabling services are defined as well as the not necessary but value adding facilitating 
services and the optional administrative services for managerial needs like billing (Vaattovaara, pp 38- 
39).

In the final stage, the service implementation processes are defined and the service components are 
derived. Those are the product bases, which describe the whole contents of the service, co-operation 
processed between the producer and the customer and finally a service production process, which 
defines the actions to be done in the provider-side of the service (Vaattovaara, p 39).



29

Lahtinen (1995) also introduced a productisation process for the service segment. It consists of four 
stages (Lahtinen, p 37):

1. Preparation work,
2. Forming the products,
3. Inside and outside marketing,
4. Follow-up.

Preparation work includes the actions from phases 1 and 2 in the model of Vaattovaara. It finds out the 
starting points and categorises current products and processes. The procedure includes studying 
literature and possible references from other similar organisations. It serves also the continuous 
improvement of processes and their quality. After these issues are clear, a plan is made on how to go 
through the process of moving the current pieces into a product (Lahtinen, p 37).

In forming the products -stage, different options of products are recognised and a product hierarchy is 
formed. Production costs of different alternatives are measured by analysing the value chain. It is also 
reasonable to evaluate if the products are effective for their purpose and what benefits do they 
generate. Quality requirements are also derived in this stage. The stage is similar to the phase 3 in 
Vaattovaara’s model (Lahtinen, p 37).

The inside and outside marketing phase presents and informs about the products and operations to 
different stakeholders. Written documents and product descriptions are produced for this purpose. 
They present the contents of the product as well as its structure, price and quality features (Lahtinen, 
pp 37-38).

Follow-up and evaluation is needed to keep up the continuous improvement of products. First, there 
must be systems for making statistical reports from the products. These systems should then produce 
information about product success and effectiveness as well as inform about the changing customer 
requirements (Lahtinen, p 38).

Kitcho (1998) divides a product launch process in three stages: assessing the product of the company 
and the markets for it, developing a marketing strategy and planning and implementing the launch 
(Kitcho, p 16). In this thesis, the focus is in the first and third ones. The marketing strategy in 
horizontal markets is done by other stakeholders (see Section 6.2 for details).

Productisation should be started by defining the whole product concept, because it is not always clear, 
especially in software products. Issues to be defined are the purpose of the product for customers, 
interfaces to other systems and the required equipment for it. Besides these technical issues, also 
customer segments, pricing policy, maintenance and support as well as documentation and the future 
development should be thought (Vitikainen, pp 16-17, originally Voipio 1995).

Mattila (2000) summarized the phases and tasks in them for productisation model (see Figure 9). Her 
model consists of three stages: identification of knowledge, producing the product to the markets and 
delivering the product there (Mattila, p 52).



30

Identification of knowledge Producing the product Delivering the product to 
the markets

* Organisation's core * Competitiveness
knowledge * Sen/ice packages and * Ensuring property rights
* Other knowledge areas -A customisation -A * Sales of the product

-y * Target customers -V * Further development of the
* Pricing
* Concrétisation

product

* Product life cycle and costs

Phase 1 Phase 2 Phase 3

Figure 9: Summary of a productisation model (Mattila, p 52).

Mattila (2000) talks about concrétisation of a product, which is a phase where the product gets its 
outfit. In service products, and in goods, this means, for example, making the product description 
documents for company internal use and the product brochures for marketing activities. A product 
description should describe the purpose of the product, its customer benefits, the customers and goals, 
competitors, price, the delivery principles and responsible persons for the product. A product brochure 
for outside use concretises the product in the customer point of view. It must be clear enough to point 
out the key features of the product and not promise anything that the product cannot deliver. The name 
of the product is also an essential part of the product brochure and the product description. The more 
abstract the product is, the more important is its name and therefore it should always be protected 
(Mattila, pp 41-42 and Sipilä 1996, p 94).

Choices for level of productisation vary. Only a part of the product can be productised, for example the 
documentation, or there can be a productisation-plan where the level of productisation is upgraded in 
phases. Besides the application area, the user group and openness of the system also affect to the level 
of productisation. Technically, openness means using standardised interfaces, which make it possible 
to transfer the product to different environments. Independence from specific suppliers or partners is 
avoided with this (Junttila, p 15).

3.2.5 Productisation plan

A productisation plan should be made right in the beginning of a product development project, same 
time with the project planning and requirement analysis. The productisation plan is meant for a 
common use of the management, marketing and product development. A goal is that only the 
development personnel have to read the technical documents and the requirements in technical sense 
are explained in the productisation plan. Productisation plans can be made in several levels, together 
they all should support the decisions made in the productisation process (Junttila, p 16).



31

A productisation plan should include the following (Junttila, pp 16-17):

1. Product strategy description,
2. Product description,
3. Arguments of the product existence,

a. Customer need analysis,
b. Competitor analysis,
c. List of target market areas,

4. Internationalisation and localisation plan,
5. Life cycle description of the product and sub life cycles,
6. Goal market positions, goal price and selling predictions,
7. Product development work organising,

a. Human resources and management,
b. Subcontracting,

8. Distribution channels,
9. Documentation,
10. Quality goals and quality assurance,
11. Software product copyrights,
12. Services,
13. Product management,
14. Marketing,
15. Finance,
16. Appendices.

This is a quite comprehensive productisation plan structure. There are both business reasoning and 
technical arguments combined. A productisation plan is almost like a product description document, 
which is introduced by several authors.

Composing a product description document for customers is a key function in productisation. It forces 
the company to put on a paper concrete issues about the product and think it from the customer’s point 
of view. Because the document is meant for the customers, it cannot be too long. Things must be said 
clearly and shortly. This procedure actually helps in clarifying the product properties for the company 
itself and therefore supports the product development (Sipilä 1996, p 98).

Sipilä states that a company should make the product description of a productised new item for internal 
use. This document can be used as a basis for product brochures that are used in marketing. Things that 
Sipilä includes in the description document are (Sipilä 1996, pp 74-77):



Product’s name and general description.

Product’s purpose and benefits for a 
customer,

Market potential, customers and goals,

Competitors and substitutes,

Fitting to company’s strategy,

Product description (core features, 
maximal model of the product),

Versions and variants of the product,

Concrétisation of the product (how a 
design is put into a sellable item),

Customer or project references,

Price,

Delivery times,

Responsible persons,

Further actions of productisation and 
product development,

Effects on processes.

Kitcho also mentions the importance of a product description document. Before the launch of a 
product, there must be a clarified description in order to market it. Additions to the Sipilä’s list above 
are (Kitcho, pp 23-30):

Compatibility with industry standards,

Information about first beta customers and description for their testing of the product.

Rules for sales support, like installation and customisation consultation,

Description of post-sales support, like installation, training or communications,

Description about the product training given for the sales personnel and for the customers, 
including the training materials to be produced.

Defining and reserving a good product name is essential, when putting a new product to the market. If 
the product satisfies some customer need well, it probably will face competition. That is why product 
names must be reserved in early stage of the process. It is also a question of what the customer gets 
when it buys a right to use or own the product. The product must be clearly identifiable (Sipilä 1996, p 
94).

3.2.6 Documentation

There are lots of references to documentation when productisation is introduced in the literature. In 
fact in the service sector the whole productisation is about documenting the knowledge and working 
processes of a company. Also in this thesis the task is to package the existing knowledge and product 
of the case company and to add some services on top of it in order to sell it to other companies. A 
major part of this process is the documentation. For these reasons, documentation related to 
productisation is introduced more detailed here.

The deeper the level of productisation is, the higher is the requirement for the documentation quality. 
This is because a higher level of productisation usually means mass production and more customers, 
and personal guidance cannot be given to them all. Documentation regarding installation procedures of 
a product is very important, because at least in mass products, the user must be able to install the 
software by itself without difficulties. The installation documentation should include also information 
about the hardware and licensing constraints (Junttila, pp 61-63).



33

Haikala and Märijärvi divide the documents in three categories: quality process related documents, 
project documents and product documents. They mention four kinds of product documents: user 
guides, installation and operation guides, training material and technical documentation. With 
technical documentation, they understand all functional specifications, technical specifications and the 
information about testing and product management (Haikala & Märijärvi, pp 59-63). The latter is 
usually company internal documentation and may not concern the customers at all.

Probably the most obvious form of documentation is the user guide. User guides should contain easy- 
to-understand information that informs the user about normal and abnormal behaviour of the system. 
They should have a logical structure that describes the steps of usage from the start-up through normal 
functionality to the closing of the system. Junttila states that the product developers should not be the 
ones that produce the documentation completely. This scarce resource should be saved and use a 
special documentation group that finalises the documentation based on the draft documents made by 
the developers. With this kind of approach, too complex technical document style is avoided from the 
final versions. To make it even clearer, some pilot users can participate the documentation process 
(Junttila, pp 63-65).

Training material is also a part of the product documentation. It can have different target groups like 
trainers in the company, trainers in the customer organisation or in distribution channel and the 
trainees in these organisations respectively. Most difficult is to make the self-study material, because 
in a self-study, there is no trainer to explain the unclear things (Junttila, pp 65-66).

Maintenance and customer support material is also challenging, because the place where support is 
given can vary from a separate maintenance unit or a product development organisation to a 
combination of them (Junttila, p 66).

All the documents should have a common form. Their look should be the same. Every document 
should contain following information (Haikala & Märijärvi, p 64):

- Name of the organisation,

Name of the project,

- Name of the document,

Version number and version history of the document,

- Number of pages in the document,

Editors of the document,

Inspectors and the approver of the document,

Current state of the document (draft, requested for approval, approved)

Table of contents.



3.3 Product management and services

3.3.1 Configuration control and release policy

Software products consist of several components, which are integrated to larger entities, 
configurations. These components are, for example, source and binary code files, specification 
documents, test plans, test modules and user guides. As components evolve during their lifecycles, 
new versions of them must be made. Evolution happens because errors are found and corrected and 
new requirements are introduced to the components. Versions of the components can be parts of 
different configurations. That is why an efficient configuration management must be in place. Haikala 
and Märijärvi divide the configuration management into three segments: managing the versions of 
components, managing the versions of configurations and the mode of operation used in handling the 
two former ones (Haikala & Märijärvi, pp 237-238).

Configurations can version for different reasons, also others than error fixes or new feature 
requirements. There can be, for example, different kinds of usage environments, the product can be 
sold in smaller pieces to some customers or there can be customer specific customisations in the 
product. Haikala and Märijärvi state that after the initial version of a component is produced in a 
project, all changes to it require an approval, for example from a project meeting. A formal process 
that they suggest is that after an error report or a change suggestion is received, it should first be 
approved. Only after that it can be implemented and after testing, the change should be approved again 
(Haikala & Märijärvi, pp 243-246 and Junttila, p 89).

A company must have defined a policy, according to which new features and corrections are 
introduced and delivered to the customers. A company can have a product release design document for 
defining which corrections and new functionalities are taken in to the coming releases and setting the 
dates for the releases (Junttila, p 89). A system release is a version of the product that is delivered to 
customers. It contains some new functionality or is an adaptive version for a new environment. A 
release is more than just a configuration of program blocks of the system. It includes also 
(Sommerville, p 684):

1. Configuration files for configuring the new release to the target environment,
2. Changed data files of the system release,
3. An installation program for the release,
4. New version of the documentation of the system.

There are different kinds of releases. Enhanced releases contain new functionality and they are 
delivered to all customers. Between them, repair releases can be introduced to fix problems in previous 
enhanced releases. Between customer releases, a company can build its own internal version for testing 
purposes, for example. In Figure 10, this kind of a release strategy is described (Sommerville, p 686- 
687).

34



35

Enhanced
release

Repair
release

Repair
release -► Enhanced

release
Repair
release

HI

ШЯШШШШЯШ

Figure 10: System release strategy (Sommerville, p 687).

Studies in the software industry have shown that every enhanced release that introduces new 
functionality contains also new errors. Therefore, a company should not deliver new enhanced releases 
too often. Due to the repair and internal releases between them, the rate of new enhanced releases 
should be approximately one release a year. To avoid further problems from a single error, the 
introduced enhanced releases must contain also the error corrections of the repair releases made 
between the new release and the previous enhanced release (Sommerville, p 687-688).

Release management becomes more complicated when not all customers want the new releases as 
often as the producer introduces them. The situation depends on which kind of an enhancement it is in 
question, how expensive it is to install a new version to the system and on which kind of a contract the 
customer has with the producer (Sommerville, p 687). Different kinds of approaches are, for example:

The selected release policy must be communicated to the customers.

All corrections include to the initial price for a certain release for a fixed period.

Error correction patches are included, but enhanced releases are priced separately.

All new releases of the system are priced separately.

The configuration management database needs to contain information about which customers a new 
version is delivered to. It also has to contain information about the hardware and operating system 
requirements for a particular delivery, the different managed versions of the configuration, versions 
containing a certain component and the number of change requests and error reports that are open on a 
certain component (Sommerville, p 679).

3.3.2 Customisation

The level of customisation for a product is a strategic decision. A service product can be productised 
so that it contains standard parts, module parts and customised parts. The standard part is the same for 
every customer, from module parts a customer can pick what he or she wants and the customised part 
is made separately for each customer (Mattila, pp 37-38).

There is a conflict between the expectations of customers to get tailored products and service but to 
pay only a price of standardised, stripped-down mass-product components. When trying to fulfil these 
expectations, companies that offer total service solutions are in the most difficult situation. Their 
competitors are most likely adapters of their business idea and offer a poorer customer support, for 
example. It is a strategic choice of the company into which group it wants to belong and it naturally 
affects its pricing policy. Selling a product entity or a complete service system is by no means more 
glorious than selling individual products; it is just a question of different product strategies (Sipilä 
1996, pp 65-66).



36

Mass-customisation means mass-production of specially customised products for individual customers. 
Formerly, tailoring of the industry products meant that only the largest customers could afford to 
invest so much that they got exactly the product they wanted. In a high quality product, the customers 
feel that they get even more than they have asked. They can even think that the product is tailored for 
them only, although it is just a unique set of standard components. Modularity is seen as the only way 
to gain the mass-customisation effect (O’Grady, pp 81-85 and Nybom, p 10).

Some level of customisation is needed, because each customer is different. This can easily lead to a 
situation where the extra costs of customisation outweigh the increased revenue from it. With a larger 
customer base, it also makes the processes very complex. A general trend is to be somewhere between 
pure standardisation and customisation. This approach has the benefits of smaller process changes but 
still with a reasonable product variety (Vaattovaara, p 17).

Heavy standardisation of products leads to a mass-production type of operation as well as to routine­
like specialised jobs and decision-making processes. Mass customisation takes the advantage of 
standardised basic product platforms and processes to meet the highly varying customer requirements 
(Vaattovaara, p 18). There should not actually be very much distinction between customisation and 
productisation. In fact, well-productised base products make customisation easier, because the basic 
things do not have to be designed all over again for each customer (Sipilä 1996, p 16).

A configurable product is a product family that consists of multiple products called variants. 
According to Tiihonen et al., many firms are nowadays interested in configurable products. However, 
the way they produce them is still based on individual orders from the customers according to which 
the products are tailored case-by-case. There is obviously a need for tools to define configurations 
(Tiihonen I, p 2). Modifications to the basic products can be made by (Clarke 1997):

Adjusting parameters like colour or size,

Making some extra features optional,

Parameterisation of the number of some features, for example number of e-mail accounts in an 
internet connection service,

Specialisation, for example by putting a special label to some products,

Custom extensions,

Custom modifications, where some elements of product are specialised for a certain customer, 

Supplementary services beside the basic product.

Configuration can be defined as a task of designing a product using a set of pre-defined components 
while taking into account a set of restrictions on how those components can be combined. Two kinds 
of configuration work can be identified: the product configuration in a traditional sales-order-delivery 
process or a so-called configuration design, which takes place already in the product development 
phase (Tiihonen II, p 2).



37

3.3.3 Product services

Offering the support and additional services is done for differentiating from the competitors and 
increasing the sales (Mattila, p 33). According to Kotler et al., the product-support services are a part 
of the product strategy and they can even be a major part of the total product offering. They are 
increasingly used as the augmented part of the product that offers competitive advantage to a company 
(Kotler et al., pp 585-587).

Services to a final customer depend on whether the customer is in direct contact to the company, or via 
an external distributor. Services included as a part of the product must be clearly documented in the 
contracts. A basic service is to provide the end users a channel for giving feedback and reporting 
problems. Regardless of the structure of the distribution organisation, its task is to give this service to 
the customers. Services for final customers can include (Junttila, p 81):

Web pages including guides and for example FAQs,

Contact information for presenting questions,

Fault management,

Consultation for special situations or special functionalities,

Training and training material.

Besides the previous ones, Kotier et al. include also credit and financial services, fast and reliable 
delivery, installation and after-sales services and repair to the customer product services (Kotler et al., 
p 587). Services for the distribution organisation depend on whether it is inside or outside the 
company. The purpose of the services for the distribution organisation is, however, to help it to sell the 
product to the final customers. Services for a distribution organisation can include (Junttila, pp 81-83):

Internal web pages including guides and for example FAQs,

Contact persons,

Training services (demos, usage examples, training material, training),

Material and tools related to the product (brochures, guides, pricelists, demos, press releases),

- Product development schedule,

Functional and technical descriptions of the product,

Delivery guidance,

Sales seminars and training days,

Customer feedback and logistics organisation.

Vitikainen defines the supportive functions to be merely different documentation related to 
installation, services, training and maintenance. As said earlier, the level of documentation depends on 
the level of customisation of the product. The level of documentation has two dimensions, formal 
issues and content issues. The demand on both of these increases as target group goes outwards from 
the company and as the type of documentation goes from supportive to independent documentation. 
The document types in Vitikainen’s definitions are technical descriptions, installation manuals, user



38

manuals and managerial manuals for maintenance personnel. In delivering the documents to the 
distribution organisation, Internet is a useful media (Vitikainen, pp 56-61).

Services given to a distribution organisation must also be properly charged. This can be difficult 
especially if it belongs to the same company with the product development organisation. Pricing 
should be cheap enough to ensure, for example, that the sales personnel attends trainings and thereby 
gains the latest information of the product to effectively sell it (Junttila, pp 83-84).

Customer training and marketing are even more important in developing products as they consist more 
and more of a core product and its supportive services (Vitikainen, p 31, originally Huomo 1993). 
When analysing new product ideas, also training that it requires should be studied. Level of customer 
training depends on the level of customisation of the product. With mass products, more emphasis is 
put on the documentation and self-study material whereas with customised products user training 
might be a better alternative (Vitikainen, p 49). Training given to the distribution organisation can vary 
a lot. The level of training depends on the technical complexity of the product. It also depends on the 
amount of direct user training given by the producer organisation (Vitikainen, p 32 and Junttila, p 83).

Software maintenance services contain three different types: corrective maintenance for error fixes that 
are discovered in testing or presented in the error reports made by the users, complementary 
maintenance for implementing new features requested by the customers and adaptive maintenance for 
tailoring the system to be used in a new hardware platform (Sommerville, pp 660-661).

A goal for organising a customer support organisation is that it burdens as little as possible the actual 
product development personnel. This requires an organisation with good processes for taking problem 
reports in and translating them into an easy format for the product developers to solve. There is a 
model of a four-layer customer support organisation presented in Table 1 below (Junttila pp 81-82, 
originally Mäkinen 1994).

Table 1: Tasks of the layered customer support model.

Layer 1 The customer contacts trough email or web pages to local distribution channel. 
Problems should be able to be solved by training and other support documentation 
material.

Layer 2 The customer contacts via phone, which can solve slightly harder problems than
Layer 1.

Layer 3 Problems that are more difficult are solved by experienced designers, technical 
support or a specialist in distributor’s organisation.

Layer 4 Topmost support organisation solves all the toughest problems and is the only one 
that can take direct contact to product development.

Layered customer support model should be invisible to customers. They should not know that there are 
layers and should not notice when their request is moving from one layer to another (Junttila, pp 82- 
83).

3.3.4 Product management organisation

To manage a modular product, a company must have a product management function. Besides 
information of the product functionality, it shall manage information about the markets, quality, tools, 
deliveries, problems and changes of the product (Junttila, p 85).



39

Kotler et al. suggest that a special multidisciplinary team is established to take care of the actions 
related to the new-product development process. It must know the goals of the top management and 
have enough resources in use. It should work in parallel with the actual product development 
organisation (Kotler et al., p 625). A product team should contain representatives from planning, 
design, production, sales, distribution and evaluation. The information shared within this team contains 
(Meyer & Lehnerd, pp 138-139):

Results of market studies,

Details of competing products, even on 
a subsystem basis,

Platform strategy,

Engineering designs for key subsystems 
and interfaces in next platform,

3.3.5 Sales support

There are many different ways to deliver the products to customers. The channel can involve several 
different kinds of organisations. There can be, for example, direct sales force of the company, resellers, 
developers, system integrators, distributors or original equipment manufacturers (OEM). A general 
categorisation model is to divide the channels to direct and indirect ones. In the direct model, usually 
with industry or tailored products, own representatives of a company sell the product to the final 
customers. In the indirect model with mass products, selling is done by external organisations that 
form the distribution channel (Kitcho, pp 77-78 and Junttila, p 26).

Before a new product launch there is a challenge to get the right information to the sales channel early 
enough. The channel must get the marketing material well in advance. They also need training and 
selling tools for the product. In one sense, a company first has to sell the product to the distribution 
channel and to provide it with tools to sell the product to the final customer (Kitcho, pp 78-79). The 
R&D organisation must continue this sales support throughout the whole life cycle of the product.

In the direct selling mode, the R&D must understand how the sales organisation inside the company 
works, which are the contact points and what information they need and how they need it. Marketing 
material for a direct sales force is different from the one given to customers. Direct sales force can be 
given company confidential information about the product and information about the strategic 
objectives of the company. They are also given product reference guides and product configuration 
tools and guides. Training related to the product is also provided for them (Kitcho, pp 79-82).

Junttila states that there can be separate versions of the user guides for the final users and for the 
administrators. Materials for a reseller include brochures, demos, slide sets, product description 
material, product catalogues, pricing lists and newsletters. The same applies to the training material, 
which can include different information for the trainers than for the trainees (Junttila, p 61).

Indirect channel can mean several things. It can be a value-added reseller or a system integrator, who 
just uses the product as a part of its own offering. Developers create software applications on top of the

Schedules,

Project budget, sales projections and 
resource needs,

Product family rollout plan,

Company executives’ comments,

Unresolved questions.



40

platform provided by the company and they use different software tools to do that. They then sell an 
integrated hardware and software product or just a software product onwards. OEMs use the provided 
products as parts of bigger complex products that they sell to their own customers. Common for all of 
these is that their focus is not on the product of the supplier company, but on their own. This means 
that a company must market the product to them, not to their final customer (Kitcho, pp 82-83).

A company should get the indirect channel to buy its product instead of a product made by a 
competitor. There are some things to be considered about indirect channels (Kitcho, pp 83-87):

Determine the business model of the channel and thereby its needs for the product. The channel 
is primarily trying to fulfil the needs of its customer. Requirements for the supplier product 
reflect that fact.

Business relationship and contract agreements with indirect channel must be defined.

Defining what kind of product information and training the channel needs and how it is given 
to it. This material is most likely different from the direct channel’s material, considering for 
example technical details and roadmaps.

3.4 Summary of the productisation models

Different authors included several different things to a productisation process in Section 3.2. To sum it 
up, all of them see the process to contain the following four stages:

Preparation work that includes determining the customer needs, business reasoning and 
competitor analysis,

The actual product development and building work, which includes also documentation and 
service creation,

Marketing activities and implementing a product management organisation,

Delivering the final product, follow-up work, maintenance and further development of the 
product.



41

The two points in middle of the previous list define the core productisation process. It includes 
following activities:

Creating product descriptions and clear user documentation,

Creating documentation for further developers,

Defining modularisation and versions of the product, also from internationalisation and 
localisation point of view,

Defining the quality goals of the product, implementing quality assurance and planning of 
further development,

Testing existing product and its boundary values and performing integration testing,

Creating copyright systems and license terms for a product,

Creating services organisations and systems for: 

о Receiving problem reports, 

о Distributing updates of the product, 

о Training of users.

Creating a product management organisation for handling the product configurations, 
requirements and services related to the product.

The issues presented here are studied from a couple of product offerings in telecommunications 
industry in Chapter 5. In Chapter 6, the telecommunications platform of the case company is 
introduced and suggestions are given in Chapter 7 on what should be done to it in the productisation 
project that has been started in the case organisation.



42

4. PLATFORM AND SOFTWARE PRODUCTS

4.1 Platforms for products

4.1.1 Effective application development

For many communication and collaboration functions, a shared infrastructure is needed. Delays, 
interruptions and errors in functions cost the parties involved lots of money. Wainewright lists that an 
effective infrastructure must have many supporting applications, multiple providers and essential 
standards (Wainewright, pp 6-7).

For a company to succeed with a software platform, it needs to attract enough application developers 
to use its platform. It remains as a challenge to manage the partner web. There must be some kind of a 
uniting force as an incentive to join the web of partners. This can mean, for example, a good enough 
technical support or providing updates. In addition, some companies have found their success on 
establishing developer communities where developers can put their components for public use and 
similarly use components made by others (Hoch et al., pp 196-197).

The centre of a web is usually a common technology platform. There are certain benefits for the 
developers related to it. First, a platform offers standardised APIs for others to use and therefore makes 
their work easier. Secondly, building such a platform is a huge effort, which saves time from the 
application developers (Hoch et al., p 199)

The more there are partners already, the more likely a platform will attract new ones to join. Similarly, 
the more there are developers, the more there are applications, and the more there are end-users willing 
to buy the basic product. As more customers come in, the more developers want to get a piece of their 
money. Still, for a kick-start of a community, a good basic platform must be available (Hoch et al., p 
197-198).

Traditionally, the term ‘platform’ in the software industry has meant the special hardware and later on 
the operating system that an application is designed to run in. Before the de-facto operating system 
standards, i.e. Microsoft Windows and different UNIX versions, the applications used to be tailored for 
different hardware ‘platforms’ like Intel, Macintosh or for special proprietary minicomputers and 
mainframes. Spread of the Windows and versions of UNIX freed the application software companies 
from this tailoring and allowed them to do only one product. The software then ran on different 
hardware, thanks to the common operating systems (Meyer & Lehnerd, pp 174-175). Same 
development is ongoing now in telecommunications and other sectors also. The application providers 
can sell their solutions to many vendors and operators if their technological base is the same.

A consequence from the separation of the platform development from add-in modules, i.e. the 
derivative products, is that the platform team can evolve to be a company inside a company. Meyer 
and Lehnerd presented examples that confirm this to be a successful managerial development. A 
platform product team continuously seeks for better designs and enhances its subsystems. It can also 
do that by looking for modules made by other companies (Meyer & Lehnerd, pp 199-200). This of 
course requires that the interfaces between product components are clear.



43

4.1.2 Strategie viewpoints for platforms

Long-term success of a company does not depend on a single product, but it requires a continuous 
stream of value-rich products. Such products form a product family. They share a common technology 
and address similar market applications. This common core technology part is said to be a product 
platform. Meyer and Lehnerd define a product platform to be a set of subsystems and interfaces that 
form a common structure and from which a stream of derivative products can be efficiently developed 
and produced. The term efficiently refers to the cost reductions that are achieved in production and 
procurement of components and materials. A more important thing is that the building blocks of these 
platforms can be rapidly integrated with new components to address new market opportunities (Meyer 
& Lehnerd, pp xi-xii). PDMA defines the term ‘product platform’ to represent the underlying 
structures or basic architectures that are common across a group of products or that will be the basis of 
a series of products commercialised over a number of years. Similarly, it defines the opposite phrase, 
‘a platform product’ to be the design and components that are shared by a set of products in a product 
family and numerous derivative products can be designed from this platform (PDMA glossary).

Cooper and Edgett see platform as an enabler. Building or buying a platform is investing in capability, 
hardware, software or technology that leads to development of commercial deliverables. Those can be 
either new, improved or enhanced entities. Characteristics for a platform are that it is more expensive 
to develop a platform than individual products or services and that it has a broader impact on the 
business eventually. Projects or products that are derived from a platform are not yet thoroughly 
known when the platform is designed and it creates a ground for various kinds of projects and products 
to be developed (Cooper & Edgett, p 141).

The original idea of a platform has been very physical product -based. As many industries have moved 
towards platform -type of thinking, it is nowadays referred to include also technological and 
operational capabilities. The analogy to, for example, oil-drilling platforms is still in place. The initial 
cost of building it is high, but then it can be used to drill a number of holes fast and at low cost. 
According to Cooper and Edgett, a chief executive of a major telecommunications vendor has said that 
in a few years the product development will be just turning on a switch in a platform to create a new 
service (Cooper & Edgett, p 140).

The real power of product platforms lies in the fact that they provide leverage to the product creation 
process if used properly. According to Meyer and Lehnerd, costs of developing a derivative product 
include only incremental costs and the investment to the platform, since the development work of the 
platform can be seen as a sunk cost. This is especially true if a company buys its platform from another 
vendor like is the idea in the horizontal markets. Typically, the incremental costs are only a fraction of 
the total costs spent in the platform development (Meyer & Lehnerd, p 41).

Taking into account the above-mentioned issues, there are three important things in platforms. First, 
decisions concerning platforms are of greater importance than the ones concerning single products, 
since their impact is more far sighted. Second, the usage and investing for a platform should be 
justified by knowing a couple of the first derivative products in detail, although there will probably be 
more of them. In other words, by showing the benefits from a platform for the first derivative products, 
it is easier to justify the investigation to the platform and to build a better design for it from the



44

beginning. According to Natis (2002), SUN’s strategy is to gain leadership in server platforms by 
offering the markets a set of applications built on its own platforms (Natis, p 6). Third, a company 
must recognise what kind of a platform it is building. Is it a platform that benefits the customers 
directly as a platform, indirectly via the derivative products or just some company internal processes, 
like a new customer information system for sales personnel (Cooper & Edgett, pp 142-143). In the 
case organisation, derivative products are already planned and developed based on the platform, so the 
second point of showing the benefits through derivative products should be straightforward.

4.1.3 Platform architecture and modularity

A platform consists of common components, modules or parts and their interfaces. Key parts represent 
major subsystems of the product platform and interfaces usually refer to the connections between the 
subsystems rather than individual components (Meyer & Lehnerd, p 7).

A very common approach and a useful model in building a platform is to have an as large standard 
module as possible and on top of that some modular parts and a few tailored parts for a customer. A 
customer sees the product from the tailored part point of view, and therefore thinks it to be more 
customised than it really is. By minimising the tailored part, the product development and delivery 
times as well as costs can be reduced (Sipilä 1996, p 69). Completely pre-defined product packages are 
difficult in pricing sense. There is always a risk that the customer wants some extra service afterwards 
and that cannot be charged properly (Lahtinen, p 36).

Potential improvements achieved through modularity are the reduced development times of products, 
increased product variety, reduced capital requirements for the new-product development and the 
increased freedom of design and component change (O’Grady, pp 3-4, 26-27). These benefits are 
applicable for both the producer and the buyer of a platform.

Modularity is based on assembling predefined modules into a product with some configuration 
information. Modularity requires knowledge on what modules can be integrated together. This requires 
that the product architecture is defined as well as the role of each component in it. After determining 
the roles and the module interfaces, the possible configurations can be described (O’Grady, p 18).

With a conventional product development cycle, the whole process has to be done every time from the 
scratch, which increases the costs enormously when the product variety increases. With modularity, 
the product variety is achieved through using different combinations of modules. Number of possible 
product configurations can be calculated with following equation (O’Grady, pp 95-97):

Number of configurations = J~[ y, ,where y¡ is the number of variants in module i. (Eq. 2)

Of course, the possible number of configurations must take into account the constraints between 
modules, i.e. their positive or negative dependencies from each other (O’Grady, p 97).



45

Modularity can be applied to a product in numerous ways (Sipilä 1996, p 69):

Core part and customer-selected extra parts,

An entity that is composed of compatible parts,

Maximal model, that the customer can strip down,

Basic model, that a customer can change to another version,

A basic combination, which includes continuous maintenance and update service.

In many occurrences, a concept of subsystem is introduced. Subsystems are well-isolated entities 
encapsulating a set of functionalities (see Figure 11). A general requirement for subsystems is that it is 
possible to change their implementation completely without any influence on other subsystems. Also 
changing another subsystem should not have influence on this particular subsystem. From these 
requirements, the following interface requirements can be defined for subsystems (MITA, p 39):

It provides a support interface for upper layers using this subsystem.

- It contains an adaptation interface for using lower level functions.

It has an optional protocol interface for communicating with other subsystems in the same 
level.

.External
'interface

Subsystem

Subsystem Subsystem

Subsystem

Platform Environment

Applications

X I

Subsystem Subsystem

1, j.:

External
interface

Figure 11: Modular element with subsystems and their interfaces (MITA, p 41).

Each subsystem in a product has a specific task and by combining them a higher level functionality is 
achieved. Therefore, Meyer and Lehnerd suggest that subsystems may also depend on each other in a 
way that changes in one subsystem require changes also to some others (Meyer & Lehnerd, p 40). This 
is an opposite viewpoint compared to the approach that the dependencies between modules should be 
minimal.

However, a company must be careful for not to use too many modules. A big number of modules gives 
a possibility to variety in products, but creates also more connections between modules and costs of



46

integration to the company (O’ Grady, pp 154-155). A big amount of possible configurations makes the 
maintenance of the system harder, which of course increases costs. For that reason, a well-defined 
basic part and a reasonable amount of alternative parts should be implemented (Vainio, pp 38-43).

4.1.4 Building a platform

Successful, robust platform products do not happen by accident. They must be managed and renewed 
all the time, in order to avoid the derivative products to be out of date. Literature in the platform area 
concentrates on manufacturing of physical products, but as Meyer and Lehnerd stated, physical and 
non-physical products share a number of similar conceptual elements when thinking of building a 
platform (Meyer & Lehnerd, p xii).

The common building blocks under a platform are (Meyer & Lehnerd, p 44):

1. Insights into the needs and processes of customers and competitive research and development 
to uncover those needs.

2. Product technologies in components, materials, subsystem interfaces and tools.
3. Manufacturing processes and technologies for competitive production.
4. Organisational capabilities for distribution, for customer support and for information systems 

used for control and to collect market feedback.
Manufacturing technologies are mostly related to the industries where the product is seen as a physical 
entity. They can be as critical as the chosen technology of the components. In process industry, the 
process itself actually is the product platfonn (Meyer & Lehnerd, p 47). By simplifying, it can be said 
that the production process and methods used to build a platform have also a great significance to its 
success. At least the process should not prevent the usage and building of the chosen technology and 
product types.

Organisational capabilities are the common building blocks related to distribution, customer support 
and information systems. Meyer and Lehnerd see these capabilities as building blocks for derivative 
products, which are included in the platform already. In any case, products must have an established 
distribution channel, either an own one of the company one established with its partners (Meyer & 
Lehnerd, p 48). One must keep in mind that the product can be, for example, a software build, which is 
distributed in an electronic form.

Meyer and Lehnerd suggest that managing of a product family evolution should be made in such an 
incremental model, where first derivative products are started to be build at the same time with the 
platform. Increments are then done first to the platform and then taken into the applications. In this 
kind of a model, concurrently one team is building new add-in modules and another is making 
enhancements to the platform. This way also the transition from a technological environment to a new 
one is handled by the platform team and application developers do not have to worry about it. The last 
point mentioned is one of the greatest challenges for the software companies in general (Meyer & 
Lehnerd, pp 191-193).



47

To accomplish the platform development task, there are five key steps to be taken (Meyer & Lehnerd, 
pp 235-236):

1. Define the platform strategy.
2. Determine the core building blocks of the new platform.
3. Build a composite design of the platform and attach key building blocks to it.
4. Develop a rollout plan for platform enhancements and for the derivative products.
5. Organise and empower the teams that will implement the platform and its derivative products.

One must note that in this horizontal business case there are no derivative products sold through the 
organisation unit in question, although the case company in wider sense produces them also.

Meyer and Lehnerd presented the Hewlett Packard DeskJet-printer platform development. It included 
a product family map. The map presents all the branches of the platform and the derivative products 
made from it. The platform itself must also be developed and enhanced. Hewlett Packard had made the 
enhancements and the development of a completely new version of the platform concurrently with the 
present platform and its derivative products. The enhancements included small feature extensions to 
the current platform without disturbing the existing functionalities (Meyer & Lehnerd, pp 28-29). 
Lessons from the Hewlett Packard strategy are (Meyer & Lehnerd, p 34):

1. Create derivative products from platform.
2. Enhance current platform to address new markets or to reduce costs.
3. Develop a completely new platform.
4. Do all above-mentioned three things at the same time.

Performance of a platform should be monitored. Company must gather data for it on a product family 
basis. A simple spreadsheet or database for performance analysis purposes should include knowledge 
on (Meyer & Lehnerd, pp 149-151):

Engineering costs.

Development times,

Manufacturing costs.

Market development costs,

Sales data,

Margins.

The platform performance depends largely on the success of the derivative products based on it. A 
simple formula for measuring the average platform efficiency is (Meyer & Lehnerd, pp 152-153):

Average derivative product engineering costs
Efficiency =

Platform engineering costs
(Eg. 3)



48

Efficiency here refers to the costs allocated for the products. In horizontal markets, this efficiency can 
have a tremendous meaning in marketing. A study of electronics firms made by Meyer and Lehnerd 
showed them that an efficiency value below 0.10 indicates a highly leveragable platform (Meyer & 
Lehnerd, p 156).

Besides costs, also the development times of derivative products are things that are supposed to 
become lower when efficient platforms are used. It takes probably a little longer time to build the 
initial platform than the first end product, but the next ones should be able to be developed in a lot 
shorter time. The cycle time efficiency for a platform can be expressed as (Meyer & Lehnerd, pp 159- 
160):

Time to develop a derivative product
Cycle time efficiency =---------------------------------------------- (Eq. 4)

Time to develop the platform

Although the task of a product platform is to offer a common ground for the derivative product 
development, they cannot be left frozen in any stage. Instead, the platforms must be evolutionary 
entities. They must be developed further and managed in the way that new technologies are taken into 
the platform and to the processes used in developing them. The evolution of a platform can be seen to 
follow a three-stage model. First, there is the initial platform architecture with the initial subsystems 
and interfaces between them. First derivative products are based on this platform. In the next stage, 
some subsystems have been developed further and changed to newer versions, but the architecture 
remains the same. Some new derivative products can be built on this platform extension. A completely 
new product platform is introduced when a number of subsystems and interfaces between them are 
reordered, i.e. the architecture of the platform is changed (see Figure 12, Meyer & Lehnerd, pp 41-43).

Figure 12: Defining changes to product platform and the products based on it (Meyer & Lehnerd, p 42).

A rollout plan for the platform should be made to have a forward-looking map for the product family. 
The plan includes schedules and contents for the initial platform and corrections made to it, the same 
things for coming platform extension versions and finally for the completely new, next platform



49

version. Improvement plans of individual subsystems should be mapped to this whole platform rollout 
plan (Meyer & Lehnerd, pp 241-242).

Product technologies can be seen as implementations of the knowledge of a company, which are taken 
as components into the final product. Just as new derivative products are made through incremental 
improvements to the existing platform, the platform itself should be renewed by integrating complete 
component technology implementations. These components can be made by the firm itself or by 
external suppliers (Meyer & Lehnerd, p 46).

Product technologies include also the subsystem interfaces. This applies both to proprietary 
connections but more importantly to the de-facto or regulatory industry standards. Product technology 
work includes searching for new technologies, taking part in the industry standardisation and bringing 
competitive information in to the company (Meyer & Lehnerd, p 46). As a summary, the platform 
product technology should be in the leading edge of the industry all the time and bring new 
technologies for the use of the derivative products.

4.1.5 Interfaces

The real power of a platform is facilitated by its interfaces. There are three kinds of interfaces in a 
software platform (Meyer & Lehnerd, pp 180-181):

1. Internal interfaces between subsystems (see Figure 11 in Section 4.1.3). The clearer these 
interfaces are, the easier it is to replace individual subsystems. Internal interfaces do not 
interact over layer boundaries in a layered architecture model.

2. The user interface between the system and its user or a machine-to-machine interface between 
the system and, for example, databases or other similar systems (external interfaces and 
interfaces to applications in Figure 11).

3. Interfaces between the platform and the add-in modules in application layer that are attached to 
it.

One must notice, that in the case of a platform, the user is actually either an application or its 
developer, not the final user of a product. External interfaces are the ones that need to be industry 
standard compliant. This is quite well understood nowadays. If there does not exist a widely adopted 
standard, the companies involved come together and create it for the industry segment (Meyer & 
Lehnerd, p 180-181).

The modules in products are defined by their interfaces to each other. The interfaces reflect the way 
they interact with the other modules. Interfaces are composed of mechanisms, functions, constraints 
and attributes. A mechanism defines the nature of an interface; is it a mechanical, an electrical or a 
software interface, for example. A function describes what the module behind an interface does. 
Constraints give boundaries for the use of the module and attributes refer to the contents of the 
interface itself, for example inputs and outputs. Products are put together by linking modules to each 
other through internal interfaces of the product. Some modules contain an interface to outer world and 
thereby give an interface to the whole system. A combination of modules is a matched set of 
compatible interfaces. It has also two other attributes. The modules must meet the customer 
requirements or enable the product to meet them and operate within the given constraints or make the 
product to work within them (O’Grady, pp 43, 149-150).



50

Modularity and clearly defined interfaces increase the competition between several module suppliers 
and therefore speed up the development cycle. Clear interfaces also reduce the need of communication 
directly with the design teams of other modules and let the development personnel of a certain module 
concentrate on the module itself, not its environment. This improves the overall product evolution 
(O’Grady, p 31).

When building interworking application programming interfaces, successful companies take their 
partners early on to the development. By announcing APIs early, also the partners are able to build 
their solutions in a short time-to-market (Hoch et al., p 193).

4.1.6 Standardisation

The only way to maintain the required co-operation for building interworking products is 
standardisation. Before complete standards are available, the providers must come up with some 
solutions for their products. They can either produce a proprietary vertically integrated solution or co­
operatively manage an infrastructure within a partnership of multiple participants. The former is 
closest to the way most of the vendors act nowadays, but those who adapt to the latter approach earlier, 
will gain competitive advantage by preparing for the universal, standards-based shared infrastructure 
that will emerge in the future (Wainewright, pp 7-8).

The need for well-defined external interfaces and interoperability of modules made by different 
companies drives the development of standardised interfaces. Standardisation is of high importance in 
the information industry related products. Besides the fact that the standards allow interaction between 
different bodies, it is nowadays also a customer requirement for an information industry product. That 
comes from the fact that standardisation increases competition and thereby lowers the prices and helps 
the customers to change the provider as the switching costs are lower (O’Grady, p 228).

Interfaces of a platform can be of strategic importance. According to Meyer and Lehnerd, experience 
has shown that specifying clear interfaces is critically important. They even suggest that the interfaces 
should have part numbers like components. Clear and standardised interfaces not only help to create 
derivative products faster but they also help a customer to use the systems better. Having an industry 
standard interface gives clarity and flexibility; the products of a company can be used in a variety of 
environments. Even more power from industry standards is gained when a company itself is active in 
creating the standards. This way the product of a company most likely fulfils the standards quickly and 
over the time also other vendors fulfil that industry standard with their products. Meyer and Lehnerd 
mention SUN Microsystems and its network file systems (NFS) -standard as an example of a widely 
adopted industry standard that was initially an interface definition of one company. SUN continued 
this by licensing its Java programming language to other vendors, which turned out to be a success 
(Meyer & Lehnerd, pp 40-41).

Widespread use of a multi-vendor, standards-based approach in system design helps to promote 
competition and stimulate technical innovation. An open standard interface encourages innovation by 
providing design flexibility, simplifying the work of the application developers and allowing the 
developers to focus on their core competencies and to create more and better applications. The end- 
users benefit from the continuous improvement of the services delivered (SA Forum, pp 8-9)



51

Advantages of standardisation are (Webb, p 105):

Devices in different networks can talk to each other.

The standardisation process is usually somewhat public, which brings more future-proof 
solutions to the market, as the viewpoints of different stakeholders are included.

For the same reason, more vendors share the same vision of the future system architecture. This 
way the future solutions are implemented faster and can be taken into use quickly.

Operators and their customers can buy their equipment from multiple providers, which reduces 
prices and speeds up the product development. It also gives them the feeling that they are not 
tight to a monopolistic supplier that might act in a self-interested way in the future.

Disadvantages of standardisation work include (Webb, p 106):

Standardisation process takes time, mostly because of the publicity aspects presented above.

Standardisation process produces sometimes an over-engineered solution, because all possible 
requirements are taken in. This adds costs and complexity to the vendors who want to 
thoroughly fulfil a certain standard.

Meyer and Lehnerd also talk about the disadvantages of standardisation. Long-term planning and 
research is essential in keeping a company in business, but it should not be the critical process in the 
development of the current product. Instead, building new products should mean integrating existing 
subsystems together, which takes a reasonable amount of time. Although this may seem to emphasise 
the meaning of the standardisation of subsystems and their interfaces, it is not a synonym for product 
platform. Robust product platforms yield standardisation but it does not work the opposite way. Too 
much of standardisation can cause the platforms to be heavy and inflexible, and there is no more room 
for customisation. It can also kill the means for competitors to differentiate from each other. The latter 
one drives only reduction of prices and forgets the idea of providing distinguished functional value for 
the user. For these reasons, standardisation should be selective, right elements for it should be selected. 
Interfaces are the ones that should be standardised, not the subsystem implementations. Internal 
structures of subsystems should leave the designers degrees of freedom to enhance them or to create 
completely new ones. This way some subsystems can turn out to be the differentiating factor for the 
company in the industry. Meyer and Lehnerd call this standardisation internal, and mention that those 
differentiating subsystems may become products themselves (Meyer & Lehnerd, pp 119-121).

Need for standard compliance is not completely dependent on customer acceptance, it is also a 
requirement for complex systems that integrate components of different vendors together. Module 
integrators are the ones who drive this requirement towards the module providers. By using standard 
compliant modules, an integrator has a possibility to be the first in the market. The hard task of an 
integrator is to assure the provider that the standard it wants to use will be the dominant one in the 
market (O’Grady, p 231).

Standards can be made by international standardisation organisations like ISO or ITU in the 
telecommunications sector. An advantage of the official standardisation organisations is that a wide



52

variety of opinions and viewpoints is usually taken into account before setting a standard. For the same 
reason they are, however, considered to be slow and bureaucratic (O’Grady, p 229).

Another option is to use market driven standards. These so called de-facto standards are solutions that 
have gained powerful market dominance and other companies follow the market leader (O’Grady, pp 
229-230). Nowadays companies have recognised the power of network effect and the disadvantages of 
competing standards in markets, and have therefore established alliances for creating a standard first 
and then started to compete for the market share.

4.2 Software platform products

A telecommunications platform is compounded of the server hardware, operating system, middleware 
software and the applications (see Section 2.2). Since the hardware and operating system are nowadays 
more or less standard components, the main target for productisation and differentiation of products is 
the middleware software layer. For this reason, the nature of software products is discussed here.

4.2.1 Nature of software products

A software product is a mixture of intangible components, which are integrated together and tested for 
compatibility and performance so that the buyer does not have to do that. The core product gives a 
customer the needed functionality whereas the supplementary functions enhance the image of its 
customer value. To point out the intangible functionality of a software product, strong marketing must 
be in place (Vitikainen, pp 42-43).

Companies can provide customers with complete products or partial solutions and the customers then 
choose their favourite combination of the providers for the final software solution (Sallinen & 
Seppänen, p 17). Customers may still want to buy complete applications, but more likely they want to 
have the possibility to change any component to a substitute that suites better for their purpose. For 
this reason, compatibility with third party components is a vital issue (Wainewright, pp 18-19). 
Packaged software products include software components, complete products and platforms. The 
degree of productisation in packaged software products varies from high via tailored to low. Things 
that vary between these are the amount of services for installation and maintenance, the novelty of the 
market and the novelty of the used technology (Sallinen & Seppänen, p 8):

To the production phase of a software product include compiling the software, copying it, printing of 
the documentation and packages and putting them all together and sending them to the distribution 
channel. Maintenance services are usually based on an agreement made between the seller and the 
customer for a certain period and for a certain price. The price includes correcting the faults that the 
customer has found and reported as well as the distribution of upgrades for the product (Junttila, p 20).

Customer requirements for a software product are often unclear, which results in complexity in the 
products. That is why incremental development should be used. It means first building a basic solution 
and then extensions to it. A problem is that only few standard solutions are usually available and even 
they might not produce competitive advantage for a company (Sallinen & Seppänen, p 16).



53

4.2.2 Required components of a software product

Junttila (1998) has a similar approach to software product components as was discussed in Section
3.1.1 for products overall. According to her, a software product has a core part, which is the program 
itself, and which is surrounded by the look and feel of the product. That means the packaging, the user 
interface and, for example, local features of the software product. In the outer section, there are the 
product services, the distribution channel, product management, maintenance support and, for 
example, user manuals and other guides (see Figure 13) (Junttila, p 14).

Distribution channel Product management Training Maintenance

Package Localisation Copyrights Product support

Services
Software

Guides

User interface visualisation

Accessory applications
Marketing material User manuals

Figure 13: Parts of a software product (Junttila, p 14).

Delivering a software product to a distribution channel can be done by giving master disks of the 
software to it and that way save in the delivery costs. The distribution channel is then responsible of 
making the necessary copies of the product and reporting the correct number of sold items to the 
producer. The problem is just how to be sure what is the amount of sold items. An effective licensing 
practice is probably the only way to handle this. Another method nowadays is to handle the 
distribution via the Internet. It is especially useful in delivering corrections and updates to an already 
delivered software product or its documentation in the maintenance phase. The Internet is usually 
available 24 hours a day and is therefore immune for example for different time zones. It also gives a 
direct link from the customer back to the producer. In a tight competition nowadays, no software 
company can afford not to have a web page for its product (Junttila, pp 77-78).

Services related to a software product usually take place in the maintenance phase. The product 
support depends of course on the product itself and the already implemented support activities but also 
on the nature of the customer and its environment. Especially this is true in industrial business where 
customers buy expensive products and their number is relatively small (Junttila, p 80, originally Taylor 
1992).

4.2.3 Software platform

Every software product has its internal architecture that is formed from subsystems and their 
interfaces. This architecture can be structured in such a way that it creates a robust platform for 
effective development of derivative products. Platform is the engine, and derivative products are 
created by developing add-in modules and plugging them into the platform. Variety and the feel of 
tailored products can be offered to customers by providing customised modules, which can be taken in 
or left out from the product with no additional integration cost. The platform, the engine, is a core set



54

of programs that propel the whole system (Meyer & Lehnerd, pp 177-178). The approach is very 
similar to the ideas presented in Section 2.2 about the layers of a telecommunications network element.

Just as the physical products, the software subsystems must fulfil industry standards and their internal 
interfaces must be clearly defined in order to effectively integrate them to work together. The add-in 
modules integrated into a platform represent the incremental development for special user group needs. 
The whole power of platforms lies in the fact that the application developer does not have to start from 
scratch with every new product. The R&D efforts can be focused to integrating the applications and 
tools in platform level instead of the hardware or operating system level. At the same time as the 
existing platforms make the development of new derivative products faster, the increments of a 
platform open up new market opportunities. Improvements in the underlying software platform should 
still be hidden from the end-customer that uses the derivative products. This requires good architecture 
and interfaces so that the add-in modules do not have to be renewed every time when the platform 
develops (Meyer & Lehnerd, pp 179-180).

4.2.4 Software architecture, modularity and interfaces

Software architecture is harder to understand just by looking at it than physical products. The approach 
of product families and platforms is still fully adaptable to non-physical products like software and 
information products or services like insurance. Software is usually built on a layer model where upper 
layers use services from the lower ones. Meyer and Lehnerd introduce the layers to be hardware, 
operating system, software development tools and applications (see Figure 14). The development of 
systems has evolved over the time from proprietary to open systems. A common approach is to use 
client-server architectures. The networked computing has accelerated this development even further 
(Meyer & Lehnerd, pp 172-174).

Development tools form a key layer in platform thinking (see Figure 14). They contain things like 
programming languages and libraries of functions or classes, which can be used in building of specific 
types of end-user applications. Tools are made as modular and flexible as possible so that the 
application developers can use a combination of them according to their needs. Using widely adopted 
tools, the final applications can be developed by a completely different software company than the 
platform. The tools may be generic or meant for a special type of application development, like 
industrial, medical or telecommunications industry applications. See more about the development tools 
in Section 4.2.5 below (Meyer & Lehnerd, pp 172-174).



55

СО

S-? « -6 ® 
03 "О 13 
О 03 -о

=5.-о ё о. £ t <

£ E
CD

.C
03 «- O)

§ a c
Ш

о ™ CD
CO CL J=

h-

О)

Ws
1.2
I£
о £

Application / Solution 
for Market Niche 1

Next Generation 
Applications / Solutions 

for Market Niche 1
A V tor Market Niche 2

I x: tor Market Niche 3,

V
Next Platform

Future Platform

c Software Development Tools: Languages, Libraries, Databases, etc. Z)
1 1 1

(_____ Networking and Distributed Computing Services )_____________________________________________
cz Operating Systems D_______________________________________________________
(_____ Computer Hardware and Peripherals )X \F T"

Figure 14: Managing the evolution of Software Product Family (Meyer & Lehnerd, p 193).

Different services and tools have been put on different layers of the architecture in the past and this 
phenomenon will be true also in the future. For example, local area networking was done before by 
specific products like Novell Netware, but today basic features of networking are included in the 
operating system (Meyer & Lehnerd, p 174).

The current and future network environments encourage a modular software componentisation. 
Technology trends in standards-based, multi-provider network infrastructure include (Wainewright, pp 
8-9):

Plug-in technology for third party functions,

Remote infrastructure services providing behind-the-scenes functionality (user authentication, 
payment processing, etc.),

Enterprise application integration, linking applications within an enterprise or across a value- 
chain.

The principle of using modularity in software consists of two things. First, modules must be cohesive, 
i.e. logically related modules should be bound together. Second, they should be loosely coupled, 
meaning that dependencies between the modules should be minimized (O’Grady, p 183).

Success and elegance in the design of software architectures is achieved through modularisation and 
minimising the number of interfaces in a system. Optimising each subsystem may result in sub- 
optimisation of the system as a whole, however. Minimising the number of interfaces is essential and it 
has to be ensured that those interfaces are not allowed to develop in an uncontrolled manner. One 
change in how the subsystems work together usually generates a chain of modifications, which can be 
described as a ripple effect to the whole system. This can be devastating to the whole platform system 
development. Managing the internal and external interfaces is as important as developing new 
functionalities to an existing system (Meyer & Lehnerd, pp 183-184). Ran reminded that complex



56

systems are not built from simple components. The components are, wanted or not, still dependent on 
each other and must follow some system-wide policies for example for security, overload control and 
for fault detection (Ran, p 164).

4.2.5 Development environment

The need for a rapid product development has increased the importance of languages and tools in 
developing the applications. Approaches of reusable code and object oriented modelling are also 
consequences of this need (O’Grady, pp 183-187). In Section 4.1.1, effective application development 
was discussed. As a consequence for those thoughts, it is rather obvious that a platform must offer an 
environment with tools for the application development.

Sommerville (1995) uses the term computer aided software engineering (CASE) to denote the 
automated tool support the for software development. There are nowadays various different CASE 
toolsets available. Most of them are production-process support tools for specification, code generation 
and testing. A few of them are process management support tools for process modelling management 
and some are meta-CASE support toolsets for generating other CASE-tools and processes. Terms such 
as tools, toolsets, workbench and environment are used inconsistently to mean CASE-tools. 
Sommerville defines that the tools support individual process tasks like compiling a program, whereas 
a workbench supports a complete phase of the process like the specification or the implementation 
phase. Workbenches usually contain a set of tools integrated together. Environments support all or 
nearly all phases of the process and include several workbenches (Sommerville, pp 506-510).

The development environment tools can be classified according to which phase of the process they 
support or according to the extent of support in that particular field. There are tools for example for the 
following phases (Sommerville, pp 507-508):

Product development management 
(estimation etc.),

Editing,

Configuration management (version and 
change management systems).

Prototyping (high level languages, user 
interface generators),

Method support (code generators, data 
dictionaries),

Sommerville did not include in the list the 
development cycle.

A software engineering environment (SEE) is a set of hardware and software tools integrated together 
and supporting the software development process from the initial specification to the module and 
system testing. What distinguishes the software engineering environments from CASE tools is that the 
facilities in them are integrated from platform, data, presentation, control and process integration point 
of view. The SEEs support teamwork-based development and configuration management. They also

Language processing (compilers, 
interpreters),

Program analysis,

Testing,

- Debugging,

Documentation,

Re-engineering (cross-reference or 
program restructuring systems).

design tools, which are also an essential part of the



57

support a variety of different tasks related to the development process, from specification to testing. A 
part of the integration of tools is that all project related files are stored in one shared place, and several 
or all tools have an access to it (Sommerville, pp 548- 549).

Sommerville presents a SEE to contain three layers: platform services, framework services and 
workbench applications. Developers of software see the environment as a set of workbenches 
supporting their application development process. Note, that here again Sommerville has used the 
word ‘platform’ in a different meaning than elsewhere in this thesis (Sommerville, pp 549-550).

The platform services of a development environment depend on the hardware and operating system on 
which the development is done. This environment is called the host system. It is possible that the final 
software runs on an environment, which does not have development work facilities (see Figure 15). 
Embedded software has typically this kind of restrictions. The platform services are usually used in a 
development environment where several computers are connected to each other with a local area 
network. The environment must allow these computers to be of different types and to have different 
operating systems or different operating system versions. The common platform services for all 
developers include file and process management services, network and communication services as 
well as window management and print services (Sommerville, pp 550-551).

Host system

Network linkNetwork link

Target computer 2Target computer 1

SEE running on a 
workstation computer

Figure 15: Host-target development (Sommerville, p 551).



58

The framework services are usually implemented by using individual platform services. They are 
specifically designed for a certain CASE workbench for a dedicated task. Sommerville identifies five 
services that he includes in a framework services reference model (Sommerville, pp 552-558):

Data repository services, for naming and storing entities and creating dependencies between 
them,

Data integration services, which supports software development by providing version and 
configuration management to entities,

Task management services, which provide activity execution and event monitoring services in 
the environment,

Message services for tools and frameworks to communicate with each others where some tools 
act as deliverers and the others as registered users for messages,

User interface services, which are divided into layers and by which they support integration of 
presentation.

In the workbench applications layer of the development environment, Sommerville presents three 
levels of tools and types of integration for them (Sommerville, p 559, see Figure 16):

Integrated tools which are totally inside a framework and use only services from it,

Semi-detached tools, which manage also own data entities but still use services from a 
framework,

Foreign tools that run on the same machine but do not use any services from the framework.

Semi-detached
tools Integrated tools

Foreign tools Framework services

Platform services

Figure 16: Tool integration with a software engineering environment (Sommerville, p 559).

A SEE should allow the usage of all kinds of tools and the possibility to integrate new ones to the 
environment as the needs for application development evolve. There is still a certain circulating 
problem with the integrated tools. Total power from a platform and a framework is got only with 
integrated tool environments, which over the time increase the market size for individual tools in it. 
However, the tool developers are not keen on developing tailored integrated tools until the size of the 
market is already high enough (Sommerville, p 559).



59

5. EXAMPLES OF PRODUCT SOLUTIONS IN INDUSTRY SEGMENT

In this chapter are introduced some product offerings that have similarities with the platform that the 
case company is productising. First one is the IBM WebSphere Application Server and the second one 
the Resilient Telco Platform of Fujitsu Siemens Computers. In the end of the chapter, a look is taken 
into the standardisation work done by the Service Availability Forum.

IBM WebSphere is a software platform for making and running e-business applications in several 
supported computing environments. It provides basic building blocks, tools and methods for adding 
user accessibility to services and ways to integrate solutions to other businesses. IBM promotes in its 
web page that WebSphere is a solution to dynamically integrate business strategy and information 
technology into e-business (IBM web (1), 14.10.2002).

The WebSphere product family consists of several products built on top of a software platform. In 
other words, IBM has used the approach of building a common platform and then dynamic derivative 
products on top of it. The family includes, for example, the following software packages (IBM web 
(1), 14.10.2002):

WebSphere Business Integration,

WebSphere Application Server,

WebSphere Studio,

WebSphere Portal for Multiplatforms.

The WebSphere Application Server is chosen for closer investigation in this study.

The Resilient Telco Platform of Fujitsu Siemens Computers is a software platform solution for 
building highly available telecommunications application servers. It uses standard hardware and a 
standard operating system under it and provides an application programming interface for applications.

5.1 IBM WebSphere product in general

IBM WebSphere Application Server is a scalable transaction engine for e-business applications. It 
provides a foundation that supports the on-demand business applications. It contains a Java 2 
Enterprise Edition (J2EE) application server and a development environment for it (IBM-web (1)). 
IBM has defined five separate editions of the product (IBM-web (2), p 1):

WebSphere Application Server-Express, an easy to use start-up for e-business applications,

WebSphere Application Server for z/OS, J2EE qualified configuration optimised for z/OS 
services,

WebSphere Application Server Network Deployment for distributed configurations using 
clustering, edge technologies and high availability,

WebSphere Application Server, the core product of the family with J2EE and web 
technologies,

WebSphere Application Server Enterprise to integrate business operations to application server 
functionalities.



60

Based on these editions, IBM has defined four different scenarios of the base products and 
development tools for different customer types. The scenarios are available for start-up companies, for 
small, growing companies, for mid-sized companies and for large, multinational companies (IBM web 
(3), 14.10.2002).

Besides the basic configurations, the provision contains also adapters, with which the customers can 
connect their business applications to the Application Server using industry standards like J2EE and 
XML (IBM- web (4), 14.10.2002).

WebSphere Application Server version 5.0 is J2EE -standard compliant, as it passes the SUN J2EE 
test suite. It implements a set of J2EE services and supports the SUN J2EE APIs but contains also 
additional, proprietary interfaces. Standard interfaces for Enterprise Java Beans (EJB) are defined in 
javax.ejb classes, which are described in the SUN web pages (Interview, B.K, 1.11.2002, and SUN- 
web, 4.11.2002).

The WebSphere Application Server is deployed to the target environment using a GUI-based installer 
or directly by decompressing an rpm-file. It then runs as a separate process in the target computer. 
Other applications use applications inside the application server process by first resolving the address 
for the service and then invoking calls directly to the application (Interview, B.K, 1.11.2002).

5.2 Components and services of the WebSphere Application Server offering

5.2.1 Documentation

In WebSphere Application Server, a hypertext documentation centre comes with the product. It is 
meant for both the application developers and the system administrators. A number of documents can 
be downloaded also in pdf-format from the IBM web pages. They contain, for example, red books 
about main topics for developers, like security in J2EE (Interview, B.K., 1.11.2002).

5.2.2 Support Services

Since IBM is a big company and its products have thousands of customers, support services for the 
products are also extensive. IBM provides a problem reporting system for the application developers in 
customer organisations. A customer unit has only one user account in the system and must therefore 
deliver the problem reports through one dedicated person (Interview, B.K., 1.11.2002).

There is also a feature request database in the IBM website. Again, there is only one user account for 
each customer company to this database. The customers can seek through the features that have earlier 
been requested to avoid requesting same features again. Customers can see the requests made by 
others, but they do not know who has made each request (Interview, B.K., 1.11.2002).

IBM has collected several customer support services under one service point in the Internet. It calls 
this point the Community. Besides feature requests, the Community website includes features for: 
(IBM-web (5) 14.10.2002):



61

Submitting an idea or article to be published in their website,

- Attending to an event or conference related to WebSphere or submitting an own idea of an 
event that should be in the list,

- Sending questions to IBM WebSphere experts, which publish monthly a list of top questions 
with answers to them on the website,

User groups for changing ideas and experience among other developers using WebSphere.

5.2.3 Education

IBM promotes education modules for its products in its web page. There are instructor lead courses for 
WebSphere in general, for the Application Server separately and for other WebSphere tools. There are 
also distance learning packages and online tutorials for different parts of the product family. IBM 
provides also personal training in the Internet with web broadcast modules. It has 2-3 days training 
courses, where the developers are taught how to make applications to the Application Server (IBM- 
web (6) 14.10.2002 and Interview, B.K 1.11.2002).

IBM provides newsletters and magazines for developers using the WebSphere product family. There 
are several different magazines or newsletters that the developers can subscribe (IBM-web (7) 
14.10.2002).

Furthermore, IBM has a concept called the Software Services for WebSphere. It offers technical, 
product-specific services for the WebSphere software family products. Those include skills transfer, 
implementation, migration, architecture and design services, pilot workshops and education as well as 
training on how to install, configure and maintain an enterprise-scale WebSphere Application Server 
and assess the performance of applications built on it. There are different levels of service suites 
(overview, mini suite, full suite and so on) and they contain varying combinations of classroom 
training, self-study and hands-on -type of training. The classroom and practical trainings are lead by 
IBM’s own application area experts and the company calls these education solutions the Centers of 
Excellence (IBM-web (8) 14.10.2002).

5.2.4 Development environment

As discussed earlier, a platform -type of product needs an efficient set of development tools in order to 
make suitable applications on top of it. IBM offers the WebSphere Studio Application Developer for 
WebSphere Application Server, which is a graphical development environment for building, testing 
and deploying applications in several operating systems and with multiple devices. The development 
environment includes command line scripts for making deployable EJBs from source code java 
classes. They are stored in the JAR-file format. After deploying applications with the WebSphere 
Studio tools to the Application Server, other applications can immediately start to use them. The tools 
and scripts are delivered in a compressed file format and they can be installed directly to the 
development environment (IBM-web (9) 14.10.2002 and interview, B.K., 1.11.2002).

There is also a Telecom Application Toolkit for developing telecommunications applications and 
integrating them with the Application Server or with other IBM WebSphere products. It is an 
extension to the WebSphere Studio Application Developer and it helps in integrating e-business



62

applications to different types of telecommunications networks (wireline, wireless and internet). It is 
based on industry standards like Java, Parlay, OSA and 3GPP (IBM-web (10) 14.10.2002).

5.2.5 Consultation

IBM is one of the biggest services and consultation companies in the world. With its teams of 
consultants it can provide customers services for assessing, planning, designing and implementing e- 
business solutions based on the WebSphere product family. IBM uses its Global Services organisation 
resources for delivering services for the WebSphere Application Server customers. Help services are 
available, for example, for installation and application implementation (IBM web (8), 14.10.2002).

5.3 Fujitsu-Siemens Resilient Telco Platform (RTP)

Fujitsu Siemens Resilient Telco Platform (RTP) is a software solution that addresses users who need to 
achieve permanent availability of their applications. The RTP requires no modifications to the 
operating system or the database used. Instead, it works on top of a standard, off the shelf Solaris or 
Linux system in a standard cluster environment, offering additional layers of functionality. The single 
system image that the RTP provides makes the application independent of the complexity of the 
underlying hardware and software and especially of the current system configuration (see Figure 17). 
Thus, the application can be unaware that it is a part of a cluster, which makes the development of 
applications easier. The location of the resources within the cluster is completely transparent to the 
application and the RTP takes care that they are available all the time, no matter where they are 
actually located (FSC-web (1), 8.1.2003).

Cluster Hardware/ 
Operating System

Cluster Hardware/ 
Operating System

Third Party 
Components

Résilient Telco Platform

Application Development Environment

Application/Service Layer

Figure 17: Overview of Fujitsu Siemens Resilient Telco Platform4 Continuous Services (FSC (3)).

The Resilient Telco Platform as such is a software solution addressed by Fujitsu Siemens Computers. 
The product that currently is based on this solution is called Resilient Telco Platform4 Continuous 
Services (RTP4). The major building blocks of the RTP4 platform are (FSC (1), p 2 and M.R. mail 
interview 21.1.2003):



63

Off-the-shelf server hardware.

Standard, open operating System (Linux),

Standard Cluster Database (e.g. Oracle),

Standard Cluster Framework,

Resilient Telco Platform 4 Continuous Services Middleware.

5.3.1 Product and target group in general

The Resilient Telco Platform4 Continuous Services (RTP4) is a software layer for the implementation 
of continuously available communications services and E/M-commerce applications (FSC (3), p 1). It 
addresses customers, who want to implement true zero downtime applications with availability beyond 
99.999% (less than five minutes downtime per year). This requirement can only be met by applications 
that operate in parallel and can respond to the failure of individual components with rapid switchover 
times. The switchover is done to additional redundant components. Writing and testing such 
applications is a very expensive business. It requires highly specialized knowledge from the 
application developers about the underlying layers (hardware, operating system, databases and 
protocols) (FSC (4), pp 5, 10).

The RTP4 is targeted for network equipment manufacturers, for integrators and for IS Vs, who are 
focusing on mobile business services and taking the advantage of the convergence of networks and 
media (FSC (4), pp 23-24). It is based on standard, open hardware and software products. High- 
availability is achieved through cluster technology. The middleware layer makes the cluster 
technology transparent to the applications and provides the generic functionality needed by 
continuously available carrier-grade applications and services. Carrier grade services are defined by 
supporting (FSC (3), p 2 and FSC (4), p 3):

Scalability from a few thousand to millions of users.

High parallelism with more than one million busy hour call attempts (BHCA),

Service availability in the order of 99,999% or more,

Very short response times to client requests (less than 500 ms).

When a solution provider develops an application based on RTP, the service can easily be deployed on 
several hardware platforms, because the RTP handles the interaction with the hardware (FSC (4), p 
14).

FSC has grouped the actual RTP functions into three different areas (FSC (4), p 15):

Scalability and availability area,

Protocols,

- Operations, administration and maintenance area (OAM).



64

5.3.2 Suggested benefits and value of the RTP

Fujitsu Siemens Computers suggests that with systems based on the Carrier Grade Linux and RTP, the 
user benefits from a low cost of ownership and a low integration overhead through the consistent use 
of standard components. Compared to the traditional proprietary solutions, the user may utilize the 
latest state-of-the art processor and computing platform technology using off-the-shelf components. 
The well-known operating system environment and quick and easy learning curve for RTP assists 
developers to be productively working on RTP-enabled applications, speeds up the time-to-market as 
well as the customisation (FSC-web (2) 8.1.2003).

Benefits for application developers from using RTP are that they can concentrate on business aspects 
like application logic and user requirements, whereas the distribution model, hardware dependencies 
and recovery actions are addressed by the cluster experts (FSC (4), p 11). Issues that are handled by 
the platform provider are (FSC (4), pp 23-24):

High scalability and availability,

Cluster management, recovery handling and error treatment,

All critical scalability and HA features tested on RTP level,

Providing rolling software upgrade features.

The key benefits from using the RTP for application developers and integrators, network equipment 
manufacturers or ISV organisations are listed in Table 2.

Table 2: Benefits of using RTP for different groups of customers (FSC (1) p 4, FSC (3) p 2 and FSC (4), 
pp 23-24).

Short time to market through straightforward 
hardware abstraction; developers see a consistent 
single system image, independent of hardware 
configuration.

It helps to focus on company’s service and 
application core competencies.

Cost control of carrier-grade applications through 
the use of RTP functions.

Allows the use of standard development and 
deployment technologies.

Scalability from developer desktop to largest carrier- 
grade cluster installations.

Reduces implementation complexity due to 
well-designed application and administration 
interfaces.

Improved application portability through the 
separation of high availability functions from 
application features.

Full, worldwide support by Fujitsu Siemens 
Computers.
Minimal adaptation and training due to modular 
software structure.

A standard based solution, as the RTP solutions 
have been proposed to the Service Availability
Forum as an open industry standard.



65

5.3.3 Parts of the product

The RTP platform product offering is divided into three layers: the Foundation Package, the Optional 
Add-ons Package and the Service Packages (see Figure 18) (FSC (3), p 2).

In the RTP Foundation Package, the key features are provided for the cluster wide, safe process 
communication as well as for the management of cluster nodes. In the optional RTP Add-ons, typical 
functions in high-availability communications systems are provided. Those are, for example, ticketing 
services for billing and payment systems, timers for reliable control of the system and application 
status and contexts for the system wide access to consistent state information. In addition, connectivity 
is supported through a wide set of telecommunications and IP protocol stacks (FSC (4), pp 23-24).

Service
Packages

Installation
Integration

Optional
Add-on
Packages

Foundation
Package

Configuration Lib IPC Management Trace Manager / Lib

Node Manager Event & Alarm Manager / Lib Admin Tools

Figure 18: Packages forming the Resilient Telco Platform product (FSC (3)).

The service packages are provided for the RTP to help its users (FSC (4), pp 23-24):

- With the design and implementation of carrier-grade services and applications,

To provide service level agreements as required by their customers,

- In the integration and installation of services and applications fulfilling the highest availability 
and scalability requirements and

- In the training of their customers.

Fujitsu Siemens Computers provides its customers with a change request procedure for entering 
requests of new features to the product. There is a defined structure how their implementation is 
handled and how different features are prioritised. The plan is discussed together with the customers. 
Error corrections for the platform software are usually downloaded from a special web page or they 
can be delivered through email. Maintenance services also include a new version of the software 
approximately once a year but error corrections and new features including upgrades can be delivered 
more often between the versions (M.R., mail interview 21.1.2003).

The development environment of the platform consists of several commercially available software 
development tools. These include Java 2 Software Development Kit, the standard GNU C++ tools, 
which are included in Linux and, for example, a commercial database software tool (M.R., mail 
interview 21.1.2003 and FSC (5), pp 2-3).



66

Together with the platform product, FSC delivers application programming manuals, administration 
manuals as well as installation and configuration manuals for the customers. Altogether there are 
several thousands of pages of them (M.R., mail interview 21.1.2003 and FSC (5), p 2).

5.3.4 Standards and interfaces

Fujitsu Siemens Computers is jointly with other companies, such as Intel and Nokia, participating in 
the development of the high availability API standards by working in the Service Availability Forum 
(SAF) (FSC-web (2) 8.1.2003).

FSC lets possible customers see the APIs after they have signed a non-disclosure agreement. APIs are 
currently designed by the FSC itself, but there is a plan to make them gradually SA Forum -compliant 
in the future. This shall be done in a systematic way and the timetable will be agreed with the current 
customers who already have implemented applications using the current RTP APIs (M.R., mail 
interview 21.1.2003).

The RTP functions are modular, and through the RTP standard interface they can easily be adapted to 
the reliability needs of the applications. They are running on standard Unix/Linux systems with a 
cluster support (FSC (2), p 1). Based on this modularity, some individual components are left optional 
and therefore variants from the basic product can be made. There are some obligatory basic 
components, but otherwise variants are made by applying different licensing methods to the optional 
modules (M.R., mail interview 21.1.2003).

5.4 Summary of product concepts

In this section, a summary of the two product concepts explained above is presented. Issues are first 
explained and then summarised in Table 3.

Both of the products fit well for the idea of horizontal markets, since they are not end products but 
meant to be sold to the vendors of the final application in the same industry area. The product offerings 
show that there is a certain target group for them defined, but room for variation is reserved. For 
example, the RTP4 Continuous Services platform consists of several optional add-on packages on top 
of the basic package. It allows customers to make their needed configuration of the platform according 
to the applications they are building. The basic requirement for this kind of modularisation is that the 
interfaces between modules are well defined.

The application programming interfaces are also important. Both of the product offerings emphasize 
that their APIs will be based on relevant industry standards. The API of the IBM WebSphere 
Application Server is in line with the SUN J2EE API and it passes the SUN J2EE tests. There is also a 
group of non-standard APIs for special purposes, but those are not necessary for basic functionality 
(B.K. interview, 1.11.2002). RTP APIs of Fujitsu Siemens Computers are at the moment proprietary 
and not public, but they are planned to be compliant with the Service Availability Forum specification 
over the time, as the specifications become ready.

Regarding the APIs, for effective application development there must also be a useful set of 
documentation in place. FSC provides several thousands of pages documentation whereas IBM counts



67

on electronic formats, mainly hypertext documentation. IBM also refers to the API documentation 
provided by SUN in its J2EE web pages.

Both of the products provide toolsets for the application development on top of them. The IBM 
WebSphere has its own special tools and scripts for deploying applications to the Application Server. 
Fujitsu Siemens Computers RTP on the other hand enables the use of standard commercial Java and 
C++ tools.

Post-sales services are a thing that distinguishes a sellable industry product from a company internal 
one. Basic maintenance services like problem reporting and fixing as well as new feature request 
services are considered as axiomatic and not very much emphasis is put on them in the marketing of 
these products. Instead, the installation and consultation services are emphasised more. This is 
reasonable, as the products are special expert products and are mostly used to build new kind of 
applications on top of a new kind of technology. The products are by no means standard products 
when considering the start of their usage. The installation procedure depends on the infrastructure and 
the development environment used by the customer. Effective application development cannot be 
started in a short timeframe by only reading manuals and APIs. Therefore, the provider companies 
have recognised the need for consultation and training services.

Table 3: Summary of the introduced product concepts.

Purpose and target group defined, but room for 
customisation left in.

Also predefined variants of the product 
defined.

Interfaces and APIs are documented and they are 
either public or available for a potential customer.

At least APIs that fulfil a standard are public.

Interfaces and APIs follow or are planned to follow 
an industry standard.

Some APIs may still be proprietary.

Emphasis is put on post sales services, especially to 
installation and consultation services.

The size of customer base affects to the 
nature of services.

5.5 Service Availability Forum

The Service Availability Forum (SAF) is a coalition of several leading communication and computing 
companies. They are jointly trying to develop open standard interface specifications for a carrier grade 
infrastructure. The SAF is supposed to offer standard interfaces between the hardware, the software 
blocks, the management middleware and the applications of packet-based networks (SAF-web (1) 
31.1.2003).

The background for the work of the SAF is that currently the communications infrastructure products 
are implemented with proprietary interfaces. It limits the software innovation and produces high 
development costs and lengthy times to market for developers and manufacturers. The Service 
Availability concept of an always-on uninterrupted service is jeopardized from the outset when 
disparate, proprietary pieces are connected in the new packet-based multi-service network. The SAF 
drives the industry adoption of open interface specifications that will benefit independent software 
vendors and the equipment, platform and service providers. These specifications are designed to create



68

standard building block solutions that perform as effectively as the 99.999% availability level set by 
the legacy, circuit-switched telephone networks (SAF-press release, 28.4.01).

The Service Availability solution starts with high availability. The devices and systems that make up 
the communication infrastructure must be available to provide services and applications to the end 
user. High availability is achieved via a combination of equipment reliability, reparability and 
redundancy. To the high availability, the Service Availability solution adds service continuity. It 
means that the end user sessions are maintained despite any failure in the individual systems or 
components. For example, in order to provide an uninterrupted service, the state of the application 
session for each user must be preserved during switchover scenarios (SA Forum, p 4).

To put it simpler, the Service Availability attributes include (SAF-press release, 28.4.01):

On-demand service, meaning that the system is up and services are available to meet or exceed 
the customer requirements.

Uninterrupted service, which means that the customer sessions and state are maintained and 
preserved without disruption to service.

Benefits of a standard Service Availability interface solution are that it reduces development times and 
costs, allows design flexibility and reduces risks. The development times can be reduced when 
commercial off-the-self components are used and a standard interface approach is used in building 
blocks. It makes the systems easier to deploy and maintain and facilitates also outsourcing of the 
development work (SA Forum, pp 8-9).

The costs are reduced, as there is no longer vertical proprietary equipment to be developed, tested or 
maintained. Deployment of the systems and training and education of the technical and operational 
people is easier and cheaper with a common interface solution (SA Forum, pp 8-9).

Flexibility and reduced risk comes true as the standards based approach with an open, building block - 
type of system architecture enables the equipment manufacturers to mix and match the best in class or 
at least the most suitable components from a variety of competing vendors. In addition, a standard 
interface and an open architecture create the manufacturers and system integrators architectural 
flexibility to more easily adapt to changing technologies (SA Forum, pp 8-9).

Initially, the Service Availability Forum will develop two interface specifications, the application 
interface and the hardware platform interface (see Figure 19). The application interface will be a 
programming interface between the applications and the Service Availability middleware. The 
hardware platform interface will be an interface between the operating system or hardware platform 
and the Service Availability middleware. The Service Availability Forum interface specifications will 
provide the ability to vertically integrate applications and systems to the Service Availability 
middleware without an access or modification to the source code (SA Forum, p 6).



69

Figure 19: The Service Availability Forum Specifications and interfaces (SA Forum, p 7).

Open programming interface specifications will facilitate the development of equipment and 
applications that meet the demand of users for high availability and service continuity. The initial 
specifications will define programming interfaces to allow applications and platform resources, such as 
operating system facilities and hardware, to be integrated and coordinated by the Service Availability 
middleware (SAF-web (2) 8.8.2002)



70

6. THE CURRENT PLATFORM OF THE CASE COMPANY

6.1 Product

6.1.1 Overview

The telecommunications platform that the case company is developing is mainly intended for host 
control and service layer applications in All-IP networks. Examples of such applications are 
Connection Processing Server (CPS) and Home Subscriber Server (HSS). The platform is not intended 
for user plane processing. Other platforms both exist and are being developed for it. The server 
clusters, i.e. the network elements based on this platform will have at least 99.999% carrier grade 
availability. The elements shall be scalable and offer a high performance (Prod_descr., p 6).

The platform in question is a carrier grade open server platform for All-IP mobility systems. It 
leverages standard based hardware, an OSDL-specification compliant Carrier Grade Linux with high 
availability extensions, open application interfaces and standard based development tools (see Figure 
20 for the overall architecture of the platform). The high availability extensions are planned to be 
Service Availability Forum (SAF) compliant as soon as the SAF-specifications are ready 
(Purpose_doc., slide 8).

The hardware architecture of the platform is based on loosely coupled computer units connected with a 
high capacity gigabit Ethernet. It allows high flexibility in configuring the platform for different 
applications and for different capacity and performance needs. With this approach the capacity figures 
achieved for the control plane elements are substantially higher than those that could be achieved with 
a shared bus or tightly coupled technologies (Prod_descr., p 7).

From the outside, the cluster is seen as a single server or a couple of servers with high performance 
and high availability figures. From the inside, the applications are mainly unaware of the cluster 
configuration. Same applications work in small and big configurations without modifications 
(Prod_descr., p 9).

HW (= Loosely coupled computer network)

Network element 
specific application 

layer SW

Unix 98/Posix, 
Carrier Grade Linux WG

De Facto industry standard HA API 
(Service Availability Forum)

Own integrated server HW built 
on industry standard blocks and 
components from leading server 
vendors

Open Source Linux distribution 
allowing maximal openness in 
SW architecture and HW 
independence

- redundancy support (2n, n+1)
- Fault management
- SW and HW upgrade support
- etc...

Support for HA functions

Telecom PF Functionality
- Signalling protocol stacks
- Frameworks for HA aware control 
plane and O&M applications
- Alarm management
- Performance management
- Configuration management
- Databases, directories
- Java and Corba support

High Availability 
(HA) Functionality

Applications
RNAS, CPS. IMP, SMLC.

Extensions to the
platform

LINUX

Figure 20: Overview of the current platform and applications on top of it (Prod_descr., p 6).



71

There are two alternatives for the hardware provided for the platform. The first is commercial off-the- 
shelf rack-mount hardware and the other one an own blade hardware solution of the case company. 
Because these are standard solutions as such, there are no modifications planned to them in 
productisation sense.

6.1.2 Modularity and configuration

The highest-level system breakdown in the architecture of the platform is done to system components, 
which are grouped according to their purpose to a layered system model (see Figure 21). A system 
component covers some functionality area of the system. They can be hierarchical up to two levels and 
are collections of related subsystems (Proddescr., p 39).

Applications

Platform applications

Application Frameworks

Application Support Services

Basic Services

Common Security Corba High availability Load Overload HW Communie
serv for C++ services services services balancer control management network

Figure 21: Layered system model of the server platform.

A subsystem is a large grain component that consists of components. A subsystem captures some 
related part of the functionality of a system component. A subsystem implements a number of 
integration interfaces, which is the only mechanism for other subsystems to use the services of the 
subsystem in question. A subsystem is independent of other subsystems during development time. It 
does depend on others but only indirectly via the integration interfaces. Both compile time and link 
time dependencies between subsystems are avoided to enable maximal parallelism in the development. 
Exceptions to this rule may exist. For example, a subsystem consisting of general-purpose services 
may be implemented as a library that is linked into other subsystems. A subsystem is also the unit of 
software that can be deployed, installed and upgraded separately into the system (Prod descr., p 39 
and Arch_princ., p 23).



72

A component is a process or a library. From the implementation point of view, it is a collection of 
classes and functions. From the software configuration management point of view, it is a list of source 
code files with versions that are linked together. The components can be used by several subsystems, 
for example as re-used libraries. Each component is still owned by one subsystem only (Proddescr., p 
39 and Func_and_arch., slide 8).

The Linux operating system, which is used in the platform, is itself an example of a modular system. 
Its key features are that it is free of charge and even more important, its source code is open. It means, 
that anyone can take its code and make modifications to it and thereby get the kind of system one 
wants. Linux is nowadays gaining some popularity also in embedded systems. Modifications can be 
done to it and then middleware and applications are built on top of it. Linux is not designed for a hard 
real-time use, which makes the modifications necessary (MITA, pp 89-91). As the case company is 
trying to establish an infrastructure around a platform using standard building blocks, it hopes that 
there will though not be modifications to the standard operating system versions.

The modularity of Linux also applies to its kernel modules. This is very useful for the designers of 
real-time embedded systems, since the kernel modules have a direct access to hardware devices. Open 
source and modularity gives the designers also the possibility to modify the kernel modules in order to 
get the best out of Linux in an embedded software environment. When implementing the modifications 
to Linux as patches to its kernel modules, their source code does not have to be published (MITA, p 
91-93). The case organisation has used the possibility to modify the original kernel modules of Linux. 
It has made two additional kernel modules for the Linux version it is using. The first is a modification 
to the Stream Control Transmission Protocol (SCTP) implementation and it is delivered also to the 
original Linux distribution version manufacturer to be adapted as a part of their coming versions. The 
second one is an own IP-director kernel module, which the case company tries to protect by a patent, 
since it is an essential part of the product offering. One should notice that the former one is an open 
solution for other users of the Linux distribution also, whereas the latter one is a proprietary solution 
that is used to gain competitive advantage.

Right below the application layer in Figure 21 is the application frameworks layer. Frameworks do not 
exist as such in the final system, but applications can be created with them. A framework is a 
collection of libraries and implementation principles that can be used in the application development. 
A means of using frameworks is for example inheritance of the framework classes. The frameworks 
help in implementing the application basic logic and hide some of the data structures so that the 
developer does not have to make them him/herself. There are currently four application frameworks 
defined for the platform (Frameworks and tools, slides 3-4):

State Machine Application Framework,

J2EE Framework,

Element Manager UI Framework,

Java Common Services Framework.

A basic principle in a telecommunications system is that all updates to the system can be made with no 
or with minimal service disturbance. A software upgrade that does not cause disturbance requires that



73

all internal and external interfaces of the upgraded entity are backwards compatible (Proddescr., p 
37). Applications based on the platform should be installed and commissioned with the same tools and 
following the same principles as far as possible. At the moment, all subsystems are delivered as binary 
files and are installed to the runtime environment of the system from rpm-packages (RedHat Package 
Manager) (Arch_princ., p 22).

The above-mentioned flexible architecture makes it possible to use only appropriate platform 
components in different business areas and therefore enables the implementation of various derivative 
products for different purposes (see Figure 22) (Prod descr., p 38).

Platform subsystems

Figure 22: Product family approach from system components (Arch_princ., p 9).

With clear interfaces and a flexible structure, the components can evolve to be individual products 
themselves. The case organisation has so far defined three individual sellable components from the 
platform. The first one is the High Availability Services -system component, the second one is the 
application framework for state machine based applications and the third one is the implementation of 
the IP-director functionality. Dependencies of these entities to other system components are kept as 
minimal as possible. The high availability services are dependent only on the operating system and the 
CORBA services. The IP-director needs, besides the operating system, only the high availability 
services, the alarm system and a directory access. The framework for state machine based applications 
is implemented mostly using the basic operating system and CORBA services (Sell comp., pp 10-32).

6.1.3 Interfaces

The subsystems of the platform in question have naturally interfaces to each other. They use services 
provided by others and offer their own services to them.

Dependencies between subsystems are defined as integration reference points (IRP) that are collections 
of related integration interfaces. An IRP has one or more subsystems as providers and one or more 
subsystems as users. A provider subsystem acts as the server and a user subsystem as the client in the 
service interface between them. Note that an IRP may contain interfaces where the server-client



74

relationship is in both directions. In these situations, the user-provider relationship is defined by saying 
that the provider is the subsystem that acts mostly in the server side of the IRP (Prod descr., p 39).

Compatibility of subsystems is defined via IRPs, which also have versions. Subsystems are compatible 
with each other, if they support at least one same version of an IRP that is used by both of them 
(Prod descr., p 39).

6.1.4 Standards

Standardisation is an important issue in the productisation of a platform. The true value of a platform 
comes from its interfaces. The more familiar the users, i.e. the application developers, are with the 
existing standard interface, the more markets there are for a platform product.

In the server cluster implementation of the case company, each computer node using the platform is 
based on de-facto open industry standards and on components and building blocks provided by the 
leading players in the server industry to allow cost efficient and state-of-the-art performance. With 
open interfaces and components such as the Linux operating system, it is easier to integrate third party 
products into the platform (Prod descr., pp 7,38).

An important standardisation party in the area of high availability platforms is the Service Availability 
Forum, whose task is to specify open high availability programming interfaces for carrier grade server 
platforms. The case company actively participates in the work of the forum. The forum has lots of 
promoters who are server, telecommunications and OEM vendors and users like Force, GoAhead, 
Hewlett Packard, IBM, Intel, Motorola, Nokia, Radisys and SUN. In addition, there are more than 
twenty contributing members like MontaVista, NEC, Samsung, Siemens and WindRiver (Means doc., 
slide 3).

The APIs in the case organisation’s platform are intended to be SA Forum -compliant as soon as the 
specifications are ready. At the moment, the case organisation is trying to get its solutions of the high 
availability platform in to the specification. The problem is that the specification is not ready yet, but 
the interfaces of the platform are already developed and internal customers have started to use them. 
The case company has a dual API -approach for the situation. The present APIs are supported as long 
as it is necessary for the customers and at the same time the SAF APIs are also supported.

The case company also drives the work of Open Source Development Lab (OSDL) Carrier Grade 
Linux Working Group (CGLWG), which specifies the carrier grade requirements for the Linux 
operating system. Several server vendors and users like Alcatel, Cisco, Hewlett Packard, IBM, Intel, 
MontaVista, Nokia, RedHat and SuSE take part in the work of the CGLWG.

The CGLWG defines a Linux Standard Base -compliant operating system with carrier grade 
extensions. Linux distributors are expected to include the CG Linux in their product offerings. 
(Func and arch., slide 21). The Linux distribution selected for the platform in the case company is an 
off-the-shelf Linux distribution, namely MontaVista Carrier Grade Edition, which is compliant with 
the OSDL Carrier Grade Linux Specification. The CGL-specification includes standards such as the 
Linux Standards Base (LSB), IPv6 (including IPSECvó and MIPv6), SNMP support, and POSIX 
interfaces for timers, signals, message queues, semaphores, event logging, and threads. MontaVista



75

CGE Linux distribution is also compliant with the PCI Industrial Computer Manufacturers Group 
(PICMG) standard for hardware interfaces and shall be compliant with Service Availability Forum 
hardware platform API specification (CGLWG web page, 31.1.2003).

6.2 Internal customers of the platform

The platform in question is currently used only inside the case company. Although productisation of 
the platform has been an intention from the beginning of the development, it is still more a build of 
components integrated together and given to the internal customers to use. There is a similarity to the 
approach of Sipilä (1996) in the service sector, where he states that the products in expert 
organisations are base elements that are not even supposed to be sold. They are the building blocks, on 
top of which the actual product versions are customised case by case. Versions are results of the ability 
of the experts to quickly combine their own competencies and the established product model into an 
entity that provides superior benefits for the customer (Sipilä 1996, pp 46-47). That is in question also 
when a telecommunications platform is used in implementing network elements. The current 
organisation structure of the case company also supports the idea of Meyer and Lehnerd (1997), where 
the development of a platform and derivative products is clearly distinguished to minimise the 
interfaces between them (see Section 3.3.4). Then there is a minimal risk that changes in the platform 
automatically require changes in the derivative products, or vice versa (Meyer & Lehnerd, pp 126- 
127).

Recently, the case organisation has built up a new organisation unit for the horizontal OEM business. 
Its task is to act as the contact between the product development organisation and the horizontal 
customers. It has sales, marketing and customer support responsibilities. It contacts the potential 
customers and asks for their requirements for the platform. It also should act as the layer that makes 
the information anonymous between the horizontal customers and the platform development. 
Regarding the platform business, the new horizontal business organisation is seen just as a new 
internal customer for the platform (see Figure 23).

Middleware and 
application 
frameworks

Figure 23: Platform development organisation, its internal customers and their customers.



76

Junttila stated that the tasks for the distribution organisation of a product include communication 
between the producer and the customer, negotiations regarding the sale, tasks related to the order 
process, taking the ownership and risk of the product during the delivery, physical distribution, billing 
and paying as well as transferring the ownership (Junttila, pp75-76).

The role of the new horizontal business organisation is to do the above-mentioned things, to represent 
the horizontal customers and deliver their requirements and thoughts to the platform development and 
to act as the sales and marketing organisation of the platform. Of course, the horizontal vendor is still a 
customer also for the platform development, like Junttila stated in Section 0 (Junttila, p 26).

Like said in Section 3.2.2, the internal business units of the case company already plan and develop 
derivative products on top of the platform in question. It can, in the marketing sense, point out the 
benefits of the platform to the horizontal customers. It requires that demo shows are arranged for the 
platform and that the internal business units are willing to share some of their experiences of the 
platform with the horizontal customers. Conflicts can occur if a successful application developed on 
top of the platform cannot be shown to a horizontal customer due to business reasons. This is of course 
opposite to the needs of the horizontal business unit.

It should be noticed, that the model described in Figure 23 is not symmetrical for horizontal and 
internal customers. The horizontal customers must be assured that the service given for them via the 
horizontal business unit is as good as is given to the internal customers. This relates, for example, to 
the feature request and problem reporting functions. Both the horizontal and the internal customers of 
the platform must be sure that no critical information of their application development goes through 
the platform development or the horizontal business organisation to their competitors. However, the 
internal customers of the platform have said that this is not of major concern. They stated that in the 
open architecture and standardisation -type of thinking, not any platform is something so special that 
its use cannot be revealed to a possible competitor (T.S., interview, 13.1.2003).

According to Seppänen, a product development process has two meanings. To produce quickly and 
economically new competitive products that fulfil the needs of the customers and to learn to do the 
above-mentioned things better and better every time (Seppänen, p 15). The latter is the fact in the idea 
of horizontal markets, which benefits also the internal customers that work in a vertical business 
environment. Current internal customers also think that the quality of the support services from the 
platform development organisation for them should increase as the platform is productised for external 
customers also (T.S. interview, 13.1.2003).

6.3 Current solutions for other than product functionality issues

In this section, an introduction is given to current solutions to various issues in the case organisation. 
The approach is to find and compare them to the factors that were presented in chapters 3, 4 and 5.

6.3.1 Documentation

Currently, documents related to the platform are generated in the platform R&D organisation. The 
target group for most of the documents is the application developers in internal customer



77

organisations. Documents like installation and configuration guides are meant also for their laboratory 
personnel.

The platform development process defines that for every system component a developer’s guide and 
an installation and configuration document should be written. Currently, depending on the subsystem, 
different above-mentioned issues may be implemented in different documents. For some subsystems, 
all of the mentioned documents are written separately while in some cases the information is combined 
to only one document.

The developer’s guides describe the interface and the principles for how to use the services provided 
by the subsystem in the applications of the derivative products. They are rather simple documents, 
which are given to the application developers of the internal business units. Their customer 
documentation projects generate the final application documentation and use information from the 
developer’s guides of the platform as a part of the documentation. The developer’s guides are usually 
written in Microsoft Word -format and they are stored in an internal document database. The database 
is meant for the use of a platform product development program. It contains several different 
documents and all of them are not logically organised.

The designers write also subsystem software specification (SSS) -documents for the subsystems they 
are designing and implementing. The purpose of the documents is to clarify the internal architecture of 
a subsystem for problem solving and maintenance purposes. It also acts as a plan for the subsystem 
implementation work. The internal customers have an access to the SSS-documents, which helps their 
application development if the developer’s guides are not ready yet or if they have flaws. This is often 
true, since the internal customers start their application development already when the platform 
subsystem implementation is ongoing and its developer’s guide is not ready yet. One must also notice 
that the internal customers might currently have an access to the source code of the subsystems 
whereas only binary files of them shall be delivered to the horizontal customers.

In an upper level, there are also use case documents, which are produced with a special tool made for it 
and stored in Word-format to the database. The use cases are input documents for subsystem software 
specifications and they are also accessible for the application developers inside the company.

The presales marketing material of the platform currently consists of the product description and 
architecture documentation and a description of the sellable components. These documents have also 
been the basis for the introduction of the platform in this thesis (see Section 6.1 above). In addition, 
some new material for horizontal business has had to be written due to a customer demand. The 
presales documents are available for potential horizontal customers on a need-to-know basis. Public 
technical and marketing material of the platform is not yet available for example in the Internet.

Besides the fact that a different set of documents is produced from different subsystems, there are also 
a couple of other problems with the current documentation. The infomiation regarding the IRP and 
subsystem dependencies and the services that can be used via a certain IRP is not documented in a 
consistent manner. In some cases, the information is in the developer’s guides and in some cases it is 
in a separate document.



78

Another problem originates from references to company internal information. In several documents, 
there are references to case company internal documents, like the use case documentation and to 
internal contact persons. For example there can be certain architects or system designers mentioned by 
name. That kind of information cannot be left into the document versions that are given to the 
customers. The internal customers naturally have that information currently.

Similarly, the name of the case company and the platform is shown in many places in the 
documentation and the tools in customer documentation generate it automatically to some documents. 
There is a possibility that a horizontal customer uses parts of the documentation in its final customer 
documentation. As in those markets they might be competitors to the case company, having these 
kinds of references is a problem. Like discussed in Section 3.2.4, selecting and presenting a product 
name must be done carefully, especially when only a part of the product is sold to the horizontal 
markets.

Since the customers may want to use the documentation as a part of their final documentation, just as 
the platform is a part of their final products, there must also be clear disclaimers of the responsibilities 
of the case company. Current documents are produced for internal use and there is not a clear framing 
of the target group and not a disclaimer about responsibilities in them.

The documentation of the third party software and tools is somewhat more problematic. Currently they 
are not delivered to the vertical end customers, since they do not use the third party software for 
application development. Instead, only short guides are written if the software is such that the end 
customers use it directly. For example, some databases are only running on the background in the 
runtime system, the end users do not necessarily need any instructions on how to use them.

6.3.2 Interfaces and Application Programming Interfaces

The platform architecture is composed of four different layers and the system components in them (see 
Figure 21). The system components are compounded of subsystems, which are the smallest entities 
that can be deployed to a running system. The dependencies between subsystems are defined by the 
integration reference points (IRPs). An IRP is the way for the subsystems to communicate, i.e. to use 
the services of other subsystems and to provide services for them.

A principle is that a subsystem uses services only from its own layer or from the layers below it and 
provides services only to the own layer or the layers above. Because the dependencies are this way 
either horizontal or vertical, the IRPs can contain interaction that is internal for the platform or they 
can provide an interface also to the application layer. In this sense, the interfaces are either internal or 
public. The modularity and dependencies of the subsystems is discussed further in Section 6.3.6, where 
the product management function is introduced. The public interfaces are the Application 
Programming Interfaces (APIs) of the platform for the application developers. Some of the upper layer 
interfaces of the platform are the ones that shall be SAF-compliant gradually.

Currently, the API documentation of the platform is not public. Parts of it are given to potential 
horizontal customers on a need-to-know basis. The approach for publicity shall be redefined as the 
SAF-specifications are ready and the implementations of the interfaces are SAF-compliant. One must 
notice that the platform shall still contain interfaces that are not mentioned in the SAF-specifications.



79

6.3.3 Third party components and tools

There are several third party tools included and used in the platform in question. The idea behind using 
them has been the same as is the idea for other vendors to buy the platform. It can reduce own capital 
investments and development efforts in certain areas. However, although the horizontal markets 
productisation has been in mind from the early stages of the platform development, the model how the 
third party software is distributed to the horizontal markets has not been defined yet.

The problem is that the case company has currently OEM-type (original equipment manufacturer) 
contracts with the third party providers and those allow the case company only to sell them as parts of 
its own products, not to act as a reseller. That kind of a business would need contracts that allow the 
case company to act as a value added reseller (VAR).

There is also an observation related to the documents of the third party software. In a vertical business 
model, the end customers do not need most of the third party software documents. The platform 
development organisation has made simplified and summarised overview documents for the usage of 
these components, but not for development of software on top of them. The application developers of a 
horizontal customer may though need documentation that helps them in the application development, 
for example the original API-documentation.

The main third party components that are currently in use in the running system are:

A Linux distribution version,

A CORBA Object Request Broker (ORB),

A database software solution,

A J2EE application server,

A signalling protocol stack.

6.3.4 Application development environment

The case organisation uses integrated software development environments for its product development. 
There are different environments meant for different types of platforms and different kinds of 
products, or parts of them. Mostly the division is done by the operating system used in the developed 
platform or product.

The tools in the integrated environments are made either especially for the case organisation or they 
are commercially available standard tools. The situation depends very much on the environment. In the 
platform in question, both the development and the target environments are running on the Linux 
operating system, but using different distribution versions of it. Partly due to this open operating 
system, the development environment uses commercially available standard tools. In the development 
of some earlier and more proprietary products, proprietary tools were used in the case company. In the 
current Linux development environment, the set of tools covers all phases of the software development 
process V-model. There are tools for architecture and system design, for the design and 
implementation of the software and for module testing (Frameworksandtools, slide 15).



80

The software development in the Linux environment is tightly integrated to the used software 
configuration management (SCM) in the case organisation. A widely used commercial SCM-tool has 
been selected and the developers of derivative products use it also, since they must have an interface to 
the platform software during development time.

Current solution for the development environment is that the tools and the managed software entities 
are installed to remote servers that the developers access through view servers (see Figure 24). The 
problem related to SCM originates just from this situation. The SCM assumes that certain files are 
found in certain locations. Removing the configuration of the environment attributes being dependent 
of the current infrastructure should not though require too much work from the environment support 
organisation (E.K, discussion 9.12.2002).

Figure 24: Deployment of the current software development environment in the case organisation.

The fact that there are some tools directly meant for certain third party software harms the idea of open 
environments and minimised dependencies between modules. Like we noticed in Chapter 5, providers 
of middleware components do include tools that help the usage of their software as a part of final 
implementations. This kind of a problem occurs with five tools in the current Linux development 
environment. Most obvious one relates to the cross compilers and other tools of the used Linux version 
itself, but the four other ones originate from real third party software in the runtime platform. Two of 
them are tools for database software, one is a set of tools for a Java application server and the fourth 
one is for implementing online-help textures in the graphical user interface of Java-applications in the 
final product.

Another observation is that there is actually not any decent presentation documentation of the 
development environment in the case company, except for some overview marketing slide sets. 
Reasons for this might be that the environment is integrated for internal use and there has been no need 
to market it outside the company. Internally, the developers learn to use the tools and the environment 
by doing or by asking from their colleagues or so-called key users. The horizontal business unit has 
noticed this and presented a requirement that there should be a description and an installation guide of 
the development environment, which can then be given to the customers (Horiz req., p 3).



81

The same issue as with the third party components in the actual product occurs also with the third party 
tools in the development environment. The case company has licensed the use of those tools only 
inside its own organisation; it does not have the right to sell them to its customers. Being able to do 
that requires that the contracts are renegotiated and the case company can start to act as a value added 
reseller (VAR) for those tools. Selling tools provided by third party providers is though not any of the 
core business of the case company and it would be difficult to get any profits from selling the third 
party tools separately. There are two reasons for this. First, the horizontal customers probably already 
have a similar set of basic software development tools themselves and are not eager to learn new ones. 
Secondly, if they would like to change to third party tools that the case company offers, they could 
probably negotiate a similar contract for using them directly with the third party provider.

6.3.5 Services

As became clear in Section 6.2, the case company has existing telecommunications systems businesses 
in the vertical markets. The customers in those businesses are mainly telecommunications operators. 
The case company produces several different network elements and it has concentrated the customer 
services for them under one organisational unit.

The services that are provided via the customer care organisation include (Online_services_doc):

- Network implementation planning.

Network deployment services, including project management, installation, multivendor 
integration and site acquisition.

Maintain services, such as help desk, emergency support, software updates and upgrades, 
software installation and hardware spare parts support.

Training services, including e-leaming and customised learning solutions.

Network operating and optimisation services.

There are special technical assistant teams worldwide that act as the first contact to the local customers 
and propagate their questions and requests to the right place in the case company.

The problem reports are managed in the organisation with a specific database tool made for it. Both the 
internal and external problem reports are handled with it. The technical assistance teams have an own 
tool for communicating with the final customers about the problems. They use the tool to report to the 
internal system (Means doc, slide 66). The flow how a problem report and correction is managed is 
presented in Figure 25 on Page 83.

Like said in Section 4.1.4, a whole product can be a software build, which is distributed in electronic 
form. For that reason, it is natural that also the services for that kind of a product are delivered 
electronically. There is an online extranet solution in the case company for contacting with the 
customers. The tool requires a password for the users and it has a possibility to limit the access only to 
certain services, depending on the customer.



82

The services included in the customer care system are (Onlineservicesdoc, slide 16):

Product catalogues and electronic ordering,

Product and technology introductions,

Delivering software updates and upgrades,

Documentation download system,

Failure reporting interface,

Technical note delivery,

Help desk contact and browsing of earlier help requests,

E-leaming courses.

E-mail notification service for individuals and whole customer company representative groups.

The benefit from the centralised online maintenance and documentation services is that what ever is 
put in there can be updated right after there is a need for it. This is not the case, for example, with a 
CD-ROM delivery (Online services doc, slides 9-10).

Installation and commissioning are important services in vertical telecommunications businesses, 
where big and complex systems are installed into use. In this horizontal case, the installation services 
would concern only putting up the software development environment to the infrastructure of the 
horizontal customer. It is also possible that they do not need any help with the installation, since they 
are probably capable of doing it themselves (see Section 6.3.4 above).

Training for the customers is currently arranged in many forms. Via the online services described 
above, the customers can attend e-leaming courses. Traditional classroom trainings are also arranged 
in the regional training centres of the case company worldwide. For the platform development 
organisation, a more important mode of giving customer training is transferring the knowledge of the 
platform to the internal customers. There are so called product competence transfer solutions for these 
actions. Their main task is to ensure that the knowledge of the platform is transferred inside the case 
company. In simple words, it means delivering of all product related knowledge from the designers to 
the users. Teaching modes that are used in these competence transfers contain both classroom trainings 
and e-leaming solutions. An external subcontractor is used in the production of the trainings but they 
naturally need consultation help from the product architects and developers to do the course materials 
(H.H. interview, 31.1.2003).

The horizontal business organisation has not yet implemented any customer care functions regarding 
the platform business, but it is expecting the results of this thesis also before taking any final actions. 
In a similar way, the platform development organisation has not any customer care functions in it, 
since the final customer support regarding the platforms nowadays is filtered through their internal 
customers (the product lines) and also through the centralised customer care organisation (see Figure 
25).



83

Platform development 
organisation in case company ■Consultancy-

Updates, upgrades, N 
corrections, consultancy,

Customer
companyCustomer

care
organisation

Updates and Questions Problem 
upgrades reports 'roblem reports, questions

—Updates and upgrades*-

—Problem reports-------

m-------- Questions-----------

Internal customer 
(vertical business)

Figure 25: Routes of customer support between platform development organisation and end customers 
in vertical model.

There are negotiations ongoing on how the customer care of the platform system is organised in the 
case of horizontal markets. Suggestions for that are given in Section 7.7.

6.3.6 Product management

Besides the product development, the platform development organisation in the case company contains 
also a product management function for different platforms. It is in charge of defining the platform 
requirements and functionality, as well as of roadmaps for the releases. The product management 
function has several product managers who do these things and act as account managers for the 
internal customers. For the horizontal markets case, one account manager shall take the responsibility 
for the relationship with the horizontal business unit (case company intranet, 24.1.2003).

The product management function makes suggestions and plans for the releases and the requirements 
that shall be implemented. The actual development work is then done in the product development 
departments and their product development projects.

Related to requirements, there have been some discussions of making separate variants of the platform 
for different application types, although any decisions about this have not been made. The way to 
achieve this customisation, and to make the variants, is to select a combination of system components 
and subsystems that are taken in to a configuration. The dependencies of subsystems from one another 
are defined via the integration reference points (IRP) that they use. According to some product 
managers, the documentation of these relationships is not yet as good as it should be. The subsystems 
cannot be defined to be sales items before their dependencies from other subsystems are clear. The 
information of which IRPs they use and which subsystems provide the services for them is inside the 
design document or the developer’s guide of each subsystem. Exceptions are the three sellable 
components discussed in Section 6.1.2, where their dependencies were already explained. They are 
documented in the description document of the sellable components (Sellcomp, pp 10-32). However, 
the product management function in the case organisation has made plans about the sales items that 
can be left optional in the configuration. The problem is with the dependencies, which are hard to find 
out due to bad documentation (T.L and J.H, e-mail discussion, 23-27.1.2003).



84

One problem with the requirement management is that there are many requirements for the platform 
and that they are not properly categorised. Though there is a requirement database, there is no clear 
division between internal and customer originated requirements, for example. This phenomenon 
probably originates from the fact that the internal customers are not seen as real customers and their 
requirements are thought to be own discoveries of the case organisation. In addition, the application 
domain, the network control and management plane server platforms in all-IP networks, is such a new 
one that the requirements and especially their relative priorities are hard to categorise.



85

7. SUGGESTIONS

7.1 Productisation process

In Chapter 3 models for a productisation process were discussed. The things including into a general 
productisation process and that were presented in the summary of the chapter were:

Creating product descriptions and clear user documentation,

Creating documentation for further developers,

Defining modularisation and versions of a product, also from internationalisation and 
localisation point of view,

Defining the quality goals of the product, implementing quality assurance and planning its 
further development,

Testing the existing product and its boundary values and performing integration testing, 

Creating copyright systems and license terms for a product,

Creating services organisations and systems for 

о Receiving problem reports, 

о Distributing updates of the product, 

о Training of users and 

о Consultancy.

Creating a product management organisation for handling the product configurations, 
requirements and services related to the product.

In the case company, a project manager should be nominated to the platform development organisation 
to take responsibility of the platform horizontal productisation project. The project manager should 
together with the product managements of the horizontal business and platform development 
organisations do a project plan about the activities related to the productisation. One should notice that 
the feature, capacity and other product functionality issues should not be taken in; they are handled in 
the normal product development projects.

Considering the problematic issues presented in Chapter 6, the parts that should be taken into the 
productisation project are:

Documentation modifications and documents that have to be created,

Redefining and renegotiating the contracts of the third party software and tools in the platform.

Creating a software development environment that can be delivered to horizontal markets,

Examining and documenting the APIs and making a roadmap for standard compliancy,

Examining the module dependencies and defining sales items for different configurations,

Defining and agreeing the model for the customer services for horizontal customers.

These are the main issues related to the productisation regarding the platform development 
organisation. Suggestions for handling them are given in following sections. To the productisation



86

belong also other, more marketing related issues like pricing. Those are left out here, since they are 
business decision and should be made by the horizontal business unit. In addition, this is still not the 
optimal way for productisation, since here again an existing platform is being productised (see Section 
3.2.1). However, after the above-mentioned issues are done, in the further development projects the 
platform can be treated as a complete product that is sold to both internal and external customers.

7.2 Documentation

Based on the current state of the documentation and the references from literature in Section 3.2.6, 
actions for the documentation part of the productisation project are presented below.

First, there must be made a complete list of what documents are produced and by whom. The list shall 
include a map of what documents are produced now and to which documents they have references. 
The most important documents for successful application development were asked from the internal 
customers of the platform. They identified the most relevant documents to be:

An installation guide for the whole platform.

An installation guide for the applications on top of the platform,

A description of the runtime environment (the directory structure and the processes running in 
the system),

The API documents and developer's guides of all IRPs and subsystems.

The documents that should be produced as a part of the productisation are:

Pre-sales material for horizontal business organisation, which includes: 

о Product overview, 

о Detailed product descriptions, 

о Descriptions of separately sellable components, 

о Description of the development environment.

- Installation and configuration guides for the system and each subsystem,

Developer’s guides for all subsystems,

API descriptions for all IRPs,

Development environment installation guide.

In the presales material, the material is generated to a general form from the internal architecture 
documents and product descriptions. The generalisation is done by the platform development 
organisation product management and the material is then given for finalisation to the horizontal 
business organisation. It must be kept in mind that the target group for the documentation is the 
application developers, not the final customers or users. Otherwise, the qualities for a good product 
description presented by Sipilä in Section 3.2.4 should be kept in mind.

For the developer’s guides the current template shall first be reviewed and then a modified version 
shall be made. The technical writers should then edit the current developer’s guides and make them



87

compliant with the new template. The designers in the platform development shall review the changes. 
Things that should be included in the modification are:

References for case company internal documents (such as system architecture designs or use 
cases) and persons are removed, either by removing them completely or by writing out the text 
that is behind the reference.

- The API descriptions (IRPs) are removed from the developer’s guides and put to own 
documents.

References to API description documents are put in developer’s guides to replace the former 
IRP descriptions.

As a result, there shall be only one document containing the API description for a certain IRP.

Information sharing process for instructing the designers to start to use the new template shall be 
planned and organised. The internal customers benefit also from the unified documentation mode and 
the resulting new clear structure.

The installation and configuration guides shall be produced in the same way than the developer’s 
guides. Technical writers modify the current documents made by the designers. The information in 
those documents shall answer to the following questions:

How each subsystem is installed to the runtime environment?

What are the related interfaces and components in the development environment?

What other subsystems shall be installed in order for a subsystem to function right?

What are the configurable parameters of the subsystem and how they can be changed?

The end user documentation is created by the horizontal customers themselves, though some help to 
them is given. Some end user documentation modules are currently done for the internal business 
units, who use them as parts of their own customer documentation. The format of these modules is 
XML, since they are easy to edit for the business units. They can leave things about the platform out or 
take them in and add their own documentation on top of it. The same raw modules should be given to 
the horizontal customers also. Before that, the case company name and logos must be removed from 
them as well as the links to documents that are not available for the horizontal customers. This task is 
rather mechanic and should not require too much resources from the technical writer group.

The format of other than end user documentation components should preferably be XML and they 
should be delivered on a CD-ROM and through the electronic customer care system to the customers. 
The documents should also be converted to PDF-format, since the PDFs can be delivered as read-only 
documents and they are more suitable for printing. The existing production processes for both formats 
of documentation shall be used.

The need of the horizontal customers for third party software documentation depends on whether the 
software is used only in the runtime environment or in the development environment also. In the latter 
case, the developer documentation has to be delivered to them. Depending on whether the case 
company delivers the software or if the customers buy those themselves (see Section 7.3 below), the



88

documentation is also delivered through the same routes. If the case company delivers the software and 
there is very much documentation that an application developer probably does not need, the case 
company should create a compressed developer documentation in the same manner that it does for the 
end users in vertical cases.

7.3 Third party components and tools

Problems related to the third party software in the platform and the third party tools in the development 
environment were introduced in Section 6.3.3. The first action that has to be taken is that the most 
essential third party contracts shall be renegotiated and other ones left out of the product offering. If 
there are contracts that cannot be changed into VAR-type of contracts, a list of them with correct 
version information and with the contacts points, where they can be obtained shall be provided to the 
customers. This shall be done in any case, since the horizontal customers probably want to buy at least 
some of the development tools themselves, or they have them in use already.

The essential set of software, whose contracts have to be renegotiated or the version and contact 
information be given are:

The two database software solutions of the platform,

The Java application server software,

The tool for making online help for Java applications.

Those are also the same, whose toolsets belong to the core set of the development environment. In 
addition to those, the core set contains also the cross compilers and other tools for the runtime 
environment of the used Linux distribution version.

The case company does not have to concern about other development environment tools in the first 
phase, unless the customers want to pay for the case company acting as a value added reseller for those 
also. That is not in the core strategies of the case company. In pure platform software, VAR-contracts 
for third party software are better than asking the customers to buy those themselves, since the 
customers can this way be provided a turnkey solution from a single point.

If the case company is able to renegotiate the contracts or if a horizontal customer buys them itself, the 
problems related to the third party software documentation are solved automatically. However, if the 
nature of the software were such that the horizontal customer probably needs to access only a limited 
functionality, a simplified compact user guide would still be useful.

7.4 Development environment

The software development environment is an important issue if not the most important one in this 
productisation case. The platform is planned to be sold to horizontal customers that develop 
applications on top of it. If there are no efficient tools for it, there is no use for the platform either.

As stated in Section 6.3.4, the case company uses a fully integrated software development 
environment. The environment consists of some obligatory tools that need to be installed in order to 
use certain third party software in the platform and to compile the applications to the selected hardware



89

and operating system environment. The development environment needs to contain also the interface 
definitions for the platform services.

The first action to be taken is to define the core set of tools, i.e. the obligatory ones. Then there are two 
alternatives, depending on the selected third party software strategy (see Section 7.3 above):

1. If the third party tools can be distributed under a VAR-agreement, the core set of tools must be 
included into a separate development environment package.

2. If the third party tools are bought by the horizontal customer themselves, only a list of needed 
tools and their versions shall be delivered to the customers.

The second action related to the development environment is to provide the APIs to the developers. In 
practice, this means including all the IRP-files to the development environment package presented 
above. The easiest way to provide the development environment is a CD-ROM that contains all the 
needed components and an installation program or script for them.

To ensure customer satisfaction, successful installation of the development environment must be 
proved by testing. The installation shall be tested in a similar infrastructure that the customer has. If 
this is not possible due to a very special infrastructure, installation and configuration support services 
shall be offered separately.

The development enviromnent package shall also include the documents of the tools and APIs that it 
contains. Developer’s guides do not have to be there, but the API documentation and all installation, 
configuration and usage guides of the development environment shall be included.

7.5 Interfaces and standardisation

In order to offer an efficient application development environment for both the horizontal and the 
internal customers, the platform development must manage the interfaces of the platform. The 
subsystems in the platform interact through the integration reference points (IRP). The IRPs define the 
compatibility of subsystems. Applications in the application layer also access the platform subsystems 
via the IRPs.

Keeping the above-mentioned things in mind, the IRP relationships of subsystems shall be examined 
and documented. A hypertext documentation of them is already available. However, a responsible 
person has to be nominated to keep it up to date and a process build up for designers to report there 
any changes in IRPs or in the subsystems that use them.

The case company must also make a decision about the publicity of the APIs. After the APIs are 
documented in the above-described way, the selected customers can be given an access through the 
electronic customer care system to see the API documentation. The selected customers can include 
parties with whom there are negotiations ongoing and who have signed a non-disclosure agreement.

Managing of the interfaces relates to the ongoing Service Availability Forum and other specification 
processes and to the fact that the case company has announced its platform to fulfil those specifications 
gradually. When an interface management system has been implemented, it is easier to start the work 
of making them standard-compliant.



90

The case company naturally follows and drives the specification work in SAP and other forums. As the 
schedules of the specification work are known, a roadmap plan for the current interfaces evolution to 
be compliant with the specifications shall be done. The roadmap shall naturally also be taken into 
consideration when planning the product development projects, since it probably causes some extra 
work.

Part of the commitment to the SA Forum and other standards is clarifying it to the customers. As a part 
of the product descriptions and marketing materials, the customers shall be explained the technical and 
business reasons why each standard is fulfilled and what is the benefit for them to also commit to it.

7.6 Modularity, configurations and customisation

Ran said in his article that the reason why componentware does not mostly succeed is that the 
individual subsystems must still take the overall system requirements and restrictions into account 
(Ran, p 164). It should be noticed here that the real benefit for the customers from buying a 
productised platform is that the case company has done the integration of the standard based off-the- 
shelf components into a functioning entity. The complexities that Ran talks about have already been 
solved for them.

However, as the subsystem dependencies from IRPs are clarified (see Section 7.5 above), also the 
services that each subsystem provides for others via the IRP shall be identified, documented and 
managed. The reason for this is the customisation that shall be possible to do via modularisation. The 
customers should be offered with the possibility to leave some subsystems out of the configuration. 
The sales items shall be formed from the system components taking into account the dependencies to 
other system components.

The product data management (PDM) responsible people in the platform development organisation 
product management shall be responsible for keeping the dependencies up to date. This is possible 
with the help of well-documented and managed relationships of subsystems (see Section 7.5 above). 
The definition work of the dependencies and sales items relates to the intention of the case company to 
define sellable components from certain system components. Like explained in Section 6.1.2, the 
dependencies of these kinds of entities must be kept minimal.

7.7 Customer services

The customer services are an important, though not very well recognised, part of a product offering. 
They are usually taken for granted, but providing those is in reality a tremendous effort made in 
addition to the actual product functionality development and delivery.

In general, the case company has already an established and functioning customer support organisation 
and systems for it. As said in Section 6.3.5, there are ongoing discussions on whether it should be used 
or not in this case. It would be reasonable to use the existing resources, while still taking into account 
the special needs of the horizontal business.

The electronic customer care system in the Internet should be used as the contact point for the 
horizontal customers to the case company. Routine issues like delivering documents, handling of the 
problem reports, customer questions and feature requests can be handled there. It can also be used to



91

delivering software upgrades and updates according to the selected release policy (see Section 3.3.1). 
E-leaming courses can also be distributed via the system. The customer care organisation should 
nominate a team that familiarises with the needs of horizontal business. The most important issue for 
them is to manage the access of horizontal customers to only selected parts of the extranet system. In 
Figure 26, a suggestion for the overall arrangements for the customer support is presented.

Sales support (materials etc.), 
consultancy training Problem reports, 

questions
Corrections, 
documents, 
updates etc.Requirements

Horisontal business 
organisation

SW deliveries, 
corrections etc.Consultancy

Requirements
Problem reports, 

questions etc.Sales and marketing

Platform development 
organisation in case 

company

Horizontal customer 
company

Customer care organisation 
and the electronic system

Figure 26: Organising customer support with existing organisations and electronic systems.

The technical assistance teams in the customer care organisation can have a direct contact to the 
platform development in routine issues like problem reports or document and software updates. A 
special horizontal business account manager should still be nominated to the platform development 
organisation to handle, for example, the requirement management process and consultancy training for 
the horizontal business organisation. In addition, the horizontal business organisation should have an 
account manager for each separate customer to oversee the quality of the customer care service.

The role of the horizontal business unit and the customer care organisation is to act as the layer that 
makes the information shared between the platform development and the horizontal customers 
anonymous. That way there is no problem of people working with the issues of a horizontal customer 
to work also with problems of the internal customers. Therefore, there is no need for distinguishing the 
platform developers according to different customers, a method that is often called the Chinese wall - 
principle.

7.7.1 Training

In training issues, the focus is in the product competence training that is currently offered inside the 
case company. The existing set of training should be adequate, since the target group is similar than



92

inside the company, the developers of applications on top of the platform. The provider shall still be 
the platform development environment, since it has the knowledge of the area. The actions that they 
should take of are:

Generalisation of current courses and their material (removing references to company internal 
sources and information),

Making the courses available to the customers through the existing systems and processes of 
the customer care organisation.

One must notice that compared for example to the IBM WebSphere, the customer base of a 
telecommunications platform will probably be a lot smaller. The amount of potential customer 
companies is less than ten, at least in the first phase, and the number of developers inside each of them 
is only a few hundreds or a couple of thousands.

A part of the training is to continue the architecture and functionality overview courses given to the 
distribution and the customer care organisations. Namely, to the horizontal business organisation and 
the technical assistance teams in the customer care organisation.

7.7.2 Consultation services

The hardest part in arranging the support is the consultation. Installation services for the development 
environment and help in setting up the runtime environment of the platform can be provided by the 
horizontal business organisation after a technical consultancy group has been nominated there and they 
have been trained properly. However, consultation related to efficient application development is 
problematic, since it needs special technical and architectural knowledge about the platform. In 
addition, having only one or two consultants would violate the Chinese wall principle between 
different horizontal customers. Therefore, a separated consultant or a consultant group should be 
nominated for each customer.

A solution for this situation is that the consultation support is divided into three phases (see Figure 27). 
In the first phase, for the first customers, a technical project or product manager is nominated to the 
platform development organisation. He or she gives the consultation support for the customer and at 
the same time trains the technical consultancy teams in the horizontal business organisation.



93

Platform development 
organisation in case 

company

Consultancy, training, 
job circulation

Horizontal 
business 

organisation

“X
Customer

consultancy

Horizontal customer 
company

Phase 1 Phase 2 Phase 3

Figure 27: Phasing of consultation services provision for horizontal customers.

In the second phase, the consultation is provided by the technical consultant teams themselves, and the 
technical product manager helps only if they cannot solve some problems. Gradually, in the third 
phase, all consultation is given by the technical consultant teams and the product manager propagates 
and trains only the new features to them. In this phase, it would also be useful to occasionally circulate 
the technical consultants in system testing and platform product development positions in order for 
them to fully understand the technology of the platform.

7.8 Summary

A summary of the suggestions presented in previous Sections 7.2-7.7 is gathered in Table 4 below. 
The suggested actions, the main benefits and reasons for them are listed.

Table 4: Summary of the presented suggestion for the case company.

Modifications to the documentation Current documentation contains too much internal 
information.

Third party software renegotiations Case company shall be able to act as a value added 
reseller.

Development environment 
modification

A requirement for effective application development. 
The current environment shall not be delivered as 
such to an external customer.

A roadmap for the API definitions 
and standardisation

Documented APIs are needed for effective 
application development. Standard-compliancy is a 
basic requirement in the platform business.

Module dependency definition Requirement for modularity. Enables building of 
product variants and separately sellable 
components.

Organising customer services Basic need for a product sold to external customers.



94

8. APPLICABILITY ANALYSIS

This thesis was done as a feasibility study related to the productisation of the telecommunications 
platform in the case company. In parallel with the study, there were discussions ongoing with the 
horizontal business unit about the requirements for the product offering. The horizontal business unit 
has derived them by filtering the information they have got from the potential horizontal customers. 
This study combines that information with the internal thoughts of the platform development 
organisation and the horizontal business unit. Appendix A lists the requirements that the horizontal 
business unit has presented to the platform development organisation.

According to Jokinen, after a solution or solutions are selected, it must be tested against given 
conditions. There are three different analyses that should be done (Jokinen, pp 86-87):

1. Inconveniences analysis. Evaluating if presented solution has some negative or positive side 
effects that are not yet taken into account.

2. Sensitivity analysis. It is estimated how easily the preference order of solutions is changed if 
some weights or grades are changed a little. In addition, factors that most probably will affect 
the order are presented.

3. Potential problems analysis considers problems that are currently not probable but would have 
considerable effect if they mature.

Chosen solutions must also be approved by some party and after that implemented. Approval contains 
two issues. First, the right people must approve the proposal before it can be implemented. Secondly, 
the developer and presenter of the solution must himself be sure of its viability (Jokinen, p 87).

The applicability of the suggestions and their expected resource need presented in Chapter 6 was asked 
from a group of managers and experts in organisations involved. The group consisted of:

The general manager of the horizontal business unit.

The Head of Platform Product Management in the horizontal business unit,

The Head of Platform Business program in the platform development organisation.

The Director of Product Business Management in the platform development organisation,

A product manager in the platform development organisation.

An Information Design Technology expert in the platform development organisation,

The Head of platform the product development organisation and

A Chief R&D Engineer in the software engineering environment development organisation.

The group was asked the following questions:

1. Are the presented suggestions reasonable and relevant?
2. Do the presented suggestions contain side effects that were not taken into account?

The relevancy of the suggestions was perceived good. The horizontal business organisation reminded 
that most of the suggestions are already on their action lists. The documentation people said that the 
suggested formats and processes for the documentation are preferable for them.



95

The inspectors mentioned a couple of issues that were not taken into consideration well enough in the 
suggestions:

The removal of case company logos from documentation is not a problem to the document 
writers, since the logos come from the tool that converts the source files into final 
documentation.

The possible conflicts between vertical in-house customers and horizontal business is not 
analysed much. The horizontal business unit expects that there will be different viewpoints 
regarding requirements on features, for example.

The confidentiality between vertical in-house customers and horizontal customers as well as 
between different horizontal customers is not analysed in the thesis in detail.

The development environment is hard to test in the case company, if the infrastructure of the 
horizontal customer is much different. Especially this concerns situations, where the horizontal 
customer buys and installs the third party components itself.

It is still unclear, how independent the platform and the development environment are, for 
example, from the selected database software. It has not been studied whether a substitute can 
be used.

From the results it can be seen, that the suggested actions are relevant but some details are still 
problematic. There are alternatives for the implementation of the actions, but not any severe problems 
have been pointed out. The findings are questions that have to be answered, but they do not prevent the 
platform productisation.



96

9. CONCLUSIONS AND FURTHER STUDY

In this thesis, there were three main themes and keywords: productisation, telecommunications 
platforms and horizontal markets. A summary and a short description of them each is presented below.

Productisation means packaging the knowledge and technology of a company in to sellable entities. 
Productisation should be in mind from the beginning of product definition and requirement analysis. It 
includes creating of the product descriptions, user documentation and documentation for further 
developers. It also defines modularisation and versions of the product, defining the quality goals of the 
product, implementing quality assurance and testing the existing product and its boundary values. 
Furthermore, creating copyright systems and license terms for a product as well as organisations and 
systems for services are defined as a part of productisation. It also includes creating of a product 
management organisation for handling the product requirements and configurations.

A telecommunications platform contains the hardware and operating system and a collection of 
subsystems that take care of the basic functionality related to high availability, data management and 
communication protocols. It offers application programming interfaces to application developers of a 
variety of products and makes the underlying hardware solutions, clustering principles and high 
availability functionality invisible for the applications.

The horizontal markets approach means that a company can buy and sell parts of its product portfolio 
from or to its peers in the industry environment. Namely, it means that it can sell its technology to be a 
part of products made by its possible competitors. In this type of business, the company does not have 
an interface to the final customer of the product. The type of business also allows smaller 
infrastructure and application providers to enter the fonnerly vertical business, which used only 
proprietary systems. An essential part of this kind of a business is that the physical and logical 
interfaces of components and platforms are compliant with industry-wide standards.

From the insight into two platform-type of products in the IT and telecommunications segment, an 
overview of the required issues related to these products was provided in Chapter 5. The main things 
found out there were:

The purpose and target group of a product is defined, but room for customisation is left in.

The interfaces and APIs are defined and they are either public or available for a potential 
customer.

The interfaces and APIs follow or are planned to follow an industry standard.

Usage of APIs is efficiently documented.

Emphasis is put on post sales services, especially on installation and consultation services.



97

The current platform that is used to develop end products inside the case company was presented in 
Chapter 6. The main problems in the current situation were found out there and suggestions for 
corrective actions were presented in Chapter 7. The suggestions on how to solve the gap between the 
present situation and the requirements for a telecommunications platform product were:

Documentation modifications and documents that have to be created,

Redefining and -negotiating the contracts of the third party software and tools,

- Creating a development environment that can be delivered to horizontal customers,

Examining and documenting the APIs and making a roadmap for standard compliancy,

Examining module dependencies and defining sales items for different configurations,

Defining and agreeing on the model of customer services for horizontal customers.

The applicability analysis in Chapter 8 showed that the suggestions given in this thesis are applicable 
to the case company. Some things that are not clear yet and need still additional decisions were also 
noticed. Partly based on the suggestions given, the horizontal business organisation has generated a list 
of requirements for a productisation project (see Appendix A). The customer for the project is the 
horizontal business organisation.

As this thesis studied a special case related to three problem fields (horizontal markets, productisation 
and telecommunications platforms), further studies could be made related to these issues separately 
and in more detail. Especially interesting would be studies about the intellectual property rights (IPRs) 
and branding in the horizontal business and about the standardisation work of telecommunications 
platforms in general (Service Availability Forum interfaces and others). A further study should also be 
made on the horizontal business value chain and the process in it. The individual tasks described in this 
thesis could be used as the building blocks of the process phases if the relationships of them are 
explained in the process. A thing that was on purpose left out from this thesis, analysing possible new 
customer groups, is also worth studying. New customer groups could be found, for example, from the 
final customers, i.e. the operators that have their own application development as well as from 
application service providers and Internet service providers.



98

REFERENCES

Literature

Cooper, Robert G. Edgett, Scott J. 1999. Product Development for the Service Sector, Lessons from 
market leaders. Perseus Books, Cambridge, Massachusetts, USA.

European Commission. 1997. Competition in telecommunications: Why and how? Office for Official 
Publications. Luxembourg.

Fabricius, Frank. 1998. The Future Scenario for Telecommunications Vendors. Dataquest Vendor 
Analysis

Gartner Dataquest. 2001. Server market predictions for 2002. Gartner, Inc. 11.12.2001

Haikala, Ilkka. Märijärvi, Jukka. 2000. Ohjelmistotuotanto. Satku - Kauppakaari Oyj, Helsinki

Hirsjärvi, Sirkka. Remes, Pirkko. Sajavaara, Paula. 1998. Tutkija kiijoita. Kirjayhtymä Oy, Helsinki.

Hoch, Detlev J. Roeding, Cyriac R. Purkert, Gert. Lindner, Sandro K. Müller, Ralph. 2000. Secrets of 
Software Success. Management Insights from 100 Software Firms around the World. Harvard 
Business School Press. Boston, Massachusetts.

Jokinen, Tapani. 2001. Tuotekehitys. Otatieto. Oy Yliopistokustannus University Press, Helsinki.

Junttila, Merja. 1998. Kansainvälistyvän ohjelmistoyrityksen tuotteistamiskäsikirja. Pro Gradu 
tutkielma. Oulun Yliopisto, Tietojenkäsittelyopin laitos. Oulun yliopisto, 
Täydennyskoulutuskeskuksen julkaisuja 19.

Kitcho, Catherine. 1998. High Tech Product Launch. Pele publications, Mountain View, California, 
USA

Kotler, Philip. Armstrong, Gary. Saunders, John. Wong, Veronica. 1999. Principles of Marketing. 
Second European Edition. Prentice Hall Europe.

Kuusikoski. Jari. 1996. Verkonhallintapalvelun tuotteistaminen ICL Data Oy:ssä. Master thesis. 
Tampere University of Technology.

Lahtinen Yrjö (ed.) 1995. Tuotteistus ja kustannuslaskenta. Suomen Kuntaliitto. Helsinki.

Lillrank, Paul and Forssén, Minna (ed.) 1998. Managing for knowledge, Perspectives and prospects, 
Helsinki University of Technology. Industrial Management and Work and Organizational Psychology. 
Working Paper No 17.

Mattila, Kirsi. 2000. Tuotteistaminen asiantuntijaorganisaatiossa, Tapaus Sedecon Consulting ja 
valmennuksen mittaus tuotteena. Pro gradu. Helsingin yliopisto, Valtiotieteellinen tiedekunta, yleisen 
valtio-opin laitos.

Meyer, Marc H. Lehnerd, Alvin P. 1997. The power of product platforms: building value and cost 
leadership. Free Press, New York.



99

Natis, Y. 2002. Sun’s Software Strategy: A High-Stakes Balancing Act. Research Note 6 June 2002. 
Gartner Research.

MITA. 2001. Mobile Internet Technical Architecture (MITA). IT Press. Finland

Nybom Carita, Orkoneva Marjaana and Siltala Soile. 1996. Tietopalvelun tuotteistaminen. Helsinki 
University of Technology, Lifelong Learning Institute Dipoli. Info 1996:8.

O’ Grady, Peter. 1999. The Age of Modularity, Using the new world of modular products to 
revolutionize your corporation. Adams and Steele Publishers, USA

Olkkonen, Tauno. 1993. Johdatus teollisuustalouden tutkimustyöhön. Helsinki University of 
Technology, Industrial Economics and Work and Organizational Psychology, Report No 152.

Ran. Alexander. 1999. Software Isn’t Build Form Lego Blocks. ACM, Symbosium on Software 
Reusability SSR ‘99, pp 164-169, Los Angeles, USA.

SA Forum. 2001. What is the Service Availability Solution? Service Availability Forum white paper.

Sallinen, Sari and Seppänen, Veikko. 2002. Secrets of Software Success. About the book and software 
industry in general. Ohjelmistoliiketoiminnan case-kurssi, Oulun Yliopisto/TOL. 
http://www.tol.ouIu.fi/opiskeliiat/sw success kalvot 2002.pdf on 28.6.2002

Seppänen Anssi. 2002. Tuotekehitysprosessin yhtenäistäminen yritysfuusion jälkeen. Master thesis. 
Helsinki University of Technology

Tuominen, Kari. 1999. Muutoshallinnan mestari, Kuinka toteuttaa strategiset suunnitelmat kilpailijoita 
nopeammin. Laatukeskus.

Sipilä, Jorma. 1992. Asiantuntijapalvelun markkinointi. Weilin+Göös. Espoo.

Sipilä, Jorma. 1996. Asiantuntijapalvelujen tuotteistaminen. WSOY. Porvoo.

Sommerville, Ian. 1995. Software Engineering. Fifth edition. Addison Wesley Publishers Ltd. Harlow, 
Essex, England.

Tiihonen L: Tiihonen, Juha et al. 1998. Concepts for Modelling Configurable Products. TAI Research 
Centre and Laboratory ofinformation Processing Science, Helsinki University of Technology. TKO- 
B139.

Tiihonen IL. Tiihonen, Juha et al. 1998. Towards a General Ontology of Configuration. TAI Research 
Centre and Laboratory ofinformation Processing Science. Product Data Management Group. Helsinki 
University of Technology. TKO-B141.

Vaattovaara, Matti. 1999. Transforming services into products. Doctoral dissertation. Helsinki 
University of Technology, Industrial Economies and Work and Organizational Psychology, Report No 
9.

Vainio Markku. 1999. DX200 MTX-Ci - matkapuhelinkeskuksen mallintaminen, tuotteistaminen, 
laajennusten ohjeistaminen sekä testaussuunnittelu. Master thesis. Helsinki University of Technology.



100

Vitikainen, Katriina. 1995. Ohjelmistotuotteiden tuotteistaminen. Master thesis. Lappeenranta 
University of Technology.

Wainewright, Phil. 2002. Web Services Infrastructure. The global utility for real-time business. White 
paper by Phil Wainewright. http://www.philwainewTight.eom/pubs/wp/WSIpaper.pdf2.9.2002.

Webb, William. 2001. The Future of Wireless Communications. Artech House, Norwood.

Weiss G. 2002. How to Make Sense of a Multi-OS, Heterogeneous World. Gartner Research.

FSC (1), 2002. Resilient Telco platform (RTP): Continuous Service through highly available 
Applications, http://extranet2.fuiitsu-siemens.eom/vil/oec/vil/us000000/i 12138/i 12139/i 19849.pdf 
8.1.2003.

FSC (2), 2002. RTP- Resilient Telco Platform, Customer Value. Material got from a contact in FSC: 
Flyer.customer Value v02.pdf. 8.1.2003

FSC (3), 2002. RTP- Resilient Telco Platform, Continuous Application Availability. Material got from 
a contact in FSC: Flyer.advert.v02.pdf. 8.1.2003.

FSC (4), 2001. RTP: Resilient Telco Platform, the optimal way to implement zero downtime 
applications. White paper, Fujitsu Siemens Computers GmbH, 2001. 
http://www.fuiitsu-siemens.com/rl/products/software/rtp-wp-010309.pdf 8.1.2003

FSC (5), 2002. RTP - Resilient Telco Platform V2.0 on Linux. Technical Backgrounder. Material got 
from a contact in FSC: Flyer.dataSheet.v061.orginal.pdf. 19.1.2003.

Internet sources

Clarke Roger. 1997. Electronic Commerce Definitions.
http://www.anu.edu.au/people/Roqer.Clarke/EC/ECDefns.hmtl, 24.06.2002.

PDMA-glossary Product Development and Management Association glossary
www.pdma.org/glossary.html, 15.11.2002

IBM-web (1) IBM WebSphere Application Server, Foundation and tools description
http://www-3.ibm.com/software/info l/websphere/index.isp?tab:=products/appserv. 14.10.2002

IBM-web (2) IBM WebSphere Application Server, Version 5.0
ftp://ftp.software.ibm.com/software/webserver/appserv/v5/g325-2047-003.pdf 16.1.2003

IBM-web (3) Definition of different scenarios for WebSphere usage
http://www-3.ibm.com/software/webservers/appserv/scenario.html 14.10.2002

IBM-web (4) Adapters
http://www-3. ibm .com/software/ts/mq series/adapter/ws/ 14.10.2002

IBM-web (5) Community
http://www7b.software.ibm.com/wsdd/community/ 14.10.2002



IBM-web (6) Education
http://www7b.software.ibm.com/wsdd/education/

101

14.10.2002

IBM-web (7) Partner world and newsletters
http://www.developer.ibm.com/ 14.10.2002

IBM-web (8) Services
http://www7b.software.ibm.eom/wsdd/services/services.htmI#appsvr 9.1.2003

IBM-web (9) IBM WebSphere Studio
http://wvvw-3.ibm.com/software/infol/websphere/index.isp?tab=products/studio 22.10.2002 

IBM-web (10) Telecom application server toolkit
http://wwvv-3.ibm.com/software/devcon/devcon/docs/wtal20wu.htm 22.10.2002

S UN-web SUN Microsystems J2EE API documentation
http://iava.sun.eom/apis.html#i2ee 4.11.2002

FSC-web (1) Fujitsu Siemens Computers web page
http://www.fuiitsu-siemens.com/rl/products/software/rtp4.html 8.1.2003

FSC-web (2) Press release (28.5.2002) in Fujitsu Siemens Computers web page
http://www.fuiitsu-siemens.com/rl/products/software/rtp4.html 8.1.2003

MontaVista-web page. MontaVista Software, News and Events -web page 
http://www.mvista.com/news/2003/cge3.html 15.1.2003

SAF-press release. Premier Communications and Computing Companies Mobilize to Eliminate
Service Interruptions.

http://www.saforum.org 28.4.2001

SAF-web (1). Service Availability Forum web page
http://www.saforum.org/about the forum.html 31.1.2003

SAF-web (2). Open Programming Interfaces, Service Availability Forum web page
http://www.saforum.org/about the forum.html 8.8.2002

CGLWG web page Carrier Grade Linux Working Group web page
http://www.osdl.org/proiects/cgl/technical.html 31.1.2003

Case company internal material

Prod descr. 2002. Product description document of the platform.

Purpose doc. 2002. Purpose of the platform. Slide set in an internal training 20.9.2002.

Func and arch. 2002. Product Functionality and Architecture. Slide set in an internal training 
20.9.2002.

Arch__princ. 2002. Architectural Principles -document of the platform.

Means doc. 2002. Product development means. Slide set in an internal training 20.9.2002.



102

Sellcomp. 2002. Product platform Sellable Components description -document.

Horiz req. 2002. Horizontal business unit’s requirements for the platform -document

Frameworksandtools. 2002. Platform frameworks and tools. Company internal slide set.

Online services doc. Case company online customer services system. Slide set material of company 
internal training 28.1.2003

Interviews and discussions

B.K., Software Engineer
Discussion about IBM WebSphere Application Server 1.11.2002

E.K., Chief R&D Engineer
Discussion about development environment 9.12.2002

T.S., Technology Manager
Internal customer interview 13.1.2003

O.M., Specialist
Internal customer interview 13.1.2003

M.U. Chief Engineer
Internal customer interview 14.1.2003

M.N. Program Manager
Internal customer interview 15.1.2003

T.M. Information Design Technology
Discussion about documentation 17.1.2003

M.R. Business Development Director in Fujitsu-Siemens Computers 
E-mail interview and discussion 21.1.2003

T.L Product Manager and J.H Principal Engineer
E-mail discussion 23-27.1.2003

H.H. Senior R&D Manager
Interview 31.1.2003



103

APPENDIX A

In the table below are presented the requirements for the platform that were defined in parallel with 
this thesis. The requirements were presented by the horizontal business unit to the platform 
development organisation product management.

There shall be a development 
documentation kit.

Materials like developer’s guides, development 
environment installation guide, API documentation 
and architecture principles with examples delivered 
on CD-ROM and through extranet in PDF-format
PDF.

Development documentation kit shall not 
include any references to components or 
other documents that are not available for 
the horizontal customer.

References to case company internal databases and 
documents.

There shall be a runtime documentation kit. Documents, which can be used as a part of 
customers end product documentation.

All references to case company must be 
removed from runtime documentation kit.

Customer probably does not want to include case 
company references to its documentation.

There shall be means to support E1/T1 and 
ATM interfaces and protocols.

Customer wants to know how the platform can be 
connected with PCM and ATM networks.

Case company’s own blade hardware shall 
be available for the platform.

Own hardware is essential for the first releases.

Case company logos shall not be visible in 
runtime environment.

Horizontal customer probably does not want to sell 
products with case company’s logos on them. They 
want to use their own logos both in hardware and in 
software. License disclaimers are exception to this.

Hardware shall be supported from five to ten 
years.

Horizontal customers are telecommunications 
manufactures, and typical product lifetime in that 
segment is five to ten years.

There shall be defined sets of software 
sales items for runtime environment.

Customer shall be able test and deliver applications 
build on top of the platform. Delivery Media is CD- 
ROM and extranet.

There shall be defined sets of software 
sales items for development environment.

Customer shall be able test and deliver applications 
build on top of the platform. Delivery Media is CD- 
ROM and extranet.

Supported environments for each software 
sales items shall be documented.

Basic customer requirement.

Software sales items shall be verified in all 
supported environments.

Customer wants to have evidence that software item 
is really working as promised and where promised.

Software for runtime environment is 
delivered only as binary files.

Source codes are not delivered to horizontal 
customers.

Software for development environment is 
delivered only as binary files.

Customer does not need to have source codes to be 
able to develop applications.

All software deliveries shall include a list of 
included components with version numbers.

Delivered software shall be identified to enable 
correct maintenance.

Runtime software sales items shall be 
protected with proper license key or other 
method.

Licence keys prohibit misuse of software. They can 
also be used as a reference related to maintenance 
contracts etc.

Third party software versions needed in the 
platform shall be commercially available.

Customer shall be able to purchase needed third 
party software components if the case company 
cannot deliver them. This covers both runtime and 
development environment.

The case company shall be able to act as 
value added reseller for all third party 
software needed in runtime environment.

The horizontal business unit shall be able to sell 
complete runtime sales packages to horizontal 
customers.



104

The platform’s first commercial release 
should include as complete high availability 
services as possible.

SAP compliant interfaces (both Application Interface 
and Platform Interface), have been built in such a way 
that high availability services component has clear 
boundaries and it is not interrelated with other 
software.
This is also a requirement for selling the high 
availability services system component as a separate 
component.

The platform development organisation shall 
have dedicated account manager for 
horizontal business unit.

The platform development is responsible to support 
horizontal business unit’s business according to 
agreed responsibility sharing. Account manager is the 
key contact towards it. Horizontal business unit is 
responsible for helpdesk and project management 
services for horizontal customers.

The platform development organisation shall 
provide a demo laboratory with resources 
and equipments.

Customer demos are crucial for horizontal business. 
Demos are needed e.g. for functionality, performance, 
scalability and development productivity.

The platform development organisation shall 
provide consultancy services for horizontal 
business unit.

The platform development organisation is responsible 
to support horizontal business unit business 
according to agreed responsibility sharing.
Consultants are needed for supporting horizontal 
business unit to solve demanding customer problems.

The platform development organisation shall 
provide software maintenance for horizontal 
customers.

Software maintenance covers software bug fixes 
within agreed correction timeframe for all software 
sales items.

There shall be proper product presentation 
material available.

Presentation material is needed in marketing and 
sales activities. It includes e.g. product description, 
sales items, architecture principles and subsystem 
descriptions Presentation slide sets related to these 
materials shall be updated on release basis.

There shall be roadmap available for each 
key sales item.

Roadmaps are needed in marketing and sales 
activities. It is needed also for performance and 
scalability for at least three years of visibility.

The platform shall have a well-defined 
performance measurement set and regularly 
measured results.

Customers want to compare the performance of the 
platform to its competitors. This set shall also show 
how performance improves in relation to scalability. 
Measurement set shall include metrics showing 
typical control plane application performance (e.g. 
messaging capacity).

The platform shall have a roadmap for 
performance evolution.

Customer need to know how the platform’s 
performance will evolve compared to its competitors.

There shall be planned demos of the 
platform.

Customers want to know how the platform can be 
used and how it works. Old demos shall be updated 
for each release.

Non-perpetual licensing shall be supported. A perpetual licence gives you the right to use the 
software forever, while a non-perpetual licence lasts 
for a specific period. Third party components included 
in the platform shall also support non-perpetual 
licensing.

Perpetual licensing shall be supported for 
runtime environment.

Perpetual licensing shall be available for the runtime 
environment and for the third party components 
included in it.

Basic platform pricing shall be competitive. Prices of hardware, operating system, high availability 
services and basic functionality shall be based on 
market prices.

Case company’s extensions to the platform 
shall support value based pricing.

Extensions shall be charged according their real 
value.


