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In this master’s thesis the use of context-dependent phoneme models (tri­
phones) in continuous Finnish speaker-dependent speech recognition is ex­
amined. In the first part of the thesis, a review of general concepts relating 
to the human speech production and hearing systems is covered, as well as 
the properties of the Finnish language. A summary of the structure of au­
tomatic speech recognition systems is also presented. Context-dependency 
of phonemes and coarticulatory effects are emphasized.

In the second part of the thesis, a speaker-dependent recognizer is built. 
The recognizer is based on hidden Markov models and it is developed using 
the Hidden Markov Model Toolkit (HTK). Different triphone clustering 
methods - a data-driven approach based on binary decision trees, and 
two approaches utilizing a priori knowledge on the place of articulation of 
phonemes and the type of phonemes - are studied. The best results are 
produced by the tree-based clustering algorithm, which also results in the 
highest number of models.

An extensive error examination is compiled based on the recognition tests. 
For each phoneme typical errors and contexts causing errors are analyzed.
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Part I

Theory



Chapter 1

Introduction

The goal of automatic speech recognition systems is to transcribe human speech 
into text, which can be further processed by machines or displayed for humans for 
reading in various applications. Despite the vast amount of effort put into research 
in automatic speech recognition, there still are problems to overcome.

Depending on the application, different kinds of recognizers are used. Isolated word 
recognition is sufficient for simple user interface systems. A harder task is to tran­
scribe continuous speech, and even more difficult is to recognize spontaneous speech. 
Continuous speech recognition is needed for example in aids meant for the hearing 
or visually impaired.

Finnish speech recognition has been studied in several thesis before. The first [1, 2] 
described the overall structure of hidden Markov model (HMM) recognizers, while 
some later ones have concentrated on speaker adaptation [3, 4]. This thesis’ emphasis 
is on context-dependency, and especially triphones, which have been succesfully used 
in other languages, but have not been studied for Finnish.

Large vocabulary recognition requires the use of subword units. The most commonly 
used unit is the phoneme, although other possibilities also exist. Straightforward 
monophone models produce hardly satisfactory results for difficult recognition tasks. 
This is due to the differences in phoneme realizations induced by coarticulatory 
effects in different contexts.

To overcome this, context-dependent models have been introduced. They are usually 
diphones, triphones, or quinphones, depending on how much of the phoneme context 
they take into account. The most intuitive choice is the triphone - a structure that 
covers immediately preceding and following phonemes. For diphones, only either the 
preceding or the following phoneme is included, so one has to make a decision about 
which is considered more important - both of them naturally affect the pronunciation 
of the central phoneme. On the other hand, it is questionable whether phoneme units 
further away from the examined phoneme have significant coarticulatory effects. This 
makes the use of quinphones less beneficial. Furthermore, when using larger units, 
the need for training data increases.

The number of triphones in a language is large. In a book used as the training and 
test material for this thesis, the number of different triphones was almost 10000. For
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42 % of these units there were less than five occurrences in the data, which is far too 
few to find estimates for the model parameters. Clearly, there is a need for reducing 
the parameter space.

There are three solutions for this problem: parameter tying, clustering of states, and 
clustering of models. Parameter tying is the most lightweight operation where some 
parameters across the models (or states) are forced to be equal. The mechanisms of 
state and model clustering are similar. Three different approaches are presented in 
this thesis: data-driven clustering, decision tree based clustering, and classification 
based on articulatory facts. The first two are based on similarities found in the 
models or states after initial training, and the third is based on decisions made 
beforehand based on human knowledge.

This thesis discusses speech recognition from the Finnish point of view. There are 
many aspects about the language that make speech processing easier and many that 
make it more difficult than for other major European languages. The Finnish writing 
system is close to phonetic, but the huge number of different words due to Finnish 
morphology makes language processing very challenging.

Often, when speech recognition tests are run, the results are reported as raw numbers 
describing the error rates. In this thesis, a more thorough analysis is carried out. 
Errors typical of each phoneme are presented as well as the effect of the phoneme’s 
position in the sentence and word.

This thesis is divided into eight chapters. Chapters 1 to 4 form the theoretical part 
of this thesis, and chapters 5 to 8 the experimental part.

The theoretical part aims to provide the reader with sufficient understanding of 
the human auditory and speech production system as well as the methods used in 
automatic speech recognition. Special attention is paid to issues involving context- 
dependency.

In the practical part designing and implementing recognizers using different methods 
for parameter space reduction is described, and rhese results are analyzed.

Chapter 2 presents an introduction to the human speech and auditory systems and 
describes the special features of the Finnish language.

Chapter 3 describes briefly the structure of modern speech recognition systems and 
the methods used in them. The HMM concept is shortly presented.

Chapter 4 focuses on context-dependency and the issues raised by it. Different 
triphone clustering algorithms are presented, and a couple of large vocabulary rec­
ognizers are described.

Chapter 5 describes the environment where the recognizer is built as well as the data 
used for recognizer training and testing.

Chapter 6 gives insight into the recognizer building process itself, and provides the 
reader with the needed HTK commands for accomplishing the different phases.

In Chapter 7 the results and different error types for different phonemes are pre­
sented. Each phoneme is checked for substitution, deletion, and insertion errors, and 
which are the most common and in which contexts. Some example sentences with
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recognized transcriptions are presented, as well.

Chapter 8 concludes the results of the recognition tests. Also, suggestions for im­
provement are given.

Appendices A, B, and C include many graphs that describe the error analysis visually.



Chapter 2

Speech, articulation, and phonetics

2.1 Speech events, phones, and phonemes

A speech event is any kind of sound produced by the speech organs of a person. Two 
speech events are considered to be different if any difference can be found between 
them, for example, in the spectral structure or timing. Therefore, any two speech 
events are most likely different - even if produced by the same person. [5]

Speech events that are phonetically equivalent between speakers can be referred to 
as phones. Phonetic equivalence is a complex concept that relies on the idealizing 
assumption that the differences between a set of speakers’ phone organs can be 
ignored when evaluating the speech event’s phonetic quality. [5]

Phones are regarded as realizations of the same abstract phoneme - they are its 
allophones or variants [6). It should be emphasized that a phoneme is indeed an 
abstract concept. It is not possible to divide a word into phones with clear, unam­
biguous borders - the speech signal is changing continuously. The phoneme model 
is simply an idealizing abstraction of the complex phenomenon called speech.

Quite often the word “phone” is used when one actually means a phoneme. For 
example, one could speak about phone recognition, when the ASR system in question 
is actually based on phonemes. Even more often, there is confusion between the 
corresponding adjectives - phonetic and phonemic.

2.1.1 Notation

It is customary that speech sounds are marked in brackets (e.g. [a]) and phonemes 
between slashes (/a/). In both cases quantity, i.e., wheteher a phoneme or a phone 
is short or long, is marked with a colon ([a:] or /a:/).

There exists an alphabet that includes symbols for phonemes in different languages, 
and is called the International Phonetic Alphabet (IPA). Instead of IPA symbols, 
this thesis uses Finnish graphemes for describing the corresponding phonemes. An 
exception is the /rj/ phoneme that has no corresponding grapheme. In this case, the 
IPA symbol is used.
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For most of the Finnish phonemes the IPA character is identical to the grapheme. 
Table 2.1 presents the exceptions.

Grapheme notation IPA notation
/a/ H
N /æ/
/ö/ /ø/

Table 2.1: Finnish phonemes that have a different character in the IPA notation than their 
corresponding grapheme in Finnish writing notation.

2.2 Speech production

According to the source-filter model of phonation there are three main aspects needed 
for speech production: a source of energy, a source of sound, and a filter. None of 
these can be directly mapped to specific organs - for example, the location of the 
sound source may vary for different speech sounds. [6]

The main part of the energy source is provided by the respiratory muscles. When the 
volume of the lungs is decreased by relaxing the diaphragm and intercostal muscles 
- and thus increasing the pressure inside the lungs, the pressure difference between 
the lungs and the parts of the vocal tract above the glottis (supraglottal vocal tract) 
begins to equalize, and air starts flowing through the glottis and the vocal tract - 
unless there is something blocking the tract. This kind of air flow from the lungs 
to the environment - called egressive air flow - is the most important mechanism 
for human speech production. In some rare cases, ingressive air flow to the lungs is 
utilized as well.

As such, air flowing through the vocal tract does not produce much sound. The 
glottis, a gap between the vocal chords in the larynx, works as a valve between the 
lungs and supraglottal vocal tract. For in- and exhaling, the valve should be open, 
allowing air flowing to and from the lungs as freely as possible.

In phonation of voiced speech sounds the vocal folds are moved closer to each other 
and the glottal orifice is narrowed. The air flow forced through the glottal slit makes 
the vocal folds vibrate. The glottis opens and closes quickly at a frequency around 
100 Hz for males, 200 Hz for females and 300 Hz for children, causing constant 
changes in the air pressure above the glottis. This opening and closing acts as the 
source of sound. This frequency can be heard in voiced sounds and is refered to as 
pitch. An example of the speech sound [a] is presented in figure 2.1. The speaker can, 
to some extent, regulate the frequency of these glottal pulses. The pulses generated 
by the glottis could be heard as such but in reality the sound wave passes through 
the vocal tract filter, which causes significant changes to the produced sound.

For unvoiced speech sounds the source of sound is a constriction somewhere along 
the vocal tract that is so narrow that air flow through it produces turbulence and 
noise-like sound. For the speech sound [s], for example, the constriction is between 
the tip of the tongue and the alveolar ridge.
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One pilch period

Figure 2.1: Waveform of the vowel [a]. The pitch period is indicated in the figure.

The part of the vocal tract that is located in front of the sound source acts as the 
main acoustic filter - for voiced sounds it consists of the part from the glottis all 
the way up to the lips and for labial sound sources, e.g., [f], only of the small gap 
between the bottom lip and the upper teeth. As the word filter suggests, this part 
of the speech system amplifies some and attenuates other frequencies of the signal 
produced by the sound source. [7]

2.3 Production of the different speech sounds

The classification of phonemes to vowels and consonants is a universal feature of 
all languages. For the Finnish language, vowels are sometimes defined as the set 
of phonemes that can alone form a syllable. Unfortunately, this definition does not 
hold for all other languages. Therefore, a more general definition is required.

Vowels are voiced sounds during which the air flow through the vocal tract is rela­
tively free. The state of the vocal tract organs remains relatively stable during their 
phonation. Additionally, in order to exclude nasals ([m, n, rj|) and laterals ([1]) from 
the vowel class we require that air has to flow freely out of the middle of the mouth.

All the speech sounds that do not match the definition of a vowel are called conso­
nants. The different types of consonants in the Finnish language are stops, fricatives, 
nasals, tremulants, laterals, and semi-vowels. [8]

2.3.1 Vowels

Vowels can be classified by the positions of the articulators (jaw, tongue, lips). The 
position of the tongue during the phonation of six Finnish vowels, [i, e, ä, u, o], and 
[a] is shown in figure 2.2. [y] and [ö] are not shown, since the tongue is approximately 
in the same position as for the vowels [i] and [e], respectively. [8]
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Figure 2.2: Position of the tongue during the production of different vowels. [8]

Front Central Back
Close \iy \ 1 u I

Mid \e ö \
I I o /

\ä
a

Figure 2.3: Vowel chart showing the basis for vowel classification. [8]

The difference in the constrictions of the vocal tract is to a good part defined by 
the location of the highest point of the tongue. A schematic drawing describing the 
location of the maximum tongue height and position for the vowels mentioned above 
is shown in figure 2.3. All Finnish vowels are included in the picture, and all vowels 
in any language fall inside the chart.

As depicted in the figure, vowels can be classified in different ways. Whether they 
are front, central, or back vowels is decided by the location of the constriction caused 
by the tongue. Two other ways to classify them is by the narrowness of the strait 
and the roundness of the vowel. For example, [i] and [y] are both closed front vowels, 
but [i] is broad while [y] is round.

2.3.2 Consonants

The production mechanism of different vowels is quite similar, but the differences 
between the consonant classes are larger. While producing [1] or [j], for example, the 
air flows in a fashion that resembles greatly the air flow while producing vowels. On 
the other hand, for the stops [k, p, t], the air flow stops completely for a moment 
and the actual sound of these phonemes is produced by the burst-like explosion noise 
when the vocal tract finally opens. In this subsection, the production of the native 
Finnish consonants [d, h, j, k, 1, m, n, g, p, s, t, v] as well as [b, f, g] included in
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Finnish due to other languages are considered.

Stop consonants [k, p, t, g, b, d]

When producing stops the vocal tract is at first completely, or almost completely, 
closed at some point causing a high difference in pressure between the parts of the 
vocal tract above and below the closure. At this point, there is little or no sound 
present. The actual stop consonant is produced when the vocal tract suddenly opens 
and a pulse-like sound is released, [k, p] and [t] are voiceless stops while [g, b], and 
[d] are voiced. For [k] and [g] the closure during the closed phase of the stops is 
located in the velum, [t] and [d] in the dental area, and [p] and [b] in the labial part 
of the vocal tract.

Fricatives |f, h, s]

In the production of fricatives there is a constriction somewhere along the vocal 
tract that is narrow enough to produce noisy turbulent air flow. This noisy sound is 
then altered by the vocal filter. Finnish fricatives are always classified as voiceless. 
However, for example, the [h]-sound between two vowels may be voiced.

Nasals [n, m, q]

Nasals are voiced consonants in which air flows through the nasal cavity while the 
primary vocal tract is closed. The location of the closure creates the main distinction 
between the three nasals. The sound is acoustically filtered by both the part behind 
the closure of the vocal tract and the nasal tract.

Tremulants [r]

The Finnish [r] is produced by letting the tip of the tongue vibrate against the 
alveolar ridge. The frequency of this vibration is typically 20 - 25 Hz. In Indo- 
European languages such as English or German, the place of the articulation is 
farther back in the vocal tract and no strong tip vibration is produced.

Laterals [1]

The tip of the tongue blocks free air flow by pressing against the alveolar ridge. 
However, on both sides of the tongue tip there is a passage for sound waves and air 
flow.

Semi-vowels [j, v]

The consonants [j] and [v] resemble vowels in general, but the constriction in the 
vocal tract is more powerful and the state of the tract is more context-dependent.
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Figure 2.4: Different parts of the human ear. [7]

2.4 Speech perception

2.4.1 Anatomy of the ear

The ear is composed of three sections: the outer, middle, and inner ear, as depicted in 
figure 2.4. The outer ear is responsible for directing the sound waves to the eardrum, 
where the middle ear transforms air pressure variations into mechanical motion. In 
turn, the inner ear transforms the movements into electrical signals in the auditory 
nerve. [7, 9]

The outer ear consists of the pinna and the ear canal. The pinna is essential for 
sound localization as it attenuates sound coming from behind the head. The ear 
canal, or the meatus, can be regarded as a hard walled acoustical tube which boosts 
frequencies between 2 and 8 kHz. The first and second formants of speech are located 
within this frequency range.

The middle ear begins at the eardrum. Together with the three ossicular bones 
(hammer or malleus, anvil or incus, and stirrup or stapes) it linearly converts air 
pressure variations in the ear canal into the oval window membrane at the start of 
the inner ear. The acoustic impedance of the inner ear fluid is about 4000 times 
that of air. Therefore, most of the pressure waves hitting the inner ear would be 
reflected back if there was no impedance transformation mechanism. The middle ear 
also includes a mechanism for protecting the delicate inner ear against loud and low 
frequency sounds.

The part of the inner ear which performs in hearing is the cochlea, a snail-shaped 
fluid-filled tube. It is connected to the middle ear through the oval and round 
windows. The cochlea is a sensitive and complex organ. It is divided into sev­
eral compartments by membranes (see cross-section in figure 2.5), and each of these 
compartments contains fluid with different chemical makeup, causing potential dif­
ferences between the compartments.

On the basilar membrane (BM) lies the organ of Corti, which contains hair cells 
organized in several rows along the length of the cochlea. The hair cells’ hairs
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helicoterma

scala vestibuli

oval window.

basilar membrane

scala tympani
round window

Figure 2.5: Cross section of the cochlea. [9]

bend when the basilar and tectorial membranes vibrate, causing neural firings in the 
auditory nerve.

The BM varies gradually in tautness and shape. It is stiff and thin in the beginning 
(close to the round and oval windows), but flexible and thick at its end. Thus, 
its frequency response also varies: each location on the cochlea has a characteristic 
frequency at which it vibrates maximally. The characteristic frequency is high in the 
beginning of the BM and low at the end.

Sound entering the cochlea causes vibrations in the fluid, which creates traveling 
wave on the BM, which progresses from the beginning of the cochlea towards the end. 
This wave reaches a maximum amplitude at the point on the BM whose characteristic 
frequency matches the frequency of the input sound.

2.4.2 Psychoacoustics and the ear

There are two main ways to study the properties of the ear: 1) direct physiological 
measurements and experiments, and 2) psychophysical experiments. The former is 
very difficult to perform due to the delicate and complex structure of the ear. In the 
latter, the response to sounds are studied indirectly, and rely on psychic response. 
This approach is called psychoacoustics and studies sensations, subjective responses 
to different stimulus.

There are several results of psychoacoustical research that are essential in speech 
processing. The most important aspects are the different psychoacoustical pitch 
scales which are used to imitate the human hearing system. Before describing the 
different scales, a few psychoacoustic concepts need to be introduced.
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Critical band

Critical band is an essential concept when studying the frequency resolution of hear­
ing. “A critical band defines a frequency range in psychoacoustic experiments for 
which perception abruptly changes as a narrowband sound stimulus is modified to 
have frequency components beyond the band. When two competing sound signals 
pass energy through such a critical-band filter, the sound with the higher energy 
within the critical band dominates the perception and masks the other sound.” [7] 
A critical band is approximately 100 Hz wide for center frequencies below 500 Hz, 
and 20 % of the center frequency for higher frequencies.

ERB band

Equivalent Rectangular Bandwidth (ERB) bands are another way to measure the 
bandwidth of analysis of the hearing system. The ERB of the auditory filter is 
assumed to be closely related to the critical bandwidth, but it is measured using a 
more sophisticated method rather than on classical masking experiments involving a 
narrowband masker and probe tone. As a result, the ERB is thought to be unaffected 
by activity in frequencies outside the studied band. [7]

Pitch

The pitch describes the subjective sensation of sound on the frequency scale ranging 
from “low” to “high”. The closest match to pitch in physically measurable quantities is 
frequency, but pitch is also dependent on other quantities. There are two concurrent 
theories that try to explain the sensation of pitch: the place theory and the timing 
theory. The former is based on the fact that that the functioning of the basilar 
membrane (see section 2.4.1) is responsible for the sensations, while the latter is 
based on observations of the ear performing some sort of time domain periodicity 
analysis. Currently it is known that neither of the theories alone explain pitch 
sensations and that the hearing system includes more than one method.

Several pitch scales have been developed based on slightly different aspects of psy­
choacoustics. The mel, Bark, and ERB scales are presented in the following subsec­
tions. [7]

Mel scale

The mel scale is formed as follows: a starting frequency is selected and played to a 
subject. Then, a sound is searched for that in the subject’s opinion is half (or double) 
in pitch. This procedure is repeated as necessary with the frequencies of new sounds 
as starting frequencies, and the results are averaged over many subjects. Finally, an 
anchor point is selected where the frequency and pitch scales are set to be equal.

The dependency between frequency and pitch is approximately linear up to 500-1000 
Hz but above that it is close to logarithmic.
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This kind of scale is called the mel scale1, and the unit of the scale is mel. An 
approximation usable on low frequencies is given by the equation:

m = 25951og10(l + //700) (2.1)

where m denotes the number of mels and / is the frequency in hertz. The anchor 
point for this scale is 1000 Hz which corresponds to 1000 mels. Other approximations 
exist, as well, and they are usable on different frequency bands. [9]

Bark scale

The Bark scale (named after the German acoustician Barkhausen) is based on critical 
bands. On this scale one critical band corresponds to one Bark. The Bark and mel 
scales are closely related and 1 Bark approximately equals 100 mels. [9]

ERB-rate scale

At different times the different pitch scales have been thought of mapping sounds 
linearly to the basilar membrane so that a constant difference on the pitch scale 
corresponds to a constant shift in the resonance point on the BM. According to 
latest research, the ERB-rate scale is the best match for this relation. As the name 
suggests, the ERB-rate scale is based on the ERB bands in a similar way that the 
Bark scale is based on critical bands. [9]

Stevens’ power law

According to the Power law by Stevens [10], introduced in 1957, the relationship 
between stimulus intensity and sensation magnitude is described by the equation:

Y = kln (2.2)

where Y is the sensation magnitude, A; is a constant factor, / is the magnitude of the 
stimulus, and n is the exponent that has a different value for different sensations. 
If the exponent is less than one, the function is compressive, if n is equal to one, 
the function is linear, and otherwise it is expansive. Stevens measured values for 
n for different sensations, for example for brightness (n ss 0.33) and for electrical 
shocks to teeth (n « 7.00). For the loudness of a 3000 Hz tone a value of næ 0.67 
was obtained. However, on moderate sound levels and lower frequencies the value is 
significantly lower [10, 11].

The power law is in contradiction with previous results by Fechner who argued 
that the relation between stimulus and sensation intensities would be logarithmic 
(Y = k log /). Even today, many algorithms use the logarithmic function when 
approximating human sensation intensities.

’Mel is short for melody and thus written in lower case.
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Figure 2.6: Waveform, spectrogram, energy, and mel-cepstral representation of the same 
speech signal along with phoneme annotations.

2.5 Speech as seen by the computer

Humans use both audible and visual cues when recognizing speech with the audible 
information being more important. In the early days of automatic speech recogni­
tion only audible information was utilized since computers were not powerful enough 
for image processing, currently, there are projects aiming at combining audible and 
visual information in ASR [12], but for many common applications the acoustical 
stimulus is the only one that can be used. An example of this are telephone appli­
cations.

The analog speech signal is converted into an analog electrical signal within a mi­
crophone and into discrete, digital samples by an analog-to-digital converter (ADC). 
The amount of digital data depends on the sampling frequency as well as the ampli­
tude resolution of the samples. For telephone speech, the frequency is usually 8 kHz 
and for CD-quality 44 kHz. A reasonable compromise between sound quality and 
storage space required dictates a 16 - 22 kHz sampling frequency. In the experiments 
of this thesis a frequency of 16 kHz was used.

In figure 2.6 four different views of the same speech signal are shown. The topmost 
is the speech waveform, the second is the overall energy of the signal, the third 
the standard 12th order mel-cepstral representation, and finally the short-time FFT 
representation, shown as a spectrogram.

The utterance presented is part of the training data used for the experiments of this
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thesis and it is uttered by a female speaker.

The individual sounds are visible in the spectrogram as well as the different formants 
which are the resonances produced by the vocal tract. Different phonemes produce 
different patterns of formants, and a human being can, for example, identify clearly 
pronounced vowels from each other quite simply by looking at their spectrograms.

For all the /s/’s, there is clearly more energy in the higher frequencies than for other 
phones. This shows the difference between noise-like fricatives and voiced sounds.

2.6 Special features of the Finnish language

The Finnish language, along with other Finno-Ugric languages such as Estonian and 
Hungarian, is fundamentally different from all other major European languages. In 
this section, the most important features of the Finnish languages from the speech 
recognition point of view are discussed.

1. Finnish is close to a “phonetic” language
As a rule of thumb, the Finnish writing system follows the phonemic principle: 
there exists a different grapheme corresponding to each phoneme that is not 
used for any other purpose. This fact makes many aspects easier in speech and 
language research. For example, the conversion of written text to phoneme 
strings in speech synthesis is straightforward.

Still, there are exceptions, with the most obvious being the phonemes /rj/ 
and /rj:/ that are transcribed as graphemes “n” (usually, in front of a “k”) 
and “ng”. Additionally, the difference between spoken and written language 
causes irregularities between the graphemes and phonemes; phonemes are often 
dropped and added at certain locations of a word. In loanwords, on the other 
hand, a less educated speaker might replace the foreign consonants (b, f] and 
[g] with the unvoiced Finnish counterparts [p, v] and [k], respectively.

Coarticulatory fants do cause phonemes to appear as different allophones in 
different contexts, but the number of different phonemes perceived by a native 
Finnish speaker is close to the number of different graphemes in the written 
language.

As a result of Finnish being a phonetic language, native Finnish speakers can 
easily interpret a string of phonemes produced by a phoneme recognizer.

2. Number of words

The morphology of the Finnish language is complex, which makes the number 
of different words immense. This is due to several factors: [13]

(a) Finnish is a synthetic/agglutinative language
As opposed to analytic languages, the meaning of a word is typically 
changed by adding a suffix to the word and not by using additional words. 
There are sixteen different cases and additionally several other grammat­
ical meanings which are expressed through suffixes, e.g., possessive re­
lation, questioning and hesitation. These kind of suffixes are used with
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nouns, pronouns, adjectives, numerals, and even verbs. Suffixes often 
replace prepositions used in other languages.
As an example, the word “puissaanhan”, “indeed in his/her/their trees’’ 
can be split into morphemes (/pu/i/ssa/an/han/) in the following way:

• pu is the root of the word. The basic form of the word tree is puu, 
here the second /«/ has disappeared. This shows that Finnish is not 
cleanly agglutinative.

• i denotes a plural form.
• ssa is the suffix for the inessive case, which is roughly equivalent to 

the English preposition in.
• an represents the possessive form of the third person, singular or 

plural.
• han makes the word have an insisting tone.
• Verbs are conjugated in person, tense, and mood.

The word ’juoksentelisinkohan’ is as such a proper sentence in Finnish. 
When translated accurately into English, one needs seven words: Would 
I really run a little around. Again, this word can be split into different 
morphemes in the following way:

• juoks is the root of the word, derived from the verb juosta, to run
• entel means that the running is done in an aimless way
• isi indicates the conditional mood
• n indicates the first person, singular
• ko makes a question of the word
• han the same suffix as in the previous example, but, in this case, it 

makes the tone hesitating, rather than insisting.

(b) New words are formed by composing other words.
This is true for some Indo-European languages, e.g. German, as well. To 
some degree, it also applies to English.

The great number of different words makes it inefficient to make a simple list of 
Finnish words that would be usable for a large vocabulary speech recognizer; 
one would need to add knowledge about morphology to the language model. 
This is totally different for Indo-European languages and the large vocabulary 
recognizers for those languages usually rely highly on word lists, i.e., dictio­
naries. For Finnish some other approach is required. In this work, as well as 
previous works, phoneme recognition has been chosen as the solution. [14, 15]

3. Quantity of phonemes
Phoneme duration, or quantity, is a distinctive feature in Finnish - the meaning 
of a word can be changed by varying the temporal durations of the phonemes. 
For example, the words taka, takka, takaa, taakka, takkaa, and taakkaa all have 
different meanings, and even the non-existent words taaka and taakaa sound 
like proper Finnish words, but do not happen to have a meaning.

4. Vowel harmony
In a Finnish non-compound and non-loan word, front vowels [y, ä], and [ö] and 
back vowels [a, o], and [u] are never present at the same time. The front vowels 
[i] and [e] axe neutral in this respect: they can be combined with both front
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Place of articulation Bilab. Labio
dental

Alveol. Post.
alveol.

Palat. Velar
Type of articulation
Stops P (b) t d k (g)
Nasals m n ij
Laterals 1
Tremulants r
Fricatives (f) s (J) h
Semi-vowels V j

Table 2.2: Finnish consonants classified according to articulatory type and place. The 
foreign consonants Eire presented in parenthesis.

and back vowels. This fact can be utilized in speech recognition applications 
especially at the language model level.

5. Few consonant sequences
Consonant sequences are rare and never appear in the beginning or end of a 
native Finnish word. In contrast, it is possible that a word consists solely of 
vowels (e.g., aie).

2.6.1 Phonemes present in the Finnish language

The Finnish phoneme set is smaller than the English one. In native words, there 
are eight vowels and thirteen consonants, and three additional consonants appear in 
loanwords. Both long and short versions exist for most phonemes.

Vowels

The Finnish set of vowels consists of five front vowels and three back vowels. The 
front vowels are /e, i, y, ä/, and /Ö/, corresponding to the graphemes e,i,y,ä, and o', 
respectively. The back vowels are /a, o/, and /u/ with the respective graphemes a, 
o, and it.

Consonants

There Eire eleven different consonants in native Finnish words: /d, h, j, k, 1, m, n, 
p, r, s, t, v/, and /rj/. Not all of them appear at all word positions; for example, 
the consonants /d, h, j, k, m, p, v/ and /r)/ do not appear at the end of a word. 
Additionally, /d/ and /q/, which are usually present only due to word inflection, 
have more restrictive appearance constraints.

The appearance of the phoneme /h/ is fundamentally different, depending on its 
location in the syllable. In the beginning of a syllable it is unvoiced and could be 
classified as a semi-vowel. In the end of a syllable it is often voiced and clearly a 
fricative. Both of these variants undergo a heavy allophonic variation. [16]
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Phoneme statistics

Table 2.3 shows the statistics of Finnish phonemes from four different studies. Also, 
the statistics of the book used for the experiments of this thesis are shown (Palo­
heimo, 1996). The statistics made by Setälä [17] and Pääkkönen [18] are rather 
letter statistics than phoneme statistics, and the phoneme g is not taken into ac­
count. Setälä based his study on the Finnish translation of the New Testament from 
the year 1914, Pääkkönen on randomly selected Finnish newspapers, magazines, lit­
erature, radio programs, and recorded spontaneous conversational speech, all from 
the 1960’s. Vainio’s [19] and Iivonen’s [20] studies are based on dictionary material. 
The table is ordered according to the statistics gained from Paloheimo’s book.

The table shows well how important vowels are in Finnish: almost fifty percent of 
the phonemes are vowels. It also clearly shows that phonemes /a, i, t, e/, and /n/ 
are most common while /ö, g, g, b/, and /f/ the most infrequent.



30 2. Speech, articulation, and phonetics

CDo>05
o
e

11
,9

6%
10

,6
1%

 II
10

,3
4%

 II
8,

90
%

 II

o
00 7,

63
%

 II
5,

22
%

 II
5,

43
%

 H
4,

89
%

 II
6?inco
Tf* 5,

10
%

 II
3,

26
%

 II
2,

56
%

 II
2,

39
%

 II
1,

79
%

 II
1,

98
%

 [I %
89‘I 1,

56
%

 II
1,

08
%

 II
0,

54
%

 II
0,

36
%

 [I
0,

16
%

 II
0,

06
%

 II

m
o

543O
3Oh 43

67
2

1 38
75

8 1
1 37

75
8 1

13
25

00
 1

1 29
60

2 1
1 278

68
 1

1 190
62

 1
1 198

24
 1

f 1
78

59
 1

1 158
84

 1
[1

86
44

 1
1 119

06
 1

93
53

 1
87

24
 1

65
44

 1
72

42
 1

61
54

 1
57

01
 1

39
32 oo

Cl 13
21

 1 009 21
9 1 o>h-

36
52

84

ooo 11
,4

0%
 1

11
,5

9%
 1

8,
62

%
 1

6,
75

%
 1

6,
43

%
 1

7,
37

%
 1

5,
38

%
 1

6,
61

%
 1

6,
65

%
 1

3,
22

%
 1

5,
83

%
 1

2,
98

%
 1

2,
44

%
 1

3,
93

%
 1

1,
31

%
 1

2,
16

%
 1

3,
02

%
 1

2,
18

%
 1

0,
73

%
 1

0,
74

%
 1

00
o 0,

21
%

 f
0,

14
%

 1

in
o

aO)do>

1 110
36

8
1 112

23
1 1

83
47

9 1
65

33
0 1

62
20

0 1
71

34
9 1

52
05

7 1
63

95
9 1

64
32

6 1
31

20
6 1

56
45

1 1
28

85
2 1

23
58

3 1
38

04
4 1

12
65

3 1
20

91
1 1

29
27

0 1
21

07
2 1

70
35

 1
71

23
 1

17
29

 1
20

17
 1

1 »IT 1 14
65

96
80

27
CD05
2 11

,3
5%

 1
1 11,

45
%

 1
1 10,

23
%

 1
7,

04
%

 1
6,

33
%

 1
7,

48
%

 1
4,

78
%

 1
5,

41
%

 1
5,

93
%

 1
3,

82
%

 1

CD 3,
09

%
 1

Q
oT 3,

88
%

 1
1,

00
%

 1
2,

37
%

 1
2,

44
%

 1
2,

36
%

 1
0,

91
%

 1

00
o 0,

35
%

 1
0,

29
%

 1
sepCN
o 0,

25
%

 1
0

*3
1

I 74
25

5
1 74

90
8 I

1 669
77

1 46
04

4
1 414

26
1 48

95
6 I

1 312
70

1 354
02

 I
1 387

81
 I

1 249
75

I 408
41

 I
1 202

19
 I

I 130
97

 I
1 253

93
65

56
 I

1 155
04

 I
1 159

95
 I

1 154
41

 I
59

72
 I

52
85

 I
23

14
 I

19
12

12
87

 J
16

44
65

44
54

Pä
äk

kö
ne

n 1
99

0
11

,6
3%

 1
10

,7
1%

 1
9,

88
%

 1

S?
CN
00 8,

67
%

 1
7,

86
%

 1
5,

31
%

 1

6S00CN
in 5,

00
%

 1
4,

81
%

 1
5,

76
%

 1
3,

51
%

2,
45

%
 1

2,
16

%
 1

1,
93

%
 1

1,
81

%
 1

1,
66

%
 1

1,
82

%
 1

s?
00
o 0,

47
%

 1

'

0,
11

%
 1

0,
05

%
 1

0,
05

%

I 457
35

0
1 42

13
66

 1
38

87
11

32
30

87
34

11
81

30
93

50
1 208

92
3 1

20
75

20
1 196

67
8 1

18
91

34
22

66
27

13
79

72
96

31
6 1

85
11

6 1
75

96
1

71
31

6 1
65

35
8 1

71
73

3 1
33

14
8 1

18
65

5 1
41

51
 1

20
68

 1
19

34
39

33
65

5

Se
tä

lä
 19

72

1 
%

06‘TI

1 10,
01

%
 1

9,
54

%
 1

9,
09

%
9,

96
%

6,
94

%
4,

72
%

 1
5,

06
%

4,
61

%
 1

5,
98

%
5,

76
%

3,
34

%
2,

28
%

 1
1,

46
%

 1
2,

66
%

 1
1,

20
%

 1
1,

51
%

 1
2,

71
%

 1

S?CN00
o 0,

31
%

 1

'

0,
08

%
 1

0,
01

%
0,

04
%

I 91
16

8
1 767

38
 I

73
14

2
69

67
7

76
30

3
53

16
7

1 362
08

 1
38

75
0

1 353
10

 1
45

85
5

44
17

5
25

57
9

1 174
98

 1
1 112

07
 1

1 20
39

5 1
92

31
 1

1 115
77

 1
1 20

77
5 1

62
50

 1
23

47
 1

'

64
6 1 80 30
5

76
63

83

— 0J d o d - a > >> a -d T3 :0 bC -

s
CO0)
£8tio
a
<u

43H

T39

c8M
£

9.Q

7D8
a
Sou
S'ct
2
o
S’S43O

■3
Oh

x8
43

CV
2c8aXa>

43

O
[3
8
2
£
o44
Eo

a>
2a>co

43
Oh

«Ö
cs
0)

£

or
de

re
d a

cc
or

di
ng

 to
 th

ei
r f

re
qu

en
cy

 in
 Pa

lo
he

im
o 1

99
6.



Chapter 3

Automatic speech recognition 
systems

3.1 Historical review

This section is based on [21], unless otherwise stated.

The first pioneer in speech technology design was Wolfgang von Kempelen. He 
designed a mechanical device mimicking the human vocal tract in 1791 [22]. Forty 
years later, based on the design by Kempelen, Charles Wheatstone built a machine 
capable of producing a good selection of both voiced and unvoiced sounds. This 
machine had a leather tube that replicated the vocal tract and a vibrating reed as 
the vocal cords, and bellows representing the lung.

The trend of imitating the human vocal tract using mechanical means continued into 
the 20th century. Gradually, when new algorithms, electronics, and finally computers 
with increasing computational power were developed, the scope of speech research 
broadened to speech coding and recognition applications. In 1928, Homer Dudley 
invented the vocoder that made it possible to transfer speech on the phone line by 
using only a fraction of the bandwidth. [23]

The first application of automatic speech recognition was a toy dog called Radio Rex 
produced in the 1920’s. An electromagnet kept the dog in its house until its name 
was called. Then the simple electrical recognizer would react to the acoustical energy 
contained in the /e/, cut the current from the electromagnet, and let the dog jump 
out of its house. Of course, the recognition was not accurate, the dog would react to 
a host of other words as well. [24]

An early but more serious application of speech recognition was the single isolated 
speaker digit recognizer designed by Davis et al. at Bell Laboratories in 1952 [25]. 
Olson and Belar tried to build a recognizer for ten monosyllable words at RCA 
Laboratories in 1956. These two recognizers relied heavily on spectral measurements 
and direct pattern matching [26].

In 1959, Fry and Denes tried to build a phoneme recognizer to recognize four vowels 
and nine consonants using a spectrum analyzer and a pattern matcher to make the
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recognition decision. This recognizer contained simple language model that relied in 
statistical information about allowable phoneme sequences.

During the 1960’s and 1970’s new methods for speech recognition were introduced: 
silence detection methods, time warping, and dynamic programming. In the 1970’s 
the first large vocabulary and speaker-independent systems were developed at IBM 
and AT&T. These recognizers mostly concentrated on isolated word recognition.

The most fundamental change in the 1980’s in the field of speech recognition was the 
shift from the spectral pattern matching techniques to statistical modeling methods, 
for example neural networks and more importantly hidden Markov models or HMM’s. 
HMM’s were first introduced in several papers by Baum et al. in the late 1960’s 
and early 1970’s [27, 28, 29, 30, 31] and shortly after independently extended to 
automatic speech recognition by Baker and Jelinek [32, 33]. However, they did not 
become popular in speech recognition until the 1980’s.

In 1975, Jelinek et al. presented the idea of language modeling in the form it is used 
today [34]. The goal of language modeling is to find and represent the relationship 
among words in sentences, just as the goal of acoustic modeling is to find regularities 
inside models. The so-called N-gram model is a set of conditional probabilities of 
vocabulary words followed by other words, estimated from large text material. A 
well trained model gives lower probabilities to ungrammatical than grammatical 
sentences.

Few fundamental new innovations have been discovered in speech recognition since 
the discovery of HMM’s. Fine details have been tuned and growing computational 
capacity has allowed the use of more complex models giving some performance boost. 
However, at the same time the need for training data has also grown.

Finnish speech recognition has been studied at the Helsinki University of Technology 
since 1975. Different approaches have been used: the Learning Subspace Method 
[35, 36], neural network based methods [37], but for the latest decade, HMM’s have 
been the main point of interest [38]. The shortage of available speech data has 
forced the research to focus on recognition limited in terms either of the number of 
speaker or the vocabulary size. Commercial speech recognition systmems also exist 
for Finnish [39, 40].

There is evidence that the performance of HMM’s is not going to be greatly improved 
from what the best systems achieve currently. Since there is still room for hope 
that the recognition quality will improve, new methods are still being searched for. 
For example, in the laboratory of Acoustics and signal processing, new kinds of 
methods are being sought out, but at this stage no results are ready for publication. 
Furthermore, it is very difficult for new ideas to surpass the HMM concept which 
has been studied and developed for decades worldwide.

3.2 Structure of an ASR system

This section explains in short the basic structure of a current state of the art standard 
speech recognition system. In the following subsections the different parts of the 
system are discussed in more detail.
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A block diagram of a speech recognition system is shown in figure 3.1. The basic 
structure of all modern recognizers, independent of recognizer type, is presented 
in this figure. First, discrete, equally spaced feature vectors are formed from a 
continuous speech signal. These vectors are assumed to carry a compact presentation 
suitable for classification of parts of speech. The actual recognizer makes use of 
the acoustic models, the lexicon, and the language model. Using these information 
sources the most likely transcription of the sentence is produced. [41]

Speech

Training

Recognition
Recognition algorithm

Hypothesis

Lexicon Language
model

Acoustic
models

Speech
Database

Feature
extraction

Figure 3.1: Block diagram of a speech recognizer. [41]

First of all, the speech signal has to be digitized so that it can be processed by the 
computer. The signal is then fed to the preprocessor, which is the feature extraction 
unit. The signal is split into frames consisting of about 200-800 samples, and the 
frames are fed to the feature extractor itself which reduces the amount of data by 
calculating a vector of about 10-60 features, depending on the front end.

The feature vectors of the training data are used for parameter estimation for the 
acoustic models which characterize the acoustic properties of the basic recognition 
unit, e.g. a phoneme or a word.

The lexicon is used to map the acoustic models to vocabulary words. In the case of 
Finnish phoneme recognition without a vocabulary, the lexicon is simply a mapping 
from phonemes to corresponding graphemes. The language model restricts the num­
ber of acceptable word combinations based on statistical information gathered from 
large text materials.

3.3 Acoustical front ends

Acoustical front ends are used for feature extraction purposes to transform the raw 
speech of the training and test files into more usable information. Features are numer­
ical vectors that are designed to contain as much information relevant to recognizing
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phonemes as possible. On the other hand, they are a compressed representation of 
the speech data: much irrelevant information is discarded by the front ends.

Naturally, features should be discriminative - they should differ sufficiently for the 
different phonemes so that building and training models is possible. Additionally, 
they should be robust - features computed from separate utterances under different 
conditions should be similar. Another factor is computational efficiency: how much 
processor time is needed to extract the features from a speech utterance.

In this thesis, three different acoustical front ends were used. The first, Mel Fre­
quency Cepstral Coefficients (MFCC) is the most commonly used front end in the 
field of speech recognition. Similar to it but somewhat more light-weight computa­
tionally is Back Frequency Cepstral Coefficients (BFCC) which is based on Warped 
Linear Prediction and has been developed in the laboratory of Acoustics and Audio 
Signal Processing at the Helsinki University of Technology. The third front end is 
Perceptual Linear Prediction (PLP), which takes features of the human ear into ac­
count more specifically than the two other methods. Before going into detail about 
these front ends, some operations commonly applied to all front ends are presented.

The reason for including three front ends was to study if there was any difference 
in their performance. Especially BFCC, being rather newly introduced and more 
lightweight than MFCC, was of special interest in this respect.

3.3.1 Common front end operations

• Sampling. The acoustic speech signal has to be converted into a form that a 
computer can handle, a sequence of numerical values. This is done by taking 
discrete samples, or discrete values of the signal evenly spaced in time. A 
reasonable sampling rate for speech processing is 16000-22000 times a second, 
corresponding to sampling rates of 16 kHz-22 kHz

• Pre-emphasis. Since there is more energy in lower than in higher frequencies in 
speech, speech data is high-pass filtered according to equation 3.1. The value 
of the constant a is typically around 0.97.

x'(n) = x(n) — ax(n — 1) (3.1)

• Windowing. Single sample values of raw digitized speech are hardly of any use 
for feature extraction. On the other hand, the whole utterance is usually too 
long and contains many different phonemes so it cannot be used for feature 
extraction, either. Instead, the utterance is divided into equally sized pieces, 
called frames.
Some further operations that are done for the framed data consider the signal as 
a periodic signal that is formed by concatenating the contents of the frame sev­
eral times after each other, with the Discrete Time Fourier Transform (DTFT) 
being the most important of these. If the frames are formed simply by cutting 
pieces of the long utterance discontinuities arise wherever the beginning and 
the end of the original frame meet, which introduces anomalies to the spectrum 
produced by the DTFT. To prevent this from happening, a windowing function 
is used, with the most common being the Hamming window.
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Additionally, in order to prevent problems occurring due to the selection of the 
frame locations, the signal is windowed in such a way that the frames overlap.

• Frequency warping. It seems naturally desirable to have the front end simu­
late the function of the human ear, which is more sensitive at low than high 
frequencies. The frequency scale of the front end is altered similarly which can 
be achieved through filter banks or Warped Linear Prediction, for example.

• A- and AA-coefficients. The performance of a speech recognition system can 
be enhanced by adding derivate coefficients to the static feature coefficients. 
While the static features describe the static state of the speech signal, the first 
and second order derivative coefficients, called A- and AA-coefficients, describe 
its dynamic properties, which are essential for modeling the transitions from 
one phoneme to another. The A-coefficients are calculated according to the 
following equation:

A Q{ct+0 - ct-o)
CLi ----- ----------------------------- 7T-------------------------------

2Lti#2
(3.2)

where dt is the A-coefficient, 0 is the width of the window used for calculating 
the A-coefficients, normally equal to two. ct is the value of the static coefficient 
at time t.

AA-coefficients are calculated similarly, except that instead of ^-coefficients, 
the di-formulas are used in the equation above.

• Cepstral liftering. The high order cepstral coefficients are often numerically 
quite small, and thus the variances of the different order coefficients would 
be from a wide range. This is not a recognition issue, but when displaying 
purposes it is convenient to rescale the cepstral coefficients to have similar 
magnitudes. This is done by cepstral liftering according to the equation 3.3, 
where cn and c'n are the original and the liftered coefficient, n is the cepstral 
order, and L is a liftering constant.

, ,, L . 7rn.
cn = I1 +2Sm~L'Cn (3.3)

3.3.2 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCC’s) is the standard front end used in 
speech recognition. It provides good performance under clean conditions but is not 
very robust to noise.

When calculating MFCC’s, the spectrum of the speech signal is divided into channels 
by applying a set of band-pass filters to the signal. A computationally efficient way 
to do this is to operate directly on the DTFT of the signal with a triangular filter 
bank directly in the frequency domain (see figure 3.2). The triangles of the filter 
bank overlap partially, and they are broader at high than at low frequencies. This 
provides better resolution at low frequencies where the most important first and 
second formants are located. The triangles need to be tuned carefully to perform mel- 
warping. If they are located differently, the front end might still produce reasonably 
good results, even though the resulting scale would be different from the mel scale.
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Figure 3.2: The structure of the mel filter bank. The separate m-terms are components of 
the mel spectrum.
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Figure 3.3: Computation of the mel cepstral coefficients.

The outputs of the filter bank form the mel-spectrum. The final cepstrum coeffi­
cients are obtained by applying the inverse Fourier transform on the logarithm of 
the absolute values of the mel-spectrum squared. In this case, the inverse Fourier 
transform is equivalent to the discrete cosine transform (DCT), which is a compu­
tationally lightweight operation. Additionally, the DCT produces values that are 
highly uncorrelated, making the production of speech models easy [42]. A summary 
of the calculation of the MFCC is depicted in figure 3.3.

3.3.3 Bark Frequency Cepstral Coefficients

The Bark Frequency Cepstral Coefficients (BFCC) method is based on frequency 
warped linear prediction (WLP) [43, 44]. WLP has previously proved suitable for 
many applications in speech processing, and it was introduced as a front end for 
speech recognition in [45]. It has also been compared to the MFCC and other front 
ends in terms of both performance and computational load[46].

WLP is identical to normal linear prediction except for frequency warping, which 
is achieved by a chain of all-pass filters as seen in figure 3.4 where the unit delays 
of a regular LP filter are replaced with second order all-pass filters with a warping 
parameter A. With a proper choice of A, the frequency warping closely approximates 
the Bark scale. The value of A producing this warping depends on the sampling 
frequency.

A more detailed description of WLP is presented in [47] and more information about 
its application to speech recognition is available in [46].
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Figure 3.4: The all-pass chain used for calculating the warped autocorrelation sequence.
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Figure 3.5: Calculation of the perceptual linear prediction.

3.3.4 Perceptual Linear Prediction Coefficients

PLP was introduced by Hermansky in 1989 [48]. A picture about the calculation 
of PLP is presented in figure 3.5. It is somewhat more sophisticated than the front 
ends described above. It uses the Bark scale and approximates three individual 
perceptual aspects: the critical-band resolution curves, the equal-loudness curve, 
and the intensity-loudness power-law relation. Additionally, autoregressive modeling 
is applied to smooth out a certain amount of detail from the auditory spectrum.

PLP coefficients are calculated as follows:

• After windowing, a short term power spectrum is calculated for each frame.

• The power spectrum is warped into the Bark-scale.

• The warped power spectrum is convolved with the power spectra of the crit­
ical band filter. This simulates the frequency resolution of the ear which is 
approximately constant on the Bark scale.

• The non-equal perception of loudness at different frequencies is compensated 
by preemphasis by an equal-loudness curve.

• The perceived loudness is approxmiated by the cube root of the intensity.

• The IDFT is applied to get the equivalent of the autocorrelation function, and 
a LP model is fitted to it.
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• The LP coefficients are transformed into cepstral coefficients.

HTK supports a variation of PLP coefficients, based on mel filter banks and called 
MF-PLP (mel frequency PLP). They are formed as follows:

1. The mel filter bank coefficients are calculated as in the MFCC front end.

2. They are weighted by an equal-loudness curve and then compressed by taking 
the cubic root.

3. From the resulting auditory spectrum LP coefficients are estimated which are 
then converted to cepstral coefficients.

3.4 Recognition units and types

When building a speech recognizer, an important decision one has to initially make 
is to choose the recognition unit. This unit can be of different lengths, and each 
choice has its own benefits and disadvantages. The longer the unit is the more 
accurately it will models the effects of context-dependency, but more training data 
will be required. The unit should be consistent and trainable: different instances of 
the same unit should have similarities, and there should be enough training examples 
to reliably estimate the model parameters. The following discussion is based on [49j.

3.4.1 Words

Words are the actual unit we eventually want to recognize. They are thus a natural 
choice for the speech recognition unit. They inherently take context-dependency 
issues into account, since phonemes inside a word are very likely the same in each 
utterance. The obvious problem with word models is the large number of different 
words and the problem of too little training data. This makes word models unusable 
for large vocabulary recognition.

Sometimes word models are used together with other kinds of models. For example, 
short function words may have their own models implemented within a phoneme 
recognizer.

3.4.2 Phonemes

To facilitate larger vocabularies than what are supported by word models one has to 
find a way to share information between different models. In other words, one has 
to take subword units into use. The most obvious choice is the phoneme.

The number of phonemes is moderate, ranging between 15 to 50 in most languages. 
Therefore, it is very easy to get enough training examples for each phoneme. How­
ever, the obvious problem is that the context of the phonemes is ignored. Thus, 
while word models lack generality, phoneme models overgeneralize.
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3.4.3 Multiphone units

Larger units of speech can be used as recognition units to model the coarticulatory 
effects, for example, syllables or demisyllables. They solve most of the problems 
involving context-dependency leaving the middle phonemes of the unit out of the 
effect of the neighboring units. However, the edges of these units undergo some 
coarticulatory variation. Furthermore, there may not be enough data to train rare 
units.

3.4.4 Explicit transition modeling

Biphones model pairs of phonemes without the use of stationary phonemes. They 
are used for explicit transition modeling. Another approach is to use stationary 
phoneme models and create explicit models for the transitions. These approaches 
suffer from the problem of the large number of different models: with N phonemes 
there may be up to N2 transitions.

3.4.5 Word-dependent phonemes

Word-dependent phonemes are a compromise between word modeling and phone 
modeling. Phoneme models are trained for each word separately, but if a specific word 
phoneme is poorly trained, the parameters can be interpolated from the phoneme 
models in other words. Therefore, not all words have to be present in training, and 
new words may be added later.

3.4.6 Diphones, triphones and quinphones

As mentioned earlier, context-dependent phoneme models are specialized instances 
of the corresponding context-independent phoneme models. They are often poorly 
trained because of their large number, and therefore some generalization (clustering) 
is necessary. With sufficient training data, context-dependent phoneme models seem 
to be the most successful unit in speech recognition. They are discussed in more 
detail in chapter 4.

3.5 Basic structure of Hidden Markov Models

Despite their many weaknesses, Hidden Markov Models (HMM’s) are the most widely 
used technique in modern speech recognition systems. This is due to the fact that a 
great deal of effort has been devoted in research during the 1980’s and 1990’s, making 
it very challenging for alternative methods to get even close to their performance level 
with moderate investments.

Markov models were introduced by Andrei A. Markov and were initially used for a 
linguistic purpose, namely modeling letter sequences in Russian literature. Later on, 
they became a general statistical tool.
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Markov models are finite state automatons with probabilities attached to the tran­
sitions. The following state is only dependent on the previous state.

Traditional Markov models can be considered as ’visible’, as one always knows the 
state of the machine. For example, in the case of modeling letter strings, each state 
would always represent a single letter.

However, in hidden Markov models the exact state sequence that the model passes 
through is not known, but rather a probabilistic function of it.

Hidden Markov models can be built for parts-of-speech differing in size. Usually, sim­
ple, small-vocabulary recognizers use word models and larger-vocabulary recognizers 
use phoneme models.

3.5.1 Definition of HMM’s

The Hidden Markov Model is a finite set of states, each of which is associated with 
a probability distribution. Transitions among the states are governed by a set of 
probabilities called transition probabilities. In a particular state an outcome or 
observation can be generated, according to the associated probability distribution.

For defining HMM’s, the following elements are needed:

• The number of states, N.

• The number of elements in the observation alphabet, M. The alphabet can 
also be infinite (continuous).

• Transition probabilities Oij between the states. These are usually presented in 
a transition matrix.

• A probability distribution associated with each state: B = bj(k). For contin­
uous probabilities, the probability density function can be approximated by a 
sum of Gaussian mixtures (Af), each having their own weighting coefficients 
Cjm, mean vector /Xjm, and variance vector Xjm. With these defined, the prob­
ability of an observation vector Ot can be calculated according to the equation
3.4.

M
(3.4)

m=l

An example of a three-emitting-state left-to-right model is shown in figure 3.6. In 
addition to the emitting states, this model has non-emitting enter and exit states. 
This kind of structure is used by the HTK Hidden Markov Model Toolkit to facilitate 
the construction of composite models [50].

In this example, each emitting state has transitions to itself and the next state. This 
simple left-to-right structure is quite common in speech recognition. Sometimes 
transitions for skipping a state are used and sometimes even backward transitions 
may exist.
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Figure 3.6: An example of a hidden Markov model.

The mathematical problems of HMM’s are quite complicated and have been covered 
in several good papers before, e.g. [51, 52], so they will not be covered in detail here. 
In short, the three main problems that have to be solved for utilizing the models in 
speech recognition are:

1. The evaluation problem
Given a model and a sequence of observations, one needs to compute the prob­
ability that the sequence was produced by the model. This can be also seen as 
the problem to score the match between the observations and the model. For 
this problem an exact solution exists and can be efficiently calculated by using 
the forward-backward algorithm [28, 29].

2. The estimation problem
Given an observation sequence or a set of sequences, this problem involves 
finding the parameter values that specify a model most likely to produce the 
given sequence. This problem is involved in speech recognition in the training 
phase, and is solved iteratively using the Baum-Welch algorithm [27, 28, 29, 
30, 31].

Two approaches can be used in training, maximum likelihood estimation (MLE) 
and maximum mutual information estimation (MMIE) [53]. The goal in MLE is 
to maximize the probability of the model of generating the training sequences, 
while MMIE-training tries to maximize the ability of the model to discriminate 
between models of different speech classes (e.g. phonemes).

3. The decoding problem
The third problem involves finding the most likely state sequence for a given 
observation sequence. There are different search algorithms for this, for exam­
ple, the beam search algorithm.

The HMM concept has several weaknesses. As its name suggests, the Markov as­
sumption, i.e., the probability of being in a given state at time t depends only on 
the state at time < — 1, is used. This is definitely not true for speech signals. An­
other assumption not true for speech signals is that successive observations should 
be independent. [51]

On a more practical level, HMM’s are poor at modeling the temporal aspects of 
speech. Additionally, the number of parameters needed for recognition can grow 
large especially when context-dependent models are to be used. This in turn results 
in the need for massive amounts of training data so that it is hard to collect this 
material even for major languages like English, not to mention smaller languages like 
Finnish.
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3.6 Language models and lexicons

An ASR system that only utilizes acoustic features ignores a lot of linguistical in­
formation involved in the spoken text. Even though perfect modeling of linguistical 
information is not possible (e.g. speakers do not strictly follow the grammatics of a 
language), using statistical language models often radically improves the performance 
of an ASR system.

Lexicon is a list of allowed words in a task. The larger the lexicon is and the more 
there are words that sound similar the harder the recognition task is.

Language models are used to restrict the possible word combinations based on sta­
tistical information collected from large text material. The most common approach 
is using stochastic descriptions of text usually involving the likelihoods of the local 
sequences of one to three consecutive words in training texts. Given a history of 
prior words in a sentence and based on the statistical model the number of words 
that need to be considered is lower than the size of the vocabulary.

For successful language modeling the text on which the language model is based on 
should be about similar topic as the data that is going to be recognized. Language 
features, such as word inflection, also affects the success of language modeling.



Chapter 4

Context-dependency in phonemic 
speech recognition

Monophone models, i.e. context-independent models, assume that a phoneme in any 
context is equivalent to the same phoneme in any other context. This assumption is 
fundamentally wrong since the articulators do not move from one position to another 
immediately in most phoneme transitions. The transition duration is variable and 
depends on the phonemes. For example, for /v/ and /j/ the transitions are very 
long but from stop consonants to vowels the transition is significantly shorter but by 
no means discrete. Thus, neighboring phonemes are bound to have an effect on the 
examined phoneme. It seems only natural that these coarticulatory effects caused 
by context-dependency should be taken into account.

In this work, the terms precontext and postcontext are used to indicate the preceding 
and following neighbor of a phoneme. Figure 4.1 illustrates these terms for the 
triphone i-t+aa1.

... Ill N /a:/ ...

pre- examined post­
context phoneme context

Figure 4.1: The definition of pre- and postcontext for the triphone i-t+aa.

One way of dealing with the dependency is using word models. They are perfectly 
suitable for small vocabulary tasks and have been shown to be more accurate than 
phoneme models [54], However, for large or infinite vocabulary recognizers they are 
not feasible. Instead, subword models are likely to produce better results.

1In HTK, triphones are named as a-b+c, where b is the phoneme itself and a and c are the left 
and right contexts. This notation is also used in this thesis.
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In the past, a natural shift occured from word models to syllable models. They were 
proposed already in the mid 70’s by Fujimura [55]. It should be noted, that the early 
syllable recognizers were non-HMM based. Also, demi-syllable and biphone models 
(a unit consisting of two consecutive phonemes) have been used.

The number of legal syllables in a language is limited, for example, in native Finnish 
words there are about 3300 different syllables [56], while in English, for example, there 
are about 10000 syllables [57]. This is true even though there are many more different 
words in Finnish than in English due to the Finnish morphology. Since phonemes 
are abstract superclasses of phones, classification can be performed with different 
precision. This causes some variation in the number of phonemes. Syllable models 
have been popular especially in Mandarin, Cantonese, and Japanese recognizers but 
they are suitable for other languages as well.

Diphones (phoneme units dependent on either pre- or postcontext) were introduced 
in the late 1970’s and early 1980’s [58, 59] for vocoder and acoustic processor use. 
A few years after that, Schwartz et al. proposed the use of triphones in speech 
recognition [57].

This work concentrates on modeling triphones. This selection was made based on 
the fact that the most important coarticulatory effects on a phoneme are due to its 
immediate neighbors on either side. Furthermore, triphones are commonly used in 
large vocabulary recognition in other languages, but not so much in Finnish.

4.1 Fundamental mechanism of triphones

Schwartz [57] noted that all the subword units longer than phonemes (biphones, 
syllables, etc.) applied as units to speech recognition were merely trying to model 
the coarticulatory effects between phonemes and that there was nothing special about 
the units themselves. This motivated him to return to modeling phonemes. Only 
this time they were made context-dependent, which led to the introduction of the 
concept of triphones - a model for a single phoneme conditioned on its preceding and 
following neighbor phoneme. This is the very idea of triphones used in any modern 
recognizer, and in [60] the actual results of the first recognizer utilizing triphones are 
presented.

Despite its name, a triphone is simply a model of a single phoneme conditioned on its 
immediate neighbors, and not a structure of three phonemes. Similarly, a diphone is 
a model of a phoneme conditioned on either its left or right phoneme and a quinphone 
is conditioned on two neighboring phonemes on either side.

Context-dependent models can be constructed in two ways: they can either be word- 
internal or cross-word. When constructing word-internal models, context beyond the 
word borders are not considered. On the other hand, for cross-word triphones the 
phonemes at the end or beginning of neighboring words are considered to affect the 
phoneme. Naturally, the number of cross-word triphones is considerably higher than 
the number of word-internal triphones. For example, in the book used as data for 
this work, there were about 7100 different word-internal and 9600 different cross-word 
triphones.
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The cross-word triphones are a natural choice for continuous speech recognition, 
since there axe seldomly clear pauses between words in fluent speech. Actually, a 
stop consonant might introduce a longer pause than a word break, see figure 2.6 
for an example. The problem, again, is the increasing number of models and the 
shortage of data for training them.

Out of the 9600 different cross-word triphones 4065 (42 percent) had less than five 
occurrences in the book. That is far less than training models requires: the triphone 
models used in this work consisted of three states, each having a 39-element mean and 
variance vector. Additionally, in the transition matrices, there are six free parameters 
in the allowed transitions to the same and the following states. This adds up in 
3x2x 39 + 6 = 240 free parameters per model.

4.2 Clustering mechanisms for context-dependent HMM’s

A set of full triphones is excessive in two respects. First, in all practical cases 
there is not enough training material for many of the triphones. Second, despite 
coarticulatory effects some triphones are quite similar, and had better be covered by 
the same model.

The training data problem can be solved by reducing the number of parameters. 
This can be done in several ways. The number of models, or the number of states 
can be reduced by state or model clustering. Another approach is tying parameters 
inside the states or models, that is, forcing them to be equal for two different states 
(means and variances) or models (transition matrices).

A straightforward way of reducing the number of parameters in a triphone model 
set could be to tie all the parameters of all models’ center states. The assumption 
that the center of each triphone (for the same phoneme) is similar could lead to this 
kind of an approach. However, clustering mechanisms lead to better results than 
this kind of direct tying. In this section some clustering algorithms are presented.

4.2.1 Data-driven (bottom-up) clustering

In the data-driven clustering algorithm each state is initially placed in a cluster of 
its own. Then two clusters forming the smallest cluster are merged together. This 
merging is repeated until the smallest cluster that would be possible to form by 
merging any two clusters would be larger than some predefined limit.

The size of the cluster is defined as the longest distance between any two members 
of the cluster. The metric is defined as the Euclidean distance between the means of 
the two states.

A limitation with this approach is its inability to deal with unseen triphones (tri­
phones not present in the training data), which axe bound to occur in large vo­
cabulary recognition with cross-word triphones. However, diphone and monophone 
models are normally used to deal with this problem.

This algorithm is bottom-up since it starts with individual states and ends with
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clusters. An illustration of the algorithm is depicted in figure 4.2. This clustering 
algorithm was introduced in [49].

t-i+n t-i+ng h-i+1 s—i+1

t-i+n t-i+ng h-i+1 s—i+1

Figure 4.2: Data-driven state clustering for some triphones of the phoneme /i/.

4.2.2 Decision-tree (top-down) clustering

Another approach for clustering states is based on binary decision trees [61]. In 
addition to states, and unlike data-driven clustering described above, this algorithm 
can be used to cluster entire models as well.

A set of questions regarding phonemes context is needed for splitting the clusters 
during the process. A typical question could be: “Is the left context of this phoneme 
either an /a/ or an /o/?” There is no actual limit for the number of questions 
(the number of possible phoneme subsets gives a theoretical limit), and too many 
questions do not usually cause any harm.

A short description of the algorithm follows: initially all states/models in a given 
list are placed in the root node of a tree. The nodes are iteratively split by selecting 
a question. Depending on the answer, states/models in the state are placed either 
in the right or left child node of the current node. This is done iteratively until 
the log likelihood increase of the states/models in the tree node obtained by the 
best question is below a predefined limit. At this point, all the parameters in the 
state/model are tied. For an illustration, see figure 4.3.

The question used is chosen to maximize the likelihood of the training data given 
the final set of model/state tyings. When the node is split, the likelihood of its child 
nodes is bound to increase since the number of parameters to describe the same data 
increases.

The log likelihood can be calculated based on the statistics (means, variances, and 
state occupation counts) gathered from the training data, and based on that infor­
mation the best question for each node can be chosen.
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s-i+1

Tree-based
clustering

R=Nasal?

t-i+ng
t-i+n

Figure 4.3: Part of the tree-based model clustering process of /i/-triphones. Leaf nodes 
are gray, and they form the final clusters.
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Models for unseen triphones can be formed by use of the trees generated in the 
clustering processes. One simply follows the questions from the root of the tree, 
and once a leaf node is reached, that state/model is used for the unseen triphone in 
question.

4.2.3 Classification based on articulatory facts

A simple way to classify triphone models is to use decisions made a priori about 
the context as criteria for classifications. Basically, one decides classifications for 
phonemes and then classifies those triphones with contexts from the same phoneme 
classes to belong to the same broad class triphone (or cluster). In principle, the 
phoneme classes could be formed arbitrarily but intuitively it would be beneficial 
if there was some similarity between the members of a phoneme class. Therefore, 
natural choices are based on articulatory facts. This kind of approach has been 
suggested in [62] and [63].

In this work two different classifications were used: one based on the type of the 
phoneme (short: ToP) and the other on the place of articulation (short: PoA). The 
ToP classification for Finnish includes six classes and the PoA classification eight 
classes. The phonemes for each class are presented in tables 4.1 and 4.2. Long 
variant of each phoneme always belongs to the same class as the short one.

For example, using the ToP classification, triphones e-i+k, ö-i+t, and e-i+d would 
all belong to the same broad class of triphones, namely FW-i-ST.

Class name Short Phonemes
Back vowels BV /a, o, u/
Frontal vowels FV /e, i, y, ä, 5/
Stops ST /b, d, g, k, t, p/
Fricatives FR /f, h, s/
Semi-vowels sv /j, v/
Nasals NA /m, n, g/
Laterals LA N
Tremulants TR A/

Table 4.1: Classes for the ToP classification.

Class name Short Phonemes
Back vowels BV /a, o, u/
Frontal vowels FV /e, i, y, ä, 5/
Labials LA /b, f, m, p, v/
Dentals DE /d, 1, n, r, s, t/
Palatals and velars PV /g, j, k, g/
H H N

Table 4.2: Classes for the PoA classification.

Even when this kind of classification is used it is probable that for some broad classes
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there would be too few training examples. In this case, tree-based clustering similar 
to the one described in the previous subsection could be used.

This classification method is less flexible than the two described above, but it pro­
duces predefined clusters that could potentially be utilized in the higher levels of the 
recognizer.

4.3 Examples of large vocabulary ASR systems utilizing 
context-dependency

This section describes two high-end large vocabulary recognizers. Both of them 
are English recognizers and rely on the HMM paradigm. Sphinx was developed at 
Carnegie Mellon University (CMU) in Pittsburgh, USA, and the CU-HTK transcrip­
tion system at Cambridge University in the UK.

Please note that the word error rate used in this section is not comparable with the 
phoneme error rate for the experiments of this thesis discussed in chapter 7. When 
calculating word error rates the most probable words are calculated based on the 
phoneme string, lexicon, and language model. This tends to hide the performance 
of the acoustical models and is therefore not used in the tests reported in this work. 
Furthermore, the data in the recognition tests described here was different, and the 
recognizers are speaker-independent so the recognition problem is of a completely 
different nature.

4.3.1 SPHINX

One of the most famous speaker independent continuous speech large vocabulary 
recognizers is SPHINX. When the project started, all of the recognizers developed 
had constraints either in terms of speaker dependency, speech continuousness, or 
vocabulary size. The goal of the SPHINX project was to overcome all of these 
obstacles.

The first version, SPHINX-1 was developed in the end of the 1980’s [64]. Its front 
end was based on LPC coefficients. Function-word dependent phone models and gen­
eralized triphone models were used for speech modeling. The triphone generalizing 
algorithm is essentially the same as the one described in section 4.2.1. For decod­
ing, SPHINX-1 used a single pass beam search, and the results for the 997-word 
vocabulary task with a bigram language model were about 96 per cent.

The SPHINX-2 recognizer from 1994 [65] differs from SPHINX-1 mainly in the de­
coding algorithm. Instead of a one pass beam search, a four pass approach is used[66]: 
word lattices are formed by a forward (1) and a backward search (2). Then, a best- 
first search is carried out to produce an N-best list of words (3), and finally, in the 
rescoring phase, the N-best list is processed.

The most recent version of the CMU recognicer is SPHINX-3 from 1996 [67]. It was 
included in the 1996 DARPA (Hub-4) evaluation for broadcast news recognition.

The data used in the evaluation was quite varied, including both spontaneous and
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read speech, speech over wide- and narrow-band channels, and non-native speakers.

The system uses senonically clustered, fully-continuous, five-state triphone models. 
Senonically clustered means that the observation distributions are shared between 
states in similar models [68]. The models were trained on the Wall Street Journal 
corpus and then adapted with the Broadcast News corpus. There were two sets 
of models, one for wide-bandwidth data and one for narrow-bandwidth data. There 
were altogether 6000 states in both sets, each consisting of sixteen Gaussian mixtures. 
There were also models for several types of filled pauses (noise).

The lexical model was based on the Broadcast News corpus and included the 51000 
most common words and some 350 multi-word phrases or acronyms. The vocabu­
lary size was a trade-off between having out-of-vocabulary words and having new 
confusable words in the vocabulary.

Two different language models were used, one to guide the decoder in the recognition 
process, and a larger one for rescoring the N-best output hypotheses. The first 
language model was a quite standard trigram model which included support for 
consecutive utterances being in the same acoustical segment. The second language 
model was a 7-gram model.

The recognition system was composed of seven stages:

1. Segmentation, classification, and clustering. This stage included detection of 
the bandwidth (for model set selection), sub-segmenting long utterances into 
shorter ones to produce speech segments that the decoder could handle, and 
silence detection.

2. Initial-pass recognition. Here, the models selected in the previous phase were 
utilized with a straight-forward continuous-density Viterbi beam search. In 
addition to a hypothesis containing words and their times, this recognition 
produced a word lattice for each sub-segment.

3. Initial-pass best-path search. The lattices generated above were searched for 
the global best path according to the trigram grammar.

4. Acoustic adaptation. The HMM means were adapted using Maximum Likeli­
hood Linear Regression (MLLR) based on the best path found in the previous 
stage.

5. Second-pass recognition. The adapted models were used to recognize the sub- 
segments again, producing new word lattices.

6. Second-pass best-path search. The best path through the lattices generated 
at the previous stage was searched. At this point the N-best lists were also 
generated.

7. N-best rescoring. The N-best lists were rescored, and the final recognition result 
was produced.

The final word error rate for the Hub 4 evaluation was 34.9 percent for data, where 
speech condition changes were marked and 35.9 for data where they were not.
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4.3.2 CU-HTK March 2000 Hub 5E transcription system

The CU-HTK recognizer [69, 70], developed over several years [71, 72], was used in 
the NIST Hub 5E evaluation for conversational telephone speech recognition systems. 
This task is particularly hard due to limited bandwidth, distorted audio channels, 
cross-talk, and highly variable speaking styles. Due to these facts, the word error 
rate is 25.4 %, which is a very good result for this difficult speaker-independent 
recognition problems.

The system uses thirteen perceptual linear prediction cepstral coefficients derived 
from a mel-scale filter bank (MF-PLP) covering the range from 125 Hz to 3.8 kHz, 
including the Co, and their A- and AA-coefficients (see section 3.3.4). Cepstral 
mean subtraction and variance normalization are performed for each conversation 
side, and vocal tract length normalization (VTLN) was applied.

The training and testing data is from two corpora: Switchboard 1 and Call Home 
English. There were a total of 265 hours of training data, but smaller subsets of 68 
and 18 hours were used on certain stages of training.

Traditionally, HMM’s are trained using Maximum Likelihood Estimation (MLE). 
This means that the probability of each training observation is maximized by adjust­
ing the model parameters regardless of the other training observations. CU-HTK ap­
plies another approach: Maximum Mutual Information Estimation (MMIE). MMIE 
takes into account possible competing words and while maximizing the probabil­
ity of the correct transcription the probabilities of the incorrect transcriptions are 
minimized.

The main issue with MMIE training is generalization to test data. For this reason, it 
is very important that the training data is representative. In the CU-HTK recognizer, 
the generalization is enhanced by broadening the training data posterior distribution 
by the use of acoustic scaling and a weakened language model [70]. The MMIE 
approach leads to a decrease of 2.6-2.7 % in word error rate compared to MLE 
training.

In soft tying [73], Gaussians from a particular state can be also used in other mixture 
distributions with similar acoustics. The recognizer uses a simplified form of soft 
tying: For each state, a single Gaussian version is created, and with its help the two 
nearest states are found. Then all the mixtures in the three states are used in the 
state in question. This allows the use of three times as many Gaussians per state 
without an increase in parameter space. With this, reduction of 0.3 % for triphones 
and 0.5 % for quiphones in word error rate is achieved.

A further 1.4-1.7 % improvement is achieved by the use of pronunciation probabil­
ities: three different pronunciations were included in the dictionary with different 
kinds of silence in the end of the words. The probability for each pronunciation is 
estimated from the training data.

Another solution for increasing performance is the use of a side-dependent block- 
full variance transformation [74]. It is essentially the same as having a speaker- 
dependent global semi-tied block-full covariance matrix. Furthermore, confusion 
networks [75] are used to estimate word posterior probabilities. They are also used 
for the combination of results gained by the triphone and quinphone recognition
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systems.

The decoding (recognition) phase takes place in several phases. In phase 1, the basic 
gender independent, non-VTLN MLE trained triphones with a trigram language 
model are used to generate an initial transcription. The output of this phase is used 
for gender detection and VTLN warp factor computation. For all further stages the 
training and test data is warped using the VTLN parameters.

In phase two, gender independent MMIE trained triphones were used to generate 
transcriptions for unsupervised test-set MLLR adaptation with a 4-gram language 
model. In the third stage word lattices were generated using the adapted gender 
independent MMIE triphones and a bigram language model. These lattices were 
then expanded to contain language model probabilities of the full 4-gram language 
model.

Further phases rescored these lattices in two branches: a) gender independent MMIE 
trained models and b) gender dependent soft-tied MLE models. The fourth phase 
used triphones and the fifth quinphones. For the MMIE branch two MLLR transform 
were run (phase 6a). Finally, the system word output was used by using confusion 
network combination based on confusion networks from phases 4a, 4b, 6a, and 5b.

By this approach, the CU-HTK system achieves a word error rate of 25.4 % for the 
test data, while the best single model set gained from the phase 6a, had an error 
rate of 26.5 %.



Part II

Experiments



Chapter 5

Specification of the recognition 
environment

A speaker-dependent phoneme recognition system was built in order to compare the 
different clustering approaches. The implementation of both the front end and the 
HMM’s in this thesis are quite standard.

5.1 Data

For the training and test data this thesis used a talking book, Syntymättömien 
sukupolvien Eurooppa by Eero Paloheimo. The book was created for the visually 
impaired and it had been read to tape by a female speaker. The reader had tried 
to be as neutral as possible avoiding any emotional emphasis since that is what the 
target group of the book desires - the visually impaired want to experience the sen­
timents of the book themselves, just as any sighted reader would. The words are 
pronounced quite clearly and much more accurately than in normal conversational 
speech. Still, not all the phonemes in all words are audible, especially at the end of 
words.

The book is about the future of Europe and the text is very fact-based. It is written 
completely in the standard Finnish language and has no dialects involved whatsoever, 
making it favorable for speech recognition. On the other hand, the book contains 
quite a few foreign names and terms.

Originally, the book was recorded on compact cassettes. It was then digitized with 
a sampling frequency of 22 kHz. The sound files were segmented using the Hidden 
Markov Models from an earlier recognizer at the Neural Networks Research Center 
at the Helsinki University of Technology [3], and at this point the sound files were 
sampled down to 16 kHz. Based on the segmentation information, the large sound 
files containing altogether 11 hours 10 minutes speech were divided into 4283 smaller 
files each containing one sentence. A histogram of sentence lengths is shown in figure 
5.1. The lengths vary from one to sixty-six words. The shortest ones are section and 
chapter headings.

The phoneme set of the segmented data was the same as used in the recognition
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Figure 5.1: Histogram of sentence lengths in the data.

test, except that it included few instances of double consonants that are very rare in 
Finnish (/f:, v:/, and /h:/). These double phonemes were converted to their single 
counterparts because of the low number of training examples.

During the segmentation process the text, including abbreviations and numerals, was 
converted into phoneme strings using Finnish pronunciation rules and a program 
for expanding abbreviations, numerals and other structures [76]. This resulted in 
transcription errors in foreign proper names, dates and other complicated structures 
involving numerals. Additionally, the spoken and written material did not match 
perfectly and there were some inaccuracies caused by the segmentation process itself. 
As a result, some of the files, but only about one percent of the material, were found 
unusable for training. Seventy percent of the sentences were used for training and 
the rest for testing.

5.2 Hardware and software

The recognition system is based on the Hidden Markov Model Toolkit (HTK) version 
3.1 [50]. Some modifications were made to the source code (e.g., BFCC calculations, 
transcription processing for error analysis), but mainly the HTK features were used 
in their standard form. Numerous helpful Perl and shell scripts were written to 
automate the different phases of training and recognition as well as to assist analyzing 
the results.

The recognition tests were run on a modern standard PC (1 GHz AMD Athlon
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processor, 256 MB of RAM) running RedHat Linux 7.2, kernel version 2.4.12.



Chapter 6

Building the recognizer

This chapter describes the steps used in feature extraction, HMM building and train­
ing as well as testing. The steps presented here are those required by the HTK 
software package, and for all stages, corresponding HTK commands are shown. For 
clarity reasons these steps are showd as simplified forms of the actual commands 
used in this work. In the work, debugging options were used for increased verbosity 
of the tools, and the files resided in different directories making the actual commands 
very long. However, the functionality of the commands presented here is preserved.

All of the commands have many command line options, some of which are the same 
for all the tools. These are explained in table 6.1 and the options specific to each 
tool are explained when the tool is described. However, not all of the options are 
described here and further information may be found by consulting the HTK manual
[77].

6.1 Feature extraction

The first task in building the recognition system was to calculate the cepstral co­
efficient files from the sound files. This process involves many different parameters 
and are summarized in table 6.2. Refer to section 3.3 for information about the 
configuration options.

Feature extraction is accomplished by using the HCopy tool as follows:

HCopy -C hcopy.conf -S script.scp

Here, hcopy.conf defines the parameters to be used and script.scp contains simply 
a list of waveform files to process, one file per line. An example configuration file, 
used for standard MFCC calculation, is given below:

TARGETRATE = 100000.0 
SAVECOMPRESSED = F 
SAVEWITHCRC = F
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Command line
option

Usage

-I <file.mlf> <file.mlf> contains the (possibly seg­
mented) labeling information for the files 
used in training/testing.

-i <file.mlf> Output the recognized/edited labeling to

-C <file.conf> Read configuration information from 
<file.conf>.

-M <dir> Write the trained models to directory 
<dir>.

-H <macrofile> Read HMM information from file <macro- 
file>.

-d <dir> Read HMM information from separate 
files in directory <dir>.

-S <file.scp> Instead of specifying the speech files used 
in training/recognition, read a list of them 
from the file <file.scp>.

-B Save the models in binary instead of text 
files.

Table 6.1: Command line options common for all HTK tools.

WINDOWSIZE = 250000.0 
USEHAMMING = T 
PREEMC0EF =0.97 
ZMEANSOURCE = T

NUMCEPS = 12 
NUMCHANS = 26 
CEPLIFTER = 22 
TARGETKIND = MFCC_E_Z 
S0URCEF0RMAT = WAV

6.2 Phoneme models

As the first stage of recognizer building, simple monophone models were built. Their 
creation process is explained in the following subsections.

6.2.1 Creating prototype models

At first, prototype models have to be created. They describe the structure of the 
models, while the actual values of the coefficients are unimportant. At this stage, the 
number of states and allowed transitions need to be determined and set. In this work, 
it was decided to use standard three state left-to-right HMM models. At an early 
stage of the tests, models with more states for long vowels and less for short vowels
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Table 6.2: Parameters used in feature extraction.

were tried, when trying to solve a problem where short vowels were intermingled with 
each other. However, this approach did not have any positive effect on recognition 
accuracy.

The prototype models are equal for all phonemes and part of the prototype used in 
this work is shown below.

~o <VecSize> 39 <MFCC_E_D_A_Z>
~h "a"
<BeginHMM>

<NumStates> 5 
<State> 2 <NumMixes> 1 
<Mixture> 1 1.0000 

<Mean> 39
0.0 0.0 ... (repeated 39 times) 

<Variance> 39
1.0 1.0 ... (repeated 39 times) 

<State> 3 <NumMixes> 1 
<Mixture> 1 1.0000 

<Mean> 39 
0.0 0.0 ...

<Variance> 39
1.0 1.0 ...

<State> 4 <NumMixes> 1 
<Mixture> 1 1.0000 

<Mean> 39 
0.0 0.0 ...

<Variance> 39
1.0 1.0 ...

<TransP> 5
0.000e+0 1.000e+0 0.000e+0 0.000e+0 0.000e+0
0.000e+0 6.000e-l 4.000e-l 0.000e+0 0.000e+0
0.000e+0 0.000e+0 6.000e-l 4.000e-l 0.000e+0
0.000e+0 0.000e+0 0.000e+0 6.000e-l 4.000e-l
0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0
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<EndHMM>

On the first line, the vector length is defined to be 39, and the used parameter kind as 
MFC-coefficients (MFCC) with the energy term (_E), delta- (_D), and delta delta 
coefficients. The _Z flag instructs HTK to extract the mean of each frame from the 
samples.

The line beginning with “~h” states the name of the model. After that follows the 
actual HMM definition. Initially, the number of states is defined (five means three 
emitting, that is operative states, since HTK uses a structure with an initial and final 
non-emitting state), and then the structure of each state is defined. The number of 
mixtures can be defined for each state individually but in this work the number of 
mixtures has been one for all models.

The essential parts of the state definition are the mean and variance vectors. In the 
prototype model they are simply initialized with any value. The important thing is 
that there is a correct number - the number stated on the first line of the prototype 
- of values.

Finally, the <TrasP> section defines the transition matrix. In this example the initial 
probabilities are set so that the probability of staying in the same state is 60 %, 
the probability of moving on to the immediately following state is 40 %, and the 
probability of moving to any other state is 0 %. At this point the actual values are 
not important - they are estimated during the training phase. Only if a transition 
is given a zero probability at the prototype phase then the transition will never be 
allowed during training unless the models are altered manually.

There is no tool in HTK for creating the prototypes - they need to be created by 
hand using a text editor or a script.

6.2.2 Initializing the prototype models

After the prototype models for each phoneme are created it is time to estimate more 
reasonable values for the prototype models. Two possible approaches are available 
in HTK for this. One is to use the tool HCompV, which calculates the global mean 
and variance of a set of training files and then uses these values for all models. This 
approach is called the flat start training scheme, since all the models receive the 
same values for the parameters.

The other approach used in this work is the use of the tool HInit. Its principle 
depends on the concept of a HMM as a generator of speech vectors - it tries to find 
out which training data vectors were emitted by each state in the models and then 
calculates the means and variances for the corresponding states. This is done by 
repeatedly applying the Viterbi algorithm on the data and updating the parameters 
until the likelihood of each sentence falls below a defined value or a number of 
iterations has been reached.

The HInit approach was chosen since it utilizes the segmentation information that 
was available and proved to provide slightly better results than the HCompv approach 
in preliminary tests. The number of iterations was chosen to be ten.
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The initialization is made for each phoneme model separately with a command like

HInit -i 10 -I labels.mlf -1 a -C hinit.conf -M hmm.O -S train.scp\ 
proto/a.

Here, the command line option -i specifies the maximum number of iterations, 
the option -1 specifies the phoneme in question, and the final parameter proto/a 
specifies where the prototype file resides.

6.2.3 Model training

The following step describes model training itself. This is done by using the tools 
HRest and HERest. HRest works in very similar way to HInit, except that HRest 
expects the models to be initialized properly and uses the Baum-Welch algorithm 
instead of Viterbi training. This involves finding the probability of being in each state 
at each time frame using the forward-backward algorithm. This probability is then 
used to form weighted averages for the HMM parameters. Thus, whereas Viterbi 
training makes a hard decision as to which state each training vector was ‘generated’ 
by, Baum-Welch takes a soft decision. This can be helpful when estimating phone- 
based HMM’s since there are no hard boundaries between phones in real speech and 
using a soft decision may give better results.” [77]

The tool for embedded training, HERest, is different from HInit and HRest in that 
it simultaneously updates all of the HMM’s in a system using all of the training 
data. After loading the complete HMM definitions into memory, HERest processes 
each training file in turn. At this stage, the segmentation information in the files is 
ignored and only the sequence of phonemes is significant.

For each file, HERest constructs a composite HMM consisting of all the models cor­
responding to the phoneme sequence in the labeling of the utterance. The Forward- 
Backward algorithm is then applied as normal. When all of the training files have 
been processed, the new parameter estimates are formed from the weighted sums 
and the updated HMM set is output.

In this work, HRest was called first for each phoneme:

HRest -I labels.mlf -v 0.001 -1 a -C hrest.conf -M hmm.1 -S train.scp\ 
hmm.0/a

The parameters are as in HInit except for -v, which sets the minimum variance to 
0.001. This is necessary to avoid overtraining.

After running HRest, HERest was called iteratively seven times:

HERest -C herest.conf -v 0.001 -d hmm.1 -M hmm.2 -I labels.mlf \ 
-t 250 150 1000 -S train.scp hmmlist
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The option -t specifies the beam width in the backward phase of the Forward- 
Backward algorithm to 250. If pruning errors occur, the beam width is increased by 
150, and the file in question is reprocessed using this new beam. This is repeated 
until no pruning error occurs or the upper limit for the beam - in this case 1000 - is 
reached. In the latter case the file is rejected and probably contains labeling errors.

6.2.4 Fixing the silence model

Speech utterances may contain pauses of different lengths and nature. There are 
longer periods of silence at sentence borders, and shorter inside a sentence, mainly at 
punctuation marks. Between most words the pause is very short or even nonexistent. 
In stop consonants there is a short silent section, and sometimes there are glottal 
stops in different locations of speech. Additionally, some background noise is present 
and should be handled by some models. Therefore, several kinds of silence models 
are needed.

In this work, two different silence models are used. The silence model sil was until 
now handled as any other model. Some modifications are made to it so that it will 
better absorb silences of different lengths, and another short pause model (sp) model 
is added for the word break silences.

For the sil model, transitions from the state 2 to state 4 and from state 4 to 
state 2 (from the first emitting state to the last and back) are added to allow the 
different states absorb the background noise without creating too many consecutive 
sil observations in the recognition results.

Additionally, a short pause model sp is created. It has only one emitting state (state 
number 2), which is tied (set equal) to the center state of the sil model. There is 
also a transition from the beginning state directly to the end state (from state 1 to 
state 3).

The sp model is useful in that it allows very short silence sections. For example, 
the period of silence between words in a sentence is very short and sometimes even 
nonexistent. At this point, the labeling was also changed so that in most places the 
sil labels were replaced by sp labels. Only at locations that suggest that there really 
is silence in the sentence, e.g., at punctuation marks, the sil label was preserved.

The sp model was created by copying the center state of the sil model and adding 
appropriate definitions for the rest of the model to it. Then, new transitions to the 
sil model were added and state 2 of the sp model was tied to state 3 of sil by the 
following HHEd script:

AT 2 4 0.2 {sil.transP}
AT 4 2 0.2 {sil.transP}
AT 1 3 0.3 {sp.transP}
TI silst {sil.state[3],sp.state[2]}

The needed HHEd command was

HHEd -C hhed.conf -d hmm.3 -M hmm.4 fixsil.hed hmmlist,
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where fixsil.hed contains the lines above.

This silence model fixing was made between the second and third iteration of HERest. 
Therefore, for iterations three to seven the hmmlist should contain the short pause 
model as well.

At this point the monophone models are ready. There are still many possibilities 
to improve their performance - adding mixtures being the most obvious - but since 
this thesis studies the use of triphones, no further attention was paid to developing 
the monophone models.

The monophone models were used for comparison reasons for test data recognition. 
The recognition procedure is almost identical to the triphone case described in section 
6.4.

6.3 Triphone models

In theory, triphone models are clones of monophone models that have been renamed 
to include the left and right context of the phoneme and retrained with the occur­
rences of the triphone in question.

As mentioned before, training a full triphone set is not feasible due to the large 
number of possible triphones and the small number of training examples for many of 
these in any realistic training data set. Therefore, the triphones need to be clustered.

This section describes the steps required to create a triphone set from the mono­
phones built above as well as different ways of clustering.

6.3.1 Making triphone labels from monophone labels

Initially, monophone label files need to be transformed into triphone form. That is, 
in the case of decision tree based triphone clustering, we want a phoneme string

sil haensp sanoi sil e tt ae sp h ...

to be transformed into

sil+h sil-h+ae h-ae+n ae-n+s sp n-s+a s-a+n a-n+o n-o+i o-i+sil \ 
i-sil+e sil-e+tt e-tt+ae tt-ae+h sp ae-h+...

If we want to cluster based on articulatory facts then the context of the tri phones 
will be the broad class of the context phoneme. For example, instead of the triphone 
n-s+a we would have NA-s+BV, where NA denotes nasal and BV denotes a back vowel. 
See tables 4.1 and 4.2 for the acronyms of different phoneme classes.

As one can see from the example, the two kinds of silence are treated differently. 
The short pause is ignored when forming triphones. The sil label is considered 
as a normal context to other phonemes. Both of the silence models are in practice



6. Building the recognizer 65

context-free, even though the contexts are included in the sil labels - all sil models 
are tied later on to one model.

This approach was chosen because the short pauses, being short or even non-existent, 
do not usually affect the pronunciation of other phonemes, while the longer silence 
is usually realized in a longer pause in speech. Some recognizers consider the silence 
models as context-dependent while others do not, and the context-free approach was 
chosen for this work.

The labels are transformed into triphone format by applying the following HLEd script 
to the label files.

NB sp 
TC

Assuming that this script is saved into a file called mktri. led, it is applied to a label 
file with the command:

HLEd -C hled.conf -i new.mlf mktri.led new.mlf

This script seems to leave the silences in the very beginning and end without context. 
These need to be added to the labels by hand or a script so that recognition would 
work as described in section 6.4.

6.3.2 Making triphone models from monophone models

The next step is to make clones of the phoneme models for each triphone in the 
training data. The script driven HMM editor HHEddoes this when given a script file 
containing only the line “CL traintrilist”.

At this point the number of models grows so large that it is no longer convenient to 
have the models in separate text files in a directory. Instead, HTK supports saving 
several models in one file and using a binary file format, which saves storage space.

A command for creating one large binary file (which defaults to newMacros) is:

HHEd -d hmm.9 -B -M hmm.10 mktri.hed hmmlist

The models produced this way were trained two times with HERest, and at the second 
pass, an extra -s stats option was added - it generates a file of state occupation 
statistics, that is used in the clustering process as described below.

At this point there exists a model for all triphones present in the training data. Many 
of them have only a few training examples (42 percent of them have less than five 
training examples). In order to provide sufficient training material for all models, 
clustering is required.
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6.3.3 Triphone clustering - binary decision tree

In order to perform binary decision tree based triphone clustering (as described in 
section 4.2.2), the questions have to be generated. In HTK, clustering is accomplished 
by HHEd. A script for clustering is:

RO 100 stats

QS "L_Sil" {sil-*}
QS "R.Sil" -O+sil}
QS "L.PallatalOrVelar" ,kk-*,g-*,gg-*,ng-*,ngng-*}
QS "R.PallatalOrVelar" {*+j,*+jj,*+k,*+kk,*+g,*+gg,*+ng,*+ngng>
QS "L.Labial" {p-*,pp-*,b-*,bb-*,m-*,mm-*,f-*,ff-*,v-*,vv-*>
QS "R.Labial" {*+p,*+pp,*+b,*+bb, *+m,*+mm,*+f,*+f f, *+v,*+vv}

QS "L_yy" {yy-*}
QS "R_yy" <*+yy>

TB 250 "a" {(a, *-a, *-a+*, a+*)}
TB 250 "aa" {(aa, *-aa, *-aa+*, aa+*)}

AU "fulltrilist"
CO "tiedlist2"

First, the stats file created above is read in, and the outlier threshold is set to 100. 
Then, the questions created manually or by a script are stated in the QS lines. The TB 
lines tell HHEd to actually cluster all mono-, di-, and tri phone models of the phoneme 
in question. Clustering goes on until the log likelihood achievable by any node is less 
than the threshold specified by the argument (in this case: 250).

The binary decision tree clustering mechanism allows building models for unseen 
triphones based on the clustering trees of seen triphones. To make the recognition 
process simple (see section 6.4), it is useful to have models for all possible triphones 
available. The list of all phonemes is given in the file defined by the AU (add unseen 
triphones) command. Finally, the CO command defines that a compacted list of 
models is to be generated into the file tiedlist2.

The command needed to actually run the script is as follows:

HHEd -H hmm.2/newMacros -M hmm.3 tree.hed triphonelist

6.3.4 Triphone clustering based on articulatory facts

When clustering based on articulatory facts, most of the work is done simply in 
the phase when the monophone labels are transformed into triphone labels. Some 
of the clustered triphones still have too few training examples and they need to be 
clustered using the same tree based clustering mechanism described in the previous 
section. Here, the set of questions consists of the different subsets of the selected
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broad classes for both left and right contexts, for example, the following question 
would define the context where on the left there is a fricative, stop or a labial:

QS "L_FRKLLA-ques" {FR-*,KL-*,LA-*>

Additionally, we need to define which real non-clustered triphone, e.g. a-n+e, corre­
sponds to a clustered triphone. Even though initial clustering based on articulatory 
facts would rename this triphone to BV-n+FV, in the second clustering process it 
might be tied with other triphone models of n, and the final physical model could, 
for example, have the name ST-n+sil.

Therefore, we need a new list of triphones for recognition. This is a text file consisting 
of all logical triphones followed with their physical counterparts on each line. This 
kind of file was created using a Perl script based on the tiedlist2 created in tree 
based clustering.

6.4 Recognizing the test data

HTK needs some kind of rules regarding allowed phoneme sequences in order to be 
able to recognize test utterances. Normally, these rules are provided by the lexicon 
and the language model, but since none were used in this work, the simplest possible 
rule set, a phoneme loop, was used. It states that any phoneme may follow any other 
without a limit for the phoneme string length.

This is defined by a network file such as:

$phn = a I aa I ae Iaeae|b|d|e|ee|f|g|h|i|ii|j|k|kk|
11111 m I mm I n IngIngngInn|o Ioe|oeoeIoo|p|pp| 
r 1 rr I s I sil I ss 111 tt I u I uu I v I y I yy;

(sil <$phn> sil)

Given appropriate configuration parameters, HTK expands the phonemes to match 
their context. This kind of approach requires that all possible logical triphones have 
a physical counterpart. That is, a line exists in the triphone list file for them.

The network file above also defines that a sentence always has to begin and end with 
silence. This approach reduces the need of diphone models to only silence models. 
Furthermore, in this work, all sil-models are tied to a single physical model.

The network file has to be transformed into a Standard Lattice Format (or SLF) file 
using the HParse tool:

HParse network lattice

After this, recognition is accomplished using the HVite tool:

HVite -C hvite.conf -i recout_test.mlf -w lattice -H \ 
hmm.S/newMacros -t 150 -p -30 -S test.scp vocab tiedlist_rec
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The “vocabulary” file vocab contains the “description pronunciation” for all phonemes. 
All phonemes, but not the silence models, are given two different ways of pronunci­
ation: one with a following short pause and one without a pause. This looks simply 
like:

a a sp 
a a
aa aa sp 
aa aa

sil sil

The -t 150 option enables beam searching such that any model whose maximum log 
probability token falls more than 300 below the maximum for all models is ignored 
in decoding. The -p -30 specifies the phoneme insertion log probability to be -30.

If the value given with the -t option is too small, the most probable path through 
the states may not be found, resulting in all kinds of recognition errors. If the value 
is too large - or beam searching is disabled altogether by setting the option to 0 - 
recognition takes much time.

A positive value for the option -p results in many falsely inserted phonemes while 
too small a value causes many phonemes to be deleted.

Iterative methods were used to find suitable values for these options, and appropri­
ate values depend on the model type. For monophone models the phoneme insertion 
penalty was -10 and the beam width was 300, while for triphone models the corre­
sponding values were -30 and 120. The -p values were selected so that the number of 
insertion and deletion errors was roughly equal. A good value for the -t option was 
searched for by gradually decrementing it and looking for the smallest value with 
which the recognition performance still remained good.

6.5 Processing the output

Following the steps described in this chapter, the recognized transcription is produced 
into the file recout_test .mlf with one phoneme on each line. In addition to the 
phoneme name, its beginning and ending times are included as well as the score 
(total likelihood of the segment):

#! MLF! #
"/data_dir/synt.3000.rec"
0 8100000 sil -665.910339 
8100000 8600000 p -169.781860 
8600000 9700000 oe -168.355362 
9700000 10700000 1 -162.563538

99700000 100100000 b -228.922165 
100100000 101200000 a -313.813904
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101200000 112200000 sil -1044.941772

"/data_dir/synt.3001.rec"
0 11200000 sil -1191.084839 
11200000 11700000 p -153.512268

6.5.1 Alignment by HResults

HTK includes a performance analysis tool, called HResults. It compares the recog­
nized label files to the correct reference files and calculates the number of insertion, 
deletion and substitution errors as well as accuracy and correctness figures. Further­
more, it can produce confusion matrices between phonemes and output the test and 
reference sentences time-aligned.

By default, HResults does not print the time-aligned transcription for sentences with 
no errors. This was changed in order to simplify the further analysis process. Also, if 
the -e or -c flags are used to make two phonemes equivalent, the original phonemes 
are replaced in the output transcription. Both of these cases were undesired, and the 
behavior was modified by making some minor changes in the HResults source code.

For utilizing the time-aligned transcription produced by HResults, a set of Perl 
scripts were written. They gather information about:

• Overall correctness and accuracy

• Sentence based results

• Confusion matrices

• Error chain lengths

• Overall results for the individual phonemes

• Results for the individual phonemes in different contexts

• Errors for all phonemes in different contexts

• Overall phoneme statistics

The scripts produce Matlab code, which is used to visualize the vast amount of 
information. The recognition results are discussed in the next chapter.
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Analysis of the recognition tests

In order to achieve further insight into the performance of different HMM types the 
results were analyzed thoroughly. First, the overall insertion, deletion, and substitu­
tion errors were counted and the accuracy and correctness figures derived from these. 
The same was done to phonemes appearing in the beginning and end of words and 
sentences to test whether word stress would have an effect on the performance. Fur­
thermore, it was analyzed what kind of errors were most common for each phoneme, 
which phonemes are confused with each other, and in what context.

As noted in the previous chapter, five different kinds of model sets were built, one 
monophone set and four triphone sets, which differ from each other in terms of 
triphone clustering and to some extent number of models. The model sets and 
acronyms used for them throughout this chapter are presented in table 7.1.

Model set Short Number of models
Monophones Mon 41
Place of Articulation clustered triphones PoA 623
Type of Phoneme clustered triphones ToP 991
Aggressively tree-based clustered triphones TLo 1259
Moderately tree-based clustered triphones THi 3785

Table 7.1: The different model sets used in the experiments and the number of models for 
the MFCC front end.

7.1 Performance figures

As explained earlier, there are three different types of recognition errors: substitution 
(5), deletion (D), and insertion errors (I). The total number of phonemes is marked 
with N, and the number of correctly recognized phonemes with H. There are two 
commonly used figures that can be calculated from these numbers. The correctness 
(C) figure is calculated according to equation 7.1 and it describes the portion of 
phonemes recognized correctly from all phonemes.
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H N — S — D 
~ N — N (7.1)

Accuracy (equation 7.2) takes the number of inserted phonemes into account, and is 
therefore a better measure for comparing the performance of recognizers producing 
phonemes as output. It would be possible to create phoneme strings achieving a 
correctness figure of 100 % for any utterance simply by repeating all phonemes at 
every time unit.

„ H-I N-S-D-I
a=~n~=-------- n-------- (7.2)

The same figures could be used to calculate word error rates and in that case the 
insertion error would be much smaller. However, this was not done since neither a 
language model nor a lexicon was used in this work. This choice was made since the 
phoneme errors were of major interest in this work and converting phoneme strings 
into words tends to mask those errors. It would be simple to produce a list of words 
from the data and then use a unigram language model for the recognition but this 
kind of simplistic approach would lead to large word error rates (probably above 80 
%). Furthermore, that kind of an approach would have little in common with any 
real application.

Correctness is also calculated for separate phonemes. Additionally, another error 
measure, global error proportion (E) is calculated for them as defined in equation 
7.3. S, D, and I are the values of different errors made for this particular phoneme, 
and Nphon is the number of all phonemes. This figure describes the number of errors 
for this particular phoneme proportionally to the global number of phonemes, and 
it does not take into account the frequency of the phoneme in the data. Therefore, 
this error figure is usually higher for more common phonemes.

The motivation for the use of E for phonemes is that it shows in which phonemes the 
most errors occur. In contrast to the C figure calculated for phonemes, E measures 
the absolute error rate, (not proportional).

E = S + D + I
Nphon

(7.3)

A hypothesis was made that the phonemes in the beginning of words - and especially 
sentences - would be recognized with better performance than those in the middle or 
end of words, and that those ending a sentence would produce the worst performance 
of all. This was justified by the fact that in Finnish the beginnings of words are 
usually stressed, and towards the end of the word or sentence the pronunciation 
becomes unclear, and some phonemes might be dropped out altogether. In order to 
test the hypothesis the performance figures were calculated for the first and last two 
phonemes of words and sentences.

In order to gain further insight into the nature of the most common error types the 
contexts of errors made for each phoneme were analyzed.

Furthermore, the recognition accuracy of individual sentences was analyzed in order
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to find out what kinds of sentences produce the best and worst performance. Related 
to this, the lengths of error chains were also studied.

7.2 Significance of difference and accuracy of results

When examining the results of a recognition test one should always make sure that 
the performance difference between two algorithms is not random. Similarly, the 
real precision of the results should be estimated and be presented with only those 
decimals that are significant. Methods for these tasks are described in this section.

7.2.1 Matched-pairs test

It is often ignored in speech recognition research papers, as noted in [78], whether an 
apparent difference in recognition results is statistically significant. [78] presents two 
tests for this, one of which, the matched-pairs test, is suitable for continuous speech 
recognition. The test is described as follows.

Assume that there are two algorithms A\ and that are tested using the same 
material. The test material is divided into n segments so that any errors made inside 
a segment are independent of any errors made in any other segment. A natural choice 
for segments are sentences, after which the speaker pauses.

Let N\ and be the numbers of errors made in a segment by the two algorithms, 
and let Zl = N\ — 1V|, i = 1,2,..., n. Let /rz be the unknown average difference in 
the number of errors in a segment made by the two algorithms. We would like to test 
whether nz = 0. /i£ is estimated by p, — 52£=1 Zi/n- The estimate of the variance 
of the Zi s is:

°z 2 1
n — 1 - A)2

*=l

The estimate of the variance of fiz is:

Another random variable W is defined as:

(7.4)

(7.5)

W = Az
{oz/Vn) (7.6)

If n is large enough, W will approximately have a normal distribution with unit 
variance. We make the null-hypothesis, that nz = 0, that the difference between 
the recognition results of A\ and A2 is not significant. This hypothesis is tested by 
computing the probability P of observing the value W under the null-hypothesis:
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OO

P — 2 f exp-*2/2 (7.7)
\w\

If P is below a certain threshold the null-hypothesis is rejected and the difference 
between the two algorithms is statistically significant. Typical threshold values are 
0.05, 0.01, and 0.001. Where this significance examination is applied in this thesis, 
the value of 0.01 is used.

7.2.2 Precision of the results

Following similar principles to those used in the matched-pairs tests one can also esti­
mate the precision of the results so that the results can be presented with meaningful 
precision.

Independent observations can be estimated to be from the normal distribution pro­
vided that there are enough of them. Sentences can be thought of as independent 
observations, and then one can calculate the interval where the true correctness is 
according to a selected level of confidence.

7.3 Phoneme duration

It is known that the HMM scheme does not deal very well with phoneme durations. 
After a preliminary analysis the substitution errors between long and short variants 
of the same phoneme are ignored in the error analysis. This decreases the overall 
differences in both correctness and accuracy in the models by 12-13 % in Mon, 8-9 
% in PoA, 7-8 % in ToP, 5-5.5 % in TLo, and 4.5-4.8 % in THi.

Short phonemes are more often recognized as long phonemes than vice versa. For 
monophone models the difference is as large as 500 %, for ToP and PoA models 
160-230 %, and for TLo and THi models 20-60 %. Context-dependency and the 
addition of more models clearly improves the discrimination between short and long 
phonemes. There were about nine times as many short as long phonemes in the data.

7.4 Overall recognition results

Front end Correctness of THi Accuracy of THi
PLP 95.6 ± 0.3 92.3 ± 0.3
MFCC 95.3 ± 0.3 91.8 ±0.4
BFCC 94.5 ±0.3 90.6 ±0.4

Table 7.2: Overall recognition results obtained by the best-performing model set, THi, for 
all tested front ends.
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Table 7.2 summarizes the best results achieved for each front end. Figures 7.1 and 
7.2 show the overall correctness and accuracy figures for all phonemes and all tested 
models. The error intervals are calculated by estimating the fitting of results of the 
separate sentence to the normal distribution with a confidence level of 0.01.

The highest achieved performance figures were for the THi models and the PLP front 
end. Those using MFCC were not far behind, but according to the matched-pairs 
test (section 7.2.1), the difference is statistically significant with a threshold of 0.01. 
BFCC performed clearly worse. One possible explanation is that the A-coefficient 
was not optimal for the female speaker. As can be seen, the differences between the 
front ends are not very noticeable.

Correctness for all phonemes
1001-------------- 1------------------------------1-------------

95

90

85

80

75

70

65

60

55
MFC PLP BFC

Figure 7.1: Correctness of all phonemes, models, and front ends.

The recognition performance increases with the number of models regardless of the 
front end. This result was as expected. Furthermore, the number of models produced 
by the different clustering strategies seems to be equal regardless of the front end 
(see figure 7.3).

The results from all front ends were closely similar. If there had been more noise in 
the data the results would probably have been different and PLP would have ben­
efited from its sophisticated structure. Since there was no great difference between 
the front ends only the results of MFCC are discussed in further detail.

Figure 7.4 shows the correctness of word and sentence beginnings and endings, and 
figure 7.5 shows the accuracy figures for the same. Furthermore, figure 7.3 displays 
all the results in one figure.

In the following the recognition results for sentence and word beginnings and endings
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(abbreviated SB, WB, SE, and WE) are discussed.

The hypothesis of sentence beginnings producing better recognition results proved 
to be false. With closer examination of the recognized labels it can be seen that 
in many sentences a stop consonant is inserted into the front of the transcription 
of an utterance. Also, other kinds of errors are more common in the beginning 
of the sentence than in the rest of the sentence. This is partly explained by the 
properties of a HMM recognizer and partly by the fact that the utterances contain 
a variable amount of silence and often some noise caused by inhalation before the 
actual sentence begins. Since the beginning of the utterance is not accurately marked 
there is a rather large amount of variation producing errors.

For all models the results are better in SE than SB. The reasons for this are explained 
in the previous paragraph. The differences are smaller for THi models than the 
others, so having more models helps in SB.

Word beginnings perform better than average for all models in terms of correctness. 
This suggests that word stress still has positive effects on the recognition results: 
there recognizers find the correct phonemes more often from the WB parts than 
from the rest of the material. However, insertion errors are more common in WB 
which lowers the accuracy figures for WB to below average.

The accuracy of ToP and PoA models is clearly better in SE than in SB, and they 
even outperform the TLo models in the endings. In all models except THi the results 
were better in SE than the overall results.
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-x- PUP Correctness 
MFCC Correctness 

—(— BFCC Correctness 
PLP Accuracy 

-3- MFCC Accuracy 
BFCC Accuracy

2000
Number of models

Figure 7.3: Results for all model sets and front ends relative to the number of models. The 
TMi model set, which is not covered elsewhere in the document, corresponds 
to a model set gained from tree-based clustering with the number of models 
between that of THi and TLo.

However, for testing the effect of word stress there would have been better methods. 
The differences shown here are probably mainly due to HMM properties.

One of the original goals of this thesis was to compare different clustering algorithms. 
Unfortunately, it proved hard to force the number of models to be the same, so a 
direct comparison cannot be made. However, the deviation in the lines of the figure 
7.3 at the ToP models suggest that the performance difference is not only due to the 
number of models, but the clustering strategies utilizing a priori knowledge perform 
worse.

7.5 Error distributions of sentences

Since the phoneme recognition performance increases greatly when introducing context- 
dependent phoneme models, so do the sentence results as well. This is illustrated in 
figure 7.6 that shows the histograms of sentence correctness and accuracy for both 
Mon and THi models in the same figure.

The text contains some sentences with foreign proper names. When they are tran­
scribed automatically to phoneme strings using Finnish pronunciation rules, some 
transcription errors occur. Thus, even if the recognizer correctly recognizes what has 
been said, an error is found due to the erroneous transcription. Dates, numerals, and
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Correctness for MFCC models

All SB SE WB WE

Figure 7.4: Correctness of all phonemes, sentence beginnings (SB), sentence endings (SE), 
word beginnings (WB), and word endings (WE) for the MFCC front end.

abbreviations also cause similar problems.

A set of sentences consisted of chapter and section titles and were very short con­
sisting of only one or two words. On one hand, these kind of sentences formed the 
group of sentences that were recognized perfectly. On the other hand, if there was 
an error in these short sentences the performance figures would drop immediately to 
a very low value.

A couple of example sentences of both well and poorly performing sentences that 
do not fit into the special cases mentioned above are now presented. Both mono­
phone and context-dependent models are considered. For all sentences, the sentences 
recognizer outputs of each model set is presented in figure 7.7.

Some errors that one might think of as being easy to remove afterwords are visible 
in this small set of examples. Inside a word the same phoneme may occur several 
times in a row. These kinds of repetitions would be easily removed from the output 
phoneme stream, but as long as there is no information about the word boundaries, 
one cannot do this. The word boundary may be in between those two, and the next 
word might begin with the same phoneme as the previous one ends in.
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Accuracy for MFCC models

Figure 7.5: Accuracy of all phonemes, sentence beginnings (SB), sentence endings (SE), 
word beginnings (WB), and word endings (WE) for the MFCC front end.

7.5.1 Example sentence A - well recognized

The first example sentence (see figure 7.7) performed relatively well with monophone 
models and the improvement gained with context-dependent models was not high. 
The differences in recognition precision are not great between different models. No 
deletion errors are produced but a couple of insertion errors occur for each model 
set. This could imply that a larger penalty for inserting phonemes in recognition 
might improve the performance. However, as we will see in examples C and D, the 
optimum penalty value is sentence dependent and thus cannot be adjusted for each 
separate sentence.

The substitution errors that are present for this sentence are quite typical and are 
mainly due to short vowels getting mixed with each other.

7.5.2 Example sentence B - well recognized

The second example sentence (see figure 7.7) performed well in terms of accuracy in 
the monophone system, compared to other sentences with the same model set. The 
performance of the different context-dependent systems was quite equal and clearly 
better than that of the monophone system.

There were no insertion errors in the output of the monophone system. The short 
functional word ja (meaning and) was completely misrecognized by the monophone
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Figure 7.6: Correctness and accuracy histograms of sentences for Mon (red) and THi mod­
els (blue). This figure gives an overview on how the sentence distribution of 
errors differs between the best and the worst model set.

system, but all context-dependent systems recognized it with 100 % correctness. 
This is a typical place where triphones models are most effective.

Most of the context-dependent models suggested an inserted stop consonant at the 
beginning of a word. As mentioned earlier, this is a typical problem that is due to 
the properties of HMM recognizers.

7.5.3 Example sentence C — poorly recognized

The third example sentence is the longest of the four examples presented. It was 
selected from the worst sentences in terms of correctness produced by the monophone 
system.

The output of the monophone system is unitelligible and the phoneme recognition 
rate is low, below 50 %, and basically all kinds of errors axe present. The improve­
ment when using context-dependent models is large. A speaker of Finnish would 
understand the output of any of them without great difficulty.

There are, however, a few errors common to most of the models: the /p/ in läpikulku- 
juna has been deleted by all models. Another phoneme posing problems is the /!/ 
in the last word of the sentence. The word Köln is not Finnish, it is the name of the 
town Cologne in Germany, and the reader pronounces the word like it is pronounced
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Figure 7.7: Example sentences recognized using the different models. The topmost row 
of each sentence shows the correct labeling, and the following lines contain 
the recognition results for each model set. The transcriptions are aligned so 
that any recognition errors are easy to compare. Short (lower case letters) 
and long (upper case letters) are marked in the figure, even though they are 
considered equivalent in error analysis. The sign § is used for /g/; the percent 
sign (%) stands for the short pause; an exclamation mark denotes silence. Any 
whitespace is added merely for alignment purposes.
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in German. Furthermore, the combination “In” is illegal in Finnish non-compound 
words, and there were no training examples with this combination. These kind of 
errors are hard to avoid but they are not very common.

Two other “errors” are also present but they are merely errors in the original tran­
scription and not the recognizer output: the words on noin are pronounced together, 
merging the two short /n/’s together forming one long /n:/ sound. Similarly, the /n/ 
sound at the end of the word kymmenen is transformed to a /q/ sound since the fol­
lowing word begins with a /k/. By going through the label file manually these kinds 
of errors could be avoided but this would be very tedious since these transformations 
do not always take place.

7.5.4 Example sentence D — poorly recognized

The fourth example sentence was uttered a little oddly: there is some mumbling be­
tween the words hissien and ajoväyliä, there is a glottal stop after ajoväyliä, the /e/ 
in the following ei is long, and the fundamental frequency raises clearly within the 
/ai/ diphthong of the word aidata. All of these seem to produce mainly insertion er­
rors in the data. Additionally, the /h/ is hard to recognize in the beginning of hissien.

7.6 Results for separate phonemes

The overall per-phoneme correctness (equation 7.1) of all models is shown in figure 
7.8. The difference from the monophone baseline system is shown in 7.9. Common 
consonants /t, n, h/, and /v/ seem to gain the most from the context-dependent 
phonemes. Having clearer steady states, vowels are better modeled even with mono­
phone models. Some rare phonemes, /b, f/, and /r)/, even degrade in correctness 
when context-dependency is introduced.

The global error proportion (equation 7.3) for all phonemes is shown in 7.10. This 
error measure is the number of errors made in each phoneme divided by the number 
of all phonemes, and it describes the absolute number of errors, instead of a relative 
error rate that could be calculated from the correctness figure by Erei = 1 — C.

For confusion matrices for the different models refer to Appendix A. Table 7.3 sum­
marizes the phoneme correctness rates and the numbers of models for each phoneme.

Figures such as 7.11 were generated for all models and phonemes, and those for the 
TLo models are presented in Appendix C.

In 7.11a, the number of errors concerning /h/ in different precontexts (labels on the 
x-axis; the asterix stands for the beginning of a sentence) are plotted.

Figure 7.11b gives further insight into what kind of errors are occuring in each 
context. The error type is shown on top of the bars: an X represents deletion, 
any other character represents substitution with the phoneme printed. Still, errors 
concerning /h/ are treated, and the precontexts are shown in the x-axis labels.
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100
Correctness for each phoneme

efghi jklmnoprs 

Figure 7.8: Correctness for each phoneme in each model set.

t u v y § ä ö

Figures 7.11c and Figure 7.1 Id are similar to figures 7.11a and 7.11b, except that on 
the x-axis is the postcontext, not precontext.

Each error type had to occur at least five times before it was included in figures 7.11a 
to 7.lid. All error rates are proportional: for example, the first bar of figure 7.11b 
shows that in about fourty percent of the cases where /h/ is preceded by an /s/, it 
has been recognized as an /f/.

As a summary, the most common errors (substitution and deletion) are presented in 
figures like 7.lie. Here, on the x-axis label there is either an ’X’ meaning deletion 
or some other phoneme label meaning substitution by the presented phoneme. The 
height of the bar is again proportional: for example, about eight percent of /h/’s 
have been deleted (first bar in 7.lie). Information provided by this figure is present 
also in a confusion matrice.

The following discussion is based on these figures (see Appendix A) as well as the 
confusion matrices presented in Appendix A.

7.6.1 Vowels

/a/

The phoneme /a/ behaved similarly for all models. By far, the most common error 
was mixing with the phoneme /ä/, the second most common error was deletion. 
Rarely, this vowel was also confused with other vowels.
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Improvement of correctness for each phoneme
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Figure 7.9: Difference in correctness for each phoneme from the monophone baseline sys­
tem.

By far the most error-prone precontext for the phoneme was /j/. This is due to the 
word ja, which means and, and is thus very common. Another error-prone context 
is the phoneme /y/. This is explained by the fact that an /a/ followed by a /y/ 
(also the other way around, but there were no cases in the data) collides with vowel 
harmony - they cannot be close to each other in a Finnish word. However, they can 
be after each other in two different words, in which case the pronunciation of /a/ 
tends to move towards the vowel /ä/.

/e/

The phonation of /e/ varies greatly depending on the context. This is due to the fact 
that vowel harmony does not limit its occurrence, and different surrounding vowels 
yield very different characteristics for each instance, often rendering the phoneme 
quite similar to some other vowels.

In monophone models the most common errors are deletion followed by substitution 
to /Ö/, /i/ and /ä/. The same is true for the context-dependent models but with 
much lower error rates. The most tricky precontext is /y/, which renders the fol­
lowing /e/ very close to /ö/. Furthermore, this combination is not very common - 
there are ten times as many /yö/ combinations than /ye/ combinations in the data 
- which leads to a high proportional error rate.
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Global error proportion for each phoneme

Figure 7.10: The global error proportion for each phoneme. Due to the nature of the error 
measure the error rates are high for common phonemes and low for rare ones.

N

There are several phonemes with which /i/ is mixed: /e/, /j/, and /y/. In some 
words an /i/ removed from its context actually sounds like /e/, even though a human 
being hears a clear /i/ when the whole word is listened to. With a following vowel, 
/V is misinterpreted as /j/. The phoneme is often deleted when there is a /j/ on 
either side.

/<V

The pronunciation of /o/ is similar to /a/ or /u/ in some contexts. Therefore, it is 
not surprising that there is a fair amount of substitution errors with these phonemes. 
An /a/ as a neighbor makes the /o/ to be recognized as a /u/.

H

The phoneme /u/ is either recognized correctly, deleted, or replaced by /o/. /j/, 
either as the left or right neighbor, causes a mix-up with /o/ in 15-20 % of the cases 
where this combination appears (more for monophone models).
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Figure 7.11: Error context analysis for the phoneme /h/ (TLo models). In figures a)-d) 
the letters on the x axis denote the contexts in which /h/ appears. An asterix 
refers to the beginning of sentence. When present, the letters above the bars 
show what kind of an error /h/ has undergone. A capital X means deletion, 
all other characters substitution errors with the phoneme that is printed on 
top of the bar. a) The most error-prone precontexts, b) Errors of /h/ made 
in different precontexts, c) As a), but for the postcontext, d) As b), but for 
the postcontext, e) The most common errors for the phoneme /h/, regardless 
of the context.

S
_J____1_1____l_l____1_1____l_|____1_1____1—1____LJ____L_l____1 I 1J

* t u y e i a o n ä

f XXXXkXXXX i

1 II II II 1 i------,LI____LI____LI____LI____LI____Il i r i i i i m il
syeiu'anoåo

doueyjkmiäta

X f k i tvi



7. Analysis of the recognition tests 87

/y /

/y/ experiences an amount of deletion errors in vowel contexts with monophone 
models, but otherwise, errors are quite rare. Some random mixing with /i/ takes 
place.

/ä/

With monophone models, /a/ is sometimes misrecognized as /a/ or /ö/, depending 
on the context. Context-dependency helps here as well diminishing the number of 
errors.

/»/

A small amount of confusion with other vowels is also present with /of. However, 
this phoneme is relatively rare so the absolute number of errors is not very high.

7.6.2 Stops

/b/

Being a foreign phoneme there is not much training data for the phoneme /b/. This 
is the reason for its poor rate of success. Almost all of the errors are substitutions 
with the phoneme /v/, a close relative of /b/.

There is one odd thing about this phoneme - the performance is dramatically low 
when using the tree clustered models. The introduced errors are mix ups with /v/. 
No logical reason for this behavior was found. One might think that the reason is 
insufficient training data for the several models created. However, the performance is 
better in THi (six /b/ models) than TLo (one /b/ model). Similarly, the performance 
of ToP, which contains five /b/ models, is significantly better.

/d/

The phoneme /d/ is rather well recognized and its performance increases logically 
when more context-dependent models are available. The most common error is 
deletion and the second most common error is mixing with the phoneme /g/.

Vowels in preceding and following contexts seem to be the most error-prone context.

/g/

The phoneme /g/ seems to be the most difficult phoneme to recognize - the correct­
ness rate does not climb above 70 % for any of the model sets. The phoneme is rare
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(third after /{/ and /b/), and the errors are usually deletion or substitution with
/d/-

A/

As with the other stop consonants, /k/ is often inserted in the beginning of words. 
It is sometimes substituted by /t/ or /p/, that is by another stop especially when 
the following phoneme is a vowel. Overall, with all context-dependent models, /k/ 
is recognized very accurately.

/P/

/p/ is mixed with the other stops, especially /t/. Difficult contexts for its recognition 
are the beginning of sentences and places where the following phoneme is a /s/.

A/

The stop /t/ gains the most in performance when introducing context-dependent 
models. In the statistics the most common error is deletion when the following 
phoneme is a /t/. This is the case when two consecutive words both have a /t/ at 
the border of the words. These are very often pronounced together so this is not 
always a recognition error.

In addition to this, /t/ seems to be rather randomly mixed with /k/ and /p/ and is 
added at the beginning of sentences.

7.6.3 Fricatives

/f/

This fricative is another example of a rare phoneme. It suffers from a similar per­
formance drop when using context-dependent models as /b/, but not as severely. In 
the monophone recognizer the phoneme is mixed with /r)/ and the other fricative 
/h/. For context-dependent systems there are several equally common errors.

/h/

The phoneme /h/ is a difficult to recognize at the beginning of words and especially 
sentences. It is very often deleted (interpreted as silence) even within words. Hardly 
any other errors exist for it. Preceding fricatives and following /d/’s are fatal to /h/. 
The errors are similar in all models, but the performance receives an improvement 
when more models are added. This is due to the fact that /h/ has a voiced and an 
unvoiced variant, which are not indicated in the labeling.
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AV

The spectral structure of /s/ is such that it is very easily and accurately recognized 
even with monophone models. The few errors are of marginal importance.

7.6.4 Nasals

/m/

A very surprising result with /m/ is that it performs very poorly at the beginning of 
sentences. Monophone models make a mistake in 64 % and the context-dependent 
models in 16-20 % of the cases when /m/ occurs in that position. The most common 
error was substitution with /p/. Phonemes /m/ and /p/ are articulatorily related 
since they impose similar kinds of formant transitions in the following vowel.

In a /p/ postcontext the phoneme is mixed with the other nasals.

/n/

With monophone models, the phoneme /n/ is very often mixed with /g/, especially in 
a context with stop consonants. This is understandable since /n/ is very common and 
its pronunciation is very context-dependent. This is a typical case, where triphone 
models are performing well, and /n/ is one of the three phonemes gaining the most 
performance from these types of models.

A)/

The most surprising aspect about the results of nasal /q/ is that using triphones 
clustered by the place of articulation causes a performance loss of 40 %. Also, 
the other context-dependent systems suffer from a performance loss, but only by a 
moderate 1-8 %.

The main detrimental factor of /g/ is /n/, which in many contexts is very similar 
to /g/. In monophone systems many /n/’s are recognized as /g/’s, while in the 
context-dependent models it is the other way around due to the existence of /n/ 
models.

7.6.5 Tremulants, laterals, and semi-vowels

N

The phoneme /j/ is quite difficult to recognize. There is no steady state section in 
the phoneme and the formant shifts differ depending on the context. The phoneme 
is either deleted or mixed with /i/.
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N

j\j is recognized well with context-dependent models. There are hardly any sub­
stitution errors even when using the simple monophone system. There are a few 
contexts where in almost 50 percent of the cases the phoneme is deleted when using 
monophone systems: after a /u/ and before a /k, t/ or /j/. Context-dependency 
works here very effectively, but still deletion errors occur when /t/ is the following 
phoneme.

A/
The phoneme /r/ encounters hardly any substitution errors. It is subject to deletions, 
when a vowel precedes it and when it is followed by /j, t/, or /k/.

/v/

The text contains many instances of the word kivi in different forms. In most cases, 
the /v/ is recognized as /d/ in monophone models. With context-dependency, these 
errors are almost totally absent.

A peculiar detail was discovered: all models were recognizing /v/ before a /!/ incor­
rectly in 90-100 % of the cases. A reason for this was a set of sentences containing 
the proper name Vladimir in the test data. This name, and no other words having 
/v/ and /!/ after each other was present in the training set. Thus, this is similar to 
the case in the example sentence C in section 7.5.3.

About 25 % of the time /v/ is recognized incorrectly in the beginning of the sentence, 
usually as /p/.

7.7 Difficult contexts

An analysis was performed to see which phonemes produce the most errors as pre- and 
postcontexts. This analysis was also done for the different error types (substitution, 
deletion, and insertion).

Example graphs for the overall context analysis of THi models are shown in figure 
7.12. The complete graphs for all models are presented in Appendix B. The er­
ror percentages for a few couple of example phonemes (some of the most difficult 
contexts) are presented in table 7.4.

As a preceding phoneme for all models, /j/ was by far the most problematic. As 
postcontexts phonemes /j/ and /f/ were the most error-inducing. The rare stops /b, 
g/, and /d/ also caused many errors in the preceding phoneme. These are the worst 
in this sense for all models with slightly differing orders.

The phoneme /d/ is clearly the most probable to cause deletion errors as the post­
context. For monophone models, the deletion percentage is 25 %, for the context-
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Phn
Mon ToP PoA TLo Thi

Pre Post Pre Post Pre Post Pre Post Pre Post
/j/ 57.4 52.1 32.2 35.7 42.9 34.8 25.2 29.0 21.3 26.7
/V 22.0 55.1 11.8 27.5 11.8 29.3 16.9 39.6 10.1 24.1
/g/ 40.7 30.0 15.0 16.8 14.1 16.8 11.5 23.8 15.0 19.4
N 6.6 31.2 6.6 18.7 3.3 17.5 15.5 15.0 5.5 22.5
/ö/ 34.1 38.7 14.3 21.4 17.9 16.3 19.4 14.3 13.3 8.4
N 21.9 24.8 9.2 14.1 2.8 11.3 6.0 11.7 6.3 8.1

Table 7.4: Percentages of errors for all phonemes in selected pre- and postcontexts.
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Figure 7.12: Difficult contexts for the THi models. The bars show the percentage of mis- 
recognized preceding or following phonemes in the context of the mentioned 
phoneme.

dependent models it varies between 3.75 % (thi) and 15 % (PoA). Most phonemes 
are equally poor in this sense as the left context - the differences are not large.

Insertion errors are most probable before /g, b, j/, and /f/, and after /n, a, ä, ö/, 
and /g/.

7.8 Error chain length analysis

Statistics were formed from the occurrences of successive errors. This was done to 
check if most of the errors would be random - meaning single errors or short error 
chains - or caused by the recognizer becoming “unsynchronized”.

The results are clear. For all model sets there are more than twice (for the context- 
dependent models more than three times) as many single errors than double-error 
chains, and for longer chains, the number decreases even more rapidly. As an exam­
ple, the histogram plot of error chains for the TLo models is shown in figure 7.13. 
Apparently, long chains of errors are not the main concern for the recognizers. In-
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stead, single random-like errors are. However, if a language model would have been 
used, the results would be totally different. In that case, the restricted vocabulary 
would force some phonemes to be output incorrectly even if the acoustical models 
would have recognized them correctly.

m chains of different lengthsNumber ofNumber of chains of
1500015000

1000010000

Figure 7.13: Error chain analysis for the TLo models. Over half of the errors are single 
errors.

7.9 Computational load

Even though computational load was not a major issue in this work, and there was no 
goal such as reaching real time speed, the time consumed by the recognition process 
was measured. This was done by selecting a set of sentences with a total length of 
11:54 minutes. The recognition time of the different models is shown in table 7.5. 
The Moni and Mon2 model sets refer to the same model set while just a different 
beam width is used in HVite (300 for Moni and 120 for Mon2). The beam width was 
300 in the recognition tests but when measuring the computational load it proved 
that it can be significantly lowered: the recognition results for Moni and Mon2 were 
identical, even though Mon2 spent 23 percent less time in recognition. This was not 
optimized earlier since even with too wide a beam recognition using the monophone 
models was very fast.

As can be seen, the monophone models easily reached real time speed. This is not 
the case for context-dependent models, but the difference is not that great - with a 
computers doubling in speed every eighteen months [79], real time should soon be 
reached.

There are no large differences between different triphone models which is somewhat 
surprising since the difference in the number of models is large between them. Ev­
idently, the beam search algorithm succesfully avoids searching through incorrect 
models, when high probabilities for the context-specialized models are found.
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Model Time (min:sec) x real time N. of models
Moni 0:30 0.042 41
Mon2 0:23 0.033 41
PoA 22:13 1.9 623
ToP 26:06 2.2 991
TLo 26:16 2.2 1259
THi 25:16 2.1 3785

Table 7.5: Recognition time of the different models for a test set of 11 minutes 54 seconds.



Chapter 8

Conclusions

The effect of introducing context-dependent phoneme models (triphones) in Finnish 
continuous speech recognition was studied in this work. This was done by training 
single speaker recognizers using:

• monophone models: Mon

• decision-tree clustered triphone models: aggressively clustered TLo and mod­
erately clustered THi

• triphone models clustered based on a priori information about the type of the 
surrounding phonemes: ToP

• triphone models clustered based on the place of articulation of the surrounding 
phonemes: PoA

Three different front ends were tested for all model sets: Mel Frequency Cepstral 
Coefficients (MFCC), Bark Frequency Cepstral Coefficients, and Perceptual Linear 
Prediction (PLP). Analysis of errors in different phonemes and in different contexts 
was an important part of this thesis.

The most important results of this work were:

• Tree-based clustering produced the best results, but they also had the highest 
number of models.

• PLP performed the best as a front end by a statistically significant margin, 
but the differences to MFCC and BFCC were not large.

• Common consonants gained the most from context-dependency. Some rare 
consonants even had lower performance figures for triphone than monophone 
models. This was perhaps due to the lack of training data.

• The contexts producing most errors in neighboring phonemes were /j/ and /f/.

e When recognizing without a language model, most errors appear as single 
errors, without forming long error chains.
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The best overall result, 92.3±0.3% accuracy, was achieved by the THi models and the 
PLP front end. Generally speaking, the performance was better for those clustering 
methods that allowed more models.

In error figure calculation, errors involving silence and substitution errors between 
the long and short variants of the same phoneme were ignored (the corresponding 
figures with short and long phoneme mixups taken into account were 90.8 ± 0.3 % 
and 87.3 ± 0.3 %).

Due to the difficulties in making the number of models equal for all clustering strate­
gies, a direct comparison between them was not possible. However, it seems that 
the data driven tree-clustering approach provides better results than those methods 
utilizing phonetic or articulatory a priori knowledge. The performance seems to rise 
almost systematically with the number of models.

This work has concentrated on the Finnish language, which has both important pros 
and cons from the speech processing point of view. Having almost a one-to-one 
relation between phonemes and the orthography, transformation between written 
Finnish text and phoneme strings are easier than in many other language. On the 
other hand, the huge number of different words, often differing only slightly, poses se­
rious problems especially for language modeling. Furthermore, some simpler aspects 
that are not present in major languages, such as information related to phoneme 
duration, have been somewhat neglected in research concentrating on languages like 
English.

A major part of this thesis concerned the analysis of the recognition results. In 
addition to the usual overall error analysis, several different aspects were studied:

• The error-producing contexts were analyzed both globally and for each phoneme 
separately.

• The most common errors for each phoneme were recorded.

• Results for sentences were analyzed separately, trying to find out what kind of 
sentences perform well or poorly.

The most problematic contexts were phonemes /j/ and /d/, as well as the rare 
phonemes /b, f, g/, and /g/. Deletion was a common error for vowels as well as /h/ 
and /!/ especially in the monophone systems, and stops and /h/ were often inserted. 
Substitution errors were common inside phoneme type classes (stops, nasals, and 
vowels).

The recognizer achieved in this work is by no means perfect. The main weakness of 
it is the lack of a proper language model. As such, the recognizer merely produces 
a phoneme stream, instead of words and sentences. Adding a simple unigram model 
would have been straightforward using HTK tools. However, the construction of a 
proper language model, especially for the Finnish language (studied e.g., in [80]) is a 
very challenging task for the reasons mentioned above - there would easily be enough 
work for another master’s thesis. Furthermore, a language model (especially a poor 
one) would increase the phoneme error rate and mask the phoneme errors uncovered 
in this work.
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Finally, there is much improvement required in utilizing acoustical information, es­
pecially regarding modeling of phoneme transitions. This can be seen, for example, 
from the high percentage of errors that occur in a /j/-context. This particular 
phoneme has no real steady state, and it also causes long transitions in its neighbor­
ing phonemes.

Some relatively easy improvements could be made to the recognizer. These include 
applying the following techniques:

• Adding Gaussian mixtures to the states. This would be a major improvement 
for monophone models, but probably not so significant for triphone models. 
This is since the single-Gaussian monophone models try to model the real­
izations of phonemes in different contexts with just one Gaussian, while the 
triphone models are already specialized in realizations from one kind of con­
text. In comparison, it would have been “fair” to allow monophone models the 
same number of parameters as the triphone models have by adding Gaussians. 
However, this would have been outside of the scope of this work.

• State-clustering instead of model clustering. This would lead the clustering 
process even more towards the data-driven direction, which seems to be a good 
method. Additionally, one could imagine that the clustering results would be 
more fine-grained.

• Parameter tuning. The recognition process includes many parameters that are 
probably not at their optimal value. Much experimentation would be needed 
for fine-tuning them.

• More carefully selected training data and/or more training data. Currently, 
the training data was selected quite randomly from the data set. This may 
leave many of the less common triphones under-trained.

For many practical applications speaker independency is a major criterion. The 
methods presented in this thesis could also be applied to such a recognizer, but 
speaker independency poses many new problems, as well. The need for training 
data increases dramatically when the variation between speakers, in addition to 
the variation between phoneme realizations, needs to be modeled. There is still 
very much to be performed before a computer recognizes spontaneous speech of any 
person.
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Appendix A

Confusion matrices for the 
different models

In this appendix confusion matrices between phonemes are presented for the MFCC 
Mon, ToP, PoA, TLo, and THi model sets. The D and I on the axis denote deletion 
and insertion errors. The /rj/ is denoted by the sign §.

As its name suggests, confusion matrices describe the confusion between phonemes. 
The correct phonemes are presented in the rows and the mistaken phonemes in 
columns. The more often a phoneme is misrecognized as another, the darker the 
rectangle in the crossing of the corresponding row and column is (except along the 
diagonal where correct results are expected).

aäouyöei jmn§gdktpbvhfsl r D

Figure A.l: Confusion matrix for MFCC monophone models - all phonemes.
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Word beginnings Word endings

aåouyöeijmn§gdk t pbvh f s Ir Daäouyöeijmn§gdk t pbvh f s IrD

Sentence beginnings

aåouyöeijmn§gdktpbvhfslrD

Sentence endings

aåouyöeijmn§gdktpbvhfslrD

Figure A.2: Word and sentence beginning and ending confusion matrices for MFCC mono­
phone models.

aåouyöei jmn§gdktpbvhfsl rD

Figure A.3: Confusion matrix for MFCC ToP models - all phonemes.
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Word beginnings Word endings

aäouyöeijmn§gdktpbvhfslrD aäouyöeijmn§gd k t pbvh f s I rD

Sentence endings

aäouyöeijmn§gdktpbvhfslrD

Figure A.4: Word and sentence beginning and ending confusion matrices for MFCC ToP 
models.

Sentence beginnings

aäouyöeijmn§gdktpbvhfslrD

Figure A.5: Confusion matrix for MFCC PoA models - all phonemes.
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Word beginnings Word endings

aäouyöeijmn§gdk t pbvhI s IrDaäouyöeijmn§gdktpbvhfslrD

Sentence beginnings Sentence endings

aäouyöeijmn§gdktpbvhlslrDaäouyöeijmn§gdk t pbvh f s IrD

Figure A.6: Word and sentence beginning and ending confusion matrices for MFCC PoA 
models.

aäouyöei jmn§gdktpbvhfsl rD

Figure A.7: Confusion matrix for MFCC TLo models - all phonemes.
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Word beginnings

aäouyöeijmn§gdktpbvhfsIrD

Sentence beginnings

Word endings

J

aäouyöeijmn§gdkt pbvh f s IrD 

Sentence endings

aäouyöeijmn§gdktpbvhfslrD

Figure A.8: Word and sentence beginning and ending confusion matrices for MFCC TLo 
models.

aäouyöei jmn§gdktpbvhfsl rD

Figure A.9: Confusion matrix for MFCC THi models - all phonemes.
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Word beginnings Word endings

Sentence beginnings Sentence endings

Figure A.10: Word and sentence beginning and ending confusion matrices for MFCC THi 
models.
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Context analysis

In this appendix the context analysis graphs of the different model sets are presented. 
The figures of each model are divided into eight sections:

a) All kinds of errors with the examined phoneme as the left context

b) All kinds of errors with the examined phoneme as the right context

c) Substitution errors with the examined phoneme as the left context

d) Substitution errors with the examined phoneme as the right context

e) Deletion errors with the examined phoneme as the left context

f) Deletion errors with the examined phoneme as the right context

g) Insertion errors with the examined phoneme as the left context

h) Insertion errors with the examined phoneme as the right context

In the following, the graphs for the different models are presented.



110 B. Context analysis

60

40 
b)
20

0

40

%

0

20
f)
10

0
20

mo

o
nåöaiueyos j g r t §h fImpkdvb
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Context analysis of errors

This Appendix presents the figures for TLo models used in per-phoneme error anal­
ysis. For an explanation of the figures, see section 7.6.

□rinnnnnnnnnnHn

Figure C.l: Context analysis for the phoneme /a/.
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V P

Figure C.2: Context analysis for the phoneme /b/.
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Figure C.3: Context analysis for the phoneme /d/.
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Figure C.4: Context analysis for the phoneme /e/.
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Figure C.5: Context analysis for the phoneme /f/.
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Figure C.6: Context analysis for the phoneme /g/.

Figure C.7: Context analysis for the phoneme /h/.
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o

I 11 11—i

c)0.5

0
0.5

d)

J___ I I I---- 1 i---- 1 i---- 1 .---- 1 .---- . .---- . .---- . ,-----
ö o j Isadenrvmtk

j X j X X j XXX j XXyXeyeXyääeo

Figure C.8: Context analysis for the phoneme /i/.
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Figure C.9: Context analysis for the phoneme /j/.
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e) 0.01

Figure C.10: Context analysis for the phoneme /k/.
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Figure C.ll: Context analysis for the phoneme /!/.
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Figure C.12: Context analysis for the phoneme /m/.
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Figure C.13: Context analysis for the phoneme /n/.
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Figure C.14: Context analysis for the phoneme /g/.
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Figure C.15: Context analysis for the phoneme /o/.
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Figure C.16: Context analysis for the phoneme /p/.

e) 0.02

Figure C.17: Context analysis for the phoneme /r/.
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Figure C.18: Context analysis for the phoneme /s/.

Figure C.19: Context analysis for the phoneme ft/.
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Figure C.20: Context analysis for the phoneme /u/.

e) 0.01

Figure C.21: Context analysis for the phoneme /v/.
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e) 0.01

Figure C.22: Context analysis for the phoneme /y/.

Figure C.23: Context analysis for the phoneme /&/.
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Figure C.24: Context analysis for the phoneme /ö/.


