
HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and Communications Engineering

Juha Tapio Ristimäki

MULTI-CHANNEL SERVICE PROVIDING

Thesis submitted for examination for the degree of Master of Science in Engineering

Espoo, February 20, 2002

Supervisor Professor Petri Vuorimaa

Instructors Topi Järvinen, Doctor of Philosophy

Teemu Stewen, Master of Science

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER'S

THESIS

Author: Juha Tapio Ristimäki

Name of the thesis: Multi-channel service providing

Date: February 20, 2002 Number of pages: 117

Department: Electrical and Communications Engineering

Professorship: Tik-111 Interactive Digital Media

Supervisor: Professor Petri Vuorimaa

Instructors: Topi Järvinen, Ph.D., Sonera

Teemu Stewen, M.Sc., Sonera

As diversity of end devices used to access Internet is growing, the way of creating
interactive services must be rethought. This thesis discusses the problems in media-
independent service providing, especially treated are interactive services. Technical
and also some non-technical challenges are discussed.

Extensible Markup Language (XML) is a re-usable document description language
that is described with some example applications. Channel specific presentation needs
can be satisfied using XML together with Extensible Stylesheet Language (XSL), a
language for transforming XML document into other document.

One service development environment is introduced. Proposition for a media
independent service development Framework suitable to it is developed and
presented. Interactive services producing media independent XML can be integrated
with the Framework. Framework identifies client for them and makes channel
specific content transformations to their resulting XML documents with appropriate
XSL sheets. Support for new media type or integration of new XML service into the
Framework does not require touching the program code. Configuring instructions to
identify new media and authoring new XSL sheets are what is needed.

Prototype of a media-independent XML producer application is presented and
integrated with the Framework. It's media independent use cases are requested
differently from different channels. The performance of the prototype in the
Framework is tested and reported.

Keywords: XML, XSL, WWW, WAP, HTML,
Interactive services

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Juha Tapio Ristimäki

Työn nimi: Monikanavainen palveluntuotanto

Päivämäärä: 20.2.2002 Sivumäärä: 117

Osasto: Sähkö- ja tietoliikennetekniikan osasto

Professuuri: Tik-111 Vuorovaikutteinen digitaalinen media

Työn valvoja: Professori Petri Vuorimaa

Työn ohjaajat: FT Topi Järvinen, Sonera

DI Teemu Stevven, Sonera

Tämä diplomityö käsittelee päätelaiteriippumattomaan palveluntuotantoon liittyviä
ongelmia etenkin vuorovaikutteisissa palveluissa. Palveluiden tekotapaa on
arvioitava uudelleen kun Internetiin liitytään yhä moninaisemmista päätelaitteista.
Työssä esitetään teknisiä ja jonkin verran myös ei-teknisiä aiheeseen liittyviä
haasteita.

Extensible Markup Language (XML) on yleinen dokumenttien kuvauskieli, joka
esitellään esimerkkisovelluksineen. Päätelaiteriippumattomaan XML dokumenttiin
voidaan lisätä kanavakohtainen esitystapa Extensible Stylesheet Languagella (XSL),
joka on kieli XML dokumentin käsittelyyn ja muuntamiseen.

Eräs palveluntuotantoympäristö esitellään. Siihen istuva monikanavaisuutta tukeva
palveluntuotantokehys kehitetään ja esitellään. Kehykseen voidaan liittää XM L:ää
tuottavia interaktiivisia palveluja. Kehys tunnistaa päätelaitteen ja sovittaa
palveluiden tuottaman XML:n päätelaitteelle sopivaan muotoon XSL:llä. Tuki
uudelle päätelaitteelle tai uuden palvelun liittäminen kehykseen ei vaadi
ohjelmakoodiin koskemista. Kehykseen konfiguroidaan ohjeet uuden päätelaitteen
tunnistamiseen sekä liitetään tarvittavat XSL tyylisivut.

Prototyyppi XM L:ää tuottavasta interaktiivisesta palvelusta esitellään ja liitetään
kehykseen. Tämän palvelun päätelaiteriippumattomia use caseja kutsutaan erilailla
eri päätelaitteista. Prototyypin suorituskyky kehyksessä testataan ja raportoidaan.

Avainsanat: XML, XSL, WWW, WAP, HTML,
vuorovaikutteiset palvelut

PREFACE

This master's thesis was done at Sonera Mobile Operations during the time from June
2001 to February 2002. Thesis was originated from the perception that heterogeneity
of end devices accessing Internet can be an upcoming problem when content is
traditionally designed for PC only.

I want to thank my foremen at Sonera for giving an opportunity to do this thesis.
Special thanks belong to supervisor professor Petri Vuorimaa and to instructors Teemu
Stewen and Topi Järvinen, for reading and commenting the incomplete versions of
thesis. Risto Pihlajasalo and Ari Kangasharju gave valuable advice on text formatting.
Thanks to other workmates for encouragement during the work.

I want to thank my family, grandparents and other relatives, girlfriend and friends for
support, understanding and encouragement during my struggles in studying.

February 20th, 2002 in Helsinki

Juha Ristimäki

IV

Table of contents

PREFACE..III

TABLE OF CONTENTS..IV

LIST OF FIGURES... VIII

LIST OF ABBREVIATIONS..X

1 INTRODUCTION... 1

1.1 Background and motivation...1
►

1.2 Scope.. 2

1.3 Objectives... 2

1.4 Organization of this thesis... 3

2 MULTI-CHANNEL PUBLISHING..4

2.1 Foreword.. 4

2.2 Description and background... 4

2.3 Difficulties in media-independent publishing... 6

2.3.1 Laborious process.. 6

2.3.2 Organizational problems[14][15]...7

2.3.3 Slow time-to-market.............................. ...8

2.3.4 The existing base.... ... 8

2.3.5 Look-and-feel and brand.. 9

2.4 Features of media..9

2.4.1 Capabilities in different end devices.. 9

2.5 Elements of visualized content [41]...12

2.5.1 Content... 12

2.5.2 Structure... 13

2.5.3 Presentation... 13

3 THE MOST IMPORTANT TECHNOLOGIES..14

3.1 Foreword.. 14

3.2 XML... 14

3.2.1 What it is?.. 14

3.2.2 Origin... 15

V

3.2.3 XML languages.. 18

3.2.4 XML document [16][19].. 18

3.3 Document Type Definitions (DTD) [16] [19]... 23

3.4 Schemas [19]...25

3.5 XML PARSERS, SAX AND DOM [19] [28]... 25

3.6 TRANSFORMING XML, XSL [17] [19]..27

3.7 BENEFITS OF XML [19]...31

3.8 XML APPLICATIONS..33

3.8.1 XML in communication...33

3.8.2 XML in presentation...33

3.9 Example solutions for media-independency... 34

3.10 Supporting software.. 36

3.11 Relevant technical out of scope issues... 38

4 THE SERVICE DEVELOPMENT ENVIRONMENT...40
4.1 Foreword..40

4.2 The general environment..40

4.2.1 Gateways.. 41

4.2.2 Backend servers.. 41

4.3 Three tier architecture and the system.. 42

4.3.1 Data... 42

4.3.2 Logic.. 43

4.3.3 Presentation...43

4.4 Policies and practices in the service deployment..44

4.4.1 Guidelines..44

4.4.2 Common classes...44

4.4.3 User interfaces... .44

4.4.4 Stylesheets..46

4.4.5 The WWW portal practice with frames... 46

4.4.6 Serving different end devices... 46

4.5 Process description.. 47

4.5.1 Requirements and analysis. 47

4.5.2 Implementation and testing..48

4.5.3 Into production...49

4.5.4 Maintenance andfurther development...49

4.6 Old Addrbook service..49

4.6.1 What it is?..49

4.6.2 Features andfunctions...49

4.6.3 Technical background.. 50

4.6.4 User interfaces...50

4.7 Deficiencies in the WWW portal... 55

4.7.1 Designedfor PC andframes only.. 55

4.7.2 Frame context...55

4.7.3 Collective client identification..55

4.7.4 Static pages...56

4.7.5 Interactive services...56

4.7.6 URLs to framesets...57

4.7.7 Why Addrbook?...58

4.7.8 What can be done?..58

5 MULTI-CHANNEL DEVELOPMENT FRAMEWORK...59
5.1 Foreword.. 59

5.2 Alternatives to making own solution... 59

5.3 General requirements...59

5.4 Framework and its Components.. 60

5.4.1 Short description..60

5.4.2 Chosen solution and technologies..62

5.4.3 Public software...62

5.4.4 Modules.. 62

5.4.5 Configuration module..63

5.4.6 Logging module..63

5.4.7 Subscriber and customer identification module... 64

5.4.8 Client identification module... 65

5.4.9 Service integration module.. 68

vi

5.4.10 XSL transformation module...71

5.5 Roadmap for framework..75

6 PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK... 77
6.1 Description of the prototype.. 77

6.2 Integration with the Framework... 81

6.3 Testing and evaluation...88

6.3.1 Platform...88

6.3.2 Testing tool...89

6.3.3 Test cases and their results..89

7 CONCLUSIONS...92
7.1 Findings...92

7.2 Were objectives met?..93

REFERENCES.. 94

APPENDICES.. 99
APPENDIX A. XML DOCUMENT... 99

APPENDIX B. DTD FOR THE XML DOCUMENT... 100

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT... 101

APPENDIX D. Example of an XML Schema...109

APPENDIX E. Example configurations for the Framework..112

VI

APPENDIX F. Example configurations for the service integration module in the Framework
..115

List of Figures
Figure 1. Service replication for different end devices... 5
Figure 2. Service adaptation to different end devices...5
Figure 3. Approach 1, customized content...6
Figure 4. Approach 2, generalized content.. 7
Figure 5. Organizational problems..8
Figure 6. Division of labor between content and presentation....................................... 8
Figure 7. Session management.. 11
Figure 8. Example of a scripting language (Javascript).. 12
Figure 9. Example of an XML document... 15
Figure 10. Major industry DTDs [46]...17
Figure 11. Families of SGML and XML languages.. 18
Figure 12. Predefined entities in conforming XML processors....................................21
Figure 13. A DOM tree as built by the XML parser [56]...27
Figure 14. The conceptual XSL processing model [17]... 28
Figure 15. XML/XSLT transformation process.. 29
Figure 16. XML/XSLT transformation process with DTD validation.........................29
Figure 17. Data portioning after the ownership of information.................................. 32
Figure 18. Service network.. 40
Figure 19. Example of a template... 45
Figure 20. Depiction of the template philosophy... 45
Figure 21. Serving different end devices with appropriate templates.........................47
Figure 22. Diagram of the development process... 48
Figure 23. WWW user interface 1.. 50
Figure 24. WWW user interface 2.. 51
Figure 25. WWW user interface 3.. 51
Figure 26. WWW user interface 4..51
Figure 27. WWW user interface 5..52
Figure 28. WWW user interface 6, the popup template...53
Figure 29. SMS user interface 1... 53
Figure 30. SMS user interface 2... 53
Figure 31. WAP user interface 1.. 54
Figure 32. WAP user interface 2.. 54
Figure 33. WAP user interface 3.. 54
Figure 34. WAP user interface 4.. 54
Figure 35. WWW portal with frames... 55
Figure 36. Client identification module with static pages.. 56
Figure 37. Client identification module with interactive services................................57
Figure 38. Picture of the multi-channel framework..61
Figure 39. Closer picture of the multi-channel framework.. 62
Figure 40. Architecture in existing Addrbook... 77
Figure 41. Architecture in XMLAddrbook...78
Figure 42. Use of sequential fetches... 79
Figure 43. Format converter between requests and responses.....................................81
Figure 44. How framework locates XM LAddrbook.. 82
Figure 45. User interface 1 in WWW and WAP...84
Figure 46. User interface 2 in WWW and WAP...85
Figure 47. User interface 3 in WWW and WAP...85
Figure 48. User interface 4 in WWW and WAP...86
Figure 49. User interface 5 in WWW and WAP...87
Figure 50. Use case 1: WWW and WAP... 88
Figure 51. Use case 2: WWW and WAP... 88

¡X

Figure 52. Use case 3: SMS..88
Figure 53. Performance test results of Framework with XM LAddrbook.................. 90
Figure 54. Performance test of XSLT only..91

X

List of abbreviations
API Application Programming Interface
CC/PP Composite Capability/Preference Profiles
COR BA Common Object Broker Request Architecture
CGW Content Gateway
CSS Cascading Style Sheets
DOM Document Object Model
DSSSL Document Style Semantics and Specification Language
DTD Document Type Definition
eCommerce Electronic Commerce
GML Generalized Markup Language
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
JAVA Object Oriented Programming Language
PDA Personal Digital Assistant
Qwerty The first six keys of the top letter row in PC keyboards
RMI Remote Method Invocation
SAX Simple API for XML
Servlet A Java-based Web application technology
SGML Standard Generalized Markup Language
SMIL Synchronized Multimedia Integration Language
SMS Short Message Service
SMSC SMS Center
SOAP Simple Object Access Protocol
URI Universal Resource Identifier
URL Universal Resource Locator
W3C World Wide Web Consortium
WAP Wireless Application Protocol
Web WWW
WML Wireless Markup Language
WWW World Wide Web
Xforms XML application of presenting Web forms
XHTML Extensible HTML
XHTMLMP XHTML Mobile Profile
XML Extensible Markup Language
XPath XML Path Language
XSL Extensible Stylesheet Language
XSL FO XSL Formatting Objects
XSLT XSL Transformations

1. INTRODUCTION 1

1 Introduction

1.1 Background and motivation

In recent years, two fundamental things have happened in telecommunication industry:
the emergence of mobile communication and the Internet. 1990 can be named as the
decade of these two phenomena. Because people are mobile by nature, the need for
mobile communication has been obvious. Internet has given average citizen a
comfortable access to global information sources and to other people by connecting the
computers of the world. These two networks together have given telecommunication
operators huge business opportunities and accordingly the value of telecommunications
markets has grown significantly in recent years [l][2l

Now these two networks are converging. Internet access is becoming mobile also thanks
to the developments in network and end device technologies СЗЗЕ4]. Telecommunication
in general is becoming ubiquitous after many years of voice communication being the
only major application of telecommunication networks. New ways of communication
like World Wide Web (WWW), electronic mail (email) and Short Message Service
(SMS) have already established position. Although the amount of voice communication
is limited to the amount of people in the area, the whole communication market
including different information appliances and networked machines can be almost
unlimited. It is not clear what will be the actual customer needs, but at least billions of
dollars are invested in network capacity, fixed and mobile, in the hope of growing needs
[51

There are three different elements in the communication besides the end user:
communications channel, content delivered in it and the end device presenting it to the
end user. Cost, quality and availability of these set the limits to the communication
market. Right technology and design, content, billing structures, earning principles and
revenue sharing in the value chain can speed up the development C63 C71 It is suggested
that NTT DoCoMo of Japan has understood the dynamics of mobile Internet business
better than their European counterparts in their I-mode success story [81

The things become complex in ubiquitous communication, when the same content or
service must be made available to all kind of end devices and usage preferences
[9Ю01 The end user of service can be machine or human with the end device best
suitable for presenting the data at the moment. This heterogeneity of end devices must
be served somehow. The obvious one is making as many distinct versions of the content
or service as there are different presentation needs. This is justified, when the amount
of different presentation needs is few. With many presentation needs, managing the
service becomes inconvenient. Some degree of scalability would be in order. Time to
market and quality of service are essential in the competitive market if the customers
will be kept satisfied. Data cannot be in conflict between different versions. Changing
the data or only its presentation must be easy. Making the existing service suitable to
the latest gadget also should be convenient.

Content providers have met these problems in recent years, when trying to serve
different media and end devices like SMS, Wireless Application Protocol (WAP) and
WWW. Many traditional industries nowadays have the same problems too, when they
have to publish their textual material like manuals and price lists in printed version and
in the WWW. In the future, there can be more different presentation needs if new kind
of end devices will come popular. At the moment, PDAs and digital televisions are one
of these candidates [11Ш21

1. INTRODUCTION 2

Good thing is to find out that the visually presented content or service has two
fundamental elements, the data and its presentation, body and soul [131 When these
two elements can be kept separated, data can be reused and conflicts between data in
parallel versions are over. Also, making the existing service suitable to the new kind of
end devices is easier, when only presentation issues must be considered and data portion
stays the same. This is a human resource thing also. Traditionally, one group of people
has made the data portion of the service and the other group has designed the
presentation of the data. When data and presentation cannot be separated, these two
groups must work in deep interaction, which creates overhead and delays especially,
when they work in different organizations [14] [15].

Separation of data and presentation is possible with widely adopted standard
Extendable Markup Language (XML) [16], which makes the media independent
publishing less inconvenient. In future, the data and services can also be exploited more
and more by machines, in electronic commerce and different agents [13Ш71 This
prerequisites the separation of data and presentation.

At the moment, many services are designed shortsightedly for PC user only. Mobile
devices, with their low bandwidth and small displays, require us to re-think the way
Web services are created and delivered. Mobile phone sales exceeded the desktop PC
sales in 1998 [18]. With the increasing volume of devices offering different capabilities
from desktop computers, the Internet will become diverse place. The ability to adapt
services to different clients will be essential for web services that wish to prevail. [19]

1.2 Scope

This study explores the field of media independent service development from the mobile
operator and service provider point-of-view. Services under examination are
interactive. One-way publishing is different and maybe easier thing to cope with.
Personal structure and current way of service provision of one mobile operator is taken
into account, when considering new operation models. Some things are left out of the
scope in order to keep the study focused and adequate in size. Continuous media like
voice and movies and personalization of services to different end users are out of scope.
Only the presentation layer is in scope, lower communication level issues are left out.
The relevant technologies are XML, Extensible Stylesheet Language (XSL) [20] and
Java [21]. Special attention is paid to exploiting public software.

1.3 Objectives

This study tries to explore the field of media independent publishing and make some
conversation and spread awareness of the problem in the organization. It tries to
analyze the problem and present one proposal of a media-independent web publishing
framework. It is not realistic to expect that a universal solution to the problem exists,
there will be shortages and bottlenecks in every solution. The growing amount of
handwork cannot be eliminated, but it should be moderated if possible. At least the way
things are done should be as good as possible in the world getting more complex every
day. Also, the durability of solutions should be as long as possible. Aim is to think and
evaluate different solutions to the existing problem and find out what is good and bad
in particular solution.

Changing the course of the big boat is always difficult, so the proposals of putting the
new technology in the wider use in the previously not media independently oriented

1. INTRODUCTION 3

organization is one objective of this study. The existing service base can be seen as a
burden, it is not designed to be media independent. One objective is to find out, whether
it is possible to extend these services' lifetime by making them media independent
without redesigning them from the scratch.

Finally, the study pays attention to the problem at hand and spreads out the awareness
of the new technologies in the organization. The overall approach is non-technical.
Justification for the approach is that it is hopefully reachable by bigger audience in the
organization and hence maybe more profitable. I recognize that more technical
approach may have been more valuable to technology people.

1.4 Organization of this thesis

This diploma thesis employs the following four-parted basic structure [223:

1) Introduction

Introduction describes the background and answers the question why the diploma
thesis was written.

2) Theoretical Framework

The "Theoretical Framework" presents the necessary background to the problem
and introduces the environment of the thesis. The key technologies in media
independent publishing are presented as well as the current service development
environment in one Sonera unit.

3) Own Contributions

In the "Own Contribution" part, the personal work and results are reported.

4) Conclusions

In this part of the thesis, the results of the work are summarized and the
appropriate conclusions are drawn. Evaluation is made whether the objectives were
met.

2. MULTI-CHANNEL PUBLISHING 4

2 Multi-channel publishing

2.1 Foreword

This chapter tries to outline what is meant with multi-channel publishing and what are
the problems in it. Different capabilities of different end devices are presented. Some
explanation is given what are the different characteristics or elements in services in
networked digital media. This chapter should give needed background so that the
further chapters can be put into right context.

2.2 Description and background

In multi-channel publishing or service providing, the content or service is made
available to several access channels. Basically, supporting more than only one channel
justify the use of term multi-channel. In other extreme, the "ubiquitous" service is
available to every existing channel and end device in it. So, ubiquitous service can be
utilized everywhere, and with all kinds of end devices and user preferences C23] [24].
The location or accessibility of customer, was it either human or machine, usually
dictates the type of device used. The words content and service are used
interchangeably as well publishing and service or content providing.

Media independent publishing is pretty modern concept. The propagation of
digitalization, computers and Internet brought the opportunities and difficulties of
exploiting different publishing channels into daylight. Now, WWW has become another
mainstream channel for printed word and only few can do without some degree of net
presence. Another new channel for information delivery is mobile handsets, with SMS
and WAP services, for example. Before WWW and mobile services the printed paper,
TV and radio were the only mass media for serious information delivery. There was no
encouragement to synergy between these different analog systems. In author's opinion,
the current consciousness of the multi-channel production has not been there before the
digitalization and propagation of Internet, these started the convergence of different
information channels.

The media can be different in many aspects. Communication channels and presentation
layers may differ, for example. The difference may be finer than between printed paper
and WWW. Different versions of mark-up language or WAP browsers [25], for
example, which renders the same presentation model different from the previous
version, are different media in this thesis context.

Different end devices have different features that must be taken into account in order to
reach good service level. There are basically too ways of achieving good service level
across different platforms. Either to make own dedicated version of the service for
every end device, or trying to make a scalable solution, where one version of the service
or content adapts to all end devices with some kind of intelligent processing.

2. MULTI-CHANNEL PUBLISHING 5

Service
version

1

sms

Service
version

2

wap

Service
version

3

Service
version

4

desktop pc

Figure 1. Service replication for different end devices.

► Processor <

I

Rules

► Service

Figure 2. Service adaptation to different end devices.

2. MULTI-CHANNEL PUBLISHING 6

2.3 Difficulties in media-independent publishing

2.3.1 Laborious process

The amount of handwork grows, when new end devices are taken into service portfolio.
In practice, this happens many times also, when new models or browser software
versions come into the market. Here is described from what components the work is
composed of.

New generations of end devices come many times with totally new or improved version
of mark-up language [31 So, several mark-up-languages must be handled. It takes
some time until the author is fluent with the new language or version and the best
practices are found. Authoring software tools make authoring faster [26], but if the
author resorts only to them from the beginning, deeper understanding of the language
may not necessarily develop, in author's opinion at least. Deeper understanding can be
needed, when authoring tool cannot do something extraordinary or new features come
into the languages and browsers.

The effort of learning and commanding new mark-up languages is at tolerable level, but
unfortunately this is not enough. Every new model and browser in it must be taken
under examination because they may render the same standardized mark-up little
differently [25]. In the worst case, the existing service must be reworked or replicated
every time a new model comes into the market.

Device with browser 1

< ■fr-

Device with browser 2

◄ ►

Content
custo­
mized

for
browser 1
______V

Content
custo­
mized

for
browser
______V

Device with browser 3

<

Content
custo­
mized

for
browser 3_______Z7

Figure 3. Approach 1, customized content.

2. MULTI-CHANNEL PUBLISHING 7

The alternative to replicating the services optimal to every model is a general approach,
an attempt to define the lowest common denominator features of different browsers. In
practice this means identifying a subset of markup that is interpreted in acceptable way
in every browser. Some compromises must possibly be made in layouts due to minor
inconsistencies, for example, between WWW and WAP browsers of different
manufacturer [251 Good thing with that approach is some kind of scalability, when the
amount and maintenance of services and pages do not grow linear with the amount of
different models. Following this road has its inconveniences also, when the accumulated
empiric knowledge must be documented somehow and kept up-to-date with the latest
model. Also, when the page is modified to suit the latest model, it must be checked that
it still functions well with the older models.

Device with browser 1

Generalized
content

for
browsers

Figure 4. Approach 2, generalized content.

2.3.2 Organizational problems[14][15]

Another problem besides the amount of work is the way work is done in the
organization. Overhead in development and maintenance processes and collisions
between people can follow if well-defined divisions of labor and responsibilities are
missing. This has been noticed, when developing interactive services, where
programmers and graphic designers must co-operate. These groups have different
priorities that can lead into conflict. Programmers favor robustness, maintainability
and efficiency in their code, while designers are concerned about the details in
presentation. Many times, when new presentations are made or existing ones are
updated, programmers must take the final responsibility of the whole system, when
integrating presentation into program code.

2. MULTI-CHANNEL PUBLISHING 8

The presentation layer is it's own thing and there should be people with adequate
competence in charge of that. It would be fine if the work of engineers (programmers
and the like) can be separated from the work of artistic personalities (designers) who
could modify the presentation with no intervention from the programmer.

This separation matches the organization of many teams. The well-defined division of
labor can be missing only because the underlying technologies do not directly encourage
to it. The management of work and people could be easier with clean interfaces.
Effective use of internal and external resources in service development could be
possible and the implementation and integrating processes can be spread across the
organization or different organizations. This gives management better opportunities to
control and manage the systematic service development. [27]

Presentation

Management Management

Presentation

Figure 5. Organizational problems.

Speci­
fications

__ F

Presentation
Реор1еЩЩ

Figure 6. Division of labor between content and presentation.

2.3.3 Slow time-to-market

In strongly competitive market, quick time-to-market is crucial. Maybe more accurate,
quick time-to-quality. First in the market gets usually the most sophisticated and
payable customers that shape the market and tell other people of the new things.
Especially, if the company is touting itself as a forerunner in the business, it is weird if
more than a few rivals are on the market before it. In the best case, the first in the
market gets so dominant position that its brand becomes synonymous with the product
or service itself. Slow time-to-market lowers the customer's threshold to switch to the
competitor. Also, some income is lost when the end devices are on the market without
services.

2.3.4 The existing base

One problem is the existing base that can be totally out of date being designed
restrictively only for certain end device. It is difficult to find consensus on whether to

2. MULTI-CHANNEL PUBLISHING 9

dump old services and design them all again from the scratch or trying to modify or
"wireless-enable" the existing ones. There is software for "wireless-enabling", for
example, the existing content. Fully automated or configurable transcoding software
tries to convert existing content to other markup languages. This can be even achieved
dynamically without touching the original pages directly, which guarantees that the
converted pages are always up-to-date with the master pages. In some WAP gateways
for example, this kind of transcoder software is embedded. There are anyway pros and
cons in using these converting tools comparing to developing all from the scratch. One
of the disadvantages is the price coming usually with them. They are also non-
predictable, human eye is needed to check that every page is transformed correctly. And
there may be situations, where automatic transcoding is not possible at all. [25]

Another trouble is that in WWW community, the HTML pages are often poorly written
(Le., the HTML specification is not respected). Today's browser manufacturers are
aware of this and they work hard to make browsers that can cope with HTML pages no
matter how badly they are written. This functionality comes with increased memory and
processing consumption. The web authoring tool-makers are taking advantage of the
status quo. The pages they pump out can be far from standard HTML trying to
optimize the behavior of the non-standard mainstream browsers. [28]

PCs can cope with this situation with large memory and fast processor, but wireless
devices, for example, cannot. The browsers in thin clients are smaller and thus more
strict in what they accept. They may not accept some parts of HTML at all (e.g.,
frames) and even then only standard HTML [111 There is fortunately good quality
public software for automatic cleaning of HTML pages [29]. The transcoding software
may prerequisite that the master pages are clean HTML [28]. The page sizes and
pictures are many times designed for good connections. On today's wireless connections
these pages take too long to load.

2.3.5 Look-and-feel and brand

In customer business, it is important to promote the brand always, when dealing with
customer. If company has built valuable brand with lots of money in traditional media,
it probably wants to cultivate it also in new media. Services and content should look
familiar in order to create trust and brand loyalty. Keeping look-and-feel coherent
across different media and different end devices can be very difficult, because services
may appear so different in different clients in the eye of the customer. In digital
services, for example, the convenient user interface and positive user experience
contributes to the brand loyalty [30].

2.4 Features of media

2.4.1 Capabilities in different end devices

Different end devices come with different capabilities. The set of features and
capabilities that, at least, must be taken into account are output and input capabilities,
available processor power and memory size, ability to handle different multimedia and
picture formats, support of different mark-up, scripting and application languages
[10X311

2. MULTI-CHANNEL PUBLISHING 10

Output
Width and height and proportions of the screen must be considered, when sending text
and graphics. Text and graphics can be customized to fit in particular screen size. If
screen size is very small compared to content's primary access device, only limited
amount of text can be sent (summary), or text can be divided into several pieces and
linked together with so-called "more buttons" [25]. The amount of text in each page
should be considered. People may find it laborious or inconvenient if there is overdose
of text. One approach is one view per page so that no scrollbars are needed. This
approach has its disadvantages if there is very much text, since the amount of metadata
for navigation increases. The advantage gained in authoring small and simple pages is,
that they fit in every browser, also in browsers designed for more sophisticated end
devices [25]. The Finnish mobile handset manufacturer Nokia can hopefully ease
content developers' efforts with their new policy. They promise to have only four
different user interfaces with four screen sizes in their upcoming phone models [32].
Content providers likely wish that other manufacturers also will follow this kind of
harmonization policy. The legacy models must be still taken into account. There can be
also some kind of sound output, requiring speaker (e.g., synthesized speech for
handicapped, recorded speech, music) [33X31]. Also, the viewing distance must be
considered. It is different between television and desktop PC, for example [34].

Input device and navigation
When designing and converting interactive services, it should be noted that all devices
don't have maximum set of user interface features and capabilities. Convenient pointer
device or qwerty keyboard may be missing. General choice and arrow buttons with color
identifiers can be used in menus, if convenient pointer is missing [12]. Users may favor
portals and bookmarks instead of entering long Universal Resource Locations (URLs),
for example, if convenient keyboard is missing. One issue is that different browsers may
render the same markup differently in the sense of navigability, 'one click away' on one
particular device may be two or more click on another device [25]. The interaction
should be convenient enough, otherwise the user may not use the service at all or uses it
the first and the last time [30]. Touch screen and voice input are also possible input
alternatives. Special attention should be paid to handicapped people, their disabilities
must be taken into consideration, when designing the output and input solutions [35].

Supported mark-up language and its features
Appropriate customizations may have to be made to different kind of basic structures,
for example, tables and forms. Some browsers may support presentation languages only
partly. In future, Extensible HTML(XHTML) [36] will have different modules
supporting different entities [66]. It should be communicated with client what elements
are supported. Tables, forms and frames are among the most important ones to be
taken into account. There may not be clean counterparts between particular tags and
features in different languages, so creativity and common sense are needed, when
customizing the structure and layout best suitable. It should be elaborated if rule based
tag conversions are adequate [25]. Applying rules by appropriate software possibly
with minor handmade corrections reduce greatly the inconvenient handwork. It should
be also considered how the page appears in browsers without CSS support. Essential is
that functionality and user-friendliness is maintained after transformations.

Ability to handle image and multimedia types
Conversions between different image and multimedia types should be made if needed. In
case of images, resizing only may not be enough. It should be investigated, which image

2. MULTI-CHANNEL PUBLISHING 11

types are supported in each particular agent type or browser. Processor power of
particular client may dictate, whether the sophisticated pictures and multimedia is
convenient to handle in it. There is software that can make image type conversions and
image data reduction like color depth reduction [371 In general, it should be
considered, whether images can be entirely dropped away in smaller screens and slow
connections. The reality can be occasionally blurred if services are developed and tested
in high-speed connections that are not at reach of the average customer. If images are
not essential in small screens, they can be replaced with links to them or with ASCII
characters to depict the same things literally.

Transformed unit size
Some devices may have certain physical upper limit in transformed unit size. This is
fact in current WAP phones C381 If content designed for unlimited transform unit sizes
is fed into WAP phones, very tricky division must be made with content, or it must be
trimmed. In static content, the division can be simply made with links to next portion of
data ("more buttons"). There are automatic tools for this in some WAP Gateways, for
example [25]. Interactive content is more difficult, because the whole content in the
same interaction context should be treated as one unit. Logic implemented in server
software dictates the solution. Only solution may be to trim the original content so that
it fits.

Session management
Session consists of series of transactions between customer and service and the
transaction data involved. Application may have to keep track of all the session related
data in certain kind of services like shopping cart. Client support for session
management varies between different terminals. In HTTP client-server-model, session
management is typically handled with HTTP Cookies, hidden parameter exchange or
with URL rewrite [39]. Cookies are not supported in all current WAP clients and not
at all in SMS clients. Sessions can be emulated in WAP with hidden parameter
exchange like in HTTP. Fortunately, some WAP gateways store cookies on behalf of
devices [25].

Time

Client Server
Add item x

Start session and store x into session data

Add item y
----------------------- * Store item y into session data

Submit

f

’ -----------> Process all session data and end session

Figure 7. Session management.

2. MULTI-CHANNEL PUBLISHING 12

Scripting languages and applets
Scripting languages intermingled in the content sent to client enable processing (e.g.,
checking of user input) in client's own processor. All client types do not have same
scripting capabilities. For example, in current desktop HTML browsers, there is
support for Javascript and, in many Wireless Markup Language (WML) browsers in
WAP phones, there is support for Wmlscript. It is laborious to learn all scripting
languages. Fortunately, Javascript based Ecmascript is destined to replace the various
forms of scripting in the future [40]. If there is no way at all to cover the things in
client that were handled by scripts in some other media, the only way is to change the
application logic in server side. Server software must take the role of scripting
language also. Negative effect in this is that the amount of time consuming transactions
between client and server easily increases. For example, when input fields have to be
sent to the server to be checked against correctness. Java applets are supported in PC
HTML browsers but not for example in WAP.

function check() {
if (document.sms.MSG.value.length < 1) {

alert("Message is missing!");
return false ;

}

else return true ;
}

Figure 8. Example of a scripting language (Javascript).

In future, some kind of standardization of presentation and user interface features in
information appliances is needed [231 Too much overhead and inconvenience must be
tolerated today in customizing the layout and content for different devices.

2.5 Elements of visualized content [41]

Documents can be defined to have three distinctive characters in it, content, structure
and presentation. These three elements can be found in any kind of documents.
Presentation can be sometimes further divided into its composition and style. The
context of this thesis is one popular class of electronic documents, markup documents.

2.5.1 Content

The content of document is the information of the document. Content can be text,
pictures or voice, for example. If the content can be separated from the presentation, it
can be presented in different ways. Content can be static or dynamic. Static content is
permanent and can be stored in intermediate storage also, like in proxy servers of
Internet. Dynamic content is created on demand runtime by applications (e.g., web
services in Internet) and it cannot be stored in intermediate storage.

2. MULTI-CHANNEL PUBLISHING 13

If content can be separated from presentation, it can be hold in separate storage unit,
where it can be fetched into different presentations. Updates and corrections must be
made to one place only and no conflicts between information in different presentations
can then exist as a consequence of human error or typo.

2.5.2 Structure

The structure of the document breaks up into physical and logical structure. Physical
structure tells how the different entities of the document are physically organized.
Physical structure is syntax for computer, telling how logical structure can be accessed.

Logical structure is the structure and relationships of the meaningful content, and it is
distinct from the physical structure. Titles, paragraphs, headers, for example, belong to
logical structure. Logical structure is semantic for humans and computers reading and
processing the document.

2.5.3 Presentation

The presentation of the document can be broken up into internal and external
presentation. Internal presentation of the content is the low-level presentation used by
computers. It can contain byte order and character encoding, for example. External
presentation is the physical appearance of the document. It is wrapped around
document's content in some phase to fit in the eye of the human reader. Same content
can have different external presentations to different purposes and audiences. The
external presentation can be further separated to its composition of different elements,
and to its style (Le., editorial layout).

Pictures, headers, paragraphs, tables, buttons, input forms, lists, in hypertext
languages (e.g., HTML) also links to other documents are among these elements, for
example. The document's composition of these can be presented with some markup
languages (e.g., HTM L).

Style can be described as the look and feel of the service. Indents, fonts, borders, colors
and backgrounds, for example, construct style. These style directives are applied to
desired elements in presentation. The overall impression of a group of documents can
be kept familiar with common style. If style elements can be kept in separate storage,
effort is smaller, when changing the style of large document base. There is couple of
situations, where decision is made to change the style of the whole document base.
Every now and then some renewal and face lifting may be needed, or when the company
gets a new logo, name or both in a merger, for example. In HTML, for example, style
can be separated with cascading style sheet (CSS) [42] technology.

3. THE MOST IMPORTANT TECHNOLOGIES 14

3 The most important technologies

3.1 Foreword

In this chapter, few useful technologies in media-independent service development are
described. Especially described is XML, which is the base for understanding and
exploiting many other technologies too, like XSL. Few other relevant technologies are
also described but only generally. All described technologies are recommendations or
proposals of World Wide Web Consortium (W3C) and they are publicly available and
not vendor specific. W3C recommended technologies have gone through long lasting
and careful preparation process under the supervision of many authorized software
professionals and powerful companies [43].

3.2 XML

3.2.1 What it is?

Popular description

Extendable Markup Language (XML) [16] is just a one way of describing data in a
structured manner. When data is described in an agreed structured format, computers
can understand it. In XML document, data being described can be anything. XML
document consists of actual data and data about data, metadata, telling the meaning of
the actual data to computer. XML document is human readable as well because it is
text based. XML is becoming popular data storage and communicating language in the
computerized world [28]. XML tells only what the content means, not how it should be
presented. Together with Extensible Stylesheet Language (XSL) [17] or other
mechanism, XML document can be presented and styled in desired manner.

Example of an XML document and its use

For example, one can agree with somebody upon the grammar and meaning of an XML
document describing the contents of his fridge. The metadata labeling the meaning of
every particular data field is enclosed in angle brackets, <> and </>. All actual content
is enclosed within the beginning <label_of_data>, and corresponding ending tag
</label_of_data>. One can tell about the contents of his fridge something like
this:

<my_fridge>
<ingredients>
<amount_of_items>3</amount_of_items>
<item>

<name>milk</name>
cleft>0.5 l</left>

3. THE MOST IMPORTANT TECHNOLOGIES 15

</item>
<item>

cname>bread</name>
<left>2 pieces</left>

</item>
<item>

<name>butter</name>
<left>one third</left>

</item>
</ingredients>

</myfridge>

Figure 9. Example of an XML document.

If human being gets this XML file telling the contents of somebody's fridge, she or he
will intuitively understand what it is about. Computers cannot do this; they don't have
any intuition С17]. But if they are beforehand told unambiguously the meaning of items
<my_fridge> and <milk>, everything comes possible and computers can
communicate with each other. By using XML, the computers in fridge and grocery
could, for example, communicate with each other and agree upon the order of reserving
the missing items to one's fridge.

Formal Description

"XML describes а dass of data objects called XML documents and partially
describes the behavior of computer programs which process them. XML Is an
application profile or restricted form of SGML. By construction, XML documents
are conforming SGML documents". [16]

3.2.2 Origin

So, XML has its origins in Standard Generalized Markup Language (SGML) [44], but
also in the proliferation of WWW and its popular markup language HTML.

SGML [19][45]

SGML evolved from the Generalized Markup Language (GML) that was developed by
Charles F. Coldfarb and others in IBM in 1969. GML was the first modern markup
language for marking the structure of an arbitrary set of data.

In order to treat documents electronically, it was essential that their logical structure
was clearly marked. On top of that, to ensure that documents are really

3. THE MOST IMPORTANT TECHNOLOGIES 16

interchangeable, one had to develop a common language to Implement this type of
representation. When there are several parties communicating or sharing documents,
using the common vocabulary and syntax is justified to avoid conflicts and
misunderstandings. GML was invented to be a meta-language, a language that could be
used to describe other languages, their grammars and vocabularies. GML later came
SGML, which was adopted in 1986 as an international data storage and exchange
standard by the International Organization for Standardization (ISO).

Plenty of applications have been designed to exploit common SGML vocabularies.
Their grammars and vocabularies are defined in Document Type Definitions (DTD).
SGML documents respecting syntax of common DTDs, belong to a same SGML
language and can be understood by applications designed for that language. With
accurate respect of DTD, documents to its language can be constructed as well as
applications processing them.

SGML is a powerful, but rather complicated markup language. Because it is approved
by ISO, it has been widely adopted by manufacturing companies and publishers of
technical information, for example. Publishers often construct paper documents, such
as books, reports, and reference manuals in SGML. These SGML documents can be
transformed into desired presentable format. Because SGML is text-based, and it can
be transformed into other formats, it is device- and system-independent method of
representing electronic documents.

Several Document Type Definitions (DTD) have been made with SGML in the industry.

Major industry DTDs (markup languages):

□ ATA 2100

□ CALS

□ CMC

□ PCIS

□ DocBook

□ IBMIDDoc

□ SAEJ2008

□ TMCT2008

□ TIM

□ EDGAR

□ ISO 12083

□ ICADD

□ TEI

□ UTF

aircraft industry

military, aerospace

pharmaceuticals

semiconductors

computer software

IBM software

automobile manufacturing

truck manufacturing

telecommunications

Securities and Exchange Commission

journal, book and magazine publishing

publishing for the print-disabled

academic and scholarly publishing

news media

3. THE MOST IMPORTANT TECHNOLOGIES 17

□ HTML World Wide Web

Figure 10. Major industry DTDs [46].

Deficiencies in HTML and SGML created XML [28][19]

Another origin for XML was explicit deficiencies in HTML. Its simplicity has
contributed to the current popularity of WWW, but it has several limitations. It is too
restricted to fulfill the needs of interoperable and diversified WWW. The strict syntax
for HTML exists, but everybody does not follow it. This has lead to not interoperability
problems. The restricted vocabulary of standard HTML does not support the machine-
machine communication well enough, because it is primarily designed for presentation.
HTML cannot be extended and kept separate from presentation format.

SGML fulfilled the other requirements for the new WWW language, but it was not
simple enough. SGML was too complex for humans and computers to be used in larger
scale. With its many optional features, SGML processors were large and complicated
computer programs and SGML was not human readable.

With the development of WWW and popularity of its simplistic HTML, there was a
need for as simple language that will have the good features of SGML, flexibility,
extendibility, optional validation and capability to transformations into other
languages. This kind of language was especially needed for electronic commerce.

XML evolved and it tries to compensate HTML's and SGML's deficiencies by being as
simple as HTML and as powerful as SGML.

XML design goals [16]

The design goals for XML were:

1. XML shall be straightforwardly usable over the Internet.

2. XM L shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4.It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum,
ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

Design goals are explained more in [47].

3. THE MOST IMPORTANT TECHNOLOGIES 18

First XML W3C recommendation is from the year 1998. The latest version is second
edition from the year 2000 and it has some errors corrected in convenience to readers.

3.2.3 XML languages

As like SGML, XML is a meta-language and can be used to describe grammars and
vocabularies of special classes of documents, or languages. DTDs can be used also in
defining XML languages. Because XML is a subset of SGML, XML languages are also
SGML languages. The relationship between these kinds of languages is depicted in
Figure 11.

XML can be used also as "standalone", without DTD and validation, as long as it has
well-formed XML syntax. But when there is several parties communicating or sharing
XML, use of common vocabulary and syntax is justified to avoid conflicts and
misunderstandings.

Plenty of applications have been designed to exploit XML already and XML can be the
common base for languages of the next generation Web architecture, for
communication and for presentation. Some XML applications and their languages are
introduced in 3.8. XML document is described next. DTDs are described in 3.3.

SGML

XML

WML XHT1

SMIL Math:

Figure 11. Families of SGML and XML languages.

3.2.4 XML document [16] [19]

Definition

"A data object is an XML document if it is well-formed, as defined in the XML
recommendation. A well-formed XML document may in addition be valid if it
meets certain further constraints". [16J

These further constraints can be stated in external or internal DTD. DTDs and well-
formness of XML document are described soon.

3. THE MOST IMPORTANT TECHNOLOGIES 19

Physical and logical structure

Each XML document has both a logical and a physical structure. Physically, the
document is composed of storage units called entities. An entity may also refer to other
entities, internal or external, to cause their inclusion in the document. Internal entities
are located in the same file, external entities in some other file, local or remote. This
means that XML document can be aggregated from several places, when appropriate.
The whole document is a "root" or document entity, from which the processing or the
parsing of an XML document begins.

Logically, the document is composed of declarations, elements, comments, character
references, entity references, CDATA sections and processing instructions, all of which
are indicated in the document by their explicit markup. The logical and physical
structures in XML document must nest property to fulfill the well-formedness
constraints.

Character data and markup

XML document contains text, a sequence of characters, which may represent markup
or character data. Binary data must be encoded into character form, or it can be
referenced from its external source. Character range is defined in recommendation.
Markup contains start tags, end tags, empty-element tags, attributes, entity and
character references, comments, CDATA section delimiters, document type
declarations, processing instructions, XML and text declarations. All text that is not
markup, is character data of the document. Markup facilitates the processing of the
document (XML parser). Character data is for secondary applications employing this
processor.

There are few special characters used to delimit the markup from character data. If
used in character data, these delimiters must be escaped correctly in order to surpass
their markup meaning. Delimiter characters < and & can not be used in their literal
form in character data, it causes XML processor to misinterpret them as markup, thus
ending up in wrong assumption and usually also violating the well-formedness. Markup
delimiters are escaped in characted data, using their numeric character references or
corresponding predefined entity references (described soon), in order to surpass their
markup meaning. In CDATA sections, the end delimiter "]]>" must be escaped, in
element attributes, ' and " must be used unambiguously.

Elements and attributes

Elements are the basic building blocks of XML markup. Elements' content is delimited
by matching start and end tags, such as <element> and </element>, where the
name of the element is inside brackets. Exception is the empty element, which can be
represented also like <element/>. The content can be character data like text strings or
other elements. Elements must be properly nested and these nested subelements are
called child elements. The nested structure of XML document is tree-like, like branch in
a tree can have multiple branches, element in an XML document can have multiple
elements. Elements can have children, parents and siblings. The first or the outermost
element in XML document is called "root element", which name must be “xml". Root
element must contain non-empty sub-tree of other elements, the root of which is called
"document element". The elements with no children are leaf elements.

3. THE MOST IMPORTANT TECHNOLOGIES 20

Inside the beginning or empty tag can be optional attributes. Attributes are name-value
pairs telling something about the element. It is up to designer, whether to place data in
attributes like this:

<person social_security_number="01234 8 97-xxx" sex="male"
name="Teekkari Teemu"</person>
or in child elements like this:

<person>
<name>Teekkari Teemu</name>
<social_security_number>01234897-
xxx</social_security_number>
<sex>male</sex>
</person>
Somebody has said that elements are the nouns of XML document and attributes their
adjectives. Attributes have no tree-like structural relation to each other, like elements.
The programmatic manipulation and accessibility of elements is easier. The degree of
extensibility achieved with elements is not possible with attributes.

Character and entity references

XML document consists physically merely of entities. When referencing from XML
document to internal or external entities, to cause their inline inclusion in the
document, so-called entity references are used.

Numeric character references reference to individual characters with their Unicode
character value. In XML, only ISO-Latin characters are supported in their literal form.
So, other characters like Scandinavian letters, must be referenced like "&#nnn;",
where "nnn" is Unicode decimal value, or "&#xmmm;", where "mmm" is Unicode
hexadecimal value.

Entity references reference to declared entities. Syntax of reference is &entity;, where
"entity" must be declared in internal or external DTD. All XML processors must
recognize five predefined entities without explicit declaration. These are showed in
table below.

Character Entity reference

& Samp ;

< < ;
> >

Sapos ;

3. THE MOST IMPORTANT TECHNOLOGIES 21

Squot;

Figure 12. Predefined entities in conforming XML processors.

In order to surpass markup delimiters primary meaning, these delimiter characters
must be escaped with predefined entity or their numeric character references. For
example, < is It and > is gt. So, syntax of referencing to these entities in is, < ;
and > ;. Entity references can be used in other purposes also like in referring to
often-repeated text portions or the content of external files.

Processing instructions

Processing instructions (PI) are used to provide instructions from XML document to
applications processing them. These applications are called processors and they know
what to do with the document or particular elements in it. One special processor is
XML processor that is better known as XML parser.

For example, PI <?XML version="l. 0"?> should be in the optional prolog of
XML document and it is targeted to XML parser itself. This XML declaration PI tells
XML parser that the document should be treated as a XML 1.0 document. Prolog is
described soon in the structure of XML document.

Actually, Pis are used to provide instructions from XML parser to secondary processor
applications. Parser parses the whole document and it must pass the Pis to their
processors, where they can be further processed. In general, Pis have syntax of
<?PINAME PI DATA? >. PINAME tells which processor is targeted with the
instruction and PIDATA is fed to this processor. Ideally, this kind of policy, where
additional data is put into XML document should be avoided in order to respect the
design goals of simple XML.
Several processors can process XML document. You can declare in the beginning of the
document what processors are used during the parsing process. Each processor then
gets the Pis and data targeted to it and processes it further and maybe returns some
XML data in return. For example, if data from database is fetched into XML document
with mysqlprocessor, it can be marked in the beginning of the document as
<?mysqlprocessor user="matti" passwd="masal23"?>. When XML
parser notices this line, it loads into runtime memory the processor named
"mysqlprocessor" and during the parsing mysqlprocessor can insert XML formatted
database query results into the portions it identifies.

Comments

Comments start with <!— and end with —>. They can be placed anywhere in the
XML document outside other markup. They are a way to remove some markup from
use temporarily or to comment something meaningful from the authors or editors of the
document. XML processor (parser) is not required to pass the comments to the
applications.

3. THE MOST IMPORTANT TECHNOLOGIES 22

Déclarations

XML provides a mechanism, the document type declaration, to define constraints on
the logical structure. Declarations are part of the XML recommendation, but they are
described in own chapter 3.3.

CDA TA sections

In CDATA sections can be included text that contains characters that would otherwise
be recognized as markup. Data in CDATA block is not mark-up, so it is not parsed, or
processed by XML applications. Inside CDATA block anything can be written except
the premature ending CDATA notation "]] >" in its literal form. Below is an example
of the CDATA block.

<![[CDATA <title>Example of an XML document</title>]]>
This feature is useful, for example, if author wants to include examples of XML
markup in his document. Work-around for including binary data in XML document is
to put it in the CDATA section. CDATA section is not good place to but binary data. It
is possible that binary data contains premature ending notation "]]>", which causes
malfunction. The binary data could be encoded with Base64 or other technique, where
encoded data newer contains ">" character. With this approach, if the encoded data
does not contain any other misleading markup delimiters either, binary data can be as
well contained in element content. Other way is to put binary data behind link.

Well-formedness

A textual object is a well-formed XML document if it meets all the well-formedness
constraints given in the XML recommendation. The logical and physical structures
must nest properly, which means that no start-tag, end-tag, empty-element tag,
element, comment, processing instruction, character reference, or entity reference can
begin in one entity and end in another. In other words, if the start-tag is in the content
of another element, the end-tag is in the content of the same element, or ending tag
closes the previous beginning tag.

This is not correct:

<examplexstrong>example</example x/strong>
This is correct:

<example>example</strongx/example>
Unclosed elements violate the well-formedness. Elements must always have also the
ending tag. Either </element> or <element/> in the case of empty elements.

Attribute values must always be surrounded with quotation marks or apostrophes, like
id="123" or id='123'. Quotation mark can appear in attribute's value, if it is
enclosed with apostrophes, and vice versa. Entity or character references must be used
otherwise.

3. THE MOST IMPORTANT TECHNOLOGIES 23

Document must contain one or more elements. The outermost element Is called
document element, no part of which can appear In the content of any other element.

Well-formness violations are called fatal errors, and they should abort the parsing of
document.

Names

XML names are case sensitive, meaning <Element> is considered different from
<element>. Naming conventions are defined In recommendation, names have legal
starting characters and continuing valid name characters. Names starting with "xml",
or with any variation of those three characters, are reserved for XML standardization.

XML document’s structure

XML document Is comprised of three parts, optional prolog, body, and optional epilog.
It starts with prolog, which tells the parser that document data begins and may give
additional hints to parser and applications. XML document should begin with special
PI called XML declaration, which specifies the version of XML being used:

<?xml version="l.0" encoding="UTF-8" standalone="yes"?>
Encoding and standalone attributes are optional. Former one tells, which character
encoding Is used, and the latter one If the XML document has DTD for optional
validation. Their default values are "UTF-8" and "yes" (Le., no validation). Prolog
can contain In addition to this other Pis, comments and document type declaration that
is described In 3.3.

After the prolog comes body, which must contain one or more elements (Le., at least
the document element like stated In the well-formness rules), in the form of hierarchical
tree that may contain also character data, comments and CDATA sections. After the
body comes optional epilog, which can contain comments and Pis.

Well-formed vs. valid XML document

Document that respects the syntax of XML defined In recommendation is said to be
well-formed. XML parser implemented In accordance with recommendations must
accept well-formed XML and must not accept any other XML. If document Is not well-
formed it can not be parsed (Le., understood by XML parser).

Validity Is a further requirements set to XML document If so desired. An XML
document is valid If It has an associated document type declaration and If the document
complies with the constraints expressed In It. Validation takes some extra time In
parsing so It Is up to the use situation, whether It Is rational to check document against
validity. Validation can be done In server or In client or both.

3.3 Document Type Definitions (DTD) [16] [19]

11XML recommendation provides a mechanism, the document type declaration, to
define constraints on the logical structure of XML documents and to support the
use of predefined storage units". L16J

3. THE MOST IMPORTANT TECHNOLOGIES 24

There are four kinds of markup declarations:

1. element type declarations

2. attribute-list declarations

3. entity declarations

4. notation declarations

The syntactic rules of XML document's vocabulary can be defined with DTD. The
allowed vocabulary, correct nesting, cardinality and order of elements can be set. The
attributes and their default values can be set. Elements and their attributes can be set
mandatory or optional.

Internal and External document type declarations

With DTD, each XML file can carry a description of its own format [481 Document
can be associated to its declarations in two ways. Declarations can be written in the
beginning of the XML document or in its own file, where it can be referenced from the
XML documents. XML prolog can contain document type declaration, in "DOCTYPE"
block, which contains internal subset, and/or refers to external subset of, DTD. The
DTD for a document consists of both internal and external subsets.

Syntax of document type declaration referencing to external DTD:

<!DOCTYPE root_element_name SYSTEM "system_identifier">
<!DOCTYPE root_element_name PUBLIC "public_identifier"
"system_identifier">
In the declaration, the root-element is replaced with the name of the actual root-
element. An example of DTD is in appendix A.

In validating XML parsers, there is a resolution mechanism implemented, of using
"systemjdentifier" and "publicjdentifier" names to locate the external DTD.
"systemjdentifier" is the explicit and direct URL of the DTD. By using the "PUBLIC"
keyword with the URI, parsers are given the opportunity to locate the DTD using their
own algorithms.

Using internal subset increases the size of XML document. If the same DTD is common
to several documents, keeping one external DTD saves from conflicts and from writing
the same DTD into every document. With the policy of using external DTDs, the control
over DTDs can be left only to the owners of information. Internal subset must be
transmitted always, even though the validation is not needed. External DTD can be
cached also for efficiency. If external and internal subset have common declarations,
internal ones supersede the external ones.

Deficiencies with DTDs

DTDs are considered to have several limitations:

1. they are difficult to write and understand

3. THE MOST IMPORTANT TECHNOLOGIES 25

2. they are not extensible

3. they do not provide support for namespaces

4. there is no support for data types

5. there is no support for inheritance

When XML is used in more programmatic situations, these limitations become
increasing important. XML Schemas have been designed to pass the problems with
DTD.

DTD is SGML based language definition language but it is not XML, it is in Extended
Backus Naur Form (EBNF), and cannot been parsed and used for validation with plain
XML parsers. Validation is optional feature in XML parsers. DTDs need their own
parsers, and it is not possible to inquire into DTD with Document Object Model (DOM)
application (described soon).

3.4 Schemas [19]

Schemas are XML documents, and their programmatic runtime manipulation (e.g.,
possible via DOM) is more powerful. Even though XML parsers can parse Schemas, all
of them do not yet support its vocabulary. Other valuable XML advantages in Schemas
are extensibility and reusability. It is possible to borrow and inherit to Schema from
other Schemas, and they provide better support for aggregation and reuse of
components. Single document can relate to several schemas.

XML namespaces can be used together with Schemas. They are needed to avoid name
collisions, when using several declarations together. There can be many declarations for
the same element. Namespace is a collection of names, identified by a URI reference,
which are used in XM L document as element types and attribute names [491

Schemas enable a little more precision on the structure of document, and on the
definition of the data types of its elements and attributes. The only data type in XML is
text, and with DTD, only few data types other than text are supported. In Schemas,
there are several useful predefined simple data types, like date and time. Complex data
types can be formed by combining simple data types. In modern programming
languages, these kind of data types are also used, as well as in the real world. There are
two normative references of Schemas at the moment С503Е51]. Example of a schema is
in appendix D.

3.5 XML parsers, SAX and DOM [19][28]

Parser is the module that parses the XML document and provides it to other
applications, like XSL transformer. There are two major types of XML Application
Programming Interfaces (APIs): event-based and tree-based. One popular API for both
of these API types exists. Event-based SAX (Simple API for XML) and tree-based
DOM (Document Object Model) are wide spread XML APIs. These APIs are used for
reading and manipulating the XML documents programmatically. XML parsers and
processors can use these interfaces.

SAX API is event-based, read-only and stream oriented. SAX parser traverses the XML
stream and reports parsing events (such as the start and end of elements) directly to the

3. THE MOST IMPORTANT TECHNOLOGIES 26

application through callbacks. Event handler methods catching the different parsing
events do what they have to do when encountering, for example, the start or end or
characters of an element. So, in SAX, basically the context is only the opened elements,
the document is only examined, not cached into memory. Therefore, SAX is useful for
examining and filtering large files, for example. SAX application must build its own
data structures if the data is needed afterwards. It is a push model (i.e., document's
content is pushed to the application). SAX does not belong to any standard body,
company or even individual. It can be implemented and used by anyone. SAX
development is coordinated by D. Megginson, and its specification can be found at web.
[523

In DOM, the whole document is read into the memory, DOM maps the XML document
into an internal tree structure, DOM node tree. In SAX, only the current node is the
context, but in DOM, random access to whole XML document is possible [53]. SAX
parser and its events can be used in constructing the DOM model, for example [54].
There is no standard to the tree construction mechanism, at least in DOM level 1
specification. Every item in the document is treated in DOM as a node; elements,
attributes, comments, Pis and the character data.

DOM is not any platform or programming language specific, it only defines the methods
that must be implemented in DOM parsers. Methods in DOM API give applications full-
featured access to XML data. The objects in the DOM allow the application to read and
navigate, search, modify, add to and delete from a document. With DOM, the
manipulation of the whole XML document (e.g., sorting) is possible in the application.
The DOM is very memory-intensive, and may not be the best platform for the
manipulation of large XML files. With DOM, large documents can exhaust the memory
and processor. So, applications using DOM should manage memory to avoid excessive
swapping and failure. One solution is to use SAX, when manipulating large documents
[53]. Also, DOM provides only generic data structure of the XML data, if more
sophisticated data structures and stronger typing are needed, SAX can be used. DOM is
a pull model (i.e., active application asks what is in the document). DOM level 1 API is
the recommendation maintained by W3C [55]. DOM level 2 comes with increased
functionality and it comprises five specifications available at www.w3c.org.

3. THE MOST IMPORTANT TECHNOLOGIES

A DOM tree as built by the XML parser

27

xmlDoc Document

children
xmlNode

properties

content

ElementElement Element

Entity ref Entity ref

Figure 13. A DOM tree as built by the XML parser [56].

3.6 Transforming XML, XSL [17][19]

Extensible Stylesheet Language (XSL) is one application of XML and it has its own
grammar and vocabulary that are understood by applications called XSL transformers.
Data in XML document has certain fixed XML format that is understandable by some
applications or people only. There can be other applications and people that do not
understand or favor the same format. XML document consists of data only and it lacks
the presentation. The same data can be presented in different ways. In this kind of
situations, XML transformations are needed. XML document can be transformed
beforehand or on-demand. With transformation capability, XML documents are re­
usable, dynamic and platform and application independent.

XSL transformations are defined with a language for expressing stylesheets that
contain the transformation and formatting directions. Designers use XSL stylesheets to
express their intentions about how XML document should be restructured and
formatted. XSL specification consists of two separate parts; XSL Transformations
(XSLT) is a transformation language for transforming XML documents' structure,
XSL Formatting Objects (XSL FO) is a vocabulary for specifying formatting semantics
of XML document for display. Both are XML languages. The conceptual XSL
processing model is depicted in Figure 14. XPath is a third related specification and it
is used in XSLT for accessing the parts of XML document. XPath has its own non-
XML syntax. XSL can be used, for example, to transform XML document into
rendition object (e.g., HTML document), into another XML document or into plain
text. The input document must be well-formed XML, but the result document can be
anything. The XSLT and XSL FO are next described separately.

3. THE MOST IMPORTANT TECHNOLOGIES 28

Result XML tree is the result of XSLT
processing.

Figure 14. The conceptual XSL processing model [17].

XSLT [57]

XSLT is for transforming XML documents into other types of documents, or into other
XML documents. It has its own recommendation outside the XSL recommendation
[57] . With XSLT desired elements and attributes can be changed into other objects.
XSLT can add completely new elements and attributes or it can remove some of them.
It can rearrange, filter and sort the elements, and test and make decisions about, which
elements to display. XSL uses XSLT to transform an XML source tree into an XML
result tree or an XML source document into an XML result document. In the
transformation process, XSLT uses XPath to access specific parts of the document
[58] .

XSLT processor is the application making the XML transformation. The original XML
document and XSL sheet are converted into an internal model, which is a tree-like
structure. This tree-structure is independent of any API to access it (e.g., DOM can be
used). After the trees are formed, processor goes through the source tree (Le., the tree
from original XML document) node by node from the root node, and looks for a
matching template in the style sheet tree. When matching template is found, processor
transforms the node according to the rules in the template, results are put into a result
tree. At the end, the result tree can be translated into a desired output format with XSL
formatter if wanted (XSL FO) or it can be serialized and send to other application or
rendition machine.

In presentational uses, presentation markup of some rendition language (e.g., HTML)
is authored into XSL sheet and it is wrapped around the XML data in transformation.
So, if transforming XML data into HTML presentation, for example, XSL sheet will
contain all the needed HTML mark-up. But there are also intermingled references to
the data in XML document that is desired to be included in the result document. XML
data can be transformed into other pure data format, like into other XML vocabulary
and grammar (Le., DTD).

Data in XML document can be fetched into result document or just referenced. XSLT
processor can do some further calculations and processing with XML data also. Or it
can rework the XML structure. There are many useful internal functions in XSLT and

3. THE MOST IMPORTANT TECHNOLOGIES 29

in its reference language XPath. With these, almost anything can be done to transform
the content. XSL sheets are well-formed XML documents themselves, so anything that
can be done with XML document, can be done with XSL sheet. The process of
converting and optionally validating XML document into some other format is depicted
in the pictures below. In the first picture, the result tree is missing before the result
document.

Figure 15. XML/XSLT transformation process.

Validating
XML parser

Syntax check

XML WML

XHTML

XSLT
processoiHTl

Figure 16. XML/XSLT transformation process with DTD validation.

XPath [59][60]

XML Path Language (Le., XPath) is an expression language used by XSLT to access
or refer to parts of an XML document. XPath patterns are used to identify or select
elements and attributes with certain criteria. In patterns, element names are delimited
with slashes in a directory like manner. With Xpath the whole document tree can be
referenced and queried for transformation purposes. Specific requirements for searched

3. THE MOST IMPORTANT TECHNOLOGIES 30

elements can be set. Boolean operators, mathematical functions and basic string
handling methods are part of Xpath. XPath models an XML document as a tree of
nodes. There are different types of nodes, including element nodes, attribute nodes and
text nodes.

XSLFO [28][59]

XSL Formatting Objects (XSL FOs) vocabulary is defined in the actual XSL
specification, it is an XML vocabulary for specifying formatting semantics to XML
documents. Rules for displaying different elements are set. XSL FOs has its roots in
CSS and Document Style Semantics and Specification Language (DSSSL), but are
more sophisticated [10]. If FOs are used, XSL transformer should have both parts of
XSL specification implemented. XSLT processor with XSL FO namespace support can
output FO documents. These can be viewed, browsed or printed with XSL FO capable
processor (formatter), which understands the vocabulary and can render FOs into page
layout.

Pagination, titles, tables, lists and links, for example, are among the basic FOs. The
XSL FO specification is large and complex with large number of elements and
attributes, the complete vocabulary is hard to learn and implement. Because XSL FO
viewer is complex software to build, and many potential users are satisfied with CSS,
XSL FO is not as popular part of XSL as XSLT. It is suitable to large-scale printing
purposes due its sophistication. One implementation of XSL FO is made by Apache
XML project, FOP [61] is a software that can convert FOs to PDF, among other
formats.

XSL vs. CSS [19][62]

These two stylesheet techniques share the name, but have a little common. With XSL
much more can be done than with CSS. Both are declarative languages, but XSL has
the XML syntax allowing its tree structure manipulated through DOM like API. CSS is
for styling purposes only, while with XSL, more precise with XSLT, the structure of
XML document can be also reworked (e.g., sorting). CSS has different format and
cannot be parsed with XML parser. CSS can be used with XSL also, XSL sheet can
generate CSS, or CSS sheet can be referenced from the result document.

There is lot of discussion and disagreements, whether the XML, CSS and DOM used
together is a better way to handle transformations and styling than XML and XSL. If
XML document is transformed into some presentation format, like XHTML, its data
can be lost in some degree. It is not possible to access its structured data anymore.
With CSS and DOM, the XML data can be accessed and manipulated through DOM
dynamically in client also, in response to user actions, for example. DOM can be
accessed from Javascript, for example. It is an event based programmatic way of doing
things. The declarative XSL transformation is made only once, and there is no
dynamics afterwards, it declares the transformed document only in relation to the
original document. If the result document of XSL transformation is DOM suitable (e.g.,
XHTML, strict HTML), it can be accessed through DOM, but some data may have been
"lost", because data cannot be re-engineered from presentation anymore.

There is although some interoperability problems between different implementations of
DOM, the function of the same DOM accessing scripts may differ across
implementations in different platforms [10]. XSL is considered more portable solution,

3. THE MOST IMPORTANT TECHNOLOGIES 31

and may be easier to write. Every client does not have DOM support at all. XSL
transformation can be done in server.

3.7 Benefits of XML [19]

Below are presented some of the advantages inherent in using XML.

Extensibility

Originally chosen XML structure and vocabulary can be extended later if appropriate.
So, the later use of XML is not bound to its original use.

Simple structure and syntax

XML document has simple structure and syntax, for humans and computers. There are
only few rules that must be respected in order to write well-formed XML documents. If
validity constraints are set, the task becomes a little harder.

It is rather easy to implement XML processors and applications accessing and
manipulating the well-formed XML structure. Processors can be kept in moderate sizes
capable of being utilized in modest devices also.

Optional validation

With validation, independent groups of people can agree to use a common schema for
interchanging data. Applications can use standard schemas to verify that the data
received from the outside world is valid. [48]

Validation is optional. It is up to the user to consider, when the validation is needed.
The drawback in validation is the overhead in processing, it can be left away in
applications, where this overhead is not justified. If there is critical behavior in XML
application, validation can be reasonable. It is easier to check the correctness of large
documents with validating parser than manually.

Modularity and re-usability

XML is designed to be modular. Content can be included and excluded in any manner.
The XML can be aggregated from several entities located in several places. By keeping
the shared data portions in one place only, updating is easier and conflicts between data
are eliminated. Also disk space is saved.

Maybe more important aspect of modular data modeling is the better control achieved.
Data can be portioned after the ownership of the data. Different parts of data may have
different update cycles or different update authorities. The responsibility of the data
can be put, where it belongs.

Division of labor is possible and several authors can work simultaneously increasing the
throughput. When interfaces are clean, the integration is fluent. This topic was
discussed also in 2.3.2.

3. THE MOST IMPORTANT TECHNOLOGIES 32

Figure 17. Data portioning after the ownership of information.

Text based

Since XML is text-based, it is human understandable and platform independent.

Hierarchical data

The relationship between data can be described in hierarchical form, like in databases.
Together with inclusion mechanism this provides powerful data modeling for all kind of
data.

Popular and available

XML has gained popularity in recent years. There is commercial and public software
available for almost all purposes. It is safe to invest in XML based solutions, because
every vendor nowadays supports XML.

Different audiences come available [13]

With XML, the coupling between the server application and the client is considerably
looser [19].

Dynamic adaptation to different presentation needs is hard if content is irreversible
engaged with particular presentation (e.g., HTML). There are different end devices and
groups of people needing their own presentations. For example, blind people cannot use
text-based services. They can have braille machines interpreting digital content to their
language. Or if content could be converted into speech, they could use the service [331
Adaptation of content to different end devices is another application of keeping data
and presentation separate.

One audience is the world of networked computers. Computers do not have intuition,
they do not either appreciate the presentation at all. Data is all they need. This problem
is concrete to Internet's search engines. They must investigate the whole page to find
out, whether there is some word. The task is huge and still the outcome is questionable,
because there is no way of telling the context of the searched data. In XML, schemas
and DTDs can be used to describe the content. HTML's meta tags help the search
engines in some degree [63X64], but this problem description serves well as an
example.

3. THE MOST IMPORTANT TECHNOLOGIES 33

Machme-to-machine communication between web services has failed to become
popular, because applications do not understand each other. In XML, the protocol can
be communicated from server application to the client with DTDs or schemas. Web
services, for example, in eCommerce can communicate.

3.8 XML applications

3.8.1 XML in communication

Integrator [28]

XML can be used in communicational purposes between different information systems.
With XML, the different systems, new or legacy, can be integrated. One of the
advantages of XML is that is it text based, so there is no platform dependency in using
it. Communicating counterparts can agree on common DTDs or schemas used in their
shared XML messages and documents.

The important thing in accelerating the acceptance of XML is the popularization of
industry and field specific languages. Electronic commerce, mathematics and some
industry trade organizations have created their own XML languages to be deployed
between players in these fields. Field specific XML languages can become de facto
documenting and communication languages in computer society if good DTDs or
Schemas can be designed and distributed in collaborative way. Especially electronic
commerce has suffered from the lack of common data formats. There are DTD
repositories and efforts of defining industry wide standard DTDs or schemas.

SOAP [28]

XML can be used also to integrate program code. W3C effort in this is the working
draft for Simple Object Access Protocol (SOAP). SOAP messages convey method
invocations and responses in agreed XML format between different systems. Unlike
Common Object Request Broker Architecture (CORBA) and Remote Method Invocation
(RMI), SOAP is text based.

CC/PP [65]

The Composite Capability/Preference Profiles is a framework for content negotiation
between client and server. The goal of the CC/PP framework is to specify how client
devices express their capabilities and preferences to the server that originates content.
The origin server uses the "user agent profile" to produce and deliver content
appropriate to the client device. In addition to computer-based client devices, particular
attention is being paid to other kinds of devices such as mobile phones. Like with
industry DTDs and schemas, the repository of device profiles must be organized
somehow.

3.8.2 XML in presentation

In the scope of media independent publishing, there are some evolving XML
technologies of special interest.

3. THE MOST IMPORTANT TECHNOLOGIES 34

XHTML [2 8][36]

The w3C's XML version of HTML 4.01 is called XHTML. HTML pages cannot be
processed with XML tools, but XHTML pages can because they are well-formed XML.
XHTML is considered to be the language of the WWW soon. It has several modules
[66], different clients can support different amount of these modules and communicate
that to the WWW application. XHTML Basic is the common subset of all XHTML
versions and it is going to be a basis for XHTML Mobile Profile (XHTMLMP), the
presentation language of WAP 2.0 planned to be launched in 2002 [3]. HTML tidy is
the software helping to convert HTML to XHTML [29]. HTML syntax is not anymore
respected and platform independence of HTML pages has suffered from this. XHTML
is kind of a new attempt to keep pages and browser implementations standardized and
also moderate in size.

WML [38]

Wireless Markup Language, presentation language of WAP 1.x specifications,
specified by WAP Forum. WML is reminiscent with HTML, but its is meant for tiny
screens in mobile phones. WML will be replaced in WAP 2.0 by XHTMLMP, but the
legacy content can be transformed to it with XSLT [3]. WML is different from popular
HTML and wide community of HTML authors cannot capitalize enough on their prior
knowledge of HTML. In author's opinion, this can be one reason why WAP has not
succeeded so well.

SMIL [67]

Synchronized Multimedia Integration Language is W3C XML language for multimedia
presentation. It enables convenient authoring of interactive audiovisual presentations.
SMIL can be used for multimedia presentations, where streaming audio and video must
be integrated with static images and text, for example. X-Smiles is an open source Java
based XML browser with SMIL support. It is developed at the Helsinki University of
Technology [68X691

XForms

XForms is W3C working draft for making interactive service deployment more feasible
by making forms platform independent. The aim of XForms is to separate user
interface (presentation) from the data and logic (purpose) allowing the same form to
be completed by users on a computer desktop, PDAs or mobile phone, for example.
[70X71]

3.9 Example solutions for media-independency

The problem of serving several mark-up languages and their different versions was
discussed in 2. There are different technical approaches to achieve media-independence.
Few basic principles are introduced next for interactive services, but the same
principles apply to static content also.

3. THE MOST IMPORTANT TECHNOLOGIES 35

Unscalable solutions

In unscalable solutions, linear increase in handwork is not avoided, when amount of
supported media types increases. An advantage is that there are no compromises and
restrictions in final presentations and the results are predictable.

In XML/XSL solution, own XSL sheets must be made to every media type in every
service, making this solution in this regard unscalable. The authoring and managing of
large amount of XSL sheets cannot be avoided. XML and XSL are the extra skills that
must be commanded in addition to proprietary presentation languages of every media
type. XSL has programmatic features and it is not as easy to learn by graphic designer
as HTML or WML is, for example. XSL transformations are memory and processor
intensive, caching and sophisticated use of memory and parsing technologies is needed
especially if large documents are transformed. Advantage with XML/XSL is that
content, was it static or dynamic, is always in pure data format and separated from the
presentation in standard way. There are no limitations, where content can be used or
accessed from. XSL transformation is also location independent. If it can be done in
client or some XSL transformation proxy, scalability in processing and memory use can
be achieved. Server application is saved from processing, but it must still give link to
XSL sheet.

In template technique, templates are documents in some media type's proprietary
presentation language (e.g., in HTML) having placeholders for dynamic values.
Application populates these placeholders with dynamic values in runtime and returns
complete documents. This approach is not scalable either (Le., large amount of
templates), but no additional XSL knowledge is needed. Disadvantage is that if pure
data format is needed, one additional template for XML, for example, is needed.

In XML/XSL and template approach, same URL can be used and communicated for
users in all media types. Third alternative is to make separate version of application to
different URL for every media type. But if every media type have its own URLs, the
marketing communication, for example, will come inconvenient.

Scalable solutions

In scalable solutions, some automation is implemented that tries to adapt the original
content to different media. Degrees of automation and configuration vary.

Full automation can be achieved with ideal transcoding software that converts original
content into some other format(s). In some WAP gateways, for example, are embedded
HTML-to-WML transcoders. Special rules are applied to the original content in
transcoding. According to these rules content's markup and data is transcoded as
authentic as possible to a result content (Le., original document's elements are
transcoded to analogous or nearest comparable elements in result document). The
meaning of original element may change if clear one-to-one mapping do not exist in
result markup, some elements may be dropped away. [25]

Applying transcoding rules can lead to diverse quality in output anyway. The
transformation depends on the original document, if it has syntactic violations, the
transcoding may fail. It should be manually checked if new content is transcoded
successfully. There is not one-to-one mapping between all markup languages, so some
compromises may have to be made and still the result is not predictable. Advantages in
converting content dynamically from the original content are that only one base of

3. THE MOST IMPORTANT TECHNOLOGIES 36

documents must be managed and all converted content is automatically up-to-date. This
solution is scalable, if the manual checking of process is not taken into account. [25]

Original content may be usable in some other device if some parts could be clipped
away from it. There is software with embedded visual tools, where original content is
fetched and clipped portions are marked graphically. Original pages stay untouchable.
[72]

One solution is to put intelligence into original documents also. Markup can be put into
the original content as directives to different media types. This is less automatic than
the former, but more predictable. Tailored application reads this markup and according
to its internal rules processes the directives and outputs desired format. In the most
predictable and laborious model, one document has explicit content inside custom tags
for every media type. Advantage is, that content for every media type can be kept in one
file which eases management. There is commercial software for this with integrated
emulators for different media as well as authoring tool support [73]. Scalability in this
approach is achieved in management, not so much in authoring effort.

Alternative to authoring explicit content for every media type into the same document,
is using media type independent custom tags having general meaning [74]. Original
document consists of custom elements and attributes that are converted into result
format according to media type specific rules. For example, custom element for picture
could be <picture source=URL/> and it is converted to in HTML to
PC and to in HTML for PDA device. This idea can be implemented,
for example, with XML/XSL in a scalable manner, only one XSL sheet per media type.
The content can be initially produced into pure data format in XML. Then XML must
be first transformed into this intermediate form (Le., with custom tags) and finally with
second transformation to the media type specific result format.

In the two latter models original content is customized into a non-standard format
which can cause harm if deciding to return to some original formats. Common to all
solutions is that media type must be first identified. Media types must be well known
beforehand, nothing happens fully automated. When new media type comes into
market, rules for its conversion or transcoding must be designed.

Transcodings and custom tag manipulations can be implemented with XSLT
transformations or with customized SAX or DOM applications.

3.10 Supporting software

In media independent publishing, some special software modules are relevant. Web
publishing framework helps in service creation and providing. If XML documents are
requested from or responded to the network then also the network software is needed.
XML content can be generated or fetched from database.

Web publishing framework [27]

Web publishing framework, like Cocoon, is the software that uses XML parser and XSL
transformer, or XSLT processor, in its inner implementation. It is an example of the
XML/XSL model described recently. It takes care of two-phase process of XM L parsing
and XSL transformation in a transparent way. It hides some needed functionality
behind it. Like formatting the output, setting the appropriate mime-type for the served

3. THE MOST IMPORTANT TECHNOLOGIES 37

content, identifying the requesting client type and associating it with suitable XSL
sheet. It may help in editing XML and XSL documents.

XSL transformations are memory and processor intensive. Web publishing frameworks
are trying to cope with scalability problem as well as possible. They possibly cache XSL
transformers in their internal tree-structures in runtime memory or file system to make
transformation process faster. Or they try to optimize the transformations with SAX
and DOM to achieve better performance.

Also, the configuration of client identification and presentation specific attributes is
made easy in web publishing frameworks. XML content can be aggregated and
produced from different sources and it can be manipulated and formatted. The whole
web publishing framework, consists mainly of processing XML through APIs and
making the management of documents and the whole distributed web site more
convenient.

Web Server

Web server is the link between Internet and standalone computer. It responses to the
requests coming from network. Web server serves the addressed content from static
files or from dynamic applications, like Java Servlets.

Java Servlets

Java Servlet technology is an easy way to connect applications through web server to
the Internet. Web server connects to the specific Servlet application through Servlet
engine container that is attached to the web server by specific module. Servlet engine
can hold HTTP sessions and arranges HTTP requests and responses from the web
server to its Servlet applications and vice versa.

Databases and XML

Database connection is sometimes needed, when XML data is parsed from database
data. In latest versions of databases, direct XML insertion and fetching is possible
without any external XML parsing.

Content cleaner

Non-standard HTML may have to be cleaned into standard HTML, or into XHTML.
Some end devices cannot cope with non-standard HTML. If HTML is wanted to be
processed with XML tools, XHTML conversion is needed.

Public software

XML parser (e.g., Apache Xerces), XSLT processor (e.g., Apache Xalan), XSL FO
processor (e.g., Apache XML FOP), database (e.g., MySQL), content cleaner (HTML
Tidy), web server (e.g., Apache Web Server) and Servlet engine (e.g., Apache Tomcat)
are all possible to get free as an open source or public software. Of course the operating
system is needed also but it as well is freely available today (e.g., Linux). The software
mentioned in parentheses are examples of popular free software. The programming
language for tying these parts together is needed. If you want to manage without
programming then some web publishing framework like Apache Cocoon is good choice

3. THE MOST IMPORTANT TECHNOLOGIES 38

in certain usage preferences. All mentioned software exists for Java programming
language.

3.11 Relevant technical out of scope issues

All relevant issues in service development must be taken into account in real life, but in
this thesis only the presentational features are in scope. Some major out of scope issues
are introduced here briefly.

User personalization

There are at least three different personalization contexts in service development. The
one is based on end device profile and two other ones on user preferences. In latter, the
general user settings and preferences can be considered distinct from personalization
between different use cases or usage contexts like outdoors, office hours or car.
Different combinations of general settings can be active in different contexts. Nokia's
director Heikki Huomo has said that in future's ubiquitous telecommunication the
"myDomain" is roaming between different contexts. The contexts have to be
configured, accessed and taken into account by service providers and other
communicating parties. The configuration can contain the rules of customer's visibility
to and awareness of other parties in ubiquitous communication society. The big
problem is how to make the decision of context switch automatic. Example of non­
automatic context switch is when changing profile in Nokia's mobile phones. [75]

If user related preferences are taken into account they usually overrule the devices
default preferences. One question in user personalization is, where to store all user-
related data. Some kind of profile is needed and it must be communicated to the
content origin server. User data can be on/off like data telling whether images should
be sent or not [65]. The other extreme can be that every user has her own XSL sheet
for each service to make presentation just as she wants it, for example. XML/XSL
techniques fit fine for this purpose as well, but there will be much more data to
manage, store and communicate. Scalability can be a problem.

Communication path dependencies

Different end devices are usually behind different communication link. Among the
quality parameters of the communication link are at least speed, throughput, security,
continuity, error-rate, etc. Some services cannot function well if some quality
parameter is weak. For example, if you drive into the tunnel and wireless connection
disappears some harm may occur in your web based electronic commerce session.
Something can be done in client and server software to eliminate the poor
communication link quality. One very concrete issue is how much data can be sent when
throughput and speed of the path varies. Still the scope is only how the data appears on
the screen of the end user.

Continuous media

Continuous media like voice and video are their own science. They are too big issues to
be handled in this thesis. With text and images the synchronization and timing do not
have to be considered at all. Multimedia sets many requirements on the operating
systems, synchronization, scheduling and context switching between different media
types are important [76]. Streaming media is the context of W3C SMIL language.

3. THE MOST IMPORTANT TECHNOLOGIES

Today WWW and WAP browsers support only text and images so it is
also not relevant to consider continuous

at that sense
media.

________39

4. THE SERVICE DEVELOPMENT ENVIRONMENT 40

4 The service development environment

4.1 Foreword

In this chapter, the existing service development environment is introduced. The overall
architecture and pieces of software and technologies in it are presented. The three-tier
architecture is reviewed and linked to our own architecture.

Programming level policies and practices used in the development process are
described. The service development process is depicted.

The rewrite of the existing Addrbook service is part of the own contribution of this
thesis. So, the existing old Addrbook service is introduced at the end of this chapter in
order to make the subsequent chapter of rewriting the service easier to follow.

Special attention is paid into presentation issues. They are presented occasionally with
more accuracy than others, because they are the focus of this thesis.

4.2 The general environment

General service-providing environment is composed of three different gateways and
several backend servers for different purposes. In the following, they are introduced in
the same order as the customer's service request is handled.

CUSTOMER NETWORKS GATEWAYS BACKEND SERVERS

authentication
& authorization

applications

databases ¡

SMS gw

WAP gw

Frontend WWW

Figure 18. Service network.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 41

4.2.1 Gateways

Software that connects different information systems together is generally called
gateway. Gateway must know addresses and data transfer protocols of the systems it
connects. It enables the communication between clients in different end systems.

Because the service network has three different end communication systems, it has
three different gateways. These gateways connect the mobile and desktop customers to
the service network. The most visible gateway is the frontend WWW server of the
WWW portal (at the moment, it's URL is www.sonera.net). The other ones are for
SMS and WAP customers. Gateways are sometimes good places to put some common
functionality like billing, authentication and authorization. In WAP gateway, there is
an automatic transcoder trying to transcode from HTM L to WM L.

Frontend WWW server

Frontend WWW server is a link connecting the public Internet (WWW) customers to
the service network. Frontend WWW server is the only place in the service network
that is made visible to the-pubiic Internet. It takes care of some common routines like
authentication, authorization, encrypting/decrypting, logging and statistics. It knows
the internal service network's addresses so that it can redirect the HTTP requests from
Internet to the backend servers.

Content Gateway (SMS)

Gateway called Content Gateway (CGW) connects the SMS customers to the service
network. CGW authenticates and authorizes customer and takes care of the session
related invoicing. It makes protocol conversion from SMS Center's (SMSC) output
protocol to HTTP and redirects the SMS requests into the service network. [77]

WAP gateway

WAP gateway connects the WAP customers to the service network. WAP gateway
authenticates and authorizes the customer, makes protocol conversion from WTP to
HTTP and redirects the requests to the service network. [25]

4.2.2 Backend servers

Backend servers are the networked servers of the service network that are not visible to
the public Internet. Some of them are in test use and some in dedicated production use.
The three gateways know the addresses of backend services and can employ their
services and redirect the incoming customer requests to them. In the following, the
different kinds of backend servers in use at the moment are presented.

Authorization server

Authorization is needed in order to bar certain subscribers from using certain service
classes they are not allowed to use. Authentication is used in mobile network and
WWW frontend. Regulator has given strict instructions that must be obeyed in payable
services [78]. Customer has rights to impose bar classes for his subscriptions and they
must be obeyed. Gateways and in some cases also applications call authorization

4. THE SERVICE DEVELOPMENT ENVIRONMENT 42

services and react to them. Services in authorization server have HTTP interface. In
some of the services, there is subscriber-related data stored between sessions. When
customer resigns his subscription, all this data must be deleted. If this is not taken care
of, the next subscriber who gets the resigned subscription number after certain
quarantine period, will have the data belonging to earlier subscribers. After resignation,
authorization server requests these kinds of services and triggers the deletion of their
related subscriber data.

Application servers

Some of the servers are dedicated to end user applications. They have HTTP interface
implemented with Java Servlets. In addition, some older cgi-bin applications are still in
use. Application servers are called with HTTP through gateways. Also, the HTML and
WML pages (Le., templates) are on the same servers as applications using them.

Database servers

Subscriber and service related data is stored in database, where it can be fetched,
updated and removed. Databases are maintained in dedicated servers. The applications
in application servers manage the service related database operations through Java
Database Connectivity (JDBC). JDBC connects the Java runtime environment
conveniently to the proprietary Database Management System (DBMS) through its
JDBC driver. Other programming languages have also their own database connectivity
technologies.

Billing server

Depending on the service and access type the billing function is carried out in different
places. Applications or gateways call billing server after successfully served customer
requests. Billing server contains ticket databases that are later used in invoicing and
revenue sharing among partners using the network.

4.3 Three tier architecture and the system

The service development system employs three-tier philosophy in some degree. Three-
tier architecture is composed of three logical layers: data, logic and presentation. In
good architecture, these layers are insulated from each other in as many aspects as
possible. This insulation comes in practice with clean and standard interfaces.
Interfaces are needed at least when connecting, disconnecting, moving and scaling these
layers smoothly in changing environment.

4.3.1 Data

Data is maintained in some data storage like files or databases. Managing large
amount of interrelated data is very difficult task. Databases hide the lowest data layer
nicely. DBMSs are so sophisticated and established software that it is not very wise to
even try to handle its responsibilities by own methods like managing data in files.

The scalability of the service depends on at least two things. Whether the processor
capacity and runtime memory of the logic part is scalable and whether the data storage

4. THE SERVICE DEVELOPMENT ENVIRONMENT 43

and management layer is scalable. With databases the scalability and management of
the data layer is under control.

Other unquestionable advantage achieved with databases is that data in it can be
utilized in standard way from every application, re-usability is achieved. If this critical
layer was not behind the clear and standard interface like Simple Query Language
(SQL), it was hard to tell other applications how to access the data. SQL is the de facto
universal database language that hides the complexity of DBMS. Standard interface to
managing data is missing, when, for example, plain files are used.

Location of databases is also insulated. They can be utilized over the network as well as
from local file system.

4.3.2 Logic

The middle tier or the logic layer is more abstract notation and it is implemented with
programming languages in applications or with scripting languages in markup pages,
for example. Application logic handles the business cases in it and can call other logic
in other or underlying systems. In good architecture, the interfaces between different
logic parts are clean and standardized. Applications are written in Java in our systems.
Logic in Java Servlets is accessible through HTTP interface, which is standard and
easy to use. Servlets can use Java classes in the same file system and they can employ
other networked logic and so do what they have to do. Logic that has no network
interface like socket or Servlet interface must be installed in every filesystem and set in
the classpath.

In the system, logic layer also connects lower data tier to the upper presentation tier. It
fetches and manages database data and feeds it into the presentation layer. The ddia­
logic interface is standard JDBC/SQL and it functions well. The logic-presentation
interface is self-developed template technology introduced in the next section.

In ideal architecture logic components can be utilized from different presentation layers
and also in other direction. There are some problems in logic-presentation interface
that is based on template use. The logic is designed and optimized to special end device
and mark-up language features only. Logic should be first and foremost designed
flexible to function in desired use-cases, not only in certain end devices. In the system,
the insulation and interfaces between logic and presentation could be improved.
Consequence is otherwise lack of flexibility and re-usability in new end devices.

Another problem is that these logic components, like Servlets, cannot communicate
with each other at the moment. Their responses are in HTML, or in other
presentational markup, that mixes the data irreversible into the presentation. The pure
data needed in other logic components is impossible to re-engineer from these markups.

Clustered servers make the logic layer scalable independent of the other layers. Load
balancing and clustering together makes sure that quality-of-service can be maintained
at tolerable level.

4.3.3 Presentation

At presentation layer, presentation language like HTML or WML presents the service
or content to the customer. In SMS, the text messages are the only presentation layer
related thing.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 44

The clean division into three-tier architecture was broken little in above mentioned
logic-presentation interface with using presentational markups. The division breaks also
inside the presentation layer itself. There is logic also In the presentation layer. Logic is
present in the form of scripting languages like Javascript intermingled In mark-up
language.

The advantage of using scripting in presentation level in telecommunication services is
that it can be processed locally In client's processor. Scripts save also from unnecessary
telecommunication traffic in cases, where customer input must be checked and
validated. It is justified to check customers input locally in client rather than send it
costly into remote processor for validation. In this sense, this break of rule Is justified.

The approach, where logic is implemented with scripting languages in presentation
layer (e.g., Javascript), has its disadvantages also. If it is later noticed that every client
do not anymore have the supposed scripting features available, the logic must be
implemented In server-side logic layer.

Presentation components may be harder to make re-usable and this may be possible
only with compromises and restrictive one-size-fits-all approach.

4.4 Policies and practices in the service deployment

Some policies and practices have formed in the development process during the years
and they are evolving all the time. Some of the policies are encouraged to follow when
developing services. Doing some things in standard way makes development,
maintenance and also further development easier.

4.4.1 Guidelines

There is a set of service development guidelines passed to the subcontractors. They find
their way automatically into the consciousness and routines of our own developers as
well. Some procedures must be implemented in predefined way in order to make things
work together. Authorization and billing are among these procedures. They are the
critical functions that can be totally ignored in services if they are not communicated
systematically in early phase. In practice, there are certain interfaces in the system that
must be called or implemented. When doing the things according to guidelines all
needed functionality is achieved, and it is achieved without extra overhead. [79Z80]

4.4.2 Common classes

Some common routines are maintained in common classes. They are recommended to
use in guidelines with documented features and application programming interfaces.
Subcontractors are provided with these common classes. Use of these classes is the safe
and convenient way to handle common things like logging, database connection pooling,
SMS sending, authorization and billing, for example. User interface is also among
these.

4.4.3 User interfaces

The user interface or presentation layer is kept in file system as proprietary templates
C811 There are templates for HTML and WML. SMS messages have no templates,

4. THE SERVICE DEVELOPMENT ENVIRONMENT 45

because they are so simple. Templates are HTML and WML pages that Include
placeholders for application data. Applications load templates and replace placeholders
with actual data fetched from database or elsewhere. Needed functionality In template
handling Is written In special common Template class. Guidelines contain
recommendations of WML design, because there are known Inconsistencies In WML
between different phones.

<INPUT TYPE="HIDDEN" NAME="ID" VALUE="$(id)">

<INPUT TYPE="HIDDEN" NAME="FIRSTNAME" VALUE="$(firsname)">

<INPUT TYPE="HIDDEN" NAME="LASTNAME" VALUE="$(lastname)">

Figure 19. Example of a template.

Applications load templates and put runtime values Into placeholders with the help of
Template Java class. In the example above, three real values were put Into template
placeholders by application. $(ld) could be converted Into 10000123, $(flrstname) Into
"Pekka" and $(lastname) Into "Virtanen".

Template philosophy

VALUE="$(firsname) "

1

database
Firstname =
“Pekka”
Lastname =
“Virtanen”

VALUE = 11 $ (lastname) 11
application VALUE="

HTML
template ------------- ► 1 GUI.java complete
with
place­
holders I I Î HTML

document

___ V 1 Template.java| _________ V

Figure 20. Depiction of the template philosophy.

Other alternative Is to hardcode the presentation language In the code. Unfortunately,
that leads to programming code, which Is very difficult to understand and trace.
Another disadvantage comes up, when the presentation layer Is changed and the code
must be rewritten and recompiled. WWW designers or other non-technlcal people are
not familiar with this kind of procedures. Unfortunately, there are also some older
services that have certain amount of hardcoded presentation. Specific recommendations
to designing user Interfaces are In [82].

4. THE SERVICE DEVELOPMENT ENVIRONMENT 46

4.4.4 Stylesheets

CSS is used in the WWW portal [821 By using it, the style and look-and-feel can be
kept separate In Its own file. Changes made In this file reflect to the whole portal
immediately. It is impossible to do things by hand in every HTML page. Disadvantage
is that some client may not support CSS.

4.4.5 The WWW portal practice with frames

One special thing called frames is worth mentioning. HTML framesets are employed in
the portal. In frameset technology, the browser view is composed of more than one
page. These pages are kept in their own URLs, where browser gets them and composes
the whole view. Only the changing frames must be loaded during the navigation in the
site using frames. This practice and the advantages of it are described in the following.

The main or middle frames in services are dynamically generated from the application.
They are composed of only the few essential things that build the user interface [81].
These pages must be changed seldom or never because they do not contain any extra
communication or brand related issues. Changes in these pages must be made in the
applications (if hardcoded) or their templates. Applications can not process the
templates if their structure is broken by mistake. Using this frame approach, the
programmers are not bothered constantly with fault detection and correction issues,
because the middle frame coming from application is insulated from all others.

The surrounding left and upper frames in the services are fetched from separate files.
Our business people can independently maneuver the content in all these pages. These
pages are changed often. If they want to change the look-and-feel in the whole portal, it
is done in CSS files only and the changes are reflected also into application pages
automatically.

Keeping portal wide menus and other common features in one place, the changes must
be made into this one place only and the data is safely coherent. Less file capacity is
also needed as side effect. Common pages can be conveniently used from every frameset
view.

In practice only the middle frame returned from the application is changed between the
transactions in typical service. If all data on the screen, especially many large images in
surrounding frames, must be reloaded after every transaction, it would be slower to use
our services. The loading of the middle frame is light operation because it does not
contain so much data.

But there are unfortunately also disadvantages in using frames. All clients do not
support them. This problem is hard to bypass. One solution is to give links to every
individual frame belonging to the frameset. By doing this, the look-and-feel and user
friendliness can be lost.

4.4.6 Serving different end devices

There are two ways to serve three different end devices. The first one is to copy the
application and make little end device related conversions and change the templates,
for example, from HTML to WML. Another way is to keep the logic in one Servlet and

4. THE SERVICE DEVELOPMENT ENVIRONMENT 47

put conditions on which end device to serve. End device must be identified and correct
templates must be chosen for presentation.

u

template

■

Service
version

X

template

L_____V

Service
version

X

template

L_____V

Service
version

X

sms

wap

>

1

Service
version

X

-------- 1

template

_____r

desktop pc

Figure 21. Serving different end devices with appropriate templates.

Some times the whole logic must be considered differently with different end devices. In
WAP, for example, the amount of data that can be sent in one unit is limited. When
feeding data into WAP phones it must be split in smaller units at the server. Logic must
keep in memory what piece of the whole data was sent recently and what will be the
next piece. In this case, the mere copying and tuning is not enough.

The latter case belongs to the problematic described in the logic portion of the three-
tier-architecture in section 4.3.2. More precise, it arises from the difficulties of
designing logic-presentation interface and from the difficulties of designing re-usable
and flexible logic.

4.5 Process description

The phases in our development process adhere to the traditional programming process
model.

reasonable to go further with the service, requirements may be further elaborated and
the service is done in-house or at partners or subcontractors under the supervision of
customer.

4. THE SERVICE DEVELOPMENT ENVIRONMENT_______________________ 48

В
u
s
i
n
e
sc)
s '

n
e
e
d

Development process

Iteration

Figure 22. Diagram of the development process.

4.5.2 Implementation and testing

Implementation is done in-house or by subcontractor. Services are implemented in test
environment that is equivalent with the production environment. Subcontractors
develop software in accordance to guidelines [79] and requirements in their own
premises and periodically come to customer's premises to test its integration. When
they are finished, the whole software is tested against requirements and usually after
some iteration accepted.

The implementation phase can be separated into two distinct tasks: application
programming and layout design. Different people can accomplish these tasks and there
is a WWW design team, which can be used. They are in charge of the look-and-feel of
the branded portal, also.

Guidelines into template philosophy are applicable to both parties. In addition, there is
one common class available that implements the interface to templates.

When using WWW design team, they make templates with placeholders in accordance
to guidelines to make them work with applications. Or they just make the HTML pages
and give pages to programmers, who convert them into templates by inserting the
placeholders. WWW team does not make WML pages at the moment, programmers or
subcontractor do them.

The subcontractor usually makes the layout itself, because the integration can cause too
much overhead if layout and application are implemented in separate units.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 49

The incremental testing of service requires some kind of user interface from the
beginning. Application programmers make at least it by themselves, usually.

4.5.3 Into production

Sometimes service goes first through a trial period, where it is put into the pilot use
among chosen customers or in the own organization. At the end, the service is launched
into the production with the simultaneous business units marketing efforts. The
software is moved from the test environment to the final place.

4.5.4 Maintenance and further development

Maintenance and further development can be done in-house or at subcontractor.
Applications developed by subcontractors are inclined to leave in their control more
naturally. The maintenance and further development task has lot to do with the
agreements made with the subcontractor, whether customer get the possession of the
source code or not.

The daily monitoring of services is separate function from these and it is done in-house.

4.6 Old Addrbook service

The development of the multi-channel prototype of the Addrbook service is described in
6. The existing Addrbook service is the base for the multi-channel version, and it is
introduced here.

4.6.1 What it is?

The Addrbook service is an electronic address book that helps mobile subscriber to keep
her contact data of her friends up to date. Customer can utilize her contacts in daily
situations and in some other WWW portal services also. These two ways of exploiting
contact data are equally important. Customer cannot access other customers' contacts
at the moment.

The Addrbook extends the memory and features of mobile phone. It enables unlimited
storage of featured contact data in service providers data systems. In addition to the
storage of personal names and phone numbers in the typical mobile phone, also the
postal addresses and email addresses can be stored in contacts, for example.

4.6.2 Features and functions

One Addrbook contact item is a collection of the following personal properties: first
name, last name, alias, phone number, fax number, electronic mail address, street
address and postal address. The last name is the only mandatory field.

Contacts can be fetched with SMS, WAP and WWW. New contacts can be added in
WAP and WWW only. As well, in WAP and WWW only, when the contact is found, it
can be edited or removed. The set of personal properties belonging to a contact can be
fetched with a keyword. Keyword can be first name, last name, first and last name
together, phone number or alias. Incomplete keyword can be also given if the whole

4. THE SERVICE DEVELOPMENT ENVIRONMENT 50

word is not correctly remembered, for example. All matching contacts are returned for
a keyword. In WWW, the list of contacts in which the last or first name begins with the
given character can be fetched at once, but this is just the special case belonging to the
incomplete keyword given.

In WWW portal, contact data can be exploited from the other services in portal that
may need person related data, like e-mail addresses or phone numbers, when sending e-
mail or SMS. This functionality is implemented completely in WWW clients (i.e., in
HTML pages with scripting language). There is no supporting server side functionality
for this and so, in WAR portal, this kind of co-operation lacks at the moment because
needed scripting language support is not currently available in every WAP client.

4.6.3 Technical background

There are two parallel software in Addrbook service. One is for WWW and the other
one is for SMS and WAP together. There was originally only the WWW version, the
SMS/WAP version came later. One reason for making WAP/SMS version separate
from WWW was the difference in the logic between WWW and WAP/SMS. In WWW,
there is no upper limit to the amount of sent data. Meanwhile in WAP, the limit is
maximum WML deck size. Another reason for the distinct WAP/SMS version was that
in WWW version, there was too much hardcoded HTML in the program code. Both are
Java Servlets running in the Jserv Servlet engine under Apache Web Server. Contact
data is stored in Oracle database and JDBC is used in Servlets to handle all database
operations. Templates are used in making HTML and WML output.

4.6.4 User interfaces

The following picture examples depict best the functionality in WWW, SMS and WAP.

WWW

The start view in WWW user interface is introduced first. One can decide whether to
fetch contacts or create new ones.

Hae

ABCDEFGHПKLMN0
PQESIUVWXYZJTaQ

Figure 23. WWW user interface 1.

If the contact data of Teemu Teekkari is wanted, one can enter the keyword “Teemu",
for example, and select "Hae" ("Fetch"):

4. THE SERVICE DEVELOPMENT ENVIRONMENT

Hae

jteemu MAE Ш

ABÇDEEGH1JKLMNO
EÜBSIUVWXYZÄ"äÖ IIUMWHIBHI

Figure 24. WWW user interface 2.

The results are listed, this time only one matching contact was found:

Hae

]ЕШВНЕЕЭ|

ABCDEFGHIJKLMNO
BQESiyy w xyz£äö

1ВМЩВЖЯ1

Haku: TEEMU

teekkari teemu 0123456789

TAKAISIN

Figure 25. WWW user interface 3.

By selecting "Teemu Teekkari" the whole contact Is fetched.

Hae

1

û R Г Г) F F fi И T 1 к' 1 M М Л
E Q E s i y y wYï Z là ö

Etunimi: teemu

Sukunimi: teekkari

Alias: tepa

Matkapuhelinnumero: 0123456789

Fax-numero:

Sähköpostiosoite: teemu@oostiluukku.fi

Osoite: jämeräntaival 50 02150 Espoo

TAKAISIN KUOKKAA ч^_|

Figure 26. WWW user interface 4.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 52

If one wants to edit some fields or remove the whole contact one have to go further by
selecting "muokkaa" ("edit").

Hae

iraeeni

4BCDEFGHIJKLMNO
PÛESiyy W XYZfÄÖ пиша

Muokkaa tietoja

Etunimi: jteemu

Sukunimi: ¡teekkari

Alias: jtepa

Matkapuhelinnumero: ¡0123456789

Fax-numero: Í..

Sähköpostiosoite: ¡teemußpostiluukku.fi

Osoite: jjämeräntaival 50

Postinumero ja toimipaikka: jo2150 Espoo

TftKftism PoisTft ■»ДШтйНЕннй-др'

Figure 27. WWW user interface 5.

The creation of new contact data is like editing empty contact and it is straightforward.
Identification number for a contact is generated when the contact is created. This id is
a key for a contact in database table.

WWW popups

When contact data is exploited from other WWW portal services, the user interfaces
look quite same as the previous ones, but they are rendered into separate "popup"
window. Contact data is fetched into the popup window and its values can be moved
with Javascript to the fields of original page. Popup windowing is a built-in feature in
PC HTML browsers, where new windows into the same browser context can be popped
up from the page in actual HTML browser by pushing the button or selecting the link.
Popup window pops up in a separate browser window with the desired URL content.
There are no framesets in these popup windows, like in normal browser windows in the
portal. The policy of using frames in portal was discussed in 4.4.5. The content in
popup windows is little different from middle frames in framesets. All the pictures of
WWW user interfaces above were just these middle frames. There are own templates in
application for popup use cases, the upper parts with title "Kontaktit" and instructions
below it are different from templates used in framesets. For example, the
corresponding popup view to Figure 25. is in Figure 28.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 53

Kontaktit

Kontaktien avulla voit etsiä tallettamiasi ystäviesi yhteystietoja etunimen, sukunimen,
matkapuhelinnumeron tai itse keksimäsi alias-tunnuksen avulla.

Hae

=j

ABCD E£G HUK LMNO
E Q R S I U V W X Y Z £"Ä ö

Haku: TEEMU

teekkari teemu 0123456789 VALITSE „-J Q

TAKAI SI H

Figure 28. WWW user interface 6, the popup template.

SMS

In SMS, the only use case is the fetching of a contact by sending the following SMS
message into service short number:

KONTAKTIT X (where X is first name, last name, "first name#last name", incomplete
first or last name, alias or phone number).

Message sent to service:

Kontaktit Teemu

Figure 29. SMS user interface 1.

And response received from service:

teemu teekkari tepa
0123456789
teemu@postiluuk
ku.fi jämeräntaival

Figure 30. SMS user interface 2.

The rest of the response message would continue in the next lines. The maximum length
of the response is set to three 160 character messages.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 54

WAP

In WAP, the user interfaces are like in the pictures below.

This start view is the user interface for fetching and creating new contacts:

.Kontaktit______ _
Etunimi:|||
Sukunimi:!)
Alias:! I
Matkapuhelinnro:!!
Edit Paluu

Figure 31. WAP user interface 1.

The lower part of the same view (scrolled down):

.Kontaktit.
postiosoite:! j

Lisää
■к. Etusivu
Link Paluu

Figure 32. WAP user interface 2.

Results are returned in this format:

Etunimi:!
Sukunimi:[teekkari]
Alias:[tepa]
Matkapuhelinro:
Edit Paluu

Figure 33. WAP user interface 3.

The lower part of the screen:

______ Kontaktit-
[02150 Espoo]
Muuta
Emsla
Я5Я1Ш
Link Paluu

Figure 34. WAP user interface 4.

If more than one contact was found with the keyword, the lower part has additional
"hae seuraava" ("fetch next") hyperlink.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 55

The deficiencies in the interactive services, like the existing Addrbook, and in the whole
portal are described next.

4.7 Deficiencies in the WWW portal

4.7.1 Designed for PC and frames only

The WWW portal fits to the current situation, where majority of customers use PC
browsers with frame support. Portal unfortunately does not adapt into other kind of
end devices. This kind of situation is not tolerable in the long run, when additional
Internet access methods get more popular day by day [41

4.7.2 Frame context

The whole WWW portal is based on using the frames. The frame practice with its
justified historical reasons was described in 4.4.5. The WWW user interfaces described
in 4.6.4 were only the main or middle frames in the portal frameset, except the one in
Figure 28. In real life, the view is composed of many frames like in Figure 35., where
the middle part is the same as in Figure 23. and is returned from the Addrbook
application.

PALAUTE >
SIVUKARTTA > PALVELU> www.sonera.net

Tekstiviestit m-center m-mail

VIESTIJÄT

Kontaktit Mappi

SÄÄSTÄJÄT] OSTAJAT ! AVUSTAJAT] KUVITTAJAT I ASIAKASPALVELU

Kontaktit [EH Demo

web-suosikkeihin
Hae

V/ A P-suosikkeihin

ABÇDEE5HUK LMJNO
EfîSSIUyWXYZ AA ö

|ПЫЦЫ|1я1

Ohjeet ja hinnasto

Figure 35. WWW portal with frames.

The individual static pages and templates in applications are designed to be used in
frame context. The presentation and information in them is not adequate to standalone
use. If individual frame is loosed from its frameset and presented alone without other
frames, it probably lacks the information and illustration needed in good quality service
experience. In Addrbook, the popup window was an example of this. For example, user
directions, links to other services, prices, logos, advertisements and things like that can
be decentralized in different frames in frameset.

4.7.3 Collective client identification

If different clients are served with customized content, one thing is for sure, these client
types must be first distinguished.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 56

Client identification should be done in a collective manner in one place, for example in
web server module or Servlet. Configuration parameters making unambiguous
identification possible must be collected and updated for this module.

4.7.4 Static pages

When serving static pages, client identification could be followed by client specific URL
rewrite response or by explicit response with that same URL's content, like in Figure
36. In explicit approach (i.e., alt. b in figure), additional roundtrip can be avoided.

In both of these solutions, mappings of actual URLs to requesting clients for outside
visible "virtual" URLs must be maintained. In simple approach, behind virtual URL is
the page containing client-to-URL mappings. Every URL's content was checked by
module, whether it is a client-to- URL mapping or primary content. Virtual URL can be
also distinguished without investigating the syntax of its content, from some
unambiguous filename suffix, for example. If nonstandard suffices are not accepted, all
requests must go through this module for syntax check.

Without this kind of dynamic redirection mechanism, different URLs have to exist
parallel for different clients, which is not convenient.

web server

URL a Configu­
rations

for client
identification

. request for URL X

2. a) response: URL rewrite to URL b Client
identification

module

URL X
containing
redirections2. b) response: explicit contents

of URL b ^

in alt. b) only
3. request for URL b

URL b

Figure 36. Client identification module with static pages.

4.7.5 Interactive services

Collective client identification module would be robust and effective solution for
applications also. They were saved from doing this critical task in each one separately.
Identification module could put the needed client data in HTTP header, for example.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 57

Using this information, requesting client can be associated to its templates in
application. Application maintains list of templates for different end devices.
Configuration of this association should be convenient. Adding support for a new end
device (i.e., templates) should be done without touching the program code.

web server

service
of URL X

configu­
rations

r

1. request for URL Y

2. response from URL Y

Client
identification

module

HTTP headers
* Configu-

rations
for clientHTTP headers

with add. infor. identification

V
with add. infor.

service
of URL Y

configu­
rations tejmplate

te mplate
template

Figure 37. Client identification module with interactive services.

These improvements alone do not help if new end device requires different logic from
the existing ones. Then some additional, maybe nontrivial coding has to be done also.
Or separate versions of application can serve clients having different client-server logic.

4.7.6 URLs to framesets

Many URLs in portal point to framesets. In some clients, framesets are worked around
by rendering the frames in frameset sequentially or giving links to each frame. The
result of these kinds of work-arounds is not necessarily same as the intention that
content's author had. In server-side solutions, authors would have the control and
results were predictable.

If standalone pages replacing the corresponding framesets were authored, and client
identification mechanism implemented, these standalone pages could be returned for
clients configured to have no frame support. URL rewrite or explicit response with that
specific standalone page could be used like described.

Special case is the framesets, where some frame is dynamically generated by
application. In these cases, the standalone page must be a template behind that
application. If there are frames from more than one application in original frameset,
the resulting standalone page must be aggregated from all of these applications
somehow.

4. THE SERVICE DEVELOPMENT ENVIRONMENT 58

4.7.7 Why Addrbook?

These same problems apply as well into any other portal service, because they all are
based on same prerequisites, frames and PC user. The Addrbook service is not better or
worse than any other services and there is no other reasons why Addrbook was chosen
the prototype except the background of the writer.

4.7.8 What can be done?

In next chapters, the problem is elaborated and it is find out if there are any solutions.
The proposition of the multi-channel service development framework is presented. After
that, the end device independent prototype of the Addrbook is developed using the
framework. It should adapt to the requests from different clients. The frame problem is
analyzed into certain degree and some proposals made if possible. The frame problem
appears to be harder.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 59

5 Multi-channel development framework

5.1 Foreword

This chapter proposes a multi-channel service development framework. It addresses the
problems described in 4.7.

The framework implements client identification and template association for interactive
content. Support for new client type can be added without touching the program code.
The templates are replaced in Framework with XSL style sheets. Cocoon web
publishing system is used for serving static content.

Alternative was just to make a stand-alone multi-channel version of Addrbook service.
It can be however more valuable if the multi-channel intelligence is put into a separate
independent system. This system can then also be utilized from other services.

A short description of the framework is given in 5.4.1.

The framework will be nothing more than a prototype of solving media independence
problem. This is so big challenge that it would be unrealistic to expect more. John
Bentley has said:

"...you often don't really understand the problem until after

the first time you Implement a solution. The second time, maybe you

know enough to do ¡t right. "

Let's keep this thought in the mind during the own contribution part of the thesis.

5.2 Alternatives to making own solution

There are many web publishing frameworks and transcoding machines available,
commercial and public, to solve the multi-channel problem. Commercial products are
expensive, making such a big investment requires some elaboration to the problem at
first. It is difficult to judge which one is better than the other. When making own "web
publishing framework", the technologies come familiar at least, maybe this helps to
judge different ways of solving the problem. Framework utilizes XML and XSL.

5.3 General requirements

General requirements to the multi-channel service development framework are listed.
These requirements are in the scope of this thesis' main problem: end device
independence.

The framework should be media independent. It should have no presuppositions of the
end devices it will serve. To be realistic and honest, there will be shortages in
implementation, because nobody can make this kind of all-round apparatus perfect.
And when the only experience is accumulated from serving PC, WAP phone and SMS,
the end result will be a little biased towards optimization in these, I believe.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 60

All kinds of services should be able to set into this framework. Again, our experience is
from interactive services, where services react dynamically to user inputs. The static
content should as well be served from the framework.

The framework should be modular and extensible. If some piece of it looks poorly
written or outdated, it should be easily replaced. New features and methods of doing
things should be easy to add beside existing ones.

The aim is to do understandable and commonsense programming code and avoid
complexities and needless optimization in wrong places. The organization should be
clear. Solution should be easy to comprehend so that it is easy to use and redevelop by
others as well. The integration of services with the framework should be simple.

Configuration should not be difficult and laborious. Good examples and documentation
will help in this.

There are commercial products available to the problem but they cost money. Public
software is favored instead.

Solution should exploit only future proof technologies.

In production use, performance and scalability are musts. In the prototype framework
these requirements have been secondary. Memory and processor intensive XSL
transformations can be performance bottlenecks. This is difficult problem and it is
wrestled with by experts [27].

5.4 Framework and its Components

At first short description of the framework is given for those who are not interested in
details. Technologies and pieces of public software used in Framework are presented.
Framework and its six modules are introduced in detail after that.

5.4.1 Short description

The framework acts as a proxy in front of actual services. The services can be anywhere
and anything until they are reachable. Framework gets original requests as HTTP and
delivers them to the interfaces of actual services. It takes the responses back from the
services and converts them into the XML if they already are not in XML. At the end,
framework makes client and service specific XSL transformations and gives results
back in HTTP response to the original requester.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 61

3S

'Ж

Internet

Gateways

Framework (reverse proxy)

Backend servers

Figure 38. Picture of the multi-channel framework.

Framework identifies the client type and does also some general tasks on behalf of the
actual services. It adds subscriber and customer data in the request that services may
need. Framework has internal cache for the XSLT processors to accelerate its function.
Since framework adds the presentation layer to the services, they do not have to have
any intuition or knowledge of the client or presentation.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 62

GATEWAYS FRAMEWORK BACKEND
SERVERS

Figure 39. Closer picture of the multi-channel framework.

5.4.2 Chosen solution and technologies

Framework's solution is to transform XML with XSL sheet into final presentation
form. Technologies used In the framework are HTTP, Java, Java Servlets, XML and
XSLT.

5.4.3 Public software

Web server is from Apache, XML parser is Apache Xerces, XSLT processor is Apache
Xalan and Servlet engine is Jserv. Cocoon is used with static content. All of these are
publicly available free software. In addition they have established position and good
reputation. Jserv is not developed anymore, corresponding free Servlet engine is
Apache's Jakarta Tomcat.

5.4.4 Modules

The framework is composed of Cocoon, configuration module, logging module,
customer and subscriber identification module, client type identification module, service
integration module and XSL transformation module. Cocoon is not examined here. The
self-made modules are introduced next by introducing the configuration data related to
every module. With this approach the modules come familiar in practical sense and, at
the end, the picture of the whole framework hopefully will be formed. How to use the
framework hopefully becomes clear as well. The order of modules in introduction is
from general ones to service specific ones.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 63

5.4.5 Configuration module

Configuration module consists of configuration file and an object of Java Properties
class that provides an access to configured items. Configuration file contains specific
items for every module. Module specific items are presented in connection with the
modules they belong to. Configuration items are presented in tables with the id and
name of the item, example value of it and a short explanation.

Example configurations are only for html and wml media types. Example of a complete
configuration file is presented in appendix E.

5.4.6 Logging module

Framework has logger class that writes logs in the configured log directory. Logging
facilitates monitoring of how things are going and it also helps in detecting errors and
correcting them. Statistics can be generated from the data in log files if wanted.

Id Configuration item
name

Value Explanation

Log.l LOGPATH /services

/framework/log/

Absolute path to
log directory.

Log.2 LOGFILEPREFIX Framework Prefix of the log
files, log files are
generated on daily
basis, and the
prefix is appended
with date like
"frameworkl8102
001".

Log.3 LOGFILESUFFIX Log Suffix of the daily
log files, like
frameworkl81020
01.log.

Example listing from the log directory:

— r w - r—r — 1 apachegr 125762 Oct 1 16:04
frameworkl102001.log
-rw-r--i^ - 1 apachegr 202502 Nov 1 23:06
framework02102001.log

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK

5.4.7 Subscriber and customer identification module

64

Customer is the party, who is in charge of the payments in the service use. Subscriber is
the actual end user of the service and has his own subscriber identity. Usually, services
are only subscriber based, but sometimes the customer identity is needed also. Different
restrictions can be posed on subscriber or customer basis. Several subscribers can be
under the same customer. Customer can be private person or company. The barring
classes related to this were discussed in 4.2.2.

At the moment, only the subscriber identification is put inside the HTTP request in
three gateways (Le., WWW, WAP and SMS). If customer identification is needed also,
this module fetches it from the authorization server with the subscriber identity from
the gateway as a key.

Configurations tell how the subscriber identities are put into the HTTP request in the
gateways and thus how the framework can get access to them:

Id Configuration item
name

Value Explanation

Sub.l html_MSID_came
r

http_header The id is carried in
the HTTP header
in html media type.

Sub.2 html_MSID_http_h
eaderjiame

cookie:Sonera-
msisdn

Name of the HTTP
header carrying the
value of the id. If
the header name is
"cookie", also
specific cookie
parameter name
can be given if
there are more
than one parameter
in the cookie.

Sub.3 wml_MSID_came
r

http_query_param The id is carried in
the HTTP query
parameter in wml
media type.

Sub.4 wml_MSID_http_q
uery_param_name

msid Name of the HTTP
query parameter
carrying the value
of the id.

Also, how the framework carries the identity data forward to the service integration
modules is configured. Subscriber id is carried by default but customer id is carried and
fetched only if directed in service level configurations:

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 65

Id Configuration item
name

Value Explanation

Sub.5 msid_param_name msid Subscriber identity
is put into the value
of HTTP
parameter
"subsid".

Sub.6 custid_param_nam
e

custid Customer identity
is put into the value
of HTTP
parameter
"custid".

5.4.8 Client identification module

Client identification needs a more extensive introduction because it is not so
transparent.

Client type portfolio

First, it must be decided, which client types or end devices are served. All these client
types must be identified also. Next decision is, which client types of them are fed with
the same presentation (Le., put under the same media type category in the
configuration file).

In this example configuration, only two different client types are identified and served
appropriately, html and wml. This means that no distinction is made between different
clients under html or wml categories. So, there can be only one "compromise" html
presentation in every service that has to fit nicely to all html clients (Le., clients in the
media type html). Exactly the same applies to wml.

As well it is possible to make further distinction between different html browsers or
wml phone makers and feed tailored presentations into each one. The configuration or
the framework itself is not a problem in this approach. When the amount of distinctly
served client types increases, the work in designing the mark-up language pages and
maintaining them increases also. It is up to the user, which approach to choose. In this
module description the example case is with no further distinction.

The supported media types are configured like this:

Id Configuration item
name

Value Explanation

Cli.l media_types html,wml Media types that
this framework
recognizes.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 66

Cli.2 media_type_defaul html Default media type,
t if media type is not

identified.

If there were tailored presentations for Microsoft Explorer and Netscape HTML
browsers the media types for them could be html MS and html Netscape, for example.

Client type identification methods

Some raw handwork is needed, when examining how to identify different clients. HTTP
requests must be examined, whether there is some unambiguous data identifying the
different client types. The complete references can and should be also obtained from the
client manufacturers and other authorities. The systematic approach is needed to avoid
unidentified clients. The handwork is good for verification.

The only identification method needed at the moment in our services is based on the
contents in HTTP header "user-agent". There are no other methods implemented in the
module. The identity could be put also in the HTTP query parameter value, or in other
header field, for example. Prerequisite is that client identification module is fed with
the HTTP requests that contain the client identity. Identity must be put there prior in
gateways or somewhere else if the client itself do not do it.

So framework identifies client types (media types) after these instructions in the
configuration file:

Id Configuration item
name

Value Explanation

Cli.3 clientjdentitificati
onjnethod

http_header If there will be
other identification
methods also, this
is needed.

Cli.4 clientjdentityjittp
„header

user_agent Name of the HTTP
header that is
examined for
identifying the
media type.

Client resolving from the user-agent header

Specific strings inside the header identify the client. These strings must be searched
from the header in specific search order.

The strings "Mozilla", "MSIE" and "Netscape" appear in the main stream HTML
browsers. Thus, html media type is deduced if some of these strings appear in the
header.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 67

If the further distinction is needed between different browsers, (e.g., between Microsoft
and Netscape) the search order is important and it must be like this:

1. MSIE

2. Mozilla

3. Netscape

"MSIE" must be searched first because it is the only value identifying MS Explorer.
String "Netscape" or "Mozilla" can be in the headers of the both. If "MSIE" is found
the browser is deduced to be Microsoft, otherwise Netscape [83] [27]. In wap media
type, there are many strings identifying different clients, the most popular strings are
configured in the following order:

1. Nokia

2. Wap

3. Ericsson

Id Configuration item
name

Value Explanation

Cli.5 user-agents html MSIE, Mozilla,
Netscape

Strings that
identify the html
client type(s) in
"user-agent"
header.

Cli.6 user-agents_wml Nokia, Wap,
Ericsson

Strings that
identify the wml
client type(s) in
"user-agent"
header.

Content types for different media

After the client type is resolved the appropriate content type (MIME type) is set to the
HTTP response. These are configured like this:

Id Configuration item
name

Value Explanation

Cli.7 content-typejitml text/html;
charset=IS0-8859-
1

Content type for
media type html.

Cli.8 content-type_wml text/vnd.wap.wml;
charset=IS0-8859-

Content type for
media type wml.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 68

l

Cli.9 content_type_defa
ult

text/plain Default content
type if media type
is not identified.

5.4.9 Service integration module

The use of framework is not restricted to services having HTTP interface. The
configurations related to HTTP interface have nothing to do with actual services.
Actual services can have some other interface as well. This configured HTTP interface
is used in transmitting information between the Framework and its service integration
modules, not between Framework and its actual services.

Actual services must be somehow integrated to the framework, or framework must be
configured to use these services. And because services might have different interfaces,
Framework connects to them always through special adapters called service integration
modules. These modules hide the possibly different interfaces in underlying services.
Integration modules can as well convert requests' formats into format understandable
by the underlying service. Example of integration module will be implemented in next
chapter, when making prototype of Addrbook service.

The interface

Service integration modules must implement "SoneraService" interface that
Framework knows. It has these three public methods:

1. public HttpServletResponse service!HttpServletRequest request) throws
IOException;

The services are called from the Framework through this method.

2. public void setProps!Properties props);

The own configuration module is given to the service integration module.

3. public void setLog(Log log);

The reference to the Framework's logging module is given to the service integration
module.

Service identification front the request

When services are called through the framework, there must be some way to
distinguish, which service, or service adapter from the framework point-of-view, is
called. Only the framework's address is visible outside. The HTTP requests to the
framework must have HTTP parameter "service" telling the service integration
module's name to the framework.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 69

Id Configuration item
name

Value Explanation

Serv.l service_param service HTTP query
parameter name
that identifies the
service integration
module to be
called.

Service integration modules installed in the Framework are listed like this:

Id Configuration item
name

Value Explanation

Serv.2 services /services/addrbook/
conf/addrbook.cfg

Configuration files
of the service
integration
modules in the
framework.

So, the service integration modules are listed in the form of their configuration
modules, or configuration files. These configuration files contain tree items targeted to
the framework. These are the class name implementing the SoneraService interface for
the service, the identifying name to that class object and note if service needs customer
id in addition to subscriber id.

Id Configuration item
name

Value Explanation

Serv.3 loaded_class addrbook.addrbook
Service

Class that
implements the
SoneraService
interface.

Serv.4 name addrbook Name that
identifies the
service integration
module.

RefiServ.l

Serv.5 is_cust_id_based no No customer id is
needed in this
service.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 70

Framework loads dynamically during its startup all the service integration module
classes defined in the configurations. It puts these adapter objects into the hashtable,
from where they are fetched during the runtime with a key that is configured in Serv.4.

Service integration modules9 internal functioning

Service integration modules' configuration files contain some service specific
configurations that are not used in the framework level unlike the previous Serv.l-
Serv.5 items.

Service integration module must have some way to get access to the actual service it is
responsible of. Integration modules get all needed input data from the framework in
standard HTTP requests. Modules go on by calling the actual services in appropriate
ways.

At the moment, the only module implementation is for service having HTTP interface.
Socket messaging, Java RMI, CORBA, SOAP or other ways would be possible also, but
there are not any implementations at the moment. The URL of the actual service is
given like this in configurations:

Id Configuration item
name

Value Explanation

Serv.6 url htto://machine.xvz.
companv.netioortn
umber/servlets/XM
LAddrbook

Internet address or
URL of the called
service.

If there are additional connecting methods or protocols, there will be appropriate
configurations to the module. Only configuration items Serv.l-Serv.5 have to be similar
in every service integration module, because they are used by one and the same
framework. Module's internal configuration item Serv.6 instead can be anything,
because it is not visible to the framework.

At the end, modules give services' responses back to the framework in XML in HTTP
responses. If the actual service do not respond with XML, then its integration module
has to make the needed conversions in formatting.

Service level media type support

When framework supports some client types, it means only that it can identify these,
not more. In service level configurations, the support of media types tells what different
client types particular service supports. Service level client type set is subset of the
framework client type set. Prerequisites to supporting media type in service level are
that there is needed logic built in the actual service or in its adapter and there are
appropriate XSL sheets available. Latter is optional, because it can be that the XSL
transformation is not needed at all.

Id Configuration item Value Explanation

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 71

name

Serv.7 media_types html,wml Supported media
types in the service.
Prerequisite: These
must be identified
in the Framework
level also.

Ref: C1 i. 1

Requirements for the services

Logic in services should be built independent of the client type. It is not allowed to put
any conditions on client types in the service logic. Starting point should be that services
do not know anything of the requesting clients. This means, for example, that no
presuppositions of script language support should be in logic. The maximum set of use
cases and functionality should be implemented in services although some of these may
not be needed in every client type. These principles encourage the media independence.
For example, the fetching of data should be flexible, when some client types can
possibly take only a little amount of data at once, incremental fetch operations should
be implemented.

Some things like session handling and billing can be done in the actual service or in its
integration module.

In the next chapter, the end device independent prototype of the Addrbook service is
developed. The requirements to the media independent service logic are then in focus.

5.4.10 XSL transformation module

The XSL transformation module is in charge of the presentation layer of the services in
the framework. It uses Apache Xerces XML parser and Apache Xalan XSLT processor
to do this. Framework does not need at the moment XSL FO capabilities and XSL FO
vocabulary is not supported in Xalan. So, when using the phrase XSL transformation
within this framework, only the XSLT part (Le., XSLT processor) of it is actually
meant. Framework gets XML data from service modules and feeds it back to the client
devices after XSL transformation.

The XSL transformations can be service and its internal use case specific.

Service may have different use cases that have different responses with different
presentations to be wrapped to them. Usually, the use case is identified in the HTTP
query parameter "CM D". In SMS though, it can be so that the use case must be parsed
in nonstandard way from the user input, so the determination of use case is done in
service integration module instead of common framework because it cannot be
generalized. The use case is parsed and put into the unambiguous element in resulting
XML in service integration module. The XSL module can get it from there for making
decision on which XSL sheet to apply.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 72

Id Configuration item
name

Value Explanation

Xsl.l usecase_element_n
ame

CM D The name of the
XML element in
response that
contains the use
case specific to the
service called.

Next level would be response code. It Is common that there are different kinds of
responses in the same use case. For example, successful and unsuccessful ones may
need different presentations. The response code is also one XML element in XML
response. The element must be unambiguous under the root element. The response code
level XSL sheet support is not yet implemented in the framework, but it is in the
example configurations. The different presentations for different response codes can be
achieved at the moment only by putting conditions in XSL sheets.

Id Configuration item
name

Value Explanation

Xsl.2 resp_code_element
_name

response_code The name of the
XML element in
response that
contains the
response code
specific to the use
case and service
called.

XSL transformations are service related. It is up to the designer, how he groups the
presentations of the specific service into separate XSL sheets. It is possible to put all
presentations in the same XSL sheet file with conditions on which part of the XSL sheet
is used in which circumstance (i.e., with different values of CMD and response_code).
Another, maybe cleaner, way is to put XSL for every use case (and response code) in
own files. This is analogous how things are done in plain WWW HTML services also.

NOTE:

Service integration modules own configuration file contains directions to XSL module
regarding to service's XSL transformations.

Example configurations hopefully help to clarify how XSL transformations are
managed:

Id Configuration item Value Explanation
name

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 73

Xsl.3 XSL_PATH_html /services/addrbook/
xsl/htm 1/

The path to the
directory, where all
XSL sheets are
kept.

Xsl.4 XSL_PATH_wml /services/addrbook/
xsl/wml/

The path to the
directory, where all
XSL sheets are
kept.

There must be XSL path configured one by one for every media type that the service
integration module supports. These paths can be same or different.

Example listing from the /services/addrbook/xsl directory:

drwxrwxr-- 4096 Nov 21 12:38 html
drwxrwxr-- 4096 Nov 21 08:22 wml
If XSL sheets to different use cases (and response codes) are kept in separate files, they
are configured like this:

Id Configuration item
name

Value Explanation

Xsl.5 htmLCMDS fetchonewithid,
update,saveupdated
, fetchall, remove,
new, savenew,
fetchwithkeyword

Use cases in the
service.
Prerequisite: XML
element in response
carrying these use
cases must be
configured in the
Framework.

Ref:Xsl.l

Xsl.6 html_pages fetchonewithid.xsl,
update.xsl,
saveupdated.xsl,
fetchall.xsl,
remove.xsl,
new.xsl,
savenew.xsl,
fethwithkeyword.xs
1

File names
containing these
XSL sheets.

Xsl.7 onewithid.xsl onewithid The page-to-use-
case mapping. Can
be one to one or
one to many.

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 74

There must be corresponding configuration items (Xsl.7) for every individual XSL sheet
file defined in xsl.6.

Example listing from the /services/addrbook/xsl/html directory:

-rw-r- -r- - 1926 Jan 25 11:53 fetchonewithid.xsl
-rw-r- -r- - 1662 Jan 25 11:53 fetchwithkeyword.xsl
-rw-r- -Г- - 3928 Jan 25 11:53 new.xsl
-rw-r- — r — 605 Jan 25 11:53 remove.xsl
-rw-r- ~r — 1041 Jan 25 11:53 savenew.xsl
-rw-r- - r — 749 Jan 25 11:53 saveupdated.xsl
-rw-r- -r— 3914 Jan 25 11:53 update.xsl
Corresponding configurations must be for every other media type as well. In the
example, configurations were for two media type, html and wml.

With wml media type the approach is different from html. In wml, all XSL
transformations are kept in one XSL sheet. Like already said, only one XSL sheet can
contain transformation rules for the whole service, Le., for every use case (and response
code). This is achieved by putting conditions in the XSL sheet. Advantage in this
approach is that the amount of files remains low. The configurations with wml are:

Id Configuration item
name

Value Explanation

Xsl.8 wml_CMDS fetchonewithid,
update,saveupdate,
fetchall, remove,
new, savenew,
fetchwithkeyword

Use cases in the
service.
Prerequisite: XML
element in response
carrying these use
cases must be
configured in the
Framework.

Ref:Xsl.l

Xsl.9 wml_pages wml-all.xsl File names
containing these
XSL sheets.

Xsl.10 wml-all.xsl fetchonewithid,
update,saveupdate,
fetchall, remove,
new, savenew,
fetchwithkeyword

The page-to-use-
case mapping. Can
be one to one or
one to many.

Example listing from the /services/addrbook/xsl/wml directory:

-rw-r—r— 6920 Jan 25 12:02 wml-all.xsl

Simple XSLTprocessor cache

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK______________________ 75

To accelerate the XSL transformations, XSLT processors are kept in internal cache
during runtime. When XSL sheet is edited, the framework automatically reloads the
corresponding processor into the memory in the next request (Le., converts it into
internal tree-structure), after having detected that it has been modified. The cold start
of the framework takes couple of seconds, but the runtime performance is better. The
size of the cache should be managed somehow.

XSLT processor resolution

In recapitulation, how the module can get right XSLT processor? XSLT processors are
kept in two-dimensional hashtable and they all have one XSL sheet behind them. The
first key to the hashtable is service name, and the next key is absolute file name of the
XSL sheet. The absolute file name of the needed XSL sheet can be built up using the
configurations together with resolved media type, service name and use case.

5.5 Roadmap for framework

The first thing that must be done if this framework is used in production is absolutely
testing its performance.

1. testing performance

Also, general functionality and robustness should be tested. In next chapter, the new
version of the Addrbook service is implemented to test the framework in some degree.

The requirement "performance and scalability" in 5.3 was stated as secondary
requirement, focus being in media independence related issues. The presented simple
XSLT processor cache improves performance somewhat. There are severe deficiencies
in this cache anyway. There is no upper limit to the cache memory size yet, and as well
there is no policy in which processors are kept in cache and which are removed.

2. cache sizing and cache's performance optimizing

Framework can be developed in other sense also and couple of things has come into
mind. One of the requirements in 5.3 was "modular and extensible". This requirement
can be fulfilled better with dynamic class loading capabilities in essential classes.

3. dynamic class loading for XML parser and XSLT processor

4. XSL sheet location given as input parameter also

5. dynamic class loading for subscriber and customer identification module,
configuration and logging module, simple interfaces to all of these

Only improvement that has been already made is the method of identifying different
media types. The user-agent header is not adequate because there are so many different

5. MULTI-CHANNEL DEVELOPMENT FRAMEWORK 76

browsers and values. The same value can exist in WWW browsers' and WAR browser's
user-agent header. WAP clients are distinguished from others from one special header
set in WAP gateway.

Other shortages can come into daylight in larger scale production use, not necessarily
before.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 77

6 Prototype of the multi-channel Addrbook

This chapter describes an end device independent prototype of the Addrbook service,
XM LAddrbook, and its integration to the framework. User interfaces for three different
media types are made to it. The performance of this prototype within the framework is
tested and reported.

6.1 Description of the prototype

The existing Addrbook software was template driven as depicted in Figure 40. There is
separate Servlets for WWW and WAP/SMS, because the logic in WWW version was
not initially designed to support WAP use.

Addrbook
for WWW

HTML
template

У

Addrbook
for WAP and
SMS
:n a

WML SMS
template message

template
i

Figure 40. Architecture in existing Addrbook.

XM LAddrbook is a Servlet returning only XML (Le., it does not have any templates).
More precise, it does not know anything else either about the end device requesting it.
It can be requested from other services as well, if presentation to the XML is needed,
framework like developed in chapter five can be used.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 78

SMS
messages
<------►

Frame­
work

m

HTML
V

vF
'sneet
s%i
WML

Other service

f
I XML

t
XML

■4-----► XMLAddrbook •4-------------------- ►

Figure 41. Architecture in XMLAddrbook.

Logic in XMLAddrbook

In this prototype, interfaces from three media types are made to XMLAddrbook. These
media types are www, wml and sms. Framework identifies them as depicted in 5.4.8.
Hopefully the logic in XMLAddrbook does not restrict its use from other media and
other services as well.

XMLAddrbook has seven use cases, where contacts can be fetched, updated, removed
or added. Three different use cases are implemented for fetching the contacts. With
these seven use cases, the logic can be implemented for different media types as best
suitable. If these use cases are not enough, additional ones can be implemented. They
are rather straightforward to implement, because the presentation or end device level
issues must not be considered at all.

XMLAddrbook identifies the use case from the incoming HTTP request parameter
"CMD". Contact owner is identified from request parameter "msid". For each use
case, specific XML document is generated and returned. The table below tells, which
input parameters XMLAddrbook needs in each of the use cases. The elements, that are
placed in the returned XML document, are in the last column:

Use case (i.e., value of the
"CMD" parameter)

Other parameters Returnable

Fetchwithkeyword msid, keyword,
fromjndex, tojndex

(0-n) * (id, fromjndex,
tojndex, first name, last
name, alias, phone
number, fax, email, street
address and postal
address), keywork, CMD,

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 79

msid

Fetchonewithid msid, id First name, last name,
alias, phone number, fax,
email, street address and
postal address, CMD, msid

Update msid, id Like in "fetchonwithid"

Saveupdated msid, id, first name, last
name, alias, phone
number, fax number,
email, street address,
postal address

CMD, msid

Remove msid, id CMD, msid

Savenew msid, first name, last
name, alias, phone
number, fax number,
email, street address,
postal address

CMD, msid

New msid CMD, msid

When fetching contacts, given keyword can be like in the existing Addrbook, complete
or incomplete first name, last name, first and last name, alias or phone number.

All other use cases are trivial except the "fetchw¡thkeyword,,. If large amount of
contacts is found for a given keyword(s), all of them do not necessarily fit into one
transfer unit in all media types (e.g., WAP and WML deck). Parameters "fromjndex"
and "tojndex" are for sequencing large amount of contacts into smaller transfer units.
The contacts are returned in alphabetical order, and these two index parameters refer
to it. Amount of returned contacts is the difference between "fromjndex" and
"tojndex" in corresponding request. XMLAddrbook puts the next values of
x'from_index,/ and "tojndex" in its response, from which the request or link to the
next portion in session can be constructed. In the last retrieval, there can be fewer
contacts than that fixed amount. As a sign of last response, the value of "fromjndex"
is "end". This kind of functionality is needed in WAP, for example. In WWW, all
matching contacts can be fetched at once as well, if desired. This happens with setting
"tojndex" big enough.

Teemu Teekkari

Teija Teekkari
fetch next 10 matching contacts

<html>
Teemu Teekkari

Teija Teekkari
fetch next 10 matching contacts</a: ■
</html>

Figure 42. Use of sequential fetches.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 80

SMS gateway portions and cuts the SMS response if needed. Not more than three SMS
messages are returned for one SMS request, each one carrying 160 characters
maximum. XM LAddrbook or its XSL sheets either do not have to care about this.

In use cases new, savenew, saveupdated and remove, no processing happens in
XM LAddrbook. Only the values of "CM D" and "insid" are returned back. Actual
content comes from appropriate XSL sheets. "CMD" and "msid" are always returned,
because XSLT transformation unit needs the former to fetch correct XSL sheet (Figure
39.) and latter may be needed in presentation (Le., in XSL transformations).

XSL sheets

Next step is to author all needed XSL sheets. Below are the sheets authored for each
media type supported by XM LAddrbook (Le., www, wml, sms):

www:

-fetchonewithid.xsl

-update.xsl

-saveupdated.xsl

-remove.xsl

-new.xsl

-savenew.xsl

-fetchwithkeyword.xsl

wml:

-addrbook-all-wml.xsl

sms:

-addrbook-all-sms.xsl

So, each use case can have its own XSL sheet or several use cases can have common
sheet containing presentations for all (5.4.10).

Inside each media type, the logic can be implemented as wanted by calling the use cases
in XM LAddrbook and constructing desired user interfaces with XSLT. In SMS, there is
no form-like user interface, the fetching of contact is initiated by one SMS message. In
WWW and WAP, it happens in two phases where links to matched contacts are
returned first. Selecting one of these links fetches the whole contact. After that, the
contact can be removed or fetched for edition. When fetched for edition, form is
returned prefilled with the contact values. In use case "new", empty form is returned.
In WWW and WAP, ten contact links are returned by once, this amount could be
bigger.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 81

6.2 Integration with the Framework

When service is ready to be used, these steps must be done in integration:

1. Implement service integration module class for service

2. Tell the framework, where to locate this class

3. Tell the framework, which XSL sheet to use, with which use case (Le., with which
value of the parameter "CMD" that is included in the XML response)

4. Restart the framework Servlet

Service integration module for XMLAddrbook

Service integration module class must implement "SoneraService" interface, which
was described in (5.4.9). The purpose of this interface was to enable systems having
different interfaces to communicate.

XMLAddrbook understands only HTTP request format. So, its service integration
module must convert SMS request format to HTTP request format.

Service integration module does two tasks in XMLAddrbook:

1. Conclude, which use case the request conveys and put it into the value of HTTP
request parameter "CMD".

2. Converse the SMS gateway request format into the HTTP request format
understandable by XMLAddrbook.

request format x Framework request format x Integration
module request format y XMLAddrbook

* *
◄-----------------------

response format x response format x response format y

Figure 43. Format converter between requests and responses.

User delimits different fields in SMS requests with space and '#' characters. For
example, syntax of the request in use case "savenew" is like this (in finnish):

L Eetunimi#Ssukunimi#Aalias#Ppuhelinnumero#Ffaxnumero#Sosähköpostiosoite

#Loläh ¡osoite# POpostiosoite

First parameter "L" identifies the use case and it is delimited with space character
from the other actual contact fields, that are delimited with

This is converted into this:

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 82

CM D=savenew&Fname=etunimi&lname=sukunimi&alias=alias&phone=puhel innúmero
&fax=fax-numero&email=sähköpostiosoite&addressl=lähiosoite&address2=postiosoite

In fetching, when giving first name and last name as keyword, they are delimited with
Integrator module converts "firstname#lastname" to

"fetchparaml=firstname&fetchparam2=lastname".

Framework locates the class for integration module with the help of configuration item
Serv.2 in 5.4.9:

Services :/services/addrbook/conf/addrbook.cfg

The module specific configurations are in “/services/addrbook/conf/addrbook.cfg"
(5.4.9). These are:

1. Loaded class for the service integration module (implements SoneraService
interface)

2. The URL, where the XMLAddrbook can be requested from

3. The name of the service

4. Media types supported

5. Path of the XSL sheet directories for each supported media types

6. The mappings between XSL sheets and use cases (items xsl.5 and xsl.8)

Framework Integration
module

XML­
Addrbook

2 /confs/filel.cfg:

Configurations
for

Framework

Configurations
for
XMLAddrbook

Module for
XMLAddrbook
/confs/filel.cfg

loaded class:
addrbook.XML
Addrbook
url:http://xyz..

Figure 44. How framework locates XMLAddrbook.

These will be the real configurations, they are in appendix F also:

1. Loaded_class:xmladdrbook. Integration Module

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 83

2. url:http://machine.x.v.net:8090/xmladdrbook/XM LAddrbook

3. name:XMLAddrbook

4. media_types:html/ wml, sms

5. XSL_PATH_html:/opt/xmladdrbook/xsl/html/

XSL_PATH_wml:/opt/xmladdrbook/xsl/wml/

XSL_PATH_sms:/opt/xmladdrbook/xsl/sms/

6. html_CMDS ¡fetchwithkeyword, fetchonewithid, update, saveupdated, remove, new,
savenew

html_pages:fetchwithkeyword.xsl fetchonewithid.xsl, update.xsl, saveupdated.xsl,
remove.xsl, new.xsl, savenew.xsl

fetchwithkeyword. xsl :fetchwith keyword

fetchonewithid.xsl :fetchonewith id

update.xsl ¡update

saveupdate.xsl ¡saveupdate

remove, xshremove

new.xshnew

savenew.xsl ¡savenew

XSL_PATH_wml:/opt/xmladdrbook/xsl/wml/

wml_CMDS:fetchwithkeyword,fetchonewithid,update, saveupdate, remove, new,
savenew

wml_pages:xmladdrbook-all-wml.xsl

xmladdrbook-all-wml.xsl:fetchwithkeyword, fetchwithid, update, saveupdated,
remove, new, savenew

XSL_PATH_sms:/opt/xmladdrbook/xsl/sms/

sms_CM DS ¡fetchwithkeyword,savenew

sms_pages:xmladdrbook-all-sms.xsl

xmladdrbook-all-sms.xsl ¡fetchwithkeyword,savenew

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 84

If new media type is added to XMLAddrbook service, let's say "pda", only
configurations that must be made into integration module are:

media_types:www, wml, sms, pda ("pda" added to medit_types)

XSL_PATH_pda:/opt/xmladdrbook/xsl/pda/ (the XSL style sheet path of pda)

pda_CM DS:

pda_pages:

and the last item(s), the style sheet to use case mappings (one-to-one, or one-to-many),
like above with www, wml and sms.

Frame problem

Frame problem can be solved in the Framework by making additional media type and
associated XSL sheets for browsers without frame support.

Use of the service

1. Start (WWW, WAP)

The static start pages in WWW and WAP come from Cocoon web publishing network.
In SMS, there is no start page.

From start page, use cases "fetchwithkeyword" or "new" can be initiated. In start
phase, the XML document contains only Pis for HTML and WML stylesheets.

Hae:

Luo uusi hae | tyhjennä |

---------- Kontaktit------
Hakusana:
ffl
Hae
Luo uusi

Figure 45. User interface 1 in WWW and WAP.

2. Fetchwithkeyword (WWW, WAP, SMS)

In SMS, matching contacts are fetched right away for a keyword in SMS. There is no
intermediate phase with links to matching contacts in SMS. Contacts are fetched
exactly like in 4.6.4. The XSL sheet constructing all the WAP user interfaces is in
appendix C.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 85

In WWW and WAP, there is an intermediate phase. List of links to contacts that
match the given keyword is returned. Link contains first name and last name and it
hides unambiguous id for contact.

1. Teekkari Teemu
2. Teikäläinen Teija
3. Tossavainen Teemu
4. Turunen Tuija

Takaisin

---------- Kontaktit—-------
НИЯЗЯЕШИГЛмТГ
3. Teikäläinen Teija
3. Tossavainen Teemu
4 Turunen Tuija

Figure 46. User interface 2 in WWW and WAR.

3. fetchonewithid (WWW, WAP)

Contact is fetched against its id for read-only purpose. Ids are first fetched with
"fetchwithkeyword".

ETUNIMI: Teemu
SUKUNIMI: Teekkari
ALIAS: Tepa
PUHELIN: 0123456789
FAX:
SDHKVP O SITO SOITE: teemu@postiluukku.fi
LDHIOSOITE: lämeräntaival 50
POSTIOSOITE: 02150 Espoo
Muuta Poista

Takaisin

(second picture is from the bottom of the page)

Kontaktit
Etunimi: Teemu
Sukunimi: Teekkari
filias: Tepa
Matkapuhelin:

Espoo
Muokkaa
Poista
ШЕШ

Kontaktit-

Figure 47. User interface 3 in WWW and WAR.

4. update (WWW, WAP)

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 86

Contact is fetched against its id for editing (Le., it is fetched to the interactive form,
where the old values of the contact fields are prefilled and can be edited).

ETUNIMI: j Te emu

SUKUNIMI: ¡Teekkar i

ALIAS: |тера

PUHELIN: ¡012 3 45 6789

FAX: I
1 ... - sssszss - - - - - -

SAHKOP: jteemu@po3tiluukku.fi

OSOITE: ¡Jämeräntaival 50

POSTI: ¡02150 Espoo

Tallenna

Takaisin

(second picture from the bottom of the page)

---------- Kontaktit
Etunimi:
[\ШШ

Sukunimi:
[Teekkari]

■Î---------- Kontaktit
-toimipaikka:
[02150 Espoo]
Muuta
ШЕШ

Figure 48. User interface 4 in WWW and WAR.

5. saveupdated (WWW, WAP)

The edited contact is saved.

6. Remove (WWW, WAP)

Contact is removed against its id. Note, in the existing version, contact must be fetched
for update first, after which it can be removed. In this multi-channel version, contact
can be removed right after its read-only fetch.

7. new (WWW, WAP)

An empty form is returned to the user, where she can fill the values for a new contact
item.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 87

ETUNIMI: I

SUKUNIMI: I

ALIAS: J

PUHELIN: I

FAX: I

SAHKOP: I

OSOITE: I

POSH: [
Tallenna |

Takaisin

(second picture from the bottom of the page)

---------- Kontaktit----------- f-----------Kontaktit----------- \
Etunimi: Nimesi: I
m [...]
Sukunimi: Lisää
[...] штж

Figure 49. User interface 5 in WWW and WAP.

8. savenew (WWW, WAP, SMS)

A new contact is saved to database. In SMS, the syntax was like (in finnish):

L Eetunimi#Ssukunimi#Aalias#Ppuhelinnumero#Ffaxnumero#Sosähköpostiosoite

#Lolähiosoite#Popostiosoite

Figure 50 and Figure 51 show how these 8 use cases are related.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 88

fetchwithkcyword
(“T”, from_indcx, to_index)

fetchoncwithid(id=l) update(id=l)

4 contacts found:
Teekkari Teemu (id=l)
Teikäläinen Teija (id=2)
Tossavainen Teemu (id=3)
Turunen Teija (id=5)

Contact fields: -----
Teemu
Teekkari
Tepa
0123456789

teemu@postiluukku.fi
Jämeräntaival 50
02150 Espoo

Edit:
[Teemu]
[Teekkari]
[Tepa]
[0123456789]
II
[teemu@postiluukku.fi]
[Jämeräntaival 50]
[02150 Espoo]

remove(id=l) saveupdated(id=l, field_values)

Figure 50. Use case 1: WWW and WAP.

newO first name: [fill] savenew(field_values)
last name: [fill*]
alias: [fill]
phone number: [fill] 1
fax: [fill] 1
emai:l [fill]
street address: [fill]
postal address: [fill]

Figure 51. Use case 2: WWW and WAP.

fetch (“T”) (message 1:)
[Teekkari Teemu Tepa 0123456789 teemu@postiluukku.fi Jämeräntaival 50 02150 Espoo
Teija Teikäläinen Tetsu 91834509178 tetsu@hotmail.com Jämeräntaival 52 02150 Espoo
Teemu Tossavaine]

-----------► (message 2:)
[n 01234134123 teemut@postiluukku.fi Jämeräntaival 51 02150 Espoo Tuija Turunen tuitsu
98307285 tuitsu@hotmail.com Jämeräntaival 53 02150 Espoo]

Figure 52. Use case 3: SMS.

6.3 Testing and evaluation

6.3.1 Platform

Framework and XMLAddrbook was running on PC having the following configurations.

Memory 256 MB SDRAM (PC-100)

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 89

Processor INTEL PENTIUM III 700 MHZ

Operating System Linux Red Hat 6.2 ¡386

Web server Apache 1.3.12

JDK 1.2.2

JSDK 2.0

Cocoon 1.8.2

Xerces 1.2

Xalan 1.2

Database Oracle 8.05

6.3.2 Testing tool

Framework's performance was tested with benchmark tool Apache Bench (ab). The ab
version in this test was the one coming with Apache distribution 1.3.12 [841

6.3.3 Test cases and their results

Framework, XMLAddrbook, Apache and ab were all running in the same machine.
Database was in other machine.

Two test cases were run. First one was for XMLAddrbook service's performance in
Framework and the second one for only XSLT transformations in Framework. Both
test cases were for use case "fetchwithkeyword". In the second test, the XMLAddrbook
was not requested, but the transformed XML document was identical to document
returned from XMLAddrbook in that use case. During both test cases, it was
concurrently checked from the framework's log file, that service was responding
correctly to every request.

In both test cases, XSLT transformations were made as synchronized operations,
because there was only one transformer that had to be synchronized.

In real use, the response time experienced by the end user is bigger due to extra delays
in network. The only network delay during this test was in test case 1, from database
operations, database resided in remote machine.

Test case 1

First test case one was for XMLAddrbook service's performance in Framework. This is
the performance experienced in real use of the service without network delays. First
test case was run for WWW, WAP and SMS user separately, because they have
different XSL sheets and transformations. In ab, the HTTP headers can be set, this
enabled the imitating of three different media types, www, wml and sms.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 90

Only concurrency tests were run, and they were run ten times for 1, 5, 10, 20 and 40
concurrent users. The average test results can be seen In Figure 53. Performance test
results of Framework with XMLAddrbook.

Results of performance test

1 5 10 20 40
Amount of concurrent users

Figure 53. Performance test results of Framework with XMLAddrbook.

The XMLAddrbook did stand the concurrent load of about 40 users in the Framework
in test environment. During the tests there was no remarkable load from other users.
When the amount of concurrent users were increased from the 40, service crashed
down. This is not caused from Framework or its XSLT transformations, because test
case 2 shows that they can stand that load. So, the XMLAddrbook is the bottleneck.
There are time-consuming database operations without database connection pooling.

The little differences between response times of WWW, WAP and SMS can result from
the different sizes of XSL sheets that were transformed in the test. WWW sheet was
smaller than SMS and WAP. As described in 5.4.10, media type www had separate
style sheets for every use case. Media types wml and sms had only one style sheet with
conditions on which part of it is applied on particular use case. WML and SMS style
sheets were bigger and had more conditions, and so the transformation took more time.

To be realistic, in this type of service the load will be at most few concurrent users. The
requests from the simultaneous users are many times intermingled, because it takes
time when user fills the fields, for example. The response time of about 0,5 seconds
with five concurrent users is tolerable.

Test case 2

The performance of XSLT transformations only was tested in isolation, with static
XML documents. The DOM object of the static XML document was constructed before
test and kept in memory, also the XSLT transformer was constructed from the XSL
sheet in advance. So, in test case 2 the only processing was the XSLT transformation.
Only concurrency tests were run, and they were run ten times for 1, 5, 10, 20 and 40
concurrent users, and thirty times for 100, 150 and 200 concurrent users. The results
can be seen in Figure 54.

6. PROTOTYPE OF THE MULTI-CHANNEL ADDRBOOK 91

Results of performance test (XSLT only)

600
www

400 —

100 150 200
Amount of concurrent users

Figure 54. Performance test of XSLT only.

The response times were much better with only XSLT transformations. Not until with
300 concurrent users, the framework could not stand the load and some responses were
not responded anymore. The response time started to increase between 50-100
concurrent users. Without synchronization of XSLT transformations, the response
times could be lower.

7. CONCLUSIONS 92

7 Conclusions

7.1 Findings

The Framework works fine with prototype service (¡.e., XM LAddrbook). The service
has been in production in the Framework since 11/2001 and no problems have
appeared. Framework should be used in other services also before it can be said more
about its performance. The Framework's XSLT performance appears to be sufficient
with XM LAddrbook at least. If the performance is not adequate with more services in
the framework, it could be made better by getting rid of synchronization of XSLT
transformers. If memory fills up with more services, the file system could be used to
cache XSLT transformers. If these improvements are not enough, then Cocoon should
be taken into use with interactive services as its XML producers, and checked whether
it can fix the performance problem.

One finding is that Framework should be simpler. For others than its designer,
Framework can be too difficult to exploit, at least in the beginning. This has become
clear by the interview with colleague. Especially the XSL sheet-to-use case mapping
practice is too complicated to configure and comprehend.

Alternative to Framework is Cocoon, it is may be easier to configure and its
performance due to sophisticated parsing, transformation and caching is surely better.
In Cocoon 2, the SAX processing is used efficiently to increase its performance.
XM LAddrbook and other XML services can be used as XML producers in Cocoon.
There is simple interface for producers in Cocoon and it is not a problem to implement
it.

The Framework has few differences compared to Cocoon. XML producers [27] (e.g.,
XM LAddrbook) in Framework do not know explicitly their XSL sheets. In Cocoon, the
producer puts explicitly Pis for all its XSL sheets in the beginning of produced XML
document. Cocoon chooses right PI from these with its client identification data and
makes appropriate XSLT transformation. Framework can be configured to identify also
subscriber and customer on behalf of its XML producers. Cocoon cannot do this
without changes.

One finding is that maintaining large amount of XSL sheets is as inconvenient as
maintaining corresponding amount of HTML or WML pages. Basically, authoring own
XSL sheets for every media type can solve the media-independence and frame problem.
But the penalty is that huge amount of XSL sheets must be authored. Authoring XSL
sheets is rather laborious. In author's and some colleagues' opinion, it is more difficult
than making HTML or WML alone and it would be too hard for web designers to learn
it.

In author's opinion, making static content media independent is an easier task than
making that for interactive services. There is logic in interactive services that may have
to be considered differently for different media. Even if good transcoding product is
found, it cannot do anything to the logic implemented in Servlets, for example.

The presentation layer maybe cannot be made scalable with only XML and XSL, but
with XML, the logic in services can. If service returns only XML and does not know
anything about the requesting client, the program code becomes simpler and easier to
maintain. The logic is easier to implement and improve when there is no presentation-
related issues in program code.

7. CONCLUSIONS 93

One finding is, in author's opinion, that XHTML should be used instead of HTML. The
future browsers and devices will have better support for XHTML. Again in author's
opinion, nothing is lost, if HTML is replaced with XHTML. This is not a remarkable
relief to the overall problem of media-independence, though.

Existing base can be tried to convert with some transcoding machine. But it is hard to
predict without long lasting trial period which one is the right solution. The complete
scalable solution without compromises, in which the handwork in authoring the
presentation does not increase in linear relation to supported media types, is hard to
imagine in author's opinion.

7.2 Were objectives met?

Objectives were met only partly. Technologies that can help in achieving media-
independence became familiar during this thesis, especially XML and XSL. Also the
future candidate technologies under development became familiar in certain degree.
Author learned lot from designing the framework and one prototype service into it. This
knowledge can be hopefully exploited in the future in the organization, where this thesis
was written.

Framework for multi-channel service production was developed and the result is not so
extraordinary, but works fine in one service at least.

One objective was to compare and evaluate different solutions and products to the
problem. Cocoon was the only product that was examined in practice. The commercial
products were left without explicit consideration in this thesis. Some example solutions
were introduced and judged. Solutions behind different products can be anyway
understood and evaluated better now when some experience and knowledge in the field
has cumulated.

XML was studied quite thoroughly during this thesis. Afterwards it has come into mind,
that maybe more prototype applications to multi-channel problem should have been
made. Less theory and more practice. Programming some prototype implementations
after the examples described in 3.9 could have given valuable practical experience.

Adapting of XML into big organization was overestimated objective. In the
organization, maybe more realistic objective could have been getting rid of bad HTML
or frames, for example.

No solution was proposed for automatic conversion of the existing content base into
media-independent content. Only imaginable example approaches were shortly
described. In the Framework's XML/XSL solution, all existing content must be
converted manually into XSL. In static pages, HTML Tidy can be used to modernize
non-standard HTML into XHTML.

At the beginning, it was easy to enumerate fine objectives. Being afterwise, it should
have been better if the problem has been defined more exactly in the beginning. The
media-independence is too big a problem field to cover in one thesis.

REFERENCES 94

References
Q] European Commission, "Sixth Report on the Implementation of the

Telecommunications Regulatory Package/' Annex 1 - Telecommunications market
data, Chart 8, Per capita telecommunications expenditure trends in EU, USA and
Japan, C0M(2000)814, 7 December 2000,
http://europa.eu. int/ISP0/infosoc/telecompolicv/implrep6/Size+qrowth-en.pdf.

[2] Telecommunications Industry Association, "Applications to Drive Growth for
Network and Enterprise Markets," 2001 Multimedia Telecommunications Market
Review and Forecast, P.A. Release 01-03/01.16.01,
http://www.tiaonline.org/pubs/press releases/index.cfm?parelease=01-03.

[3] WAP Forum, "WAP 2.0 Technical White Paper,"
http://www.wapforum.org/what/WAPWhite Paperl.pdf, August 2001.

[43 eTForecasts, "Internet Users Will Surpass 1 Billion in 2005," Feb 2001,
http://www.etforecasts.com/pr/pr201.htm.

[5] European Commission, "The Introduction of Third Generation Mobile
Communications in the European Union: State of Play and the Way Forward,"
Annex 2 - Overview of 3G Licensing in the Member States, C0M(2001), 141,
20.3.2001 2000,
http://europa.eu.int/information societv/topics/telecoms/radiospec/mobile/docs/pdf/
3gcomen.pdf.

[63 Sumanta Deb, SETLabs Analytics, Infosys Technologies Limited, "How can
enterprises leverage 3G's complex value chain and its uniqueness, 2000 Wireless
Access Technologies," http://www.watmaq.com/technoloqies/3G UMTS/3G-
008/3G-008.html.

[73 NTT DoCoMo, http://www.nttdocomo.com/.

[83 MercuryRed Wireless News, Issue #1, March, 2001, "Lessons from I-mode,"
http://www.mercuryredwireless.com/pdf/3g futures.pdf.

[93 P. Vuorimaa, J. Teirikangas, and J. Vierinen, "Ubiquitous multimedia services
with XML," accepted to the 1st Int. Conf. Universal Access in Human-Computer
Interaction, UAHCI, New Orleans, Louisiana, August 5-10, 2001.

[103 0. Marttila and P. Vuorimaa, "XML based mobile services," the 8th Int. Conf.
in Central Europe on Computer Graphics, Visualization, and Interactive Digital
Media, WSCG'2000, Czech Republic, Feb. 7-10, 2000.

[113 S. Patient, "Think Small, Think PDA," Jun 2000,
http://www.webdevelopersiournal.com/articles/think pda.html.

[123 J. Vierinen and P. Vuorimaa, "A browser user interface for digital television,"
in Proc. the 9th Int. Conf. in Central Europe on Computer Graphics, Visualization
and Computer Vision, WSCG'2001, Czech Republic, Feb. 5 - 9, 2001, pp. 174-
181.

[133 M. Floyd, "Separating Body from Soul," webTechniques, Jul 2000,
http://www.webtechniques.com/archives/2000/Q7/flovd/.

[143 B. Marchai, "Making teams work, via XML and XSL," Nov 2000, http://www-
106 .ibm.com/developerworks/xm I/I ibrarv/x-applied/?dwzone=xml.

REFERENCES 95

Q5] B. Marchai, “How Java Programmers and HTML Designers Can Collaborate
Using XML," Netscape Communications Corporation 1999,
http://develoDer.netscape.com/viewsource/marchal xml.htm.

[16] T. Bray et al., “Extensible markup language (XML) 1.0 (second edition),"
W3C Recommendation, Oct. 6, 2000. http://www.w3.org/TR/REC-xml.

[17] J. Bosak and T. Bray, “XML and the Second-Generation Web," Scientific
American, May 1999, http://www.sciam.com/1999/0599issue/0599bosak.html.

[18] C. Weyrich, “Orientations for Workprogramme 2000 and beyond," Sep 1999,
http://www.bit.ac.at/IST/istag-vision.pdf.

[19] D. Martin et al, “Professional XML," Wrox Press Ltd, Jan 2000.

[20] S. Adler et al., “Extensible stylesheet language (XSL) version 1.0," W3C
Recommendation, Oct. 15, 2001, http://www.w3.org/TR/xsl/.

[21] Sun Microsystems, http://iava.sun.com.

[22] Laakso T.I., “How to write a Diploma Thesis," Helsinki University of
Technology, 1999.

[23] R. Gimson et al., “Device Independence Principles," W3C Working Draft 18
Sep 2001, http://www.w3.org/TR/di-princ/.

[24] S. H. Maes and T. V. Raman, “Position paper for the W3C/WAP Workshop on
the Multi-modal Web," Last modified Oct 2000,
http://www.w3.Org/2000/09/Papers/I В M .html.

[25] C. Arehart et al., “Professional WAP," Wrox Press 2000.

[26] I. Vatton, “Welcome to Amaya, W3C's Editor/Browser," Last Updated Dec,
2001.

[27] Apache Software Foundation, The Apache XML project, Apache Cocoon,
http://xml.apache.org/cocoon/.

[28] C. F. Goldfarb, P. Prescod, “The XML handbook," 3rd edition, Prentice Hall
2001.

[29] D. Ragget, “Clean up your Web pages with HTML TIDY," Last modified Jan
2002, http://www.w3.org/People/Raqqett/tidv/.

[30] Business Week online, “One the Web, Experience is the Brand," Oct 1999,
http://www.businessweek.com/ebiz/9910/dml029.htm.

[31] M.H. Butler, “Current technologies for Device Independence," Apr 2001,
http://www.hpl.hp.com/techreports/2001/HPL-2001-83.pdf.

[32] Forum Nokia, “Nokia Wap phones, introduction to the Wap phones," 2001,
registration needed to the site,
http://forum.nokia.eom/wapforum/main/l,,1 1 75.00.html.

[33] A. Teppo and P. Vuorimaa, “Speech interface implementation for XML
browser," accepted to the 2001 International Conference on Auditory Display,
Espoo, Finland, July 29-August 1, 2001, pp. 272-275.

[34] MetaTV inc., “FORD ¡TV Cross-Platform TV Service,"
http://www.metatv.com/downloads/ford profile.pdf.

REFERENCES 96

[35] W. Chisholm, "Web Content Accessibility Guidelines 1.0," w3C
Recommendation, May 1999, http://www.w3.org/TR/WAI-WEBC0NTENT/.

C363 S. Pemberton et al., "XHTML 1.0: The Extensible HyperText Markup
Language, A Reformulation of HTML 4 in XML 1.0," W3C Recommendation, Jan
2000, http://www.w3.org/TR/xhtmll/.

[37] M. Parkkonen, "Implementation of multi channel info services for different
distribution channels," Helsinki University of Technology, Electrical and
Communications Engineering, Masters Thesis, 2001.

[38] Wireless Application Protocol (WAP) Forum, "WAP 1.2 Specification Suite,"
1999.

[39] M. Honkala, "Using XML to Develop Applications for WAP and WWW
environments," Helsinki University of Technology, Department of Computer
Science and Engineering, Master Thesis, 2000.

C403 European Computer Manufacturers Association (ECMA), "ECMAScript
Language Specification," 3rd edition Dec 1999, ftp://ftp.ecma.ch/ecma-st/Ecma-
262.pdf.

[41] K. Kivikoski, "XML-verkkotekniikan mullistaja? Standardiperheen esittely ja
tilanne Suomessa 1999," Teknillinen Korkeakoulu, koulutuskeskus Dipoli, 1999.

[42] H. Wium Lie et ai., "Cascading Style Sheets, level 1," W3C Recommendation
17 Dec 1996, revised 11 Jan 1999, http://www.w3.org/TR/REC-CSSl.

[43] I Jacobs, "About the World Wide Web Consortium (W3C)," Last updated Dec
2001, http://www.w3.org/Consortium/.

[44] International Organization for Standardization, Standard Generalized Markup
Language (SGML), ISO 8879.

[45] C.M. Sperberg-McQueen and Lou Burnard, "A Gentle Introduction to SGML,"
Sep 1999, http://www.tei-c.org/P4beta/index.htm.

[46] J. Bosak, "An SGML-Based Web Server," Fifth International World Wide Web
Conference 1996 Paris, France, Last updated May 1996,
http://www5conf.inria.fr/fich html/slides/ddav/sqml/overview.htm.

[47] N. Walsh, "What Do XML Documents Look Like," Oct 1998,
http://www.xml.eom/pub/a/98/10/guide0.html.

[48] Refsnes Data, "Introduction to DTD,"
http://www.w3schools.com/dtd/dtd intro.asp.

[49] T. Bray et al, "Namespaces in XML," W3C recommendation, Jan 1999,
http://www.w3.orq/TR/REC-xml-names/.

[50] H. S. Thompson et al., "XML Schema Part 1: Structures," W3C
Recommendation, May 2001, http://www.w3.org/TR/xmlschema-l/.

[51] P. V. Biron et al., "XML Schema Part 2: Datatypes," W3C Recommnendation,
May 2001, http://www.w3.org/TR/xmlschema-l/.

[52] D. Brownell, "About SAX," Last modified Jan 2002,
http://www.saxproiect.org/.

[53] B. McLaughlin, "Java and XML," O'reilly, 2000.

REFERENCES 97

[54] P. Vuorimaa and T. Ropponen, and N. von Knorring, "X-Smiles XML
browser," the 2nd International Workshop on Networked Appliances, IWN A'2000,
New Brunswick, NJ, USA, Nov. 30 - Dec. 1, 2000.

[55] V. Apparao et al., "Document Object Model (DOM) Level 1 Specification," Oct
1998, http://www.w3.org/TR/REC-D0M-Level-l/.

[56] D. Vei I lard, "The XML C library for Gnome, The tree output," Last modified
Feb 2002, http://www.xmlsoft.org/tree.html.

[57] J. Clark et al., "XSL Transformations (XSLT)," W3C Recommendation, Nov
1999, http://www.w3.org/TR/xslt.

[58] Refsnes Data, "XSL languages,"
http://www.w3schools.com/xsl/xsl languages.asp.

[59] H. Williamson, "XML, The Complete Reference," Osborne/McGraw-Hill, 2001.

[60] J. Clark et al., "XML Path Language (XPath)," W3C Recommendation, Nov
1999, http://www.w3.org/TR/xoath.

[61] The Apache Software
http://xml.aoache.org/foo/index.html.

Foundation, "FOP,

[62] M. Leventhal, "XSL
http://www.xml.eom/lpt/a/1999/05/xsl/xslconsidered

Considered
l.html.

harmful,

[63] D. Ragget et al., "HTML 4.01 Specification," W3C Recommendation 24 Dec,
1999, http://www.w3.org/TR/html401.

[64] 0. Lassila et al., "Resource Description Framework (RDF) Model and Syntax
Specification," W3C Recommendation, 22 Feb 1999, http://www.w3.org/TR/REC-
rdf-svntax/.

[65] M. Nilsson et al., "Composite Capabilities/Preference Profiles: Requirements
and Architecture," W3C Working Draft 21 Jul 2000,
http://www.w3.0rg/T R/CC P P-ra/.

[66] M. Altheim et al., "XHTML 1.1 - Module-based XHTML," W3C
Recommendation 31 May 2001, http://www.w3.org/TR/xhtmlll/.

[67] J. Ayars et al., "Synchronized Multimedia Integration Language (SMIL 2.0),"
W3C Recommendation, Aug 2001, http://www.w3.org/TR/smil20/.

[68] X-Smiles, http://www.x-smiles.org.

[69] K. Pihkala, N. von Knorring, and P. Vuorimaa, "SMIL in X-Smiles," to the Int.
Conf. on Distributed Multimedia Systems, Taipei, Taiwan, Sept. 26-28, 2001.

[70] M. Dubinko, "Xforms 1.0," W3C Working Draft, Jan 2002,
http://www.w3.org/TR/xforms/.

[71] M. Honkala and P. Vuorimaa, "XForms in X-Smiles," in Proc. the 2nd Int.
Conf. on Web Information Systems Engineering, Kyoto, Japan, Dec. 3-6, 2001.

[72] Cisco, Cisco CTE1400 series, Content Transformation Engine, Product
Overview, http://newsroom.cisco.com/ekits/cte_1400/ctel400_white_paper.pdf.

[73] MobileAware, Everix Mobility Server, Last modified Jan 2002,
http://www.mobileaware.com/products.htm.

REFERENCES 98

[74] Volantis Systems, Volantis Mariner, Adaptive Tag Library,
http://www.volantis.com/voladptag.isp.

[753 H. Huomo, "Ubiquitous Communication," presentation held at
Telecommunication Forum 9th Oct 2001, at Helsinki University of Technology, Last
updated Dec 2001,
http://www.tct.hut.fi/opetus/s38001/s01/materiaali/2/presentations.shtml.

[76] P. Vuorimaa, "An XML based mobile software architecture," in Proc. 2nd Int.
Symposium on Mobile Multimedia Systems & Applications, MMSA2000, Delft,
The Netherlands, Nov. 9-10, 2000, pp. 150-156.

[77] Sonera, "Content Gateway Overview," version 2.1 Feb 2001,
http://www.sonera.fi/vritvksille/matkapuhelinpalveluntarioaiat/.

[78] Finnish communications Regulatory Authority, Order 35 F/2001 M, "Order of
the barring classes in telecommunications,"
http://www.ficora.fi/suomi/document/TH K35E2000%20M.pdf.

[79] Sonera, "Development guidelines for Sonera.net environment," Internal
Publication, Jan 2001.

[80] Sonera, "Sonera.net billing guideline (java API/TDB)," Internal Publication,
Sep 2001.

[81] Sonera, "Ohjeistus palveluiden toteuttamiseksi Sonera.net ympäristöön,"
Internal Publication, Jan 2001.

[82] Sonera, "Sonera.net WWW ohjeistus," Internal Publication, Jan 2001.

[83] J. Zawinski, "user-agent strings," Mar 98, http://www.mozilla.org/build/user-
agent-strings.html.

[84] Apache Software Foundation, Apache HTTP server project,
http://httpd.apache.org/.

[85] Refsnes Data, http://www.w3schools.com/schema/schema example.asp.

APPENDIX A. XML document

APPENDICES

APPENDIX A. XML document

XML document used in use case "fetchonewithid" in XMLAddrbook

<?xml version="1.0" encoding="IS0-8859-1" ?>

<kontaktit>

<msid>0405909005</msid>

<C M D>onewithid</C M D>

<url>/kontaktit/kontaktit.xml</url>

<service_url>/kontaktitsmswap/XSLServlet?service=Kontaktit</service_url>

<¡nfo>Kontakt¡ haettu ¡d:n perusteella</¡nfo>

<response_code>2</response_code>

<kontakt¡>

<¡d>l 000099818</¡d>

<ETU NIMI>Teemu</ETU NIMI>

<SUKUNIMI>Teekkar¡</SUKUNIMI>

<ALIAS>Tepa</ALIAS>

<PUHELIN>0123456789</PUHELIN>

<FAX />

<SAH KOP>teemu@post¡luukku.f¡</SAH K0P>

<0S0ITE>Jämeräntaival 50</0S0ITE>

<P0STI>02150 Espoo</P0STI>

</kontakt¡>

</kontakt¡t>

APPENDIX В. DTD FOR THE XML DOCUMENT 100

APPENDIX B. DTD for the XML document

XML document is used in use case "fetchonewithid" in XM LAddrbook, XML document

obeying this DTD can be seen in APPENDIX A.

<!ELEMENT kontaktit (msid, CMD, url, service_url, info, response_code, kontakti)>

<!ELEMENT msid (#PCDATA)>

<!ELEMENT CMD (#PCDATA)>

<! ELEMENT CMD (#PCDATA)>

<!ELEMENT CMD (#PCDATA)>

<!ELEMENT CMD (#PCDATA)>

<!ELEMENT kontakti (id, ETUNIMI, SUKUNIMI, ALIAS, PUHELIN, FAX,

SAH KOP, OSOITE, P0STI)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT EUNIMI (#PCDATA)>

<! ELEM ENT SUKUNIMI (#PCDATA)>

<!ELEMENT ALIAS (#PCDATA)>

<!ELEMENT PUHELIN (#PCDATA)>

<!ELEMENT FAX (#PCDATA)>

<!ELEMENT SAHKOP (#PCDATA)>

<!ELEMENT OSOITE (#PCDATA)>

<!ELEMENT POSTI (#PCDATA)>

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT 101

APPENDIX C. XSL sheet for the XML document

XSL sheet is used in XM LAddrbook's media type "wml", in its all use cases

<?xml version="1.0" encoding="IS0-8859-l" ?>

<xsl¡stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl¡output doctype-system="http://www.wapforum.org/DTD/wml_l.l.xml" doctype-
public="-//WAPFORUM//DTD WML l.l//EN"/>

<xsl¡template match="kontaktit">

<wml>

<template>

<do type="prev">

<prev />

</do>

</template>

<card id="a" newcontext="true" tltle="Kontaktit">

<P>

<xsl:choose>

<xsl:when test="(C M D='fetchwithkeyword')">

<xsl : if test="(response_code='3')">Anna hakusana (nimi, alias tai
puhel innúmero).</xsl:if>

<xsl : if test="(response_code='2,)">

<xsl:for-each select="kontakti">

<a>

<xsl¡attribute name="href">

<xsl:value-of select=7kontaktit/service_url" />

&msid=

<xsl:value-of select=7kontaktit/msid" />

&id=

<xsl:value-of select="id" />

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT 102

&CMD=onewithid

</xsl:attribute>

<xsl:value-of select="@index" />

<xsl:value-of select="SUKUNIMI" />

<xsl:text />

<xsl:value-of select="ETUNIMI" />

</xsl:for-each>

<xsl:if test="(from_index != 'end')'^

<a>

<xsl¡attribute name="href">

<xsl:value-of select=7kontaktit/service_url" />

&from_index=

<xsl:value-of select="from_mdex" />

&to_index=

<xsl:value-of select="toJndex" />

&CM D=hae&fetchparaml=

<xsl:value-of select="fetchparaml" />

&fetchparam2=

<xsl:value-of select="fetchparam2" />

</xsl:attribute>

hae seuraavat

</xsl:if>

</xsl:if>

<xsl : if test="(response_code='ll)">Ei hakua vastaavia kontakteja</xsl:if>

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT 103

</xsl:when>

<xsl:when test="(CM D='fetchonewithid')">

Etunimi:

<xsl:value-of select="./kontakti/ETUNIMI" />

Sukunimi:

<xsl:value-of select="./kontakti/S U K U NIM I" />

Alias:

<xsl:value-of select="./kontakti/ALIAS" />

Matkapuhelin:

<xsl:value-of select="./kontakti/PUHELIN" />

Fax:

<xsl:value-of select="./kontakti/FAX" />

Sähköposti:

<xsl:value-of select="./kontakti/SAHKOP" />

Lähiosoite:

<xsl:value-of select="./kontakti/0S0ITE" />

Postiosoite:

<xsl:value-of select="./kontakti/POSTI" />

<xsl:element name="a">

<xsl:attribute name="href">

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT 104

<xsl:value-of select=7kontaktit/service_url" />

&CM D=muuta&id=

<xsl:value-of select="./kontakti/id" />

</xsl:attribute>

Muokkaa

</xsl:element>

<xsl:element name="a">

<xsl:attribute name="href">

<xsl:value-of select=7kontaktit/service_url" />

&CMD=poista&id=

<xsl:value-of select="./kontakti/id" />

</xsl:attribute>

Poista

</xsl:element>

</xsl:when>

<xsl:when test="(CMD='updatel or CMD='new')">

Etunimi:

<input title="kirjoita" name="ETUNIMI" emptyok="true">

cxslrattribute name="value">

<xsl:value-of select="kontakti/ETUNIMI" />

</xsl:attribute>

</input>

Sukunimi:

<input title="kirjoita'' name=l'SUKUNIMr emptyok="true">

<xslrattribute name="value">

<xsl:value-of select="kontakti/SUKUNIMI" />

</xsl:attribute>

</input>

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT 105

Alias:

cinput title="kirjoita" name="ALIAS" emptyok="true">

<xslrattribute name="value">

<xsl:value-of select="kontakti/ALIAS" />

</xsl:attribute>

</input>

Matkapuhelin:

<input title="" name="PUHELIN" emptyok="true" format="*N">

<xsl:attribute name="value">

<xsl:value-of select="kontakti/PUHELIN" />

</xsl:attribute>

</input>

Fax:

<input title="" name="FAX" emptyok="true" format="*N">

<xsl:attribute name="value">

<xsl:value-of select="kontakti/FAX" />

</xsl:attribute>

</input>

Sähköposti:

<input title="kirjoita" name="SAHKOP" emptyok="true">

<xsl:attribute name="value">

<xsl:value-of select="kontakti/SAHI<OP" />

</xsl:attribute>

</input>

Lähiosoite:

cinput title="kirjoita" name="0S0ITE" emptyok="true">

<xsl:attribute name="value">

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT 106

<xsl:value-of select="kontakti/OSOITE" />

</xsl:attnbute>

</input>

Postiosoite ja -toimipaikka:

<¡nput title="kirjo¡ta" name="POSTI" emptyok="true">

<xsl¡attribute name="value">

<xsl:value-of select="kontakt¡/POSTI" />

</xsl:attribute>

</input>

<xsl:if test="(CMD=,uusi')">

Lähetä kontaktille numerosi:

<select name="SENDSMS">

<option value="no">Älä lähetä</option>

<option value="yes">Lähetä</option>

</select>

Nimesi:

<¡nput title="kirjoita" name="ANAM E" maxlength="30" emptyok="true" />

</xsl:if>

<anchor>

<xsl : if test="(CMD='update,)">

Muuta

</xsl:if>

<xsl : if test="(CMD='new')">Lisää</xsl:if>

<go href="http://seadra.mob¡le.sonera.net:8090/servlets/XSLServlet" method="post">

<xsl:if test="(CMD='update')">

<postfield name="CMD" value="saveupdated" />

</xsl:if>

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT 107

<xsl:if test="(CMD='new,)">

<postf¡eld name="CMD" value="savenew" />

<postf¡eld name="SENDSMS" value="$(SENDSMS)" />

<postfield name="ANAM E" value="$(ANAM Е)" />

</xsl:if>

<postfield name="service" value="l<ontaktit" />

<postf¡eld name="ETUNIMI" value="$(ETUNIMD" />

<postf¡eld name="SUKUNIMI" value="$(SUKUNIMD" />

<postfield name="ALIAS" value="$(ALIAS)" />

<postfield name="PUHELIN" value="$(PUHELIN)"/>

<postfield name="FAX" value="$(FAX)" />

<postfield name="SAHKOP" value="$(SAHKOP)" />

<postfield name="OSOITE" value="$(OSOITE)" />

<postfield name="POSTI" value="$(POSTD" />

<postfield>

<xsl:attribute name="name">id</xsl:attribute>

<xsl:attribute name="value">

<xsl:value-of select="kontakti/id" />

</xsl:attribute>

</postfield>

</go>

</anchor>

</xsl:when>

<xsl:otherwise>

<xsl : if test=''(response_code=,-4l)"> Palvelussa on tilapäinen häiriö, yritä hetken
kuluttua uudestaan!</xsl:if>

<xsl : If test="(C M D='savenew')">

APPENDIX C. XSL SHEET FOR THE XML DOCUMENT 108

<xsl:if test="(response_code='3,)">Kontakti on lisätty. Matkapuhelinnumerosi on
lähetetty kontaktille.</xsl:if>

<xsl : if test="(response_code=l2')">l<ontakti on lisätty.</xsl:if>

cxsl : if test="(response_code='4,)"> Kontaktin matkapuhelinnumero ja/tai nimesi
puuttuu. Anna numero ja/tai nimi.</xsl:if>

cxsl : if test="(response_code=,6')">Annoit kontaktille lähetettävään tekstiviestiin
nimesi mutta et valinnut viestiä lähetettäväksi. Valitse viesti lähetettäväksi.</xsl:if>

cxsl : if test="(response_code='5')">Sukunimi on pakollinen tieto. Anna
sukunimi.</xsl:if>

</xsl:if>

cxsl : if test="(C M D='saveupdated')">

cxsl : if test=''(response_code='2,)">l<ontaktin tiedot on muutettu, c/xsl : if>

cxsl : if test="(response_code='5,)"> Kontaktia ei voitu tallentaa koska siitä puuttui
pakollinen sukunimi.</xsl:if>

</xsl:if>

<xsl:if test="(CMD=,remove')">Kontakti on poistettu.</xsl:if>

</xsl:otherwise>

</xsl:choose>

<xsl:element name="a">

cxslzattribute name="href">

<xsl:value-of select="url" />

</xsl:attribute>

Kontaktit

</xsl:element>

</p>

</card>

</wml>

</xsl:template>

</xsl:stylesheet>

APPENDIX D. EXAMPLE OF AN XML SCHEMA 109

APPENDIX D. Example of an XML Schema

This example is taken from [851

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="shipOrder" type="order'7>

<xs:complexType name="order">

<xs:sequence>

<xs:element name="shipTo" type="shipAddress"/>

<xs:element name="items" type="cdItems"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="shipAddress">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="street" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="cdltems">

<xs:sequence>

<xs:element name="item" type="cdltem"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

APPENDIX D. EXAMPLE OF AN XML SCHEMA 110

<xs:complexType name="cdltem">

<xs:sequence>

<xs:element name="title" type="xs:string7>

<xs:element name="quantity" type="xs:integer"/>

<xs:element name="price" type="xs:dedmal7>

</xs:sequence>

</xs:complexType>

</xs:schema>

Example of an XML document conforming to this SchemaC85]:

<?xml version="1.0"?>

<shipOrder>

<shipTo>

<name>Tove Svendson</name>

<street>Ragnhildvei 2</street>

<address>4000 Stavanger</address>

<country>Norway</country>

</shipTo>

<items>

<item>

<title>Empire Burlesque</title>

<quantity>l</quantity>

<price>10.90</price>

</item>

<item>

APPENDIX D. EXAMPLE OF AN XML SCHEMA 111

<title>Hide your heart</title>

<quantity>l</quantity>

<price>9.90</price>

</item>

</items>

</shipOrder>

APPENDIX E. EXAMPLE CONFIGURATIONS FOR THE FRAMEWORK 112

APPENDIX E. Example configurations for the Framework

LOGPATH:/services/framework/log/

LOGFILEPREFIX: framework

LOGFILESUFFIX: log

media types that Framework recognizes

media_types: html,wml

media_type_default : html

html_MSID_carrier:http_header

html_MSID_http_header_name: Cookie : Sonera-msisdn

wml_MSID_carrier:http_query_param

wml_MSID_http_query_param_name: MSISDN

###

media types are identified from the value of http header
user_agent_header, the border is significant

user-agents_html:MSIE, Mozilla, Netscape

user-agents_wml:Nokia, Wap, Ericsson

###

content types for different media

APPENDIX E. EXAMPLE CONFIGURATIONS FOR THE FRAMEWORK 113

###c
ontent-type_html: text/html; charset = 150-8859-1

content-type_wml: text/vnd.wap.wml; charset = ISO-8859-1

###

http query parameter names that identify the

service and use case to be called

for example:

#

http ://x.y.z /servlet/XSLServlet ? service=Addrbook&CM
D=update.......

service_param_name: service

use case_element_name:CMD

resp_code_element_name:response_code

http url param where the subscriber id is appended to the
original query string

msid_param_name: msid

http url param where the customer id is appended to the
original query string

custid_param_name: custid

###

configuration files of the services

APPENDIX E. EXAMPLE CONFIGURATIONS FOR THE FRAMEWORK 114

in these files are use cases (CMD-parameter values)
linked with XSL-sheets

###

services :/services/addrbook/conf/addrbook.cfg

APPENDIX F. EXAMPLE CONFIGURATIONS FOR THE SERVICE
INTEGRATION MODULE

115

APPENDIX F. Example configurations for the service integration module In
the Framework

class that fetch the content from the actual service

loaded_class:xmladdrbook.IntégrâtionModule

name that identifies the service in http query parameter
"service"

name :XMLAddrbook

url that holds the actual service

url: http ://machine.x.y.net : 80 90/xmladdrbook/XMLAddrbook

###

supported media types

###

media_types: html,wml,sms

###

http query parameter "CMD" tell which XSL-sheet is used

different media types can have different CMD:s

#

these configurations must be for each media type :

1. XSL_PATH_mediatype :

2. mediatype_CMDS:

3. mediatype_pages:

4. one-to-one/one-to-many mapping (xsl sheet file-use
case/ xsl sheet

APPENDIX F. EXAMPLE CONFIGURATIONS FOR THE SERVICE
INTEGRATION MODULE

116

file-use cases):

###

XSL_PATH_html:/opt/xmladdrbook/xsl/html/

html_CMDS: fetchwithkeyword, fetchonewithid,
saveupdated, remove, new, savenew

update,

html_pages:fetchwithkeyword.xsl
update.xsl, saveupdated.xsl,

fetchonewithid.xsl,
remove.xsl, new.xsl,

savenew.xsl

fetchwithkeyword.xsl:fetchwithkeyword

fetchonewithid.xsl:fetchonewithid

update.xsl: update

saveupdate.xsl:saveupdate

remove.xsl: remove

new.xsl: new

savenew.xsl:savenew

XSL_PATH_wml:/opt/xmladdrbook/xsl/wml/

wml_CMDS:fetchwithkeyword,fetchonewithid,update, saveupdate,
remove, new, savenew

wml_pages:xmladdrbook-all-wml.xsl

xmladdrbook-all-wml.xsl:fetchwithkeyword,
update, saveupdated, remove, new, savenew

fetchwithid,

XSL_PATH_sms:/opt/xmladdrbook/xsl/sms/

sms_CMDS:fetchwithkeyword,savenew

sms_pages:xmladdrbook-all-sms.xsl

APPENDIX F. EXAMPLE CONFIGURATIONS FOR THE SERVICE
INTEGRATION MODULE

117

xmladdrbook-all-sms.xsl:fetchwithkeyword,savenew

