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Tämä diplomityö käsittelee epälineaarisia, Turingin systeemeiksi kutsuttuja 
reaktio-diffuusiosysteemejä. Brittiläinen matemaatikko Alan Turing ehdotti 1950- 
luvulla yksinkertaista kemikaalien reaktioita ja diffuusiota kuvaavaa reaktio- 
diffuusiosysteemiä vastaamaan morfogeneesistä, luonnossa tapahtuvasta kehityk­
sestä. Luonnon monimutkaisuudesta johtuen tutkijat eivät ole toistaiseksi onnis­
tuneet kehittämään Turingin systeemiin perustuvaa mallia, joka varsinaisesti ku­
vaisi morfogeneesiä, vaikka eläinten nahan ja turkin värityksen mallintamiseen 
Turingin systeemejä onkin käytetty.

Turingin systeemit ovat kuvionmuodostuksen kannalta erittäin monipuolisia, mi­
kä tarkoittaa, että ratkaisemalla numeerisesti näitä matemaattisesti määriteltyjä 
systeemejä saadaan aikaan monenlaisia spatiaalisia kuvioita kahdessa ulottuvuu­
dessa ja rakenteita kolmessa ulottuvuudessa. Nämä vaihtelevat täplistä raitoihin 
ja lamelleista kaoottisiin rakenteisiin. Tässä diplomityössä esitetään tuloksia kol­
miulotteisista Turing-systeemeistä, joita ei ole aiemmin numeerisin simulaatioin 
tutkittu.

Esittelemme kolmiulotteisen Turingin systeemin perusominaisuuksia ja vertaam­
me näitä kaksiulotteiseen systeemiin. Huomaamme, että morfologisesta kehityk­
sestä tulee entistä kiinnostavampaa ja monimutkaisempaa kolmessa ulottuvuu­
dessa. Siirtymä kahden ja kolmen ulottuvuuden välillä on erityisen kiinnostava.

Motivaatiomme Turingin systeemeiden tutkimiseen on biologinen. Näytämme, mi­
ten tiettyjen pisteiden välille voidaan kasvattaa yhteyksiä käyttämällä Turingin 
systeemiä, jossa on kemikaalien lähteitä. Verkostolla, joka tällä tavoin syntyy, 
on monia kiinnostavia ominaisuuksia, ja ehdotammekin Turingin systeemistä ja 
aktiivisatunnaiskävelijämalleista yhdistettyä kokonaisuutta selittämään neurover­
kon muodostumisen keskeisiä piirteitä eli sitä, miten hermosolut eli neuronit löy­
tävät yhteyksiä toisiin neuroneihin.
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This thesis concentrates on nonlinear dynamical reaction-diEusion systems 
called Turing systems. In the 1950s British mathematician Alan Turing pro­
posed a simple reaction-diEusion system describing chemical reactions and dif­
fusion to account for morphogenesis, i.e., development in nature. Due to the 
complexity of nature, researchers have not yet succeeded in developing a Turing 
system based model that would describe morphogenesis in essence, although 
specific examples such as the skin and coating coloring of animals have been 
modeled using Turing systems.

Turing systems show a very rich behavior from the pattern formation point of 
view, which means that by numerically solving these mathematically defined 
systems we obtain a variety of spatial patterns in two dimensions and structures 
in three dimensions, varying from spots to stripes and from lamellar to chaotic 
structures. In this thesis we present results of a three-dimensional system, 
which has never before been studied using numerical simulations.

Due to the unique nature of our results we introduce some basic characteristics 
of the three-dimensional Turing system and compare the system with a two- 
dimensional one. We notice that the morphological development becomes more 
interesting and complex in three dimensions. The transition between two and 
three dimensions is especially interesting.

Our motivation for studying the Turing systems is biological. We show how 
connections between certain points can be grown by using a Turing system with 
sources of chemicals. The resulting connected network has many interesting 
properties, and we propose a combined Turing system and an active random 
walker model to explain some salient features of neural patterning, i.e., how 
neurons establish connections to other neurons.
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Chapter 1

Introduction

Nature presents many fascinating questions by showing a great diversity of patterns 

in plants, animals and other natural formations. Several examples can be found. 

One could consider the veins of a tree leaf, the vascular system of a human being, 

lightning caused by a thunderstorm, the development of branches of a tree, the 
growth of the limbs of primates and the formation of the delta of a river. Although 
the connection between the above phenomena seems superficial and they do not 
appear to be linked in any way, there is an increasing interest in developing simple 

and plausible mathematical models that could be generalized to model as many 
different ways of nature as possible.

The impetus for this was given by the famous British mathematician Alan Turing 

[Turing, 1952]. In his seminal article, The Chemical Basis of Morphogenesis, he 

claimed that a simple system of coupled reaction-diffusion equations could give rise 

to spatial patterns due to a phenomenon called diffusion-driven instability provided 
that certain conditions for parameter values were met. He also proposed that this 
model could explain morphogenesis, i.e., the development from an embryo to an 
animal - or from a seed to a plant. It is well established that DNA is an essential 
part of the development since it contains the blue-print for the development but it 

is not fully known how nature reads DNA. Turing suggested that the formation of 

spatial patterns is based on the information contained in DNA and that patterns 
specify the tasks for the cells.

Turing died just two years after he had published the paper, which was ground­

breaking for both the biological merits and the fact that diffusion could act as a
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Figure 1.1: The citation histogram [Pearson, cited 26.7.2001] of Turing’s article The 
Chemical Basis of Morphogenesis [Turing, 1952]. At the time of publications the 
results were controversial and were overlooked for a long time. Since the 1970s there 
has been rapidly increasing interest in Turing’s ideas. Notice that the envélope curve 
of the diagram is nearly exponential.

destabilizing factor. Although Turing’s ideas were adopted slowly by the scientific 

community, as can be seen from Figure 1.1, his work had a great impact on the 

modern nonlinear dynamical theory.

Nonequilibrium physics and pattern formation is a vast field of science. This thesis 
concentrates on reaction-diffusion systems and their pattern formation properties. 
A reaction-diffusion system consists of substances that diffuse and react, i.e., spread 

over the domain and interact mutually, this interaction being typically nonlinear. 

Models of such systems can be used to describe various chemical reactions involving 
two or more chemicals with different properties, e.g. the boiling of pulp. On a larger 
scale, reaction-diffusion models have been used e.g. for studying the spreading of
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forest fires [P rovat as et al., 1995, Karttunen et al., 1997].

In this thesis we will study two different reaction-diffusion systems, both containing 
nonlinear interactions. The first system is a general Turing system obtained by a 

Taylor expansion around the stationary state [Barrio et ah, 1998]. The conditions 

for the diffusion-driven instability to occur will be derived and the desired growth 

modes will be isolated using linear analysis. The results show how the morphological 
development can be directed by adjusting the parameters and initial conditions. The 
second model we study is the well-known Gray-Scott model [Gray and Scott, 1983], 
which shows very complex spatiotemporal behavior. It will be shown that in the 

presence of sources of reacting chemicals described with a certain set of parameters 

this model will generate tubular structures connecting the sources.

Due to the form and time-dependent nature of the Turing systems, analytical so­
lutions to these equations do not usually exist. In practice, this means that the 

continuous system must be discretized and solved numerically using computer simu­
lations. The rapid development of computers has made simulations of these systems 

less troublesome and the research has progressed rapidly. There are also many exper­
iments made with reacting chemicals that confirm, explain and enlight the physical 
basis which should never be forgotten while doing the computer simulations.

In this thesis the approach is based more on statistical physics and pattern formation 
rather than biology. However, the biological interpretations will be discussed in 

suitable contexts. The goal is to introduce the reader to nonlinear dynamical theory 
and to present new results of three-dimensional Turing systems. So far, these systems 
have only been solved and analyzed in two dimensions. It will be shown that the 
pattern formation is significantly affected by the spatial dimensionality of the system 
and hence very complex structures are obtained at higher dimensions than two.

The thesis will proceed as follows: Chapter 2 will concentrate on the general aspects 

of pattern formation. Chapter 3 is about numerical methods needed for solving 
the systems, computational details and visualization. In Chapter 4 the general 
Turing model will be introduced, analyzed and simulated. Chapter 5 will present 
the derivation and analysis of the Gray-Scott model and results obtained for a three- 
dimensional model. Finally, Chapter 6 is reserved for discussion and conclusions.
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Chapter 2

Theory of Pattern Formation

In this chapter, we will introduce some of the most important concepts related 
to pattern formation. The definitions are theoretical and after introducing each 

concept we consider the meaning of it in a Turing system. Finally, we present three 

important experiments which strengthen the background of the theory.

There exist many comprehensive books and a great number of review articles on 
this topic. The book Mathematical Biology [Murray, 1993] offers a wide view to the 
possibilities of modeling nature. Introduction to Nonlinear Science [Nicolis, 1995] 
gives an introductory, yet precise approach to the topic. The Dynamics of Patterns 
[Rabinovich et ah, 2000] is more like a versatile reference book for professionals 
and it has an essential chapter about the key experiments in pattern formation. 
The exhaustingly long, but comprehensive article Pattern Formation Outside of 
Equilibrium (Cross and Hohenberg, 1993] is a fundamental reference in the field.

2.1 Terms and concepts

2.1.1 Nonequilibrium vs. equilibrium

The pattern formation related research belongs to the field of nonequilibrium sta­
tistical physics. However, many of the studied models are phenomenological and do 
not have direct connection to microscopies. For example the Turing systems could 

be considered as a coarse-grained model of microscopic level properties of chemicals.

4



By coarse-graining we mean increasing the time and length scales at which we study 

the system. In a Turing system this means that we do not describe every atom 

separately, but approximate the behavior by a concentration field.

The concept of thermodynamical equilibrium is defined by four conditions. First, 
the system must be in mechanical equilibrium, i.e., the sum of forces and momenta 
in the system must be zero. Second, the system must be in chemical equilibrium 

implying that the chemical potential must be constant. Third, the system must be 

in thermal equilibrium, i.e., the temperature must be constant. And fourth, the 

distribution of states must be well defined, i.e., the particles must obey Maxwell- 
Boltzmann statistics. The above conditions are a restatement of the zeroth law of 
thermodynamics that stipulates that if system A is in equilibrium with В and C, 
then В is in equilibrium with C. If the four conditions are not met, the system is in 
a nonequilibrium state.

2.1.2 Dissipative vs. conservative

Dynamical systems can be divided into two classes, conservative and dissipative 

systems. Conservative systems conserve the measure of the phase space, whereas 

the dissipative systems tend to evolve to a subset of phase space with zero volume. 

If the system is defined by

f ”AXA), (2.1)

then a conservative system would satisfy the condition V • F = 0 and a dissipative 

system would satisfy V • F < 0. One should note that the inequality can be defined 
also to the other direction. In general, one talks about nonconservative systems as 
V • F Ф 0. However, the systems with V • F > 0 are not of great interest, due to 
the fact that their phase space expands and they escape to infinity, which is not a 

physical situation.

Turing systems and most of the other systems describing pattern formation are 

dissipative. This can be easily understood by observing the time evolution of Turing 
system, which starts with substantial changes in the morphology and ends with 
infinitesimal changes, i.e., at the end the subset of the phase space the system 
explores is very small.
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2.1.3 Stability

Stability of a system deals with the response to perturbations. Let us denote the 

state of the system by Xs and a time-dependent perturbation by x(t). In nature, the 
perturbations are manifested for example in the form of thermodynamic fluctuations, 
and a system never stays in a single state forever, but it explores the phase space 
available to it. We can write an equation for the real state X(t) of the system as

A'(t) = A', + f(f) (2,2)

The objective of the stability analysis is to investigate whether the system stays 
close to the state Xs or disperses far from it as time proceeds.

Two different kind of stabilities can been defined. Here we follow the definitions 

of Nicolis [1995]. It is said that the state Xs is stable in the sense of Lyapunov 

if a perturbed system never deviates “very far” from Xs. On the other hand, a 
system is said to be asymptotically stable if it satisfies the previous statement, and 
in addition, the perturbed system tends to return to the original state Xs as time 
goes on. An asymptotically stable system is also stable in the sense of Lyapunov, 

however, the opposite is not always true. If a system is not stable, it is said to be 

unstable.

Stability can be defined mathematically as follows: if one defines a norm || • || in 
the phase space and denotes the point where the system is perturbed to X0, we can 
state that a system is stable in the sense of Lyapunov if

V 6 > 0 3 0(e) > 0 s.t. V A0, 11X0 - Xs\\ < 6 => \\X(t) - X8\\ < e V t > 0.

The system is asymptotically stable if, in addition, ||A(t) — Xs|| —>■ 0 as t —> oo.

Although these ideas can be defined mathematically and explained by using the 
phase space and its states, the idea of stability is intuitive: If we disturb a sys­

tem by a small amount, an asymptotically stable stable system returns back to its 

original state. For example, a pendulum is asymptotically stable as a result of the 

gravitational forces. In a weightless environment it would not be, because the pen­
dulum would just float in the air randomly until the air resistance would stop the 
movement.

As an example of an unstable system one could consider an empty cylindrical metal-
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lic soda can which is under axial stress (e.g. the can is on the ground and you are 
pressing it with your foot). Now, if you hit simultaneously on the opposite sides 
of the can, it collapses under the pressure, i.e., a small perturbation results in the 

destruction of the can.

The final patterns and structures generated by a Turing system are stable states, 
because the Turing system evolves in time as long as it finds a stable state. However, 
our simulations are not infinitely long and thus we cannot conclude without any 

doubt whatsoever that the structures generated by the Turing system are stable. 

Anyway, we can test the stability by adding noise and we will do this in Chapter 4.

The robustness or stability of a certain structure depends on the amplitudes of the 
unstable wave vectors forming it. Due to the quadratic nonlinear term the amplitude 
is almost two orders of magnitude greater for the spherical structures than for the 

lamellar structures (stripes). As it will turn out in Chapter 4, the spherical structures 

are much more stable against noise. If a significant amount of noise is added to the 
two structures discussed above, in the case of spherical structures the chemical waves 
act as carriers for the noise, whereas in the case of lamellar structures, the chemical 
wave is modulated to the noise signal and the chemical information is lost.

The stability of a system can be studied by using a linear analysis. In the linear

analysis the behavior of the system is studied by expanding the equations of motion 
using a Taylor series and writing equation for the perturbation, where all the non­
linear terms of the series have been dropped out. This analysis tells which states are 
stable and which are unstable and it can be used for mode selection, choosing the 
characteristic scale of the system by adjusting parameter values. Both Cross and 

Hohenberg [1993] and Nicolis [1995] describe the method in detail. We will apply 

linear analysis in Chapters 4 and 5.

2.1.4 Symmetry breaking

Symmetry is one of the central concepts in statistical physics and in pattern for­

mation. Typically, transitions between different states in a system are related to 
changes in the symmetry properties, e.g. the system may experience a symmetry 
breaking transition. Below, we will discuss symmetry and its importance in nature.

Let us define two different spatial symmetries, translational symmetry and rota-
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Figure 2.1: The hydrogen bonds fix the crystal structure in the ice. In warm water 
the thermal fluctuations of water molecules keep the fluid homogeneous. Water is 
one of the few substances that expand in the solid state. The figure is from [Devlin, 
cited 15.11.2001].

tional symmetry. As an illustrative example of symmetry breaking we can consider 
the fluid-solid transition. Neglecting the effects of surfaces, a fluid is rotationally 

invariant and spatially homogeneous. Translational invariance is implied by the fact 

that the average properties of the liquid are independent of any arbitrary translation 

in the system, and rotational invariance by the fact that the average properties re­
main independent of any rotation about any axis. These properties are reflected by 
the following two properties of the radial density profile ф: 1) It remains unchanged 
as one moves to the direction of any vector r, i.e., {ф(х)) = (ф(х + f)), and 2) the 
rotational symmetry is manifested by the uniformity of ф.

The liquid-solid transition involves a symmetry breaking. Consider water which is 
cooled down. As the temperature decreases below zero degrees centigrade, the water 
molecules become organized and form a crystalline solid, since the thermal energy 
no longer dominates over the energy of hydrogen bonds, which fix the ice crystal. 
Figure 2.1 shows the structure of ice. The crystal is less symmetric, but it is more 

ordered. Due to the fact that the radial density profile is not constant irrespective 

of any amount of rotation, the crystal is not rotationally symmetric.

However, the crystalline ice is not completely without symmetry, it has discrete 
symmetry. Indeed, the discrete translational symmetry is demonstrated by the fact
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that if we can make translations that are multiples of the lattice constant, i.e., the 

characteristic length of the crystal lattice. In addition, discrete rotational symmetry

is established if while rotating we consider only a set of discrete angles.

As a second example we will consider a two-dimensional Ising model. It will help us 
to define another central concept in pattern formation, namely the order parameter. 

Ising model is one of the most important models in the studies of phase transitions. 

The model describes a ferromagnet with help of a lattice where on each site the 
spins point either up or down.

Symmetry breaking can be described more quantitatively by defining an order pa­

rameter, which is a quantity that describes the degree of order in the system. On 

one side of a transition the order parameter is zero and on the other side nonzero. 

For example, in the Ising model the order parameter is the degree of magnetization 

|(ra)| in the system. It should be noticed that there is no unique way of defining an 
order parameter, but each system must be considered separately.

Figures 2.2a-d describe the behavior of the spins in the Ising model and Figure 2.3 
shows the phase diagram, i.e., the order parameter as a function of temperature. In 

the absence of external fields and at high temperature, there is no net magnetization 
in the system. As the temperature is lowered, there exists a critical temperature 
(Curie temperature) Tc at which the magnetization start to grow from zero. In the 
high temperature phase, the system is disordered, i.e., there is no preferred direction 

in the system. Furthermore, if we assume periodic boundary conditions, we can say 

that the system is completely symmetric in a statistical sense.

In the low temperature phase, i.e., as T becomes lower that Tc the system starts 
to become ordered. Small ordered domains start to form, and thus the net magne­
tization increases from zero. The system starts to gain order and the completely 
symmetric disordered state becomes ordered, but of lower symmetry. The low tem­

perature phase is called the broken symmetry phase.

How do the above concepts relate to Turing systems? Morphogenesis, by the defi­
nition of the word is about formation and growth of patterns. Turing noticed that 
in the development of an embryo, it is in the early stages symmetric, but as time 
progresses this symmetry disappears as the embryo starts to develop some struc­

ture. Turing asked the question, what is the mechanism that causes the symmetry 

breaking? Thus, symmetry breaking lies at the heart of pattern formation.
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Figure 2.2: The alignment of spins in the plane in two-dimensional Ising model. 
In the figure a the temperature is above the Curie temperature, T > Tc- As the 
temperature is decreased below Tc, ordered domains start to appear. At T = OK 
all the spins become aligned.
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Figure 2.3: The net magnetization as a function of normalized temperature. The 
magnetization saturates as the temperature approaches zero.
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2.1.5 Bifurcation

In equilibrium thermodynamics and statistical mechanics we have phase transitions 

as discussed above in the cases of the liquid-solid transition and the Ising model. In 
systems out of equilibrium bifurcation can be understood as a change in the state 
of a system. Generally speaking, one could say that the symmetry of the system 
breaks as a bifurcation takes place. The word bifurcation is used for nonequilibrium 
systems and it is analogous to phase transition in equilibrium systems. Bifurcations 

can be classified according to the terms determining the reactions to saddle-node, 
transcritical, pitchfork and Hopf bifurcations. The pitchwork bifurcation is divided 
to supercritical and subcritical bifurcations corresponding to second-order contin­

uous transition and first-order discontinuous transition, respectively. There is a 

comprehensive review article by (Cross and Hohenberg, 1993], which discusses the 

bifurcation in detail.

2.2 Fundamental experiments

In the following we will shortly present three important experiments, which illustrate 
some of the most important features of pattern formation, i.e., competition between 
driving forces and dissipation of energy. These experiments are very important in 
the sense that they combine mathematical models to real physical situations.

2.2.1 Faraday experiment

In the first half of the 19th century English chemist and physicist Michael Faraday 
studied magnetic fields. He noticed that there were similarities in the field induced 
by a magnetic pole and vibrations on the surface of a thin layer of water with which 

he had been experimenting earlier [Faraday, 1831 j. Faraday is considered to be one 

of the greatest experimentalists ever lived and next we will consider his experiment 
with water, although his other works may even be more important to science in 

general.

Faraday experiment is carried out by pouring a liquid uniformly onto a horizontal 
Petri dish. The height h of the liquid layer must be small compared to the dimensions 
of the dish. Then the dish is vibrated using a vibrator governed by A(t) = Asin(wf),
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Asi n (w t)

Figure 2.4: The experimental setup in Faraday experiment. The height of the liquid 
layer is h and the vibrator (underneath the dish) is governed by Asin{uit). Numerical 
values could be for example h = 2mm, A = 50pm and tо = 10rad/s (from [Barrio 
et al., 1997]).

where A is the amplitude and ш the angular frequency. Depending on the amplitude 
and frequency, different kind of patterns can be observed on the surface of the water. 

A qualitative view of the experimental setup is presented in Figure 2.4.

In the original experiment Faraday observed two- and fourfold symmetries. Later 

pentagonal, octagonal and dodecágona! symmetries have been observed. Recently 
it has been shown by Barrio et al. [1997] that the symmetries can be chosen by 
adjusting the frequency of the vibrations when a special liquid with a low kinematic 
viscosity and large density is used. Figure 2.5 shows some of the results of these 
experiments. In addition, they proposed that the development of the surface pattern 

as the amplitude and frequency were increased resembled the evolutionary develop­
ment of sea urchins, a species that has lived millions of years ago and lives today. As 
the amplitude was further increased, they obtained a chaotic pattern (Figure 2.5d). 
Barrio et al. [1997] derived a theoretical model to describe the shape of the sur­

face, compared the model and experiments, and showed that this nonlinear model 

is analogous to Turing systems, which may have complex diffusion coefficients.

In the Faraday experiment the symmetry breaking can be understood as follows: At 
first, there is a uniform layer of the liquid, i.e., a perfectly symmetric situation. Ap­
plying external forces (vibrations) to the system results in an asymmetric situation 

in the sense that the layer is not uniform anymore, i.e., the surface is not flat. Thus 

we end up to an asymmetric situation starting from a symmetric one.
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Figure 2.5: Surface patterns obtained in Faraday experiment by using a liquid with 
high density and low kinematic viscosity. The camera is straight above the dish. The 
frequency and amplitude of vibration is increased through figures а-d. The shown 
development resemble evolutionary development of sea urchins. The pattern in the 
figure c corresponds to the shape of present sea urchins. Reproduced from [Barrio 
et ah, 1997].

13



2.2.2 Rayleigh-Bénard convection

The Rayleigh-Bénard experiment concerns the problem of thermal convection and 

was first performed by Bénard [1900]. It was not until sixteen years later, when Lord 

Rayleigh tried to explain the phenomenon theoretically [Rayleigh, 1916]. Although 

the experimental setup itself is simple, it displays very rich behavior. In everyday 

life, examples of thermal convection related to this experiment are the circulation 
of water in atmosphere and in the oceans due to weather changes, and the motion 
of continental plates caused by movements of magma in the mantle of the earth.

The idea of Rayleigh-Bénard convection is illustrated in Figure 2.6. Consider a fluid 

placed between two infinite parallel horizontal plates assumed to be perfect heat 
conductors. We denote the temperature of the lower plate by Ti and the upper 
plate by T2, and the temperature difference between the lower and upper plates by 
AT = 7\ — T2. If AT < 0, there will be net motion in the fluid. If AT is positive, 
but small the thermal conduction from lower to upper plate takes place and the 

temperature profile between T\ and T2 becomes linear. The fluid will remain at rest 

since the viscosity and thermal conduction are able to stabilize the system against

small perturbations: viscosity generates internal friction opposing movement and 
dissipative effects of thermal conduction tend to restore the displacements.

As the AT exceeds a certain threshold ATc, thermal expansion causes the fluid near 
the lower plate to be substantially less dense than the colder fluid above, which is 

an unstable situation in gravitational field. The warmer fluid near the lower plate 
wants to rise, but there is no space for it above. Thus some of the colder molecules 
must move down due to conservation of mass and make space for warmer molecules. 
This fixes a finite wave length for the instability, the wave length meaning the width 
of the formed convection cells. This is clearly visible in Figures 2.6 and 2.7.

As a molecule moves upwards, it is cooled down and as a result it falls back down. 

Convection cells are called Bénard cells and the fluid will start moving up and down 
in a circular fashion. Figure 2.6 shows a qualitative view of Bénard cells. Clearly, the 
resulting situation is not symmetric: both translational and rotational symmetries 
are broken due to the movement of the molecules. However, one should notice 
that from the macroscopic point of view this is not the case, because the velocity, 

temperature and density at a given point are time-independent. Figure 2.7 shows a 

simulation result of a model introduced by Swift and Hohenberg [1977].
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T2 < Tl

Ti

Figure 2.6: The figure shows qualitatively the idea of Rayleigh-Bénard convection. 
Bénard cells are formed and the fluid starts to move in circular fashion and to 
opposite directions in neighborhooding cells. The situation shown in the figure is 
ideal and in reality the cells are not always in parallel and defectless.

Figure 2.7: Computer simulation of Rayleigh-Bénard convection using the Swift- 
Hohenberg model. The view is from above. Notice that the convective cells are not 
ordered as in the ideal situation of Figure 2.6. The dark and light colors denote the 
domains with upward movement (warmer sparse liquid) and downward movement 
(cooler dense liquid), respectively. The figure is reproduced from [Karttunen, 2001].
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Let us now approach the experiment from a more theoretical perspective and de­
termine a control parameter describing the instability. This control parameter is 
a dimensionless number, which captures the essential features of the system. We 

will not rigorously derive the Rayleigh number R, i.e., the control parameter of this 

particular system, but we will take a look at the most important quantities that 
affect the Rayleigh-Bénard instability and the Rayleigh number.

The thermal expansion discussed above is of course important. As AT is small 

we can approximate change in the density p (or mass) using linear response, i.e., 

p - p0 + pa(T2 - Ti), where a is the thermal expansion coefficient. In the analysis, 

the distance of the plates h, gravitational acceleration g and viscosity of the fluid v 
define also characteristics of the system. In addition, by using thermal conductivity 
к and specific heat Cp of the fluid at constant pressure, we can define thermal 
diffusivity к = к/pCp. With help of these characteristics the Rayleigh number can 

be derived by dimension analysis, which yields

H ftgATfi3 (2.3)
KU

The Rayleigh number is indeed a dimensionless combination of dimensional parame­
ters. According to Cross and Hohenberg [1993], who offer a very technical approach 

to this experiment, the instability occurs at R = 1708, independent of the fluid.

2.2.3 Turing-type chemical pattern

The experiments discussed above are very important in illustrating the basics of 
nonlinear dynamics and pattern formation. There exist many different mechanisms 

for pattern formation and one should not mix the very different underlying physical 
situations by making conclusions about the qualitative similarity of patterns.

Turing patterns are stationary patterns defined by chemical concentrations and they 

originate from a coupling of reaction and diffusion processes. Furthermore, Turing 

systems involve spontaneous symmetry-breaking, i.e., the diffusion acts as a desta­

bilizing force and leads to a bifurcation in proximity of a steady state. In addition, 
Turing patterns have a characteristic wave length, which depends only on the con­
centrations, input and output rates, diffusion coefficients and reaction rates of the 
chemicals. One should notice that the last condition is not fulfilled in the case of 

Bénard cells, because the size of the cells depends on the geometrical properties
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Figure 2.8: Turing-type chemical pattern in a gel strip reactor. The substances A 
and В diffuse from the reservoirs and react in the gel strip resulting in the pattern 
seen in b and enlarged in c. The figure is reproduced from Castets et al. [1990].

of the system, i.e., the distance between the planes and not only on the chemical 
parameters.

The first unambiguous experimental evidence of Turing-type pattern was found by 
C astets et al. [1990]. Although the article presents strong evidence and agreement 
with theoretical predictions, the authors used the word “Turing-type” to be careful. 
The experimental setup is illustrated in Figure 2.8. The gel strip is a transparent 
chemically inert hydrogel with dimensions 20 x 3 x 1mm. The two long sides of the 

gel strip are in contact with chemical reservoirs A and B, which are kept at constant 

concentration. The solutions A and В diffuse from the reservoirs to the gel strip and 

react together giving rise to a spatial pattern shown in Figure 2.8. The experiment 
involves a complex chemical treatment of the gel strip and the solution. The typical 
time to establish a pattern is 3 hours and the pattern may remain unchanged more 
that 20 hours. These time scales describe well the coarse-grained nature of the 
theoretical Turing models. Using atomistic simulation methods we could simulate 

microseconds at best.
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Chapter 3

Numerical Approach

In this chapter, the general form of Turing system will be introduced and it will 
be shown, how the equations are solved in practice. This means applying Euler’s 
method and finite difference method after the problem has been discretized. Both 
methods are well-known and can be found from any comprehensive numerical anal­

ysis book, e.g. [Harris and Stocker, 1998). This chapter will continue with standard 

von Neumann stability analysis of the problem. Finally, computational details, vi­
sualization and encountered problems will be discussed.

3.1 The general form of Turing system

The general form of Turing system for modeling the evolution of the concentrations of 
two chemicals, i.e., morphogens is given by two coupled partial differential equations

Щ = DuV2u + f{u,v)

vt = DvX/2v + g(u,v), (3.1)

where и = u(x,t) and v = v(x, t) are the concentrations, and Du and Dv the re­
spective diffusion constants setting the pace of diffusion. The term V2 denotes the 

diffusion across the area and the subindex t time derivation, i.e., how fast the con­

centration varies. The reaction is described by functions / and g that are typically 

non-linear. The term morphogen was introduced by Turing [1952] to specifically 

point out the effect of these chemicals on morphogenesis.
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The reaction-diffusion mechanism resulting in the instability can be understood with 

help of the following example, which requires only common sense. Turing discussed 

the problem of missionaries and cannibals. Think of an island, which is populated 

by cannibals. Now, missionaries come to the island by boat and want to evangelize 
the cannibals. If two or more missionaries meet one cannibal they can turn this 
cannibal into a missionary. If the relative strength is the other way around, the 
missionaries get killed and eaten by the cannibals. As the missionaries die, more 
missionaries are brought to the island. In addition, cannibals reproduce with other 

cannibals.

The concept in the above example is diffusion, i.e., the movement of cannibals 
and missionaries, which makes the system unstable. This characteristic is called 
diffusion-driven instability or Turing mechanism. In this example the missionaries 

have bicycles and they move faster, i.e., they represent the inhibitor of the reaction, 

i.e., they want to slow down the reproduction of the cannibals, which are in this 

case the activator. Based on these definitions one can notice the autocatalvtic 
nature of the Turing mechanism: in areas with a lot of cannibals the number of 
cannibals will increase, because the cannibals will reproduce and more effectively 
kill the missionaries. On the other hand, the predominance of the cannibals means 
that more missionaries will be brought to the island to convert them. Finally, the 

cannibals and missionaries will find a balance. This is a funny example, but it 
illustrates well the very essence of Turing systems.

3.2 Solving of equations

The problem with a system of partial differential equations of the form of Eq. (3.1) 
is that typically they cannot be solved analytically, hence numerical methods are 
needed. We discretize the problem, i.e., transform it from an infinite dimensional 

to a finite dimensional form. In practice this means that the continuous problem is 

discarded and a fixed domain of size M x N (in 2D) is introduced. If we want to 
solve the problem in three dimensions, the size of the fixed domain is M x N x P. 
Here M, N and P stand for the respective lengths of the sides of the simulation 

domain, i.e., how many grid sites are used in each direction. For simplicity, the 

equations are usually solved in a rectangular mesh. The words lattice, mesh and 

grid are used for the discretized domain and the word site means one cell of the 

mesh.
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It is a fundamental fact that the problem of Eq. (3.1) is not well-posed without the 
knowledge of the initial and boundary conditions. In pattern formation simulations 

initial conditions are usually random perturbations around the steady-state of the 

system, because if different initial conditions result in patterns that are topologically 

the same, it proves the robustness of the system. The boundary conditions are 
often chosen to be periodic in all the coordinate directions of the system. Periodic, 
boundary conditions mean that the opposite boundaries of the simulation domain 
are actually next to each other, from which it follows that the system acts as if its 

dimensions were infinite provided that the system is not too small. We may think 
of the situation as there would be an unlimited amount of simulation domains with 
their sides coinciding. In the case of a small system periodic boundary conditions 
may distort the fields inside the system.

For clarity, let us consider the following simple example, where the unit segment 

of real axis = [0,1] is discretized to 10 sites, i.e., we use M = 10. This means 

that the continuous domain fl is substituted with a set of points, in this case the 

set being

E = {0.05, 0.15,0.25, 0.35,0.45, 0.55, 0.65,0.75, 0.85, 0.95}.

Now the periodic boundary conditions would mean that the points 0.05 and 0.95 see 
each other as neighboring points, e.g. like 0.25 and 0.35. Furthermore, any function 
value can only have values on the discrete points of set E, the values for other points 

of fl must be interpolated.

In order to make the numerical process more transparent we will show how the 

discretization is done and demonstrate the numerical methods in a two-dimensional

case. The extension to three dimensions is straightforward and would in this case 
only make the notations more complicated due to having three-dimensional matrices.
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3.2.1 Discretization

A Turing system in two dimensions poses us a problem, where we have to discretize 

equations of the following form

yt = DAy + f{xi,z2,t) in ft = [0, Lx\ x [0,Ly]
< y{xu0,t) =y(xi,Ly,t) ^

y{0,x2,t) = y(Lx,x2,t)
y(x i,.r2,0) = g(xux2).

In the above formulation the topmost equation defines the problem and the domain 

where has to be solved. The next two equations express the periodic boundary 
conditions, and the last equation fixes the initial conditions with help of function 
g(x\,x2) defined in the domain. As was mentioned previously, in the case of Turing 
systems the function g is usually a uniform distribution of random numbers rather 

than a function in the usual sense.

For simplicity the lattice constant (dx — h) is chosen to be isotropic, i.e., h = h\ — 
h2. Now the notation t/у is used for the approximation of y{ih\, jh2,t), the value of 
y at the lattice site (i, j) at time t. Using this, we get the matrix

/
Vh{t) =

У ii

\ Уьх i

Уну ^ 

yixLy

Next we discretize the function / over the domain matrix by setting

fh{t)

( f(h, h, t) 

v f{Lxh,h,t)

and the initial conditions analogously

( g(h, h, t)

9h(t) =

y h, t)

f(h, Lyh, t) ^

f[Lxh,Lyh,t) J

g{h:Lyh,t) '

g(Lxh, Lyh, t) J

Using these matrix notations we now proceed and apply some suitable method to 

solve the partial differential equation.
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3.2.2 Euler’s method

The Euler’s method is well-known citepharris and simple for solving differential 

equations. The method is based on numerical integration of differential equations. 

In our case, we use it for the integration over the time step. First, we give a short 

review of the method itself.

In the general case, Euler’s method is used for solving simple first order differential 
equation of the form y'(t) = f{t,y{t)). As the derivative y' is approximated by 
difference quotient, we obtain the equation

yjh + ¿) - y(U) я /(t¡ y(t¡)) + 0(¿), (3.3)

where 0(ö) is an error term of order ö, such that

lim
¿->o ó

— 0.

By dropping the error term, Eq. (3.3) can be further reduced to

y(ti + 5) « y(ti) + f(U, y(U)) • 6. (3.4)

In our discrete Turing system we fix the time step as 6 (or dt). By setting у* = 

yh{kô), we obtain for Euler’s method

Í »¡Г1 = vl + + ft) (3 5)

\ y° = St,

where Дд denotes the discretized laplacian, the derivation of which will be presented 

next.

3.2.3 Finite difference method

The difference method is widely used in problems involving the numerical calculation 

of the laplacian operator V2 = Д. In our two-dimensional study, the laplacian of 

the function y(xi,x2) can be written out as follows

, _ d2y d2y
У dx\ dx\ (3.6)
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In the three-dimensional case, the operator would contain second derivative also in 
the third direction. By approximating the derivatives twice in the same way as in 
the previous section and using the notation for y(hi, hj) we obtain

d2y _ Уг+l,j - 2ytj + Уг-ij 

dx\ h2

By repeating the above procedure for derivatives with respect to y, we can write the 
discretized laplacian operator for Eq. (3.5) as Ah = I <g> Д/,, + Ah2 <g> I, where

1 ... 0 1 \

-2 ... 0 0

... 1 -2 1

... 0 1 -2 у

for p — 1,2. Notice that periodic boundary conditions are properly taken into 

account.

Ahp hj

( -2

1

0 
1

3.3 Fourier transform

Fourier transform is a widely used method for spectral analysis and an introduction 

to the subject can be found from any basic book handling university level mathe­
matics. The name is to honor a French scientist, Jean-Baptiste Joseph Fourier, a 
contemporary of Napoleon, who invented the idea of describing a function as a lin­

ear combination of other functions. As the Fourier series is extended to continuous 

case the sum becomes an integral and we can define the one-dimensional Fourier 

transform H(co) of the function h(t) as

H(u /
OO

h(t)(
-OO

eiLJtdt, (3.8)

and the inverse transform as

1 Г°°h(t) = — / H{io)e-lutdu,
2тг ./-oo

(3.9)

where t denotes the time and uj the angular frequency. Here, we want to obtain a 

three-dimensional transform only with respect to space. This could be thought of in
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the following way: t has the unit second s and и the unit 1/s. When we transform 
spatial coordinate x which has describes length, e.g. units m, we get something with 
unit 1 /m. This is of course the wave vector k. When we write the Fourier transform 

for our purposes we get

H{k) = f h(x)ell£dx, (3.10)
J n

where denotes the three-dimensional domain and the operator • the scalar product
of the two vectors.

3.3.1 Discrete Fourier transform

In our problem, the data is discrete and instead of the continuous transform defined 
by Eq. (3.10) we have to use discrete Fourier transform (DFT). A brief introduction 
to DFT can be found from [Press et ah, 1995]. The idea is to transform the inte­
gration to a sum of discrete values such that the DFT corresponding to Eq. (3.8) is 

given by

ЛГ-1
Н(шп) = Д Y, hjeljn/N, (3.11)

j=о

i.e., discrete points hj of the time domain are transformed to discrete points uon of 
the frequency domain. The calculation of DFT is not straightforward due to its 
time consuming nature. There are several algorithms for calculating the transform, 
the most used being the fast Fourier transform (FFT).

3.3.2 FFTW

It is useless to build a code for Fourier transform within the simulation code because 
there are many libraries developed for this task. Fastest Fourier Transform in the 
West (FFTW) [Frigo and Johnson, cited 5.12.2001] is a free software developed at 
the Massachusetts Institute of Technology. It is easy to use and offers both real 
and complex transforms in one or more dimensions. One of the great features of 

the libraries is that they adapt to many platforms and can optimize themselves 
autonomously. In addition, the transform is very fast as the name states.
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3.4 von Neumann stability analysis

The von Neumann stability analysis is a method for analyzing stability of a difference 
equation. A review of the method can be found for example from [Press et al., 1995]. 
Application of the method on the above problem will be presented next.

The difference equation in three dimensions equation is given by

D
h?
T Ут,п,р-1 — 6 Утпр) + /mnp(y)’

-¡/+1 _ yt
Утпр Утпр _ ,

ß \Ут-\-1,п,р • Ут— 1,n,p ' Ут,п+1,р • Ут,п—1,р ' Ут,п,р+\ ■

(3.12)

where h denotes the lattice constant and S the time step.

Let us now consider that the difference equation varies so slowly that we can try 
independent solutions of the form

_ ctnikxmh Akvnh AkzphУт,п,р - s e e e , (3.13)

where i is the imaginary unit, and kx, ky and kz the wave numbers in x-, у- and 

z-directions, respectively. It should be noted that the lattice constant h is the same 
in all directions as discussed before.

When we substitute Eq. (3.13) to Eq. (3.12) and simplify we get

Ç = ^(е,ы + e' + eikyh + e ikyh + eikzh + e ikzh - 6) + 1 + àfh(y)
£j¡ (yvnkx gnky gpkz yh ’

(3.14)

We can further approximate £(&) by transforming complex numbers to trigonometric 

functions using Euler’s formula and by minoring the cosines with minus one. This 

yields

mi < ii- 12Д* , 6JM
Cn (grnkx gTiky gpkz\ih (3.15)

We are interested in the modulus of called the amplification factor. Condition 
|£(A;)| < 1 for all k, implies that the difference equation is stable, i.e., no mode is 

exponentially growing. The last term on the right side of Eq. (3.15) is dependent on 

the reaction kinetics of the equation. Thus we handle the general Turing system and 
the Gray-Scott model separately. Notice that in addition the two equations of each
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system must be analyzed separately, because the stability conditions are different. 

However, S and h must be chosen equal for both equations of a system due to the 
coupling of the equations.

3.4.1 General Turing system

It will be shown in Chapter 4 that the kinetics of the general Turing system are 
given as

f(u,v) = cm(l — r\V2) + u(l — T2ii)

g(u,v) = v(ß + otr\uv) + u(r2u — a). (3.16)

As we linearize the above equations, we are left with f(u, v) = au + v and g(u, v) = 
ßv — au. To make the approximation reasonable we use the same trial solution for 
both и and v in the form of Eq. (3.13), except that we make a phase shift of тг 

radians between и and v. This is due to the cross-activator-inhibitor nature of the 

system.

When we substitute our linearized kinetics to Eq. (3.15) and simplify the equations, 
we get

max \Çu(k)\

1 - ß + ot)\. (3.17)max \£v{k)\

Figure 3.1 shows the plots of Eq. (3.17) for max |£(d)|, when the lattice constant is 
fixed to h — 1 and parameter values correspond to different modes. The selection of 

the parameter values will be discussed in more detail in Chapters 4 and 5. For now, 

the parameter values should be considered just given. The suitable values of Ô are 

the ones where max |£(5)| is below the unity, which has been drawn in Figures 3.1 
and 3.2 for clarity. Notice that the bottom row of Figure 3.1 implies problems, 
because with the third set of parameters the first equation for chemical и is not 
stable for any 5. This can be seen from Figure 3.1e since the amplification factor 
is larger than one and thus unstable for all values of S. However, in practise the 

nonlinear effects and the coupling of the equations stabilize the iteration. Based on 
this analysis wre found that values h = 1 and Ô = 0.05 were suitable for the general 
Turing system.
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Figure 3.1: Plots of Eq. (3.17) for the used sets of parameters. Figures on the left 
column (a, c and e) correspond to the equations of и and b, d and f to the equations 
of v. The parameters of the system were in a and b) Du = 1.032, Dv = 0.516, 
a = 0.899 and ß = —0.91, c and d) Du = 0.244, Dv — 0.122, a — 0.398 and 
ß = -0.4, e and f) Du = 0.129, Dv = 0.516, a - 0.89 and ß = -0.99.
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1 X5 2

Figure 3.2: Plots of Eq. (3.19) for the used set of parameters. Figure on the left 
corresponds to the equation with и and the one on the right to the equation with v. 
The parameters were Du = 0.125, Dv — 0.05, F — 0.045 and К — 0.065.

3.4.2 Gray-Scott model

It will be shown in Chapter 5 that the kinetics of the Gray-Scott model are given as

f(u, v) = —uv2 + F( 1 — u)

g(u,v) — uv2 - (F + K)v. (3.18)

When the equations are linearized and the constant term is neglected we are left 
with f(u,v) — — Fu and g{u,v) = —(F + K)v. By following the same procedure as 
in the previous section, we get

12D
max|i„(fc)| = |1 - + Л1

12 D
max|^(fc)| = \l-5v{-^ + F + K)\. (3.19)

Figure 3.2 shows the resulting plots for one of the used modes. Based on this analysis 

and numerical tests we chose values h = 1 and 5 = 1. Notice that this model allows 

much bigger time step than the general Turing model.

3.5 Computational details

As one begins to write a simulation program, the following questions in addition 
to the numerical algorithm selection and analysis should be considered: Which
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programming language should be used? How the code can be optimized by pro­
gramming tricks and using compiler flags? How should the data be read from the 

program? How can the results be visualized? In this section we concentrate on 
the first three questions and some other technical details. The last question will be 
discussed in the next section.

The simulation program was made using C programming language, since it is a 

simple but versatile language and it is known that C together with Fortran are the 

most efficient languages for computational tasks. An additional advantage is that 

MATLAB offers a wide application program interface for both of these languages. 

The interface can be used to exchange data between MATLAB and the simulation 
program or to use MATLAB’s functions in the program - or vice versa.

Due to the nature of our problem, we chose not to use any algorithm toolboxes and 

wrote the whole program ourselves. However, for setting the initial conditions we 
used random number generator RANMAR [Marsaglia and Zaman, 1987], which is 
considered as one of the best random number generators publicly available. This 
addition was made only later when we noticed that the generic rand-function of C 

failed. The old truth is that one should never use the random number generators 

that come as black boxes.

At first, the simulations were made in two dimensions and the extension to three 
dimensions was made later. The two-dimensional simulations were made with mesh 
sizes ranging from 30 x 30 to 1000 x 1000. Adding the third dimension led to 
significant changes, since a three-dimensional system of size 100 x 100 x 100 has 

as many lattice sites as a two-dimensional system of 1000 x 1000. In addition, 

the simulation is slower, because in three dimensions the laplacian must always be 
calculated to six directions compared as to four. To make simulation time reasonable 
we used a system of 50 x 50 x 50. The number of time steps taken was usually 
104 - 106.

In our program there were not many things to be optimized. However, the use of 

memory and the number of for-loops were decreased to minimum. With this kind of 

systems one should be careful with the allocation of memory for arrays. If you are 
not, you might suddenly have ten or more 50 x 50 x 50 arrays, each holding 125000 
8 byte doubles, which is often useless. The calculation of laplacian was optimized in 
the following way: First the differences were calculated for the sites that were not 

on the boundary. Only after that the differences were calculated for the boundary
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sites. This was beneficial since otherwise we would have had to check inside a triple 

for-loop whether a site is on the boundary or not.

The convergence of the iterations was checked by observing the change in the values 
of each site. When this quantity was on average ^ 10-6 the system was considered to 
be stable enough and the simulation was stopped. It should be noted that due to the 
nature of the system, it approaches the final state asymptotically, never completely 

reaching it. Another problem is that the system may become locked in a meta-stable 

state for a very long time thus making the system seemingly stable. When this was 

suspected, simulations with millions of time steps were ran. Another way to get the 

system out of meta-stable states is to add random noise. This will be discussed in 
Chapter 4.

The calculation of structure factors was made computationally lighter and more 
precise by changing the intuitive order of the procedures: we did not transform the 

pair correlation function but we calculated the Fourier transform of the data and 
defined the structure factor from it.

For visualization and analysis the data was read from the program using MX- and 
MAT-routines of MATLAB for file and memory management, which resulted in the 

dependence on MATLAB libraries. Thus the code is not easily portable between 

platforms, which is not desirable, but in this case necessary. We tried also to write 

the data in ASCII form, but this resulted in big text files and slow data reading. 
All these problems were caused by a bigger problem, which we will turn to next.

3.6 Visualization

Every time a researcher makes simulations, he or she faces the same problem: Suit­

able tools for visualizing the data should be found. There are many programs for 

visualizing different kind of data. Generally speaking, the most used is MATLAB 

due to its easy-to-use environment and functions. The visualization of our two- 

dimensional studies was made with MATLAB. We had a two-dimensional array 
designating concentration values for each site of the mesh. Hence our data was ac­
tually three-dimensional - two position coordinates and a data value. This kind of 
data can be simply visualized by a surface or a contour plot for which MATLAB 

offers suitable tools.
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The visualization of the three-dimensional Turing system made everything much 
more complicated. In this case the data is actually four-dimensional having three 
position coordinates and a data value. With MATLAB one could only do simple slic­

ing the data but this was not sufficient in this case due to the data being continuous 

and very complex. The answer to the problem was FUNCS, a Finnish visualization 
software developed by the Centre for Scientific Computing.

FUNCS is for visualization and animation of multi-channeled two- or three-dimen­

sional data on Silicon Graphics (SGI) computers. The user may set the color and 

transparency for each data value. Using volume shading, FUNCS gives a picture 

that can be rotated and zoomed. For simplicity, we discretized the data to zeros 

and ones, where zero indicates that the dominating chemical on the site is и and 
one indicates v. Thus the resulting picture has only two colors. Blue color was 
used for the concentration of chemical v and yellow for chemical u. To make the 
picture clearer, yellow was set to be transparent. This simplification was possible 

since the Turing systems are usually cross-activator-inhibitor systems, meaning that 
only one chemical dominates in certain domain, and, in addition, the interfaces of 
these domains are sharp.

The dependence on MATLAB due to the data being imported to FUNCS as raw 

SGI-binary, which is written with the help of MATLAB. Another possibility would 

be running the simulation program only in SGI computers and write SGI-binary 

directly. However, this line of thought was not pursued.

The other visualization software that was used, was an open source software called 
OpenDX developed by IBM. OpenDX enables the real-time visualization of the sim­
ulation using a sophisticated data transfer methods between two computers, i.e., we 

simulate the system using a fast processor or many processors and the data is sent 
out almost continuously to the visualization program which does not have to be 
ran on the same computer as the simulation. In this way, it is straightforward to 
make movies showing the development of the morphology. For discussion about the 
advantages and disadvantages of OpenDX, and details of the client-server approach 

see (Mustonen, 2001]. However, no matter how sophisticated the visualization soft­

ware is, the problem remains that one cannot really see inside a three-dimensional 

object.
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Chapter 4

General Turing System

This chapter concentrates on building, analysis and numerical simulation of a gen­
eral of Turing system. This model is called general due to the nature of the reaction 
kinetics, which make it possible to study the effect of different couplings and nonlin­
ear terms. The model was introduced in [Barrio et ah, 1998]. We use linear analysis 

to predict the behavior of the system, and the numerical methods presented in the 

previous chapter for solving the system using computer simulation. Finally, the 
results are presented and analyzed with the help of structure factors.

4.1 The model

First, we consider the general form of a Turing system that was already introduced 
in the beginning of Chapter 3. It is given for two chemicals U and V as

Ut = DvV2U + f(U,V)

vt = DvV2V + g(U,V), (4.1)

where U = U(x,t) and V = V(x,t) are the spatially and temporally varying con­

centrations.

This system has a steady-state (UC,VC) defined by f{Uc,Vc) = g{Uc,Vc) = 0. The 

equations of motion are obtained by phenomenological expansion of the nonlinear 
reaction functions / and g around the stationary uniform solution (Uc, Vc). Keeping

32



terms up to cubic order, we get for the reaction terms

m V) = A(U - Uc) + B(V - Vc) - C(U - UC)(V - Vc) - D(U - UC)(V - Ve)2 

g(U, V) = E(U - Uc) + F(V - Vc) + C(U - UC)(V - Vc) + D(U - Ue){V - Vc)2,

where A, B, C, D, E, F are constants to be determined. Notice that the coefficients 

of the nonlinear terms must be chosen to be opposite numbers due to the cross­
inhibitor-activator nature of the system. Fixing 5 = 1 and denoting A = a, C = 
r2, D = ar\, 5 = 7, F = ß yields

щ = D(5V2u + cm(l — riu2) + u(l — r2u)

vt = ôV2v + v(ß + arxuv) + u(7 + r2v), (4.2)

where и = U - Uc and v = V — Vc, making the point (u, v) — (0,0) a stationary 
solution. The diffusion constant is divided so that 5 is a scaling factor and D is the 
ratio between the diffusion constants of the two chemicals, ft is important to notice 
that D Ф 1 is required for the diffusion-driven instability to occur. We consider 
и to be the activator and v to be the inhibitor chemical, and thus require D < 1. 

The parameters 77 and r2 can be used for adjusting the non-linear interactions, and 
a, ß, 7, Ö and D for mode selection, which will be discussed in the next section.

The coefficients 77 and r2 set the amplitudes of the nonlinear terms, which are 

crucial for the morphology. It has been pointed out by Barrio et al. [1998] that 

in two dimensions quadratic interactions (uv) correspond to spot patterns, whereas

cubic interactions (uv2) correspond to stripe patterns. By tuning 77 and r2 one 
can select either one of the interactions or generate a competition between the two 
patterns by setting both terms nonzero.

4.2 Linear analysis

Linear analysis is a method for studying the stability of a system around a steady- 

state. By linear analysis we try to find modes, i.e., wave vectors that grow exponen­

tially thus resulting in an instability and complex pattern formation. In addition, 

we try to choose the parameters in such a way that only certain desired modes will 

grow. For an introduction to the method see [Nicolis, 1995] or [Murray, 1993].

It has been pointed out earlier [Barrio et al., 1998] in relation to the studies of
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two- dimensional Turing systems, that there may exist a number of different modes 
having the same wave number. This phenomenon is called degeneracy. To make the 
concept conceivable consider two two-dimensional vectors k\ = (1,0) and k2 — (0,1). 
Even though these vectors point to different directions their length is the same 
\ki\ = \k2\ = 1. In three dimensions the degeneracy is greater and occurs already 
at small wave numbers. Consider for example vectors (7,1,0), (5,0, 5), (3,4,5) and 
all other possible permutations having the same length 5\/2. Thus the question of 

which mode will dominate the evolution becomes more difficult to answer in three 
dimensions.

The above becomes obvious when one recalls that in a finite grid the admissible 

modes are not continuous but discrete and the modulus of the wave vector is given 

as

\k\ = к = 2тг (4.3)

where Lx, Ly and Lz denote the system size in respective directions and nx, ny and 
nz the respective wave number indices. Then the linear analysis proceeds as follows.

As was mentioned earlier, Eq. (4.2) has an stationary solution defined by the zeros of 
/ and g evaluated at steady-state solution (u,v) = (0,0). By solving the equations

au( 1 — r\V2) + v(l — r2u) = 0

v(ß + ar\uv) + u( 7 + r2v) = 0, (4.4)

we obtain another steady-state solution at

v = -(Q + 7)
l + ß

(4.5)

In order to facilitate the analysis, we enforce (0,0) to be the only stationary uniform 

solution by setting a — —7, thus making the relation of Eq. (4.5) obsolete.

Dispersion relation is an important concept relating to linear analysis. It yields the 
eigenvalues of the linearized equations as a function of wave number. In the absence 

of diffusion the linearized system is given as

Ut\ _ l /“ fv

Щ J \ 9u 9v
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where the sub-indeces stand for partial derivation and these derivatives are evaluated 
at the steady state (uClvc) = (0.0). In the presence of diffusion with the partial 

derivatives of the reaction kinetics calculated we obtain

/ ut\ f SD 0 \ / Au \ fa 1 \ / tt \

\ b j " i o

Now, let uk(r, t) and vk(r, t) be the eigenfunctions corresponding to the wave number 
к and each function satisfying the boundary conditions. We seek for solutions of 

form

u(r,t) = ^~^ckeXtuk(rA) (4.6)
к

v{f,t) = ckeXtvk(r, t), (4.7)
к

where the constants ck are determined by the initial conditions. When these solu­
tions are substituted to Eq. (4.2), we obtain

/ А щ X _ / SD 0 X Z -Pufc X + /a 1 W \
X Av* j у 0 0 ) X ~k2yk ) X 7 ^ / X Vk /

The eigenvalues Л are determined by the characteristic polynomial

\XI - A + Dk2\ = 0, (4.8)

where I denotes the identity matrix, A the linearized matrix and D the matrix with 

the diffusion constants. Calculation of the determinant yields

A2 - {a + ß - ôk2{ 1 + D))A + (a - SDk2){ß - Sk2) + a = 0, (4.9)

where к2 = к ■ к.

The conditions for diffusion-driven instability to occur are widely known [Murray, 

1993| to be the following

fu T 9v < 0 (4.10)

Iu9v fv9u > 0 (4.11)

Du9u T Dv fu > 0 (4.12)

D,t9u T Dyfu > 2 \/DuDv(fu9v fv9u ) i (4.13)
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where the partial derivatives are calculated at (uc, vc) and Du = 6D and Dv = Ô are 
the diffusion coefficients for chemicals и and v, respectively.

From the above conditions we can conclude that the onset of instability is subject 

to the following conditions: if a > 0, then

-1 < ß < -a (4.14)

a — 2\/olD > ßD, (4.15)

and if a < 0, then

ß < min{ —1, — a} (4.16)

a - 2VœD > ßD (a> ßD) (4.17)

a + 2VaD > ßD {a < ßD). (4.18)

By restricting the parameter selection such that o? G (0,1) and ß G (—1,0) we are 

left with only two conditions

ß<-a (4.19)

a - 2\/aD > ßD. (4.20)

The dispersion relation A(k) can be plotted by using Eq. (4.9). The objective is 

to find parameter values that can be used to isolate modes. Figure 4.1 shows the 

real parts of the eigenvalues plotted against the wave number к for three modes. In 
addition, we used an equation for the critical wave number, i.e., the wave number 
at the maximum of the curve. This is given by

2 _ D(a - ß) - (D + 1 )\faD 
c ~ SD(D - 1)

It is worth noticing that the algebraic form of Eq. (4.9) makes it difficult to analyze 
the system further. This is why Eq. (4.21) is very useful.

4.3 Simulation results

This section presents the results of the three-dimensional simulations. Despite the 

fact that the structures appear impressive, we cannot draw plausible conclusions
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wave number к

Figure 4.1: The dispersion relation of Eq. (4.2) for selected modes. The parameters 
were D = 0.516, a = 0.899, ß = —0.91 and ö = 2 for к — 0.45 (dash-dot line), 
D = 0.122, a = 0.398, ß = —0.4 and 6 = 2 for к = 0.84 (dotted line), D = 0.516, 
a = 0.89, ß = —0.99 and Ô = .25 for к = 0.96 (solid line). The region above 
A(å:) = 0 bounds the wave number values for unstable modes.
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based on a qualitative analysis, although this is probably the best way to analyze 
the results. Anyway, we try quantitative analysis by determining the structure 
factors of the structures.

In the following, when we discuss about the additive noise, we mean Gaussian un­
correlated noise which has been added to every site at every time step. On the other 
hand, by fluctuations we mean perturbations that are added to the final structure 
to observe its stability. The first and second moments of the noise are given by 

(r](x, t)) = 0 and (rj(x, = 2eS(x — x')6(t - t'). The angular brackets

denote an average and г is the intensity of the noise.

4.3.1 Common structures

First, we compare the behavior of the system in three dimensions to results obtained 

from a simple two-dimensional simulation [Barrio et ah, 1998]. Figure 4.2 shows the 

reproduced results in two dimensions. In the top row, the parameters were chosen 
to favor striped patterns, i.e., r2 = 0 and in the bottom row spotty patterns, i.e., 
the term r2 was set dominant. Figure 4.3 shows with the same layout as Figure 4.2 

the corresponding structures obtained from the simulations of the three-dimensional 

system.

As can be noticed from the top row of Figure 4.2 there are only a few defects, 
i.e., points where the stripes coincide. However, in Figures 4.3a and b showing the 
lamellar structures, a greater number of defects than in the striped two-dimensional 
patterns can be seen. This is due to the difficulty of aligning planes compared to 

stripes in parallel. The droplet patterns in the bottom row of Figure 4.2 and struc­

tures in Figures 4.3c and d are more similar despite the increase in the dimensionality 
of the system. However, it can be seen that whereas the two-dimensional system 
stabilizes to a hexagonal lattice, this kind of pure structure cannot be observed in 
three dimensions due to the increased number of degrees of freedom. In the next 

section we will discuss how to obtain regular structures.

Notice that the two modes к = 0.45 and к = 0.84 differ qualitatively by the wave­
length A = 27r/k. As к increases, the wavelength decreases resulting in patterns 
with less distance between stripes and larger number of the stripes. In two dimen­
sions the same effect could be also obtained by changing the scaling factor ö in both 
equations. However, in three dimensions the qualitative difference of the two quan-
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Figure 4.2: Patterns obtained from simulations of the general Turing model in two 
dimensions using random initial conditions. Top row: ri = 3.5 and r2 = 0; bottom 
row: T\ — 0.02 and r2 = 0.2. In the left column, the parameters were chosen to favor 
к — 0.45; in the right column to favor mode к — 0.84. Reproduced from [Barrio 
et al., 1998].
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Figure 4.3: Patterns obtained from simulations of the general Turing model after 
500 000 iterations and using random initial conditions on every site of the lattice: 
Uo,vq € (0,1). Top row: ri = 3.5 and r2 = 0; bottom row: гг = 0.02 and r2 = 0.2. 
Left column, the parameters were chosen to favor к — 0.45; in right column to 
favor mode к — 0.84. Compare the results with the two-dimensional patterns in 
Figure 4.2.

titatively different cases is clearer (Figures 4.3a and b), since while a line has only 
the slope determining the direction, a plane has two variables aligning it.

The change in the wavelength has the same effect in the case of droplet patterns. 
The droplets become smaller and the distance between them shorter. It has been 
pointed out by Barrio et al. [1998] that in two dimensions the spots are more
robust than stripes. The robustness means the stability of the pattern or structure 
with respect to perturbations, different initial conditions or other changes in the 
simulation conditions. The robustness can be studied e.g. by adding noise. This 
will be discussed later. As one would expect, the spots turned out to be more 

robust also in three dimensions. This can be expected based on the fact that the
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Figure 4.4: Patterns obtained simulation of the general Turing model after 500 000 
iterations. Left: Initial conditions: chemical U set in mid-plane, b) initial conditions: 
chemical U placed on 111-plane in an triangular mesh.

4.3.2 Regular structures

In order to study whether it is possible to obtain pure or single modes, we set up 
the system such that the initial conditions should favor only one selected mode. 
Figure 4.4a shows a situation where the system was prepared in such a way that a 

layer of chemical U was set only in the mid-plane of the simulation box to provide 

favorable initial conditions for the lamellar structure to develop. The parameters are 

the same as used in Figure 4.3b. In Figure 4.4b chemical U was introduced only in 
locations corresponding to 111-plane in an triangular mesh, i.e., favoring hexagonal 
symmetry of the droplets obtained as in Figure 4.3c. In both cases chemical V was 
introduced uniformly over the cube as in Figure 4.3. Actually it did not affect the 
topology of the resulting structures, which one of the morphogens was introduced 

asymmetrically. The stability of these patterns was also tested against Gaussian 

noise and both of them turned out to be robust.

Figure 4.5 shows a simulation result corresponding to Figure 4.4a as additive Gaus­
sian noise was used in the way described in the beginning of this section. One can 

observe that using the initial conditions in the midplane we drive the system ro­

bustly to the lamellar structures. Even a substantial amount of noise did not break 

down the planes, but made them align differently and curve. The spherical droplet 
structures were much more stable against additive noise, and adding noise did not 
affect them in any noticeable way. This is due to the amplitude of the unstable wave 
vectors as was discussed in Chapter 2. Robustness of the model is very important,
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Figure 4.5: Results of the simulation which was initialized in the same manner as 
Fig. 4.4a, but additive Gaussian random noise was used. The noise results in curved 
and strangely aligned planes.

since when the models are used for studies of biological systems, we have to take 
into account noise and other disturbing factors that exist in the nature.

4.3.3 Complex structures

Next we want to explore the effect of multiple modes to the morphology of the sys­
tem. We did this by tuning the parameters in such a way that mode к = 0.96 was 

the most unstable one. In the simulations we used parameters a = 0.89, ß = -0.99, 
6 — 0.25, D — 0.516. The nonlinear parameters were ту = 0.02 and r2 = 0.2 
corresponding to droplet patterns. Notice that now the dispersion relation (Fig­
ure 4.1) allows many modes to grow (there is a long segment on the к-axis for 
unstable eigenvalues Л), and this causes rigorous competition and almost chaotic 
morphology. Figure 4.6a shows the stabilized configuration where the pattern shows 
a tubular-like structure.

In order to observe the competition between spherical and lamellar structures, we 
isolated mode к — 0.45 and set both ту and r2 different from zero. Using non-linear 
parameters r\ — 3.5 and r2 = 0.2 resulted in the competition between cubic and 
quadratic terms favoring lamellar and spherical structures, respectively. The result 

of this competition can be seen in Figure 4.6b, where one can clearly find round 
lamellar structures with spherical holes. In this case, it took 2 000 000 time steps 
to stabilize the structure.
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Figure 4.6: Patterns obtained using the general Turing system, a) After 500 000 
time steps, the isolated mode was к = 0.96 and non-linear parameters rq = 0.02 and 
r2 = 0.2, and b) after 2 000 000 time steps, к = 0.45, rq = 3.5 and r2 = 0.2.

4.3.4 The effect of the size of the domain

In the context of mathematical biology it is of great interest to study different kind 
of growth models, because Turing originally developed the reaction-diffusion system 
to model morphogenesis. Development and simulation of any real morphogenetic 
model is beyond the scope of our current work, but these issues will be considered 

in the future studies.

Due to the unique nature of our three-dimensional simulations, we consider only a 

simple statically grown system by increasing one dimension of the simulation box 
between simulations. We will present the Turing system of size 50 x 50 x L where 
L — 2, 4, 8, 16, 32, 64. Dynamic growth, where the growth factor is added 
continuously to the system parameters (e.g. [Sekimura et al., 2000]) was considered, 

but the idea was discarded since we do not yet have enough knowledge about the 

dynamics of the system to make any plausible conclusions. For simplicity we used 
zero-flux boundary conditions to all directions. However, we do not believe that this 
has any significant effect on the topology of the system.

Figure 4.7 shows the preliminary results, when the system is grown statically. The 
initial conditions are random (the same in all simulations of course) and the pa­

rameters are the same as in Fig. 4.3a. The first figure of the system 50 x 50 x 2 is
essentially two-dimensional. The most interesting phenomena happens between the 
systems sized 50 x 50 x 4 and 50 x 50 x 8. The former appears to be nearly two-
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third dimension does not bring as much new to the spotty structures as it does to 

the lamellar structures.

The figures imply that starting from completely random initial conditions, it is not 

likely for the system to converge into a purely lamellar state. This was confirmed by 
a number of extensive simulation runs. To make it clear, notice that the difference 
between Figure 4.3a and b is that the parameters a and ß have been selected in such a 
way as to enhance modes к = 0.45 and к — 0.84. These are the most unstable modes 
in the sense of the linear approximation for parameter sets a = 0.899, ß = —0.91, ó = 

2, D = 0.516, and a = 0.398, ß = —0.40, Ô = 2, and D = 0.122, respectively. These 
particular choices of parameters were made in order to facilitate the comparison with 
the 2D results. The reason for these choices is that in the first case, in the sense of 
the linear analysis, there are very few admissible modes with positive growth rates 

and zero wavenumber degeneracy. As it is clear from Eq. (4.3), degeneracy becomes 

increasingly important at higher wave numbers. Ideally, the choice к = 0.45 should 

produce patterns with wave vector к = 2n(nx/L,0/L,0/L), i.e., favoring strongly 

the lamellar phase when r2 = 0. However, as seen in Figure 4.3a, the system has 
not reached a lamellar state even after 500 000 time steps but it has converged to a 
mixed state instead. The simulations confirmed that to be the stable final state.

Figure 4.3b displays the situation where the mode к = 0.84 is favored. In this case, 
there are more closely spaced admissible modes leading to a competition between 
them. It is important to notice that the system has a finite size and thus there are, in 
the sense of the linear analysis, only certain admissible modes (Eq. (4.3)). From the 
topmost figures of Figure 4.3 it is clear that the competition between the modes in 

the three-dimensional Turing system can lead to very interesting morphologies. The 

defects in two dimensions can be considered as reminiscents of the more complicated 
pattern selection in 3D since the 2D stripe patterns can be seen as cuts from a 3D 
system. However, as seen in Figures 4.3a and b, the 3D case displays much richer 
behavior and it is very difficult to obtain a purely lamellar pattern starting from 
random initial conditions.

In the bottom row of Figure 4.3, the parameters rq and r2 have been selected to favor 
spots, or spherical droplet shapes (these can be compared directly to Figures 2e and 
2f in [Barrio et ah, 1998]). The droplet patterns turned out to be very robust. In 
the simulations, these morphologies developed very fast and were also stable against 

random Gaussian fluctuations that were used to test the stability of the patterns 

against perturbations as discussed earlier.

41



Figure 4.7: The statically growing domain 50 x 50 x L, where on the top row L=2,4, 
middle L=8,16, bottom L=32,64. All the conditions are the same as in Figure 4.3a.
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dimensional (all lavers have the same morphology), but the latter shows clearly 
three-dimensional character (there are vertical holes in the lamellar structures). 

Based on visual analysis one could conclude that the transition between the sec­

ond and the third dimension takes place immediately when the shortest dimension
of the system is more than the characteristic wave length of the eigenmode.

4.4 Structure factors

In addition to qualitative considerations, it is crucial to introduce some quantitative 
techniques to analyze the morphologies of the concentration fields or structures 
obtained by simulations. Although usually very helpful and informative, qualitative 

analysis can sometimes lead to false conclusion.

In solid state physics the structure factor is commonly used to describe material 
properties in diffraction, e.g. Bragg diffraction as discussed in [Ashcroft and Mermin, 
1976]. According to the Braggs’ idea of constructive and destructive interference of 
scattered X-rays, certain characteristics of the structure can be concluded based on 
the distribution of X-rays. In practice, the calculation of a structure factor means 

the Fourier transform of pair correlation function. To confirm the plausibility of the 

analysis a brief introduction to the concepts mentioned above will be given next.

Consider two parallel planes with distance d between the planes. If two X-rays 
come in an angle 9 and the first ray scatters from the upper plane and the other ray 
from the lower plane, the well-known Bragg condition for constructive interference 

of these rays is nX — 2d sin 9. This formula indicates that the difference between the 

lengths of the paths taken by the two rays must be an integer multiple (n) of the 

wave length. For this simple but remarkable idea, father and son, W.H. and W.L. 
Bragg were awarded a Nobel price in 1915.

One commonly used quantity to describe the regularity of material structure is the 
pair correlation function, which is a one-dimensional scalar function g(r) defined by 

the average number of atoms on specific distance from given atom. In other words, 
there are on average n atoms at distance r0 from a selected atom. The Fourier 
transform of the pair correlation function is the structure factor, defined as
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where the time dependence is introduced to keep the treatment general.

In the current case we do not have atoms but a uniform scalar field defined over the 

domain. This kind of problem has been handled before, for example in the case of 

a phase field model [Karttunen et al., 1997], and we follow that procedure. In this 

case, the structure factor is defined with help of the one- and two-point correlation 

functions as

S(k,t) = f (С2(ж, t\x + r,t) — Ct2(z, t))el*'rdr, (4.23)
Jo

which is just a complex way of saying that we Fourier transform the field after we 

have subtracted the average from it. The Fourier transform is equivalent to the 
X-ray diffraction and transforms the data from the real space to the wave vector 
space. Typically, the structure factor is not examined with respect to wave vector 
k, but wave number k. One could also study time development of S(k,t) by fixing 

\k\ and observing the magnitude with respect to time t. The time development is 

not studied in this thesis.

Using the methods discussed in Chapter 3, we have calculated the structure factors 
of three qualitatively different structures, and next we will see how these differences 
are reflected in the quantitative analysis. Figure 4.8 shows the structure factors 
corresponding to Figures 4.3b and d, i.e., three-dimensional lamellar and spherical 

structures. There are several observations one can make based on the structure 

factors. First, the characteristic wave length is the same in both plots as it should 
be due to the selection of parameters. Second, the difference in magnitude is three 
decades in favor of the spherical structures, which reflects the robustness of the 
droplets. Third, there are more wave vectors forming the droplet structure as can 
be seen from the difference in the widths of the peaks. Fourth, the peaks are located 

approximately at к = 2.2, which is not very close to к = 0.84, as predicted by the 

linear analysis.

The structure factor shown in Figure 4.9 combines quantitatively the characteris­
tics, which can be qualitatively seen in Figure 4.6b, i.e., the lamellar and spherical 
structures. If one compares the structure factors in the Figure 4.8 to the one in 
Figure 4.9, one can see that in Figure 4.9 the magnitude is between the magnitudes 

observed in pure droplets or lamellae. In addition, it can be seen that the lamellar 
structures dominate, since S(k) is not as smooth as in the case of pure spherical 
droplets. This observation agrees with Figure 4.6b, where existence of quadratic in-
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Figure 4.8: Structure factors of the lamellar and spherical structures with к = 0.84 
(Figs. 4.3b and d). The structure factors were averaged over 30 stable samples. 
Notice that the peaks in a and b are in the same position in the к-axis, i.e., the 
characteristic wave length is the same in both structures as it should based on the 
linear analysis.

teractions is illustrated in the form of round shapes, but the structure is essentially 

lamellar.
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Figure 4.9: Structure factor of the competition of spherical and lamellar structures 
with к = 0.45 (Fig. 4.6b). The plot combines quantitatively the characteristics of 
the two cases in Figure 4.8.
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Chapter 5

Gray-Scott model

This chapter concentrates on a more complicated reaction-diffusion system which 
describes irreversible chemical reactions. First, we show how reaction kinetics can 

be determined from formulae of chemical reactions. We will use linear analysis 

to predict the behavior of the system in the same manner as in previous chapter. 

When sources of chemicals are added to the system we can observe dendritic growth. 

Finally, we will propose a biological model, which is based on the Gray-Scott system.

5.1 The model

The second system we have studied is the Gray-Scott [Gray and Scott, 1983] model 
that was proposed to describe two irreversible autocatalytic chemical reactions. Au­
tocatalysis means that the probability of occurrence of some morphology or chemical 
increases as a function of the number of such morphologies or the concentration of 

the chemical already present system. The reaction we want to describe is of the 

following form

U + 2V ->ri 3V

V —>r.2 P, (5.1)

i.e., the reaction of one unit of chemical U and two units of V produces autocat- 

alytically three units of V. Due to the irreversible nature of the reactions, chemical 
P is an inert product. In the reaction formula parameters r¡ and r-¿ stand for the
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reaction rate constants. In order to write down the differential equations for the 
process, it is assumed that the system is in contact with a reservoir of chemical U 
with a constant rate F and that chemical V is removed from the system by the feed 
process and in addition chemical V is converted to P with rate K. When we collect 
this, we obtain reactions

U + 2V -h 3V

V P

V y p 0

U 0. (5.2)

According to the law of mass action (e.g. (Murray, 1993)), in chemical reactions the 
rate of reaction is proportional to the product of concentrations of reactants. We 

shall denote the concentrations by и = [U] and v — [V]. Now we can write the 

reaction kinetics for the chemicals и and v as

f(u, v) = —uv2 + F — Fu = —uv2 + F( 1 — и)

g(u, v) = -2uv2 + 3uv2 — Fv — Kv = uv2 — v(F + K). (5.3)

The equations of motion for the concentrations of the two chemicals и = u(x, t) and

v = v(x,t) in dimensionless units can be obtained by substituting Eq. (5.3) into the 

general form of Turing system (Eq. (4.1)). This operation yields

ut = DuX72u — uv2 + F( 1 — u)

vt = DvW2v + uv2 - (F + K)v, (5.4)

where the diffusion coefficients for the two chemicals are Du and Dv, respectively.

The Gray-Scott model was studied analytically and numerically in two dimensions, 
by Pearson 11993, see also http://www.cacr.caltech.edu/ismap/image.html], who 

mapped the phase diagram of the system in terms of the rate constants F and К. 

This model exhibits a very rich behavior ranging from time-independent steady-state 

solutions to chaotic, oscillatory, and to time-dependent phase turbulent behavior. 

Furthermore, [Vastano et ah, 1987] have shown that the system develops spatially 
steady patterns even when the diffusion constants of the two chemicals are equal. 
This behavior is particular to the one-dimensional case and it has not been observed 
in higher dimensional systems.
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In this study, we first performed numerical simulations of the Gray-Scott model 
in three dimensions. After that, we randomly added a small number sources for 
chemical V. The motivation for adding the sources was to investigate the robustness 

of patterns and the formation of connections between the sources in an attempt 

to mimic the development of a biological network, e.g., the formation of synaptic 
contacts between neurons. However, it is yet unclear whether Turing systems can 
produce such an inductive signaling mechanism for neural patterning but the idea 

is nevertheless appealing.

5.2 Linear analysis

As was already discussed in the previous chapter, the purpose of the linear analysis is 

to predict the stability and characteristics of the growth in a system. Turing showed 

that under certain conditions for the parameters, without diffusion a steady-state 
could be linearly stable, but in the presence of diffusion unstable. The parameters 
of the Turing system span a parameter space also known as Turing space. In some 
subdomain of this space we can create suitable circumstances for diffusion-driven 

instability. Our system is given as

ut = DuAu - uv2 + F( 1 - u) 

vt = DvAv + uv2 — (F + K)v.
(5.5)

Pearson [1993, see also http://www.cacr.caltech.edu/ismap/image.html] has ana­
lyzed this model and mapped the phase diagram of the system. By setting time 
variation and the diffusion terms to zero and solving the equations we get

vo
^(1 - tt0)

F + K
(5.6)

Fixing u0 = 1 yields the steady-state solution (u0,vo) = (1)0)- By substituting 
Eq. (5.6) back to the reaction terms of Eq. (5.5) we obtain another steady-state 

solution defined by Eq. (5.6) and

Uq
1 ± 4 {F+K)2 

F (5.7)
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By the same kind of treatment as in the previous section and by using trial solutions 
defined by Eqs. (4.6) and (4.7) we can write Eq. (5.5) in the linearized form

w¡ = DAw + Aw, (5.8)

where

A _ ( fu fv\
\ 9u 9v j

with the following short-hand notations

fu = -Vo - F (5.9)

fv = -2 u0v0 (5.10)

9u = 4 (5.11)

9v 2uqVq — (F + A ). (612)

Now the dispersion relation is solved from

|A7 - A + Dk2\ — 0, (5.13)

which stands for

A - /„ + Duk2 -fv
~9u A - gv + Dvk2

For the steady-state solution (щ,у0) = (1,0) we can easily solve the characteristic
polynomial by calculating the determinant. The zeros of the characteristic polyno­
mial, i.e., the eigenvalues are given as

Ai = -Duk2 -F, A2 = -Dvk2 - F - К. (5.14)
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Both the eigenvalues are negative, which predicts in the sense of linear analysis 
that the steady-state (1,0) does not bifurcate, i.e., there will be neither growth nor 
characteristic length scale in the system. X\(k) is plotted in Figure 5.1 (solid line), 

where one can notice that Ai (k) does not bound any positive modes as the two other 

dispersion relations in Figure 5.1.

For the nontrivial steady-state defined by Eqs. (5.6) and (5.7) the calculation of the 
determinant yields the following characteristic polynomial

A2 + A(v2-K + k2(Du + A,)) + h(k2), (5.15)

where

h{k2) = DuDvk4 + (Dv(v2 + F) - DU{F + K))k2 + (F + K)(v2 - F). (5.16)

Due to the form of the characteristic equation, it is hard to solve and we cannot 

follow the procedure we used in the steady-state case (u0,v0) = (1,0). However, we 
can evaluate the critical wave vector by noticing that the region with positive A(k) 
in phase space is bounded by the the points given by zeros of h(k2). Because we 
want to isolate as few modes as possible we concentrate to the case in which h(k2) 
has only one zero. This occurs when the discriminant is zero, i.e.,

(D,(v\ + F) - DU(F + K)f - 4DUD,(F + K){v¡¡ - F) = 0. (5.17)

If this relation is satisfied, the solution of Eq. (5.16) and the critical wave vector is 
given by

2 DU(F + K) - Dv{vl - F) 
2 DUDV

(5.18)

The dispersion relations illustrating the window of wave vectors for the growing 
modes of the two selected phases are presented in Figure 5.1. The critical wave 
vector defined by Eq. (5.18) gives the к value corresponding to the maximum value 

of A(k), i.e., the most unstable growth mode. One should notice that in the case of 
the Gray-Scott model the number of allowed modes is larger than in the case of the 

general Turing system.
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Figure 5.1: The dispersion relation of the Gray-Scott model for Du = 0.125, Dv = 
0.05, F = 0.045, К — 0.065 near the steady-state solution (uq, Uq) = (1,0) (solid 
line), and F = 0.065, К = 0.0625 (dashed line) and F = 0.045, К = 0.065 (dash-dot 
line) near the nontrivial steady-state solution. The area above fc-axis bounds the 
growing eigenmodes.
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5.3 Simulation results

In this section, we will show that the Gray-Scott model produces complex tubular 
structures when sources of morphogen are added to the original system. We will 
also discuss its biological implications for modeling neuronal growth in more detail 
and show some preliminary results.

5.3.1 Dendritic growth

Using the Gray-Scott model of Eq. (5.4) we performed the simulations in two and 

three dimensions. By scanning the phase space we obtained very rich behavior. 

However, the results and especially the time dependence of some of the solutions 

caused difficulties in visualizing the resulting patterns in three dimensions. Thus 
the treatment of the Gray-Scott model is quite light here, but a systematic study of 
the properties of the Gray-Scott model in three dimensions is underway. However, it 
can be said that the three-dimensional Gray-Scott model displayed both disordered 

lamellar-like and droplet-like phases.

In the simulations presented here we have used Du = 0.125 and Dv = 0.05 for the 
two diffusion constants and chose the parameters from the part of the phase space 
that can produce stripes. In this study we focused on the special case in which 

sources of chemical V were distributed randomly in the system. These sources feed 

the chemical to the system with a constant rate (+0.01). The shape of these sources 

is initially cross-like, having six branches in three dimensions to x, y and z-directions, 
respectively. For clarity, see Figure 5.2 where the growth of dendrites is simulated 
in two dimensions. Notice that the dendrites, indeed, seem to connect the sources 
of V.

As mentioned before, the motivation for including the sources is to investigate if 

the Turing mechanism could be considered as a candidate for describing neuronal 
growth. Should that be the case, the sources can be thought representing neurons 
which the growing dendrites must connect. In the sense of pattern formation in 
3D systems, one requirement is the formation of stable tubular patterns. The Gray- 
Scott model clearly produces them in both two and three dimensions, see Figure 5.3. 

The connectedness of the three-dimensional network cannot be checked by visual 

analysis. However, based on the extensive two-dimensional simulations, we believe
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Figure 5.2: The growth of dendrites in a Gray-Scott model. The parameters were 
chosen to activate the phase producing stripes. There are eight sources of both U 
and V in the system.
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Figure 5.3: a) Pattern obtained in a 120 x 120 lattice with periodic boundary con­
ditions using the two-dimensional Gray-Scott model in the presence of eight sources 
of morphogen V with parameters F — 0.065, К = .0625, Du = 0.125, Dv = 0.05. 
The sources appear as cross-like patterns, b) Pattern obtained using the three- 
dimensional Gray-Scott model with four sources of V, F = 0.045, К = 0.065, 
Du = 0.125, Dv = 0.05.

that the sources are connected by dendrites also in three dimensions.

The appearance of the tubular shapes seems characteristic for the Gray-Scott model 
whereas it was difficult to obtain in the case of the general Turing system. Figure 5.4 

shows the structure factor of the three-dimensional structure with fully grown den­

drites. One should notice that S(k) is quite similar to the one calculated for the 
lamellar structure in section 4.4 (Figure 4.8a). However, the amplitude is one order 
of magnitude smaller in the case of Gray-Scott model.

5.3.2 Biological motivation

The Turing systems have been proposed to account for many patterns found on living 
creatures and organisms, e.g. fish [Barrio et al., 1998] [Painter et al., 1999], butter­
flies [Sekimura et al., 2000], sea urchins [Barrio et al., 1997] and viruses [Varea et al., 
1999]. Also Murray [1993] discusses about coat patterning and asks rhetorically: 

“How leopard got its spots?”. As Turing was once asked about the possibilities of his 

morphogenetic model and whether it could explain the stripes on a zebra, Turing 
allegedly responded: “The stripes are easy, it’s the horse part that troubles me!”. In 
the following we will study “the horse part” and introduce our model for describing
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Figure 5.4: The structure factor corresponding to Figure 5.3b. Averaged over 30 
samples.

some features of neural patterning.

Two distinct stages in the development of connections between neurons have been 

separated: super-innervation and elimination of axons. The former means estab­
lishing connections between neurons based on navigation by neurotrophic factors 
and the latter the optimization of the produced network by eliminating double con­

nections, loops etc. It is known that the neurons do not always connect with their 

nearest neighbors, but can connect to other neurons very far. This kind of spatial 

selectivity cannot be explained by any model based on simple diffusion. Thus we 

propose Turing’s reaction-diffusion to model such a neural patterning.

To model the optimization of the neural network we use a random walker model. 
Random walker models are widely used in simulating non-equilibrium phenomena 
and they have a connection to Turing systems in the sense that a memoryless random 

walk is actually a diffusion process. When we add some conditions for example how 
the walker reacts based on the “landscape” defined by the morphogen concentrations 
we obtain, in a sense, a discrete reaction-diffusion model. It is just easier to build 

discrete model than a continuous one for certain purpose. For an introduction to
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random walker models see [Lam and Pochy, 1993].

The model we are currently studying is based on a walker model that has been used 
to simulate the trail formation of ants [Schweitzer et ah, 1997]. Due to the fact that 
the development phase is still going on we will not go into details of our modified 
model, but give a general overview of the idea. We propose that the connections 

in the network produced by the Turing system act as signaling paths for chemicals 

responsible for diluting the network. These chemicals are simulated by using a 

random walker model in which we send a walker at a time from one neuron (nest). 
Then the walkers can walk only on the paths determined by the Turing pre-pattern 
and they drop pheromone (a chemical). When the walkers randomly find another 
neuron, they return to the nest based on sensing the pheromones. In the nest they 
recruit new walkers to strengthen the connection to the other neuron, which can 

be found based on another pheromone. The connections are formed based on the 
pheromones which the walkers leave behind. As the concentration of pheromone on 
a certain path exceeds some threshold value, i.e., many walker use the same route, 
a new connection arises.

It should be noted that although our model seems quite complex and sophisticated, 

it is in fact memoryless and can thus be used as a model for diffusion. The action 
of a walker at certain time is dependent only on its current position, not on the 

previous route it has taken. This condition is widely known as Markov condition. 
Another point is that everything in the system happens “on average”. It is likely that 
the walker finds its way to the nest or to the neuron, but it is not certain. Thus we 
have to use many walkers to make the statistical probability of success high enough.

A preliminary result obtained using this model can be seen in Figure 5.5. The 

results are encouraging, but not perfect in any sense. The connections are clearly 
much more selective than in the original network. However, all the neurons are not 
connected to each other. The model is very complex and thus the details require 

more work. This research will be continued in the future.
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Figure 5.5: The result obtained by combining a random walker model to a Turing 
system. Notice that the connections become must simpler and clearer. The original 
network produced by Turing system can be seen on the background.
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Chapter 6

Summary and Conclusions

In this thesis, we have studied two-dimensional spatial patterns and three-dimensional 

structures generated by a reaction-diffusion mechanism. A Turing system consists 
usually of two coupled reaction-diffusion equations. These equations describe the 
temporally varying concentration fields of chemicals called morphogens and they 

consist of a diffusion term and a reaction term. In these systems the reaction is 

always nonlinear, which results in the pattern formation behavior.

We introduced the basic concepts related to the pattern formation and showed ex­
amples of pattern formation observed in experiments. The pattern formation was 
discussed in three different systems: In a fluid between two plates with a temper­
ature difference (Rayleigh-Bénard convection) and on a thin water layer lying on 
a vibrating plate (Faraday experiment). In these two systems, there are different 

pattern formation mechanisms and none of the above experiments is directly con­

nected to the Turing mechanism. Thus, we discussed the first Turing-type chemical 
pattern in an open gel strip reactor.

Due to the nature of the Turing systems, they cannot be solved analytically, and 

thus one has to resort to numerical methods. The problem must be transformed 

into a discretized form and solved within the numerical error. The Turing systems 

are quite stable against random noise and thus the discretization error did not cause

problems. The visualization was challenging due to the four-dimensionality of the 
data, but we found two methods for visualization.

The general Turing system we studied is phenomenological in the sense that we 

chose the reaction terms in such a way that we can enhance quadratic or cubic
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interactions, corresponding to spots and stripes in two dimensions or droplets and 
lamellae in three dimensions. We carried out linear analysis to predict which modes 
will grow and dominate with certain parameter values. We compared the results 
of two- and three-dimensional systems and noticed that while spots and droplets 

are qualitatively similar in both two and three dimensions, two-dimensional stripes 

become lamellar structures in three dimensions. These lamellar structures show 
more defects than the stripe patterns in two dimensions.

As we used appropriate manipulative initial conditions, we could increase the regu­

larity of the results and decrease the number of defects. By introducing one of the 

morphogens only to the mid-plane we obtained parallel planes, which is the most 

desirable (“minimum energy”) structure of the lamellae and was not observed while 
the initial conditions were purely random. We could also drive droplet structures to 
hexagonal symmetry by using special initial conditions. More complex and irregu­
lar structures were obtained in two different ways: by allowing competition between 

nonlinear interactions or by allowing many different positive modes to grow.

The effect of noise on Turing structures had never before been studied. We used 
additive noise which was added at every time step, and perturbative noise which was 
used for analyzing the stability of the final structure. Based on the results we can 

conclude that spotty structures are much more stable than the lamellar structures. 

The stability against noise is a very important quality for morphogenetic models 

and these issues will be studied in the future from the developmental point of view,
i.e., whether the noise makes it easier for the system to overcome meta-stable states 
and stabilize more quickly.

Another issue that is very interesting from the morphogenetic point of view is the 

effect of the size of the domain. We studied a system where the length of one 

side of the simulation box was increased between simulations. We noticed that the 
transition between the two and three dimensions took place as the characteristic 
wave length of the eigenmode equals the smallest dimension of the simulation box.

The other system we studied was the Gray-Scott model. This model is based on 

irreversible reactions of chemicals and we showed how it can be derived from chem­

ical reaction formulae. We showed that as sources of the activator chemical are 

added, they become connected by a robust network in two dimensions. In the three- 
dimensional case we can clearly observe similar dendritic growth. However, the 
connectedness of the network remains to be studied in detail.
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We proposed a model for modeling the growth of neural network by using a random 

walker model together with the Gray-Scott model. Such a united model has a plau­
sible biological basis and preliminary results are promising, but the model requires 
much more work. In the future, we will concentrate on different kinds of growth 
models and other problems with a biological basis.
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