
TEKNILLINEN KORKEAKOULU

Sähkö-ja tietoliikennetekniikan osasto

Hannu Napan

Magic Lens user interface in virtual

reality

Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-

insinöörin tutkintoa varten Espoossa 19. 4. 1999.

Työn valvoja Professori Tapio Takala

Työn ohjaaja Professori Tapio Takala

26 -05-1999
^TKK SShkö- Ja
tietoHikcnncidaiiU^ui kirjasto
Cic!:c:r.r¡ 5 A

l C¿U,ü Lw.
50591

TEKNILLINEN KORKEAKOULU Diplomityön tiivistelmä

Tekijä:

Työn nimi:

Päivämäärä:

Hannu Napan

Magic Lens user interface in virtual reality

19. huhtikuuta 1999 Sivumäärä: 91

Osasto: Sähkö- ja tietoliikennetekniikan osasto

Professuuri: Ohjelmistojärjestelmät Koodi: Tik-76

Työn valvoja: Professori Tapio Takala

Työn ohjaaja: Professori Tapio Takala

Keinotodellisuusympäristöjen tai ylipäätään kolmiulotteista grafiikkaa hyödyntävi
en sovellusten yleistyessä käyttöliittymien kehittäminen niihin muodostuu entistäkin
tärkeämmäksi. Nykysin yleisesti käytössä olevien käyttöliittymien metaforat eivät
välttämättä sovellu suoraan keinotodellisuusympäristöön. Syinä tähän ovat erilaiset
fyysiset interaktiovälineet sekä immersiivinen ympäristö.

Tässä työssä tarkastellaan erilaisia kolmiuloitteiseen ympäristöön soveltuvia käyttö-
liittymäkomponentteja. Näistä keskitytään Xerox:in kehittämään Magic Lens - käyt-
töliittymäkonseptiin. Magic Lens - konsepti kehitettiin alunperin kaksiulotteisen
käyttöliittymän interaktiovälineeksi, mutta sama metafora on myös siirrettävissä kol
miulotteiseen virtuaaliympäristöön.

Magic Lens - implementaatio on kaksiosainen. Ensimmäisessä osassa on yhdistetty
kaksiulotteinen Magic Lens - työkalu kolmiulotteiseen visualisointiin. Tätä yhdistel
mää voidaan käyttää virtuaalimaailmassa tapahtuvan navigoinnin apuvälineenä sekä
siirtymissä että etsittävien kohteiden spatiaalisen sijainnin paikallistamisessa.

Toisessa osassa Magic Lens - käyttöliittymäkomponentti on siirretty kolmiuloittei
seen virtuaaliympäristöön. Tässä tapauksessa Magic Lens on teksturoitu geometri
nen objekti osana virtuaalitilaa. Toteutus hyödyntää SGI:n 02 - työaseman
muistiarkkitehtuuria siten, että implementaatio on mahdollisimman tehokas. Magic
Lens - konseptia on myös laajennettu siten, että virtuaalitilaan ei enää varsinaisesti
upoteta käyttöliittymäkomponentteja vaan ne korvataan tilaan projisoidulla tekstuu
rilla, Magic Lightdlla.

käyttöliittymät, keinotodellisuus, tietokonegrafiikka,

3D, Magic Lenses, VRML, Open Inventor, Java

Avainsanat:

HELSINKI UNIVERSITY OF TECHNOLOGY Abstract of the Master’s Thesis

Author: Hannu Napari

Name of the Thesis: Magic Lens user interface in virtual reality

Date: 19. April 1999 Number of pages: 91

Department: Electrical and Communications Engineering

Professorship: Software engineering Code: Tik-76

Supervisor: Professor Tapio Takala

Instructor: Professor Tapio Takala

User interface research and development for virtual environments gains more impor
tance as 3D graphics and virtual reality applications become more common. The
standard 2D user interface metaphors are not necessarily the most efficient for virtual
reality applications. The different user interface devices and immersive virtual envi
ronments can cause problems with the traditional user interface components.

This thesis reviews first different user interface components suitable for 3D environ
ments. The Magic Lens - metaphor, first introduced by Xerox is then discussed in de
tail. The Magic Lens concept was originally meant for 2D interaction, but it can also
be used for 3D environments.

The Magic Lens implementation is presented in two parts. The first part is a combi
nation of a 2D Magic Lens - interface and a 3D visualization. This combination can
be used for navigation and wayfinding in a virtual environment. It also helps the user
to better visualize the spatial location of the objects of interest.

In the second part, the Magic Lens user interface component is implemented as a 3D
widget, embedded in the virtual environment. The Magic Lens is a textured, geomet
ric object in the virtual space. The implementation utilizes the SGI 02 workstation
unified memory architecture to provide an efficient solution for 3D Magic Lenses.
The lens concept is also expanded by using a projected texture, Magic Light, instead
of a geometric lens object.

Keywords: user interfaces, virtual reality, computer graphics,

3D, Magic Lenses, VRML, Open Inventor, Java

ALKULAUSE

Tämä diplomityö on tehty osana NetVE-tavoitetutkimushanketta (Networked Virtual

Envoronments). Erityisesti haluan kiittää professori Tapio Takalaa, joka tarjosi

minulle mielenkiintoisen työympäristön sekä mahdollisuuden saattaa opintoni pää

tökseen.

Kiitokset johdattamisestani tietotekniikan pariin kuuluvat opettajilleni Aulis Putto

selle sekä Pekka Bergmanille, joiden innostamana päädyin harrastamaan tietotekniik

kaa noin 18 vuotta sitten. Vuosien saatossa harrastuksesta kehkeytyi huomaamatta

työ.

Haluan myös muistaa Silicon Graphics OY:tä, joka suuntasi kiinnostukseni tietokone

grafiikkaan ja keinotodellisuuteen. Tämän lisäksi Silicon Graphics tarjosi mielenkiin

toisen ja opettavan työpaikan huippuluokan tietotekniikkaratkaisujen parissa viiden

vuoden ajan.

Kiitokset myös DIVA-ja CAVE- projektien työntekijöille sekä avusta että riittävästä

työmäärästä huolehtimisesta: Andy, Ebu, Janne, Rami, Tapsa, Lauri, Tommi, Jarmo.

Haluan kiittää vanhempiani tuesta ja huolenpidosta elämäni sekä opiskeluni alkutai

paleella. Rakkaimmat kiitokset avovaimolleni Niinalle epäsäännöllisten työaikojeni ja

elämäntapojeni sietämisestä sekä siitä, että elämässäni on muutakin kuin tietotekniik

kaa.

Espoossa 19. huhtikuuta 1999

Hannu Napari

и

TABLE OF CONTENTS

1 Introduction.. 1

2 3D User Interfaces...4

2.1 Mapping of input devices... 5

2.1.1 2D input devices... 5

2.1.2 3D input devices... 5

2.2 Interaction with 3D scene... 7

2.2.1 Direct manipulation widgets..8

2.2.2 Selections and picking...11

2.2.3 Visualization widgets...13

3 Magic Lenses and Toolglass..15

3.1 Composition of Lenses..17

3.2 Implementation alternatives... 19

3.2.1 Benefits and disadvantages of the different filtering

implementations.. 20

3.3 Examples of the 2D Toolglass metaphor...21

3.3.1 CorelDraw.. 22

3.3.2 Kai’s Power Tools... 22

3.4 Examples of the 3D Toolglass metaphor...23

3.4.1 Virtual Tricorder... 23

3.4.2 Volumetric Magic Lenses..25

4 2D Magic Lenses and 3D visualization... 28

4.1 2D Magic Lenses as navigational aids...28

4.2 Mapping of the 2D lenses for 3D space... 30

4.3 Implementation of 2D lens and 3D visualization..31

4.3.1 Java... 31

4.3.2 VRML...35

4.3.3 Liquid Reality..37

4.3.4 Communication between the Magic Lens and VRML applets . 40

5 Flat 3D Magic Lenses...41

5.1 The relationship between the lens image and scene.....................................42

5.2 Magic Lens semantics in multiuser environments..................................... 44

5.3 Projected Magic Lenses - Magic Lights...45

5.4 Functionality of 3D lenses...48

5.4.1 Changes in rendering.. 48

5.4.2 Changes in lens frustum.. 48

5.4.3 Visual queries... 48

5.4.4 Modification of the geometry... 49

5.4.5 Temporal modifications.. 49

5.4.6 Object manipulation or Toolglass.. 49

5.4.7 Using Magic Lenses As Portals... 50

5.5 Composition of lenses..51

5.6 Implementation...52

5.6.1 Unified Memory Architecture - UMA.. 54

5.6.2 OpenGL Digital Media Buffers... 56

5.6.3 Virtual Graphics Context - VGC...59

5.6.4 Forming the lens image.. 61

5.6.5 Picking and other interaction... 72

5.6.6 Open InventorTM... 73

5.6.7 Extensions to OpenlnventorTM...74

IV

6 Conclusions 81

6.1 2D Magic Lenses and 3D visualization...81

6.2 3D Magic Lenses..82

6.2.1 Magic Light..83

6.2.2 Augmented Reality... 83

7 References... 84

Appendix A: Bugs in the 02 OpenGL Implementation..................................... 89

v

SYMBOLS AND ABBREVIATIONS
AGP Accelerated Graphics Port

API Application Programming Interface

AR Augmented Reality; Simultaneous combination of the real, perceived
world and a synthetic world.

AWT Abstract Window Toolkit

CAVE Cave Automated Virtual Environment

CFD Computational Fluid Dynamics

CSG Constructive Solid Geometry

DOF Degrees Of Freedom

DSO Dynamic Shared Object

EAI External Authoring Interface

FOV Field Of View

GUI Graphical User Interface

HUD Heads Up Display

IO Input / Output

KPT Kai’s Power Tools

LCD Liquid Crystal Display

LOD Level Of Detail

LR Short for Liquid Reality

MIMO Model-In Model-Out

MRE Memory and Rendering Engine

01 Short for Open Inventor™

PCI Peripheral Component Interconnect

PDA Personal Digital Assistant

VI

RGB Red, Green and Blue

ROBA Red, Green, Blue and Alpha

SGI Silicon Graphics Incorporated

UMA Unified Memory Architecture

URL Universal Resource Locator

VGC Virtual Graphics Context

VRML Virtual Reality Modeling Language. A file format standard for 3D multi-
media and shared virtual worlds on the Internet.

WIM Worlds In Miniature

WIMP Windows, Icons, Menus and Pointers

WWW World Wide Web.

© Separator - group node that saves and restores traversal

state

Light

Camera

0 Switch

© Shape

Vil

1 INTRODUCTION

This thesis is a study about 3D user interfaces for virtual reality. The main emphasis

has been on implementing and developing the Magic Lens interface paradigm (Bier

1993, p. 73-80) for immersive and non-immersive virtual environments.

In most virtual reality interaction research the emphasis has been on methods that

employ very sophisticated hardware devices, i.e. gesture tracking via data gloves.

Most of these techniques have also been developed solely for immersive environ

ments. Today, the advent of desktop virtual reality in the form of games and different

3D visualization software packages makes new demands for user interfaces for VR

(Virtual Reality). This development has been accelerated by relatively inexpensive 3D

hardware designed for personal computers and by new memory and bus architectures.

Because the normal, everyday home computers and equipment do not usually provide

means for immersive environments and complex input devices because the price or

cumbersomeness of such devices, the user interface software technologies are very

critical to the success of VR at home, as well as for commercial or industrial VR

usage. A good VR user interface (any interface, in fact) utilizes a simple, easily under

standable metaphor from everyday experience.

Currently, there are no generally accepted standards or guidelines for 3D interaction.

The research on the subject has shown that the traditional 2D user interface

techniques do not bring any added value to virtual environments. Methods that make

the interface between human and the virtual world efficient are not clear. The tradi

tional 2D interface model, WIMP (Windows, Icons, Menus and Pointers) may not be

the best solution for 3D interaction, especially with input devices that have more than

two DOF (degrees-of-freedom). The WIMP-style interface also appears as a distinct

layer between the application and the user interface devices. In 3D environment the

interface should be embedded in the virtual environment, because the WIMP layer

may distract the user and cause a loss off immersion, especially when used in combi

nation with stereoscopic displays.

1

1. Introduction

Green (1990, p. 229-235) gives the following requirements for non-WIMP interfaces:

1. High Bandwidth Input and Output

2. Many Degrees of Freedom

3. Real-Time Response

4. Continuous Response and Feedback

5. Probabilistic Input

6. Multiple Simultaneous Input and Output Streams From Multiple User

In immersive VR environments this list should be augmented by adding two-handed

or other multimodal interfaces. The non-WIMP interfaces discard the traditional

interface styles, but they should also allow for multiple input devices with many

degrees of freedom to be used at the same time.

The tasks normally performed in 3D or VR applications according to Green are:

• Object creation, model definition

• Object selection

• Object placement and editing:

affine transformations

modification of surface characteristics

• Viewpoint control

• Perception:

extracting cognitive information from an environment

• Programming:

defining behavior of objects and relationships between objects

The first tasks that consist mainly of object manipulation can also benefit from

perceptual changes of the environment, as well as the viewpoint control or navigation.

The tools for direct object manipulation are out of the scope of this work, but I will

2

1. Introduction

show that direct manipulation can be augmented by using perceptual filtering via the

Magic Lenses interface.

Magic Lenses are transparent user interface components, which change the represen

tation of the data visible through the Magic Lens. The lenses can be combined to form

more complex filters.

The Magic Lenses interface also reduces the screen area of the user interface compo

nents by embedding the interface directly to the virtual environment. If a GUI

(Graphical User Interface) component reserves a lot of space from the viewport, it can

cause loss of immersion. Because Magic Lenses are transparent widgets, they do not

essentially reduce the available viewport region. Three dimensional widgets can also

be freely positioned in the virtual environment, so there is no need for a HUD (Heads

Up Display) type of usage for the Magic Lenses widgets, thus freeing even more

viewport space for the main visualization. If the Magic Lenses interface is used to

filter the environment to extract cognitive information or to change the rendering

parameters, it limits the changes to a spatial region. This limit helps the user to

maintain the immersion, because drastic, sudden changes in the environment do not

happen.

In this work I will show how the Toolglass / Magic Lenses interface, which is a kind

of mix between the WIMP and non-WIMP interfaces, can be implemented to fill these

requirements.

This thesis will first present an overview of 3D user interfaces, followed by a more

accurate overview the Magic Lenses / Toolglass interface and the existing implemen

tations of the metaphor. After the reader is familiar with the concept of Magic Lenses,

I will to present the 2D Magic Lenses work made by the author, followed by the 3D

Magic Lenses implementation.

3

2 3D USER INTERFACES

Most of the research on 3D user interfaces has been concentrated on 3D widgets, i.e.

GUI components for manipulation of 3D objects. This is perhaps caused by the

problems in 3D input and display devices. For example, tracking, interpreting and

mapping the user’s movements to enable interaction with the virtual world with many

degrees of freedom creates many problems with both the hardware and software

implementations. There is no such thing as a generic 3D GUI toolkit. The current user

interfaces for 3D interaction typically present one or more views to the virtual

environment, augmented by 2D user interfaces, like menus, sliders and dialogs, taking

no advantage of the third dimension. The direct interaction with the 3D scene is

limited primarily to interactive viewing, selection, translation and rotation.

Most of the paradigms and metaphors for 3D interfaces are less developed than the

2D counterparts. Some of the metaphors for 3D interaction are borrowed directly

form the standard 2D interface concepts. These metaphors can find their place in 3D

interaction, but they are inappropriate for immersive environments or applications that

require direct manipulation. On the other hand, bringing in the real world tools and

devices to help in the interaction misses an important point. For example, if the user

wants to modify an object, bringing in a toolbox where the user would pick up a vir

tual spanner and then continue to use the spanner on a virtual object would make the

interaction tedious. Who wants to operate in a virtual environment using the clumsy

tools from the real world? In certain simulations this type of interaction might be the

correct way of doing things, but for example, in scientific visualization the user inter

face should be as direct as possible.

The metaphors for 3D interaction must draw from the user’s everyday experience, and

the interaction techniques must take advantage of the possibilities of 3D. In VR sys

tems, the interfaces should also account for multiple simultaneous inputs/outputs and

multiple participants. The input devices may have multiple degrees of freedom, or

they can be based on speech recognition. On the output side, the feedback might be

provided in the form of visual, auditory and haptic displays.

4

2. 3D User Interfaces

2.1 Mapping of input devices

2.1.1 2D input devices

In desktop virtual reality the 10 devices have generally a limited number of DOFs.

The standard devices are the mouse and the keyboard. The interaction with a virtual

environment requires that this 2D input is somehow mapped to the 3D environment.

To augment the interface, professional animation and modeling tools usually have a

possibility to attach other 2D 10 devices, such as buttons and dials to reduce the

number of functions and operations attached to a single device. To interact with the

scene, the user typically selects an operation and then manipulates the desired object.

For example, rotational movement can be mapped to the mouse X- and Y-axes

directly. Because a mouse-like device can have only two degrees of freedom, the map

ping of the mouse movements is changed via a keyboard interface, a menu or using

the buttons on the mouse. This causes extra levels of interaction. In a dial box user

interface device, the different dials have separate functions: some of the dials can con

trol the rotation, while others are used for translation, scaling etc.

As the movements are mapped to less than three dimensions, these interaction devices

can maintain a high level of accuracy. The user is able to modify only one or two

parameters at the same time. This applies to true 3D widgets as well, if appropriate

constraints are utilized.

2.1.2 3D input devices

3D input devices, or devices that have more than two degrees of freedom are more

versatile interaction devices than the previously mentioned 2D input devices.

Examples of these type of devices are the SpaceBall (SpaceTec), different motion

trackers and data gloves. They make it easier to combine basic operations to a single

interaction event, i.e. translating and rotating an object at the same time.

5

2. 3D User Interfaces

In general, the device must still be mapped to the 3D environment. The mapping can

include scaling of the motion of the device to fit the sensitivity to the expectations of

the user. Also, the accuracy of the device can suffer if the movement is not constricted

to a lesser number of degrees. For example, if the user wants to scale an object only in

the X-Y plane, the operation must be limited to that plane to provide any accuracy,

especially if a motion tracking type of system is used.

Using devices with more than two degrees of freedom can also be a difficult task.

Experience has shown that even a relatively simple device, SpaceBall, can be too

difficult for most users. Most people can not do several operations at the same time

and instead do the tasks sequentially. This is probably because of the lack of appro

priate feedback from the multiple operations.

An interesting variant of 3D interface technologies is the Lego™ Interface Toolkit

(Ayers 1996, p. 97-98) displayed in Figure 1 on page 7. The problem with the current

physical interface devices is that they are not reconfigurable. The physical configura

tion is the same, regardless of the software interface. Ayers presents a solution for

rapid prototyping of different physical interface devices. The user can freely construct

a suitable interface device by using three basic components: rotational sensors, linear

6

2.3D User Interfaces

sensors and push buttons. The physical components of the interface are ordinary

Lego™ blocks on which the sensor devices are attached.

Figure 1 The Lego interface toolkit samples (Ayers 1996, p. 97-98). The interfaces in the

figure are constructed for manipulation of the Virtual Wind Tunnel widgets (see

Figure 5 on page 14)

2.2 Interaction with 3D scene

To augment the interaction with 3D scenes, we also need a set of manipulation

devices, or widgets. The widgets make it easier to select different types of operations

for the selected objects. 3D widgets are functional, geometric objects embedded into

the scene and linked with the selected objects. The user interacts with the widgets

through manipulation involving motion, selection and simple gestures.

As with 2D widgets, the 3D widgets should be responsive, using easily understand

able paradigms or metaphors. An additional requirement is that the size of the widgets

should be non-intrusive because the widgets are embedded in the view of the user.

7

2. 3D User Interfaces

The metaphors created by 3D widgets can also have properties that are not generally

implemented in 2D widgets: the widget can either continue to operate after the inter

action has stopped or it can stop at the same time. For example, a trackball metaphor

can be thought to be given an impulse and it will continue to rotate the object indefi

nitely. In the three dimensional space the widget metaphor can be in addition commu

tative or non-commutative. This means that the result of the interaction can be

dependent only on the end result of the interaction or it can depend on the path of the

movement.

2.2.1 Direct manipulation widgets

Direct manipulation widgets are components which directly affect the properties of

the object to which they are linked to. These widgets help the user to visualize the

mapping of the 10 devices to the virtual environment. In practise, there is no generally

accepted set of metaphors for 3D widgets, in contrast to 2D GUI guidelines and

toolkits.

Usually the direct manipulation widgets provide an interface for the basic geometric

transformations: translation, rotation and scaling. The widgets can provide additional

geometry to help visualizing the possible operations or they can use the geometry in

the scene. Open Inventor (Strauss 1992, p. 341 - 349) defines these as:

• Draggers, which use the geometrical representation of the selected object as the

manipulator

• Manipulators, which present their own geometry around the selected object

8

2. 3D User Interfaces

Open Inventor manipulators implement widgets that allow more than one operation

with a single widget. Examples of Open Inventor widgets can be seen in Figure 2 on

page 10. The widgets in the figure are:

1. Handlebox - Translation and scale factor editing.

2. Jack - Rotation, scaling and translation.

3. Trackball - Rotation and scaling

4. Transformer - Interface for changing scaling, rotation and translation.

The user can also change the default geometrical representation of the different

manipulators.

9

2.3D User Interfaces

The operations are grouped logically, but the downside is that the widgets are big. On

the other hand, different operations can be done without changing the widget type or

device mapping explicitly.

Figure 2 Examples of direct manipulation widgets (Open Inventor manipulators):

A handlebox, a jack, a trackball and a transformer.

A relatively widely used 3D toolkit, VRML (VRML Architecture Group, 1997), has

draggers with the following IO device mappings:

• Translation - The translation maps the motion of the pointer device to motion in a

plane.

10

2.3D User Interfaces

• Spherical mapping - This dragger type translates the pointer device to a virtual

trackball, mapping it to a rotation.

• Cylindrical mapping - Cylindrical mapping maps the motion to a rotation around a

specified axis.

2.2.2 Selections and picking

Picking, or dynamic target acquisition refers to target selection tasks, such as picking

a 3D point or object. To make 3D interaction work, the selection process must be very

natural and unobtrusive.

Ray-pick. Ray picking means that a ray is cast to the scene to pick objects or points

on the objects. The picking ray can be formed by casting the ray from the eyepoint

through the location specified by the pointer device to the scene. The ray can also be

formed by using a spatial input device to define the ray and then modifying the ray

interactively. For object-level picking the ray must be checked for intersections

between the ray and the bounding volumes of the objects.

Cone-pick. Cone picking is a variation of the ray pick method, but instead of casting

a ray to the scene a cone or a cylinder is used for the intersection testing. This can ease

the picking task because the method is more tolerant to errors or noise in the input

device. The picking cone can also be visualized more clearly than the picking ray.

Forsberg (1996, p. 95-96) presents a method to interactively manipulate the aperture

of the picking cone to enable the users to change the accuracy of the pick.

Volume-pick. The “Silk Cursor” method by Zhai (1994, p. 459-464) implements

picking by utilizing a semitransparent volume for picking objects. Zhai tested the vol

ume picking technique for picking a single object, and the results showed that the

method provides enough depth cues to make the picking operation easier. However,

11

2.3D User Interfaces

the method was not tested for picking a group of objects. An example of silk cursor

usage is in Figure 3 on page 12

Figure 3 Examples of Silk Cursor (clockwise from top left):

A fish outside the silk cursor, a fish in front to the selection volume,

partly inside the selection volume, behind the selection volume

Picking by orientation. Forsberg (1996, p. 95-96) also describes an orientation based

picking method. This method uses the orientation of the interface device to single out

12

2.3D User Interfaces

operations. See Figure 4 on page 13 for an example. The user can select only the ver

tical or horizontal parts of the widget at a time. This lessens the possibility of errors.

Figure 4 Orientation based selection. The leftmost widget would select the rake frame,

the rightmost would select the cylindrical slider.

2.2.3 Visualization widgets

Aside the direct manipulation of the 3D scene, the visualization is also a problem in

virtual reality. Visualization widgets implemented by Herndon (1994, p. 69-70) are

targeted to interactive visualization of CFD (Computational Fluid Dynamics) data

sets. The widgets are true 3D widgets, or 3D objects that each represent some proper

ties of the visualized scene (i.e. glyphs), embedded to the scene. For different visual

ization needs, Herndon caters for ID, 2D and 3D sampling widgets. The same

metaphors have been used by the Brown University Computer Graphics group (See

Figure 5 on page 14). The ID widget samples a single point in the dataset, 2D creates

a rake alike those used in real wind tunnels to display currents by inserting smoke in

to the airstream. The 3D widget controls an array of vector samples. All these widgets

13

2.3D User Interfaces

contain manipulators to change the parameters of the visualization widget. The widg

ets in the images are (clockwise from top left):.

• 2D rakes, the density and mount of the streamlines is controllable.

• 2D ring, the size and density controllable, as well.

• 2D point sampler, the radius of the streamer can be changed.

• Rake, point sampler and a 3D streamer grid.

14

3 MAGIC LENSES AND TOOLGLASS

Toolglass and Magic Lenses are relatively novel user interface metaphors presented

by Xerox (Bier 1993, p. 73-80; Bier 1994, p. 358-364). These widgets are semitrans

parent interactive tools, which have the appearance of a virtual sheet - a Toolglass

sheet - of semitransparent material like glass. Each sheet is a freely movable

arbitrarily-shaped screen region together with an operator (filter or selection of tools)

which affects the objects viewed through the region. This layer appears between the

application and the traditional cursor. Figure 6 shows the location of the Toolglass

layer. These widget types may provide a set of tools to manipulate the data, or they

may customize the view of the application using different filtering methods. Bier

divides the widgets into two classes depending on their functionality and properties:

1. Toolglass

These widgets provide a set of tools with which the user can

manipulate the objects underneath the toolglass region.

2. Magic Lenses

Magic Lenses are Toolglass widgets combined with a filter to

enhance the visualization, not necessarily containing manipulation tools.

Cursor

Toolglass >
Sheet

Applications

Figure 6 Toolglass interface (Bier 1994, p. 358-364)

Figure 7 shows the analogy between the traditional 3D interaction model based on

glyphs and widgets versus the Toolglass/Magic Lens When a visual representation of

15

3. Magic Lenses and Toolglass

data is presented, it forms a glyph. When the glyph in turn is combined with direct

manipulation, we can call the combination a widget..

Data
visual
representation

Glyph _____________ Widget
direct
manipulation

Screen
Canvas -------------------------- ► Magic Lens ------ —----------------- ►- Toolglass
Window filtering direct

manipulation

Figure 7 Analogies with traditional 3D interaction model and Magic Lenses

These tools use a spatial mode of interaction instead of the typical temporal mode,

enabling the user to simultaneously have multiple, differently filtered views to the

same data set. Temporal mode means that the user first selects either the object or the

operator and then the other. The spatial mode allows the user to perform these tasks

simultaneously through the toolglass region with a single operation. When the user

positions the toolglass region over an object, both the tool and the object will be

selected simultaneously. Spatial modality is especially suitable for large datasets, or

when interfaces using the temporal mode might cause distraction or disorientation.

For example, sudden changes in the visualization when using an immersive display

will surely cause disorientation.

The lens/sheet metaphor also opens up a way for natural two-handed operation. The

non-dominant hand can be used to position the lens, and the dominant hand to operate

the tools on the lens or to interact with objects visible through the lens. This would be

impossible using the temporal modes of the traditional user interfaces, so the lens

metaphor also can enhance the responsiveness and speed of the interface in

environment where two-handed operation is available. Kabbash (1993, p. 474-481)

has proven the effectiveness of two handed user interfaces. In practice, the 3D first-

person games have also proven the effectiveness of two-handed operation. In most of

these games, users can freely alter the configuration of different controllers available

for the gameplay, and the majority of the users have opted for two-handedness. The

usual configuration uses the dominant hand for accurate tasks, like changing the

16

3. Magic Lenses and Toolglass

Orientation of the viewpoint in the virtual environment and the non-dominant hand for

translational movement (front, back, left, right, up, down).

Because these tools are movable and the operation applies only to a part of the screen,

the visual cluttering or overloading of the interface is limited only to a small region.

Also, the computational burden of changing the visualization is greatly reduced when

the operation only applies to the Magic Lens area instead of the full dataset.

3.1 Composition of Lenses

One of the main benefits of toolglass metaphor is the possibility to combine the

effects of several lenses by stacking them. If we consider a lens as a “visual query” to

a data set, the stack is a combined query or macro. The visual query can be formed

incrementally by adding more lenses to filter the data. This enables the user to more

easily construct the query even if the user does not have a clear understanding of what

combination of the filters might produce the wanted result. The resulting visual macro

can then be saved as a compound lens for future use. An example of composition of

the lenses can bee seen in Figure 8.

“j Highlight Major Roads

Highlight Water

Figure 8 A composition of two lenses, one showing the roads and the other waterways

(Stone 1994, p. 306-312)

Fishkin (1995, p. 415-420) has implemented Magic Lenses as an interface for

database queries using scatterplot displays of US census data as the base dataset. In

the article Fishkin defines formally a set of composition rules for Magic Lenses.

17

3. Magic Lenses and Toolglass

A lens is: (eq 1)

L = (F,M)

where:

F is a filter that describes the output of lens for some datum.

M is a boolean operator (AND, OR, NOT) which describes how the result of

the filtering function is combined with the output of lenses underneath.

For example, given L¡=(F¡, AND) and L2=(F2, OR), the result of positioning L2 over

Lj is (Fj OR F2). Conversely, the effect of positioning L¡ over L2 is (F2AND F¡).

The filtering operations can be further divided into two classes:

1. Filters that do selection, i.e. allow operations to be performed only on certain

types of objects in the data set.

2. Filters that change the visual presentation of objects.

The jVOF-operation can be understood as a lens that inverts the sense of data coming

in to the lens. This operation applies only to the first filter class described above. The

inverting lens is then L¡=(NULL, NOT). This means that the lens applies a NOT (or

inversion) to the incoming data but it has no intrinsic filter function. It can be argued

that the inversion/notation itself is a filter, but the definition given above helps in the

construction of complex filtering operations. For example, the user might construct

the query (F¡ OR NOT F2) by using a lens L2=(F2, *) and positioning lens L^NULL,

NOT) on top of L2 and then using lens L¡=(Fj, OR) on top of the resulting query.

Composition of lenses reduces the amount of different Magic Lens filters needed in

queries.

18

3. Magic Lenses and Toolglass

3.2 Implementation alternatives

Bier (1993, p. 73-80; Bier 1994, p. 358-364) describes three methods for the imple

mentation of viewing filters:

1. Recursive Ambush, a procedural method

2. Model-In Model-Out (MIMO), a declarative method

3. Reparameterize and Clip, a modification of MIMO method

The recursive ambush method is suitable for implementations where the original

model is described procedurally as a set of graphics language calls, such as Postscript.

The lens is actually a new interpreter for the graphics language, with new implemen

tations for the graphics primitive operations. For example, a lens can modify a line

drawing primitive to produce stippled line by first turning on a stipple mode and then

calling the original line drawing primitive. Thus in a strict sense the recursive ambush

does not need to actually change the primitive operations, if the same effect can be

obtained by changing the attributes of the objects.

In composition of the recursive ambush lenses the primitive modified by the lens may

not be the original graphics representation, but a modified version of the graphics

primitive created by other lenses.

The MIMO-method is a modification of the previous method that involves copying of

the original graphics model or representation. The model can be a data structure, like

a high-level scene graph depicting the scene or a collection of graphics language calls

or an array of pixels or some other image representation. Each lens first copies the

structure and walks through it modifying it in accordance with the desired lens filter.

When MIMO lenses are composed, each lens takes the model produced by the lenses

under it and modifies it. The modified version is then associated with the clipping

region formed by intersecting the lens in question with that of the lens underneath.

The resulting models are in turn passed to the lenses above.

19

3. Magic Lenses and Toolglass

The Reparameterize-and-Clip is a global modification of the renderer parameters. For

example, a wireframe or zoom lens can be created by first drawing the original image

and then changing the rendering parameters to produce the filter effect. After that, the

Tenderer is asked to clip the drawing region to the lens boundary shape and then to

redraw the modified image.

If the rendering parameter changes are compatible, lenses can be composited. With

the Reparameterize-and-Clip method there is a possibility that the composition of the

lenses becomes impossible or the result may well not be what the user expected. For

example, the composition of different viewing frustums (different FOV etc.) can not

be defined clearly.

3.2.1 Benefits and disadvantages of the different filtering implementations

Recursive ambush: This method is a very lucrative way of creating Magic Lens

filters, because it does not need to allocate extra storage for the scene representation.

It also works on the graphics primitive level, suggesting that it might be possible to

implement this type of filtering very easily for many applications. However, the other

methods can as well work on the primitive level. Usually the filtering effect of the lens

is more complex than just a simple change in a certain graphics primitive, thus forcing

the recursive ambush lenses to modify several graphics primitives to produce the

filtering effect. Bier also suggests that debugging the composition of recursive

ambush lenses is difficult because the effects of several co-operative interpreters are

hard to understand. The effectiveness of this implementation can also be questioned,

because the result of each lens has to be computed several times: the number of

computations doubles with each overlap.

MIMO: The main drawback of the MIMO method is that the data depicting the

scene needs to be copied and maintained for each and every lens. If the original scene

graph is large, this can lead to excessive memory requirements, causing loss of perfor

mance. On the other hand, copying the data and maintaining separate copies pays off,

because the filter needs to be computed only once per lens. The MIMO lenses can also

perform complex filtering tasks more easily than the other methods.

20

3. Magic Lenses and Toolglass

Reparameterize-and-Clip: The problem of compositing Reparameterize-and-Clip

lenses is the only major drawback in comparison to the MIMO-lenses. Implementing

this filtering type is very straightforward, and does not require maintaining a separate

copy of the scene graph for different lenses. Of course, the underlying software API

may hinder the implementation of a Reparameterize-and-Clip filtering.

If direct manipulation is to be considered, the best alternative for filtering is MIMO,

because the operation can be performed in the “local” scene graph of the lens. Also

Reparameterize-and-Clip is suitable for direct manipulation.

3.3 Examples of the 2D Toolglass metaphor

Xerox has presented many sample implementations of the toolglass for different

purposes, but commercial implementations have been very sparse. The implementa

tions by the Xerox Magic Lens group have been mainly directed for the creation and

manipulation of 2D graphics, but they have also implemented the metaphor as a tool

for database visualization and queries (Fishkin 1995, p. 415-420) (See Figure 9.)

tax**, perca pita

2DCIII III lllll III III II] DŒ3
jAverag* annual pay, 1881

D

-öl

I < I Щ bXtifl I OH I ijtLrj i_no]
D - DD n

9,
D Ö ddD

□ □
------ er о.......

ff
□ n

сг

Figure 9 Dynamic database query: high salaries AND low taxes (Fishkin 1995, p. 415-
420)

The database query operations included both boolean queries and real-valued queries,

making it possible to implement arbitrary scoring functions for the data. In the imple

21

3. Magic Lenses and Toolglass

mentation, scoring function is a filter which returns a numeric value between [0...1].

The data returned by the scoring function can the be subjected to arithmetic filtering.

The traditional 2D Magic Lens interface has been implemented also by a couple of

commercial software manufacturers, mainly for commercial illustration systems, such

as CorelDraw and Kai’s Power Tools.

3.3.1 CorelDraw

The CorelDraw implementation contains a small number of Magic Lens filters, which

can be composited by overlapping the filter regions. The filters include a magnifier

and five color operators.

3.3.2 Kai’s Power Tools

Kai’s Power Tools (KPT) is a collection of plugin modules for the Adobe Photoshop

(MetaCreations 1997). The interfaces provided by KPT have traditionally been very

artistic; the tools have been decorated by unnecessary graphics just to make the tools

stand out from the mass. The Magic Lens in KPT is a previewer toolglass. Without the

composition of several lenses to form visual macros. As example, Figure 10 presents

a view of the underlying graphics through a “smudge” lens.

KPT fit Scope
Ф

• L
■:

/
1

*

. Л
/7 \

\v f 1

X)
•

Figure 10 Kai’s Power Tools Magic Lens Implementation.

An image of a car seen through a “smudge” lens.

22

3. Magic Lenses and Toolglass

3.4 Examples of the 3D Toolglass metaphor

For 3D environments the metaphor has not been researched thoroughly, though it

provides a solid and easily understandable basis for interaction with virtual environ

ments. The interface can also be scaled from palmtop displays to immersive wall

displays or CAVE-environments. A CAVE-environment is an immersive VR

environment, consisting of several video walls usually in a cube-like arrangement

utilizing backprojected, computer generated stereo imagery. Also, the spatial mode of

operation opens up a way for natural, two-handed interaction model, which suits well

for immersive VR. Because the lens metaphor limits the changes in the visualization

into a spatially bounded area, it reduces the possibility of disorientation or loss of

immersion.

3.4.1 Virtual Tricorder

Wloka (1995, p. 39-40) has combined the Magic Lens metaphor with a universal

toolbox, the Virtual Tricorder (see Figure 11). The virtual tricorder is a widget,

reminiscent of a hand held remote or PDA (Personal Digital Assistant) with a flat

screen.

23

3. Magic Lenses and Toolglass

With this tool, the user can perform different tasks with the objects in the scene. In his

implementation the Tricorder can be used both as a navigation and visualization tool

in virtual environments. The main motivation for the Tricorder has been to create a

large toolbox to visualize the hardware interface devices (wands, etc.) in the virtual

environment, and to create a replacement for the standard 2D popup/pulldown menus

for VR environments. When the Tricorder is used as a movement aid in the virtual

environment, the user would first select a location by pointing the tricorder at the spot.

After that, the tricorder would “reel in” a virtual line between the user and the location

of interest, moving the viewpoint accordingly.

Wloka also alluded towards selective filtering and visualization of normally hidden

objects through the Tricorder interface. The screen is both a menu selection device

and a Magic Lens (see Figure 12). This combination of a navigational tool and a

Magic Lens interface is a very attractive idea. However, the interface described in his

paper missed some main points of Magic Lenses:

• Reduced visual clutter.

The tricorder interface itself reserves quite an amount of screen space, which could

perhaps be utilized for other purposes.

24

3. Magic Lenses and Toolglass

• The composition of lenses.

With just a single Tricorder, the nature of Magic Lenses interface is not fully

realized, because the Tricorder is able to display only a single lens filter at a time.

3.4.2 Volumetric Magic Lenses

Viega (1996, p. 51-58) has presented both flat and volumetric lenses. An example of a

volumetric lens in action can be seen in Figure 13.

Figure 13 A volumetric X-Ray Magic Lens (Viega 1996, p. 51-58)

The implementation uses hardware clipping planes to draw the lens images. The

downside of that particular method is that it requires the scene to be rendered from

four to six times per lens image, and it limits the shape of the lenses to rectangular

forms. This is because the current hardware implementations define the clipping

planes as infinite half spaces. Thus it is impossible to arrange six clipping planes to

form a rectangular region in space which would excludes what falls inside. Figure 14

25

3. Magic Lenses and Toolglass

on page 26 shows two facing clipping planes which combined clip all of space. The

implementation also makes the composition of lenses overly complex task.

Clipped half-space

Figure 14 Two facing clipping planes clip all of space

In the paper Viega suggests that volumetric lenses could also be used to create Worlds

In Miniature (WIM) (Stoakley 1995, p. 265-272) - style navigational aids for virtual

environments by considering the WIM display of the environment as a reducing

26

3. Magic Lenses and Toolglass

volumetric lens encompassing the region in space around the viewer. In a strict sense

this is not a volumetric Magic Lens. It is rather an additional display component.

Figure 15 shows an example of a volumetric lens used as a navigation aid.

Volumetric 3D Magic Lenses probably fit well to certain situations, like virtual

surgery and other medical applications. However, the effectiveness of the metaphor is

limited by the strict regionality of the volumetric lenses. In a sense, the lens metaphor

reduces to a “virtual aquarium”-display or to a simple clipping / CSG (Constructive

Solid Geometry) operation.

27

4 2D MAGIC LENSES AND 3D

VISUALIZATION

The 2D magic lens interface has previously been used mainly to filter the information

seen directly in an application. Combining the magic lens interface with a separate 3D

scene visualization provides more possibilities for the lens metaphor. E.g. both

navigation and locating structures or areas of interest in large scale virtual environ

ments are often difficult, but by using a 2D map image with Magic Lenses to filter 3D

visualization of the location, the navigation and wayfinding tasks can be made easier.

Of course, all data representations which benefit from the 2D/3D combination, can be

used in this way. For example, a network management program may use the 2D Lens

Interface to display the logical structure of the network, and utilize the lenses to filter

the routers and other network components based on fault types, equipment types etc.

The 3D visualization will then display the physical structure of the network, helping

to pinpoint the real location of the faulty equipment. Thus the two different topologies

of the network can be visualized side by side, augmenting the management task.

4.1 2D Magic Lenses as navigational aids

In large scale virtual worlds, like cities or buildings, the sense of orientation can be

lost easily, because the quality of the visual and aural presentation does not neces

sarily provide the same visual or auditory cues as the real world. The user can

gradually learn to navigate in the world but this can take some time.

28

4. 2D Magic Lenses and 3D visualization

Darken and Sibert (1996, p. 142-149) divide wayfinding tasks into three categories:

1. naive search

The user has no a priori knowledge of the location of the target in question.

Thus an exhaustive search must be performed.

2. primed search

The user knows the location of the target. The problem that remains is

wayfinding, i.e. the user must move to the location.

3. exploration

A searching task where the user has no target; he is only exploring the

environment.

These different searches are usually combined. For example, the user may know the

approximate location of the target, so he first performs a primed search to find the

general location, followed by a naïve search to pinpoint the target. This search can

also be performed in the opposite way: naïve search to find the approximate location

followed by a primed one.

VRML tries to overcome the navigation problems by making available a number of

predetermined viewpoints. If the scene is simple, and only a few viewpoints are suffi

cient for the navigation, the viewpoint scheme works well. If the scene requires a

large number of possible viewpoints, the navigation via a viewpoint list soon becomes

very tedious. Also, this method may not provide enough clues to help the user to

determine the relative location of the target in the virtual environment.

Combining the 2D magic lenses and a 3D virtual world provides a simple and easy

interface for both navigation and searching tasks. The 2D lens interface is used both

as a navigational aid and a tool to define the objects of interest in the 3D visualization.

The lens interface can easily display an indicator showing the current location of the

user in the environment, and additional data, like the field of view, or elevation.

For navigational purposes, 2D lenses can be used on top of a normal map-like repre

sentation of the virtual scene. The lenses can filter uninteresting parts of the scene

29

4. 2D Magic Lenses and 3D visualization

away or bring more information to the map. The filter, resulting from the combination

of the lenses, can then be used to filter the 3D visualization of the same area, giving

the user the possibility to see the spatial location of the interesting parts in 3D. Used

side by side, the map interface provides a well known aid from daily experience for

navigation and wayfinding. The 3D visualization also takes into account the actual

position of the user in the virtual scene.

4.2 Mapping of the 2D lenses for 3D space

If the traditional 2D lens interface is combined with a 3D visualization, the effect of

the lenses for the virtual environment can act in three ways:

1. The lens interface acts as a general filter selection tool

2. The lenses affect only the region under the lens in the 2D display

3. The lenses react to user entering and exiting the lens region

These options can be used in combination. The first of these options is quite straight

forward, but it is as usable as the rest of the mappings. For example, the Magic Lenses

interface can be used to select the type of network wiring from the floorplan of an

office building. The selected wiring can then be seen in a separate 3D visualization

with the model of the building. This type of functionality is needed for example when

the user knows how to construct filters to display entities in a smaller context, but

needs also to see the same filters in the whole context. The selection of filtering is

accomplished by clicking through the wanted lens combination in the 2D lens

interface.

The next choice is a direct mapping from the bounded 2D lens region to the 3D

display. For this type of filtering, the 2D lenses must specify a region in space, i.e.

restrict the filter effects in the vertical direction. To define a region in space, the 2D

lenses can be used to specify the third dimension by adding two scalar values to the

properties of the lens. These values specify the bounding region in the vertical

direction. Scalar valued lens filters can also be used for this purpose.

30

4. 2D Magic Lenses and 3D visualization

For general purposes, the avatar1, or the projection of the user in the virtual space

must also be taken into account. Avatar means the embodiment of the user in the

virtual space. Avatars do not necessarily need any geometrical representation, but they

must have a defined size to help to establish the sizes of openings the user fits through,

the maximum step size and other values regarding the movement in the virtual world.

Because the 2D->3D mapping creates in fact a volumetric lens, the filtering can

provide the same functionality as real 3D volumetric lenses. In this implementation

the lens regions are generally larger than the user’s avatar, so the second method can

be varied to produce yet more lens-to-visualization mappings. The lens effect on the

visualization can be dependent of the user’s location in the virtual environment. For

example, the filter can be visualized constantly, providing a real volumetric lens, or

the filter can be turned on when the user enters the lens region.

4.3 Implementation of 2D lens and 3D visualization

Lately, different virtual cities implemented in VRML have appeared on the net. This

work presents one solution for more versatile navigation and wayfinding in the virtual

city. This part of the work is based on Java and VRML for platform independentness.

4.3.1 Java

Java is a platform independent, interpreted object-oriented programming language

developed by Sun Microsystems Inc. (1991). Java language contains the language

core, plus additional, rudimentary functionality for media processing and a GUI -

toolkit. Abstract Window Toolkit (AWT) is a simple toolkit for creating interfaces for

Java applets or applications. AWT is based on the least common denominator of the

native window systems on different platforms. Other reasons for the minimalism of

the interface components might be that Java was originally designed as a

1. Merriam-Webster’s Collegiate® Dictionary:
av.a.tar n [Skt avatara descent, fr. avatarati he descends, fr. ava- away + tarati he crosses over—more at ukase,
through] (1784) 1: the incarnation of a Hindu deity (as Vishnu) 2 a: an incarnation in human form b: an embod
iment (as of a concept or philosophy) often in a person 3: a variant phase or version of a continuing basic entity

31

4. 2D Magic Lenses and 3D visualization

programming environment for embedded systems, i.e. intelligent remote controllers

with LCD (Liquid Crystal Display) displays and the like. AWT is missing some basic

functionality, like overlapping windows.

Overlapping windows with AWT. Because the AWT does not cater for overlapping

GUI components, this functionality had to be implemented to provide a platform for

2D Magic Lenses, where the controlled overlap of the windows is a requirement. The

abstract window toolkit allows overlapping GUI components, but there is no way to

control the drawing order of the components. To create this functionality, a drawing

component, java . awt. Canvas is subclassed to implement a simple windowing

interface. This subclass maintains a stack of windows on a canvas, handles the

drawing of the windows, resizing and other operations or event handling. When the

user moves the mouse over a window, the canvas subclass calls the appropriate

callbacks for the window. The windows themselves are implemented in class

CanvasWindow, which draws the window frames and contains also the graphics

context for the drawing. Both of these classes double buffer the drawing to minimize

artifacts.

Magic Lenses interface for Java. T h e MagicLens class extends the

CanvasWindow class mentioned above to implement the functionality for the

lenses. The MagicLens class contains a LensFilter interface for implementing

the filter methods. The lenses operate on image data and the filtering is based on color

values using the image filters provided by the java . awt. image . RGBImage-
Filter class. The best composition method for operations on images is MIMO.

When the lenses are composited, the lens which is currently being drawn, requests the

underlying lens to provide the source data. Because the filtering happens asynchro

nously, the Magic Lenses employ a MediaTracker object to block the execution until

the filter has produced the final image. The applet is not threaded, because the

drawing needs to be synchronized anyhow, so creating multiple threads for the

32

4.2D Magic Lenses and 3D visualization

different lenses does not offer any advantage. An example of the lens applet is in

Figure 16.

Detail

Underground

Applet

Map: (1 91,648), World: (-105.303024,2.0,240.90909)

Figure 16 Magic Lens applet displaying different lenses

Interaction with the applet is straightforward. The user can move directly to a location

in the scene by clicking the appropriate spot on the map. Depending on the mapping

of the lenses, clicking trough the lenses can also select a combination of lens filters.

The lenses are interactively movable, updating the displayed image constantly. When

combined with a VRML viewer applet, the map also displays the location and the

field of view of the user.

33

4. 2D Magic Lenses and 3D visualization

The applet is started from HTML code, and the available lenses for the Magic Lens

viewer are defined as parameters for the lens applet:

<applet code="MagicLensTest.class" width=660
height=660>

<param name="name" value="magiclenses">
<param name="receiverName" value="vrmlviewer">
<param name="baseImageURL" value="file:///home/napo

/pubiic_html/lens/images/1ondon_c rop.gif">
<param name="lensi" value="Detai1-Lens,

100.200.80.50, file :///home/napo/pubiic_html/lens
/images/london_detail_crop.gif,Detail,Detail">

<param name="lens2" value="ColorPassLens,
20,20,50,50,0,128,0,Restaurant">

<param name="lens3" value="ColorPassLens,
100,100,50,50,0,0,128,Shop">

<param name="lens4" valuer"OverlayLens,
100.300.80.50, file:///home/napo/pubiic_html/lens
/images/underground.gif,Underground,Underground">

</applet>

The first parameter defines the lens type. A Java class with the same name is then

instantiated, the window is positioned and sized according to the four coordinates:

location (x,y), width and height. The rest of the arguments define the filter parameters

or the image URL (Universal Resource Locator) for overlay-type of lenses, the lens

name and the string to match against when filtering the VRML scene. The different

lenses in this work are filters that operate on the RGB (Red, Green and Blue) data of

the image and also overlay lenses, which import data from additional sources to create

lenses that can for example enhance the detail on the image or show underground

pipelines.

34

4. 2D Magic Lenses and 3D visualization

4.3.2 VRML

VRML (Virtual Reality Modeling Language, VRML Architecture Group 1997) is a

file format for describing interactive 3D objects and virtual environments to be experi

enced and shared on the World Wide Web. The first release of the VRML specifi

cation was based on Open Inventor (Wemecke, 1994) file format, and it was created

by Silicon Graphics in collaboration with numerous contributors. The first release was

lacking on the interaction side, the interaction with the scene was limited to

navigation and clickable, active objects called anchors. The anchors provided means

to load new VRML scenes or other information from the web. This first version was

actually a simplified version of the Open Inventor format, from which the interaction

with the scene was removed. The reason behind the removal of the interaction was

that the implementation of the VRML browsers would be an easier task. In principle,

this first version was expandable, but in practice the expansion was difficult.

The second release, VRML 2.0 or VRML97, is based on the first version of VRML.

This release incorporates more interaction to VRML, and it specifies a clear interface

for expanding the functionality of VRML. VRML97 is capable of representing static

and animated 3D content plus a wide variety of other media. There are also mappings

between VRML objects and commonly used application programming interfaces

(API).

The VRML scene description consists of a scene graph and functionality embedded to

the scene graph. Scene graph is a hierarchical, usually a tree-like acyclic graph that

contains nodes that describe a virtual world.

Metadata for VRML nodes. If the VRML scene is to be filtered using other

properties than the ones specified for the VRML nodes, the scene objects need to

contain additional metadata. For example, if a city scene requires that the different

parts of buildings or blocks can be filtered based on their usage (shops, pubs etc.), the

scene database must contain this information.

35

4. 2D Magic Lenses and 3D visualization

The VRML objects could have been designed to be more friendly for metadata, but as

it is, adding metadata to the node descriptions would require rethinking and rewriting

the VRML specification. There is one possible way to insert metadata to the scene

without creating new nodes or node classes, though. The VRML event handling and

instancing model requires that the nodes have distinct names, which can be specified

freely. This DEF/USE construct can contain the metadata as the node name. Because

the node names are used only for routing events from a VRML node to another, there

are no shortcomings or loss of functionality if the names are used for other purposes

too. VRML Database Working group has presented a proposal (VRML Database

Working Group, 1998) for metadata nodes that provide access to arbitrary XML

(extensible Markup Language) documents.

When the scene is filtered, the VRML browser can decide based on the node name the

class of objects where it belongs. In this work, the node name is matched against a

regular expression for the classification. The use of regular expressions simplifies the

task of scene construction, allowing the creator of the scene to name the different

objects using human understandable names to ease the task.

Unfortunately, the VRML specification does not provide means for complex opera

tions on the scene graph. The External Authoring Interface (EAI), which is an

external, usually Java-based API, was not ready at the time when this part of the work

was done. EAI allows access to the VRML scene graph, but for example searching a

named node from the scene graph is limited to exact names of the nodes. This causes

problems if the metadata is to be inserted to the scene as node names. Of course, the

metadata could be mapped to node names using an external database to provide the

mapping.

Using Java in Script node inside the VRML scene, which also was not functional at

the time this work was made, has the same problems as the EAI. Fortunately,

Dimension X’s Liquid Reality - Java toolkit for VRML was available for this task.

36

4. 2D Magic Lenses and 3D visualization

4.3.3 Liquid Reality

Liquid Reality (LR) is a VRML toolkit written in Java, using native methods where

the execution speed is critical. It contains classes for basic geometric operations, the

graphics primitives defined in VRML and the interface for embedding VRML content

to Java applets or programs. LR also has complex searching operations for the scene

graph and additional functionality, like bounding box and scene path operations

usually found in high level graphics toolkits.

Dimension X was acquired by Microsoft in 1997, and the development of the toolkit

as it was has been cancelled. The toolkit is no longer available.

Because of the limitations of VRML, I wrote a VRML browser applet using LR. The

browser implements methods for searching the scene graph and manipulating the

VRML content for filtering purposes. In this case, the VRML applet searches the

scene graph for named nodes matching against a regular expression. When a list of

nodes is found, the browser then modifies the Appearance node of the found object

to affect the visualization of the scene. If the named node or group does not contain an

Appearance node, it is inserted to the scene by the browser. The composed filtering

effect of the lenses is handled in the Java-applet, so there is no need for more complex

filtering capabilities on the VRML side.

The VRML applet also transmits information about the user’s location in the scene

and viewing parameters to the Magic Lens applet.

37

4. 2D Magic Lenses and 3D visualization

The Figure 17 displays an example VRML scene unfiltered side by side with the

Magic Lens applet.

When the scene is filtered using the 2D lenses as general filter selection tool, the

resulting VRML scene changes to portray the filtered parts of the scene semitrans

38

4.2D Magic Lenses and 3D visualization

parent, as can be seen in Figure 18. The transparency artifacts visible in the screen-

shots are caused by bugs in the Liquid Reality implementation. The version used in

this work was a beta and it was missing certain features.

As mentioned in the beginning of chapter “Mapping of the 2D lenses for 3D space”

on page 30, the filtering of the 3D scene can be done in various ways. Figure 19 on

page 40 shows the effect of lenses that operate like volumetric lenses. The user is

39

4.2D Magic Lenses and 3D visualization

positioned outside the lenses, and the filtering affects only the parts of the scene inside

the lens volume.

4.3.4 Communication between the Magic Lens and VRML applets

Both applets implement an interface for messaging, and because the applets are

located on the same web-page, they can call each others methods. The messaging API

is implemented as an interface (also known as multiple inheritance in object oriented

programming), which consists of methods to initialize the messaging, sending and

receiving single or multiple messages in a single method call.

The Java virtual machine is relatively slow, so it can cause delay for the messages.

Because most of the data is transmitted from the VRML viewer to the lens applet in

the form of viewpoint location, the messages are not handled in a timestamped

manner. Instead, only the latest message is used.

40

5 FLAT 3D MAGIC LENSES

When the Toolglass metaphor is moved to a 3D environment, most of the properties of

toolglasses remain unchanged. However, three dimensions create more possibilities

and challenges for interaction. For example, the geometry of the lens can be of any

shape, even a curved surface resembling a conventional lens. For immersive worlds,

the display of the lens can be stereographic or flat depending on the needs of the user.

An important element is that the lens geometry and image does not need to be

constrained to be two dimensional region aligned to face the viewer, but it can be

located anywhere in the virtual world. Even the source data for the lens does not need

to be directly visible from the current location of the viewer. This advances the

possible ways of using lenses to filter the environment but it also makes the compo

sition of the lenses a more challenging task. It should also be noted, that even though

the lenses are described as “flat”, they operate on a volume in space.

The previous work on 3D lenses has mainly concentrated on implementing the Magic

Lens interface for 3D graphics. The implementations have not taken into account the

possibility of multi-user environments and the methods presented are not very

effective. For example, the volumetric lens implementation by Viega (1996, p. 51-58)

had to draw the same scene at least six times to properly construct the lens image.

Virtual environments are usually computationally expensive, but the spatially

bounded region of the lens interface can ease this burden. Because the geometrical

representation of a virtual environment is complex, it is usually stored in a hierar

chical structure: the scene graph. VRML and Open Inventor scene descriptions are

examples of scene graphs. Typically the scene graph contains high-level descriptions

of the objects in the scene, not just the basic graphical primitives. The structure can

also be used to optimize the rendering of the scene by culling the non-visible parts of

the scene before it gets rendered. Because Magic Lenses operate only on a part of the

scene, the operations done by/via the lens can be directed to a smaller portion of the

scene graph.

41

5. Flat 3D Magic Lenses

5.1 The relationship between the lens image and scene

The 2D Toolglass constrained the effect of the lens to the region bounded by the lens.

The 3D version of Toolglass or Magic Lens uses instead of a two dimensional region

a volume in space, lens frustum (see Figure 20), which specifies the area on which the

lens operates. The Magic Lens images are generated as an additional view to the

scene. The lens frustum is analogous to the normal viewing frustum in 3D graphics,

but it does not need to be constrained to the actual viewpoint of the user. The lens

frustum is formed by the standard matrices used for 3D graphics that define the trans

formations for the camera: orientation, location and projection.

Image plane
or the near clipping plane

Viewpoint

Magic Lens

Figure 20 The lens frustum formed by the Magic Lens

Even though the lenses are three dimensional objects, they can be used to construct a

traditional 2D lens interface by constraining the lenses to be visible in the viewport

regardless of the position of the user in a Head-Up-Display style. A real volumetric

42

5. Flat 3D Magic Lenses

lens effect can be obtained by combining several lenses together in a cubical

formation with a suitable filtering operation, like modifying the clipping planes or

changing material properties seen through the lens to be semitransparent.

A more viable usage of flat lenses is as “real lenses” in the virtual world. This means

that the geometry of the lens acts as a filter through which the scene is viewed. When

the user changes position in the virtual world, the image formed by the lens changes

accordingly, displaying the scene as it would appear from the viewpoint of the user as

shown in Figure 21.

Figure 21 Scene viewed through a lens from different directions

Because the position and other aspects of the lens frustum can be easily defined, it

allows us to expand the possibilities of a Magic Lens - user interface. The image

displayed by the lens can show a location anywhere from the scene, even from a view

which is not currently visible in the viewport, e.g. the source of the image can be a

location behind the viewpoint. The lens frustum can also be attached to the lens

43

5. Flat 3D Magic Lenses

geometry itself (see Figure 22), so that the lens image does not change unless the

orientation or position of the lens changes.

Figure 22 Scene viewed through a lens frustum attached to the lens geometry

The different ways to connect the frustum to the actual lens image enhance the possi

bilities of 3D Magic lenses. On the other hand, the composition of the lenses with

different lens frustum - geometry relationships is not straightforward or can even be

impossible to implement.

Also, the lens geometry itself can be transformed regardless of user’s actions. For

example, billboards, animation and HUD - like lenses can be used to automate parts

of the interaction. This reduces the amount of “secondary” interaction, like moving

and positioning the lens thus freeing the user to perform more complex tasks with the

lens.

5.2 Magic Lens semantics in multiuser environments

When the Magic Lens metaphor is used in VR environments, the semantics of the

interface can be expanded, even for single user virtual worlds. Previous work has

mainly shown that Magic Lenses interface can be used with visible information, as a

see-through tool.

If the environment is populated by multiple users, the question “Who can see and

what through the lens?” must be answered. The lens can be thought to be a part of the

44

5. Flat 3D Magic Lenses

world that anyone can see and operate, or it can be strictly a local, private entity for

each user. For example, collaborative scientific visualization applications could

require the lenses to be a part of the common virtual world.

For shared magic lenses, the image of the lens can be formed by two different ways:

• One of the participants “owns” the lens, and is able to see through the lens. Other

participants just see the image of the lens much like a movie or slide.

• All of the participants in the VR environment experience different results when

looking through the lens, depending on their viewpoints.

Of course, the ability to manipulate the geometrical representation of the lens can be

limited too. An additional problem with multi-user environments and physical lens

objects in the world arises if the avatars in the world have physical boundaries or

limitations. The avatars might not be able to gather to the same location to peer

through the lens if the avatars can not share the same volume in the virtual space. If

we can remove the physical geometry of the lens representation from the

environment, this problem gets easier to solve.

5.3 Projected Magic Lenses - Magic Lights

If we discard the idea of separate piece of geometry as a “canvas” on which the image

formed by the lens is displayed, but use surfaces existing in the virtual environment,

we have a new concept: Magic Lights. Magic Light can be thought to be a slide

45

5. Flat 3D Magic Lenses

projector or flashlight which makes the lighted surfaces to behave specially, e.g. the

light marks the surfaces which display the Magic Lens filter attached to the light. An

example of a Magic Light can be seen in Figure 23.

Figure 23 A Magic Light displaying structures below the roof.

This new user interface metaphor reduces the amount of geometry needed to create

the Magic Lens - interface, and it suits well to shared multi-user environments. For

example, if the lens-interface is used in shared virtual spaces, all of the participants

must share the same lenses, either locally or by sharing the same viewpoint to get

similar filtered views to the scene. But with Magic Lights the change in the visual

ization or filtering effect would be seen directly on the surfaces of the objects in the

scene.

The manipulation device for Magic Lights can be a flashlight-like device, which can

be pointed at the scene. For immersive environments, like CAVE, a wand interaction

device can be used as a controlling device for Magic Lights. The Magic Light can also

be implemented as a headlight-like interface, where the light always points to the

direction of the view.

46

5. Flat 3D Magic Lenses

The Magic Light paradigm consists of three concepts:

1. The viewing frustum

2. The lens frustum

3. The Magic Light texture projection

Image plane
or the near clipping plane

frustum

Viewpoint

Magic Light
projection frustum

Figure 24 Lens frustum formed by Magic Light, dotted line shows the object surface hit by

the Magic Light.

The viewing frustum defines the view to the world. The Magic Light projection

frustum encloses the objects like a flashlight beam. The enclosed objects or object

surface areas define the region which is filtered. The Magic Light image is generated

by using separate lens frustum for projection. See Figure 24 for a diagram.

As with the flat lenses described above, the lens image can be formed in many ways.

Some of the more useful ways are:

47

5. Flat 3D Magic Lenses

• The image is from the viewpoint of the Magic Light control device and it is

projected onto the geometry using the same projection as for the image.

• The lens image is projected to the scene from the viewpoint of the user, and the

light mainly controls the location of the Magic Light image on the viewport.

5.4 Functionality of 3D lenses

5.4.1 Changes in rendering

The simplest way to use Magic Lens filters with a 3D scene is to change the rendering

of the selected scene. The rendering modifications can be changes in the shading

model of the scene or in the general material properties, like making all materials

semitransparent regardless of the original material specification. Also the drawing

mode can be changed to transform for example a previously solid scene into a

wireframe or bounding box representation.

5.4.2 Changes in lens frustum

The Magic Lenses can also perform a variety of viewing transformations, like field-

of-view and clipping. This enables us to create enlarging or shrinking lenses, for

example. By modifying the lens frustum suitably, a see-through or X-Ray lens effect

can be achieved without the need to use wireframe rendering to achieve the same

result.

5.4.3 Visual queries

Another important aspect of Magic Lenses is the ability to do “visual queries” or

search for objects that have certain properties. The source scene for this query can be

dynamically obtained from a database as well as from a static scene description. The

query can be made to select groups of objects with certain properties. These

properties can be both visible, graphical properties (material, color) or nonvisible

properties, metadata attached to the objects.

48

5. Flat 3D Magic Lenses

These queries can enhance the visible representation of the data: if the visualized

dataset has several dimensions, it might be reasonable to limit the number of

visualized dimensions. Using Magic Lenses to filter the dataset to a reasonable

amount of dimensions can clarify and help explorative searches or visualization.

The visual queries can also import additional data to the visualization, like pipelines

or telecommunications cabling which are normally not visible or even not a part of the

actual visualized dataset (Stone 1994, p. 306-312).

5.4.4 Modification of the geometry

3D Magic Lenses can be used to change the geometrical representation of objects

viewed through the lens. For example, in large scale virtual environments the objects

usually consist of several different level-of-detail (LOD) representations for perfor

mance reasons. The lens interface could be used to show only a certain LOD level to

allow Toolglass functionality regardless of the LOD chosen by the visualization

outside the region bounded by the lens.

5.4.5 Temporal modifications

The Magic Lens interface can also be used to modify the time frame of the scene

viewed through the lens, if the scene is simulated or recorded as a series of events. For

example a time modifying lens can be used to view the scene in the past or peek to the

future, if the scene contains objects whose properties change with time. Also the

sampling or rendering rate of the lenses can differ from the update rate of the main

viewport.

5.4.6 Object manipulation or Toolglass

If the lens metaphor is combined with a set of tools for manipulating objects, the

resulting interface is generally faster to use than the normally used sequential mode of

interaction. In the sequential mode the user selects an operation from a palette, and

then chooses the object to operate on. With Toolglass interface, the palette can be

49

5. Flat 3D Magic Lenses

located over the chosen object so that the selection of both operation and the object

happens simultaneously. Thus the set of tools for interaction is more readily available,

and the filtering capabilities can ease the task of selecting suitable objects or graphical

components as the target of the operation.

For example, the material properties of a rendered object can be changed through a

toolglass lens, and at the same time have also the original material definition

visualized outside the toolglass region. The two different views available to the scene

help in experimentation with the properties, unlike the normal temporal mode, where

the user would select a material from a library of materials and then apply the change

to an object. Also, with toolglass interface the material palette is available on top of

the part of the scene where the interaction takes place, thus minimizing the need for

secondary interaction. An excellent example of a Toolglass interface as a drawing and

composition aid is presented by Bier (1997, p. 62-70).

Also, a form of X-Ray lens can be used to help with the object manipulation in a

virtual environment. For example, the user wants to manipulate an object which is not

directly visible because another object or wall blocks the line-of-sight. This can be

accomplished by using a lens that changes the graphical representation to be

wireframe rendering. A better way to achieve this is to use a lens that clips away the

object blocking the view. Thus the user can see the solid rendered object and more

easily change its material properties, for example. By modifying the field-of-view of

the lens frustum, a telescopic image can be formed to augment in manipulation of

objects far away from the user.

5.4.7 Using Magic Lenses As Portals

One interesting application to lens-like interfaces is to use them as surveillance/

teleportation devices. The user could change the lens frustum to visualize objects

totally elsewhere in the scene, and thus see the other location while working

somewhere else. If something interesting is seen through the lens, the user could

select the lens or just walk through it to arrive at the location seen through the lens. A

similar approach has been presented by Elvins (1997, p. 21-30). While that imple

50

5. Flat 3D Magic Lenses

mentation stored static, captured parts of 3D scenes, the VGC (Virtual Graphics

Context, to be explained in section “Virtual Graphics Context - VGC” on page 59) /

Magic Lens implementation can present the user real-time scenery from selected

spots.

5.5 Composition of lenses

Fishkin (1995, p. 415-420) has implemented Magic Lenses as an interface to database

queries using scatterplot displays of US census data as the base dataset. In the article

Fishkin defines formally a set of composition rules for Magic Lenses. These rules

apply to the composition of 3D lenses as well.

Bier (1993, p. 73-80) describes the three methods for producing the composed image

of two or more lenses. The most suitable methods for 3D lenses are Model-In Model-

Out (MIMO), or Reparameterize-and-Clip. MIMO-method takes a model represen

tation of the scene, modifies it and passes the modified version to other lenses.

Reparameterize and clip modifies parameters, the clips to a region and draws the

modified version of the data. From these the latter one is the easiest and fastest to

implement in cases where the filter does not change anything else except the drawing

parameters of the Tenderer.

Also, one of the shortcomings of the MIMO-method is that it requires copying of the

original model, changing it and possibly passing the modified copy to other lenses.

This is surely computationally too strenuous task if the scene graph is large. Using

this approach to composite lenses would require a copy of scene graph to be

maintained for each lens indenpendently. Thus the possible changes in the main scene

graph should also be copied to the scene graphs of the lenses. With small changes to

the MIMO-model the effectiveness of this method can be greatly increased.

This can be accomplished by letting the different lenses to modify the copied scene

graph by inserting switches (scene graph nodes which can be used to select a single

children node, see Figure 25) to suitable points instead of copying the scene graph

51

5. Flat 3D Magic Lenses

structure for each lens separately. Using this method the lenses simply implement the

filtering effects by manipulating the switch nodes inserted by the lens that is being

rendered at the time. If the scene hierarchy is relatively small memory-wise, the real

MIMO-method can also be used.

Depending on structure of the scene graph and the desired filtering, the Reparame-

terize-and-Clip method can also be very effective, if the effects of the lenses are just

changes in the drawing modes or in the lens frustum. For example, wireframe or

hidden line rendering and magnification filters are easier to implement with this

method. The downside of this method is that it does not cater for all possible composi

tions, because the composed lenses must have compatible filters.

5.6 Implementation

Flat 3D Magic Lenses can be implemented using several different methods. The

earlier implementations of flat lenses have used clipping planes (Viega 1996, p 51-

58). This is very ineffective, because the scene needs to be rendered several times per

lens. Another approach to this problem is the use of stencil bit planes. Stencil bit

planes restrict drawing to certain regions of the viewport for multipass rendering. The

regions may be of arbitrary shape. With stencilling it should be relatively simple to

create flat lenses, and there would be no need for perspective correction of the lens

image when the lens is viewed from an angle. This is because the stencilling method

just clips the rendered area to be the shape of the lens.

52

5. Flat 3D Magic Lenses

The algorithm to create flat Magic Lenses with stenciling is:

1. Fill stencil mask with value 0

2. Draw the lens shape to stencil buffer with value 1

3. Draw the scene with stencil testing enabled

4. Reverse the stencil testing to enable drawing only to the lens shape

5. Draw the lens image

The stencilling method works well, but it has certain shortcomings:

• Stencilling does not provide the possibility to create true 3D flat lenses for stereo

graphic displays. The true flat lens in this case means that even when the scene is

viewed stereoscopically, the image of the lens is always non-stereoscopic.

• It would be difficult to create other image-geometry mappings except see-through

lenses.

• The depth of the stencil bit planes is usually limited, which can cause additional

problems. A straightforward see-through Magic Lens can be implemented with

just a single bit stencil bit plane, though.

Using texture as the lens image, most of these problems can be circumvented, and the

flexibility of texturing provides a lot of other possibilities for Magic Lenses. Figure 26

describes the rendering pipeline needed for texture based Magic Lens implemen

tation. The different filtering operations are optional, i.e. the lens image can be passed

to a selection of object, scene and image level filtering as needed. The texture

53

5. Flat 3D Magic Lenses

generated by Magic Lens filters can be subjected to even more complicated imaging

operations in the graphics pipeline, as opposed to the stenciling or other methods.

Model

Offscreen
rendering

Texture

Object level
Magic Lens

filtering

Scene level
Magic Lens

filtering

Viewing
and

modeling
transformations

Image level
Magic Lens

Filtering

Figure 26 Texture based Magic Lens rendering pipeline

For an efficient texture based approach, a relatively fast path from offscreen rendered

images to the texture memory is needed.

The optimum transfer rate in bits/s is: (EQ 2)

lensRefreshFrequency x lensImageResolution x lensImageB itDepth

Current high end hardware is generally fast enough for this purpose. In the desktop

VR, a more efficient solution is needed because of the required bandwidth. One

suitable hardware solution is Unified Memory Architecture - UMA.

5.6.1 Unified Memory Architecture - UMA

The UMA (Silicon Graphics 1997; Kilgard 1997) memory architecture of SGI 02

workstation has no separate frame buffer or texture memory. This architecture was

originally meant for enhanced digital media capabilities, like enabling movie clips or

video as a texture without a penalty due to constantly copying of data from one

memory location to another. One of the useful side effects of this implementation is

54

5. Flat 3D Magic Lenses

that an offscreen graphics context can be used as a texture. When the context is refer

enced as a texture, the contents of the buffer are read via copy-by-reference instead of

copying the contents to a separate texture memory.

Main
Memory

System Bus

PCI Bus
133MB/S peak,
50-80 MB/s sustained

Video
Local MemoryLocal MemoryLocal Memory

Private Bus

Figure 27 Traditional PC memory architecture

The traditional memory architecture (see Figure 27) limits the transformation rate

between additional hardware (Video, 3D graphics accelerators) and the main

memory. This limitation is imposed by the relatively slow transfer rate of the PCI bus

or the possible private bus and also by the fact that the different hardware components

have their own local memory, which cannot be easily accessed from outside of the

hardware board. The local memory is usually also specifically constructed to be

suitable for a single purpose.

The 02 UMA implementation consists of a single memory unit, which can be

accessed from all of the hardware components via the Memory and Rendering Engine

(MRE). Figure 28 shows the connectivity between the memory, CPU and co

processors. Because of this configuration, almost all data types stored in the memory

55

5. Flat 3D Magic Lenses

can be used as a source data for more operations performed by the graphics and

imaging hardware.

Main Memory
2.1 GB/s

Memory Controller
MRE Display

Graphics Processor

Video

Figure 28 02 UMA memory architecture

The current trend in PC bus architecture is Accelerated Graphics Port (AGP), in

which the bandwidth is notably larger than in the previous PCI (Peripheral

Component Interconnect) bus. This architecture can also be used to implement

relatively fast Magic Lenses as textures, though there is a penalty because of the

copying of the data between the different memory locations.

5.6.2 OpenGL Digital Media Buffers

Digital Media Buffers (DMbuffer) buffers are used to store and exchange time

sensitive data, like images in various formats, which can be passed from video to

graphics, graphics to video, video to programs, programs to video and as a side effect,

graphics to texture. This buffering method used in conjunction with UMA archi

tecture helps to create fast rendered texture implementation.

56

5. Flat 3D Magic Lenses

The DMbuffer extension to OpenGL allows to create an OpenGL pbuffer (pixel

buffer) without a color buffer, and then attach the DMbuffer to it as the color buffer.

The creation of a pbuffer in pseudocode:

GLXFBConfigSGIX config = ...;
int width = 640;
int height = 480;
GLXFBconfig int attribs [] = {

GLX_DIGITAL_MEDIA_PBUFFER_SGIX, True,
GLX_PRESERVED_CONTENTS_SGIX, True,

(int) None
} ;
GLXPbufferSGIX pbuffer;
pbuffer = glXCreateGLXPbufferSGIX(

display,
config,
width,
height,
attribs

) ;

if (pbuffer == None) error();

After this, a DMbuffer is allocated from a buffer pool:

DMbufferpool pool = ...;
DMstatus s;
DMbuffer buffer;
s = dmBuf f erAllocate (pool, ¿¿buffer);
if (s != DM_SUCCESS) error();

The next step is to associate the DMbuffer with OpenGL pixel buffer:

57

5. Flat 3D Magic Lenses

DMparams* imageFormat = ... ;
DMbuffer buffer = ...;
Bool ok;
ok = glXAssociateDMPbufferSGIX(

display,
pbuffer,
imageFormat,
buffer

) ;

if (! ok) error() ;

When the DMbuffer is used as the target for rendering, the buffer must be made the
current drawing buffer by calling glXMakeCurrent () :

GLXContext context = ...;
Bool ok;
ok = glXMakeCurrent(display, pbuffer, context);

To enable the texture read operations to operate using the DMbuffer as source, it must
be first attached as readable context with glXMakeCurrentReadSGI (). When
the texture is copied from the DMbuffer to the texture memory area using
glCopyTexSubImage2DEXT (), the conditions that enable copy-by-reference
texture use DMbuffer are:

• The parameters to glCopyTexSublmage2DEXT () must have these values:
target = GL_TEXTURE_2D
level = 0
xoffset = 0
yoffset = 0
x = 0
y = 0
width = width of pbuffer
height = height of pbuffer

58

5. Flat 3D Magic Lenses

• The format of the already-existing texture must match the format of the pbuffer.

These are the pairs of DMbuffer formats and texture formats that match:

DM_IMAGE_PACKING_RGBA and GL_RGBA8_EXT
DM_IMAGE_PACKING_XRGB1555 and GL_RGB5_A1_EXT

• If the image layout is DM_IMAGE_LAYOUT_GRAPHICS, then the mipmap

extension must be disabled.

• If the image layout is DM_IMAGE_LAYOUT_MIPMAP, then the mipmap extension

must be enabled.

• No pixel transfer operations can be enabled.

5.6.3 Virtual Graphics Context - VGC

A graphics context consists of a drawable area (memory location, frame buffer) and

the current graphics pipeline state. In the past, display of a graphics context has

generally been limited to a rectangular viewport, i.e. multiple contexts have been

displayed in a rectangular screen region. Because of the UMA architecture the

concept of graphics context is somewhat changed. The image of the context can be

generated from a viewpoint by a synthetic camera. For this, I introduce a new concept

called a Virtual Graphics Context or VGC. VGC is a graphics context that can be

freely positioned inside the virtual environment, and it is actually a texture image that

is dynamically updated when the contents of the VGC change. Due to the UMA archi

tecture, the VGC can be displayed without any need to copy the rendered image from

a location to another. The resolution of the virtual context can also be changed

dynamically to reduce the sampling artifacts by the texture implementation to produce

visually better results. Depending on the implementation, the texture resolution can be

obtained by using for example Openlnventor class methods or by more generic

method presented in equations below. The screenWidth, screenHeight, textureVerti-

calResolution and textureHorizontalResolution are in pixels, lens image coordinates

and distance are in world coordinates.

59

5. Flat 3D Magic Lenses

The best vertical resolution for lens image: (EQ3)

texture V erticalResolution = screenHeight x (lensImageTop - lensImageBottom)
2 x lensDistance x tan (verticalFieldOfView /2)

The best horizontal resolution for lens image: (EQ4)

textureHorizontallResolution = screenWidth x (lensImageRight - lensImageLeft)
2 x lensDistance x tan (horizontalFieldOfView/2)

To prevent scaling artifacts from appearing, the resolution must be selected so that the

texture is either used as it is or downsampled to a smaller resolution.

From the viewpoint of a programmer the VGC does not differ from a normal graphics

context. It can be addressed the same way as an ordinary context.

The flexibility of VGC makes it possible to have multiple freely locatable graphics

contexts inside other graphics contexts, thus enabling graphics contexts inside of a

virtual space. Because the VCG is a texture, the texturing pipeline and different

texturing operations available can be used to enhance the concept of a rendering

context even more.

Benefits and disadvantages for 3D Magic Lenses. The benefit of the UMA archi

tecture for flat 3D lenses is the greatly reduced overhead. On the other hand, the

solution described will suffer performance loss when implemented on another

memory architecture, unless the memory paths between frame buffer and texture

memory are sufficiently fast.

The VGC also makes it possible to use the imaging operations of the OpenGL

graphics pipeline to generate more complex filtering effects. Because the data is

already in a texture format, this reduces the overhead needed for the imaging opera

tions.

60

5. Flat 3D Magic Lenses

Of course, stencilling or other methods for 3D lenses could provide better quality for

the image because the image would then be formed with the actual resolution and

size. In this implementation OpenGL limits the size of the texture to be a power of

two, which will cause small artifacts because the image must be resampled to fit the

actual resolution of the lens on the viewport.

5.6.4 Forming the lens image

The basic component forming the lens image is the lens frustum, which contains the

position, orientation and the viewing frustum of the camera looking at the scene. All

these properties of the camera can also be modified freely. The viewing frustum

defines the field-of-view and clipping planes for the camera. The near and far clipping

planes define depth limits of the region in space the camera can see. The resulting

projection of the scene viewed through the lens camera is then rendered to an

offscreen buffer, which in turn can be subjected to imaging operations as texture data.

The resulting texture is mapped on the surface of the lens geometry. The texture data

can also be projected on surfaces, using an additional frustum or camera to provide

the projection matrix. This pipeline in presented in Figure 26, “Texture based Magic

Lens rendering pipeline,” on page 54.

Mapping the lens image on the geometry. For the last two lens image mappings -

the lens frustum follows the position and orientation of the geometry or the frustum is

static (see Figure 21 on page 43 and Figure 22 on page 44) - the mapping is straight

forward. If the lens frustum viewpoint follows the viewpoint of the user, the mapping

of the image on the geometry can be done by utilizing bounding boxes.

Because the rendered image is always a rectangle, we can use the projection of the

bounding box of the lens geometry to the view plane as the basis for the lens frustum.

After the bounding box is calculated, the lens frustum is formed by using the comer

points of the bounding box to define the comers of the frustum and setting the near

61

5. Flat 3D Magic Lenses

clipping plane (i.e. the image plane, see Figure 29) of the lens frustum to coincide

with the nearest point of the lens geometry.

Perspective correction using projective texturing. Usually texture projection is

used for generation of cast shadows or computationally light spotlight effects in real

time graphics rendering APIs. This involves projection matrices, which are normally

used in graphics pipelines to calculate the final projection of the scene to the viewport.

These projection matrices can also be used to generate texture coordinates in order to

make slide-projector like textures in the scene.

The method described in paragraph “Mapping the lens image on the geometry” on

page 61 works well if the lens geometry is viewed from the direction of its normal.

But if the lens is viewed from an angle, the texture will not display a correct image. If

the angle between the normal of the lens geometry and the current viewpoint is small,

62

5. Flat 3D Magic Lenses

the distortion is only a slight perspective distortion. When the angle grows, the

distortion becomes more noticeable. Examples of perspective distortion and corrected

image can be seen in Figure 30 and Figure 31 on page 64. A simple, clarifying image

using checker texture is portrayed in Figure 32 on page 64.

63

5. Flat 3D Magic Lenses

Texture mapped on a surface
Texture projected on a surface

Figure 32 Lens distortion correction using projected textures.

The texture can in additionally suffer from distortion if the lens is located off the main

viewpoint projection axis. The distortion is caused by the fact that the image plane (in

OpenGL, the image plane and near clipping plane usually coincide) is always perpen

dicular to the view vector if the viewing frustum is symmetrical. This error presents

itself normally as a slight registration error, though it is not caused by bad registration.

64

5. Flat 3D Magic Lenses

The image can be corrected by using an asymmetric frustum as the lens frustum, as

depicted in Figure 33.

Symmetric frustum Asymmetric frustum

Figure 33 Lens distortion correction using asymmetric frustum

The asymmetric frustum is not necessity for the image correction. In this implemen

tation, the image is used as texture. It can be corrected using the projection techniques

described below. An example of the uncorrected situation is in Figure 34 on page 66

and the circled area enlarged in Figure 35 on page 67. The corrected image is in

Figure 36 on page 68. Furthermore, asymmetric frustum can only be asymmetric in

65

5. Flat 3D Magic Lenses

relation to the view axis. Perspective distortion cannot be fixed, because in that case

the shape of the frustum should be trapezoidal.

66

5. Flat 3D Magic Lenses

These errors can be corrected by using the same technique as for real-time satellite

image orthorectification, because the cause of the problem is the same. In the image

orthorectification, the photographed image is projected to the surface using the

camera which took the picture as the projector, which automatically removes any

distortion of the texture. By using projective texturing (Segal 1992, p. 249-252) to act

as a projector through which the lens image is projected on to the lens geometry, the

perspective correction is performed automatically. In this case, the texture coordinates

are generated automatically for the lens geometry by the graphics pipeline, but they

can also be calculated in the software. The software option does not provide pixel-

67

5. Flat 3D Magic Lenses

perfect result, because the texture coordinates can only be fed to the graphics pipeline

per vertex.

Because the approach of this work was to implement a fast texture based Magic Lens,

doing projective texturing with software was out of question. Unfortunately, the 02

OpenGL implementation has a bug that appears when projective texturing is used in

conjunction with digital media buffers (See appendix “Projective texturing bugs in 02

OpenGL implementation” on page 89). The bug has been acknowledged by SGI and

the fix has been promised to be in IRIX 6.5.1 release, autumn 1998. The images that

show the perspective corrected images are generated using a captured texture image

as a normal texture source. The effect achieved is the same with digital media buffers,

if they could have been used.

68

5. Flat 3D Magic Lenses

Texturing in OpenGL. OpenGL allows the user to define various parameters of the

texture. These include the texture coordinates, texture modulation/blending and

texture repeating/clamping. For the purposes of the implementation described in this

work, modulation and clamping operations are important. The texture modulation

provides the possibility to define textures as opaque or semitransparent with several

variations considering the underlying fragment color and alpha values. OpenGL also

allows the user to specify texture coordinates outside of the normal range [0,1]. In this

case, the clamping modes describe how the texture coordinates should be handled.

The OpenGL specification defines two modes for texture coordinate handling:

1. Repeating textures

2. Clamped texture coordinates

For projective texturing, the repetition of the texture coordinates is not desirable. The

clamping limits the texture coordinates to [0.0, 1.0] so that the rest of the surface

outside of the texture area for borderless textures is painted using a linear combination

of the two last pixels on the opposite edges of the texture.

To augment projective texture usage as spotlights, SGI has specified extensions for the

texture clamping: SGI S_t extur e_border_c lamp and

SGIS_texture_edge_clamp. The border clamp extension will always use the

specified border color or existing texture border for texels outside the texture

coordinate range, thus making it simple to create nonrepeating textures with trans

parent border colors. Unfortunately he OpenGL implementation on 02 does not

contain SGIS_texture_border_clamp-extension. This complicates the

projective texturing implementation a bit. The texture clamping implemented in 02

allows the programmer only to clamp to the edge of the texture using

SGIS_texture_edge_clamp, or to use the normal clamping. If the texture is

projected using the above mentioned clamps, the last pixel or the combination of the

two last pixels will repeat over the textured object. For Magic Lenses this is not a

69

5. Flat 3D Magic Lenses

problem, because the texture is formed using the bounding box of the object so that

the geometry of the lens object will clip the texture correctly.

Using texture for Magic Lights. The Magic Light interface can be implemented by

using the hardware accelerated texturing capabilities. The lens frustum and Magic

Light texture projection can be implemented as different projection matrices.

The texture projection matrix forms an “invisible” Magic Lens geometry. If the lens

frustum does not change the FOV (no zooming), the projection matrix can be the

viewing frustum. The projection matrix can also be orthogonal instead of the normal

perspective projection. See Figure 24 on page 47 for a diagram.

For Magic Lights, the repeating of the border pixels corrupts the rendered view. If the

02 OpenGL would allow the programmer to clamp to specified border color (RGBA),

there would be no need for other techniques.

To prevent clamping artifacts, the texture image will have to be modified after the

Magic Light image has been rendered by drawing at least one pixel wide frame with

RGBA values 0,0,0,0 around the texture. Additionally, an alpha map can be used to

70

5. Flat 3D Magic Lenses

obtain different shapes for the Magic Light. Figure 37 displays an alphamap used for

a spotlight effect.

When projective texturing is used, the OpenGL-pipeline must be reversed to get the

normalized texture coordinates to be in the usable [0, 1] range. The process for

reversing the pipeline for texture matrix is:

1. Set the texture matrix to identity

2. Scale the matrix by 0.5, 0.5, 1.0

3. Translate the matrix by 1.0, 1.0, 0.0

4. Multiply this matrix with the projection matrix

5. Multiply the result with inverted model view matrix

Composition limitations with multiple lenses. For two dimensional Magic Lenses

the composition of the lenses is straightforward, because the composition is always

clearly defined by the filtering rule sets and the lens region. The same applies for 3D

volumetric lenses, which will be composited only when the lens volumes overlap.

71

5. Flat 3D Magic Lenses

For flat 3D lenses the composition is more complicated, because the above mentioned

different lens/geometry relationships and lens frustums might render the reasonable

composition impossible in several cases. For example, if the lenses have different

viewing frustums (different FOV etc.), the resulting intersection of the frustums can

be asymmetrical. Rendering asymmetrical frustums is complicated with Open

Inventor, and the result may well be something else than what the user was trying to

accomplish.

5.6.5 Picking and other interaction

Because the lenses have their own graphics contexts, picking of the objects seen

through the lens can be easily implemented by using a ray picking method. When the

user selects or picks an object from the lens, the starting point of the pick is generated

by first obtaining the texture coordinate of the pick event, and transforming that to the

virtual graphics context viewport coordinates. The direction of the picking ray can

then be calculated from the original screen coordinates and the picked point on the

lens texture. By using the near and far clipping planes of the lens graphics context to

limit the length of the ray to the visible portion of the scene graph, a ray pick action

can then be constructed to select the objects both in the actual scene and the lens

scene. For example, it is possible to easily pick objects that are inside other objects in

the main scene. Because the selection was based on the spatial properties of the scene,

accurate selection of objects both in the filtered scene graph and unfiltered is possible.

Of course, if the lens displays the scene in the past or in the future, this selection

method fails.

For scenes where the spatial or temporal location of the objects does not provide

enough information to select objects non-ambiguously, other methods must be used.

The most applicable is to provide additional metadata, or names, for the objects on the

scene and use that information for selection in other scene graphs.

72

5. Flat 3D Magic Lenses

5.6.6 Open Inventor™

Open Inventor (Strauss, 1992; Wemecke, 1994) was chosen as the software platform

because it has a reasonably flexible scene graph structure, which can contain engine

nodes which enable dynamic content. Open Inventor (see Figure 38 on page 73) is a

window system-independent object-oriented 3D toolkit, which provides a library of

extensible objects. It can also be extended by using Open Inventor API in combi

nation with OpenGL. The Inventor specification also defines an interchange file

format.

Open Inventor
Component
Library

Node Kits Manipulators

Scene Database

Open Inventor
3D Interchange
File Format

OpenGL
Library UNIX

Figure 38 Inventor architecture

The Inventor objects include:

73

5. Flat 3D Magic Lenses

• Database primitives

e.g. shape, property, group and engine

• Manipulators

e.g. trackball, handlebox

• Components

e.g. material editor, light editor and viewers

The engine nodes are objects that can be connected to other objects in the scene graph

and used to animate parts of the scene or constrain certain parts of the scene in

relation to other parts. The engines in the standard Open Inventor distribution can

even be used to perform simple calculations without any explicit programming, if the

creation of the scene graph does not count as programming.

5.6.7 Extensions to Openlnventor™

For the Magic Lens interface, several extensions based on the Openlnventor classes,

both from the standard distribution and from the Digital Media Buffer extension

library were made.

Lens viewer. To provide an interface for the Magic Lens operations, a generic

Inventor viewer was implemented. The Lens Viewer handles the IO and provides a

framework for interaction. It provides a way of opening Open Inventor scene graphs

stored in the Inventor file format and adding lenses to the scene. The viewer handles

the picking through the lenses by calling a callback defined for the lens picked lens

instance. The operation returns the ray constructed for the pick through the lens,

which is in turn used to pick objects in the main scene graph. The viewer also creates

the menus and dialogs for changing the lens parameters.

Offscreen Tenderer. The Magic Lenses-interface in this work is built around an

offscreen Tenderer which generates the texture needed for the lens. The offscreen

Tenderer also implements the viewing semantics for the graphics context. The pixel

74

5. Flat 3D Magic Lenses

buffer for the offscreen Tenderer is a digital media buffer, which is associated with a

graphics context. The graphics context is in turn utilized as texture data by using the

glCopyTexSubImage2DEXT () library function, which references the texture

instead of copying the data, if the current read buffer for OpenGL is a digital media

buffer and the conditions mentioned in “OpenGL Digital Media Buffers” on page 56

are met.

Because the resolution of the offscreen buffer can be adjusted, there is no need for

expensive mipmap filtering to reduce the sampling artifacts if the texture is viewed

from the distance. This actually creates a dynamic LOD for the texture, thus reducing

the computational load created by the lenses. Of course, the size of the buffer can also

be fixed, if it is large enough for the needed texture sizes.

The offscreen Tenderer is an engine node, which enables the framerate of the lens

differ from the actual update rate of the main viewscreen. Because of this we can ease

the computational requirements if we can live with lower framerates. The independ

entness of the lens image update rate and time also makes it possible to peek to the

future or to view the scene in the past. The output of the offscreen Tenderer or engine

can be connected to a texture node as the image data anywhere in the scene; usually

the target of the texture is the geometry of a lens. The shape of the lens can be

arbitrary, because the texture coordinates can be explicitly defined in the lens

geometry specification. Of course, the offscreen image is always a rectangle, so

depending on the lens shape some of the texture data can be lost. The Tenderer,

SoDMBuf f erRenderEngine, is subclassed from SoDMBuf f erEngine class,

belonging to libdmuiv package provided by SGI to help DMbuffer development

with Inventor. The libdmuiv package does the low level DMbuffer initialization

and management. SoDMBuf f erRenderEngine replicates the functionality of

SoXtRenderingArea without the Xt dependencies. It provides the basic function

ality needed for rendering Open Inventor scene graphs to an offscreen buffer, which is

in this case a DMbuffer. To add viewing semantics to rendering area, the class

SoDMBuf ferLensViewer is derived from the SoDMBuf f erRenderEngine.
This subclass provides the methods for camera manipulation, scene graph access and

75

5. Flat 3D Magic Lenses

draw style changes for reparameterize-and-clip type of lenses. Figure 39

describes the basic rendering hierarchy.

SoEngineBasic Inventor engine node

SoDMBufferEngineLibdmuiv base engine

SoDMBufferRenderEngineScenegraph rendering engine

SoDMBufferLensViewerViewing semantics for rendering engine

Figure 39 Digital media buffer Tenderer class hierarchy.

Supporting nodes. To help experimenting with different types of Magic Lens types

and behaviors, some supporting node types were written. These are:

• Billboard, which maintains the orientation of its children nodes constant in

reference to the viewpoint by manipulating the associated matrices according to

the nodes parameters.

• HUD, which keeps the children nodes at a constant location in reference to the

viewport, providing a Heads Up Display - like operation. This node type can be

used in conjunction with 3D Magic Lenses to supply a traditional 2D Magic Lens

operation.

Projective texturing for Inventor. Open Inventor allows the user to specify two

different texture coordinate functions: plane and environment mapping. These classes

are based on S oTextureCoor dina teFunct ion-class. This class and its

subclasses allow the texture coordinates to be generated either by the software itself

or OpenGL. To create projective texturing for Open Inventor, TextureCoordi-

nateProj ection class is derived from the above mentioned base class. This class

is contains only one additional field, a projector. The projector field can contain a

76

5. Flat 3D Magic Lenses

node derived from SoCamera. The camera node is used to provide a projection
matrix for the texture, and by using a ready-made camera the functionality of the
camera class can be used. When the rendering callback method, GLRender (), is
called, it sets the current TextureCoordinateElament to use a callback
function for the texture coordinate generation. This callback will enable the OpenGL
texture coordinate generation in eye linear space. The nodes in the Open Inventor
scene graph will continue to provide their own texture coordinates, but they are not
accounted for when the automatic generation is turned on. Due to the structure of
Open Inventor toolkit, this redundant workload cannot be turned off, because it would
disable texturing altogether. The following sample from GLRender () - method
shows how to create texture projection matrix (the process is actually a reversed
OpenGL transformation path):

if (projector.getValue() != NULL) {
// Model matrix from current model matrix
// element
modelMat = SoModelMatrixElement::get(state);
invModelMat = modelMat.inverse();
// Projection matrix from projector field
projMat = ((SoPerspectiveCamera *)

proj ector.getValue())->
getViewVolume().getMatrix();

SoTextureMatrixElement:¡makeIdentity(state,
this);

// Scale and translate to get the normalized
// device coordinates to 0..1 range
SoTextureMatrixElement::scaleBy(state, this,

SbVec3 f(0.5, 0.5, 1.0));
SoTextureMatrixElement::translateBy(state, this,

SbVec3 f(1.0, 1.0, 0.0));
// Multiply texmat element by projection matrix

77

5. Flat 3D Magic Lenses

SoTextureMatrixElement: :mult(state, this,
projMat);

// And multiply it with inverted modelview matrix
SoTextureMatrixElement::mult(state, this,

invModelMat);
texMat = SoTextureMatrixElement::get(state);

}

MagicLensKit - actual lens operations. The Main Magic Lens component,

MagicLensKit - class is derived from SoWrapperKit - class. The Open

Inventor node kits are a way to create simple or complex collection of nodes, i.e.

subgraphs. They can also contain other node kits to cater for more complex hierar

chies. The SoWrapperKit allows wrapping of arbitrary, non-nodekit scene graphs

within a SoSeparatorKit so that it can be used with other shape kits in a hierarchy.

Similar kit is used for Magic Lights.

The MagicLensKit and MagicLightKit classes handle the instantiation of the lenses,

construct the lens geometry and DMBuffer textures. The geometry construction

methods are virtual to provide expandability for different lens geometries. They also

provide methods for interaction with the lenses. The geometry contents can also be

changed from outside of the kit. The kits handle the rendering of the lenses in a single

callback, which in turn calls private methods to render different types of lenses:

• The lens image is from a static point in the scene

• The lens camera follows the viewpoint of the viewer, creating see-through lenses

• The camera is attached to the lens geometry so that the lens image changes only

when the geometry itself is moved to another location.

Selecting objects through the lenses. The selection of scene objects through the

lenses is implemented with a ray pick - method. This allows the user to select objects

even when they are inside other objects, if the lens filter allows the objects to be

visible. The following code portion constructs the picking ray:

78

5. Flat 3D Magic Lenses

// Get the lens camera and viewport
camera = viewer->getCamera();
camera->getViewportBounds(viewport);
rpAction.setViewportRegion(viewport);
// Get the texture coordinates and the viewport
// point of the pick
pickPointi = pick->getObj ectTextureCoords();
pickPoint4.getValue(s, t, u, v);
viewportPoint = SbVec2 f(s, t) ;
// Construct a world space ray for picking
vVol = camera->getViewVolume();
near = camera->nearDistance.getValue();
far = camera->farDistance.getValue();
startPointVec = camera->position.getValue();
sightPointVec = vVol.getSightPoint(far);
planePointVec = vVol.getSightPoint(near);
directionVec = vVol.getPlanePoint(near,

viewPortPoint) - startPointVec;
// Normalize dir vector due to Inventor bug
directionVec.normalize();
// Construct a ray pick action
rpAction.setPickAll(FALSE);
rpAction.setRay(startPointVec, directionVec,

near,far);
rpAction.apply(viewer->getSceneGraph());
SoPickedPoint *pp = rpAction.getPickedPoint();
viewer->applyPick(pp);

Once the picking ray is constructed, the object selection is straightforward. The
picking ray is constructed using the frustum of the Magic Light, so it shares the
coordinate system of the main scene. Thus the same ray can be used in selecting the
actual object from the main scene graph. The picking action can be simply applied
again for the main scene graph. The picking action will return all of the objects which

79

5. Flat 3D Magic Lenses

intersect the path of the ray. For perspective projection, the picking ray is actually a

cone shaped volume, extending outwards to help in the selection of the remote

objects.

80

6 CONCLUSIONS

This work has shown that the Magic Lens and Toolglass metaphors are quite versatile

and can be used also in virtual environments. The Magic Lens interface is a promising

tool for manipulation and visualization in virtual environments. However, the Magic

Lens research and development seems to be concentrating on the standard 2D interac

tion. The 3D interaction tools based on the lens concept is an interesting research area

that should not be overlooked. This work provides an adequate basis for the continu

ing research on the topic.

6.1 2D Magic Lenses and 3D visualization

The 2D lenses combined with 3D visualization presents a solution for cases where the

visualization benefits from the combination of these tools. In this work, the interface

was used for navigation and wayfinding in virtual spaces. The 2D lens implementa

tion showed that Magic Lenses interface can be easily and successfully implemented

in a Java environment using the standard Java classes. The mapping between the 2D

lenses and the 3D view can probably cause problems for the users, because it is not

clearly visible in the user interface. There should be an indication of the lens types

and their mapping in the user interface. Additionally, users should be able to modify

the filtering properties of the lenses.

The 3D side of this part of the work would have benefited from a more versatile scene

graph than the one used in VRML. Unfortunately, the Liquid Reality toolkit that was

the basis for the 3D visualization implementation is no longer in existence. There is

no suitable substitute for Liquid Reality because the EAI is not powerful enough to

provide the functionality needed for the 3D visualization. Also, VRML seems to be

losing popularity so there are no serious efforts to create a decent API for extending

VRML. MPEG-4 could perhaps be used to implement this type of solution, but the

standard is still incomplete. Also, the Java based implementation was not fast enough

for large scale virtual environments. Both the lens interface and the visualization

would have benefited from a faster run-time environment.

81

6. Conclusions

The solution should be tested in real world applications to find out the real benefits for

users. Currently there are several projects concerning virtual cities and large virtual

spaces using VRML for the modeling and interaction. These could be used as the test

cases.

6.2 3D Magic Lenses

3D Magic Lenses - section of this work transported the 2D lens metaphor to a 3D vir

tual space. The metaphor works well in this environment, especially if the environ

ment is an immersive one. Being able to manipulate visualization and/or objects

through a single, easily understandable metaphor helps the interaction. This part of

the work concentrated mainly on the implementation of 3D lenses and making the

implementation as fast and versatile as possible. It should be noted, however, that the

lenses need to be manipulated as well. The best choice for manipulation of the lenses

is to use an external, physical control device. If the lenses themselves contain widgets

for control and manipulation, one of the main benefits of the metaphor would be lost:

reduced visual cluttering of the interface.

The implementation described in the work suffered from the bugs in the SGI 02

OpenGL. To test the effectness of the Unified Memory Architecture, the software will

be ported to normal memory architecture. The implementation should have been more

modular to allow the use of Magic Lens components in general Open Inventor appli

cations by utilizing the Open Inventor built-in DSO (Dynamic Shared Object) loader.

Currently the implementation uses a custom Inventor viewer. Additionally, different

methods of embedding the lenses into the scene graph should be reviewed and tested.

The 3D lens metaphor should also be tested with a real world application to see the

possible benefits for manipulation and visualization. The impact on immersive envi

ronments (such as a CAVE) should be tested, too. The suitability of different user

interface devices, like wands, data gloves etc. for 3D Magic Lens manipulation and

operation is also an uncharted territory. Probably the interface devices pose no diffi

culties and two handed operation is beneficial for the lens metaphor. Additionally,

82

6. Conclusions

new interface devices resembling a magnifying glass could be utilized for Magic

Lenses in immersive environments.

6.2.1 Magic Light

The new Magic Light - concept presented in this work is more suitable for immersive

virtual environments than to the normal desktop VR. It also will be tested in a suitable

environment in the near future.

6.2.2 Augmented Reality

The Magic Lens tools could be beneficial for AR applications because of their unob

structive nature. Flat 3D Magic Lenses can be used as normal Magic Lenses but also

as active post-it-notes in the augmented environment. These tools could be used to

enable the user to see though walls to detect embedded wiring or pipelines. The

Magic Light metaphor should work well in AR applications, because the user inter

face device can simply be a flashlight-like device, which the user can point at the real

environment to control the location and other aspects of the Magic Lights.

83

7 REFERENCES

Ayers, Matthew; Zeleznik, Robert. 1996.

The Lego interface toolkit.

UIST ‘96. Proceedings of the ACM symposium on User interface soft

ware and technology, p. 97-98

Bier, Eric A.; Stone, Maureen C.; Pier, Ken; Buxton, William; DeRose, Tony D.

1993.

Toolglass and Magic Lenses: The See-Through Interface.

Proceedings of Siggraph ‘93 (Anaheim, August). Computer Graphics

Annual Conference Series, ACM, p. 73-80.

Bier, E. A.; Stone, M. C.; Fishkin, K.; Buxton, W.; Baudel, T. 1994.

A Taxonomy of See-Through Tools.

Proceedings of СШ ‘94. p. 358-364.

Bier E.A., Stone M.C., Pier K. 1997

Enhanced Illustration Using Magic Lens Filters.

IEEE Computer Graphics and Applications

IEEE Computer Society, 1997, p. 62-70.

Brown University Computer Graphics Group. 1996.

3D User Interfaces for Scientific Visualization within the Trim and

FLESH environment.

<URL:http//www.cs.brown.edu/research/graphics/research/vrinter/

fflow.html>

Darken R.P., Sibert J.L. 1996

Wayfinding Strategies and Behaviours in Large Virtual Worlds.

In Proceedings of ACM СШ 96

ACM, NY, 1996, p. 142-149

84

7. References

Dimension X, 1996-1997

Liquid Reality,

<URL:http://www.dimensionx.com/products/lr/>

Elvins, T.T.; Nadeau, D.R.; Kirsh, D. 1997

Worldlets - 3D Thumbnails for Wayfinding in Virtual Environments.

Proceedings of UIST ‘97

ACM Press, NY, 1997, p. 21-30.

Fishkin, Ken; Stone, Maureen; 1995

Enhanced dynamic queries via movable filters.

Proceedings of SGICffl ‘95, p. 415-420.

Forsberg, Andrew; Herndon, Kenneth; Zeleznik, Robert. 1996

Aperture Based Selection For Immersive Virtual Environments.

Proceedings of UIST496, p. 95-96.

Green, M.; Jacob, R. 1990

SIGGRAPH ‘90 Workshop Report: Software architectures and metaphors

for non-WIMP user interfaces.

Computer Graphics, v. 25, p. 229-235.

Hartman, Jed; Wemecke, Josie. 1996

The VRML 2.0 Handbook - Building Moving Worlds on the Web

ISBN 0-201-47944-3

Addison-Wesley Publishing Company, Inc.

Herndon, Kenneth R; Meyer, Tom. 1994

3D widgets for exploratory scientific visualization.

Proceedings of UIST 94, p. 69-70.

85

7. References

Kabbash, Paul; MacKenzie, Scott; Buxton, William. 1993

Human performance using computer input devices in the preferred and

non-preferred hands.

Proceedings of InterCHI ‘93, p. 474-481.

Kilgard M. 1997

Realizing OpenGL: Two Implementations of One Architecture.

1997 SIGGRAPH / Eurographics Workshop on Graphics

ACM Press, NY, 1997, p. 45-56.

MetaCreations. 1997

Kai’s Power Tools 3, KPT Lens f/x.

<URL:http://www.metacreations.com/products/kpt/>

Segal M., Korobkin C., van Widenfelt R., Foran J., Haeberli P. 1992

Fast shadows and lighting effects using texture mapping.

Proceedings of SIGGRAPH ‘92

ACM Press, NY 1992, p. 249-252

Silicon Graphics, 1996

Unified Memory Architecture

<URL:http://www.sgi.com/Technology/uma.html>

Spacetec IMC Corporation,

Spaceball

<URL: http://www.spacetec.com/>

Stoakley, Richard; Conway, Matthew; Pausch, Randy. 1995

Virtual Reality on a WIM: Interactive Worlds In Miniature.

Proceedings of the 1995 ACM SIGCHI Conference, p. 265-272.

86

7. References

Strauss, Paul S.; Carey, Rikk. 1992

An object-oriented 3D graphics toolkit.

Proceedings of SIGGRAPH ‘92

ACM Press, NY 1992, p. 341-349.

Stone, Maureen; Fishkin, Ken; Bier, Eric. 1994

The Movable Filter as User Interface Tool.

Proceedings of СШ ‘94, p. 306-312.

Sun Microsystems, 1991

Java™ Technology Home Page

<URL: http ://j a va. sun.com/>

Viega, J.; Conway, M.; Williams, G.; Pausch, R. 1996

3D Magic Lenses.

Proceedings of UIST ‘96, p. 51-58.

VRML Architecture Group, 1997

The Virtual Reality Modeling Language,

International Standard ISO/IEC 14772-1:1997,

<URL:http://www. vrml.org/Specifications/VRML97/>

VRML Database Working Group, 1998

Metadata Node Specification,

<URL:http://www. vrml.org/WorkingGroups/dbwork/metadata.html>

Wemecke, Josie; Open Inventor Architecture Group. 1994

The Inventor Mentor - Programming Object-Oriented 3D Graphics with

Open Inventor™, Release 2.

ISBN 0-201-62495-8

Addison-Wesley Publishing Company, Inc.

87

7. References

Wloka, M; Greenfield, E. 1995

The Virtual Tricorder: A Uniform Interface for Virtual Reality.

Proceedings of UIST ‘95, p. 39-40.

Zhai, S.; Buxton, W.; Milgram, P. 1994

The “silk cursor”: investigating transparency for 3D target acquisition.

Proceedings of СНГ94: ACM conference on Human Factors in Comput

ing Systems, p. 459-464. Boston: ACM

88

A BUGS IN THE 02 OPENGL

IMPLEMENTATION

АЛ Projective texturing bugs in 02 OpenGL implementation

The 02 OpenGL / DMBuffer combination did not function properly with projective

textures. The bug is acknowledged by SGI, and it was promised to be fixed in IRIX

6.5.1 release. As of now, the current IRIX release is 6.5.2, and the bug still exists.

Projective texturing need all of the four texture coordinates (s, t, r, q) to calculate the

projection matrix. In a normal texture context everything works fine, but when the

texture source is a digital media buffer, the r and q coordinates are corrupted in the

OpenGL rendering pipeline.

Figure 40 displays the correct projection of a texture (see Figure 43 on page 91) using

static texture matrix for projection. The projection matrix, or frustum is shown in

Figure 42 on page 91. If the same matrix (and the same Openlnventor code) is used to

project an image from DMBuffers, the result is uncontrollably warped, as can be seen

in Figure 41 on page 90. The projection frustum seems to be distorted in many ways,

for example, the bottom of the cube displays the image which it should not do even if

89

A. Bugs in the 02 OpenGL Implementation

the projection frustum would be the one producing the image on the right hand side of

the cube.

90

A. Bugs in the 02 OpenGL Implementation

Figure 42 Projection frustum for image

Figure 43 Projected image

91

