
 

 

 

 

 

 

 

 

 

Copyright 

by 

Michael Ryan Gardner 

2018 

 

 

  



The Dissertation Committee for Michael Ryan Gardner certifies that this is the 
approved version of the following dissertation: 

 

 

Scattering Angle Resolved Optical Coherence Tomography for Early 
Retinal Detection of Alzheimer’s Disease in a Murine Model 

 

 

 

 

 
Committee: 
 

H. Grady Rylander III, Co-Supervisor 

Thomas E. Milner, Co-Supervisor 

Andrew K. Dunn 

James W. Tunnell 

Gracie Vargas 



Scattering Angle Resolved Optical Coherence Tomography for Early 
Retinal Detection of Alzheimer’s Disease in a Murine Model 

 

 

by 

Michael Ryan Gardner 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 
August 2018 

  



Dedication 

 

In the name of God, whose light shines in the darkness, and whose eye runs to and fro 

throughout the whole earth. 

 

 



 v 

Acknowledgements 

 

There are many people to acknowledge for their help in this effort. Each of them 

contributed in unique ways and has my deepest gratitude. 

My advisors have been founts of knowledge and guidance as different pieces of this 

dissertation came together. Dr. Rylander’s ophthalmic expertise and advice has played a 

critical role in helping me interpret the SAR-OCT data. Dr. Milner’s skills in optical design 

were instrumental in fostering my development as an engineer. Both of these men are 

admirable advisors. 

The support of Dr. Dunn and Dr. Tunnell, both serving on my committee, has been 

appreciated. The coursework they offered was influential in pushing forward much of this 

work. 

Our collaborators at the University of Texas Medical Branch at Galveston are 

skilled researchers and considerate supporters of my work. Dr. Vargas, also a committee 

member, and Dr. Motamedi have both offered encouraging direction and thoughtful 

critique of this work. Jon Luisi and Mauro Montalbano were helpful counterparts in a joint 

effort. Thank you all for your collaboration and for providing the mice for the Alzheimer’s 

disease study! 

My fellow lab members, Vik Baruah, Dr. Arnold Estrada, Scott Jenney, Jason King 

Nitesh Katta, Dr. Eun Kim, Jason King, Austin McElroy, Bharadway Muralidharan, and 

Dr. Tianyi Wang have each assisted me and shaped my thinking in more ways than I could 

possibly list here. They have truly been a joy to work with. Thank you all! 

I have worked with many undergraduate researchers at UT Austin who have each 

contributed in different ways to my research. Thank you to each of them: Salman Zaidi, 



 vi 

Jongwan (Daniel) Park, Ayesha Rahman, Stefan Sierra, Amit Narawane, Elizabeth 

Stutzmann, Ronit (Popeye) Kar, Kristen Gentry, Matthew Prinz, Nick Ray, John Rector, 

Andrew Horvit, Shyon Parsa, Rogelio Salomon, Ana Perez, Madison Round, Donovan 

Moses, and Fawaz Mohsin. 

There are several UT Austin staff members who have been a great help along the 

way. Kathryn Starr at the Animal Resources Center helped by training me in mouse 

handling and by answering countless questions I had for her. In the Mechanical 

Engineering machine shop, Ricardo Palacios helped me fine-tune my opto-mechanical 

design, and Danny Jares was masterful in his machining the parts for the SAR-OCT system. 

Adam Kennedy in the Chemistry glass shop has been accommodating and innovative for 

numerous projects in the lab, including drilling the glass PME with precision. 

My parents, Brett and Betty, set a firm foundation for me in pursuing my academic 

studies. Their support has been a great blessing, and I could not thank them enough. 

To my kids, Eloise and Simeon: While you likely won’t remember our time in 

Austin, having you with us here has been one of the greatest joys of my life. The love you 

expressed to me here, in the ways you knew how, was always a refreshing reprieve from 

the stresses of days away from you. 

Finally, to Anna, my bride: Your love, your joy, and your patience have been 

extraordinary. I cannot imagine a more graceful woman than you, enduring my graduate 

studies through such major milestones—the first few years of marriage and having two 

children. You are an incredible wife and mother, and I love you so much! 



 vii 

Scattering Angle Resolved Optical Coherence Tomography for Early 
Retinal Detection of Alzheimer’s Disease in a Murine Model 

 

Michael Ryan Gardner, PhD 

The University of Texas at Austin, 2018 

 

Supervisors:  H. Grady Rylander III, Thomas E. Milner 

 

Alzheimer’s disease (AD), a debilitating neurodegenerative disease, is becoming 

more prevalent with an aging population. Early detection of AD is critical to extending 

healthy lives, but current techniques for AD detection are invasive and cost-prohibitive. 

The retina is embryonically derived from the forebrain and, with recent mounting evidence 

that it may reveal markers of brain injury, is considered a “window to the brain.” Early 

neurodegenerative changes in the brain are likely to be observed in the retina—synaptic 

failure and shifts in mitochondrial dynamics. Optical imaging techniques could hold the 

key to non-invasive early detection of AD in the retina since these disruptions may be 

observed with light. In particular, optical coherence tomography (OCT) retinal imaging 

offers 3D images of retinal neurons, but the resolution of clinical OCT systems is not fine 

enough to observe disruptions in the sub-cellular space. Scattering angle resolved (SAR-) 

OCT, a new method introduced in this work, aims to access sub-resolution scattering 

properties which could expose fundamental changes in the neurons associated with AD. 

In this dissertation, a custom SAR-OCT system and new image processing 

protocols are designed and constructed for murine retinal imaging. Then, three in-vivo 

studies are conducted using the imaging system to demonstrate its potential use in disease 

detection. In the first study, which establishes fundamental measures provided by SAR-
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OCT, the imaging system discerns native scattering differences between retinal layers and 

regions in healthy mice. In the second study, significant scattering angle shifts are observed 

in ischemic retinas. Finally, a cross-sectional study compares a transgenic murine model 

of AD (3xTg-AD) with age-matched wild type controls. By examining the distribution of 

scattering angles detected by the SAR-OCT system, significant differences are observed in 

the earliest ages of the diseased mice compared the control mice. In the final chapter, 

limitations of these studies as well as the imaging and image processing protocols are 

examined, and recommendations are made for future studies to leverage SAR-OCT for 

early detection of AD or other neurodegenerative diseases. 
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PART 1: INTRODUCTION AND SYSTEM DESIGN 

Chapter 1: Introduction 

DISSERTATION OUTLINE 

This dissertation is split in two parts: (1) Introduction and System Design and (2) 

In-Vivo Studies and Conclusion. These parts are further divided into chapters. In part 1 

there are three chapters: (1) Introduction, (2) Designing a Scattering Angle Resolved 

Optical Coherence Tomography (SAR-OCT) System, and (3) Image Processing and 

Feature Extraction for SAR-OCT. In part 2, there are four chapters: (4) Scattering Property 

Variation in the Mouse Retina, (5) Scattering Angle Changes During Euthanasia, (6) 

Retinal Changes in the Retina of a Mouse Model of Alzheimer’s Disease using SAR-OCT, 

and (7) Conclusions and Future Work. A bank of acronym meanings is included in the 

glossary. 

This chapter provides a primer on neurodegeneration, focusing on Alzheimer’s 

disease. The discussion ranges from the societal impact of the disease to the biological 

basis of how this dissertation aims to early detect it. There is also a discussion of OCT and 

why it is relevant to early detection of neurodegeneration. Lastly, a discussion of the mouse 

retina will aid in understanding the scope of the work described this dissertation. 

NEURODEGENERATION 

Neurodegeneration is in fact a broad category with many expressions, including 

several different diseases and pathologies; several well-known diseases such as 

Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and 

amyotrophic lateral sclerosis (ALS) are all types of neurodegenerative diseases. In more 

recent years glaucoma has also been categorized as a neurodegenerative disease.[1] In the 
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strictest sense, neurodegenerative disease may be defined as those pathologies primarily 

affecting the neurons.[2]  

Other diseases and pathologies affect neurons but are not considered 

neurodegenerative diseases. As an example, multiple sclerosis (MS) is a disease of the 

nervous system that implicates neurons by degrading the myelin sheath, but strictly 

speaking, it should not be categorized as a neurodegenerative disease because it does not 

have a primary pathology in the neuron itself, but instead on its attributes. Other 

pathologies in which neurons die as the result of a known cause (e.g. poison or infection) 

are not categorized as neurodegenerative diseases. 

Alzheimer’s Disease and Society 

Of all neurodegenerative diseases, AD is the most common. It was estimated in 

2016 that 5.4 million Americans have AD; 5.2 million of these people are age 65 or 

older.[3] Of people 65 years and older, 11% have AD, and 32% of people over 85 years 

old have AD.[4] In America, these numbers are expected to increase as the baby boom 

generation continues to age and treatment options for other diseases extend lives.[5] 

Recent guidelines and criteria for diagnosing AD include a new category for 

symptomatic, pre-dementia phase AD known as “mild cognitive impairment (MCI) due to 

AD”.[6], [7] However, even in this early state of the disease, significant pathophysiology 

has already occurred.[8] In fact, changes in the brain begin more than 20 years prior to the 

onset of AD symptoms.[9]–[11]  

Detecting Alzheimer’s Disease 

Early detection of AD seems to be the best path forward for efficacious treatment 

of the disease,[12], [13] and delays in AD onset and progression would significantly reduce 

the disease’s global burden.[14] Current clinical tests for AD include a variety of 
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psychological testing and medical imaging. Neuropsychology can be unreliable, and a 

patient’s baseline characteristics can be hard to determine. Lumbar puncture testing, on the 

population level, can predict AD four to six years before the onset of clinical symptoms by 

elevated levels of tau,[15] but it is quite invasive. Much research energy is being put into 

developing biomarkers based on lumbar puncture, but as it is now, this approach has low 

specificity and thus is not particularly helpful in the clinical diagnosis of AD for single 

individuals. Magnetic resonance imaging (MRI) and computed tomography (CT) brain 

imaging can predict which MCI patients will develop AD;[16] though, the classification of 

the patient groups is unreliable with low specificity. Altogether, cost, invasiveness and 

non-specificity plague each of these methods, thus leaving space for a non-invasive, 

economical alternative for early AD detection. 

Classical histopathological signs of AD include amyloid beta (Aβ) plaques, tau 

protein tangles, neurofibrillary tangles and neuronal atrophy,[17] but it is now known that 

these markers are prefaced by synaptic failure.[18] More specifically, synaptic failure is 

associated with mitochondrial dysfunction and changes in signaling pathways.[19], [20] In 

healthy neurons, mitochondria maintain a balance between fission and fusion states, 

dividing and fusing to form robust networks of the vital energy-producing organelles. 

Before classic histologic changes associated with neurodegenerative diseases are initiated, 

the fission-fusion balance in mitochondria is upset, with the fission state becoming more 

dominant.[21] Eventually, mitochondrial dysfunction can surpass a threshold and the 

neurodegenerative disease can be detected by contemporary detection methods.[22] 

Importantly, if the mitochondrial dysfunction associated with the neurodegenerative 

disease progresses to this level, available therapeutic interventions will not delay or reverse 

the disease, and patients will suffer from extreme cognitive and/or motor dysfunction.[23] 
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Figure 1.1 outlines the progress of the disease from early, non-detectable stages, as 

presented here. 

 

Figure 1.1: A schematic summarizes AD progression. The AD patient experiences 
synaptic failure, synaptic remodeling, histopathological symptoms, and 
finally the onset of mild cognitive impairment. 

Motivating New Detection Techniques 

Detecting dysfunctional mitochondria in vivo is difficult because of their small 

size—beyond the resolution of most in vivo optical imaging techniques. Mitochondria, 

however, are known to scatter light with unique characteristics making optical methods an 

attractive candidate to screen for patients exhibiting early mitochondrial dysfunction. 

Additionally, because the optic nerve is embryonically derived from the forebrain and 

encased within the meninges, the eye is now recognized by many investigators as a 

“window to the brain.”[24], [25] In fact, considerable evidence suggests that many 

neurodegenerative diseases have a primary retinal pathology.[25]–[28] Optical coherence 
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tomography (OCT) has become the standard of care in ophthalmology and is routinely used 

to monitor changes in the retina and optic nerve. However, standard clinical OCT systems 

are unable to resolve disruptions in mitochondrial function. 

Previous publications from Biomedical Engineering Laser Laboratory (BELL) 

suggest a pathway to identify sub-clinical neuropathies before any other detection method. 

First, a non-human primate study conducted at BELL proposed a new contrast mechanism 

(“reflectance index”) that decreased in eyes with elevated intraocular pressure.[29] In a 

second BELL study, a refined measure of reflection ratios (“normalized reflectance index”) 

revealed an early correlation with pre-perimetric glaucoma in human subjects.[30] BELL 

investigators suggested that the biological mechanism behind these changes is modification 

of the scattering properties of sub-resolution mitochondria. Consequently, a third study was 

conducted in which a scattering angle resolved (SAR-) OCT system was designed and 

constructed to inspect the optical properties of healthy human retinas.[31] In this study, 

ocular regions with lower retinal ganglion cell density correlated with the SAR-index, 

reflective of the sensitivity of SAR-OCT to morphological variation. BELL has 

demonstrated that SAR-OCT can identify sub-resolution light scattering variations in the 

retina—such as those that occur in neurodegenerative diseases (though not necessarily 

unique to it). Thus, there is an unmet opportunity for applying SAR-OCT to early detect 

AD. Furthermore, the kind of alteration to a standard clinical OCT system is the simple 

addition of one optical component, thus retrofitting these machines would be a viable 

option if SAR-OCT proved to be a viable route for early detecting neurodegeneration, 

particularly AD. 

There are at least three advantages of detecting AD in its early stages. First, early 

detection creates an opportunity to begin therapeutic intervention at an earlier stage of the 
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disease, when remedies are more effective and can even reverse disease progression.[23], 

[32]  

Second, a tool to early detect AD can also be used as a tool to monitor new 

therapeutic interventions. SAR-OCT for AD detection would be a valuable asset to 

researchers conducting a study on the effectiveness of their approach. Currently, 

longitudinal murine or human studies that aim to avoid invasive or expensive procedures 

must rely on behavioral or cognitive deficits, especially during early stages, but these 

methods are highly subjective. On the other hand, if SAR-OCT is sensitive to changes in 

mitochondrial dynamics, the window for monitoring AD can be pushed to a much early 

time.  

A third benefit is that of further understanding the disease pathology. SAR-OCT 

creates an opportunity to study the neuro-retina in a way that it has not been studied before 

– non-invasively (that is, no disruption of the natural environment) with sensitivity beyond 

the optical resolution limits. This means that potential previously undetectable changes are 

now potentially accessible. Though SAR-OCT by itself cannot indicate the specific cellular 

mechanism behind such potential alterations to neurons in the retina, it has the 

distinguishing capacity to point researchers to a region that has perhaps gone unstudied, so 

that they might provide more insight into the fundamental nature of the disease. The 

correlative measures SAR-OCT offers can then serve as surrogate markers to these 

biological changes. 

OPTICAL COHERENCE TOMOGRAPHY 

In order to understand how SAR-OCT might be utilized in early-detection of AD, 

a brief primer on OCT is included here. 
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OCT is an optical imaging technique that offers tomographic information about the 

properties of turbid samples.[33] OCT may be thought of as a light-analog to ultrasound 

with gated detection of reflected photons, but because light travels so quickly it cannot be 

sampled by modern electronic systems as it is reflected. Thus, detecting reflected light from 

the sample must rely on the interferometric properties of light, instead of direct backscatter 

sensing. OCT offers an axial resolution between 1-15 µm—one or two orders of 

magnitudes finer than conventional ultrasound (50-100 µm). OCT has been used in a 

variety of fields, ranging from manufacturing[34]–[40] to various biological 

applications,[41]–[44] but the mainstay for OCT technology is ophthalmic imaging. 

OCT systems scan a focused beam across the sample to probe it. One axial scan is 

called an “a-scan,” with each point representing the backscatter of ballistic photons at 

corresponding depths. A series of “a-scans” in a line form a “b-scan,” and several “b-scans” 

can then form an OCT volume (Figure 1.2). 
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Figure 1.2: The intensity of a sample a-scan is indicated by the red line, and a sample b-
scan is indicated by the yellow section. The volume scan is a collection of b-
scans. 

Low coherence interferometry (LCI) is the basis of OCT, and works by interfering 

light from a sample arm with light from a reference arm with a known pathlength. Low 

coherence (or white light) interferometry was described by Sir Isaac Newton, but was 

introduced more recently for measure optical echoes in fiber optics and waveguides,[45]–

[47] as well as for biological tissue sampling.[48], [49] Figure 1.3[50], [51] diagrams a 

simple Michelson interferometer.  
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Figure 1.3: A simple Michelson interferometer (top left) that uses short coherence 
length light yields an interferometric signal when the reference and sample 
paths scatter light at pathlengths within the coherence length of the source. 
Example results of bovine imaging are shown on the right. [50], [51] 

The intensity of the detected signal is proportional the sum of the sample and 

reference fields and an interaction term: 

𝐼"	~	 𝐸& ' + 𝐸) ' + 2𝐸&𝐸) cos 2𝑘∆𝐿 , (1.1) 

where Er is the reference field, Es is the sample field, k is the wavenumber, and L is the 

pathlength difference. 

OCT expands the utility of LCI by scanning the beam over the sample to build up 

volume scans. There are two categories of OCT systems: (1) time domain and (2) Fourier 

domain. Fourier domain systems are further split into “spectral” OCT systems that use a 

broadband light source and a spectrometer, and “swept source” OCT systems that use a 

source that sweeps through wavelengths with time and collects the interfered light at a 
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detector. A swept source OCT system was developed for this dissertation and is described 

in detail in Chapter 2 after a brief discussion of the murine retina. 

THE MURINE RETINA 

The retina is commonly divided into approximately thirteen anatomical layers, 

depending on how the layers are defined. From superficial to deep, they are (1) internal 

limiting membrane (ILM), (2) retinal nerve fiber layer (RNFL), (3) ganglion cell layer 

(GCL), (4) inner plexiform layer (IPL), (5) inner nuclear layer (INL), (6) outer plexiform 

layer (OPL), (7) outer nuclear layer (ONL), (8) external limiting membrane (ELM), (9) 

inner segment (IS), (10) outer segment (OS), (11) retinal pigment epithelium (RPE), (12) 

Bruch’s membrane, (13) choroid (Figure 1.4). 

There are five classes of neurons that make up the retinal layers: (1) photoreceptors, 

(2) bipolar cells, (3) ganglion cells, (4) horizontal cells, and (5) amacrine cells. The cell 

bodies and the synapses are located in alternating layers. Cell bodies are in the GCL, INL, 

and ONL, whereas synapses are located in the IPL and the OPL. The photoreceptors are 

the cells sensitive to light and are in the deeper layers of the retina. 
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Figure 1.4: Twelve layers of the murine retina are shown on the left with H&E staining, 
and on the right as an OCT image. The location of synapsis and cell bodies 
in the retinal layers is indicated by color overlay on the right. Image adapted 
from Dysli.[52] 

Light that is incident on the rods and cones is transduced into electrical signals by 

the photoreceptors, whose cell bodies are located in the ONL. Then, the electrical signals 

are transmitted via synapses in the OPL to the horizontal cells and bipolar cells. These 

cells’ bodies are in the INL and transduce signal between photoreceptors (in the case of 

horizontal cells) and to the IPL (in the case of bipolar cells). In the IPL, the synapses of 

bipolar, amacrine, and ganglion cells meet. Amacrine cell bodies are in the proximal INL. 

Ganglion cells take the signal from the IPL synapses through the GCL and out to the optic 

nerve via the RNFL. (Figure 1.5). The RGC axons project to the lateral geniculate nucleus 

of the thalamus. The optic nerve is anatomically a tract of the brain, and the working 

hypothesis of this dissertation is that the optic nerve should manifest neurodegenerative 

disease of the brain.  
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Figure 1.5: The retina is a neuron-rich tissue with horizontal and vertical information 
flow, segmented into several layers with distinct functions. Ultimately 
signals generated by incident light on the photoreceptors are transmitted to 
the brain via the optic nerve. Figure selected from Wang et al.[53] 

Distal to the rods and cones is the RPE. The RPE serves two functions: (1) 

facilitating the phagocytosis of old receptor disks from the photoreceptors and (2) 

regenerating photopigment molecules after exposure to light.  

The morphology of retinal structures is important for understanding optical imaging 

of the retina. Compared to synapse-rich layers, the cell body-rich layers of the retina are 

generally more uniform in their constitutive structures—distributions of spheroids with 
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vertical striations where the cell bodies connect to the synapses. The synapse-rich layers 

have less order. These differences are detectable in OCT images where the GCL, INL, and 

ONL (cell body layers) appear generally darker than the IPL and OPL (synapse-rich layers) 

which stand out in brightness. Brightness in OCT images is a product of backscattering due 

to refractive index changes at the microscopic level; higher backscattering yields a brighter 

image. Thus, it is observed that layers with higher morphological disorder scatter more. 

The brain is considered the most metabolically active organ, and the retina is the 

most demanding part of the brain.[54]–[56] Of all the retinal layers, the RPE and 

photoreceptors are the most ATP-demanding.[57] Other high-energy demand layers 

include the INL and OPL, where much of the neurotransmission occurs.[58] To maintain 

membrane potentials, neuroglobin and mitochondria are prevalent in the plexiform 

layers.[59], [60] Interestingly, in avascular retinas (like those of guinea pigs and rabbits), 

the retina is nourished from vasculature in the choroid.[61] However, in humans and mice, 

which have vascularized retinas, mitochondria are localized to vascularized layers (RNFL, 

IPL, OPL).[59], [60] 

Thus, finally, a discussion on vasculature is pertinent. In the mouse and human, 

larger vascular structures are located in the RNFL, with some capillary presence. As the 

vasculature (both mouse and human) develops, the first vessels originate from the optic 

nerve head and spread across the retina.[62], [63] After the network has spread across the 

entire retina, new vessels extend downward into the inner plexiform layer and begin to 

spread to form the intermediate and deep plexuses in the IPL and OPL.[63] 

 In the mouse retina, the superficial plexus feeds the deeper layers located in the 

IPL (intermediate plexus) and the OPL (deep plexus). The vasculature in the RNFL takes 

its blood from near the optic nerve head, where blood vessels are fed from the central retinal 
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artery (CRA). The ophthalmic artery feeds the CRA and the choroidal vasculature (Figure 

1.6).[64] 

 

Figure 1.6: Drawing of the murine optic nerve (ON) and its vascularization taken from 
May et al.[64] The ophthalmic artery (OA) feeds the choroidal vasculature 
and the central retinal artery (CRA), which in turn feeds the intermediate 
and deep vascular plexuses. The choroid is indicated here by “Ch” and the 
sclera by “Sc.” 
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Chapter 2: Designing a Scattering Angle Resolved Optical Coherence 
Tomography System 

SCATTERING ANGLE AND OCT 

Angle resolved imaging measures the angular distribution of backscattered light, 

which changes based on tissue anisotropy. Previously, angle-resolved interferometric 

imaging approaches have been used to detect sub-wavelength cellular properties such as 

the size distribution of nuclei and more recently to characterize the nuclear morphology, in 

situ, of both a rat model for esophageal carcinogenesis and murine retinas.[65], [66] 

Scattering angle resolved (SAR-) OCT was applied by Wang et al. to the human 

retina where data from the additional SAR contrast mechanism correlates with known 

azimuthal variation in retinal ganglion cell density.[31] 

MOUSE EYE MODEL 

To design an OCT system with sensitivity to symptomatic AD in mice, it is of first 

importance to understand the optics of the mouse eye. Many OCT studies involve mouse 

models of various diseases and disease states because of the mouse eye’s striking similarity 

to the human eye (in particular, over that of a rat). This is due to the mouse eye’s larger 

numerical aperture and higher order aberrations that resemble that of the human eye.[67] 

Though the optical properties of the mouse eye have been explored at short 

wavelengths,[68], [69] the mouse eye has not been characterized at wavelengths in the near 

infrared (NIR) wavelength range. This work was necessary before beginning to design an 

optical system to interface with the mouse eye. 

To begin, the curvatures of the eye components were constructed as reported by 

Remtulla.[68] Then, the refractive indices of the various layers of the eye were modeled. 

Remtullah reports the refractive index of each layer of the mouse eye at four wavelengths. 
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This data was extrapolated to the NIR by fitting the four data points from Remtullah to 

Conrady’s dispersion equation:[70] 

𝑛 𝜆 = 𝑛5 +
𝐵
𝜆 +

𝐶
𝜆8.:. 

(2.1) 

In Conrady’s equation, n is the refractive index, n0 is the refractive index as λ 

approaches ∞, B (μm) is a parameter affecting the curvature and amplitude of the refractive 

index at visible wavelengths, and C [μm3.5] influences the behavior of the refractive index 

at short wavelengths in the UV. The Conrady dispersion formula is ideal for transparent 

materials such as the mouse eye. The fit yielded the parameters and refractive indices in 

Table 2.1 at 1.31 μm. 
 

 

Table 2.1: Conrady parameters for the murine ocular media 

Combined, the radii of curvature and the refractive indices for each mouse eye 

segment yielded a suitable optical model in OpticStudio (Zemax). Figure 2.1 shows a real 

mouse eye cross section from Remtalluh superimposed with the optical model described 

above. With a sufficient model for the mouse eye, an optical design for the OCT system 

was developed, as described below. 
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Figure 2.1: Optical model (Zemax) overlaid with an image of mouse eye cross-section. 
Collimated light focuses on the retina as expected. 

SYSTEM DESIGN 

The SAR-OCT system previously reported by Wang was for human retinal 

imaging, but due to animal availability and ease of access for proof-of-concept work in 

accelerated studies, an animal SAR-OCT system for ocular imaging is a valuable tool to 

examine how diseases affect the scattering properties of the retina. There are several well-

documented models of neurodegenerative diseases in mice, both transgenic and induced 

models, that have retinal pathologies. Thus, an SAR-OCT mouse retinal imager was 

designed and constructed. The SAR-OCT system is diagramed in Figure 2.2, and the 

components are described in the following sections. A wiring diagram is included in 

Appendix A. 
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Figure 2.2: The SAR-OCT system for murine retinal imaging is diagramed. The design 
includes a 1310 nm ± 70 nm swept source laser and a fiber-based 
interferometer setup (CP): fiber coupler, CR: fiber circulator). The sample 
arm includes a reflective collimator (RC), pathlength multiplexing element 
(PME), several gradient index lenses (L1-L5), a dual-axis MEMS mirror 
(MM) conjugate to the ocular pupil plane, and a fundus lens (FL) that 
interfaces with the mouse cornea. The reference arm includes three lenses 
for dispersion matching and a mirror pathlength-matched to the mouse’s 
retina. 
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Interferometer and Laser  

Similar to the Wang design, the SAR-OCT design described here is a fiber-based 

system for ease of transport to the operating room. Bulk optics systems are difficult and 

time-consuming to align to obtain a reliable signal. Fiber optics are a good choice for ease 

of use and high-fidelity signals. SMF-28e fibers are used here which transmit the 1310 nm 

(± 70 nm) broadband swept source (100 kHz repetition rate, Axsun) in a single mode. The 

Axsun laser bandwidth is greater and the repetition rate faster than that of the Wang design. 

FC-APC fiber connections are also used so that any unwanted reflected light from fiber-

fiber or fiber-component interfaces is not maintained in the single mode necessary to 

interfere signals with similar optical pathlengths. 

A 90:10 fiber coupler directs 90% of the laser’s output to the sample arm and 10% 

of the light to the reference arm (Figure 2.1). Each arm of the interferometer has a fiber 

circulator with three arms. Light entering arm 1 exits arm 2, and light entering arm 2 exits 

arm 3. After the sample and reference optics, the light is interfered in a 50:50 fiber coupler, 

and each output is measured by a balanced detection scheme. Balanced detection eliminates 

the background signal to isolate the interference fringe.  

2D MEMS Mirror 

Most murine retinal images reported in scientific literature include post-objective 

scanning systems. In these systems, galvanometers are placed between the final lens 

(objective) and the retina. Collimated light is directed by mirrors at different angles to reach 

different parts of the retina. This design limits the field of view of the OCT systems because 

the ocular pupil clips the OCT light at the system’s most extreme angle. 

This problem can be mitigated by placing the mirrors at a conjugate to the ocular 

pupil plane and thus steering the beam beyond the aperture of the pupil. However, 

engineers using this approach have typically used two-mirror galvanometer systems. In 
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this case, the designer must choose either the slow axis, the fast axis, or somewhere in-

between as a conjugate plane to the ocular pupil. The slow-axis has historically been chosen 

to maximize collection efficiency and minimize vignetting.[71] New approaches to limit 

vignetting and maximize collection efficiency have included pupil tracking to control 

where the beam enters the pupil.[72]  

Dual-axis MEMS mirrors have been used commonly in OCT catheter designs and 

free-space optical setups,[73], [74] but dual axis-mirrors have been more slowly adopted 

for retinal imaging. Recent examples include hand-held OCT retina and anterior segment 

imaging systems.[75], [76] In this system, our group developed the first dual axis MEMS 

mirror scanning system for a murine retinal OCT system, as reported by Gardner in 

2017.[77] 

Cornea Contact 

Many OCT systems, including almost all human retinal imaging systems, are non-

contact systems. That is, the objective lens does not make contact with the subject’s cornea. 

This is particularly helpful for human subjects who may be told to hold still for several 

seconds while an OCT image is captured. Patient discomfort is thus minimized by 

removing the need for an index matching medium between the objective and the patient’s 

cornea. Mice are typically anesthetized when their retinas are imaged using OCT, thus 

allowing for a corneal contact system. 

One issue with non-contact OCT retinal imagers is that the beam wavefront is 

subject to the natural aberrations of the eye—the air/cornea and aqueous/lens interfaces 

providing most of the optical power. The mouse eye has significant amounts of spherical 

aberration and coma, with astigmatism.[78] In conflicting reports, the mouse eye has been 

reported as both myopic and hyperopic.[67], [78] There are also significant longitudinal 
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chromatic aberrations, and the mouse eye has a numerical aperture of 0.5, as opposed to a 

human eye’s 0.2.[67] 

A murine retinal imager must account for these aberrations to obtain quality images. 

Generally, there are two approaches to limiting the effect of aberrations in murine retinal 

imaging. 

First, wavefront sensing and adaptive optics can improve the spot size of the beam 

on the retina and account for aberrations in the eye. Such systems have been reported for 

human retinal OCT and scanning laser ophthalmoscope systems[79], [80] and for murine 

retinal OCT systems.[81], [82] Classically, these OCT systems have some method of 

sensing the reflected wavefront (either with a Shack–Hartmann wavefront sensor or 

computationally). Based on the sensed wavefront characteristics, an adaptive optic element 

(e.g. deformable mirror, spatial light modulator) will adaptively alter the incident beam 

wavefront until the reflected beam has a high-quality wavefront. This intervention ensures 

that the beam spot size on the retina is small and thus improves spatial resolution. Although 

these systems are powerful tools, they are cost-prohibitive and thus will be slow to make 

their way to a clinical setting. 

The second approach is to design a corneal contact system to limit the effect of 

aberrations from the air-cornea interface. This interface has the most optical power and 

contributes significantly to optical aberrations in the mouse eye.[68] For a more cost-

effective approach to limiting aberrations, a corneal contact lens can be index matched to 

the cornea.  

For non-contact systems, the incident beam is collimated (or its wavefront adjusted 

with adaptive optics) and relies on the natural optics of the eye to focus on the retina. By 

removing the optical power of the cornea with a contact lens, light should have some 
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positive (convergent) power upon entering the eye in order to focus on the retina. Figure 

2.3 presents non-contact and contact designs. 

 

 

 

Figure 2.3: (A) Non-contact OCT systems from murine retinal imaging rely on the 
natural optics of the mouse eye to focus the beam. Without expensive 
adaptive optics, the beam is subject to the severe aberrations of the mouse 
eye. (B) A contact lens uses a fundus lens with one flat surface and another 
concave surface that is indexed matched to the cornea. This approach limits 
the aberration contribution of the air/cornea interface. Instead of entering the 
eye collimated, the beam enters with some optical power from a focusing 
lens. The focusing lens adjusts the focal plane at the retina to account for 
variations in eye length between mice. 

A custom contact lens was created by the company Optics Technology by etching 

down a BK7 window with an anti-reflective (AR) coating. The AR coating was maintained 

on the non-contact side, and a concave surface was formed at the opposite side (radius = 2 

mm). The AR coating limits any unwanted reflections from being coupled back into the 
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fiber interferometer. The concave surface is index-matched to the cornea using methyl 

cellulose.  

Focusing Lens 

Because the system uses a contact lens, the light should have some optical power 

upon entering the eye. However, given the variability of optical properties across different 

mice, particularly the thickness of ocular components, it would be advantageous to have a 

translating lens to optimize the spot size on the retina. Thus, the lens providing the power 

is placed on a translating stage. For longer eyes, the lens is translated forward to move the 

focal plane deeper into the eye, and vice versa. This lens and translating mount are placed 

before the 2D MEMS mirror, thus the diameter of the beam on the mirror (and the ocular 

pupil plane conjugate to the pupil) varies with the translation of the lens. Although the 

beam size on the mirror varies, it never is clipped by the mirror. 

Dispersion Compensation 

Group delay dispersion mismatch between the sample and reference arms can 

negatively affect OCT images by causing the full-width at half maximum (FWHM) of a 

surface to expand. Spectral phase expansion can be written as: 

 

𝜙 𝜔 =
1
𝑛!?
𝜙 ? 𝜔5 𝜔 − 𝜔5 ?, (2.2) 

where ϕ(ω) is the phase expansion relative to the center frequency, ω (ω = 2πν). The units 

are in radians/second. The zero-th order term describes the common phase shift. The first-

order term, ϕ(1)(ω0), contains the inverse group velocity, that is “group delay,” and the units 

are in seconds. The second-order (quadratic) term, ϕ(2)(ω0), is the group delay dispersion 

(GDD), and the units are seconds2. 
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Without dispersion compensation lenses in the reference arm, the SAR-OCT 

system presented in Figure 3.1 would have dramatic GDD mismatch. To characterize the 

dispersion mismatch of the SAR-OCT system sample and reference arms, a series of 

measurements was taken in which a mirror was placed in the sample arm and the reference 

arm. With only a single collimating lens in the reference arm, each lens of the sample arm 

was added, one-at-a-time, in order and the dispersion mismatch was measured. 

Table 2.1 shows the 2nd order term to characterize dispersion after successive lenses 

and the contribution of each lens individually. The total amount of dispersion mismatch 

was measured to be 5.01 e-28 [s2].  

After the total dispersion mismatch was determined, two achromatic lenses were 

selected to match this dispersion and placed in the reference arm. After the addition of the 

two lenses placed in a telescopic configuration, the total dispersion mismatch was 

measured to be 9.50 e-29 [s2]. This amount of dispersion was sufficient for high-quality 

retinal imaging. 
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Measurement  

taken after: 

Combined 2nd order terms 

after element [s2] 

Individual Contribution 

[s2] 

Reflective collimator 5.40 e-31 5.40 e-31 

Lens 1 1.77 e-28 1.76 e-28 

Lens 2 2.61 e-28 2.61 e-28 

Lens 3 3.24 e-28 6.33 e-29 

Lens 4 4.21 e-28 9.65 e-29 

Lens 5 5.04 e-28 8.34 e-29 

Fundus lens 5.01 e-28 -2.87 e-30 

Table 2.2: Contribution of each lens (summed and individual) to the dispersion 
mismatch. 

Pathlength Multiplexing Element 

The key component to the SAR-OCT system is the pathlength multiplexing element 

(PME). The PME is a BK7 window, 5 mm thick, with a center aperture. The center aperture 

has a 5 mm radius. Light in the sample arm of the SAR-OCT system has three potential 

optical pathlengths: Pathlength 1 is light that travels through the center aperture to and from 

the retina. Pathlength 2 is light that travels through the PME once—to or from the retina. 

Pathlength 3 is light that travels through the PME twice—to and from the retina. Figure 

2.4 illustrates the potential pathlengths. 
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Figure 2.4: The PME introduces three potential pathlengths for light. Light mapped to 
pathlength 1 (P1) travels through the center of the PME to and from the 
retina. Light mapped to pathlength 2 (P2) travels through the PME glass 
only once—travelling either to or from the retina. Light mapped to 
pathlength 3 (P3) travels through the PME glass twice—both to and from 
the retina. 
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Mathematically, the additional pathlengths added for each path through any PME 

are described generally below: 

Additional pathlength added for pathlength 1 (L-L) is 

𝐿A = 𝑑 + 𝑑 − 𝑑 + 𝑑 = 0. 

 

(2.3) 

Additional pathlength added for pathlength 2 (L-H2) is 

𝐿DE = 𝑑 + 𝑛 ∙ 𝑑 − 𝑑 + 𝑑 = 𝑑(𝑛 − 1). 

 

(2.4) 

Additional pathlength added for pathlength 3 (L-H3) is 

𝐿DI = 𝑛 ∙ 𝑑 + 𝑛 ∙ 𝑑 − 𝑑 + 𝑑 = 2𝑑(𝑛 − 1). 

 

(2.5) 

In equations 2.3-2.5, d is the thickness of the PME, and n is the refractive index of the glass 

at the center wavelength of the OCT system. In the case of the 5 mm PME made of BK7 

(n=1.50 at 1310 nm), L=0, H2=2.5 mm, and H3 = 5 mm. Thus, each sub image on the OCT 

is separated vertically by 2.5 mm. 

A Monte Carlo model was developed to determine the effect of PME center 

aperture size on the intensity of light in each pathlength. Photons were randomly generated 

within the area of the beam, and each photon was weighted by its position in the Gaussian 

beam profile of the OCT source. Then, each photon was assigned a scattering angle off of 

the sample based on an assigned g-factor (anisotropy) of 0.97, a measured g anisotropy 

value for the neural retina.[83] It was recorded whether the photon travelled through the 

PME glass once, twice, or never, and each photon contributed to the intensity of its assigned 

pathlength (Figure 2.5). The scattering angle of the photon was also recorded. The results 

of the Monte Carlo simulation indicated that there is no single PME aperture size at which 

the pathlength intensities would each be equal.  
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Figure 2.5: The results of a Monte Carlo simulation show the relative intensity of each 
pathlength as a function of PME aperture size (diameter; percent of beam 
diameter). The intensity of light in pathlength one increases monotonically 
with PME aperture size, and the intensity of light in pathlength 3 decreases 
monotonically with PME aperture size. The intensity of light due to photons 
in pathlength 2 increases and then decreases, with an infection point at a 
PME aperture size (diameter) of about 60% of the OCT beam diameter. The 
yellow vertical line corresponds to the angular distributions in Figure 2.5. 

Plotting the angular distribution of scattered photons for each pathlength revealed 

that pathlengths 1 and 2 have the most angular discrimination (Figure 2.6). Pathlength 3 

contains light that is scattered at each extreme—both direct backscattering and high-angle 

backscattering. This simulation makes sense when considering the model in Figure 2.4. In 

order to maximize the utility of the angular discrimination in pathlengths 1 and 2, a PME 

aperture size was chose around 72% of the beam. At this aperture size, the intensity of light 
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in pathlengths 1 and 2 were about equal; the intensity of light in pathlength three was about 

half that of pathlengths 1 and 2. This selection is indicated by the yellow line in Figure 2.5, 

and the angular distribution of light at this aperture size is plotted in Figure 2.6. 
 

 

Figure 2.6: The distribution of scattering angles of photons in the Monte Carlo 
simulation are plotted for each pathlength. Pathlength 1 contains the lowest 
scattering angles, and is most distinguished from pathlength 2. Pathlength 3 
contains both high- and low-angle backscattering and is thus degenerate. 

Given the 12 mm beam diameter after the reflective collimator (Figure 3.1) and the 

discontinuity of drill bit sizes available in the glass shop, a 7 mm diameter aperture was 

selected for this SAR-OCT systems PME. 
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System Construction 

It was necessary that the system be transportable to the operating room for imaging 

mice under anesthesia, so the SAR-OCT system was designed to be mounted on an 

articulating arm, which was in turn mounted on a rolling cart. To fit the arm, the system 

needed to be compact and stable, yet flexible enough to allow for adjusting high-precision 

optical components. The SAR-OCT mechanical system was custom-designed in a 

computer aided design (CAD) software package with a combination of off-the-shelf optical 

components from ThorLabs and custom aluminum components for mounting the optics. 

Then, the aluminum parts were machined by the University of Texas at Austin’s 

Mechanical Engineering machine shop. A complete CAD rendering of the proposed SAR-

OCT design is pictured in Figure 2.7, and a photo of the system is in Figure 2.8. 

 

 

Figure 2.7: The SAR-OCT mount was designed in a CAD software using off-the-shelf 
components from ThorLabs and custom aluminum parts to mount the optics 
compactly and securely. 



 31 

 

Figure 2.8: A photo of the SAR-OCT system shows a yellow fiber optic cable directing 
light into the reflective collimator. The fundus lens that makes contact with 
the mouse cornea is in the lower right-hand corner. The entire system is 
mounted on an articulating arm for ease of movement. 
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SYSTEM PERFORMANCE 

Scattering Angle Characterization 

To characterize the sensitivity of the system to changes in scattering angle, an 

experiment was designed in which light was reflected back at known angles. A dual-axis 

MEMS mirror was placed just beyond the focal plane of the objective lens and raster-

scanned to collect a range of pathlength intensities corresponding to bulk scattering angles 

(Figure 2.9). The incident beam was not scanned in this configuration, only the angle at 

which the light was reflected from the dual-axis MEMS mirror in the focal plane. The dual-

axis MEMS mirror only tilted ±4 degrees in the x and y directions; thus, several raster 

scans were collected with various tilt offsets and stitched together in post-processing. 

Figure 2.10 shows sample B-scans from this experiment.  

 



 33 

 

Figure 2.9: A dual axis MEMS mirror located at the focal plane raster scans through a 
range of bulk backscattering angles. The grayscale beam is the incident 
beam, and the green beam is an example reflected beam. The green beam, 
reflected with some angular deviation due to the dual-axis MEMS mirror, 
depicts more light travelling through the glass of the PME than the incident 
beam had. One would expect that the resultant images would have higher 
intensity in pathlengths 2 and 3 (H2, H3) and lower intensity in pathlength 1 
(L) compared to a beam that is reflected with no angular deviation. 
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Figure 2.10: Sample b-scans show how the intensity of pathlengths 1, 2, and 3 vary for 
different angles. At a-scan 300 of b-scan 50, pathlength 3 (H3) has the 
strongest intensity. This indicates that the mirror was at an extreme angle. In 
contrast, a-scan 300 of b-scan 800 has a strong pathlength 1 (L) has the 
strongest signal; this indicates that the mirror was at an angle closer to zero 
(direct back-scatter). A-scan numbers represent a linear increase in bulk 
scattering angle in one dimension, and b-scan numbers represent a linear 
increase in bulk scattering angle in the other dimension. See Figure 2.11(A) 
for the transformation from a-scan/b-scan number to angle. 

Depths corresponding to the MEMS mirror at pathlengths 1-3 were isolated, and 

then intensity values corresponding to a given reflection angle were averaged azimuthally 

in reference to the neutral position (degree 0,0) (Figure 2.11). Figure 2.11(A) shows the 

intensity of each pathlength for each angular displacement, and Figure 2.11(B) plots the 
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intensities after azimuthal averaging. The sample a-scans in Figure 2.10 are also indicated 

in the same color by vertical dashed lines in Figure 2.11(B).  

 

 

Figure 2.11: (A) shows the peak intensity of each pathlength as a function of angular 
deviation due to the dual-axis MEMS mirror raster scanning. Several images 
were stitched together to form a more complete data set. (B) shows the 
azimuthal average of each pathlength intensity. The blue dashed line is 
matches the location of the blue line in Figure 2.10. The red dashed line 
matches the location of the red line in Figure 2.10. 

 It was thus experimentally determined that the SAR-OCT murine retinal imaging 

system described here is able to detect changes in bulk scattering angle up to around eight 

degrees from a direct backscatter. That is, from a zero-degree backscattering angle to an 

eight-degree backscattering angle, the combination of light from pathlengths one, two and 



 36 

three have unique contributions to the total image intensity. Light scattered from a sample 

at an angle greater than eight degrees will not be coupled back into the SAR-OCT system. 

Developing an image feature based on the intensities of different pathlengths is described 

fully in Chapter 3. 

Imaging 

Finally, murine retinal images were gathered using the SAR-OCT system, and the 

total intensities in each pathlength for 32 mice were recorded. The intensities were 

normalized to the pathlength with the maximum intensity. Based on the Monte Carlo model 

results shown in Figure 2.4, the light intensities in pathlengths 1 and 2 should be about the 

same, and the intensity of light in pathlength 3 should be about 50% of the intensity of light 

in pathlengths 1 and 2. The experimental results showed a greater intensity of light in 

pathlength 3 than the Monte Carlo simulation predicted (Figure 2.12), but it is beneficial 

to err on the side of more balanced pathlength intensities. Sample OCT retinal images are 

shown in Figure 2.13. 
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Figure 2.12: The distribution of normalized intensity of each pathlength is shown for 32 
mouse retinal images. The mean normalized intensity was 0.99 for 
pathlength 1, 0.97 for pathlength 2, and 0.69 for pathlength 3. 



 38 

 

Figure 2.13: Sample SAR-OCT images (A) and (B) show cross-sectional images of the 
same mouse at two different locations. Pathlengths 1, 2, and 3 are seen. 
Each of the pathlengths has been averaged to obtain images (C) and (D). 
Scale bars indicate 300 µm. 
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Chapter 3: Image Processing and Feature Extraction for SAR-OCT 

Image processing for SAR-OCT may be split into four broad categories: (1) initial 

processing, (2) intensity processing, (3) speckle processing, and (4) segmentation. These 

processes contribute to four analysis regimes for feature extraction: (1) scattering angle, 

(2) angiography, (3) normalized reflectivity, and (4) layer thicknesses. This chapter will 

discuss in-depth each of these four processes (and sub-processes), as well as the four 

analysis regimes.  Figure 3.1 presents a flow chart to anchor the discussion of each 

processing and analysis step. 

 

Figure 3.1: A flow chart for signal processing serves as an anchor for this dissertation 
chapter. Processing steps are indicated by green boxes, and the four analysis 
steps for feature extraction are indicated by yellow boxes. 
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PROCESSING STEPS 

Initial Processing 

The first step in image processing for SAR-OCT is to convert the raw fringe signal 

to tomograms. Sampled voltages from the balanced detection scheme are saved as 8-bit 

unsigned integers, and the parameters used to collect the tomogram are saved in a 

parameters file. The parameters file includes the number of A-scans per B-scan, number of 

B-scans, the number of times a B-scan is repeated, and the number of samples per A-scan. 

Figure 3.2(A) shows the fringe data for a single B-scan. Each volume is of size 1472 pixels 

(height; points per A-scan) × 512 pixels (width; A-scans per B-scan) × 4096 (depth; 

number of B-scans, 512, times the number of repetitions at each B-scan location, 8). 
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Figure 3.2: (A) shows an example SAR-OCT a-scan fringe taken on a mouse retina. (B) 
shows an example a-scan after the Fast Fourier Transform. The three 
pathlengths can be seen in the repeating pattern of two peaks, one small (the 
internal limiting membrane) and one large (the retinal pigment epithelium). 

The data is loaded into MATLAB one b-scan at a time. Once a volume of fringe 

data is formed, a Fast Fourier Transform (FFT) transforms the fringe signal from k-space 

to image-space. An example image-space a-scan is displayed in Figure 3.2(B). The real 

part of the data is retained and may be displayed as a cross sectional image after converting 

to decibels (20*log10). The volume of the real part of the data has size 737 (height; 1472/2 

+ 1 after FFT) × 512 (width) × 4096 (depth). 
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With the inclusion of the PME, three pathlengths are evident in every B-scan, each 

corresponding to three different bulk scattering angles (see Chapter 2). To align the images 

for analysis, the first sub-image (pathlength 1) is used as a reference. Sub-images are 

selected manually, each with the same height (typically ~150 pixels). Then pathlengths 2 

and 3 are shifted in the z-direction (axially) to align with pathlength 1. The MATLAB 

function ‘imregister’ is set to perform only axial shifting for precise alignment. After the 

sub-images are aligned, each pathlength sub-image is saved as a tiff stack. This results in 

three image stacks with size 150 (height) × 512 (width) × 4096 (depth). 

This first initial processing step outputs three aligned image stacks. With these three 

stacks, intensity processing, speckle processing, and segmentation may be performed 

before the four subsequent analysis steps for feature extraction. 

Intensity Processing 

Before analysis can be performed, the eight repeating b-scans in each b-scan 

location are first averaged together and collapsed into one b-scan. Thus, the three sub-

images previously aligned and saved are taken from size 150 × 512 × 4095 to 150 × 512 × 

512. Averaging over the eight repeated b-scans yields higher signal-to-noise ratios (SNR) 

as is apparent in Figure 3.3. These three volumes, corresponding to each of the three 

pathlengths, are used in scattering angle analysis (described later). 

The second process under intensity processing is to take the three sub-images (150 

x 512 x 512) and average them together, voxel-by-voxel. This averaging further increases 

the SNR and permits more repeatable analysis of layer thickness and reflectance index. 

 



 43 

 

Figure 3.3: The first image shows pathlength 1 (L) of a single b-scan repetition of a 
mouse retina with no averaging. The second image shows the same location 
after averaging 8 repeating b-scans (pathlength 1). The third image shows 
the average of pathlength 1 (second image) and the corresponding averaged 
b-scans for pathlengths 2 and 3. The SNR increases with each averaging 
step. The scale bars show 300 µm. 



 44 

Speckle Processing 

Angiography Method 

There are several established methods of determining areas of blood flow using 

OCT for biomedical imaging. These can be divided into three categories: methods that use 

the OCT (1) phase signal only, (2) amplitude signal only, and (3) complex signal. 

The earliest OCT angiography publications relied on only the phase of the OCT 

signal. These methods leveraged the Doppler shift of light due to the movement of blood 

in the tissue to detect blood flow, including the velocity vector.[84], [85]  

There are several intensity-based methods that rely on changes in the intensity of 

b-scan pixels across repeated b-scan measurements. These amplitude approaches are good 

for OCT systems in which the source is not phase-stable,[86] and these approaches are less 

sensitive to the Doppler angle than phase-only approaches.[86] On the other hand, the 

amplitude approach to angiography also discounts any signal from moving particles that 

are not significant enough to affect the amplitude, but instead affect only the phase. 

Amplitude-based methods were first proposed by Barton and Stromski,[86] and include 

speckle variance (sv-) OCT,[87] log-based intensity subtraction,[88] linear intensity 

subtraction methods,[89] simple intensity thresholding,[90] correlation mapping,[91] and 

split-spectrum amplitude decorrelation angiography (SSADA).[92] 

A third group of OCT angiography approaches are those that combine phase and 

amplitude signals. Optical microangiography (OMAG) is a common approach that 

subtracts successive complex B-scans collected in an B-M-mode setting (repeating B-scans 

in the same location).[93] Another approach is complex differential variance (CDV), which 

intrinsically limits phase noise due to bulk motion.[94] Because of its outperformance of 

other methods based on angiographic analysis of collected SAR-OCT retinal images, CDV 

was selected as the angiographic method for this dissertation. 
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The CDV signal for any given a-scan can be described as 
 

𝑓KLM 𝑧 = 1 −
𝑤 𝑘 𝑅 𝑧 − 𝑘, 𝑡 𝑅∗(𝑧 − 𝑘, 𝑡 + 1)A

STUA
VUW
XTW

𝑤(𝑘) W
'
𝑅(𝑧 − 𝑘, 𝑡) ' + 𝑅(𝑧 − 𝑘, 𝑡 + 1) 'A

YTUA
VUW
XTW

, 
(3.1) 

where M is the total number of repeating b-scans, L (more precisely, 2L+1) is the length of 

the kernel, w is the depth window function, and R is the complex OCT signal at time point 

t (R = A(z,t)eiφ(z,t)). Thus, R·R* represents the complex differential A-scan. The coherent 

average is normalized by division with the incoherent average of the original A-scan data. 

Angiography Filtering 

Three sequential processes take CDV volumes as input in order to obtain high-

fidelity angiograms: (1) filtering to remove bulk motion, (2) Frangi vesselness filter to 

improve SNR, and (3) adaptive thresholding for binarizing angiograms. 

Despite the CDV algorithm’s robustness to handle bulk motion compared to other 

methods, the problem of bulk motion can still be seen clearly in the first row of images in 

Figure 3.4, where vertical lines obscure vascular structures. These vertical lines are due to 

bulk movements of the mouse including heart beat and breathing. For filtering, these lines 

are first detected manually, with the user clicking to the left and right of a line in the 

superficial plexus image. The width of the line is then determined by a custom MATLAB 

script, and the entire artifact is replaced with values taken from the left and right of the 

obscuring line. The same replacement process is repeating automatically in the 

intermediate and deep plexuses. 

The second filtering process applies the Frangi vesselness filter[95] to the filtered 

image to isolate those areas of the image that are vessel-like. The Frangi filter, which uses 

Gaussian-like distributions with user-defined widths to search for vessel-like features, is a 

helpful tool for the retina because the sizes of the vessels are generally known, a priori. 
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The Frangi filter takes as inputs the size distribution of vessels and searches for structures 

that are around that size. If not handled carefully, this processing step could introduce false 

vessel structures from noise. 

The final step was to binarize the image such that more intensive vascular analysis 

could be performed. The image was binarized using a built-in MATLAB filter with 

adaptive thresholding. One note here is that adaptive filtering assumes the presence of a 

vessel; thus, Chapter 4, a euthanasia experiment for which blood flow ceases at some time 

point, replaces this step with a non-adaptive thresholding method. This isolated deviation 

from the image processing protocol is discussed more fully in Chapter 5. 
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Figure 3.4: CDV angiography images (row 1) are manually filtered to remove bulk 
motion artifacts due to breathing and heart beat (row 2). A Frangi vesselness 
filter is then applied to improve SNR (row 3). Lastly, the Frangi-filtered 
images are binarized using adaptive filtering (row 4). Columns 1-3 show 
different vascular plexuses, and column 4 shows composite images of the 
Frangi-filtered and binarized angiograms. Scale bars indicate 300 µm. 
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Segmentation 

Retinal segmentation is a requirement for conducting almost any sophisticated 

analysis of the retina for detecting disease states using OCT images. The thicknesses of 

various retinal layers are known to have widespread clinical significance. For example, the 

thickness of the retinal nerve fiber layer (RNFL) is reduced in multiple sclerosis (MS) 

patients, and especially in MS patients with a history of optic neuritis.[96] The RNFL is 

also a well-established indicator of glaucoma: the thickness of the RNFL decreases before 

visual field loss,[97]–[100] before the onset of optic nerve head defects,[101], [102] and 

with ocular hypertension.[103] RNFL thickness is also reduced in AD patients,[104], [105] 

and PD,[106], [107] but is elevated in Leber’s hereditary optic neuropathy.[108] 

Beyond layer thicknesses, there are layer-specific physiological changes that might 

be observed with SAR-OCT. Specifically, if shifts in mitochondrial dynamics are large 

enough to be detectable using SAR-OCT, it is expected that those changes would occur in 

layers that are rich in mitochondria—layers distinguished by the increased density of 

synapses, like the inner plexiform layer and the outer plexiform layer. The physiological 

importance of different retinal layers is described more fully in the introduction to Chapter 

4. 

Moreover, retinal segmentation is also key in determining the relative changes in 

scattering angle of particular retinal layers compared to other retinal layers. 

Furthermore, murine ocular vasculature is generally isolated to three retinal layers: 

superficial vasculature in the RNFL and the ganglion cell layer (occasionally divided into 

two layers: radial parapapillary capillary plexus and superficial vascular plexus), 

intermediate vasculature at the boundary of the inner plexiform layer and the inner nuclear 

layer, and deep vasculature at the boundary of the inner nuclear layer and the outer 
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plexiform layer (Figure 3.5).[109] Any meaningful analysis of vasculature in mice 

necessitates proper retinal layer segmentation. 

Thus, it has been illustrated that to conduct worthwhile retinal analysis, retinal 

segmentation is required.  

 

 

 

Figure 3.5: Red segments represent the location of vasculature. There are three vascular 
plexuses that can be isolated in specific retinal layers: then RNFL 
(superficial), the outer plexiform layer (intermediate), and the inner 
plexiform layer (deep). The retinal layers between the vascular plexuses are 
indicated on the left (GCL – ganglion cell layer, INL – inner nuclear layer, 
ONL – outer nuclear layer). This diagram of a mouse retina is taken from 
Ivanova.[109]  

Previous Segmentation Algorithms 

While human retina segmentation algorithms are numerous, only a handful of 

rodent retinal segmentation algorithms have been reported. These include a 3D 

segmentation algorithm for two boundaries,[110] a two-algorithm method that includes 

iterative refinement for three boundaries,[111] an active contours approach for six 
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boundaries,[112] a machine learning/graph-based method for ten boundaries,[113] and a 

sparsity based denoising/support vector machines/graph theory/dynamic programming 

approach for nine boundaries.[114] 

While these methods reportedly segment murine retinal layers for various disease 

and non-disease states, no open source retinal segmentation algorithm was found that could 

successfully and repeatedly segment the retinal layers of mice imaged with the SAR-OCT 

system described in the previous chapter. Thus, a new approach was designed. 

New Segmentation Algorithm 

The murine retinal segmentation algorithm for the SAR-OCT images used in this 

dissertation can be summed up in three kinds of processes interspersed throughout the 

algorithm: (1) stack conditioning, (2) Sobel edge detection, and (3) error removal, each 

custom-designed in MATLAB. 

As a part of the stack conditioning process, the angiography and intensity scans are 

simply summed. Because the vasculature of the murine retina is highly localized to 

particular regions, the addition of the SAR-OCT intensity volume with the angiography 

image intensifies the boundaries between retinal layers. 

Another part of the stack conditioning process occurs after the ONL/RPE boundary 

is found. The retina is flattened with reference to the ONL/RPE boundary. Then, a median 

filtered is applied with the size of 50 x 50 x 1 (voxels, xyz). Because the retina has been 

flattened, this process works to provide some uniformity within each layer and make the 

layers more distinct. 

The second category of segmentation processes is edge detection. Each boundary 

is determined by examining volumes that have been filtered with a Sobel edge detection 

filter.[115] The Sobel filter has a convolution kernel given by: 
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The ONL/RPE boundary is, for the most part, the most prominent edge detected by 

the Sobel edge filter. However, spurious noise could also be detected by the filter, so a 

secondary means of eliminating wrong boundaries was employed. Before the edge is 

selected by the MATLAB script, the user of the script must manually click throughout the 

image over several boundaries as prompted by the script. The user input is used as an initial 

guess for boundary detection; that is, boundaries are only considered as the possible correct 

boundary if they are within a physiologically reasonable range of the inputted boundary. 

This clicking technique is applied only to three of the five boundaries detected: the 

ONL/RPE boundary, the INL/OPL boundary, and the vitreous/ILM boundary.  

Finally, the inputs of these user inputs are also used to form a 3D second-order 

polynomial that is utilized in the third processing step, error removal. It occasionally occurs 

that the edge selected by the MATLAB script is not the correct edge, and, perhaps the edge 

is not even reasonably determinable by the human eye. In such cases, it can be easily 

imagined where the edge is based on the surrounding tissues (e.g. under vessel shadows). 

In these cases, the 3D polynomial is manually selected (in those regions alone) to replace 

the semi-automatically detected edges. Example edge detection results may be see in 

Figure 3.6. 
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Figure 3.6: The left image is segmented, and the boundaries on the right. The 
boundaries displayed are the vitreous/ILM, IPL/INL, INL/OPL, OPL/ONL, 
ONL/RPE boundaries. Scale bars represent 300 µm. 

ANALYSIS FOR FEATURE EXTRACTION 

Scattering Angle 

Scattering angle analysis using SAR-OCT can offer some insight into the bulk 

scattering properties of the tissue for each voxel, but it is important to design a feature that 

will leverage the utility of the optical design, considering the morphological changes in a 

given retinal pathology.  

Ratiometric Feature 

Ratio processing is the simplest approach, and is the approach previously described 

by Wang et al.[31] Wang looked to pathlength 3 as it contains the highest possible 

scatterers and found that the ratio of pathlength 1 to pathlength 3 (L/H3) correlated with 

known azimuthal variation of retinal ganglion cell size.  

However, as was demonstrated in the Monte Carlo simulation in Chapter 3, it is 

actually pathlength 2 and pathlength 1 that give the greatest angular discrimination. 

Although pathlength 3 contains higher backscattering angles than pathlength 2, pathlength 

3 also contains the lowest possible angles (direct backscattering). Thus, L/H2 was decided 
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upon as an image feature. A visual explanation of the PME and L/H2 is provided in Figure 

3.7. 

 

 

Figure 3.7: (A) shows a standard interferogram resulting from the a-scan in the sample 
(C). (B) shows the FFT of the interferogram; the peaks indicate the changes 
in refractive index that result in backscattering. (D) shows how the 
interferogram changes with the introduction of a PME, and (E) shows the 
effect on the resultant a-scan. Finally, (F) shows how L/H2 is calculated for 
the a-scan. 
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Figure 3.8: L/H2 is plotted versus the backscattering angle. This plot shows that angular 
discrimination is possible out to 8 degrees. The limit of the fit of L/H2 at 
Angle = ∞ is 0.69. 

Now that L/H2 has be decided upon as an image feature, it is important to revisit 

the experiment described in Chapter 2 (Figure 2.8-2.10) which supported the claim that 

backscattering angles up to eight degrees are recorded by the SAR-OCT system. 

Specifically, all three pathlength intensities could be combined to yield a unique 

backscattering angle. The question now is: can only pathlengths 1 and 2 (excluding 

pathlength 3) yield the same specificity? Indeed, Figure 3.8 illustrates that L/H2 satisfies 

the demands of a good SAR-OCT image feature; pathlengths one and two may be 

combined to yield a single backscattering angle based on the fitted second-order 

polynomial. 
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To obtain a L/H2 tomogram, pathlength 1 and pathlength 2 are divided at every x, 

y, and z position. With this approach, the segmentation output can be superimposed on the 

volume to sort the L/H2 values of the retina into their corresponding layers (Figure 3.9). 

Comparing the L/H2 values for particular retinal murine retinal layers will be explored 

further in Chapter 4. 

 

 

Figure 3.9: L/H2 is the ratio of pathlength 1 and pathlength 2. The segmented retinal 
layers can be superimposed on L/H2 to identify morphological edges native 
to the retina. Some layered differences are observed in L/H2.  
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Burr Distribution 

In order to better capture the utility of the L/H2 ratio, the ratios for various retinal 

segments (e.g. layers, quadrants, vasculature/non-vasculature regions) are analyzed 

altogether—as distributions instead of averages. It is imaginable that some disease state of 

the retina could produce an increase in both high-angle and low-angle voxels. In this case, 

the mean of the L/H2 values wouldn’t shift, but some parameter of the distribution would 

(e.g. standard deviation in the case of a Gaussian distribution). 

The Burr Type XII distribution is used here to parameterize the distribution of L/H2 

values in any volumetric region of the murine retina. It was found that the distribution of 

L/H2 values in the retina fit nicely to a Burr Type XII (or Burr) distribution. 

The Burr Type XII distribution is a generalization of the Pareto distribution and the 

Weibull distribution and was first described by Singh and Maddala[116] who used it to fit 

a size distribution of incomes. It has also been reported in diverse fields such as failure 

analysis,[117] forestry (tree diameter),[118] and behavioral science (travel time 

reliability).[119] 

The Burr distribution’s probability density function is given by Equation 3.2: 
 

𝑃𝐷𝐹]^&& 𝑥 𝛼, 𝐶, 𝐾 =
YK
b

c
b

dUW

1 + c
b

d , 
(3.2) 

where α is a scale parameter (in the x-dimension), C and K are shape parameters, and x is 

the value of the sample. The influence of α, C, and K parameters are demonstrated by 

Figure 3.10. 
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Figure 3.10: α is a parameter of the Burr Type XII distribution that controls scale in the 
x-dimension. C and K are parameters that control shape. 

To demonstrate the goodness of fit of the Burr distribution to the L/H2 values, the 

segmented inner nuclear layer of a mouse was chosen as a representative retinal volume. 

The L/H2 values in the segmented inner nuclear layer were fit to a Burr distribution, and 

the resulting confidence intervals for the Burr distribution parameters were extremely tight. 

The α parameter was calculated to be 1.069 (confidence interval: [1.068, 1.071]), C 
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parameter as 5.315 (confidence interval: [5.303, 5.327]), and K parameter as 0.972 

(confidence interval: [0.967, 0.977]). Thus, there is 95% confidence that the real value falls 

with 0.16% of α, 0.23% of C, and 0.55% of K. Expanded to each Burr distribution for 

every layer of a control mouse, on average there is 95% confidence that the real value falls 

within 0.43% of α, 0.58% of C, and 1.58% of K (Figure 3.11). 

 

Figure 3.11: The probability mass function for the INL is displayed with the Burr 
distribution fit. The burr distribution is an excellent fit for L/H2 values. 

The Burr distribution parameters are examined throughout the remainder of the 

dissertation in in-vivo studies for various retinal layers, regions, and disease states. 

Reflectance Index Analysis 

Reflectance index has been previously shown to be an early marker of glaucoma in 

a primate and human study.[29], [30] The reflectance index is useful in that it can describe 

the attenuation properties of the RNFL, using the RPE as a means of normalization. This 
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removes the potential of attenuation changes anterior to the retina to affect analysis. The 

reflectance index is defined as: 

𝑅𝐼 𝑥, 𝑦 =
𝐼fghA 𝑥, 𝑦
𝐼fij 𝑥, 𝑦

, (3.3) 

where I is the intensity of the specified layer, and x and y are the lateral locations on the 

retina.  

Because the lower boundaries of the RNFL and the retinal pigment epithelium 

(RPE) are not segmentable for the SAR-OCT setup, the RNFL is taken as the top ten pixels 

from the ILM, and the RPE is taken as the top ten pixels after the ONL/RPE boundary. 

The reflectance indices in different regions of the retina are examined in the 

upcoming chapters on euthanasia and the murine model of AD. 

Thickness Analysis 

Thickness is examined simply as the distance between two boundaries. Several 

features can be extracted here using the segmented retina: thickness of the (1) RNFL + 

GCL + IPL, (2) INL, (3) OPL, (4) ONL, (5) total retinal thickness (RNFL-RPE). 

Furthermore, throughout the dissertation, these features are examined at various retinal 

regions as might be useful based on the experiment. 

Angiographic Analysis 

The final set of analysis that is performed on the processed images is angiography 

analysis, which can be divided into two categories: (1) volumetric blood flow (vessel 

density), (2) fractal analysis. 

Vessel density, or “volumetric blood flow” as it is referred to in this dissertation, is 

simply the percentage of the tissue volume occupied by a blood vessel. For this dissertation, 

the binarized angiography images were used in this calculation: 
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𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐	𝐵𝑙𝑜𝑜𝑑	𝐹𝑙𝑜𝑤 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤ℎ𝑖𝑡𝑒	𝑝𝑖𝑥𝑒𝑙𝑠
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠 . (3.4) 

Similar measures have been used to distinguish between healthy and glaucomatous 

eyes in human patients in various retinal regions.[120]–[122] As some changes to 

vasculature in Alzheimer’s disease patients and animal models have been noted (see 

Chapter 1), this imaging feature could offer important information about the murine retina. 

A second feature that was examined with the binarized images was the fractal 

dimension. The fractal dimension provides a measure of how complex a geometrical 

pattern is. Fractal dimensions have been applied to OCT angiography images for retinal 

imaging,[123] as well as other retinal imaging modalities,[123] and non-biomedical 

applications such as geological survey.[124]  

The fractal dimension is calculated for each vascular plexus using the box counting 

method[125] and is examined in the final chapter for analyzing the murine model of AD. 



 61 

PART 2: IN-VIVO STUDIES AND CONCLUSIONS 

Chapter 4: Scattering Property Variation in the Mouse Retina 

The aim of this chapter is to demonstrate how SAR-OCT is sensitive to scattering 

changes in the murine retina by leveraging native differences between layers, vascular 

zones, and ocular regions in healthy mice. If native scattering differences between retinal 

layers can be detected with SAR-OCT, then a stronger case is made for SAR-OCT as a 

tool for monitoring scattering angle changes for disease states.  

INTRODUCTION 

Native scattering properties of the retina are not widely reported in the scientific 

literature. However, some preliminary work was previously reported using SAR-OCT for 

human retinal imaging by Wang who reported regional variation of backscattering angles 

in healthy human retinas.[31] A low/high ratio was developed, where low-angle 

backscattering was between 0-0.42 degrees, and high-angle backscattering was between 0-

1.26 degrees. The study reported more high-angle backscattering (low/high < 1) in the 

temporal region of the RNFL and more low-angle scattering (low/high > 1) in the nasal 

region of the RNFL across five subjects. RGC axons have smaller diameters in the temporal 

region, where higher-angle scattering was more prominent.[31] The study hypothesized 

that these native morphological difference contributed to the difference in backscattering-

angle detected by the human SAR-OCT system.  

While interesting and useful, the Wang study did not consider each layer of the 

retina individually—only the RNFL, and even then, the ratio was averaged over the entire 

depth of the RNFL at every en-face location. 

There remains a gap in the retinal imaging literature to characterize and quantify 

native retinal layers for healthy subjects in terms of their scattering properties. The system 
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described in Chapter 2 is used here to leverage backscattering-angle discrimination, and 

retinal layers are analyzed individually. Differences in scattering-angles between vascular 

and non-vascular zones are also explored, along with difference across retinal quadrants. 

METHODS  

Overall, twenty healthy murine retinas are imaged using the SAR-OCT system, and 

the scattering properties of each layer, region, and vascular zone are reported. The Burr 

Type XII distribution of pathlength ratios is utilized as a tool for characterizing scattering 

properties for each of these variables. 

Mouse Handling 

The twenty healthy mice (B6SJL F1/J—JAX #100012) imaged in this study 

(IACUC protocol #AUP-2015-00156) ranged in age from 6-10 weeks. Each mouse was 

anesthetized first in an induction box (5% isoflurane), and then moved to the imaging 

platform where anesthesia continued via a custom nose cone (1.5-3% isoflurane). The left 

retina was imaged by the SAR-OCT system for about 15 minutes, and then the mouse was 

allowed to recover. Overall, the experiment lasted around 30 minutes per mouse.  

Image Processing 

Past published work by Wang for SAR-OCT has utilized a ratio of pathlength 1 and 

pathlength 3 (L/H3).[31] However, as was noted in Chapter 2, pathlengths 1 and 2 give the 

greatest angular discrimination because pathlength 3 includes both high and low-angle 

backscattered light. Therefore, for this work, a ratio of pathlength 1 and pathlength 2 is 

used (L/H2, that is “low” / “high – from pathlength 2”). Whereas Wang previously reported 

a mean of L/H3 for the entire thickness of the retina at every lateral position, here I report 

voxel-by-voxel analysis of the entire retina via the Burr distribution (Chapter 3). 
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Image Features 

To determine if the Burr parameters could distinguish between retinal layers, a one-

way multivariate analysis of variance (MANOVA) was performed using α, C, and K as the 

related dependent variables and the layer as the independent variable. The null hypothesis 

for a one-way MANOVA is that any difference observed in the α, C, or K is due to random 

chance, not differences in retinal layer. 

To determine if the presence or absence of vasculature could explain a difference 

in means, the binarized vasculature images (Chapter 4) were used to categorize every L/H2 

voxel in the RNFL, IPL, and OPL as either being vascular or non-vasculature. Then, these 

collections of L/H2 values were fit to the Burr Type XII distribution and compared layer-

wise. A one-way MANOVA tested the null hypothesis that any difference observed in the 

α, C, or K is due to random chance, not differences in vascularization (presence or absence 

of blood vessels). This test was performed three times, once for each of the vascular 

plexuses (superficial-RNFL, intermediate-IPL, and deep-OPL). 

A series of paired t-test was performed to test the null hypothesis that the difference 

in the parameters of the fitted Burr distribution between central and peripheral sections for 

each quadrant (superior, nasal, inferior, and temporal) and for each retinal layer grouping 

(superficial, intermediate, and deep) was normally distributed about zero. 

RESULTS 

Layer-wise Analysis 

Table 4.1 shows the mean α, C, and K parameters of the Burr Type XII fit to L/H2 

values, organized by layer, vascular zone. A one-way MANOVA test including all three 

Burr parameters indicated that the space containing the means is two-dimensional. That is, 

the null hypothesis can be rejected (p<0.001). The second p-value, 0.032, also casts doubt 
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on the hypothesis that the group means lie on a space of 1 dimension. Figure 4.1 shows a 

grouped scatter plot for this layer-wise one-way MANOVA analysis. The RPE is clearly 

distinguishable using canonical variable 1. Canonical variable 2 begins to distinguish 

between other layers. Canonical variables are the product of a calculated Eigen vector and 

the independent variables’ minus their means. Canonical variables may be thought of as 

principal components for categorical data. 

 
  VASCULAR	 NON-VASCULAR	 COMBINED	
Retinal	
Layer	 Parameter:	 α	 c	 k	 α	 c	 k	 α	 c	 k	

RN
FL
	

Average	 1.18	 5.03	 1.21	 1.18	 4.05	 1.23	 1.18	 4.35	 1.23	
St.	Dev.	 0.02	 0.60	 0.08	 0.05	 0.22	 0.05	 0.04	 0.30	 0.03	

GC
L	 Average	

		
1.19	 4.63	 1.15	

		St.	Dev.	 0.04	 0.43	 0.09	

IP
L	 Average	 1.18	 5.00	 1.07	 1.20	 4.45	 1.17	 1.19	 4.66	 1.14	

St.	Dev.	 0.05	 0.54	 0.12	 0.05	 0.41	 0.09	 0.05	 0.46	 0.10	

IN
L	 Average	

		
1.11	 4.83	 1.11	

		St.	Dev.	 0.04	 0.42	 0.12	

O
PL
	 Average	 1.12	 5.23	 1.07	 1.10	 4.72	 1.11	 1.11	 4.88	 1.11	

St.	Dev.	 0.06	 0.21	 0.12	 0.06	 0.38	 0.14	 0.07	 0.32	 0.15	

O
N
L	 Average	

		
1.09	 4.64	 1.14	

		St.	Dev.	 0.06	 0.38	 0.10	

RP
E	 Average	

		
1.05	 9.68	 1.08	

		St.	Dev.	 0.03	 0.69	 0.19	

Table 4.1: The mean Burr distribution parameters are shown here for 20 mice. Color 
intensity represents magnitude of the value. 
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Figure 4.1: A grouped scatter plot that plots the first two canonical values against one 
another demonstrates the two-dimensional plane on which the group means 
lie. The RPE is clearly distinguished from the other layers by the first 
canonical variable. The other layers are approaching separation using 
canonical variable 2. The RNFL has generally higher values than the ONL, 
for example. 
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Figure 4.2: A grouped scatter matrix for α, C, and K show that most of the 
distinguishing power between layers is coming from the C parameter. 

A grouped scatter plot reveals that most of the signal is coming from the C 

parameter (Figure 4.2). However, because the results of the one-way MANOVA test 

revealed that the group means are on a two-dimensional space, there is some imperceptible 

value to α and K. To clarify the added value of α and K, the retinal layers were grouped 

into three layers (1. superficial = RNFL + GCL + IPL; 2. intermediate = INL + OPL + 

ONL; and 3. the RPE) and a one-way MANOVA test was repeated. The results of the 

second one-way MANOVA test are presented in Figure 4.3. Figure 4.4 shows that each 

retina layer grouping may be distinguished by two canonical variables. 
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Figure 4.3: A grouped scatter plot for grouped retinal layers (superficial, intermediate, 
RPE) shows more apparent distinction between the superficial and 
intermediate layers for canonical variable 2 when compared to the scatter 
plot for no retinal layer groupings (Figure 4.1). 

 

 

Figure 4.4: Canonical variable 1 distinguishes between the RPE and the other two layer 
groupings. Canonical variable 2 distinguishes between the superficial and 
intermediate retinal layer groupings. Bar widths indicate confidence 
intervals. 

Taken altogether, it may be said that the three retinal layer groupings—superficial, 

intermediate, and deep—are distinguished by their scattering properties, namely the 

distributions of their L/H2 values. 



 68 

Vascular Analysis 

The results of the one-way MANOVA for the superficial vascular plexus in the 

RNFL rejected the null hypothesis that there are no differences in α, C, and K explained 

by vascularization (p<0.001). The multivariate means lie on the same line; that is, 

vascularization can be described by one canonical variable (Figure 4.5(A)). While the C 

parameter is sufficient to explain the difference (Figure 4.5(B)), canonical variable 1 is 

more effective at explaining differences in the groups. 

 

 

Figure 4.5: The first canonical variable yielded by one-way MANOVA better explains 
the differences in vascular and non-vascular regions of the RNFL when 
compared to the C parameter alone. T-test p-values are p=0.0046 (Canonical 
Var. 1) and p=0.0801 (C Parameter). 

Concerning the intermediate vascular plexus in the IPL, the canonical variable 

yielded by one-way MANOVA was sufficient in explaining the difference between IPL 

vascular and non-vascular zones (t-test between vascular and non-vascular regions, 

p=0.0046; Figure 4.6(A)). The C parameter alone does not allow for rejecting a t-test null 

hypothesis (p=0.0801; Figure 4.6(B)).  
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Figure 4.6: The first canonical variable yielded by one-way MANOVA explains the 
differences in vascular and non-vascular regions of the IPL (p=0.0046). The 
C parameter alone does not explain difference in vascular and non-vascular 
regions (p=0.0801). 

In the deep vascular plexus (OPL), both the canonical variable (one-way 

MANOVA) and the C parameter explained the difference between vascular and non-

vascular regions of the OPL (t-test, p<0.001; t-test, p=0.0147; Figure 4.7). 

 

 

Figure 4.7: The first canonical variable yielded by one-way MANOVA explains the 
differences in vascular and non-vascular regions of the OPL (t-test, 
p<0.001). The C parameter also explains the difference in vascular and non-
vascular regions (t-test, p=0.0147). 
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Regional Analysis 

The series of t-tests indicated that for the superficial and intermediate retinal layer 

groupings, the C parameter value of the central sections for each quadrant was statistically 

different from those of the peripheral quadrants. For each quadrant in the superficial and 

intermediate layers, the C parameter was greater in the central section of the quadrant than 

it was for the peripheral section of the quadrant. This pattern did not hold for the deep 

retinal layers; for the deep layers, there was either no significant differences, or the 

difference was reversed (C parameters greater in the periphery). Figure 4.8 illustrates the 

differences in central and peripheral values of the C parameter.  
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Figure 4.8: For superficial and intermediate retinal layer groupings, the central section 
of each quadrant has a greater C parameter value than the C parameter 
values of their corresponding peripheral sections. This pattern generally did 
not hold for the deep layers of the retina. 

There were no statistically significant differences between the quadrants when α, 

C, and K were transformed to canonical variables using the Eigen vector from grouped 

retinal layer analysis above. 
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DISCUSSION 

Layer-wise Analysis 

As was discussed in the introduction to the dissertation, the retina is known to have 

morphological shifts as a function of layer. The RPE seems to be very unique in its 

scattering properties, with more uniform scattering angles (higher C parameter, narrower 

L/H2 distribution). Indeed, of all the retinal layers, the RPE might be said to be the most 

morphologically uniform. In fact, the utility of the attenuation coefficient feature in 

distinguishing between normal and glaucomatous eyes in another study assumes the 

scattering uniformity of the RPE.[126] The C parameter sufficiently distinguishes between 

the RPE and the more superficial layers likely due to the RPE’s uniformity. 

In contrast to the RPE, the superficial and intermediate layers are not distinguished 

by the C parameter (i.e. narrowness/broadness in the distribution of L/H2distribution), but 

instead by a canonical variable output by one-way MANOVA. It is difficult to untangle 

here the contribution of α and K parameters and draw conclusions about the anatomical 

differences between the more superficial layers of the retina. 

Vascular Analysis 

Zones identified as vascular are those areas within a vascular plexus where there is 

blood flow, indicated by the angiographic processing. These regions are binarized and used 

as a mask for the vascular analysis of Burr distributions. Because each B-scan is averaged 

8 times to get the intensity OCT image, the scattering profiles of red blood cells and other 

moving scatterers is likely creating a higher probability of the L and H2 paths being 

balanced (higher C parameter). Indeed, this is what is observed using SAR-OCT, however 

more experiments could be designed to verify this phenomenon. 



 73 

Regional Analysis 

The density of all major retinal cell types in the murine retina is known to be higher 

in the regions closest to the optic nerve head (Figure 4.9).[127], [128] The increased density 

of retinal cell populations and decreased cell size near the optic nerve head likely cause the 

distribution of L/H2 values to be narrower.  

 

 

Figure 4.9: The average ganglion cell area is greater in peripheral regions (A), though 
the density of ganglion cells is greater near the mouse’s ONH (B; units in 
mm-2). Figure adapted from Drager.[127] While Drager only examined 
ganglion cells, Jeon demonstrated that the trend holds for all major cell 
populations in the murine retina.[128] 

A higher C parameter indicates that there is a greater probability of light scattering 

from any given voxel such that light in the high angle pathlength and light in the low angle 

pathlength is about equal. In contrast, the peripheral segments of the retina scatter light 

with broader distributions. Specifically, a lower C parameter means that there is a greater 

probability (when compared to a higher C parameter) that light scatters such that the high 
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angle or the low angle scattered light is off-balance (i.e. the intensity of P1 or P2 is greater 

than the other). 

It makes sense that light would scatter with more predictability as the density of 

cells increases and the volume decreases (towards the ONH). Fewer individual cellular 

components can project their distinct scattering profile onto the entire voxel when there are 

other scattering profiles superposed for the same volume. In contrast, as the density of cells 

decreases and the volume of the cell increases (towards the peripheral retina), individual 

scatterers (e.g. mitochondria) have more space to diffuse and are more likely to be one of 

fewer scatterers in any given voxel. Thus, the scattering profile of any scatterer can more 

easily dominate the scattering profile of the voxel. If a scatterer in a low-density, high cell-

volume area of the retina has a scattering profile that would contribute to a low L/H2 value 

for that voxel, it is less likely that this scattering profile would be affected by other 

scatterers contained in this low-density, high cell-volume voxel than the scattering profile 

would be affected for a high-density, low cell-volume area.  

It should lastly be acknowledged that because the murine retina differs from the 

human retina in that it does not have a fovea, the kind of parapapillary variation seen in the 

RNFL by Wang[31] is not expected here; indeed, that variation was not seen. 

The findings of this study demonstrate the capacity of SAR-OCT to offer an 

additional contrast mechanism for retinal imaging. Using the Burr distribution and the L/H2 

paradigm, SAR-OCT might be used to improve retinal segmentation algorithms or used to 

image mouse models with some hypothesized shift in scattering properties (e.g. 

neurodegenerative diseases).  
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CONCLUSION 

Twenty mouse retinas were imaged using SAR-OCT, and it was demonstrated by 

fitting ratiometric data (L/H2) to a Burr Type XII distribution that SAR-OCT is sensitive 

to scattering angle differences between retinal layers, vascularization zones, and retinal 

eccentricity.  

Concerning retinal layers, a transformation of α, C, and K into a two-dimensional 

space via MANOVA created two canonical variables. The first canonical was shown to 

distinguish between the deep (RPE) and superficial (RNFL + GCL + IPL), and deep and 

intermediate (INL + OPL + ONL). The main contribution to canonical variable 1 was the 

C parameter, which was higher for the deep retina. It was hypothesized that the RPE was 

scattering in more predictable patterns, with high and low-angle backscattered balanced 

more often than in the superficial and intermediate layers. The second canonical variable 

could distinguish between the superficial and intermediate layers. The contribution of α 

and K were harder to extract and explain for this canonical variable. 

Vascularization zones for each vascular plexus (superficial in the RNFL, 

intermediate in the IPL, and deep in the OPL) were selected using binarized angiography 

images. The vascular and non-vascular zones were shown to have significantly different C 

parameters for the superficial and deep layers, but not for the intermediate layers. A one-

way MANOVA test produced a canonical variable that was mostly influenced by the C 

parameter, with some contribution from α and K. The first canonical variable for the 

vascular and non-vascular zones were shown to be significantly different for each of the 

three vascular plexuses. The vascular zones have obvious morphological differences when 

compared to other retinal tissue (red blood cells versus neurons). The increased 

homogeneity and motion of the vascular zones might explain why the C parameter of the 
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Burr distribution was elevated, indicating more homogenous scattering, or a blurred 

scattering profile in contrast to more disconnected profiles in non-vascular tissue. 

Lastly, it was demonstrated for most layers that there is a shift in the C parameter 

with eccentricity—comparing the central retina scattering properties to the peripheral 

retina scattering properties. The C parameter was higher for the peripheral sections for each 

quadrant in both the superficial and intermediate retinal layers. The same pattern did not 

hold (and in fact was reversed for one quadrant) in the RPE. These scattering properties 

can be explained by the anatomical variation of cell volume and cell density in the retina. 

Altogether, SAR-OCT has been demonstrated to be sensitive to scattering angle 

changes within the murine retina. Indeed, layers of the retina are distinguished by their 

scattering properties as seen in the canonical variables yielded by MANOVA. The exact 

scattering properties of the murine retina are largely unreported in the literature, and thus 

strong conclusions may not be drawn about what exactly the SAR-OCT data is indicating. 

Future studies should examine the morphological conditions of each retinal layer in order 

to explore the meaning of the SAR-OCT system. Additionally, future studies should work 

to verify the utility of SAR-OCT in cross-section and longitudinal studies of murine models 

of retinal diseases. 
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Chapter 5: Scattering Angle Changes During Euthanasia 

In this chapter, my aim is to demonstrate the capacity of the SAR-OCT system to 

detect scattering angle changes in the murine retina given a hypoxic insult. There are 

known changes to scattering angle in necrotic tissues due to morphological changes such 

as cell membrane rupturing and mitochondrial fission. With this background, an 

experiment is conducted in which mice are euthanized via isoflurane overdose while the 

retina is imaged using the reported SAR-OCT system. The results validate the sensitivity 

of the system to scattering angle changes in longitudinal studies by demonstrating shifts in 

L/H2 distributions and fluctuations in the reflectance index. Lastly, I discuss the limitations 

of the experiment and implications for subsequent studies. 

INTRODUCTION 

There is a rich publication record concerning angle-resolved imaging of apoptotic 

and necrotic tissues specifically. One study examined the changes in forward scattering (5-

90 degrees) due to mitochondrial swelling due to oxidative stress in suspensions of intact 

murine mammary carcinoma cells and found that the treated cells scattered less light at low 

angles.[129] Similarly, another study reported an increase the ratio of high to low-angle 

light scattering (forward scattering) for induced mitochondrial fission.[130] However, two 

other studies involving the same authors indicated a decrease in the same ratio in apoptotic 

cells.[131], [132] In each case, the shifts in scattering angle were associated specifically 

with changes in mitochondrial morphology, supporting the importance of mitochondria in 

light scattering.[133] While several cell culture and ex-vivo tissue studies have been 

reported involving angle-resolved imaging, similar optical imaging techniques have not 

been extensively explored for retinal imaging.  
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In this chapter, the backscattering properties of the murine retina are examined 

using SAR-OCT. Using SAR-OCT, scattering properties of each layer of the murine retina 

may be studied for any state.  A euthanasia experiment was designed to answer this 

question: Is there a detectable change in tissue scattering properties for the oxygen-

deprived murine retina using the reported SAR-OCT system? To answer this question, six 

mice were euthanized by isoflurane overdose and their retina’s imaged continuously during 

the hypoxic event. Four parameters were tracked through the experiment: (1) volumetric 

blood flow, (2) total retinal thickness, (3) reflectance index, and (4) parameters related to 

scattering angle detection. 

METHODS 

Animal Handling 

This experiment (IACUC protocol #AUP-2015-00156) used six B6SJL F1/J mice 

from the Jackson Laboratory (JAX stock #100012) at age 10 weeks. Each mouse was 

initially anesthetized in an induction chamber (3% mg/kg isoflurane). Once the mouse was 

recumbent, it was gently removed from the chamber and placed in a secure stereotaxic 

mount where it continued to received anesthesia via a custom nose cone (isoflurane, 0.5 - 

3%).  

Then, the animal's left pupil was dilated with 1 drop of tropicamide (Mydrum®). 

Subsequently, the eye was covered with a drop of hydroxypropyl methylcellulose solution 

(Methocel® 2%) for index matching to the SAR-OCT system’s objective, and the leading 

lens of the optical coherence tomography (OCT) imaging device was brought in contact 

with the mouse cornea. The right eye was also covered in hydroxypropyl methylcellulose 

solution to protect the cornea.  
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After establishing 10 – 20 minutes of baseline anesthetized murine retinal images 

with the SAR-OCT system (imaging at intervals of approximately 4 minutes), the 

isoflurane concentration was increased to 5% to initiate oxygen deprivation. Images were 

collected for approximately one hour after oxygen deprivation was initiated, well after the 

mouse had died and up until corneal clouding began to obscure the image quality. After 

the imaging procedure ended, its death was ensured via secondary euthanasia. 

SAR-OCT Protocol 

The SAR-OCT system collected fringe data with size 1492 pixels x 512 pixels x 

4096 pixels (samples per a-scan, a-scans per b-scan, b-scans per c-scan). Each B-scan 

location was collected 8 times sequentially for angiographic analysis and averaging for 

improved SNR. After the FFT and pathlength alignment and averaging, the retina could be 

represented in a volume sized 150 x 512 x 512.  

Image Analysis 

Several changes were monitored for each mouse. The most pertinent features 

include (1) volumetric blood flow, (2) total retinal thickness, (3) reflectance index, and (4) 

parameters related to scattering angle detection. Each of these features is described below. 

Volumetric Blood Flow 

In order to identify the status of the mouse’s condition (life or death), blood flow 

was monitored using CDV, the OCT angiography method described in chapter 4. For this 

experiment, the binarization algorithm was altered slightly from that described in chapter 

4. Whereas the binarization process for living mice included an adaptive histogram 

equalization step to account for areas of decreased regional intensity, the binarization 

process for this euthanasia experiment did not include this adaptive filter. Instead, the 

parameters used for the adaptive histogram equalization were averaged over each mouse 
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in the pre-euthanasia stage of the experiment (before isoflurane overdose was initiated). 

These averaged parameters were subsequently “hard-coded” to make histogram 

equalization standard for each time point in the experiment. This removed the binarization 

algorithm’s bias towards the presence of blood flow and enabled the comparison of early 

time points to late time points in the experiment (Figure 5.1). This “hard-coded” technique 

was reliable across each of the six experiments.  
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Figure 5.1: Adaptive histogram equalization is biased toward the presence of a signal, 
as illustrated by sub-image (B) where the noise floor is interpreted as the 
presence of vasculature. While the non-adaptive filter (C) does not detect 
every vessel that the adaptive approach detects (A), the non-adaptive 
approach more accurately depicts blood flow at time points where there is 
no blood flow (D). The image shown is representative of all six 
experiments. 
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Volumetric blood flow was calculated after vessel binarization by calculating the 

percentage of white pixels in the layer. Regional volumetric blood flow by retinal region 

is then plotted versus time for each animal as a representation of animal death. At later time 

points, retinal layers became more difficult to discern; thus, volumetric blood flow analysis 

was only performed in the superficial plexus (RNFL). It was expected that once the 

isoflurane overdose is initiated, volumetric blood flow will decrease to zero or the noise 

floor. 

Total Retinal Thickness 

The thickness of the retina is reported as the thickness [um] from the internal 

limiting membrane (ILM) to the top of the retinal pigment epithelium (RPE). Changes in 

thickness can be informative of the morphological status of the retina. For example, will 

the retina swell or thin as the mouse dies? It is expected that the retina will become 

edematous as the mouse dies, and retinal edema will be detectable by SAR-OCT. 

Reflectance Index 

As discussed in chapter one, reflectance index has been demonstrated as an early 

indicator for Glaucoma.[29], [30] Here, reflectance index is defined as the ratio of mean 

intensity in the RNFL to the mean intensity of the RPE, for each pixel in the x and y 

directions. 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒	𝐼𝑛𝑑𝑒𝑥	 𝑥, 𝑦 =
𝐼fghA(𝑥, 𝑦, 𝑧)

]yz{|(c,})
~T�yz{|(c,}) 𝐻fghA(𝑥, 𝑦)

𝐼fij(𝑥, 𝑦, 𝑧)
]y��(c,})
~T�y��(c,})

𝐻fij(𝑥, 𝑦)
, (5.1) 

where I is the intensity of a given voxel, T is the z-location of the top boundary of the given 

layer at a given Cartesian location, B is the z-location of the bottom boundary of the given 
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layer at a given Cartesian location, and H is the total thickness of the given layer at a given 

Cartesian location.  

Scattering Angle Detection 

To detect changes in scattering angle, the distribution of L/H2 ratios is traced over 

time using the methods described in chapter 3, namely fitting the L/H2 distributions to a 

Burr Type XII distribution and plotting the c parameter over time. Probability density 

functions are also reported for L/H2 for three groups of retinal layers: (1) RNFL + GCL + 

IPL, (2) INL + OPL + ONL, and (3) RPE + choriocapillaris (CC). These three groups of 

retinal layers have distinct L/H2 distributions as reported in chapter 5 and may be treated 

similarly for improved Burr distribution fitting. 

RESULTS 

Results for each mouse, for every feature, are visualized in Figures 5.2-5.10 and 

described in the text following each figure. 
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Volumetric Blood Flow 

 

Figure 5.2: Volumetric blood flow for each euthanized mouse is plotted versus time, 
where t=0 minutes is the time at which isoflurane overdose was initiated. On 
average, the volumetric blood flow began at 21.7% (±6.385) and ended at 
1.4% (±0.824)—the noise floor. The average time to no blood flow (noise 
floor) from the time of isoflurane overdose was 20.5 minutes (±12.582). 

Volumetric blood flow analysis for the superficial plexus revealed a decrease in 

blood flow starting at the time isoflurane overdose was initiated (t = 0 minutes). On 

average, the volumetric blood flow began at 21.7% (±6.385) and ended at 1.4% (±0.824)—

the noise floor. Variation in the percent volume occupied by blood flow varied from 13% 

to 32% in the superficial plexus; this value was highly dependent on the region of interest 

tracked during the euthanasia experiment. For some mice, the ROI was centered on the 

optic nerve head. This ROI maximized blood flow density in the image as the concentration 
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of vasculature increases at the optic nerve head. For other mice, the ROI had the optic nerve 

head in the corner of the image, such that the concentration of vasculature was lower. The 

mean time to blood flow cessation was 20.5 minutes (±12.582). 

Total Retinal Thickness 

 

Figure 5.3: Total retinal thickness (ILM – RPE) increased through each euthanasia 
experiment from an average of 326.1 µm (±15.59), at a rate of 1.122 
µm/min (±0.11) after initiating isoflurane overdose up to at least 90 minutes. 

Total retinal thickness (ILM – superficial boundary of the RPE) for each mouse 

before euthanasia began was an average of 326.1 µm (±15.59). For each mouse, the total 

retinal thickness began to increase before blood flow ceased, and the retinal thickness 

increased approximately monotonically for as long as the retina was reliably observable 
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(before corneal clouding obscured the image). The average rate of thickness increase was 

1.122 µm/min (±0.11). 

Reflectance Index 

 

Figure 5.4: The mean reflectance index decreased after isoflurane overdose was 
initiated for each mouse. This decrease began before blood flow had ceased. 
In the case of mouse 6, the reflectance increases up to around isoflurane 
overdose initiation. The average decrease in the reflectance index occurred 
at a rate of -0.0056 [1/min] (±0.0026). 

The reflectance index (RNFL/RPE) decreased for every mouse. The average value 

of the reflectance index at t=0 minutes was 1.3775 (±0.13), and the average rate of decrease 

for reflectance index was -0.0056 [1/min] (±0.0026). The changes in reflectance index were 
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not isolated to a single region of the retina, but instead occurred across each azimuthal 

region. 

Scattering Angle Detection 

 

Figure 5.5: The probability distribution function of L/H2 in the RNFL+GCL+IPL layer 
grouping for mouse 2 broadens through the euthanasia experiment. 
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Figure 5.6: The probability distribution function of L/H2 in the INL+OPL+ONL layer 
grouping for mouse 2 broadens through the euthanasia experiment. 

 

Figure 5.7: The probability distribution function of L/H2 in the RPE for mouse 2 
broadens through the euthanasia experiment. 
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Figure 5.8: The C parameter of the Burr Type XII distribution fit to the RNFL + GCL + 
IPL layer grouping decreases for each mouse. 

 

 

Figure 5.9: The C parameter of the Burr Type XII distribution fit to the INL + OPL + 
ONL layer grouping decreases for each mouse. 
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Figure 5.10: The C parameter of the Burr Type XII distribution fit to the RPE decreases 
for each mouse. 

For each grouping of layers (RNFL+GCL+IPL, INL+OPL+OPL, RPE), and for 

each mouse, the distribution of L/H2 values grew wider. Representative L/H2 distributions 

(mouse 6) for each layer grouping are shown in Figures 5.5-5.7. As described in chapter 5, 

these changes are best captured numerically by fitting the Burr Type XII distribution and 

reporting the C parameter (see Figure 5.8-5.10), which is associated roughly with the 

variance of the distribution. Before initiating euthanasia, the average value for the C 

parameter was 4.80 (±0.21) for the superficial layers, 4.84 (±0.22) for the intermediate 

layers, and 8.85 (±0.35) for the RPE.  At the point where blood flow had ceased for each 

mouse, the mean value for the C parameter was 3.88 (±0.15) for the superficial layers, 3.95 

(±0.23) for the intermediate layers, and 5.24 (±0.53) for the RPE. The C parameter 

decreased in every mouse by an average (standard deviation) of 0.91 (±0.18) for the 
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superficial layers, 0.90 (±0.28) for the intermediate layers, and 2.61 (±0.62) for the RPE. 

These values are tabulated in Tables 5.1-5.3.  

As was the case for the healthy murine retinas in Chapter 5, alpha and K parameters 

for the Burr Type XII distribution were not different across layers or time. 

 
		 RNFL	+	GCL	+	IPL	
		 Before	Euthanasia	 After	Blood	Flow	Ceases	 Change	
Mouse	1	 4.58	 3.63	 -0.95	
Mouse	2	 5.05	 4.09	 -0.96	
Mouse	3	 4.72	 3.88	 -0.84	
Mouse	4	 5.01	 3.82	 -1.19	
Mouse	5	 4.55	 3.90	 -0.65	
Mouse	6	 4.87	 3.96	 -0.91	
Mean	 4.80	 3.88	 -0.91	
St.	Dev	 0.21	 0.15	 0.18	

Table 5.1: The average change in the C parameter for the superficial layers was -0.91. 
A paired t-test indicated a difference between before and after states 
(p<0.0001). 

		 INL	+	OPL	+	ONL	
		 Before	Euthanasia	 After	Blood	Flow	Ceases	 Change	
Mouse	1	 4.47	 3.74	 -0.73	
Mouse	2	 4.83	 4.39	 -0.44	
Mouse	3	 4.94	 3.93	 -1.01	
Mouse	4	 5.09	 3.91	 -1.18	
Mouse	5	 4.76	 3.87	 -0.89	
Mouse	6	 4.98	 3.84	 -1.13	
Mean	 4.84	 3.95	 -0.90	
St.	Dev	 0.22	 0.23	 0.28	

Table 5.2: The average change in the C parameter for the superficial layers was -0.90. 
A paired t-test indicated a difference between before and after states 
(p=0.0005) 
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		 RPE	
		 Before	Euthanasia	 After	Blood	Flow	Ceases	 Change	
Mouse	1	 8.41	 6.40	 -2.01	
Mouse	2	 8.49	 6.17	 -2.32	
Mouse	3	 9.27	 6.80	 -2.47	
Mouse	4	 9.04	 6.64	 -2.40	
Mouse	5	 8.80	 6.13	 -2.67	
Mouse	6	 9.10	 5.30	 -3.80	
Mean	 8.85	 6.24	 -2.61	
St.	Dev	 0.35	 0.53	 0.62	

Table 5.3: The average change in the C parameter for the superficial layers was -2.61. 
A paired t-test indicated a difference between before and after states 
(p=0.0002). 

DISCUSSION 

A decrease in volumetric blood flow was expected as the mouse died, but the 

meaning of this analysis is a bit more complicated. CDV detects movement in the OCT 

image as it compares voxels through time to magnify high-variance features. That is, voxels 

with any movement will appear whiter in the angiography image. As the heart ceases to 

beat for each mouse, blood in the vessels does not disappear; instead, it ceases to have as 

much directed flow. The angiography method employed with OCT is sensitive to Brownian 

motion in fluids as well, which indicates that the average time to zeros for volumetric blood 

flow could actually be reporting the average time to blood coagulation, which would persist 

beyond the directed flow from the mouse’s heartbeat. It is also possible that there may be 

some directed blood flow after the heartbeat is undetectable. 

The finding of decreases in reflectance index seen in these mice as they are deprived 

of oxygen is an important one. A decrease in reflectance index could happen in at least two 

ways: a decrease in the RNFL reflectivity, or an increase in the RPE reflectivity. In fact, 

both of these changes are occurring for each mouse in the experiment: decreases in RNFL 
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reflectivity (Figure 5.11) and increases in RPE reflectivity (Figure 5.12).  “Reflectivity” is 

the intensity of a particular layer in the OCT image (amplitude of the FFT of the detected 

fringe signal); these variations in intensity could be due to fluctuations in the absorption 

properties or the scattering properties of retina.  

 

 

Figure 5.11: The slight decrease in RNFL intensity contributes to the decrease of the 
reflectance index. 
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Figure 5.12: The slight increase in RPE intensity contributes to the decrease of the 
reflectance index. 

Increases or decreases in reflectivity are difficult to isolate to either fluctuations in 

retinal absorption properties or retinal scattering properties, but SAR-OCT opens a door 

for further analysis in this regard because the PME offers angular discrimination. With 

SAR-OCT, the decrease in reflectance index are shown to be, at least in part, due to 

scattering angle changes. Thus, the most interesting result in this study is the combination 

of reflectance index increases and shifts in the L/H2 distributions. Instead of simply 

reporting that the reflectivity index of the mouse retina decreases as the animal dies, this 

study indicates that there is indeed a shift in the behavior of light scattering in the oxygen-

deprived retina giving rise to that change.  
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For every layer, including both the RNFL and the RPE, changes in the L/H2 

distributions reveal relative increases in both low-angle and high-angle scattering. That is, 

the probability of low-angle light scattering increases as the mouse dies (L/H2 > 1 

increases), and the probability of high-angle light scattering also increases (L/H2 < 1 

increases). The C parameter of the burr Type XII distribution decreases for every layer. 

This increase in scattering angle diversity can perhaps be explained by a relative 

increase in entropy in the retina. Specifically, as the mouse dies, the energy required to 

maintain retinal organization decreases and ultimately expires. With the decrease in 

available energy, the cells and cellular components in the retina move toward equilibrium 

positions. This provides a first-order explanation of the increase in retinal thickness as the 

retinal components move toward to less-dense state. Furthermore, as cellular components 

begin to diffuse, they become less organized (higher entropy).  

As the retina tissue becomes more entropic and scattering patterns become more 

homogenous, more light is transported to the RPE. That is, there is a general decrease in 

the number of photons detected by the SAR-OCT system scattered from the RNFL (Figure 

5.11). These photons could continue to travel deeper into the retina, which would mean 

more photons have the opportunity to be transported to the RPE. Indeed, a higher number 

of photons are reflected from the RPE as the mouse dies as observed in Figure 5.12. 

Because of the angular discrimination available via SAR-OCT imaging, it is 

simultaneously observed that the backscattering behaviors of both of these layers change 

in the same way, a broader distribution of angles. 

To explain further, one can imagine the RNFL volume as containing 512 x 512 x 

10 voxels, that is just over 2,500,000 voxels. Each of these voxels is assigned a L/H2 value, 

usually between 0 and 3. For the healthy pre-euthanasia retina, the L/H2 tends to be around 

1. In particular, about 15% of the voxels have a L/H2 value that is between 0.95 and 1.05 
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(Figure 5.13, t = -12 minutes). For the voxels with L/H2 values around 1, the number of 

photons scattering at a low angle (pathlength 1) is about equal to the number of photons 

scattering at a high angle (pathlength 2). That is, if x photons are detected in pathlengths 1 

and 2 (discounting pathlength 3) as having scattered from a voxel in the RNFL where L/H2 

= 1, then we can say that x/2 are scattered at low angles, and x/2 are scattered at high angles. 

For voxels in the RNFL where L/H2 values are about between 1.95 and 2.05 (about 2% of 

the voxels at t = -12 minutes, Figure 5.13), 2x/3 photons were scattered at low angle, and 

x/3 photons were scattered at a high angle. The opposite is true for voxels in the RNFL 

where L/H2 values are between 0.45 and 0.55: x/3 photons were scattered at low angle, and 

2x/3 photons were scattered at a high angle (about 3% of the voxels at t = -12 minutes, 

Figure 5.13). 
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Figure 5.13: The probability distribution function of L/H2 in the RNFL+GCL+IPL layer 
grouping for mouse 2 broadens through the euthanasia experiment. This is 
the same as Figure 5.5. 

Now, as the mouse dies, the probability that any given voxel in the RNFL scatters 

such that x/2 photons are scattered at low angles and x/2 photons are scattered at high angles 

(0.95 < L/H2 < 1.05) decreases from 15% to 10% at t = 47 minutes (Figure 5.13). At the 

same time, the probability that any given voxel in the RNFL scatters such that 2x/3 photons 

scatter at low angles and x/3 photons scatter at high angles (1.95 < L/H2 < 2.05) increases 

from 2% to 3%. Similarly, the probability that any given voxel in the RNFL scatters such 

that x/3 photons scatter at low angles and 2x/3 photons scatter at high angles (0.45 < L/H2 
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< 0.55) increases from around 3% to around 4%. The same pattern holds for voxels in the 

RPE. 

 

Figure 5.14: Images show electron photomicrographs of healthy, apoptotic, and necrotic 
retinal sections. For these images, apoptosis and necrosis were induced by 
retinal ischemia. Plasma membranes (pm) of necrotic cells have 
disintegrated, and the mitochondria (mi) are swollen and diffusing through 
the extracellular space. Images taken from Joo et al.[134] 

Joo et al. conducted a study in which retinal ischemia was induced by artificially 

elevating ocular pressure for ninety minutes.[134] In this study, necrosis was noted in the 

earliest time points examined after the induced retinal ischemia—four hours after (Figure 

5.14(C)). Apoptosis was noted in retinal sections one day after inducing ischemia (Figure 

5.14(B)), and the retina returned to healthier levels of cellular function after three days 

(Figure 5.14(A)). Joo’s study concluded that “ischemia produces the N-methyl-D-

aspartate-mediated necrosis and slowly evolving apoptosis of neurons in the retina.” Other 

in-vitro studies have demonstrated that necrosis occurs in neurons as early at 10-20 minutes 

after acute oxidative stress,[135] including swollen neurons[135] and fragmented 

mitochondria.[136] Cortical neurons exhibited apoptotic morphology around three hours 

after the ischemic insult.[135] 
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It is imaginable that a similar but different necrotic process is happening in this 

euthanasia study, as the mouse experienced systemic ischemia. As the retina dies, 

metabolic processes cease, membrane potentials vanish, and entropy increases, cells likely 

exhibit necrotic morphology; mitochondria swell, and the cells’ plasma membranes 

disintegrate, spilling cellular components into the intracellular space (Figures 5.14, 5.15).  

Healthy cells with components gathered inside plasma membranes might be 

thought to scatter light in patterns that are a superposition of each of the component’s 

individual scattering profiles—a blurred scattering profile. In contrast, as cells undergo 

necrosis and spill their components into the intracellular space, light scatters in more 

distinct patterns. Now considering mitochondria, major scatterers of light in biological 

tissues: whereas before cellular necrosis, a mitochondria’s Mie scattering profile is 

superposed with the scattering profile of the cell that contains it, a diffusing individual 

mitochondrion scatters light with a distinct Mie pattern, unaffected by the cellular 

components that once restrained or surrounded it. Indeed, it has been shown that shifts in 

optical scattering properties during cell death are due largely to changes in 

mitochondria.[131] 
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Figure 5.15: These cell diagrams illustrate necrotic changes to major scattering 
components in the cell: cell membrane, mitochondria, nucleus. Cell 
membranes break apart; mitochondria enlarge and disperse; and the nucleus 
remains largely unchanged. (A) is a healthy cell; (B) is a necrotic cell. 
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Figure 5.16: Healthy and necrotic tissues scatter with different L/H2 distributions as has 
been demonstrated experimentally. This diagram proposes a model of light 
scattering for major scattering components of the cell: mitochondria, cell 
membranes, and the nucleus. Yellow indicates voxels that would are 
imagined to scatter more at low angles than at high angles. Blue voxels 
indicate areas where there is more high-angle scattering than low-angle 
scattering. Isolated mitochondria scatter at high-angles, the scattering profile 
less affected by a containing membrane or nearby cellular component. In 
contrast, cell membranes scatter at low angles, their scattering profiles less 
affected by diffused mitochondria. Voxels still containing a mix of cellular 
components maintain their blurred scattering profiles, a superposition of 
high-angle and low-angle scattering. 

 

This study was limited in its aim, namely to confirm that longitudinal scattering 

angle changes may be detected using SAR-OCT. This is the first time that longitudinal 
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changes in light backscattering angles in the retina have been reported. However, this study 

alone does not necessarily implicate the utility of SAR-OCT for more subtle changes in the 

scattering properties of the retina. Changes in the scattering properties of the retina could 

be due to fast necrotic changes in the retina: mitochondrial fragmentation/swelling and cell 

membrane disintegration. More studies are needed to study what exactly is giving rise to 

the increase in both high and low-angle backscattering from the retina, but this study is 

promising as an imaging method for detection of neuropathies affecting the morphology of 

neurons in the retina. 

CONCLUSIONS 

Six mice were euthanized and their retinas monitored with SAR-OCT for 

approximately 1.5 hours during their deaths. Decreases in volumetric blood flow provided 

an indicator for tissue oxygenation during euthanasia. Total retinal thickness increased for 

each mouse, and the reflectance index decreased for each mouse. Most strikingly, the 

distribution of L/H2 values showed a distinct broadening pattern, indicating an increase in 

both high and low-angle scattering when compared to the initial state of the mouse, pre-

euthanasia.  Altogether, SAR-OCT was demonstrated as being sensitive to profound 

longitudinal alterations in scattering properties of the murine retina. 
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Chapter 6: Retinal Changes in a Murine Model of Alzheimer’s Disease 
Using SAR-OCT  

This chapter is the goal and culmination of the dissertation. Here, I present the 

results of retinal imaging of mouse model for AD (3xTg-AD) using SAR-OCT. The data 

indicate that 3xTg-AD mice are distinguishable from control mice at early ages using SAR-

OCT. Specifically, the fitted C parameter of L/H2 distributions, the thickness of synaptic 

layers, and the reflectance index detect differences between disease and control groups at 

early stages of disease development. This study lays the groundwork for future clinical 

trials using SAR-OCT for early detection of AD. 

INTRODUCTION 

Chapter 1 lays a foundation for this chapter, describing how neurodegeneration, 

specifically AD affects the retina. In summary, changes observable with OCT—namely 

changes in light backscattering angle, vasculature, normalized reflectivity (reflectance 

index), and retinal layer thickness—carry potential as early indicators of AD. 

Chapters 4 and 5 demonstrated the utility of SAR-OCT in quantifying the 

backscattering behavior of the retina. In the same chapters, features like reflectance index, 

retinal layer thickness, and volumetric blood flow were computed for additional data points 

and to corroborate changes in reflectivity. Those chapters lay the groundwork for a cross-

sectional study of a murine model of AD. 

METHODS 

Altogether, this cross-sectional study imaged the retinas of a murine model of AD 

and age-matched control mice at ages ranging from 10-48 weeks using SAR-OCT. Four 

imaging regimes were examined across this age range: (1) scattering angle, (2) vasculature, 

(3) normalized reflectivity, and (4) layer thicknesses. This section first describes the mouse 
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model, then outlines the experiment design, and finally describes the features examined for 

each SAR-OCT imaging regime. 

Mouse Model 

A triple-transgenic model for AD was used for this study, namely 3xTg-AD, which 

exhibits plaque and tangle pathology, as well as synaptic dysfunction.[137] The onset of 

Aβ and tau plaques for 3xTg-AD is similar to that of AD in human patients, both age- and 

region-dependent.[138], [139] For the 3xTg-AD murine model, Aβ immunoreactivity has 

been observed at 2 months in the hippocampus.[139] At four months, intraneuronal Aβ 

pathology is visible in the cortex and amygdala;[140] this correlates with observable 

cognitive deficits.[141] At month six, Aβ deposits are apparent in the frontal cortex,[140] 

when learning deficits, memory impediments, and neophobia appear.[142] At twelve 

months, Aβ is present in the hippocampus and other cortical regions,[142] and tau 

immunoreactivity becomes apparent in pyramidal neurons in the CA1 region.[140] 

Many of the AD pathologies are present in the retina (an anterior extension of the 

central nervous system) at varying ages for the 3xTg-AD model. In one study, at eight and 

twelve months, the retinal thickness decreases significantly, but Aβ was not detected at 

four or eight months, though the tau levels were elevated.[143] In another study, it was 

observed that profound tau pathology in the visual system is present as early as three 

months in 3xTg-AD, prior to behavioral deficits and tau accumulation in the brain.[144] 

The tau build-up occurred mostly in the retinal ganglion cells’ (RGCs) soma and dendrites. 

Another study examined the morphology of Muller cells and astrocytes in the 3xTg-AD 

retina and found that they undergo complex remodeling similar to astrocytes changes in 

the brain, though there is still some question as to the occurrence of these morphological 

changes in the human retina.[144] Regarding apoptosis and necrosis, Cordeiro et al showed 
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that fourteen-month-old 3xTg-AD mice showed significantly more RGCs in the early 

stages of apoptosis and fewer necrotic cells compared to age-matched controls.  

In this study, Non-transgenic wild type C57BL/6J were used as controls. This is the 

background of the 3xTg-AD model. 

Taken together it is a reasonable hypothesis that the 3xTg-AD mouse model will 

produce observable changes in the four SAR-OCT regimes. 

Experiment Design 

To assess the efficacy of SAR-OCT in detecting AD in 3xTg-AD mice compared 

to control mice, a cross-sectional study was designed in which 3xTg-AD mice and age-

matched control mice were imaged (IACUC protocol #AUP-2015-00156). The distribution 

of age and sex is outlined in Table 6.1. In total, there were 32 mice: 20 3xTg-AD mice and 

12 age-matched controls. The mice ranged in age from 10 weeks to 48 weeks. 

 

 Control Mice (n=12) 3xTg-AD mice (n=20) 

Group 1 10 weeks old (3 males) 10 weeks old (5 males) 

Group 2 19 weeks old (3 males) 22 weeks old (2 males) 

Group 3 29 weeks old (3 males) 30 weeks old (2 males, 2 females) 

Group 4 46 weeks old (3 males) 45 weeks old (2 males, 2 females) 

48 weeks old (5 males) 

Table 6.1: This study imaged a total of 20 3xTg-AD mice and 12 age-matched controls 
using SAR-OCT. 

Each mouse was anesthetized first in an induction box (5% isoflurane), and then 

moved to the imaging platform where anesthesia continued via a custom nose cone (1.5-

3% isoflurane). The left retina was imaged by the SAR-OCT system for about 15 minutes, 
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and then the mouse was allowed to recover. Overall, the imaging session lasted around 30 

minutes per mouse. 

Data Collected 

Several SAR-OCT images were collected for each mouse retina with difference 

regions of interest, so as to obtain an expansive view of the retina. The number of images 

obtained for each mouse ranged from one to four, with almost no overlap. The optic nerve 

head (ONH) was used as a landmark. Under ideal imaging conditions, the ONH was placed 

once in each corner of the en-face view, so as to collect four volumes with different regions 

of the same retina. Occasionally, the experimental conditions limited the number of volume 

acquisitions. 

Scattering 

In the scattering regime, the L/H2 ratio is utilized. Recall that the L/H2 ratio is 

simply the ratio of intensities from pathlength 1 (L) and pathlength 2 (H2). Each voxel in a 

defined region is treated as a sample of a Burr Type XII distribution, and the 3 parameters 

(α, C, and K) are chosen to minimize error. This process was described in fuller detail in 

Chapter 4. 

After fitting L/H2 voxel values of a given region and layer to the Burr distribution, 

one-way MANOVA is performed across time for the 3xTg-AD group. There are three 

canonical variables resulting for the three inputs (α, C, and K). The canonical variables are 

a multiplication of the mean-centered samples and an Eigen vector which was chosen to 

maximize the separation between age groups upon linear combination of these variables. 

The Eigen vector chosen for the 3xTg-AD group in the MANOVA process is then applied 

to the corresponding age-matched control group. Finally, the canonical variables of the 
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3xTg-AD mice and the control mice are compared at each time point using a t-test to 

indicate whether or not the samples were likely taken from the same distribution. 

A second feature set in the scattering regime is to examine only the C parameter of 

the fitted Burr distribution. It was reported in an earlier chapter that the C parameter 

consistently contributes the most to the first canonical variable output by MANOVA. 

Examining the C parameter alone allow for a more intuitive understanding of the 

underlying scattering properties. Similar to the canonical variable analysis, the C 

parameters of the 3xTg-AD mice and the control mice are compared using a t-test at each 

time point.  

Both the canonical variables and the C parameters are examined for various 

combinations of retinal layers and quadrants. Table 6.2 lists each feature examined in the 

scattering regime. 
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Feature(s)	

Dependent	Variable(s)	 Retinal	Layer	 Retinal	Region	
α,	C,	K	 Superficial	Layers	 All	Regions	
α,	C,	K	 Superficial	Layers	 Central	
α,	C,	K	 Superficial	Layers	 Peripheral	
α,	C,	K	 Superficial	Layers	 Nasal	(Out-In)	
α,	C,	K	 Superficial	Layers	 Superior	(Out-In)	
α,	C,	K	 Superficial	Layers	 Temporal	(Out-In)	
α,	C,	K	 Superficial	Layers	 Inferior	(Out-In)	
α,	C,	K	 Intermediate	Layers	 All	Regions	
α,	C,	K	 Intermediate	Layers	 Central	
α,	C,	K	 Intermediate	Layers	 Peripheral	
α,	C,	K	 Intermediate	Layers	 Nasal	(Out-In)	
α,	C,	K	 Intermediate	Layers	 Superior	(Out-In)	
α,	C,	K	 Intermediate	Layers	 Temporal	(Out-In)	
α,	C,	K	 Intermediate	Layers	 Inferior	(Out-In)	
α,	C,	K	 RPE	 All	Regions	

C	Parameter	 Superficial	Layers	 All	Regions	
C	Parameter	 Superficial	Layers	 Central	
C	Parameter	 Superficial	Layers	 Peripheral	
C	Parameter	 Superficial	Layers	 Nasal	(Out-In)	
C	Parameter	 Superficial	Layers	 Superior	(Out-In)	
C	Parameter	 Superficial	Layers	 Temporal	(Out-In)	
C	Parameter	 Superficial	Layers	 Inferior	(Out-In)	
C	Parameter	 Intermediate	Layers	 All	Regions	
C	Parameter	 Intermediate	Layers	 Central	
C	Parameter	 Intermediate	Layers	 Peripheral	
C	Parameter	 Intermediate	Layers	 Nasal	(Out-In)	
C	Parameter	 Intermediate	Layers	 Superior	(Out-In)	
C	Parameter	 Intermediate	Layers	 Temporal	(Out-In)	
C	Parameter	 Intermediate	Layers	 Inferior	(Out-In)	
C	Parameter	 RPE	 All	Regions	

Table 6.2 In the scattering regime linear canonical variables (MANOVA) and the C 
parameter (Burr distribution) are examined for various combinations of 
layers and quadrants. 
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Angiography 

In the angiography regime, two types of features are examined. The first is 

fasculature fractal dimension. For this feature, the dimension of the fractal is determined 

by the box-counting method[145] using binarized angiography images. There are three 

vascular plexuses—superficial, intermediate, and deep. An en-face binarized image is 

created using the methods described in chapter 3, and the box-counting method is applied 

to calculate the fractal dimension. The fractal dimension for 3xTg-AD mice is compared 

to control mice at each time point for various retinal layers and retinal quadrants/regions. 

The second feature type is volumetric blood flow. This value is simply the 

percentage of space that is occupied by a blood vessel. Similarly to the fractal dimension 

analysis. Volumetric blood flow for 3xTg-AD mice is compared to control mice at each 

time point for various retinal layers and retinal quadrants/regions. Table 6.3 lists the 

angiographic features examined in this study. 
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Feature(s)	

Dependent	Variable(s)	 Retinal	Layer	 Retinal	Region	
Vasculature	Fractal	Dimension	 Superficial	Plexus	 All	Regions	
Vasculature	Fractal	Dimension	 Superficial	Plexus	 Central	
Vasculature	Fractal	Dimension	 Superficial	Plexus	 Peripheral	
Vasculature	Fractal	Dimension	 Intermediate	Plexus	 All	Regions	
Vasculature	Fractal	Dimension	 Intermediate	Plexus	 Central	
Vasculature	Fractal	Dimension	 Intermediate	Plexus	 Peripheral	
Vasculature	Fractal	Dimension	 Deep	Plexus	 All	Regions	
Vasculature	Fractal	Dimension	 Deep	Plexus	 Central	
Vasculature	Fractal	Dimension	 Deep	Plexus	 Peripheral	

Volumetric	Blood	Flow	 Superficial	Plexus	 All	Regions	
Volumetric	Blood	Flow	 Intermediate	Plexus	 All	Regions	
Volumetric	Blood	Flow	 Deep	Plexus	 All	Regions	

Table 6.3: The angiography regime examines two types of features (vasculature fractal 
dimension and volumetric blood flow) for various vascular plexuses and 
retinal regions. 

Reflectance Index 

Reflectance index is the ratio of intensities in the RNFL and the RPE. The RNFL 

and RPE representation used is the average of all three pathlengths. The reflectance index 

is compared to control mice at each time point for three retinal regions: (1) all regions, (2) 

central (in), and (3) peripheral (out) (Table 6.4). 

 
Feature(s)	

Dependent	Variable(s)	 Retinal	Layer	 Retinal	Region	
Reflectance	Index	 RNFL	 All	Regions	
Reflectance	Index	 RNFL	 Central	
Reflectance	Index	 RNFL	 Peripheral	

Table 6.4: SAR-OCT is used in the reflectance regime to examine differences amongst 
3xTg-AD mice and controls across retinal regions and time. 
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Retinal Layer Thickness 

In the thickness regime, SAR-OCT compares the thicknesses of various layers in 

different regions for the two groups at each time point. The thickness are obtained using 

the retinal segmentation algorithm outlined in chapter 3. Table 6.5 lists each feature in the 

thickness regime. 

 
Feature(s)	

Dependent	Variable(s)	 Retinal	Layer	 Retinal	Region	
Layer	Thickness	 Superficial	Layers	 All	Regions	
Layer	Thickness	 Superficial	Layers	 Central	
Layer	Thickness	 Superficial	Layers	 Peripheral	
Layer	Thickness	 INL	 All	Regions	
Layer	Thickness	 INL	 Central	
Layer	Thickness	 INL	 Peripheral	
Layer	Thickness	 OPL	 All	Regions	
Layer	Thickness	 OPL	 Central	
Layer	Thickness	 OPL	 Peripheral	
Layer	Thickness	 ONL	 All	Regions	
Layer	Thickness	 ONL	 Central	
Layer	Thickness	 ONL	 Peripheral	
Layer	Thickness	 All	Layers	 All	Regions	
Layer	Thickness	 All	Layers	 Central	
Layer	Thickness	 All	Layers	 Peripheral	

Table 6.5: The thicknesses of retinal layers are examined for superficial layers (ILM-
IPL), the INL, the OPL, the ONL, and all layers combined, for central, 
peripheral, and combined regions. 

RESULTS 

The results of the t-tests comparing 3xTg-AD and control mice across time are 

tabularized in Tables 6.6-6.10.  
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Scattering 

Considering the first canonical variable, differences between the 3xTg-AD mice 

and the control mice were most present at the 19-22 week range. The superficial layers 

(RNFL + GCL + IPL) tended to have the most distinguishing value—particularly the 

central regions around the optic nerve head. Specifically, the first canonical variable in the 

central superficial layers demonstrated an interesting trend. The values of the first 

canonical variable were significantly greater in the control mice for the 10-week-old group 

(p=0.003) and decreased out to week 45. The canonical variables for 3xTg-AD mice was 

less than the control at 10 weeks but greater than the control at 20 weeks. Figure 6.1 shows 

that the canonical variable persisted for 20 weeks and then decreased to be statistically 

similar to the values of the control mouse at week 45. 
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Figure 6.1: The first canonical variable (MANOVA) reveals early scattering differences 
between the 3xTg-AD mice and control mice. The mean value of the 3xTg-
AD mouse persists through 20 weeks and then decreases out to 45 weeks. 
The mean value of the control mouse variable begins higher than the 3xTg-
AD model, but decreases rapidly out to 45 weeks. 

Considering the C parameter alone, statistical differences between the 3xTg-AD 

mice and the control mice were prominent in the 10 week range. Twelve of fifteen 

layer/region combinations revealed a higher C parameter in the control mouse at 10 weeks. 

For the peripheral regions of the superficial layer and nearly all regions of the intermediate 

layers, the C parameter value persisted through the disease. One notable exception to the 

statistical differences is in the 19-22 week range. At this time point, there were only three 

statistical differences (out of fifteen possible), and two of them reveal a higher value for 
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the 3xTg-AD mice. However, in the 19-22 week range, the mean of the C parameter for 

the control mice is greater than the 3xTg-AD mice in most cases, though not significantly 

different. 
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Figure 6.2: The C parameter in the inferior superficial layers is representative of other C 
parameter data. The C parameter for the control mice is generally greater in 
than that of the 3xTg-AD mice, particularly in in the earliest time point, 10 
weeks. 

Figure 6.2 shows the C parameter in the interior superficial layers, a representative 

image in that the mean C parameter of the control mice is on average greater than that of 

the 3xTg-AD mice.  

Also of note is the general decrease of the C parameter with time. Even without the 

control mice, which are notoriously difficult to match to a disease model, the C parameters 

within the 3xTg-AD groups decrease with the ages of the group.  

Figure 6.3 shows the C parameter in the deep layers (RPE). There are not statistical 

differences between the groups in this case, however, it should be noted that that mean 
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values of the C parameters are closer to 9 or 10—comparable to those of mice in other 

studies, reinforcing the repeatability of the C parameter across mice. 

 

 

Figure 6.3: The C parameters in the deep layers (RPE) do not show any differences 
between the 3xTg-AD and control groups, but the values of the C parameter 
in the RPE are comparable to those of the RPE in other studies. 
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Scattering	

Feature(s)	
P-value:		

Blue	-	AD>Control;		
Red	-	AD<Control	

Dependent	Variable(s)	 Retinal	
Layer	

Retinal	
Region	

10	
Weeks	

19-22	
Weeks	

29-30	
Weeks	

45-48	
Weeks	

1st	Canonical	Variable	(α,	C,	K)	 Super.	 All	 0.178	 0.002	 0.231	 0.498	

1st	Canonical	Variable	(α,	C,	K)	 Super.	 In	 0.003	 0.014	 0.008	 0.479	
1st	Canonical	Variable	(α,	C,	K)	 Super.	 Out	 0.789	 <0.001	 0.467	 0.566	
1st	Canonical	Variable	(α,	C,	K)	 Super.	 N	(Out-In)	 0.106	 0.05	 0.785	 0.345	
1st	Canonical	Variable	(α,	C,	K)	 Super.	 S	(Out-In)	 0.001	 0.924	 0.008	 0.791	
1st	Canonical	Variable	(α,	C,	K)	 Super.	 T	(Out-In)	 0.261	 0.003	 0.06	 0.042	
1st	Canonical	Variable	(α,	C,	K)	 Super.	 I	(Out-In)	 0.98	 <0.001	 0.086	 0.345	
1st	Canonical	Variable	(α,	C,	K)	 Int.	 All	 0.139	 0.001	 0.348	 0.648	
1st	Canonical	Variable	(α,	C,	K)	 Int.	 In	 0.649	 <0.001	 0.39	 0.799	
1st	Canonical	Variable	(α,	C,	K)	 Int.	 Out	 0.235	 <0.001	 0.095	 0.576	
1st	Canonical	Variable	(α,	C,	K)	 Int.	 N	(Out-In)	 0.045	 0.075	 0.366	 0.377	
1st	Canonical	Variable	(α,	C,	K)	 Int.	 S	(Out-In)	 0.003	 <0.001	 0.726	 0.087	
1st	Canonical	Variable	(α,	C,	K)	 Int.	 T	(Out-In)	 0.221	 0.001	 0.54	 0.964	
1st	Canonical	Variable	(α,	C,	K)	 Int.	 I	(Out-In)	 0.799	 0.285	 0.93	 0.534	
1st	Canonical	Variable	(α,	C,	K)	 RPE	 All	 0.306	 0.003	 0.475	 0.095	

Table 6.6: For the scattering regime, there were statistical differences between the 
3xTg-AD and control mice for several of the image features, at various 
time-points. For the multivariate analysis that yielded canonical variables, 
the 3xTg-AD mice had generally higher values than the controls at early 
time points, but those differences faded at later time points.  
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Scattering	

Feature(s)	
P-value:		

Blue	-	AD>Control;		
Red	-	AD<Control	

Dependent	Variable(s)	 Retinal	
Layer	

Retinal	
Region	

10	
Weeks	

19-22	
Weeks	

29-30	
Weeks	

45-48	
Weeks	

C	Parameter	 Super.	 All	 0.019	 0.574	 0.138	 0.254	
C	Parameter	 Super.	 In	 0.001	 0.614	 0.043	 0.055	
C	Parameter	 Super.	 Out	 <0.001	 0.395	 0.010	 0.036	
C	Parameter	 Super.	 N	(Out-In)	 0.007	 0.188	 0.016	 0.183	
C	Parameter	 Super.	 S	(Out-In)	 0.108	 0.714	 0.113	 0.197	
C	Parameter	 Super.	 T	(Out-In)	 0.02	 0.998	 0.31	 0.172	
C	Parameter	 Super.	 I	(Out-In)	 0.045	 0.026	 0.069	 0.246	
C	Parameter	 Int.	 All	 0.153	 0.639	 0.153	 0.590	
C	Parameter	 Int.	 In	 <0.001	 0.049	 0.002	 0.001	
C	Parameter	 Int.	 Out	 <0.001	 0.270	 0.003	 0.001	
C	Parameter	 Int.	 N	(Out-In)	 <0.001	 0.346	 0.014	 0.019	
C	Parameter	 Int.	 S	(Out-In)	 0.013	 0.800	 0.036	 0.006	
C	Parameter	 Int.	 T	(Out-In)	 <0.001	 0.009	 0.106	 0.007	
C	Parameter	 Int.	 I	(Out-In)	 0.010	 0.581	 0.006	 0.352	
C	Parameter	 RPE	 All	 0.242	 0.492	 0.337	 0.953	

Table 6.7: For the C parameter analysis in the scattering regime, the values for the 
control mice are generally greater than those of the 3xTg-AD mice. That 
difference persists in most cases through a majority of the time points. 

Angiography 

There were only two cases of statistically significant differences in the angiography 

regime, however these differences are not meaningful enough to draw any conclusions. 
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Angiography	

Feature(s)	
P-value:		

Blue	-	AD>Control;		
Red	-	AD<Control	

Dependent	Variable(s)	 Retinal	
Layer	

Retinal	
Region	

10	
Weeks	

19-22	
Weeks	

29-30	
Weeks	

45-48	
Weeks	

Vasculature	Fractal	Dimension	 Sup.	Plexus	 All	 0.589	 0.336	 0.339	 0.764	

Vasculature	Fractal	Dimension	 Sup.	Plexus	 In	 0.123	 0.535	 0.235	 0.923	
Vasculature	Fractal	Dimension	 Sup.	Plexus	 Out	 0.589	 0.514	 0.030	 0.312	
Vasculature	Fractal	Dimension	 Int.	Plexus	 All	 0.733	 0.148	 0.292	 0.835	
Vasculature	Fractal	Dimension	 Int.	Plexus	 In	 0.149	 0.668	 0.27	 0.908	
Vasculature	Fractal	Dimension	 Int.	Plexus	 Out	 0.841	 0.887	 0.17	 0.147	
Vasculature	Fractal	Dimension	 Dp.	Plexus	 All	 0.823	 0.183	 0.400	 0.637	
Vasculature	Fractal	Dimension	 Dp.	Plexus	 In	 0.123	 0.466	 0.331	 0.843	
Vasculature	Fractal	Dimension	 Dp.	Plexus	 Out	 0.563	 0.632	 0.357	 0.298	

Volumetric	Blood	Flow	 Sup.	Plexus	 All	 0.191	 0.569	 0.058	 0.573	
Volumetric	Blood	Flow	 Int.	Plexus	 All	 0.124	 0.312	 0.054	 0.991	
Volumetric	Blood	Flow	 Dp.	Plexus	 All	 0.109	 0.39	 0.011	 0.512	

Table 6.8: For the angiography regime, there were only two instances of statistical 
differences. These differences are not sufficient to make any claim on the 
utility of fractal dimensions or volumetric blood flow in this data set.  

Retinal Layer Thickness 

Differences in retinal layer thicknesses were largely isolated to the superficial 

layers (RNFL + GCL + IPL) and the ONL, with differences also appearing in total retinal 

thickness. There was also more differences between 3xTg-AD and control groups at the 

early time points compared to the later time points (6 control>AD at 10 weeks, 3 

control>AD at 45 weeks).  

The central (in) regions of the retina showed the most consistent differences. The 

central superficial layer was thicker in the control mice at every time point (Figure 6.4), 
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and the central ONL thickness was greater at every time point except the 45 weeks group 

(Figure 6.5). Additionally, the total retinal thickness in the central retinal zones was greater 

in the control group for every time point (Figure 6.6). 

 

 

Figure 6.4: The thickness of the central superficial layers is significantly greater in the 
control mice at every time point. 
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Figure 6.5: The thickness of the central ONL is significantly greater in the control mice 
at every time point, except the 45-week time point. 
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Figure 6.6: The thickness of the total retina in the central zones around the optic nerve 
head is significantly greater in the control mice at every time point. 
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Thickness	

Feature(s)	
P-value:		

Blue	-	AD>Control;		
Red	-	AD<Control	

Dependent	Variable(s)	 Retinal	
Layer	

Retinal	
Region	

10	
Weeks	

19-22	
Weeks	

29-30	
Weeks	

45-48	
Weeks	

Layer	Thickness	 Super.	 All	 0.51	 0.024	 0.059	 0.228	

Layer	Thickness	 Super.	 In	 <0.001	 0.001	 0.013	 0.038	
Layer	Thickness	 Super.	 Out	 <0.001	 0.094	 0.002	 0.002	
Layer	Thickness	 INL	 All	 0.069	 0.139	 0.136	 0.744	
Layer	Thickness	 INL	 In	 0.001	 0.884	 0.308	 0.602	
Layer	Thickness	 INL	 Out	 0.159	 0.285	 0.773	 0.235	
Layer	Thickness	 OPL	 All	 0.044	 0.13	 0.155	 0.584	
Layer	Thickness	 OPL	 In	 0.002	 0.679	 0.721	 0.792	
Layer	Thickness	 OPL	 Out	 0.066	 0.606	 0.372	 0.881	
Layer	Thickness	 ONL	 All	 0.349	 0.043	 0.075	 0.399	
Layer	Thickness	 ONL	 In	 <0.001	 0.005	 0.015	 0.347	
Layer	Thickness	 ONL	 Out	 <0.001	 0.192	 0.102	 0.447	
Layer	Thickness	 All		 All	 0.791	 0.038	 0.04	 0.331	
Layer	Thickness	 All		 In	 <0.001	 <0.001	 <0.001	 0.046	
Layer	Thickness	 All	Layers	 Out	 <0.001	 0.171	 <0.001	 0.087	

Table 6.9: For the thickness regime, the superficial layers, the ONL, and the entire 
retinal thickness showed differences between the 3xTg-AD and control 
groups, particularly in the central (In) quadrants. 

Reflectance Index 

Early differences in the reflectance index were seen when comparing the 3xTg-AD 

mice to the controls. Namely, in the central region around the optic nerve head, the 

reflectance index of the control mice was significantly greater than that of the 3xTg-AD 

mice at 10 weeks. In fact, the mean value of the reflectance index of the control group was 

greater at every time point, though not significantly so (Figure 6.7). 
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Figure 6.7: The reflectance indices of the central regions of the retina were significantly 
greater for control mice at 10 weeks. The mean reflectance value was 
greater at every time point after that also, though not significantly so. 

 

Reflectance	Index	

Feature(s)	
P-value:		

Blue	-	AD>Control;		
Red	-	AD<Control	

Dependent	Variable(s)	 Retinal	
Layer	

Retinal	
Region	

10	
Weeks	

19-22	
Weeks	

29-30	
Weeks	

45-48	
Weeks	

Reflectance	Index	 RNFL	 All	 0.528	 0.027	 0.105	 0.592	

Reflectance	Index	 RNFL	 In	 0.001	 0.061	 0.657	 0.672	
Reflectance	Index	 RNFL	 Out	 0.065	 0.24	 0.307	 0.679	

Table 6.10: For the reflectance regime, there were no strong patterns to distinguish 
between the groups. 
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The complete set of output plots is included in Appendix C. 

DISCUSSION 

SAR-OCT has demonstrated a sensitivity to differences in control and 3xTg-AD 

mice due to their retinal scattering properties. It was imagined that differences in the retina 

might only be apparent in the later time points, but the data show that differences in the 

scattering properties are more apparent at the early time points. The first canonical variable 

for the central superficial layer is very interesting in that the values actually converge at 

the late stages of the disease, but begin with stark differences. The meaning of the first 

canonical variable is difficult to intuit, but the differences in the C parameter between 

groups yields more intuitive meaning. The C parameter differences between groups are 

also more apparent in the earlier time points than they are in the later time points.  

Prior to this chapter in the dissertation, a decrease in C parameter has been shown 

to be correlated with (1) lower RGC density, (2) higher cell volume, (3) lower cellular 

uniformity, and (4) ischemic cell death. Mitochondrial fission and other cellular processes 

underlie some of these cellular states. In the case of the 3xTg-AD retina, any possible 

scattering changes were hypothesized to likely arise from the over-expression of APP, Aβ 

and/or tau deposition, neuronal cell loss, retinal glial cell changes, and vascular changes. 

The data clearly show differences between the groups at the youngest imaged age, 10 

weeks. As mentioned in the introduction to this chapter, Aβ immunoreactivity is present in 

the hippocampus at 10 weeks.[139] Aβ is known to trigger neuronal cell loss via the 

apoptotic pathway.[146], [147] In particular, Aβ targets neuronal mitochondria and 

promotes mitochondrial fission, disruption of mitochondrial membrane potential, increase 

in intracellular reactive oxygen species levels, and activation of mitophagy.[148] This 

mitochondrial swelling, mitochondrial channel opening, and rupture can cause the release 
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of cytochrome c, which leads to necrosis or apoptosis.[148]–[150] Mitochondria are known 

to be major scatterers of light in cells, particularly at higher scattering angles.[151] Now, 

in terms of the four aforementioned correlated cellular states with lower C parameter 

values: increased rates of mitochondria-initiated apoptosis would lead to a decrease in cell 

density, particularly in RGCs,[28] and contribute to lower cellular uniformity and higher 

cell volume as cellular components are consumed. Taken together, it is a reasonable 

hypothesis that mitochondrial morphology is a contributing factor in differences between 

the 3xTg-AD model and the control group. Without extensive morphological analysis, it 

would be difficult to identify the exact causes of the scattering angle changes. 

Another interesting feature apparent in this study is the variation of the C parameter 

with age. While it was not the aim of this study, age seems contribute to a decrease in the 

C parameter. This hypothesis was tested using one-way ANOVA, which indicated that 

several retinal regions and layers did, in fact, decrease with age (C parameter for 45 weeks 

< C parameter for 10 weeks; p < 0.05). 

There are other retinal changes associated with age that seem to appear in the 

scattering data (C parameter). As the animal ages, the murine retina expands out, and the 

RGCs become less dense.[152] There are also fewer synaptic connections in any give IPL 

volume of older mouse retinas, and the area of RGC dendritic and axonal arbors 

decreases.[152] Overall, there is a general decrease in cellular and synaptic density. The C 

parameter also decreases with the age of the mouse in both groups (e.g. Figure 6.2). This 

evidence further corroborates the hypothesis that a decrease in cellular density is 

influencing a decrease in the C parameter. 

The murine retina has also been shown to thin (axially) as it expands (laterally) in 

older mice, all while maintaining its volume.[150] Interestingly, the mice imaged in this 

study exhibited mean thickness values greater at older ages (3xTg-AD and control), though 
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not statistically different from young mice. This is likely due to experimental noise. An 

increase in retinal thickness is also in contrast to numerous clinical studies that report 

thinner retinas with aging human patients, particularly in the parapapillary RNFL.[153]–

[157] 

While the general decrease in retinal thickness with age was not apparent in this 

data, it is of interest that the statistically significant differences between the 3xTg-AD mice 

and the control mice are generally isolated to only two layers: (1) the superficial layers 

(RNFL + GCL + IPL) and (2) the ONL. As was described in Chapter 1, the RNFL, the IPL, 

and the OPL are the three layers of the murine retina that contain most of the retina’s 

synapses; the other retinal layers contain mostly cell bodies. AD is known to affect the 

synapses in early disease states, so it makes sense that these layers would be significantly 

thinner in the 3xTg-AD model when compared to the control mice. This finding suggests 

that not only the thickness of the RNFL, but also the thickness of the IPL and the OPL 

could be used as indicators of neurodegeneration. 

The reflectance index exhibited some differences in the central retina between the 

groups, but this difference disappears at later time points. Similar to the euthanasia 

experiments outlined in Chapter 5, the lower reflectance indices in the 3xTg-AD mice 

could be due to two causes: (1) lower RNFL reflectivity or (2) higher RPE reflectivity for 

3xTg-AD mice when compared to their age-matched controls. It could be that the 

beginning stages of Aβ build-up in the young retina shifts the scattering profile in some 

voxels to more diverse scattering angles, and thus shifting more out of the collection NA. 

At later ages, shifts in neuronal density could overshadow this affect. Future histological 

analysis of the 3xTg-AD retina could be more instructive, but the data here are too sparse 

to draw strong conclusions. 
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CONCLUSIONS  

In conclusion, the retinas of twenty 3xTg-AD mice and twelve control mice were 

imaged using SAR-OCT in a cross-sectional study. Four SAR-OCT feature regimes were 

examined for differences between the groups across time. Scattering differences between 

the 3xTg-AD and control groups were apparent at early ages, in both multivariate analysis 

and using only the C parameter of the fitted Burr distribution. Also, the C parameter 

decreased within the disease group alone. The thickness of the central retina was 

significantly less in the 3xTg-AD mice across all time points, and the central reflectance 

index exhibited some tempered differences in early age groups. The vasculature features 

examined in this study did not reveal meaningful differences between the 3xTg-AD and 

control mice. Taken together, this study suggests that SAR-OCT may be a useful tool for 

detecting early scattering changes in the retinas of patients developing Alzheimer’s disease. 
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Chapter 7: Conclusions and Future Work 

THE C PARAMETER 

The C parameter is a new statistical approach for measuring retinal scattering angle 

changes with SAR-OCT. The C parameter is determined by fitting a Burr Type XII 

distribution to selected L/H2 (pathlength 1/pathlength 2) values collected by an SAR-OCT 

system. The C parameter as an image feature is the major contribution of the dissertation. 

Prior to this work, SAR-OCT analysis had been limited in its utility by only considering 

the mean value across a region. Now, by statistically considering the properties of a tissue 

as a whole, the Burr distribution, and the C parameter in particular, have introduced a 

powerful method for OCT retinal imaging.  

What makes the C parameter change? 

In this dissertation, the C parameter of a mouse retina has been demonstrated to 

change depending on the retinal layer, region, or vascularization (Chapter 4), after ischemic 

insult (Chapter 5), and in the early stages of/with the development of AD (Chapter 6). With 

some assumptions, these various cellular changes and their impact on the C parameter are 

summarized in Table 7.1 and described below. 
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Retinal Morphology Impact on the C parameter 

Low cell density (e.g. superficial layers) Low C value 

High cell volume/swelling Low C value 

Highly structured cells High C value 

High cellular “entropy” Low C value 

Cell Death Low C value 

Alzheimer’s disease 

• Mitochondrial Fission? 

• Aβ? 

• Tau? 

Low C value 

Table 7.1: Retinal cellular morphology and its impact on the C parameter. 

The results of Chapter 4 indicated that the native low cell density and high cell 

volume peripheral regions of the retina have a lower C parameter. This echoes the Wang 

study that correlated a shift in the L/H3 ratio with cellular density.[31] In the same chapter, 

layers of the retina that are known to be highly structured (RPE) had a significantly higher 

C parameter. This helps in the understanding of the C parameter as a measure of disorder. 

Disordered retinal structures should scatter with a broader distribution of L/H2 values, 

which would yield a lower C parameter value. This is not the case of the RPE which has a 

C parameter around 9, whereas the C parameter value for more superficial layers of the 

retina is between 4 and 6. 

While Chapter 5 did not offer much in the way of known morphological changes, 

the ischemic insult of the retina by isoflurane overdose does suggest some necrosis based 

on a survey of literature. It was discussed in Chapter 5 that necrosis, if that is indeed what 
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is taking place in the mouse retina during euthanasia, would lead to a decrease in the C 

parameter. Disjointed cell membranes, swollen mitochondria, and scattered cellular 

components would likely contribute to higher disorder. 

Lastly, the 3xTg-AD cross-sectional study showed that the C parameter is lower 

for mice with AD—most significantly at early ages. The difference in the C parameter 

could be due to cellular disorder arising from mitochondrial fission, the presence of Aβ, or 

tau protein accumulation. Without extensive histological analysis, it would be difficult to 

tease apart their individual contributions. 

Is there a C parameter floor? 

The C parameter does seem to reach a floor around 5. In fact, the C parameter for 

the control mice and the 3xTg-AD mice seem to converge to around that value as both 

groups age (Figure 6.2). Thus, any discrimination between the late-stage AD mice and the 

old control mice is below the noise floor.  

It is likely that the limiting factor is the discriminating power of the PME. Recall 

that in Chapter 2, the PME was shown to be able to discriminate backscattering angles up 

to around 8 degrees (Figure 2.10). Chapter 3 demonstrated that L/H2 was sufficient to back-

calculate the angle of bulk-backscattering angle up to 8 degrees. However, the L/H2 ratio 

reaches a minimum of 0.69 (Figure 3.8). 

A higher numerical aperture (NA) lens focusing light onto the retina could 

theoretically allow for discrimination of backscattering angles beyond 8 degrees and even 

lower L/H2 values, but this might not be a practical solution as the NA of the SAR-OCT 

system designed here was already quite high in comparison to other reported systems. The 

ocular pupil and the axial length of the mouse eye from the pupil to the retina are the 

limiting factors. 
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ANGIOGRAPHY LIMITATIONS 

The angiographic analysis performed in this dissertation, particularly the analysis 

in Chapter 6, was limited. The angiography image is highly dependent on the focal plane 

of the beam on the retina. Focusing the beam in the RNFL instead of the OPL could yield 

significantly difference angiography results, particularly for this SAR-OCT that had a high-

NA objective to leverage the utility of the PME. Because of this, many of the angiography 

images had regions that were out-of-focus and produced poor angiography images. Thus, 

the angiography work performed here should not be interpreted as conclusive evidence for 

no vascular changes in 3xTg-AD mice. 

FUTURE WORK 

There are at least two directions this work could take as a result of this dissertation: 

(1) study if the C parameter is an appropriate measure of scattering properties in non-retinal 

tissues and (2) study the C parameter for other retinal pathologies with histological 

analysis. 

First, it could be beneficial to analyze the utility of the PME and SAR-OCT for 

non-retinal imaging. Could the C parameter be used as a feature for detecting diseased 

tissue such as a brain tumor or skin cancer? 

Lastly, other retinal pathologies should be examined with the C parameter to 

determine how specific this parameter is to neurodegeneration. Like other image features 

in OCT (e.g. RNFL thickness), it is possible that the C parameter might only be indicating 

that there is some kind of abnormality, and not specifying what it is. On the other hand, if 

the C parameter is particular to the introduction of new highly-scattering molecules like 

Aβ or tau protein tangles, then SAR-OCT could be a clinically viable route for early AD 

detection. 
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Appendices 

APPENDIX A 

Figure A.1 depicts the electrical layout of the SAR-OCT system, including the 

MEMS mirror. 

 

Figure A.1: A wiring diagram for the SAR-OCT system 
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APPENDIX B 

MATLAB scripts developed for this dissertation may be accessed online as 

supplemental files at the Texas Digital Library.  



 135 

APPENDIX C 

Every output plot from the 3xTg-AD experiment (Chapter 6) is included in this 

Appendix (Figure C.1-C.10). These plots correspond to the rows in Tables 6.3-6.6. 

 

  

  

  

Figure C.1: Complete 3xTg-AD results (1/10) 
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Figure C.2: Complete 3xTg-AD results (2/10) 
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Figure C.3: Complete 3xTg-AD results (3/10) 
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Figure C.4: Complete 3xTg-AD results (4/10) 
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Figure C.5: Complete 3xTg-AD results (5/10) 
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Figure C.6: Complete 3xTg-AD results (6/10) 
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Figure C.7: Complete 3xTg-AD results (7/10) 
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Figure C.8: Complete 3xTg-AD results (8/10) 
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Figure C.9: Complete 3xTg-AD results (9/10) 
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Figure C.10: Complete 3xTg-AD results (10/10) 
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Glossary 

3	
3xTg	..............................................................	triple	transgenic	

A	
AD		............................................................	Alzheimer's	disease	
ALS	.......................................	amyotrophic	lateral	sclerosis	
AR		.......................................................................	anti-reflective	
Aβ		.........................................................................	amyloid	beta	

C	
CAD	..................................................	computer-aided	design	
CDV	......................................	complex	differential	variance	
CRA	......................................................	central	retinal	artery	
CT		.....................................................	computed	tomography	

E	
ELM	........................................	external	limiting	membrane	

F	
FFT	..................................................	Fast	Fourier	Transform	

G	
GCL	............................................................	ganglion	cell	layer	
GDD	..................................................	group	delay	dispersion	

H	
H2		.........................................................................	pathlength	2	
H3		.........................................................................	pathlength	3	
HD	.........................................................	Huntington's	disease	

I	
ILM	.........................................	internal	limiting	membrane	
INL	............................................................	inner	nuclear	layer	
IPL	.........................................................	inner	plexiform	layer	
IS	 	.......................................................................	inner	segment	

L	
L	 	.........................................................................	pathlength	1	

M	
MANOVA	....................	multivariate	analysis	of	variance	
MCI	............................................	mild	cognitive	impairment	
MEMS	...........................	microelectromechanical	systems	
MS		.................................................................	multiple	sclerosis	

N	
NA		............................................................	numerical	aperture	

O	
OA		...............................................................	ophthalmic	artery	
OCT	....................................	optical	coherence	tomography	
OMAG	........................................	optical	microangiography	
ON	.............................................................................	optic	nerve	
ONL	..........................................................	outer	nuclear	layer	
OPL	.......................................................	outer	plexiform	layer	
OS		......................................................................	outer	segment	

P	
P1		..................................................................	pathlength	1	(L)	
P2		................................................................	pathlength	2	(H2)	
P3		................................................................	pathlength	3	(H3)	
PD		............................................................	Parkinson's	disease	
PME	..............................	pathlength	multiplexing	element	

R	
RGCs	.......................................................	retinal	ganglion	cell	
RNFL	..............................................	retinal	nerve	fiber	layer	
RPE	...........................................	retinal	pigment	epithelium	

S	
SAR	...............................................	scattering	angle	resolved	
SNR	........................................................	signal-to-noise	ratio	
SSADA	............	split-spectrum	amplitude	decorrelation	

angiography	
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