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Abstract

We revisit the stock market return predictability using the variance risk premium and
conditional variance as predictors of classical predictive regressions and time-varying
coefficient predictive regressions. Also, we propose three new models to forecast the
conditional variance and estimate the variance risk premium. Our empirical results
show, first, that the flexibility provided by time-varying coefficient regressions often
improve the ability of the variance risk premium, the conditional variance, and other
control variables to predict stock market returns. Second, the conditional variance
and variance risk premium obtained from varying coefficient models perform consis-
tently well at predicting stock market returns. Finally, the time-varying coefficient
predictive regressions show that the variance risk premium is a predictor of stock
market excess returns before the global financial crisis of 2007, but its predictabil-
ity decreases in the post global financial crisis period at the 3-month horizon. At
the 12-month horizon, both the variance risk premium and conditional variance are
predictors of stock excess returns during most of 2000-2015.

JEL-Classifications: C22; C51; C52; C53; G1

Keywords: Nonparametric methods, Predictability, Realized variance,
Time-varying coefficient HAR-type models, Time-varying coefficient predictive
regressions, Variance risk premium

1. Introduction

A recurring question in the financial literature is whether stock returns are
predictable. No clear evidence of this predictability exists and the debate is divided
into studies looking for the best predictors of stock returns and studies confirming
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their unpredictability. Bossaerts and Hillion (1999) observe that out-of-sample pre-
diction of stock returns is not possible after running a set of regressions of 1-month
excess returns on the dividend yield, short-term yield, and bond yield for 14 coun-
tries. Welch and Goyal (2008) conclude that standard predictive variables are not
statistically significant, neither in-sample nor out-of-sample, after running similar re-
gressions with the dividend price ratio, dividend yield, earnings-price ratio, dividend-
earnings (payout) ratio, various interest rates and spreads, inflation rates, book-to-
market ratio, and volatility as predictors of excess returns. In the same line, Ang
and Bekaert (2007) express that long-run predictability is non-significant by studying
whether various dividend yields can predict stock excess returns. In a more positive
light, Campbell and Shiller (1988), Wilcox (2007), Lettau and Van Nieuwerburgh
(2008) and references therein state that returns are predictable by the dividend-
and earning-price, among others. Campbell et al. (2008) determine that the out-
of-sample predictability of future stock excess returns is weak but meaningful by
analyzing several subsample periods and several variables, including both account-
ing and equity market variables. Recently, Bollerslev et al. (2009, 2011, 2012, 2014),
Drechsler and Yaron (2011), Galaix (2012), Bekaert and Hoerova (2014) and Kelly
and Jiang (2014) indicate that the predictability of stock returns is stronger when the
variance risk premium (VRP), alone or together with a set of potential predictors, is
accounted for. Following this last line of research, we explore the predictive power of
the VRP and conditional variance (CV) to predict stock market returns. We obtain
the VRP by decomposing the squared CBOE volatility index (VIX) into the equity
VRP and CV of the stock market measured over the next month, (see Bollerslev
et al., 2009; Bekaert and Hoerova, 2014). The 1-month-ahead forecast of the realized
variance (RV) is our proxy of the CV of the stock market measured over the next
month. Accurate forecasts of the RV are, therefore, important for calculating the
VRP.

Extensions of the heterogeneous autoregressive (HAR) models (Corsi, 2009)
have recently been proposed to improve the forecasts of RV. Worthy of mention
are the semivariance heterogeneous autoregressive (SHAR) model of Patton and
Sheppard (2015) and the semivariance heterogeneous autoregressive-Q (HARQ and
SHARQ) models of Bollerslev et al. (2016). The HAR and SHAR consider a constant
relationship between the RV and its immediate past, whereas the HARQ and SHARQ
assume that this relationship is a linear function of the past realized quarticity.
Bianchi et al. (2017) analyze the U.S. stock returns with multiple macroeconomic
risk factors whose coefficients vary with time. Following this idea, we propose to
extend the HAR, SHAR, HARQ and SHARQ models by allowing their coefficients
to vary depending on time or on the past realized quarticity. They are named in
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the paper as the TVHAR, TVSHAR, TVHARQ, and TVSHARQ and are estimated
nonparametrically. Note that the TVHAR model has previously been proposed by
Chen et al. (2018), but to the best of our knowledge, the other three models have not
been used in the related literature. Altogether, we forecast the CV, and thereupon
we estimate the VRP with the eight aforementioned models to use them as predictors
of future stock market excess returns.

In the spirit of Bekaert and Hoerova (2014) and Bollerslev et al. (2014), we pre-
dict stock excess returns using classical regressions, but also time-varying coefficient
regressions as in Dangl and Halling (2012) and Johannes et al. (2014). Structural
changes in the parameters that relate future stock excess returns to a wide set of
explanatory variables can occur, specially if the out-of sample period is long, and
it could invalidate any inference based on full sample predictors (see, for instance
Viceira, 1996; Paye and Timmermann, 2006; Pettenuzzo and Timmermann, 2011).
In addition to the CV and VRP, we include other potential predictors as control
variables in the predictive regressions, such as the real 3-month rate, the logarithm
of the dividend yield, the credit spread, and the term spread. The predictive power
of these variables is measured with the adjusted R2s of the predictive regressions,
root mean square errors (RMSE) and mean absolute errors (MAE).

Recently, other nonparametric methods, such as machine learning, are becom-
ing popular for measuring asset risk premia. Gu et al. (2020b) show large economic
gains to investors using machine learning forecasts. Also related, Gu et al. (2020a)
propose a latent factor conditional asset pricing model estimated using machine
leaning methods that generates out-of-sample pricing errors substantially smaller to
those obtained with conventional factor models. This literature shows very promising
results, but it is out of the scope of our work.

This paper makes both theoretical and empirical contributions to the litera-
ture. First, we propose a set of varying coefficient HAR-type models to forecast the
RV and consequently, to estimate the VRP. Second, we use time-varying coefficient
regressions to predict future stock excess returns and show that they improve the
prediction ability of the VRP and CV. Finally, we observe that the power of the VRP
and CV to predict stock market excess returns changes after the Global Financial
Crisis (GFC). For moderate prediction horizons these variables lose completely their
ability to predict stock market excess returns, while for long horizons some years
after the GFC these variables recover their prediction ability.

The remainder of this paper is organized as follows: Section 2 defines the
relationship between the variance risk premium and the realized variance. Section
3 presents the HAR-type models, the semiparametric varying coefficient HAR-type
models, and reports the estimation results. Section 4 compares all models perfor-
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mance in predicting stock market returns. Finally, Section 5 summarizes our results.

2. The relationship between VRP and RV

For as long as high-frequency data have been available, RV has been a major
focus of the research in financial econometrics. Among numerous applications, RV is
considered a proxy of economic uncertainty (Bekaert and Hoerova, 2014) and has a
critical role in estimating the VRP, which is a measure of risk aversion to uncertainty.
RV of day t is defined by RVt =

∑M
i=1 r

2
t,i, where rt,i is the price return at time i of

day t and M is the total number of intraday time values.
The VRP is a risk compensation measure commonly used to determine the

investor’s degree of risk aversion to uncertainty and it is not observed. Generally,
there are two approaches that can be used to estimate the VRP: the model-free and
the parametric methodology. The first compares the risk-neutral probability implied
by options prices to the forecast of the conditional variance of stock returns, and the
second “...consists of specifying the time-series (objective) and pricing (risk-neutral)
dynamics of variance risk entering the pricing of asset returns and derivatives” (see
Li and Zinna, 2018). We use the first approach and represent the VRP as the
difference between the squared VIX and the 1-month-ahead forecast of the RV, which
is obtained with some known parametric models and new semiparametric proposals.
(see Bekaert and Hoerova, 2014).1

The HAR model of Corsi (2009) is often used to forecast the RV, using past
values of the daily RV aggregated at different time frequencies. This model does
not account for the asymmetric response of volatility to positive and negative shocks
(see Christie, 1982; Campbell and Hentschel, 1992; Bollerslev et al., 2006, for the
concept of leverage effect).2 Yet, negative shocks might have a stronger effect on
volatility and, consequently, on the forecasts of the RV and on the estimates of the
VRP, than positive shocks of the same magnitude. Investors dislike the uncertainty
embedded in negative shocks because the likelihood of high losses increases. Thus, it
is plausible to argue a priori that RV models that consider volatility asymmetry will
increase the prediction ability of the VRP to predict future stock returns. Hence,
we summarize the existing asymmetric HAR-type models and propose their related
varying coefficient semiparametric models in the next section.

1VIX2 is expressed in monthly percentages squared, that is, VIX2/12. Note that VIX is the
quoted VIX index level in annualized percent.

2Although asymmetry and leverage are not exactly the same, we use them interchangeably
hereafter. Leverage is considered a special case of asymmetry (see, for example, McAleer, 2014).
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3. HAR-type models

Although HAR models do not formally belong to the family of long memory
models, it has been empirically observed that they are able to capture high per-
sistence and to mimic the long memory feature of some financial time series. This
makes them suitable for modeling the RV.

3.1. Parametric HAR models
Patton and Sheppard (2015) recently propose the semivariance heterogeneous

autoregressive (SHAR) model, which is specified by

RVt = β0 + β+
1 RV

+
t−1 + β−1 RV

−
t−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut, (1)

where RV +
t =

∑M
i=1 r

2
t,iI(rt,i ≥ 0) and RV −t =

∑M
i=1 r

2
t,iI(rt,i ≤ 0) (see Barndorff-

Nielsen et al., 2010, for further details on the realized semivariance). Note that
rt,i is the return of day t at moment i and I(·) is an indicator function that takes
the value of one if the argument is true and zero otherwise. Moreover, RVt−j|t−h =

1
h+1−j

∑h
i=j RVt−i with j ≤ h. Therefore, RVt−1, RVt−1|t−5, and RVt−1|t−22 correspond

to the daily, weekly, and monthly lag RVs. The expression of the HAR model of Corsi
(2009) is similar to (1), but β+

1 RV
+
t−1 + β−1 RV

−
t−1 is replaced by β1RVt−1.

Bollerslev et al. (2016) show that although the RV is a consistent estimator of
the integrated volatility under certain conditions, it is often affected by measurement
errors in finite samples. This can cause biases on the parameter estimators of the
HAR model. To account for these biases, Bollerslev et al. (2016) propose a new
family of models named HARQ, which are basically HAR models whose coefficients
are linear functions of the realized quarticity (RQ), that is:

RVt =β0 +
(
β+
1 + β+

1QRQ
1/2
t−1

)
RV +

t−1 +
(
β−1 + β−1QRQ

1/2
t−1

)
RV −t−1+ (2)

β2RVt−1|t−5 + β3RVt−1|t−22 + ut,

where RQt ≡ M
3

∑M
i=1 r

4
t,i. In particular, this model is named SHARQ since it in-

cludes the two components of the RV. Again, replacing
(
β+
1 + β+

1QRQ
1/2
t−1

)
RV +

t−1 +(
β−1 + β−1QRQ

1/2
t−1

)
RV −t−1 by

(
β1 + β1QRQ

1/2
t−1

)
RVt−1 in equation (2) leads to the

HARQ model. Bollerslev et al. (2016) show empirically that the HARQ and SHARQ
models outperform the HAR model and its extensions, and in some cases even the
SHAR model, in forecasting the RV.
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In this paper, we do not consider the presence of jumps. Patton and Sheppard
(2015) report that specifications that include jumps (for example, the HAR-J) show
poor performance in comparison with the SHAR model.

3.2. Semiparametric HAR models
Recently, Chen et al. (2018) study a flexible model to estimate and forecast

the RV of the S&P 500 returns by adding time-varying coefficients to the HAR model.
This model, named TVHAR in this paper, is mathematically expressed by

RVt = β0(τ) + β1(τ)RVt−1 + β2(τ)RVt−1|t−5 + β3(τ)RVt−1|t−22 + ut, (3)

for t = 1, 2, . . . , T , τ = t/T ∈ [0, 1]. Coefficients βi(τ) are unknown functions of
τ allowing for a lot of flexibility in the relationships between the current RV and
its past values. Robinson (1989) introduced time-varying coefficients in multivariate
regression, which has been generalized into various contexts of linear models over
the years: (i) with stationary regressors (see Orbe et al., 2005; Cai, 2007; Gao, 2007;
Kristensen, 2012; Phillips et al., 2017; Casas et al., 2019a, among many others) and
with non-stationary regressors (see Gao and Phillips, 2013b,a; Casas et al., 2019b,a).
It is a flexible approach but its forecast is inconsistent because no information from
the dependent variable exists at time T + h, h ≥ 1.

Bollerslev et al. (2016) indicate that the measurement error in the RV in
finite samples is stronger for the daily lagged RV, although it still exists for the
weekly and monthly lagged RVs, and they model the coefficients of the HARQ and
SHARQ models as linear functions of the square root of the lagged realized quarticity.
Instead, we extend this innovative idea allowing for linear and nonlinear relationships
as required. The varying coefficient HARQ model, named TVHARQ, is given by

RVt =β0(RQ
1/2
t−1) + β1(RQ

1/2
t−1)RVt−1 + β2(RQ

1/2
t−1)RVt−1|t−5+ (4)

β3(RQ
1/2
t−1)RVt−1|t−22 + ut,

where the expression of βi(RQ
1/2
t−1) represents a coefficient that is an unknown func-

tion of the lagged realized quarticity and may vary for different values of it. Theo-
retical results for the nonparametric estimators of these coefficients are given in Cai
et al. (2009) for stationary regressors, and stationary and nonstationary smoothing
variables. The extension to the case of nonstationary regressors and smoothing vari-
ables is shown in Gao and Phillips (2013b,a) and Sun et al. (2013). On the other
hand, Das (2005), Xiao (2009), Henderson et al. (2015) use this approach in the
context of instrumental variables, cointegration and seemingly unrelated regressors,
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respectively. Whereas Sun et al. (2009); Feng et al. (2017); Feng et al. (2019); Dong
et al. (2019) use it for panel data models.

Nonparametric methods are not convenient for models with numerous re-
gressors because their rate of convergence decreases as the number of regressors
increases. Semiparametric methods such as models (3)-(4), also called dynamic gen-
eralized linear models as in Hastie and Tibshirani (1993) and references therein, are
good alternatives because they maintain a high level of flexibility and a satisfactory
rate of convergence. The estimations and forecasts of models (3)-(4) are performed
using the local constant (LC) or Nadaraya-Watson nonparametric estimator in this
paper. This estimator requires that functions βi(·) have a first derivative either at τ
or in a region where RQ1/2

t−1 is defined. The LC estimator is sometimes negative for
finite samples, even when the dependent variable is always positive such as in our
application. Asymptotically, this is not the case, and the number of negative values
decreases as T increases. One way of avoiding this problem is to use the logRVt se-
ries, as in Chen et al. (2018). However, we use the RVt series following the example
of Bekaert and Hoerova (2014) and interpolate the possible few negative estimates.

Generalizing, we propose a varying coefficient model given by

RVt =Mtβ(zt) + ut. (5)

The regressors’ vector at time t is Mt = (1, RVt−1, RVt−1|t−5, RVt−1|t−22)
′ for the

TVHAR and TVHARQ models and Mt = (1, RV +
t−1, RV

−
t−1, RVt−1|t−5, RVt−1|t−22)

′

for the TVSHAR and TVSHARQ models. The coefficient estimates minimize the
mean squared error of Equation (5) and are calculated by

β̂t = ST (zt)
−1TT (zt),

where ST (zt) = T−1
∑T

t=1MtM
′
tKb(Z − zt) and TT =

∑T
t=1MtKb(Z − zt)RVt. The

conditional variable for the TVHAR and TVSHAR models is zt = t/T , whereas
is zt = RQ

1/2
t−1 for the TVHARQ and TVSHARQ models. The kernel function,

Kb(u) = K(u/b)/b, is a symmetric continuous function with compact support and
bandwidth b. The bandwidth should reach zero at a slower rate than T approaches
infinity. In this paper, the bandwidth is selected by leave-k-out cross-validation (Chu
and Marron, 1991) with k = bT/3c to ensure the independence of the subsamples.
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3.3. Estimation results
Our empirical results are based on the daily S&P 500 index. High-frequency

prices for the index are obtained from 1-minute close prices.3 Our complete sample
ranges from January 2, 1990 until December 31, 2019 with 7557 daily observations
of the RV and its asymmetric measures.

Figure 1 displays the daily realized semivariance. We observe that the RV −
shows larger values of volatility than theRV +. This is expected since negative returns
affect the volatility more than positive returns of the same magnitude. The highest
spikes occur on October 10, 2008 in both series when the Asian and European stock
markets closed with large losses (for example, the “Yamato Life” insurance company
filed for bankruptcy). October 10, 2008 is also preceded and followed by periods of
high volatility that correspond to the 2008 global financial crisis.

Figure 1: Daily S&P 500 realized semivariance. Negative (left panel) and positive (right panel)
measures ranging from January 2, 1990 untill December 31, 2019.

Table 1 lists the coefficient estimates of the HAR, SHAR, HARQ and SHARQ
models, their standard errors in brackets, p-values, adjusted R2, RMSE, and mean
values of the QLIKE loss function. Similarly, Table 2 lists the pseudo-R2, RMSE, and
QLIKE of the semiparametric specifications.4 Estimation is done for three different
samples: the full sample from January 2, 1990 until December 31, 2019; the pre-GFC
sample from January 2, 1990 until December 31, 2006; and the post-GFC sample

3Detailed information can be found on http://download-stock-data.webs.com/.
4The pseudo-R2 is calculated with the classical equation, R2 = 1−

∑T
t=1(yt−ŷ)2∑T
t=1(yt−ȳ)2

, where yt is the
dependent variable, ȳ is its mean and ŷt are the fitted values. The QLIKE loss function of Patton
(2011) is given by QLIKEt ≡ RVt

E(RVt)
− log RVt

E(RVt)
− 1, where E(RVt) corresponds to the estimated

realized variance at day t obtained from the selected models.
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from January 2, 2007 until December 31, 2019. The largest differences among samples
are found in the β̂1

−
, β̂1

+
and β̂1Q

+
. The two former estimates show an important

increment in magnitude during the post-GFC due to the market instability. In
general, the β−1 estimates are larger in absolute value than the β+

1 estimates for
all samples, and are always statistically significant. Whereas the β+

1 estimate is
non-significant during the pre-GFC. This result agrees with Patton and Sheppard
(2015) who obtain a similar evidence for the SHAR model. We also observe that the
sum of β̂2 and β̂3 is smaller for the HARQ and SHARQ than for the other models,
suggesting that the importance of the RV components corresponding to one week
and one month lags decreases when the RQ plays a role in the model. In fact, β̂3
is positive and non-significant for the HARQ and SHARQ during the pre-GFC, but
negative and statistically significant during the post-GFC. In addition, β1Q and β−1Q
are statistically significant in all periods, but β+

1Q is only significant in the post-GFC
period.

Figure 2 displays the estimates of the HARQ and TVHARQ that explain
the relationship between RVt and RVt−1, i.e., β̂1(RQ

1/2
t−1) in the TVHARQ and β̂1 +

β̂1QRQ
1/2
t−1 in the HARQ. There are obvious differences, not only between the two

models, but also between results at different periods. The HARQ estimates (dashed
line) are mostly greater than the TVHARQ estimates (continuous line) for all RQ
values and periods. The 95% confidence intervals obtained from the two models
overlap for most of the pre-GFC period. Note that estimates during the pre-GFC
period are less volatile than during the post-GFC. Furthermore, there is a clear
decreasing trend in the TVHARQ estimates as RQ1/2

t−1 increases during the post-
GFC and during the full sample. In all periods, the 95% confidence intervals of the
TVHARQ coefficients include the zero for large values of RQ1/2

t−1, suggesting that
the relationship between RVt and RVt−1 is not significant for days with very large
realized quarticity. Regarding the HARQ model, the relationship between RVt and
RVt−1 is mostly positive and significant, but it also diminishes in significance and
sign as RQ increases.
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Figure2:EstimatesofthedailyrelationshipbetweenRVtandRVt−1

0.000 0.002 0.004 0.006 0.008 0.010

−
1.
0 

−
0.
5 

0.
0 

0.
5 

1.
0

Full sample

RQt−1
12

R
el
ati
o
ns
hi
p 
b
et
w
e
e
n 
 
R
V
t 
a
n
d 
R
V t−
1

HARQ
TVHARQ

fromtheHARQ(dashed)
andtheTVHARQ(continuous).Thebandscorrespondtothe95%confidenceintervals.

0.000 0.002 0.004 0.006 0.008 0.010

−
1.
0 

−
0.
5 

0.
0 

0.
5 

1.
0

Pre−GFC

RQt−1
12

R
el
ati
o
ns
hi
p 
b
et
w
e
e
n 
 
R
V
t 
a
n
d 
R
V t−
1

HARQ
TVHARQ

0.000 0.002 0.004 0.006 0.008 0.010

−
1.
0 

−
0.
5 

0.
0 

0.
5 

1.
0

Post−GFC

RQt−1
12

R
el
ati
o
ns
hi
p 
b
et
w
e
e
n 
 
R
V
t 
a
n
d 
R
V t−
1

HARQ
TVHARQ

11



Table 2: Semiparametric models’ goodness-of-fit (period 1990-2019)

The table provides summaries of coefficient distributions and in-sample measures of
goodness-of-fit for the semiparametric models. The value of the RMSE is multiplied
by 1000. The frequency is daily.

S&P 500

TVHAR TVSHAR TVHARQ TVSHARQ
β1(t) β+

1 (t) β−
1 (t) β1(RQt) β+

1 (RQt) β−
1 (RQt)

Full sample

Min. 0.207 -1.072 1.597 -0.214 -1.423 1.220
Q1 0.207 -1.072 1.597 0.589 -0.450 1.658
Median 0.207 -1.072 1.598 0.589 -0.450 1.658
Mean 0.207 -1.072 1.598 0.588 -0.451 1.658
Q3 0.207 -1.072 1.598 0.589 -0.450 1.659
Max. 0.207 -1.072 1.598 0.589 -0.450 1.659
pseudo-R2 0.561 0.589 0.625 0.642
RMSE 0.103 0.100 0.095 0.093
QLIKE 0.146 0.198 0.132 0.156

pre-GFC

Min. 0.393 -0.179 0.909 0.170 -0.130 0.831
Q1 0.393 -0.146 0.965 0.485 -0.045 0.965
Median 0.393 -0.138 0.976 0.486 -0.044 0.965
Mean 0.393 -0.141 0.972 0.485 -0.044 0.965
Q3 0.393 -0.136 0.985 0.488 -0.043 0.965
Max. 0.393 -0.108 0.992 0.488 -0.043 0.966
pseudo-R2 0.649 0.672 0.660 0.676
RMSE 0.028 0.027 0.027 0.026
QLIKE 0.113 0.114 0.112 0.113

post-GFC

Min. 0.144 -1.338 1.509 -0.233 -1.234 0.963
Q1 0.190 -1.330 1.848 0.609 -0.594 1.839
Median 0.475 -1.316 1.852 0.610 -0.594 1.840
Mean 0.394 -1.261 1.834 0.608 -0.596 1.839
Q3 0.546 -1.284 1.853 0.610 -0.594 1.841
Max. 0.631 -0.440 1.853 0.610 -0.587 1.841
pseudo-R2 0.549 0.579 0.616 0.634
RMSE 0.153 0.148 0.141 0.138
QLIKE 0.168 0.182 0.152 0.160
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We observe in Table 1 that the SHARQ is the parametric model with the
largest adjusted R2 and the smallest RMSE in all periods, while the HARQ is the
model with the smallest QLIKE values in the full sample and post-GFC periods.
Similarly and looking at Table 2, the TVSHARQ reports the largest pseudo-R2 and
the smallest RMSE in all sample periods, while the TVHARQ reports the smallest
QLIKE in all sample periods. Like in Bollerslev et al. (2016), we observe that
adding the realized quarticity to HAR-type models improves the goodness-of-fit of
the models, in particular, if we allow for varying coefficients. In the next section,
we study whether a better estimation of the RV also results in a more accurate
prediction of stock market returns.

4. Stock market return predictability

Bollerslev et al. (2009), Bekaert and Hoerova (2014), Bollerslev et al. (2014),
and Bollerslev et al. (2015) adopt a linear model for stock market return prediction.
They observe that the VRP is a significant predictor in their regressions. Here in,
the VRP is used as a proxy of risk aversion and the RV is used as a proxy of economic
uncertainty (see Bekaert and Hoerova, 2014). The monthly VRP is calculated using
the monthly squared VIX and the 1-month-ahead forecast of RV.5

To avoid the misspecification of univariate regressions, Bekaert and Hoerova
(2014) consider regressions in which the VRP and CV are simultaneously predictors
of future stock excess returns in addition to: (1) the real 3-month rate (3MTB), which
is the 3-month T-bill minus CPI inflation; (2) the logarithm of the dividend yield
(log(DY)); (3) the credit spread (CS) obtained using the difference between Moody’s
BAA and AAA bond yield indexes; and (4) the term spread (TS) calculated using
the difference between the 10-year and 3-month treasury yields.

5In order to obtain the 1-month ahead monthly forecast of the RV, we use the aforementioned
models to estimate the RV (22)

t . For example, using the HARQ model we find the estimate of RV (22)
t

with

RV
(22)
t = β0 + β+

1 RV
+(1)
t−22 + β−

1 RV
−(1)
t−22 + β2RV

(5)
t−22 +

(
β3 + β3Q

√
RQ

(22)
t−22

)
RV

(22)
t−22 + ut,

where RV (22)
t =

∑22
j=1RVt−j+1, RV

±(h)
t = 22

h

∑h
j=1RV

±
t−j+1, RQ

(h)
t = 22

h

∑h
j=1RQt−j+1, and

RV
(h)
t = 22

h

∑h
j=1RVt−j+1. Bollerslev et al. (2016) show that when forecasting the monthly RV ,

the monthly lag becomes relatively more important than the daily and weekly lags. Therefore, we
correct the coefficient of RV (22)

t−22 using the monthly RQ instead. Similar transformations apply to
the other models.
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Conforming with the aforementioned articles, we run the following regressions
to predict stock market excess returns for horizons h = 1, 3 and 12 months

h−1
h∑
j=1

rt,t+j =a
h + bhV RPt + chCVt + dhXt + ut,t+h t = 1, . . . , T, (6)

where rt,t+j denotes the j = 1, . . . , h-month excess returns on the S&P 500. The
control variables listed above are expressed in annualized percentages and are rep-
resented by the Xt vector. Note that t, hereafter, corresponds to the observation of
month t. Bekaert and Hoerova (2014) state that the overlapping in the monthly data
can generate serial correlation and biased standard errors. We use robust Newey-
West standard errors to take care of this issue. Even though, high adjusted-R2s are
expected for long horizons since they tend to increase with the horizon when the
predictors are persistent (see, for example, Fama and French, 1988; Campbell et al.,
1997; Campbell, 2001).

Empirically studies like Paye and Timmermann (2006), Lettau and Van Nieuwer-
burgh (2008), Henkel et al. (2011), Dangl and Halling (2012) and Johannes et al.
(2014) show that the relationship between the returns and some predictors varies
with time. Our time-varying coefficient regressions are

h−1
h∑
j=1

rt,t+j =a
h(τ) + bh(τ)V RPt + ch(τ)CVt + dh(τ)Xt + ut,t+h. (7)

The main difference with Equation (6) is that these coefficients may be a constant,
a linear function of τ = (0, 1/T, . . . , T ) or a non-linear function of τ , depending on
the information in the data. The coefficients in Equation (7) are estimated using
the local linear kernel estimator (Fan and Gijbels, 1996) for horizons 1-, 3- and 12-
months. The bandwidths are selected using leave-k-out cross-validation (Chu and
Marron, 1991) for k equal to 2 months of data. In practice, the estimates and plots
are obtained using the R package tvReg (Casas and Fernandez-Casal, 2019).

We analyze the performance of the proposed estimators of the VRP and CV in
predicting excess returns from April 1994 until December 2019. Table 3 reports the
adjusted-R2s, the pseudo-R2s, the RMSEs and the mean absolute errors (MAE) ob-
tained from the classical predictive regressions (PR) and the time-varying coefficient
predictive regressions (TVPR). Their statistical difference in predictive accuracy is
tested with the model confident set procedure (MCS) proposed by Hansen et al.
(2011). The procedure consists of a sequence of statistic tests to construct the “Su-
perior Set of Models” (SSM) at a given confidence level, 100(1−α)%. Models in the
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SSM have statistically the same predictive accuracy, measured by a loss function, at
significant level α. We use the root mean squared error and mean absolute error loss
functions.

Table 4 displays the 80% SSM obtained from comparing all our regressions
(see Granger, 1996, that considers confidence levels of 50% and 80% adequate to
provide “warning” signals that the model is breaking down). The capability to adapt
to changes in the coefficients over time of the TVPR appear to be crucial in the
prediction of stock market returns for 12-month horizon. Thus, the last row of
Table 4 shows that the only specification in the 80% SSM for both loss functions
is the TVPR where the VRP and CV are obtained using the TVHAR model. This
adaptability of the coefficients is not as important for shorter horizons. Regarding
the 1-month horizon, most of the VRP and CV obtained with the HAR-type and
TVHAR-type models perform equally well at predicting future excess returns, at
the confidence level 80%. Nevertheless, the combination of TVHAR predictors with
TVPR achieves the smallest RMSE and MAE values; see Table 3. At the 3-month
horizon, all TVPR have the same predictive ability, but only the PR whose VRP
and CV are obtained with the RV, TVHARQ and TVSHARQ are in the 80% SSM
for the RMSE loss function. Furthermore, the combination of SHAR predictors with
TVPR provides the smallest RMSE. Finally, within the class of varying coefficient
models, the TVHAR is the model with the smallest RMSE and MAE for three out
of six cases; see Table 3.

Figure 3 plots the VRP and CV coefficient estimates of our predictive regres-
sions (PR and TVPR) with the smallest RMSE for the three horizons. The figure
shows, first, that the TVPR coefficient estimates are linear for the 1-month horizon
and non-linear for the other horizons. Second, the width of the 95% confidence in-
tervals of all estimates decreases as the horizon increases, meaning that there is less
uncertainty in the prediction of future excess returns for longer horizons. Third, the
sign of the estimates associated with the VRP and CV predictors are always positive
in the PR; however, their sign vary over time and over the prediction horizon in
the TVPR. Finally, the VRP and CV are predictors of excess returns in the PR at
all horizons. Yet, in the TVPR and based on the 95% confidence intervals, we can
observe that the VRP is a predictor until the end of 2005 at the 3-month horizon;
and both the VRP and CV are predictors of excess returns during most of 2000-2015
at the 12-month horizon, with the exception of the period between November, 2009
and April, 2012 when the 95% confidence interval of the VRP coefficient estimates
includes the zero and the period between September, 2010 and November, 2011 for
the CV coefficient estimates.
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Table 3: Stock excess return regressions: April 1994–December 2019
Predictive regressions (monthly observations) with variance risk premium, conditional variance, real 3-month rate, the log-
arithm of dividend yield, credit spread, and term spread. RMSE corresponds to root mean square error and MAE to mean
absolute error. PR stands for parametric predictive regressions and TVPR corresponds to time-varying coefficient predictive
regressions. Cells in gray correspond to the best values of the measures.

RV HAR SHAR HARQ SHARQ TVHARQ TVSHARQ TVHAR TVSHAR

Panel A: 1-month horizon

PR

Adj. R2 0.230 0.242 0.239 0.239 0.236 0.227 0.227 0.255 0.241
RMSE 6.495 6.470 6.477 6.477 6.482 6.500 6.500 6.442 6.472
MAE 31.065 30.970 31.032 31.037 31.047 31.223 31.188 30.878 31.075

TVPR

Pseudo R2 0.295 0.306 0.304 0.303 0.302 0.290 0.296 0.319 0.314
RMSE 6.386 6.359 6.364 6.366 6.370 6.395 6.383 6.330 6.341
MAE 30.681 30.147 30.183 30.334 30.333 30.551 30.366 30.002 30.114

Panel B: 3-month horizon

PR

Adj. R2 0.518 0.495 0.495 0.504 0.504 0.512 0.525 0.496 0.496
RMSE 4.755 4.811 4.812 4.789 4.791 4.770 4.739 4.809 4.809
MAE 16.392 16.915 16.947 16.681 16.701 16.863 16.809 16.949 16.898

TVPR

Pseudo R2 0.586 0.601 0.601 0.576 0.576 0.581 0.588 0.574 0.575
RMSE 4.602 4.559 4.558 4.629 4.629 4.616 4.594 4.634 4.632
MAE 15.768 15.531 15.548 16.056 16.067 16.223 16.203 16.126 16.097

Panel C: 12-month horizon

PR

Adj. R2 0.817 0.815 0.815 0.815 0.815 0.816 0.816 0.815 0.815
RMSE 3.233 3.240 3.240 3.241 3.241 3.237 3.236 3.241 3.241
MAE 7.834 7.985 7.987 7.958 7.960 7.951 7.957 7.957 7.962

TVPR

Pseudo R2 0.875 0.875 0.875 0.875 0.875 0.879 0.880 0.899 0.860
RMSE 2.954 2.950 2.952 2.953 2.954 2.926 2.924 2.798 3.038
MAE 6.704 6.696 6.716 6.708 6.717 6.576 6.577 5.721 7.318

All in all, we conclude that: (i) the VRP and CV are not predictors of excess
returns in the TVPR at 1-month horizon; (ii) only the VRP is a predictor of excess
returns at the 3-month horizon and only before the GFC; and (iii) the VRP and CV
are both predictors of future excess returns at the 12-month horizon from the first
half of 2000 until 2010 and from the end of 2011 until the end of 2014.
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Figure 3: VRP annd CV coefficient estimates obtained from either classical and time-varying
predictive regressions. The VRP and CV are obtained from models: TVHAR (1-month horizon),
SHAR (3-month horizon) and TVHAR (12-month horizon).
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Regarding the set of extra potential predictors, Figure 4 plots the coefficient
estimates of the credit spread, the real 3-month rate, the term spread and the log-
arithm of the dividend yield. We notice that the sign of the coefficient estimates of
most predictors are the same in the PR and TVPR. Focusing on the results from the
TVPR, the CS predicts future returns with a negative sign at the 1- and 3-month
horizons from early 2000s until the end of 2019, but it loses its predictive power
at the 12-month horizon. The 3MTB is also a predictor of excess returns at all
horizons, but its predictability is not homogeneous over the out-of-sample period.
For instance, at the 1-month horizon, the 3MTB is a significant predictor from late
1990s until around year 2015, and the sign of its coefficient is negative during most
of the sample. On the other hand, the TS is not a predictor of excess returns at
the 1-month horizon, but it is at the 3-month horizon from early 2000s till around
2015, with a negative sign. Finally, the logarithm of the DY is a predictor with a
very steep increasing trend in its coefficient estimates during the whole period and
all horizons. These are positive and statistically significant from year 2000.

5. Conclusion

The purpose of this paper is to find the best methodologies and models to
obtain an accurate monthly forecast of the realized variance and an accurate monthly
estimate of the variance risk premium, and consequently, to increase the predictabil-
ity power of these variables in predicting future stock excess returns. We compare
a total of eight forecasters of the realized variance. To the best of our knowledge,
three of them have never been used before in the related literature. Four of those
forecasters are HAR-type models and the other four are their extensions with vary-
ing coefficients, which may vary over time or react to variations in the past realized
quarticity. The function form of these coefficients are estimated by kernel smoothing
from the data, allowing for very flexible relationships.

We start by comparing the performance of these models to estimate the daily
realized variance in-sample for three time periods: The period before the global
financial crisis from January 1990 until December 2006; the period posterior to this
crisis from January 2007 until December 2019; and the union of the two previous
sample periods, the full sample. We find that the best strategy to estimate the
daily realized variance is often to use semiparametric models whose coefficients vary
as a function of the realized quarticity. Including the asymmetric response of the
volatility to positive and negative returns also improves the goodness-of-fit of both
parametric and semiparametric models. Then, we proceed to obtain the monthly
forecast of the realized variance, and the variance risk premium which is used to
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predict the excess returns with both classical and time-varying coefficient predictive
regressions.

The out-of-sample results are clear: first, time-varying coefficient predictive
regressions improve the predictive ability of the variance risk premium and condi-
tional variance to predict future excess returns. Second, and most importantly, some
parametric HAR models have similar predictive ability to varying coefficient HAR
models in predicting excess returns, except if the forecasting horizon is long. In this
case, we need both varying coefficient models together with time-varying coefficient
predictive regressions. Finally, given that time-varying coefficient predictive regres-
sions allow the coefficients of the predictors to change over time, we can detect the
periods in which the variance risk premium and conditional variance are predictors of
the future excess returns and the sign of this prediction. We observe that for the ma-
jority of the horizons the sign of the prediction for both the variance risk premium
and conditional variance is positive which supports the risk compensation theory,
and that the variance risk premium is a predictor of the future excess returns at
the 3-month horizon before the last global financial crisis, and at the 12-month hori-
zon before the great financial crisis and during most of 2000-2015. The conditional
variance is only a predictor of the excess returns at the 12-month horizon.
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