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A B S T R A C T

This work presents several contributions on the topic of learning rep-
resentations of function spaces, as well as on learning the dynamics
of glioma growth as a particular instance thereof. We begin with two
preparatory efforts, showing how expert knowledge can be leveraged
efficiently in an interactive segmentation context, and presenting a
proof of concept for inferring non-deterministic glioma growth pat-
terns purely from data. The remainder of our work builds upon the
framework of Neural Processes. We show how these models repre-
sent function spaces and discover that they can implicitly decompose
the space into different frequency components, not unlike a Fourier
transform. In this context we derive an upper bound on the maximum
signal frequency Neural Processes can represent and show how to
control the learned representations to only contain certain frequen-
cies. We continue with an improvement of a more recent addition
to the Neural Process family called ConvCNP, which we combine
with a Gaussian Process to make it non-deterministic and to improve
generalization. Finally, we show how to perform segmentation in
the Neural Process framework by extending a typical segmentation
architecture with spatio-temporal attention. The resulting model can
interpolate complex spatial variations of segmentations over time and,
applied to glioma growth, it is able to represent multiple temporally
consistent growth trajectories, exhibiting realistic and diverse spatial
growth patterns.
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Z U S A M M E N FA S S U N G

Diese Arbeit präsentiert mehrere Beiträge zum Thema lernbarer Re-
präsentationen von Funktionsräumen, sowie zum Lernen der Wachs-
tumsdynamiken von Gliomen als ein Anwendungsbeispiel davon.
Wir präsentieren zunächst zwei vorbereitende Leistungen und zeigen
dabei, wie Expertenwissen im Kontext interaktiver Segmentierung
möglichst effizient genutzt werden kann. Zudem präsentieren wir als
Proof of Concept, wie Wachstumsmuster des Glioms ausschließlich
von Daten inferiert werden können. Der Rest unserer Arbeit baut
auf so genannten Neural Processes auf. Wir zeigen wie diese Model-
le Funktionsräume repräsentieren und entdecken, dass sie implizit
eine Frequenzzerlegung vornehmen können, ähnlich einer Fourier-
Transformation. In diesem Kontext leiten wir eine obere Grenze für
Frequenzen her, die dargestellt werden können, und zeigen wie die
gelernten Repräsentationen kontrolliert werden können, sodass nur
bestimmte Frequenzen darin enthalten sind. Weiterhin präsentieren
wir eine Erweiterung zu einem neueren Mitglied der Neural Process-
Familie, ConvCNP genannt, welches wir mit einem Gaussian Process
kombinieren, um es nicht-deterministisch zu machen und seine Gene-
ralisierung zu verbessern. Zuletzt zeigen wir, wie man Segmentierung
im Rahmen von Neural Processes abbilden kann, indem wir eine
typische Segmentierungsarchitektur mit einem zeitlich-räumlichen
Attention-Mechanismus ausstatten. Das resultierende Modell kann
komplexe räumliche Variationen einer Segmentierung über die Zeit
interpolieren und kann, in der Anwendung auf Gliom-Wachstum,
mehrere zeitlich konsistente Wachstums-Trajektorien darstellen, wobei
letztere sowohl divers als auch realistisch sind.
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Jäger, and Klaus H. Maier-Hein (2020b). “GP-ConvCNP: Im-
proving Generalization in Convolutional Conditional Neural Pro-
cesses”. In: AAAI Conference on Artificial Intelligence (under review).

ix



x

O T H E R P U B L I C AT I O N S
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meine größten Vorbilder, und ich hätte mir keine schönere Kindheit
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1
I N T R O D U C T I O N

1.1 motivation & research objective

Much has been written about the great successes deep learning has
enjoyed in the last few years, often in reference to a more grandiose
umbrella term: Artificial Intelligence (AI). The World Economic Forum
considers AI a central element of the “Fourth Industrial Revolution”
(Schwab, 2016), while the European Commission has already pub-
lished a policy paper on “a European approach to artificial intelligence”
(European Commission, 2018). And perhaps with good reason. While
experts in the field often caution against use of the term “intelligence”,
there is no denying that the advances deep learning has made and
enabled are nothing short of spectacular, beating professional players
in complex games (Silver et al., 2018) or generating long text passages
that are indistinguishable from human-penned paragraphs (Brown
et al., 2020; Palenzuela, 2020). In the medical domain, multiple studies
report deep learning models with performance that is comparable to
human experts (Gulshan et al., 2016; Esteva et al., 2017; Fauw et al.,
2018; McKinney et al., 2020). At the same time, voices that pronounce
the limitations of current research become more numerous (Lipton,
2018; Lipton and Steinhardt, 2018), proposing the possibility of a new
“AI Winter” (Floridi, 2020), or attributing advancements to increased
compute capabilities instead of progress in the methods themselves
(Sutton, 2020).

Discussions about AI and its long-term potential, both positive and
negative, are certainly useful and even necessary, but we choose not
to engage in them for this thesis. Instead, we will treat deep learning
and neural networks as what they undoubtedly are: powerful tools to
approximate functions. More precisely, we will explore their capacity
in a scenario that receives relatively little attention, the learning of
distributions of functions (or function spaces) on continuous domains.
Many architectures implicitly assume a certain grid-structure, like
for example convolutional neural networks that are often used for
image processing. While it might be unlikely that we need to work
with images that don’t have a pixel-grid structure, the assumption
is more easily violated when we look at more generic sequences of
observations. These are often modeled with recurrent neural networks
(Lipton et al., 2015), which rely on the same premise. In other words,
these models are missing a concept of distance between input elements
or they are implicitly assuming equidistant inputs. In this thesis
we will investigate how we can learn function representations that

1
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do incorporate such a concept explicitly, meaning functions that are
defined on a continuous domain. Moreover, rather than approximating
single functions, we instead seek to learn representations of multiple
functions at once. Our research objective is best summarized by the
following scenario:

We have collected a number of observations over time and at arbi-
trary times—this could be a measurement of some property of interest,
multiple potentially correlated measurements or even images. We
would like to be able to estimate what the measurements would have
looked like between those times we observed, i.e. interpolate between
them, and also estimate what they might look like in the future, i.e.
extrapolate from them. Whatever process we observed, we have no
a priori knowledge about it, meaning we are unable to manually de-
fine or describe the underlying process—maybe we are not an expert,
maybe the dynamics are entirely unknown. What we do have is a
collection of past observations from similar processes. Our goal in
this thesis is to use learning-based methods to automatically form a
representation of the dynamics that describe these past observations;
in other words, we wish to learn a representation of the distribution
of functions from which the observations originated, such that, upon
seeing the new measurements we just made, the model automatically
selects which elements of the learned distribution best describe the
current observations. We speak of elements as opposed to only one
element, because we wish that approaches be able to handle both
deterministic and probabilistic scenarios.

A very relevant example from the medical domain—and one we use
repeatedly throughout the thesis—is the estimation of glioma growth,
a form of brain cancer. Patients who have been diagnosed with the
disease will regularly receive MRI scans to monitor its progression. It
is important to know how large the tumor is and which areas of the
brain are affected, and an estimate of the future development of the
disease could be of tremendous use. In radiation therapy, clinicians
must estimate which areas of the brain are likely affected by the cancer
but appear normal in imaging. This is typically done by expanding
the visible tumor region isotropically (Paulsson et al., 2014; Mann
et al., 2018), and the clinician might adjust the result using personal
experience. A better understanding and estimate of the growth dy-
namics could assist in the process by identifying regions of high and
low risk of tumor infiltration, and could thus spare healthy tissue
from damaging radiation. Likewise, treatment for glioma patients is
often changed or adjusted when a progression, meaning a marked
increase in size or the number of lesions, is diagnosed (Nam and
Groot, 2017), because it can indicate that the treatment is not working.
Earlier knowledge of this could thus improve a patient’s prognosis.
Finally, the example is useful for our purposes because glioma growth
is not deterministic, at least not with respect to the observations we
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will look at in this work. Our goal in the context of glioma growth
analysis will be to establish methods that can learn representations of
a distribution of (spatial) growth dynamics from a population, and
also predict a distribution of possible growth trajectories for a given
set of observations. In Chapter 5 we will discuss the glioma growth
example in more detail.

Finally, a note on terminology. When we speak of distributions of
functions, we are not referring strictly to distributions in the mathemat-
ical sense. Recall that a distribution is a mapD : T(Ω)→ R (or into the
complex numbers), where Ω ⊂ RN and T(Ω) is the space of so-called
test functions (see for example Lighthill (1958)). We are in fact only con-
cerned with the learning of representations of function spaces, meaning
sets of functions with a shared domain and co-domain. Whether these
sets actually fulfill the requirements to be called test functions1, so
that a distribution would exist, is of no concern to us. We use the
terms function space and distribution of functions interchangeably.

1.2 outline

The chapters in this thesis are designed to be mostly self-contained,
each following a structure one would typically find in a journal or
conference publication. Indeed, some chapters are directly adapted
from already published articles. Related work will also be discussed
individually instead of in a dedicated chapter.

We will begin by introducing some relevant background in Chap-
ter 2. It presents concepts not directly related to the work we present,
but helpful for a better understanding. The individual sections are not
designed to be comprehensive, we rather briefly summarize the topics
and provide references for further reading.

Chapter 3 presents preparatory contributions. Our later work re-
quires a large annotated dataset, so we set out to find ways that enable
experts to efficiently create reference segmentations for imaging data—
MRI data from glioblastoma patients in our case—in an interactive
setting.

In Chapter 4 we make an initial attempt at purely learned glioma
growth modeling. Designed as a proof of concept, the approach
therein is constrained to data on the grid, meaning observations equally
spaced over time, and to a fixed number of inputs.

Chapter 5 will set up the research question we address in this thesis,
using glioma growth as a guiding example. It will highlight why it is
desirable a) to work on a continuous domain; b) to learn representa-
tions of function spaces instead of direct input-output mappings; and
c) to learn these representations as opposed to manually choosing and
parametrizing them. The chapter will also show how Neural Processes
(Garnelo et al., 2018a; Garnelo et al., 2018b) are a promosing approach

1 Those requirements would be smoothness and a compact support
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in this context, motivating our choice to focus on and to extend them
in the following chapters.

We continue with a deconstruction of Neural Processes in Chapter 6,
investigating how they learn finite-dimensional representations of
function spaces. We find that they often do this by decomposing
signals by frequency content, so we derive a bound the on maximum
frequency signals may contain and show how the training data defines
which frequencies will and will not be represented in the Neural
Process.

In Chapter 7 we will improve upon a recent contribution in the
Neural Process family, called Convolutional Conditional Neural Processes
(ConvCNP) (Gordon et al., 2020). These models perform well on
a variety of tasks, but are deterministic. We combine them with a
Gaussian Process to recover the possibility to sample from the model
and also find that this improves generalization.

While the previous three chapters are all concerned with scalar or
low-dimensional observation spaces, we show in Chapter 8 how to
translate segmentation architectures into the Neural Process frame-
work. We apply the result to glioma growth modeling, realizing what
we initially attempted in Chapter 4 on a continuous time axis.

Finally, we summarize and discuss our findings and contributions
in Chapter 9. We also introduce some contributions in the context of
clinical translation that are not directly related to this thesis. We close
with an outlook of possible future research directions.

1.3 contributions

In Chapter 3 we are concerned with the question of how to place
annotations most efficiently in a Random Forest-based interactive
segmentation process. We show the following:

• Assuming the annotator is an expert, it is significantly more
efficient to correct errors in the classifiers output than to provide
additional annotations where the classifier is most uncertain.

• There is no significant difference between corrective annotations
and corrective annotations in regions of high classifier uncer-
tainty. We conclude that error regions are usually a subset of the
regions with high uncertainty.

• From the above we can conclude that displaying uncertainty
information is of little use for an expert user, which is in contrast
to large parts of the active learning literature that is concerned
with finding measures of a model’s lack of “knowledge”.

In Chapter 4 we apply probabilistic segmentation to the task of
glioma growth modeling, albeit on a discrete time domain, working
under the assumption that this growth is not deterministic and that it
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is necessary to model distributions of growth trajectories. Our findings
and contributions can be summarized as follows:

• We are the first to frame glioma growth modeling as a model-
free learning problem, so that all dynamics are inferred directly
from data.

• We present evidence that our approach learns a distribution of
plausible growth trajectories, conditioned on previous observa-
tions of the same tumor.

• We provide an open source implementation of our method2.

In Chapter 6 we analyze how Neural Processes (Garnelo et al.,
2018a; Garnelo et al., 2018b) form finite-dimensional representations
of function spaces. Our contributions are:

• We show that both deterministic and variational Neural Pro-
cesses form representations by associating different dimensions
of their representation space with different regions of the input
space (i.e. the shared domain of the function space).

• We show that while variation Neural Processes usually partition
the input space into separate regions, deterministic Neural Pro-
cesses associate different dimensions of their representation with
different frequencies in the input, thus implicitly performing a
frequency decomposition of the signals.

• We derive a theoretical upper bound on the maximum frequency
a signal may contain so it can still be represented in a Neural
Process with a given representation size. We empirically confirm
that this bound holds and show that limiting the representation
size can make Neural Processes act like low-pass filters.

• We further show that the learned frequencies strongly depend
on the training data, such that frequencies not seen during
training will be suppressed when passing signals through a
Neural Process at test time. This essentially turns them into
programmable band-pass or band-stop filters.

In Chapter 7 we combine a later addition to the Neural Process
family, called ConvCNP (Gordon et al., 2020), with a Gaussian Process.
In doing so, we achieve the following:

• While ConvCNPs are deterministic, combining the model with
a Gaussian Process restores the ability to produce multiple sam-
ples, a compelling feature of the original Neural Processes (Gar-
nelo et al., 2018b).

2 https://github.com/jenspetersen/probabilistic-unet

https://github.com/jenspetersen/probabilistic-unet
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• The integrated Gaussian Process improves the model’s ability
to generalize. We show that our model (GP-ConvCNP) better
extrapolates signals far from the provided context points. It’s
also more stable to a distribution shift3 at test time, which we
show by applying models trained on simulated data to real
world data.

In Chapter 8 we apply Neural Processes to segmentation tasks,
distinguishing between scenarios where input images are available at
desired target locations and scenarios where they are not available.
We show how typical segmentation architectures, namely U-Net-like
(Ronneberger et al., 2015) architectures with skip connections, can be
leveraged in the Neural Process framework by interpreting the skip
connections as additional representation spaces:

• We show that a trivial application of Neural Processes to seg-
mentation architectures, meaning summation of context repre-
sentations, results in poor performance. We propose a model
that combines temporal and spatial attention along the skip
connections.

• We show that our model can be used for interactive segmentation
by providing a small number of annotated slices from an image
volume as context. It can extrapolate information from this
context to other slices, which we demonstrate both on a synthetic
toy example and for glioma segmentation on MRI data.

• We show that our proposed approach can model complex spatial
variations of a target shape over time, which we demonstrate
both on a synthetic toy task and on examples of glioma growth.

• We propose a variational version of our model that can produce
multiple prediction samples for a given set of context observa-
tions. We apply it to the modeling of glioma growth and show
that our model can predict diverse growth trajectories, where
each sample is consistent over time.

Beyond the contributions outlined here and throughout the thesis,
its author has also contributed to a number of other publications
related to this work in a broader sense:

• Most importantly, the author has developed a system for au-
tomated processing of imaging data within a clinical IT infras-
tructure. This will be discussed in Section 9.2, but in essence
the system allows the automatic deployment of deep learning
algorithms in clinical routine. At a later stage, this will allow us
to apply our glioma growth model to unseen patients for further

3 Distribution shift refers to a general dissimilarity between training data and test data.
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validation. The system was described in Petersen et al. (2018)
and Kickingereder et al. (2019) and has enabled data analysis for
Kickingereder et al. (2019) and Brugnara et al. (2020).

• The author has developed a comprehensive evaluation frame-
work for segmentation models and was also involved in model
development for Isensee et al. (2018) and Isensee et al. (2020),
where Isensee et al. (2018) was the winning contribution in the
2018 Medical Segmentation Decathlon (Simpson et al., 2019).
Isensee et al. (2020) extends this work, has won or is among
the top-performing approaches on a large number additional
biomedical segmentation challenges, and can thus be considered
the current state-of-the-art in biomedical image segmentation.

• The author further contributed in various ways to a number
of publications, e.g. in an advisory role for Zimmerer et al.
(2018), Zimmerer et al. (2019b) and Zimmerer et al. (2019a); or by
performing a number of experiments as in Kleesiek et al. (2016).





2
B A C K G R O U N D

We will use this chapter to introduce a few concepts that are not
directly relevant to the work we undertake in this thesis, but might
nevertheless be of interest. Everything we introduce will inevitably
only be a brief summary, but we will provide the reader with refer-
ences for a more thorough exploration of the respective topic.

A few things will not be included here. For one, all the methods di-
rectly relevant to our work will be presented in the respective chapters.
More importantly, we will not introduce the basic concepts of machine
learning and deep learning, which we assume the reader is familiar
with. Should that not be the case, Hastie et al. (2016) provide a rather
extensive resource on machine learning, including neural networks.
For a more practical perspective on deep learning in particular see for
example Goodfellow et al. (2016).

2.1 magnetic resonance imaging

This section will give a quick overview of magnetic resonance imaging
(MRI) and introduce its main variants that are used in radiological
diagnosis of glioma patients. As resources for general further reading
we recommend Haacke et al. (1999), Liang and Lauterbur (2000) or
Vlaardingerbroek and Boer (2003). For more details on pulse sequence
design and associated imaging characteristics the reader is referred to
Bernstein et al. (2004). Abragam (1983) can serve as a resource on the
underlying physics of nuclear magnetic resonance, while Reiser et al.
(2008) discusses MRI from a more medically inclined viewpoint. The
following is presented with varying degrees of detail in all of those
sources.

2.1.1 Physics

Magnetic resonance imaging leverages the fact that some nuclei pos-
sess finite nuclear spin and thus quantized angular momentum and
an associated magnetic moment µ. In MRI, the latter interacts with an
external (homogeneous) magnetic field B0 = B0ez in a way that only
quantized states of the angular momentum along the magnetic field
are observed, with different energies as dictated by the Zeeman effect.
For hydrogen nuclei—the ones most relevant for clinical imaging—
there are only two of those states, and their energy difference is given
by ∆E =  hωL =  hγB0. γ is called the gyromagnetic ratio and ωL is
referred to as the Larmor frequency. The occupation probabilities (in

9
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case of hydrogen nuclei) can be described by a Fermi-Dirac statistic,
and at room temperature and a typical magnetic field strength (1.5 T
to 3 T ) the excess ratio of spins in the energetically favorable state is in
the order of 1× 10−5. In other words, the magnetic field only causes a
small difference between occupation probabilities, which explains why
MRI requires extremely strong magnets. The occupation difference
also results in a finite expected value of the macroscopic magnetization
M in direction of the magnetic field at thermal equilibrium, which
we call M0. A manifestation of the Ehrenfest theorem, the macroscopic
magnetization can be described using classical mechanics, and its
temporal evolution is often approximated using the Bloch equations:

∂tM(t) = γ(M×B) −
(
Mx

T2
,
My

T2
,
Mz −M0

T1

)T
(2.1)

Switching to a rotating frame of reference, these admit solutions:

Mx + iMy =M⊥(t) =M⊥(0)e
−t/T2 (2.2)

Mz =M‖(t) =M0 − (M0 −M‖(0))e
−t/T1 (2.3)

We often speak of T1-weighted and T2-weighted imaging, referring
to techniques that create an image contrast proportional to these re-
laxation times, but what we actually measure is ∂tM⊥ via induced
voltages. To elicit such signals, we employ an additional magnetic
field B1 = B1ex perpendicular to B0 that oscillates with the Larmor
frequency. M can be imagined as a spinning top that precesses around
B0 with that frequency, and the oscillating B1 can be used to drive
that precession, so that after certain times the magnetization will have
flipped into the x-y-plane (called a 90

◦-pulse) or switched orientation
(called a 180

◦-pulse). Such pulses can be combined in various ways to
achieve a signal that contains information about T1 or T2.

Spatial resolution is achieved by applying so-called gradient fields
so that the Larmor frequency varies with position. Combining such
gradients at excitation as well as before and during signal acquisi-
tion, it is possible to fully resolve the three-dimensional position in
measurements.

2.1.2 Contrasts

As outlined above, images acquired in MRI can be weighted differently,
depending on which relaxation time is used to provide a contrast.
Note that unless additional measures are taken, these images are only
proportional to some function of those relaxation times and not quan-
titative measures thereof. There are also a number of other contrasts
one can achieve, and we quickly introduce the ones encountered in
this thesis.
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t1-weighted T1-weighted images are typically hyperintense when
T1 is small. As a result, tissue appears brighter with increasing
fat content, such as for example white matter compared to grey
matter.

t2 -weighted T2-weighted images are typically hyperintense when
T2 is large. Tissue with a higher free water content will appear
brighter in them, like grey matter compared to white matter, but
also edema in glioma patients.

contrast agents Contrast agents, a common choice being Gadolin-
ium, typically work by drastically reducing the T1 of nuclei in
their proximity. As a result, they appear very pronounced on
T1-weighted images. In glioblastoma patients, they are used to
visualize where the tumor has destroyed the blood-brain barrier,
a region often referred to as enhancing tumor.

flair Inversion recovery can be used to suppress the signal from
regions with a specific T1. If this is done for fluids, for example
the CSF, we speak of fluid-attenuated inversion recovery, or
FLAIR. In glioma patients, this is used as a T2-weighted sequence
to better visualize the edema.

2.2 glioma growth modeling

2.2.1 Glioma

Around 80% of all malignant brain tumors are glioma, a type of tu-
mor that originates in the glial cells of the central nervous system
(Goodenberger and Jenkins, 2012). There are several subtypes, like
astrocytoma or oligodendroglioma, distinguished by the type of glial
cell they share histological properties with. The World Health Organi-
zation suggests a classification into four grades of severity (Louis et al.,
2016), and the highest grade is typically referred to as glioblastoma
multiforme. Glioblastoma is itself the most common glioma and holds
extraordinarily poor prognosis for patients with a median survival
time of a little over a year, depending on treatment, or only a few
months without treatment (Ohgaki and Kleihues, 2005; Johnson and
O’Neill, 2012). Considering the aggressiveness of the tumor, it is
not surprising that treatment typically consists of multiple combined
approaches, beginning with resection, if possible, and followed by
variations of radiation and chemotherapy (Nam and Groot, 2017).

The disease is monitored in more or less regular intervals using
MRI to ascertain the extent of the tumor and to discover potential new
lesions. The change in tumor size and the presence of new lesions
will decide if a tumor is classified as progressive, stable or responding
(Wen et al., 2010) and will thus decide on the indication of a treatment
change. The growth of glioblastoma is often very irregular, with large
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variations in growth rate both among patients and over time (Stensjøen
et al., 2015). There is a large number of environmental factors that
can have an influence on cell proliferation, both on the patient-level
and microscopically, rendering it essentially stochastic (Thomas et al.,
2018). While it has long been suggested that tumor growth should also
be viewed macroscopically as a (partly) stochastic process (Hanson
and Tier, 1982), we find that spatial growth models seldom follow this
assumption, likely because stochastic models require more data for
parameter determination.

2.2.2 Reaction-Diffusion Models

As outlined above, one of the defining characteristics of glioma growth,
especially of high grade ones known as glioblastoma multiforme
(GBM), are the highly irregular growth patterns they exhibit, involv-
ing multiple tissue types for which the change in composition is
notoriously difficult to predict. Most existing approaches that model
the growth of glioma do this using variants of the reaction-diffusion
equation, i.e.

∂c(x, t)
∂t

= ∇ (D∇c) + R(c, t) (2.4)

where c(x, t) is the concentration of tumor cells, D is a diffusion
tensor that is itself possibly a function of space and time, and R(c, t)
is the so-called reaction term that dictates proliferation, i.e. the overall
increase (but also decrease) of c. R is typically modeled without a
spatial dependence. Some common choices are exponential growth,
meaning R ∝ c (also referred to as a linear model), or self-limiting
models like logistic growth with R ∝ c(1 − c) (also called Fisher-
Kolmogorov) or Gompertz growth with R ∝ c log(1/c). We will attempt
to give a rather comprehensive list of these works, but we would also
like to point to two review articles that summarize the work before
2007, and 2011 respectively, in greater detail, namely Harpold et al.
(2007) and Menze et al. (2011b).

The first applications of a reaction-diffusion model to glioma growth
were introduced by Cruywagen et al. (1995) and Tracqui et al. (1995),
both using a linear model and a scalar diffusion tensor. They also
add the treatment effect as a negative linear term in Equation (2.4),
encoded as a step function over time, presenting results for a single
patient. Woodward et al. (1996) and Burgess et al. (1997) and Burgess
et al. (1997) do the same, but instead simulate patients with their
model analyze different outcomes (under hypothetical treatment). The
latter two also extend their simulations to 3D.

There is an abundance of literature that suggest glioma cells in-
filtrate preferentially in white matter and along fiber tracts therein
(Kuroiwa et al., 1994; Kelly and Hunt, 1994; Chicoine and Silbergeld,
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1995; Giese et al., 1996; Silbergeld and Chicoine, 1997; Price et al., 2003;
Giese et al., 2003; Esmaeili et al., 2018). The first to incorporate this into
a reaction-diffusion model were Swanson et al. (2000) and Swanson
et al. (2002). They also assume a scalar D, but allow different values
for grey and white matter regions, showing results on simulated data.
Although introduced much later, Yuan et al. (2013) present a direct
extension of this by allowing tissue to belong to the two categories by
varying degrees, showing results on data from 12 different patients.

While the reaction-diffusion model represents two mechanisms of
tumor growth, namely infiltration and proliferation, a third mecha-
nism is the so-called mass effect, i.e. the displacement of healthy tissue
by the fast-growing cancer. This was first modeled for glioma by
Wasserman et al. (1996) and Kyriacou et al. (1999), assuming linear
and neo-Hookean elasticity, respectively, in the healthy tissue. Mo-
hamed and Davatzikos (2005) extend this by differentiating between
solid tumor mass and the surrounding edema. The first to combine a
reaction-diffusion model with a simulation for the mass effect were
Clatz et al. (2005). They further work with an anisotropic—meaning
non-scalar—diffusion tensor that they derive from an atlas of DTI data
from multiple healthy patients, while they present results for a single
GBM patient. The coupling between their reaction-diffusion model
and the mass effect model is unidirectional, the latter does not inform
the reaction-diffusion model e.g. by changing the diffusion tensor
map over time. This is remedied in Hogea et al. (2007), Bondiau et al.
(2008), and Hogea et al. (2008), who show that the mass-effect can
be represented as an additional advection term in Equation (2.4), i.e.
the first-order derivative of a velocity field. The evolution of this veloc-
ity field is in turn described by another set of differential equations
coupled with the original model. Branco et al. (2014) later model the
brain as a visco-elastic material, leading to a stress diffusion term in
Equation (2.4) with the the evolution of the stress tensor again dictated
by a coupled differential equation. Viscous stress is also introduced in
Yuan and Liu (2016), but they don’t work with an anisotropic diffusion
tensor, instead choosing an approach based on their earlier work (Yuan
et al., 2013).

How to map the water diffusion tensor acquired in diffusion tensor
imaging to a diffusion tensor describing the motility of the cancerous
cells is non-trivial. Jbabdi et al. (2005) show empirically for data from
one patient that the anisotropy of the cell diffusion tensor should be
greater than of that of a measured water diffusion tensor. Painter and
Hillen (2013) derive a connection between a microscopic formulation
of cell transport in an anisotropic environment and the macroscopic
formulation in Equation (2.4). They arrive at a slight variation of
this equation where the first term becomes ∆(Dc), thus giving rise to
additional advective terms. Engwer et al. (2015) expand on this by
also including adhesion effects in their microscopic model formula-
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tion. Stretton et al. (2013) evaluate the overall importance of using
anisotropic diffusion and find a large difference in performance be-
tween a scalar D and one based on an atlas of DTI data. Another
small increase is afforded by DTI data from the same patient, which
is typically not available. They evaluate this on multiple time points
from three different patients. These results are also confirmed by Swan
et al. (2018).

Another difficulty in the application of reaction-diffusion models is
the question of how to relate the parameters of the model to the—often
scarce—observations. Konukoglu et al. (2007) argue that it is hard or
impossible to derive the full cell distribution c(x, Ti) from an MRI at
time ti and that one can only really observe how a contour of the tumor
evolves over time. As a consequence, they translate Equation (2.4)
into an eikonal equation that describes travelling wavefronts. While
they initially present simulated results, they later apply this model
to real patient data as well (Konukoglu et al., 2010a). These works
also switched to a logistic growth model compared to the earlier work
above, and virtually all later work maintains this approach. Menze
et al. (2011a) are the first to explicitly model uncertainty in their work.
They combine a deterministic reaction-diffusion model with a Bayesian
image observation model that allows for multi-modal observations.
This enables them to obtain a posterior estimate of model parameters
conditioned on patient MRIs via Monte-Carlo integration. Results
are demonstrated both on synthetic and two real datasets. Perhaps
one of the most difficult parameters to estimate is the initial tumor
cell density c(x, t0), especially when it is not assumed to be directly
represented in one of the available observations. A common choice
is to assume a Gaussian density in the center of mass of the visible
tumor, but Rekik et al. (2013) show on data from 4 low-grade glioma
patients that the true source location can deviate significantly from
this assumption.

In a clinical context, growth models promise improvements for radi-
ation therapy, where clinicians must estimate a probable infiltration
margin around the visible tumor that will be irradiated as well. The
visible tumor is referred to as the gross tumor volume (GTV) while in-
clusion of the aforementioned safety margin leads to the clinical target
volume (CTV) (Burnet et al., 2004). Current clinical practice defines
this CTV with an isotropic margin of 2 cm to 3 cm, although the extent
can vary (Paulsson et al., 2014; Mann et al., 2018). A more accurate
understanding of the tumor growth dynamics would allow for a more
refined definition of the CTV margin, identifying regions of higher
or lower risk of recurrence. Konukoglu et al. (2010b) propose using
their travelling wave formulation (Konukoglu et al., 2007; Konukoglu
et al., 2010a) to define a target volume margin based on growth esti-
mates. Mosayebi et al. (2012) suggest replacing the Euclidean isotropic
expansion with a geodesic expansion on a manifold representing the
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white matter fibers. They show that this results in more realistic
extrapolations on a comparatively large dataset of 11 patients. Unkel-
bach et al. (2014b) discuss the implications of radiotherapy planning
with a reaction-diffusion for target volume definition as well as for
dose distribution (Unkelbach et al., 2014a). A proof of concept for
an automatic treatment plan—from MRI to dose distribution plan—
based on a reaction-diffusion model is presented by Lê et al. (2017).
They evaluate two different scenarios, specifically the availability of
two or only one MRI for parameter estimation, and also incorporate
a possible uncertainty stemming from multiple segmentations from
different readers. Results are shown for two patients. The most recent
work in this line was put forward by Lipková et al. (2019), who cast
the efforts by Menze et al. (2011a) in a radiation therapy planning
framework. Crucially, they show for 8 patients that their approach can
maintain efficiency with a smaller CTV, where efficiency is defined
as the relative volume of the recurrence region contained within the
CTV.

2.2.3 Machine Learning Approaches

The number of works that apply machine learning to the prediction
of glioma growth are quite limited. To the best of our knowledge,
the first to do so were Morris et al. (2006), who mimic a growth
model by starting out with a tumor segmentation and iteratively
predict a probability for boundary voxels to be transformed into
tumor tissue. The voxel label is then updated with the predicted
probability, not unlike a random walk procedure. On data from 17

patients, they evaluate different classifiers for this task (they show
results for logistic regression, but link to results for Naive Bayes and
SVM), incorporating both image-based features and other information
like the age of the patients. Akbari et al. (2016) use an SVM classifier
to predict a tumor infiltration map on pre-operative MRI of GBM
patients, using the common structural contrasts as well as parameters
derived from diffusion-weighted and susceptibility-weighted imaging.
Training the classifier on 31 patients and evaluating on 34, they find a
statistically significant correlation between regions of recurrence after
resection and their predicted infiltration. Not working with glioma but
to the best of our knowledge the first to apply deep learning to tumor
growth, Zhang et al. (2018) use a CNN to predict pancreatic tumor
growth. In a relatively straightforward fashion, their network predicts
which voxels will “become tumor” after a predefined time. Along with
several image inputs from the current time step, the network also has
access to an optical flow map computed between the last two available
time steps, which according to the authors allows the network to
estimate the mass effect. More recently Gaw et al. (2019) tried to
combine a reaction-diffusion model with a learning-based approach.
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In addition to several MRI channels as well as image-localized biopsy
maps, they feed the prediction from the reaction-diffusion model
to a classifier as an additional input. They find that this improves
predictive performance compared to both the reaction-diffusion model
as well as a machine learning model without the reaction-diffusion
input.

2.3 medical image segmentation

The segmentation of medical images, compared to natural images,
is historically subject to a few unique challenges. Datasets in the
domain are typically orders of magnitude smaller than datasets of
natural images. As an example, the BraTS (Brain Tumor Segmentation)
challenge, one of the largest and most renowned challenges in the
field of medical image segmentation, provides a few hundred data
points for training in its latest iteration (Bakas et al., 2019). In contrast
to that, the Cityscapes dataset, a common segmentation benchmark
that contains street scenes, provides several thousand annotated data
points (Cordts et al., 2016). At the same time, these two examples
highlight another difference that often distinguishes medical images
from natural images. BraTS provides annotated image volumes, while
Cityscapes contains 2D images. As such, the individual items in the
BraTS data are much larger and hence more challenging to process.

The difference in data availability can be explained both by the
overall ease of access to un-annotated data—medical data is often
governed by stringent privacy protections—and by the difficulty of
generating annotations, which requires expert knowledge only trained
professionals possess. Associated with the latter is a general ambiguity
in the interpretation of imaging data. In most cases, the outline of a
car will be rather well-defined, while even experts with many years of
experience can disagree with respect to the precise contour of a lesion—
or indeed whether or not some input contains a lesion in the first place.
We observe that many of the more seasoned approaches to medical
image segmentation, which we summarize below, are very specific
to their task, while more recent work based on convolutional neural
networks doesn’t necessarily distinguish between medical and other
input modalities. To be sure, there are still many publications that
modify CNN architectures for a particular task like the segmentation
of a certain organ, but we will not discuss those.

2.3.1 Classical Approaches

Methods that don’t use convolutional neural networks or deep learn-
ing in general can be grouped roughly into three categories: shape
models, atlas-based methods and conventional classifiers. Shape mod-
els and atlas-based methods are similar in that they aggregate the
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statistics of some population to describe a prior for the segmentation.
In shape models, this description is typically one that uses landmarks
to define a shape, and at test time the task reduces to identifying the
most likely configuration of landmark positions using both the prior
and information from the underlying input image. For an overview of
statistical shape models see for example Heimann and Meinzer (2009).
In atlas-based methods, the prior is formed by combining both the
input images, e.g. by registration to a common frame of reference, and
the segmentations from multiple cases. A new case is then segmented
by comparing it to this atlas, which usually involves registration to
the same frame of reference. Alternatively, the individual reference
cases are not combined, but instead treated as individual atlases, and
only the predicted segmentations on the test case are averaged in a
suitable way. Iglesias and Sabuncu (2015) give a review of atlas-based
segmentation. Both shape models and atlases work well for cases that
are close to the reference or prior, for example healthy patients, but
generally struggle with pathologies such as tumors.

Medical images can of course also be segmented by framing the
problem as a pixel classification task. In doing so, one can apply
essentially any conventional classifier, popular choices of which are
Random Forests (Breiman, 2001) and Support Vector Machines (SVM)
(Boser et al., 1992; Cortes and Vapnik, 1995). A key challenge lies
in defining the input features for the classifier, as the input image
intensities are generally insufficient. Common choices are edge filters,
texture filters or blurring, often applied with various scale parameters,
so that a larger information vector is constructed for each pixel to be
used in the classifier. Random Forests, for example, construct multiple
decision trees from random subsets of the available data, building each
tree by repeatedly looking at a random subset of the above features
and splitting the data along the feature dimension that maximizes or
minimizes a certain criterion. The choice of this split criterion, along
with the number of trees, the depth of the trees and other parameters,
is generally done manually. Prediction on a test case is performed
by aggregating the votes from the individual trees. SVMs work by
implicitly lifting the data to a higher-dimensional feature space and
finding a hyperplane that best separates the classes in the training data.
As each hyperplane can only separate the data into two half-spaces,
multi-class classification is possible by simply converting the problem
into multiple binary decisions (e.g. one-vs-one or one-vs-rest) and
training an appropriate number of classifiers. One advantage of these
approaches is that they generally require little training data, so that
they can be used for example in interactive segmentation, as we do in
Chapter 3.
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2.3.2 Convolutional Neural Networks

Earlier segmentation architectures were essentially image classification
CNNs like AlexNet (Krizhevsky et al., 2012) or VGG (Simonyan and
Zisserman, 2015) modified to be fully convolutional (Long et al., 2015;
Chen et al., 2015) so that one can essentially “slide” them across an
image and successively classify pixels. The first encoder-decoder struc-
ture, to the best of our knowledge, was presented in Badrinarayanan
et al. (2015) and Badrinarayanan et al. (2017). There the authors saved
the indices of max-pooling operations in the encoder for upsampling
in the decoder. Such encoder-decoder structures allow predictions
for the entire input image at once and don’t require padding of the
input to be able to make predictions at the borders of the image. The
first encoder-decoder structure with skip connections, and arguably
the most well known, is the U-Net (Ronneberger et al., 2015), and we
typically refer to any architecture that resembles this setup as U-Net-
like. Such skip connections were also shown to enable training of very
deep architectures (He et al., 2016) (called ResNets1) by alleviating
the so-called vanishing gradient problem (Hochreiter et al., 2001), but
in encoder-decoder structures they primarily serve another purpose:
they give the decoder access to information at a higher resolution,
which allows it to produce fine detail in its prediction. U-Nets have
since been extended and modified in numerous ways; some of the
more well-known ones are those to three-dimensional inputs (Çiçek
et al., 2016; Milletari et al., 2016), which is especially relevant in the
medical domain, or those that attempt to operate on multiple scales
of the input (Zhou et al., 2020; Tao et al., 2020). It is worth noting
that not all segmentation architecture use an encoder-decoder pattern,
some work almost entirely on the full scale of the input (Jégou et al.,
2017; Wang et al., 2020a). For an overview of recent segmentation
architectures, not limited to medical imaging, see for example Minaee
et al. (2020).

2.3.3 Evaluation

As we mentioned above, medical images are often difficult to interpret.
Considering their ambiguity, it makes a lot of sense to not assign
hard class labels to image pixels, but to instead speak of probabilities
with which pixels belong to a certain class. And this is exactly what
most classifiers or deep learning models do: they output so-called
pseudo-probabilities for the individual classes that sum to one. Ideally
we would use these probabilities when evaluating model outputs,
but quite to the contrary it has become the de-facto standard in the
medical imaging community to only evaluate the resulting hard labels

1 ResNets actually use summation, while U-Nets use concatenation, but the effect is
the same.
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using set overlap measures. By far the most common of these is the
Dice coefficient (Soerensen, 1948; Dice, 1945), given by:

Dice(S1,S2) = 2 ·
S1 ∩ S2
|S1|+ |S2|

(2.5)

for two segmentations S1,S2, interpreted as sets, such that | · | refers
to the cardinality. This is only a binary measure, while segmentations
usually contain multiple labels. Measures that take multiple labels
into account simultaneously exist (Crum et al., 2006), but it is common
practice to just treat individual labels separately or to average their
scores.

The Dice coefficient further considers each pixel identically, while
segmentations usually vary most at the their borders. Some metrics
have been proposed that put more focus on the surface of a segmen-
tation, such as the Surface Dice (Nikolov et al., 2018) or the Hausdorff
Distance (which itself isn’t new, see for example Rockafellar and Wets
(1998), but has recently seen some use, for example in Karimi and
Salcudean (2020)). Notwithstanding the above, the Dice score remains
by far the most commonly used measure to evaluate segmentations,
and as a result it will also be our main tool for the task.
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E F F I C I E N T E X P E RT A N N O TAT I O N S I N
I N T E R A C T I V E S E G M E N TAT I O N

The impressive performance of deep learning-based approaches to
image processing, specifically convolutional neural networks (CNNs),
hinges on the availability of large bodies of annotated data. Creating
such annotations is a time-consuming process, especially in more
challenging domains like medical imaging, where many years of expe-
rience and expertise are required to confidently make the decisions
associated with the annotation process. We were faced with this very
problem in the context of our work, as we sought to create refer-
ence segmentations for a large dataset of magnetic resonance images
of glioblastoma patients, which serves as the basis of many of the
analyses in this thesis.

Interactive segmentation methods are a compelling tool for this
task, as they are typically much faster than fully manual annotation
procedures (e.g. manually painting in pixels in an image to create a
segmentation) but still offer full expert supervision that is not given
when using automatic methods. To aid our clinical partners in their
work, we implemented an interactive segmentation method in the
open-source toolkit MITK (Wolf et al., 2004; Nolden et al., 2013) and
investigated how to best perform annotations in this framework. Re-
sults presented in this chapter were in part published in the following
works:

Petersen, Jens, Martin Bendszus, Jürgen Debus, Sabine Heiland, and
Klaus H. Maier-Hein (2017a). “Effective User Interaction in On-
line Interactive Semantic Segmentation of Glioblastoma Magnetic
Resonance Imaging”. In: Journal of Medical Imaging 4.3, p. 034001.

Petersen, Jens, Martin Bendszus, Jürgen Debus, Sabine Heiland, and
Klaus H. Maier-Hein (2017b). “Effective User Guidance in Online
Interactive Semantic Segmentation”. In: SPIE Medical Imaging.

Petersen, Jens, Sabine Heiland, Martin Bendszus, Jürgen Debus, and
Klaus H. Maier-Hein (2017c). “Quantification of Guidance Strate-
gies in Online Interactive Semantic Segmentation of Glioblastoma
MRI”. In: Bildverarbeitung für die Medizin, pp. 231–236.

Petersen, Jens, Martin Bendszus, Jürgen Debus, Sabine Heiland, and
Klaus H. Maier-Hein (2016). “A Software Application for Inter-
active Medical Image Segmentation with Active User Guidance”.
In: Medical Image Computing and Computer Assisted Intervention
(MICCAI) – Interactive Medical Image Computing Workshop.

The contents of this chapter closely match those in the publication,
but have been expanded where necessary. In particular, we append
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Section 3.6, which gives an overview of interactive deep learning-based
segmentation methods introduced since our work was conducted.

3.1 introduction

The purpose of the experiments presented in the following sections
was to establish methods that enable expert users to generate high
quality segmentations of medical image data with only a small number
of input annotations. The interactive segmentation technique we
based our work on trains a classifier on a small number of labeled
pixels and predicts labels for all remaining pixels. The expert user
can see intermediate results and the underlying data to perform
additional interactions in order to improve the resulting segmentation
in an iterative fashion. As outlined above, we focus on glioblastoma
segmentation, a task that has been quite extensively studied in the
context of the Brain Tumor Segmentation (BraTS) challenge (Menze et
al., 2015) and that is considered one of the most challenging multi-
class segmentation problem in medical image analysis. We based
our interactive segmentation process on a Random Forest classifier,
which has proven to be the best overall choice of classifier on a wide
range of tasks (Fernandez-Delgado et al., 2014) and has also achieved
very good results for the specific task of glioblastoma segmentation
(Zikic et al., 2012; Bauer et al., 2013; Kleesiek et al., 2014; Goetz et al.,
2016). Note that the study by Fernandez-Delgado et al. (2014) did not
include any deep learning approaches. We give an overview of deep
learning-based interactive segmentation in Section 3.6.

An implementation of an interactive segmentation scheme using
Random Forests is offered by the open-source ilastik framework (Som-
mer et al., 2011). We implemented a comparable technique in the
MITK framework (Petersen et al., 2016): the classifier predicts labels
for all pixels in an image based on a few manually annotated pixels. In
an iterative process the user is asked to provide additional annotations
to improve the segmentation. Normally the choice of where to anno-
tate next in the process is left entirely to the user. Our contribution
is the proposal and evaluation of five interaction methods to ensure
optimal usage of user inputs that use 1. the classifier uncertainty, 2.
an expert user’s knowledge of the correct segmentation and 3. also a
combination of the two. To the best of our knowledge, we were the
first to evaluate how useful uncertainty information is compared to
correctness information in this setting.

We compare 5 different methods of placing annotations in an online
interactive segmentation task. In an iterative process a user annotates
a small part of an image (i.e. a small number of pixels) and a classifier
is trained on these inputs to predict labels for all image pixels. The
result is displayed back to the user so they can input additional
annotations to refine the result until satisfied. In this setting we
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compare interaction modes (i.e. guidelines which parts of the image
the user should annotate) based on the classifier uncertainty as well
as the user’s knowledge of the correct segmentation.

3.2 related work

The question of what would be the optimal next annotation pertains
to the domain of active learning (Settles, 2010), where the premise is
that the algorithm can query an oracle (the user in this case) for the
correct label of some data point to improve its prediction, but only at
great cost (for example time), hence the need to keep the number of
queries minimal. Semantic segmentation is non-trivial in this context,
because the instances (pixels) are strongly correlated and users will
rarely perceive them as separate entities. Triebel et al. (2014) present
work that uses scribble annotations and Gaussian processes to segment
individual pixels, but they only work with 2D images of everyday
objects. Our problem is innately three-dimensional, which makes
many computations infeasible. The use of superpixels can reduce the
complexity of the problem, but previous studies that employ them
focus more on generic computer vision tasks (Vijayanarasimhan and
Grauman, 2009; Vezhnevets et al., 2012). There the difficulty is not
so much the correct delineation of an object—most have pretty clear
boundaries—, but instead assigning the correct label out of a large
number of possible categories. The challenge in medical images is
often not the large number of classes, but instead to correctly identify
entities that exhibit no clear boundary and an appearance similar to
their surroundings.

Notable work in the medical domain was put forward by Top et al.
(2010) and Top et al. (2011), who rely on an active contour for seg-
mentation and construct a measure of uncertainty that is then used
to identify a plane (which can be oblique) of maximal uncertainty
in which the user is asked to provide additional inputs. While their
measure of uncertainty should generalize to various segmentation
techniques, the authors use a contour based approach, which is sub-
optimal for problems like ours, where there are no clear boundaries.
Additionally radiologists often work in the predefined orthogonal ori-
entations, so that oblique planes might be more confusing than helpful.
We chose to restrict ourselves only to axial, sagittal and coronal planes
for annotation.

Konyushkova et al. (2015) work with superpixels and specifically
incorporate correlations with neighbouring superpixels into a measure
of geometric uncertainty that is then used to identify a plane for optimal
annotation, which will again be generally oblique. Interestingly, the
authors evaluate their approach on MRI data of glioblastoma patients,
the same task we worked on. We will compare our results with theirs
in Section 3.5. Note however that their mode of interaction is binary,



24 efficient expert annotations in interactive segmentation

meaning the user must only decide on a boundary between inside
and outside of a target object. Our segmentation approach naturally
incorporates multi-class segmentation.

Maiora et al. (2014) and Chyzhyk et al. (2015) both combine a
Random Forest classifier with active learning to segment Abdominal
Aortic Aneurysm and stroke lesions respectively. Both also employ
pixel-level annotations and an interactive workflow, but require users
to annotate with single-pixel accuracy. The segmentation problems
they tackle are binary and their query measure is the standard devia-
tion of the class labels, which, if at all, makes sense only for binary
categorization (using 0 and 1 as numerical values).

3.3 methods

3.3.1 Data & Preprocessing

The experiments in this chapter were designed with the express pur-
pose of finding an efficient way to annotate the larger dataset used
in the subsequent parts of this work. As a consequence, they had to
be conducted on a different dataset, and we selected the 2013 BraTS
challenge (Menze et al., 2015), which comprises magnetic resonance
imaging (MRI) scans of glioblastoma patients similar to our target
dataset. The full BraTS dataset consists of both real (acquired at field
strengths of 1.5T or 3T) and synthetic MRI data for both low grade
and high grade glioma patients. In our experiments we intentionally
left out the synthetic data, because they ”are less variable in intensity
and less artifact-loaded than the real images” (Menze et al., 2015), as
well as the low grade glioma data, because the high grade cases are
much more difficult to annotate and thus require significantly more
expert labor. We could have chosen data from later iterations of the
BraTS challenge, but 2013 was the last year that had fully manual
annotations. In the following years, annotations were generated by
taking predictions from the best performing algorithms from previous
years and then manually correcting these predictions. The process has
been critized as introducing bias (Menze et al., 2015).

The remaining data we conducted our experiments with com-
prised 20 individual subjects, for each of which there were four three-
dimensional image volumes of different MR contrasts available: native
T1-weighted (T1), contrast-enhanced (Gadolinium) T1 (T1ce), native
T2 (T2) and native T2-weighted FLAIR1 (FLAIR). An example of what
these contrasts look like is given in Figure 3.2.

The available data for each patient were already co-registered, resam-
pled to 1mm isotropic resolution and skull-stripped by the challenge
authors, we further applied the following pre-processing:

1 Fluid-attenuated inversion recovery
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A B
Groundtruth

A B
Example

Segmentation

A B
UNCERTAIN

For each pixel the probability entropy is calculated as a
measure of uncertainty. The areas where the uncertainty
is highest are presented to the user. The user is instructed
to place an additional annotation within this region.

The user is instructed to place an additional annotation
anywhere where the current segmentation is incorrect.
The user must identify these regions and is not guided by
the algorithm.

A B
MISCLASS

The algorithm selects a class at random.
The user is instructed to place additional
annotations anywhere where the segmentation
for this class is wrong.

A B A B
MISCLASS-B

A B
UNCERTAIN-MB

The user is presented with both a randomly selected class
and the region where the classifier uncertainty is highest and
is instructed to annotate where the segmentation for the given
class is incorrect within the region of high uncertainty.

A B
CERTAIN-MB

The user is presented with both a randomly selected class
and the region where the classifier uncertainty is lowest and
is instructed to annotate where the segmentation for the given
class is incorrect within the region of low uncertainty.

Input Image

Input Annotation

Update Prediction Final Segmentation

Figure 3.1: Visualization of the interactive annotation process. For each
annotation mode an exemplary region is shown in which the
simulated user will annotate, based on an abstract ground truth
and corresponding example segmentation. The update process is
repeated N times and yields the final segmentation. Note that for
demonstration purposes there is only low and high uncertainty,
and no intermediate region, hence the regions for UNCERTAIN-
MB and CERTAIN-MB share a border.
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• Compute the T1ce – T1 difference map as a 5th channel as
proposed in Ellingson et al. (2014)

• Perform N3 bias-field correction for T1, T1ce, T2, but not FLAIR,
because edema signatures can look similar to field inhomo-
geneties in this contrast.

• Apply Histogram-Matching using 3D-Slicer’s (Fedorov et al.,
2012) HistogramMatching routine, excluding voxels below mean
intensity.

• Normalize intensities by mean CSF2 value (which is obtained by
automatic segmentation), except for the FLAIR, where the CSF
already has a value of zero.

For a more detailed description of the effect of these processing
steps see Kleesiek et al. (2014). We then computed the following
feature maps for use with the classifier presented in Section 3.3.2:

• Gaussian Smoothing (σ = [0.7; 1.6])

• Gaussian Gradient Magnitude (σ = [0.7; 1.6])

• Laplacian of Gaussian (σ = [0.7; 1.6])

• Hessian of Gaussian Eigenvalues (3 feature maps, σ = [0.7; 1.6])

• Structure Tensor Eigenvalues (3 feature maps, σ = [0.7; 1.6])

This results in a feature vector length of 95. Most image volumes
have a size of 176× 216× 176 (some patients differ slightly), so that a
patient is described by a 176× 216× 176× 95 matrix.

Our choice of features was motivated by their success in earlier
work (Kleesiek et al., 2014; Kleesiek et al., 2016). We did not perform
any feature selection on the above set of features, which might have
shown some redundancy among them and would have allowed us to
select an equally performant subset.

For each of the 20 patients there was a ground truth segmentation
obtained by merging manually created annotations from four different
raters. The segmentations describe five different tissue categories:

0. Healthy tissue / background

1. Necrosis

2. Edema

3. Non-enhancing abnormalities

4. Enhancing Tumor

2 Cerebral Spinal Fluid
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We additionally define the whole tumor region as the union of all
four non-background classes. Figure 3.2 shows an example of a ground
truth segmentation and the corresponding MR contrasts. The enhanc-
ing tumor is best identified from hyperintensities in the T1ce image
within the whole tumor region. The necrosis and the non-enhancing
tumor regions typically exhibit very similar signatures—they are hy-
pointense in T1-weighted images and hyperintense in T2-weighted
images with heterogeneous texture—and are often hard to distinguish.
In fact, they are so similar that in later years the BraTS challenge
changed their annotation guidelines to no longer distinguish between
the two. In the subsequent chapters of this work, we also merge
them. The edema can be identified from hyperintense signatures in
T2-weighted images, especially FLAIR, that do not belong to the other
tumor regions. On average, this class makes up the majority of the
tumor region in terms of volume.

3.3.2 Classifier

The classifier we employed was a Random Forest (Breiman, 2001), an
ensemble classifier that builds multiple decision trees from randomly
bootstrapped samples of the training data. A brief introduction is
also given in Section 2.3.1. Random Forests have proven to be the
best generic choice of classifier among a large variety of conventional
(i.e. non-deep learning) methods (Fernandez-Delgado et al., 2014).
They are often used very successfully for glioblastoma segmentation
(Zikic et al., 2012; Bauer et al., 2013; Kleesiek et al., 2014; Goetz et
al., 2016). Our decision for Random Forests was further supported
by the availability of toolkits for interactive segmentation that also
employ Random Forests and scribble annotations (Sommer et al., 2011;
Petersen et al., 2016).

The classifier works on a per-pixel basis, meaning that each pixel,
represented by a 95-dimensional feature vector (see previous section),
is treated as a separate instance. The decision trees are built from
the annotated pixels, which constitute the training set in each case.
A prediction is then made (for all unannotated pixels) by letting
each decision tree vote for a class. The relative number of votes a
label/class receives is treated as its probability and the label with the
highest number of votes is assigned to the tested instance. Note that
this construction means the classifier only uses information from the
current test case for its prediction. In contrast, deep learning methods
usually rely on statistics inferred from a larger population.

The measure of uncertainty we use is the probability entropy:

H(x) = −
∑
i∈C

p(yi|x) log (p(yi|x)) (3.1)
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UNCERTAIN

MISCLASS

MISCLASS-B

UNCERTAIN-MB

CERTAIN-MB

5 Interactions

10 Interactions

15 Interactions

20 Interactions

25 Interactions

30 Interactions

Groundtruth T1 T1ce T2 FLAIR

Necrosis

Edema

Non-enhancing
Abnormalities

Enhancing Tumor

Figure 3.2: Exemplary segmentation results after 5 – 30 interactions for each
annotation mode for a random patient along with the correspond-
ing ground truth segmentation and the four base channels (slice
selected for illustrative purposes). The results are not representa-
tive of the overall segmentation quality for a given method, but
show that in general the algorithm needs little data to roughly
approximate the solution and that most annotations only refine
the result. In almost all cases, there remain very small falsely
classified regions throughout the healthy brain, indicating that
our results would benefit from post-processing. We refrain from
post-processing in this work, as it is more appropriate at the end
of the interactive routine, not in every step.
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where p(yi|x) is the probability that pixel x belongs to class i. We
also tried confidence and probability margin (Settles, 2010) as uncer-
tainty measures, but the results were not meaningfully different.

The number of trees in the Random Forest as well as their depth
was determined with a coarse grid search, the results of which are
visualized in Figure A.1; we work with 50 trees and a maximum depth
of 10. The split criterion we use is the Gini impurity, and splits are
performed by looking at random subset of

√
95 ' 10 features in each

split.

3.3.3 User Interactions

Our goal was to simulate experts in an interactive annotation and
segmentation process. We wanted to establish how the expert should
interact with the algorithm and whether uncertainty information from
the algorithm can be used to guide the user in the process. Because
we assumed the user to be an expert radiologist, we also assumed
they are able to see and interact with all three orientations (axial,
coronal, sagittal) simultaneously, and more importantly, we assumed
they possess knowledge of the correct segmentation that they wish
to transfer onto the image. The basic concept of the iterative segmen-
tation process is that in each step the user sees the current output of
the algorithm, ideally as an overlay, to compare it with the underlying
data, and then interacts with the algorithm by providing additional
training instances.

The interaction process is based on scribble annotations. That
means that the user can impaint pixels in the image to label them
as belonging to a certain class (note that we use the terms class and
label interchangeably), similar to a paintbrush tool found in almost
any image editing application. Theoretically this would allow the
user to paint in any way they desire (single disconnected pixels, large
round blobs, etc.), but the most common and intuitive way to annotate
in such a scenario is by painting lines, or scribbles. The classifier
is trained on the labeled pixels and the resulting segmentation is
presented to the user so they can add a new input to improve the
output.

We deliberately chose to over-sample the interaction process by
allowing only very short scribbles of 10 connected pixels and by up-
dating the prediction after each scribble annotation. Experienced users
usually make multiple annotation scribbles before updating the predic-
tion, especially in the beginning, where the algorithm requires at least
some data from all classes for a somewhat reasonable prediction. In
our simulation we skipped this initial step by initializing the algorithm
with 50 randomly drawn pixels, weighted by class occurrence (so that
each class received at least one training instance). We found 50 to be
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the lowest number of initial training points to achieve a reasonable
initialization. We discuss this further in Section 3.4.

Having established the general process of how users place their
annotations, i.e. by painting a small number of connected pixels
with the correct label, the interesting question is where user inputs
should be given to create a high quality segmentation with the least
amount of interactions. To this end we defined five interaction modes,
each characterized by a region in which the user will place their
annotation randomly in each step, based on classifier uncertainty
(information the algorithm possesses) or on correctness (information
the user possesses). These regions will of course change in each step.
Abstract examples for all methods are given in Figure 3.1. While
the simulated users generally annotated randomly within a specified
region, we placed some further constraints on the inputs to make them
more realistic: the scribbles, which we fixed at a length of 10 pixels,
must be connected. They must further be in one of three main planes
(axial, sagittal, coronal). They must lie entirely within the specified
region and finally the must not cross classes. We defined the following
annotation modes:

1. UNCERTAIN: Place annotations randomly in regions of high classifier
uncertainty.
To simulate this we first divided the uncertainty into 5 quantiles
and kept only the regions belonging the highest quantile. We
then find the largest connected region of those and annotated
randomly within this region. The dividing into 5 quantiles might
seem somewhat arbitrary, but we empirically found that using
the top 20% of the uncertainty still resulted in large enough
regions that one could comfortably annotate, while smaller num-
bers would often yield very small and thin regions that require
pixel accuracy annotations.

2. MISCLASS: The user identifies falsely classified regions in the seg-
mentation overlay from the previous step and then randomly annotates
anywhere in the entire error region.
This implicitly weights classes by occurrence. This method de-
pends on our assumption that the user has knowledge of the
correct segmentation and is able to identify falsely classified
regions in the segmentation overlay. It does not use uncertainty
information.

3. MISCLASS-B: The algorithm chooses a class at random and the user
identifies and annotates in falsely classified regions (both false positive
and false negative) for that particular class in the segmentation overlay.
This weights classes equally. The method also depends on the
assumption that the user has knowledge of the correct segmen-
tation and is able to identify falsely classified regions. It does
not use uncertainty information.
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4. UNCERTAIN-MB: A combination of UNCERTAIN and MISCLASS-B.
Annotations are placed where the region identified by UNCER-
TAIN and the error region for a randomly chosen class intersect.
Should there be no intersection, ignore uncertainty region, i.e.
fall back to MISCLASS-B. This method utilizes both uncertainty
and correctness information.

5. CERTAIN-MB: Essentially the same as UNCERTAIN-MB, but using
the most certain region.
We now identify the region where the classifier is most certain,
meaning the lowest of 5 quantiles of the uncertainty. This might
seem counterintuitive, but we hypothesize that if the classifier
is very certain about an error, the corrective annotation should
have a much stronger effect. Again, if there is no intersection,
fall back to MISCLASS-B.

3.3.4 Evaluation

Our goal was to evaluate the quality of the segmentation over time, i.e.
as a function of the number of interactions. The de facto standard for
segmentation assessment in the medical domain is the Soerensen-Dice
coefficient introduced in Section 2.3.3, a binary measure we computed
for all classes separately.

For each patient and for each interaction method we evaluated the
Dice scores over the course of 50 interactions. After each interaction
step the classifier was trained on all pixels that were annotated in
the current and the previous interactions. We used no training data
from other patients or from earlier assessments of the same patient. A
prediction was always made on the entire three-dimensional image
volume for the current patient that was then compared with the
corresponding ground truth segmentation. We repeated the process
five times for each patient and averaged the results to suppress random
variations, treating the 5-run average as a single measurement. For
our first analysis we then also averaged the scores for all patients and
compared the different interaction methods by means of the Dice score
as a function of the number of interactions.

For our second analysis we did not average scores across patients.
We performed a statistical comparison of the methods after 20 inter-
actions. The findings are not very dependent on the evaluation point
and after roughly 20 interactions the benefit of additional annotations
became rather small, as seen in Figure 3.3. For each pair of methods
and each region we used a Wilcoxon signed-rank test (Wilcoxon, 1945)
to find the probability p that the two sets of measurements (a set of
measurements meaning the scores for the 20 different patients of a
given method) originate from the same distribution (not all our mea-
surements were normally distributed). We chose a base significance
threshold of p < 0.05 and applied Bonferroni correction for 50 indi-
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vidual tests (5 regions times 10 comparisons), resulting in an adjusted
threshold of p < 0.001. Note that the results are not independent, so
the correction was likely stronger than necessary.

3.4 results

Figure 3.2 shows exemplary segmentation results for a single patient
and 30 interactions in steps of 5. For comparison the ground truth seg-
mentation and the four base channels (features) are displayed. These
results are of course only a single sample from a stochastic process
and are not necessarily representative of the overall performance of
the approaches. However, a few things can be seen that were similar
in the majority of cases. In general, very little training is necessary
to get a rough estimate of the desired result (with the exception of
CERTAIN-MB in this case). Most later inputs introduce rather small
changes and only refine the segmentation. The segmentation doesn’t
necessarily improve in each step, in most cases this is due to consider-
able changes in the edema region. Lastly, there are almost always a
number of very small false positive regions dispersed throughout the
healthy part of the brain. We will discuss these findings in detail in
Section 3.5.

To obtain quantitative results, we simulated the interactive segmen-
tation process 5 times for each of the 20 different patients. Note that
the classifier used only live input annotations for the current subject
and did not incorporate knowledge from other patients or earlier
assessments. In each step, the training set consisted of all pixels an-
notated by the simulated user and the test set was the remainder of
unannotated pixels.

Figure 3.3 shows the Dice score over time for all methods and tumor
classes including the 1σ standard deviation of the 5-run patient means
for the overall best performing method MISCLASS-B to illustrate
how scores varied across different patients. Other methods’ standard
deviations are comparable. Figure 3.4 represents a cross section of
Figure 3.3 and shows mean Dice scores after 20 interaction cycles
for all methods and classes. Highlighted are all pairs of methods
with a significant (p < 0.001) performance difference. A full overview
of test scores (p-values, test statistics and difference of medians) is
given in Table 3.1. In the following we first present results for the
comparison of annotations in uncertain regions (UNCERTAIN) and
corrective annotations (MISCLASS & MISCLASS-B). We then show
the comparison of the best of those methods (MISCLASS-B) with
corrective annotations in very uncertain (UNCERTAIN-MB) and very
certain (CERTAIN-MB) regions.
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Figure 3.3: Dice score as a function of the number of interactions for dif-
ferent tumor regions. Dashed lines indicate that the method
relies on the prediction uncertainty. Filled area shows 1σ stan-
dard deviation of patient means for MISCLASS-B to give an
estimate of the spread of scores across patients. Standard de-
viations for other methods are comparable. MISCLASS-B and
UNCERTAIN-MB show the overall best performance in all re-
gions. In the larger regions edema and whole tumor, MISCLASS
performs similarly, in smaller regions (necrotic core, enhancing
and non-enhancing tumor) MISCLASS and UNCERTAIN per-
form comparably. CERTAIN-MB is always among the poorest
performing methods.



34 efficient expert annotations in interactive segmentation

D
ic

e
 S

co
re

UNCERTAIN

MISCLA
SS

MISCLA
SS-B

UNCERTAIN
-M

B

CERTAIN
-M

B
0.00

0.25

0.50

0.75

1.00

D
ic

e
 S

co
re

Whole Tumor

0.00

0.25

0.50

0.75

1.00

Necrosis Edema

UNCERTAIN

MISCLA
SS

MISCLA
SS-B

UNCERTAIN
-M

B

CERTAIN
-M

B
0.00

0.25

0.50

0.75

1.00

Non-enhancing Abnormality

UNCERTAIN

MISCLA
SS

MISCLA
SS-B

UNCERTAIN
-M

B

CERTAIN
-M

B

Enhancing Tumor

Figure 3.4: Dice score after 20 interaction cycles for different tumor regions.
Errors show standard error of the mean. Horizontal bars in-
dicate that p < 0.001 for the Wilcoxon signed-rank test of the
two methods, with a dash indicating the method with poorer
performance. This is essentially a cross section of Figure 3.3
after 20 interactions. Again, in the larger regions (edema and
whole tumor) MISCLASS, MISCLASS-B and UNCERTAIN-MB
perform comparably while in the other region MISCLASS-B and
UNCERTAIN-MB dominate and UNCERTAIN and MISCLASS
perform similarly. CERTAIN-MB performs poorly in all regions.
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Table 3.1: Pairwise comparison of all methods for each tumor region after 20

iterations, using a Wilcoxon signed-rank test and 5-run averages for
each patient. Displayed are test statistic and p-value results as well
as the difference of the medians for each comparison. Highlighted
in bold are comparisons where p < 0.001. This threshold is the
result of a base significance level of p < 0.05, Bonferroni corrected
by 50 individual comparisons. See Table A.1 for Edema and non-
enhancing regions.

Whole Tumor Necrosis Enhancing Tumor

Methods
Statistic p Statistic p Statistic p

∆Median ∆Median ∆Median

UNCERTAIN v MISCLASS
11 <0.001 101 0.881 81 0.370

−0.073 0.049 −0.014

UNCERTAIN v MISCLASS-B
12 <0.001 12 <0.001 45 0.025

−0.041 −0.126 −0.058

UNCERTAIN v UNCERTAIN-MB
45 0.025 4 <0.001 32 0.006

−0.026 −0.156 −0.060

UNCERTAIN v CERTAIN-MB
19 0.001 99 0.823 57 0.073

0.150 −0.002 0.114

MISCLASS v MISCLASS-B
65 0.135 15 <0.001 40 0.015

0.031 −0.175 −0.044

MISCLASS v UNCERTAIN-MB
32 0.006 19 0.001 38 0.012

0.047 −0.205 −0.046

MISCLASS v CERTAIN-MB
0 <0.001 78 0.313 12 <0.001
0.222 −0.051 0.129

MISCLASS-B v UNCERTAIN-MB
30 0.005 100 0.852 100 0.852

0.016 −0.030 −0.002

MISCLASS-B v CERTAIN-MB
0 <0.001 7 <0.001 0 <0.001
0.191 0.124 0.173

UNCERTAIN-MB v CERTAIN-MB
2 <0.001 18 0.001 0 <0.001
0.176 0.154 0.175
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3.4.1 Annotating Uncertain Regions vs Classifier Correction

In both Figure 3.3 and Figure 3.4 it can be seen that annotations in
uncertain regions (UNCERTAIN) performed worse than class-balanced
classifier corrections (MISCLASS-B) across all categories and over time,
and the difference after 20 interactions was significant in all regions
but the enhancing tumor with −0.024 6 ∆Median 6 −0.126.

Annotations in uncertain regions (UNCERTAIN) also performed
worse than random corrective annotations (MISCLASS) in the whole
tumor region and the edema. The difference after 20 interactions was
significant for both the whole tumor (∆Median = −0.073) and the
edema (∆Median = −0.038). Performances were roughly on par in
the smaller necrosis, enhancing and non-enhancing regions.

Random classifier corrections (MISCLASS) performed significantly
worse than class-balanced corrections (MISCLASS-B) in the necrotic
core regions (∆Median = −0.175) and the non-enhancing regions
(∆Median = −0.086). They also performed worse in the enhancing
tumor region, but without a significant difference after 20 interactions.
In the larger whole tumor and edema regions the two were roughly
on par.

3.4.2 Combination of Uncertainty-based Annotations and Classifier Correc-
tion

As outlined above, MISCLASS-B was among the top performing ap-
proaches in all tumor regions. We now compare it with UNCERTAIN-
MB and CERTAIN-MB; both methods are designed to work like
MISCLASS-B and to additionally incorporate uncertainty informa-
tion to improve segmentation results. We intentionally leave out the
comparison of UNCERTAIN-MB and CERTAIN-MB with MISCLASS
and UNCERTAIN.

Figure 3.3 & Figure 3.4 show that CERTAIN-MB, the class-balanced
corrective annotations in the most certain regions, was always among
the poorest performing approaches and performed significantly worse
than balanced corrections (MISCLASS-B) as well as balanced cor-
rections in uncertain regions (UNCERTAIN-MB) after 20 interac-
tions across all classes except for the necrotic core, where p = 0.001
(but not p < 0.001) for the comparison between CERTAIN-MB and
UNCERTAIN-MB.

Balanced classifier corrections (MISCLASS-B) and the combination
of that approach with annotations in uncertain regions (UNCERTAIN-
MB) performed similarly well across class with a slight advantage
for the former over the latter in the whole tumor and edema regions.
However, the difference after 20 interactions was not significant in any
of the tissue classes.
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Figure 3.5: Interactions by real human users with between 1 and 4 years
experience working with glioblastomas. Users were first asked
to annotate without instructions, then used the UNCERTAIN
method. Intuitive annotations perform better than annotations
in uncertain regions, because the majority of annotations users
provide are corrective. Overall scores are lower than what was
achieved in the simulations, likely because users do not fully
satisfy our assumption that they possess knowledge of the correct
segmentation. Inlay: The distribution of scribble lengths.

We mentioned in Section 3.3.3 that we initialized the algorithm
with 50 random training instances, distributed among the classes by
their relative occurrence. The purpose of this was to skip the initial
steps where the classifier has too little information about a given class
and essentially stays constant at 0 or a very low score. This can be
seen in Figure 3.3 in the necrotic region. The score appears to be at a
constant low before increasing quite sharply and then following the
common pattern. Without initialization this effect would be much
more pronounced and visible in all classes. The best final Dice scores
out of all methods after 50 interactions for each class were 0.870 for
the whole tumor, 0.771 for necrosis, 0.789 for the edema, 0.400 for the
non-enhancing abnormalities and 0.833 for the enhancing tumor.

To get an idea of how users would annotate intuitively, we let four
users (1 to 4 years experience working with glioblastoma) annotate a
subset of randomly selected patients. In total we recorded 4 separate
assessments for each of four different patients, where each rater per-
formed 2 assessments on a given patient, first with no instructions and
then following the UNCERTAIN approach as a comparative baseline.
The result for the whole tumor region is shown in Figure 3.5
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3.5 discussion

We compared five different methods of providing annotations in the
context of online interactive segmentation based on a pixel classifier
that receives inputs in the form of annotation scribbles. We compared
them with respect to their ability to evoke inputs that let the classifier
make faithful predictions with minimal interactive effort. Our analysis
is based on a Random Forest classifier, applied to the task of seg-
menting multiple glioblastoma tissue classes in magnetic resonance
images. The efficient annotation of a large dataset of this kind was a
prerequisite for the work shown in the following chapters.

The methods we proposed use uncertainty information from the
classifier and correctness information from the user. Interactive seg-
mentation based on scribbles is not a new concept and neither is the
usage of uncertainty information in interactive segmentation (Triebel
et al., 2014; Maiora et al., 2014; Chyzhyk et al., 2015). But to the best of
our knowledge we were the first to compare in this context the merits
of inputs in regions of high uncertainty and inputs that correct the
classifier. Consequently we know of no prior work that attempts to
combine both in this context.

We recognize that our approach is quite specific in the sense that we
tested methods that could be applied to almost any choice of classifier
only on a single one, namely a Random Forest, however this was mo-
tivated by this classifier’s remarkable performance across a multitude
of challenges (see Section 3.3.2). And indeed the final Dice scores we
obtain after 50 interactions compare favorably to previously reported
results on the same dataset (Menze et al., 2015), even those from early
work with CNNs (Pereira et al., 2016). It is important to recognize that
this work does not compete with automated segmentation methods,
but rather enables them. Since the publication of our results, glioblas-
toma segmentation as well as the field of medical image segmentation
in general has progressed remarkably. This is not least due to the
increased availability of annotated data in the context of challenges, for
example the Medical Segmentation Decathlon (Simpson et al., 2019),
a combination of ten different segmentation tasks with an average
of 263 annotated training items per task. Our contribution (Isensee
et al., 2018; Isensee et al., 2020) won this challenge and represents the
state-of-the-art in automatic medical image segmentation.

We observed that in general our algorithm needs relatively little
training data to get a rough estimate of the correct segmentation
(especially the whole tumor region) and that most later inputs only
refine the segmentation. Interestingly, while the results on average
improve over time, this is not necessarily the case for any single
experiment. Especially decisions with unclear boundaries, for example
the transition from the edema to healthy tissue, can change quite
drastically with small changes in the training set. This behaviour
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can be seen in the exemplary results in Figure 3.2 for MISCLASS
between steps 20 and 25. Note that the classifier finds edema regions
throughout the brain. That is a common limitation of many classical
approaches, including ours, that perform predictions on a per-pixel
basis. Correlation between neighbouring pixels is only introduced
in the feature maps. The problem can be mitigated by introducing
post-processing, for example regularization with Conditional Random
Fields (Schroff et al., 2008). The computation requirements render
such processing infeasible for an interactive setting, which is why we
intentionally excluded it from our experiments.

Another interesting observation one can make in the examples we
present is that the algorithm picks up a patch of necrosis in the center
of the tumor, whereas the ground truth segmentation classifies it as
non-enhancing tumor. The two classes have very similar imaging
signatures and judging from the MRI channels it would be an entirely
reasonable decision to classify the patch as necrosis. Evidently the
interactive segmentation workflow can serve to give the user feedback
on their perceived correct segmentation. In a comparable setting this
was shown to reduce inter- and intra-rater variability (Kleesiek et al.,
2016). Do note that later iterations of the BraTS challenge recognized
this problem and altered their annotation protocol (Bakas et al., 2019).

The methods we compared were annotations where the classifier un-
certainty is highest (UNCERTAIN), annotations that randomly correct
the classifier (MISCLASS), annotations that correct the classifier, but
with equal distribution of inputs among classes (MISCLASS-B) as well
as balanced corrections in regions of high uncertainty (UNCERTAIN-
MB) as well as regions of low uncertainty (CERTAIN-MB). Note that
we first compared UNCERTAIN, MISCLASS and MISCLASS-B, where
MISCLASS-B emerged as the best performing approach, and then com-
pared only MISCLASS-B with UNCERTAIN-MB and CERTAIN-MB,
neglecting the remaining comparisons.

3.5.1 Annotating Uncertain Regions vs Classifier Correction

In the comparison of annotations in regions of high classifier uncer-
tainty (UNCERTAIN), random corrective annotations (MISCLASS) and
class-balanced corrective annotations (MISCLASS-B) we found that it
is generally preferable to let users annotate falsely classified regions,
assuming the user has complete knowledge of the correct segmenta-
tion, because MISCLASS-B performed better than UNCERTAIN in all
regions and significantly so in all but the enhancing tumor region,
while MISCLASS performed significantly better than UNCERTAIN
in the whole tumor and edema regions. The difference between MIS-
CLASS and MISCLASS-B can be attributed to the fact that the problem
is one with a large class imbalance. The edema and whole tumor
regions are generally large or not much smaller than the background,
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and hence are automatically balanced with respect to the background,
in which case there is no functional difference between MISCLASS and
MISCLASS-B. This is reflected in the results where the two exhibited
very similar performance in those two classes. In the smaller regions
on the other hand, MISCLASS-B performed better (significantly so in
the necrotic and the non-enhancing region), because purely random
annotations are more likely to miss those regions, resulting in fewer
training data from which the classifier can learn to discern them. This
will likely hold true for most scenarios with a strong class-imbalance.
Note that our findings also suggest that classifier uncertainty and
classification error are generally not congruent.

3.5.2 Combination of Uncertainty-based Annotations and Classifier Correc-
tion

Because MISCLASS-B, the class-balanced corrective annotations, proved
to be such a successful approach, we were curious if it could be com-
bined with knowledge about the classifier uncertainty. We had two
opposing hypotheses in this regard: Either that performing the cor-
rective annotations in the most uncertain regions could boost the
performance or, to the contrary, that doing so in the most certain
regions could improve the performance, because the corrective effect
should be stronger in the latter case. The second idea is clearly refuted
by our results as CERTAIN-MB was among the poorest performing ap-
proaches for all tissue classes and performed significantly worse than
MISCLASS-B and UNCERTAIN-MB across all classes. UNCERTAIN-
MB on the other hand performed about as well as MISCLASS-B, but
did not improve upon the performance of MISCLASS-B, so that both
of our hypotheses can be dismissed. Because of the additional com-
putational cost of computing the uncertainty it is beneficial to prefer
MISCLASS-B over UNCERTAIN-MB.

Out of the publications mentioned in the beginning of this chapter,
Konyushkova et al. (2015) are the only ones who report the Dice score
as a function of the number of interactions for a comparable task and
we will compare our results with theirs in some detail. The authors
apply their geometric uncertainty sampling to the 2012 BraTS challenge
data while we use data from the following year. It is not immediately
clear what their segmentation objective is, as the 2012 BraTS challenge
specifies two tumor categories. We assume the authors just segmented
both tumor classes as a union, like the Whole Tumor category we
evaluate. From a qualitative perspective the curves Konyushkova et al.
(2015) obtain exhibit the same characteristics as ours, with a steep
incline in the beginning that gradually becomes smaller. Interestingly,
the methods they compare perform virtually the same for the first
10 interactions up to a Dice score of 0.4, which is exactly the range
of scores we skip by providing initial training samples. The authors
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compare four different query methods, one of which is very similar
to UNCERTAIN, as it always selects the most uncertain superpixel
for annotation. Not including the first 10 interactions, their method
achieves scores of (0.4, 0.5, 0.6, 0.65) in the first steps of 10 interactions
while ours achieves (0.4, 0.65, 0.7, 0.75) in the same interval (rounded
to 0.05 accuracy). Their method seems to asymptotically approach a
score of 0.75, ours tends towards 0.8. Their best performing method
stays just below 0.8, while ours is again at an advantage of about 0.05

points. Do note that this comparison is based on a visual assessment
of their figures. One interesting finding they report is that random
sampling results in an almost constant Dice score. We could confirm
this, but chose to omit the result, as it is in no way representative of a
realistic user.

To get an estimate of how a real user would approach the problem,
we let four different users with varying experience (1 to 4 years in
the relevant domain) annotate four randomly selected patients, first
without instructions (see Figure 3.5). Our hypothesis was that users
would intuitively tend to a corrective annotation style, but because the
individuals can not all be considered experts, we let them annotate
using the UNCERTAIN method as a baseline, as it does not rely on
correctness information. Users did indeed annotate in a corrective
manner, but less pronounced than expected. In total 79/197 annota-
tions were fully corrective (compared to 54/212 for UNCERTAIN) and
146/197 majority corrective (compared to 116/212 for UNCERTAIN),
but of course we cannot assess whether non-corrective annotations
were intended to be that way. Intuitive use only showed a slight
margin over uncertainty-guided annotations, however the data we
collected were too few in number to support this finding in a statis-
tically significant manner. The scores obtained for the UNCERTAIN
approach were lower than in our simulation, which is not surprising,
as not all our users can be considered experts. The strokes users
used were mostly between 10 and 25 pixels in length, so that our
simulations are in fact quite realistic in this regard, but this could be
due to demonstration bias.

Overall, our main finding was that correcting the classifier was
significantly more efficient than providing inputs where it is uncertain.
This is not too surprising, as it is easy to imagine that corrections will
on average effect stronger change in the model. More surprising was
the fact that a combination of the two yielded no additional benefit.
We assume that corrections will on average happen automatically at
points where the classifier is uncertain about its output, which would
result in MISCLASS-B and UNCERTAIN-MB performing similarly,
which is what we observed. At the same time we found a significant
difference between UNCERTAIN and MISCLASS-B. This would then
imply that on average the error regions are a subset of the high
uncertainty regions. In the cases we inspected visually, we found most



42 efficient expert annotations in interactive segmentation

of the error regions to overlap with the uncertainty regions to a large
extent, but not entirely.

Our findings suggest that uncertainty information, at least the prob-
ability entropy, is virtually useless to query inputs from a user, which
is in contrast to existing literature in the active learning domain, much
of which is concerned with finding variations of measures that de-
scribe the model’s knowledge or lack thereof. In our scenario the user’s
knowledge was clearly more important. Of course, this relies strongly
on the assumption that the user possesses knowledge of the correct
segmentation. If we were to omit this constraint and compare our
UNCERTAIN method with completely random annotations, it would
fare much better. We tested this, and completely random annotations
performed even worse than CERTAIN-MB, obviously because small
regions will almost never be annotated. However, as elaborated on
above, it is in no way reasonable to assume that a real user would
just place random annotations, which is why we did not include these
results. We chose the probability entropy as a measure of the model’s
uncertainty mainly because it is very easy to compute. The question
remains whether there are other, maybe more complex, measures of
uncertainty or ways to query inputs from the user at certain points
that would achieve even better results. This is of course the key ob-
jective in active learning, where numerous methods to tackling this
have been proposed. Settles (2010) gives a good introduction to the
different groups of approaches; the ones that are conceptually more
similar to our corrective annotations, like expected model change
and expected error reduction, are unfortunately also among the most
computationally expensive and hardly usable in a truly interactive
setting.

Potential improvements over what we have shown could lie in
methods that exploit committees such as the Random Forest classifier
we used. It might be worth exploring ways to intelligently reweight
individual trees based on how well they agree with new inputs and
criteria to reject existing and to build new trees. As an additional
benefit, this could also speed up the training and prediction steps.
It should also be noted that our methodology is such that it does
not translate easily to larger data (like larger volumes or multiple
observations over time), because it requires the user to view as much
as possible of the given instance at a given time. We further make the
assumption that the user knows the correct segmentation and is able
to identify falsely classified regions, which is not a trivial assumption
for complicated tasks like tumor segmentation. There is also the
possibility that our choice of features was not ideal. For example,
features that better capture long-range correlations (Kontschieder et
al., 2013) could yield an improvement. Finally it should be noted
that what we define as uncertainty, i.e. the probability entropy, is
not an uncertainty in the Bayesian sense but only a measure of how
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confident the classifier is in its prediction. In other words, this type
of uncertainty tells us how certain the prediction is, given our model,
but not how certain we can be that our model is correct.

To summarize, we found that interactive semantic segmentation
of glioblastoma MRI based on a pixel-wise Random Forest classifier
should be performed such that the user annotations correct the classi-
fier with a roughly equal number if inputs for all tissue classes. This
finding will be relevant for any similar problem with a large class
imbalance. For problems with a balanced class distribution it will
still be advantageous to prefer corrective annotations over ones where
the classifier exhibits high uncertainty. Applications that benefit from
these findings are those that seek to create segmentations fast but
with a reliability that renders automatic methods inapplicable. The
creation of high quality training data for the latter is one such example
that also motivated this work. We close with an overview of deep
learning-based interactive segmentation, an outlook with hindsight of
sorts, as the vast majority of these were published later than our work.

3.6 interactive segmentation with deep learning

The first studies on deep learning-based interactive segmentation were
published while we conducted the experiments presented here. One of
the first and most influential was done by Xu et al. (2016), inspiring sev-
eral follow-up works. They convert binary (foreground/background)
user clicks into Euclidean distance maps and feed those as two addi-
tional input channels, along with the input image, into a conventional
CNN. Lin et al. (2016) perform scribble-supervised learning on super-
pixels of an input image. The annotated pixels and the segmentation
output of a neural network are combined in the unary term of a
graphical model, propagating the information via the pairwise terms.
They then alternating solve the graphical model (via graph cuts) and
update the network parameters during training. Liew et al. (2017)
note that the user annotations in the work of Xu et al. (2016) often
have relatively little influence on the network prediction. They try to
remedy this by separating the CNN into a local and a global branch.
The local branch takes higher resolution inputs around the user inputs
and produces predictions only for these localized areas that are then
fused with the global predictions from the other branch. While Xu
et al. (2016) evaluate their network with a simulated user that corrects
errors iteratively, this behaviour is not reflected in the training proce-
dure. Mahadevan et al. (2018) modify the click sampling strategy to
also simulate an error-correcting user during training. The work by
Le et al. (2018a) is very similar to that of Xu et al. (2016), but instead
of segmenting regions, their network predicts object boundaries from
user clicks. Maninis et al. (2018) encode user clicks not as distance
maps but as simple Gaussian blobs. They further let users annotate
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extreme points of objects instead of points within object regions and
show that this improves performance compared to the work of Xu
et al. (2016) and Liew et al. (2017). Hu et al. (2019) postulate that the
influence of the user interaction input on the network output becomes
stronger when it is introduced later in the network. Consequently,
they have two paths in their network—one to process the input image,
one to process the user inputs—that are joined just before the final
output. The also employ an additional refinement network, as the first
one operates on a coarser scale.

A slightly different approach was chosen by Li et al. (2018), who
employ two separate networks. The first is trained to produce diverse
segmentations—the network has multiple output paths—consistent
with the user annotations, while the second network must select one
of those as the final prediction. The authors find that this leads to
more coherent object boundaries in the individual outputs of the first
network. In a sense, their model finds a latent space of segmentations,
not unlike probabilistic segmentation models (Kohl et al., 2018; Kohl
et al., 2019; Baumgartner et al., 2019), including our own presented in
Chapter 4 (Petersen et al., 2019). While these were not designed for
interactive segmentation, their latent space can be explored manually
and allows a user to adjust the prediction to their liking.

Wang et al. (2019a) introduced the first deep interactive segmenta-
tion approach in the medical domain. They employ two networks: one
produces an initial prediction, the second produces the final prediction
from the first and user scribbles that are supposed to correct errors in
the first prediction. They also employ a CRF on the output to enforce
consistency in the segmentation with the user inputs. Wang et al.
(2018) expands on the previous work3 and evaluates performance on
unseen organs with similar appearance to those in the training set.
Sakinis et al. (2019) choose an approach very similar to Xu et al. (2016)
but encode clicks as Gaussian blobs instead of distance maps. They
also focus on performance on unseen but visually similar structures
in medical images.

Jang and Kim (2019) observe that in prior art it is not guaranteed that
the network outputs match the user input. They introduce a technique
called backpropagating refinement scheme that ensures this via an iterative
optimization procedure. At test time, they define a loss that measures
the difference between the network prediction and the user inputs at
the annotated points. The loss is backpropagated onto the user input
map (a distance map like in Xu et al. (2016)) which is updated while
the network weights remain fixed. The authors show that this test time
optimization results in significantly improved performance. Sofiiuk
et al. (2020) expand upon this work by recognizing that the iterative
forward and backward passes come at significant computational cost.

3 Wang et al. (2019a) was published in TMI in 2019, but was already available on arXiv
from 2017.
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They introduce auxiliary inputs later in the network that are updated
in the same way as the distance map input in Jang and Kim (2019). As
consequence, the iterative forward and backward passes have to be
performed only on a smaller section of the network.

All the works mentioned above are concerned with binary segmen-
tation. Lenczner et al. (2020) extend the work of Xu et al. (2016) to
multi-class segmentation by simply having distance map inputs for
more than just foreground and background classes, but also try to
combine the inputs into a single input channel. Agustsson et al. (2019)
choose a rather unique approach to interactive segmentation. They
start with a Mask-RCNN (He et al., 2017) but remove the region pro-
posal network and get bounding boxes from user-annotated extreme
points like in Maninis et al. (2018). Each of the extracted regions is
processed separately to produce a segmentation, but the architecture
is modified to also take into account optional user-provided scrib-
bles at this point. As a consequence, their approach can handle both
multi-class and instance segmentation in an interactive setting.





4
D I S C R E T E T U M O R G R O W T H M O D E L I N G W I T H
P R O B A B I L I S T I C S E G M E N TAT I O N

We will be using glioma growth as a motivating example for large
parts of this thesis. In the previous chapter we investigated how to
efficiently annotate large datasets of MRI scans from glioma patients.
The goal in this chapter is to leverage those findings and to try to learn
glioma growth dynamics from a large annotated dataset. Existing ap-
proaches to modeling these dynamics, an overview of which is given
in Section 2.2, employ biologically inspired models of cell diffusion,
using image data to estimate associated parameters. These models
generally require the explicit specification of the dynamics in the form
of an additional term in the diffusion equation. We propose an alterna-
tive approach, based on recent advances in probabilistic segmentation
and representation learning, that implicitly learns growth dynamics
directly from data without an underlying explicit model. We will
show that our approach is able to learn a distribution of plausible
future tumor appearances conditioned on past observations of the
same tumor.

It is important to emphasize that in this chapter we don’t concern
ourselves with the prediction of glioma growth, but instead try to model
it. We no longer ask “How much will the tumor grow (or shrink)?”, but
instead ask “If the tumor were to grow (or shrink), what would it look
like?”. We will explore growth prediction a little more in the following
chapter, here the goal is to establish a proof of concept for purely
data-driven growth modeling. We further restrict ourselves to growth
modeling in discrete time steps, even though the main theme of this
thesis revolves around learning functions on a continuous domain. We
will translate our findings to continuous time modeling in Chapter 8.

The findings in this chapter have been partly published in the
following manuscript:

Petersen, Jens, Paul F. Jäger, Fabian Isensee, Simon A. A. Kohl, Ulf
Neuberger, Wolfgang Wick, Jürgen Debus, Sabine Heiland, Martin
Bendszus, Philipp Kickingereder, and Klaus H. Maier-Hein (2019).
“Deep Probabilistic Modeling of Glioma Growth”. In: Medical Image
Computing and Computer Assisted Intervention (MICCAI), pp. 806–
814.

The chapter follows this publication closely and reproduces sections
and figures where appropriate, but we show updated results, as those
in the published work were produced on a small subset of the data
that was available to us earlier. With the above publication, we also
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released the entire source code required to reproduce the experiments,
available at https://github.com/jenspetersen/probabilistic-unet.

4.1 introduction & related work

Our goal in this work is to learn the dynamics of glioma growth from
annotated MR image data, without specifying an explicit model. An
introduction to glial cell tumors is given in Section 2.2; as we outline
there, cell proliferation is a stochastic process on the microscopic scale.
To what extent that translates to randomness on the macroscopic scale
may be debated, but it is clear that many parameters beyond imaging
have an influence on growth behaviour: above all the administered
treatment (and changes thereof), but also a patient’s age and other
health-related factors. We treat these as additional sources of ambi-
guity and work under the assumption that the growth process is not
deterministic and that the observed trajectory for a given patient is
only one realization of any number of possibilities.

Virtually all existing glioma growth models are deterministic, the
vast majority of which employ a variant of the reaction-diffusion equa-
tion. An overview is given in Section 2.2. Of those works, only Menze
et al. (2011a), Lê et al. (2017), and Lipková et al. (2019) address uncer-
tainty in one way or the other, but the underlying growth models are
still deterministic. The same is true for the machine learning-based
approaches presented in the same section. To the best of our knowl-
edge, our work is the only one that tries to represent a distribution
over possible growth trajectories. The second major difference of our
work compared to reaction-diffusion models is that we attempt to
learn growth patterns directly from data, only leveraging the statis-
tics of a large dataset. One might be inclined to think that existing
learning-based approaches do the same, but they only do so on a pixel
scale (see Section 2.2.3). In contrast, our approach learns a distribution
on a global scale, where each sample represents a differently realized
trajectory.

The approach we present is based on the Probabilistic U-Net (Kohl
et al., 2018), which is an extension of the widely known and used
U-Net architecture (Ronneberger et al., 2015) with a so-called latent
space. In fact, the model can be interpreted as a conditional Variational
Autoencoder (Sohn et al., 2015; Jimenez Rezende et al., 2014; Kingma
and Welling, 2014) where the decoder is now a U-Net. We interpret
consecutive MRI scans for a given patient as different input channels
to the model, which limits our approach to data on a grid, i.e. with
roughly equal time differences between scans. The Probabilistic U-
Net has been introduced, as the name suggests, in the context of
probabilistic segmentation: the authors show that a model trained
with annotations from multiple raters is able to represent these raters
as different positions in the learned latent space. Since publication

https://github.com/jenspetersen/probabilistic-unet
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of our work this field has seen some progress, with extension of the
Probabilistic U-Net to hierarchical latent models (Kohl et al., 2019;
Baumgartner et al., 2019) but also other approaches, e.g. by Monteiro
et al. (2020) who model correlations between pixels in the output space.
Of course, the Probabilistic U-Net is not the only method that allows
one to model a continuous distribution of segmentations, in fact much
of the work we discuss in the following chapters in the context of
learning distributions on continuous domains (see e.g. Section 6.3)
can trivially be applied to data on a grid. Kohl et al. (2018) provide an
extensive comparison with prior art and show that the Probabilistic
U-Net is superior, a) because it models global distributions as opposed
to distributions over pixel outputs and b) because it has very well
calibrated likelihoods, which means the network captures relative
frequencies of class occurrences well. As a consequence, we choose
not to re-evaluate these works in our context.

Models that take in multiple consecutive inputs over time are often
implemented as recurrent neural networks (RNNs)—for an introduction
see for example Lipton et al. (2015)—meaning networks that are eval-
uated multiple time and that allow connections from any node at one
time step to any node in the next, including to the same one. One of
the motivations for RNNs is that the network doesn’t have to learn
the same concept multiple times (e.g. one encoder for the first input,
another encoder for the second input, etc.), thus saving capacity. With
only few inputs, network capacity is typically not an issue. We further
pass inputs together through a shared architecture, so that ideally the
network can pick up on differences between them at each point in the
forward pass. It is however possible that our approach could have just
as well been implemented using RNNs.

4.2 methods

The underlying hypothesis of our approach is that tumor growth is
at least in part stochastic, so that it’s not possible to predict a single
correct growth trajectory in time from image data alone. Hence, our
aim is to model a distribution of possible changes of a tumor given the
current and in our case one previous observation1. We achieve this
by training a model to reproduce true samples of observed growth
trajectories—with shape and extent of the tumor being represented
as multi-class segmentation maps—and using variational inference to
allow the model to automatically recognize and account for ambiguity
in the task.

1 We also repeated our experiments with three and four input time steps, but found no
significant difference.
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4.2.1 Data

We work with a dataset containing MRI scans from 488 glioma patients,
with between 2 and 13 consecutive visits to the hospital. Some more
characteristics, like the distribution of time differences between scans
or the distribution of changes in tumor size, will be presented in the
following chapter. For the published work, we only had a subset of the
data available, which contained a total of 199 longitudinal MRI scans
from 38 patients suffering from both low grade glioma (15 patients)
and glioblastoma (23 patients), with a median of 96 days between
scans and 5 scans per patient. Patients have undergone different forms
of treatment, a fact that we deliberately neglect by declaring it an
additional source of ambiguity in the dataset. Each scan consists
of 4 contrasts: native T1 (T1n), postcontrast T1 (T1ce), T2 (T2) and
fluid-attenuated inversion recovery (FLAIR), which we also introduce
in Section 2.1. All contrasts and time steps for a given patient are
skull-stripped, registered to T1 space and resampled to isotropic 1mm
resolution (Jenkinson et al., 2012). For intensity normalization, we only
employ basic z-score normalization. Ground truth segmentations of
edema, enhancing tumor and necrosis were created semi-automatically
by an expert radiologist. We show results both on the published subset
and the full dataset available for this thesis.

4.2.2 Model

Our model along with the training procedure, based on a proba-
bilistic segmentation approach (Kohl et al., 2018), are visualized in
Figure 4.1. The architecture comprises three components: 1. A U-Net
(Ronneberger et al., 2015) to map scans from present and past to fu-
ture tumor appearance. 2. A fully convolutional encoder that maps
scans from present and past—presented to the model as different
input channels—to an N-dimensional diagonal Gaussian (the prior; we
choose N = 3). 3. An encoder with the same architecture that maps
scans from present and past as well as the ground truth segmentation
from the future to another diagonal Gaussian (the posterior; N = 3).
The prior and posterior encoders employ global average pooling at
the end to remove any spatial resolution. During training we sample
from the posterior and concatenate the sample to the activations of
the last decoder block in the U-Net, so as to condition the softmax
predictions on the sample. We employ multi-class cross entropy as
the segmentation loss and use the Kullback-Leiber divergence to force
prior and posterior towards each other, so that at test time—when a
ground truth segmentation is no longer available—the predicted prior
is as close as possible to the unknown posterior. This objective is the
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Figure 4.1: The architecture employed in our work. Following the approach
in Kohl et al. (2018), a U-Net (Ronneberger et al., 2015) is aug-
mented with two additional encoders, one for the prior and one
for the posterior. The prior encoder maps the inputs of present
and past scans to an N-dimensional diagonal Gaussian while the
posterior does the same with additional access to the ground truth
segmentation from the future. During training, a sample from
the posterior is injected into the U-Net, during testing samples
can only be drawn from the prior. Dashed lines indicate paths
that only apply during training.
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well known evidence lower bound used in variational inference (Bishop,
2006):

max
θ

E
z∼qθ(Z|X,Y)

[
logP(Y|Sθ(X, z))

]
−DKL (qθ(z|X, Y)||pθ(z|X)) (4.1)

Here S is the segmentation network, qθ is the distribution predicted
by the posterior encoder and pθ the distribution predicted by the prior
encoder. P is a pixel-wise categorical distribution, which translates to
a cross entropy loss.

The described training scheme will give rise to the following de-
sirable properties: 1) The model will learn to represent the task’s
intrinsic ambiguity in the Gaussian latent space, in our case different
plausible future tumor shapes and sizes, as we show in Section 4.3. 2)
At test time we can sample multiple consistent hypotheses from the
latent space (as seen in Figure 4.2), and select those that match desired
criteria (e.g. tumor volume increases by 20%).

We train with data augmentation2 on patches of size 1123, but
evaluate on full sized scans of 1923. We train for a total of 50 000
batches of batch size 2, using the Adam optimizer (Kingma and Ba,
2015). The initial learning rate of 0.0001 is repeatedly decayed with a
factor of γ = 0.985 after 200 batches. There are obviously vastly more
parameter configurations than we could hope to try, so our main goal
was to find one that resulted in reliably stable training.

4.2.3 Experiments & Evaluation

As outlined in Section 4.1, existing biological growth models, even
those that incorporate uncertainty, are deterministic, while we seek to
learn a distribution of possible growth trajectories, so these models
can’t serve as a baseline to judge the quality of the distributions
learned by our model. Our goal is to show that our approach learns
meaningful future tumor appearances instead of just segmentation
variants of the present input. For this reason we construct a baseline
that is restricted to learning the latter.

Let A denote past, B present and C future. Our model is trained
and evaluated for triples AB → C (that we will refer to as cases), as
shown in Figure 4.1. An upper bound on performance is given by a
regular probabilistic segmentation model that is trained and evaluated
with tuples C → C. This is essentially a model that has complete
knowledge of the future and just needs to segment it. At the same
time, a model trained on B→ B but evaluated on B→ C can serve as
a lower bound to our model trained on AB→ C. If our performance
matches that of the lower bound, we have learned to produce plausible
segmentations for the current time step, but not the future.

2 https://github.com/MIC-DKFZ/batchgenerators

https://github.com/MIC-DKFZ/batchgenerators
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We split our subjects randomly into 5 groups and perform 5-fold
cross validation, i.e. we train on 4 subsets and predict the remaining
one. For many triples, the real change between time steps is small,
which makes it hard to show that our approach actually learns mean-
ingful change. As a consequence we define two groups to report
results for:

1. Large Change: The 10% of cases with the most pronounced
change in terms of whole tumor Dice overlap, resulting in a
threshold of 0.48 and 13 cases for the published subset and a
threshold of 0.42 and 55 cases for the full dataset.

2. Moderate Change The cases with larger than mean change (0.70

for subset, 0.68 for full dataset), but not in top 10%, resulting in
31 cases and 261 cases respectively.

We are not interested in predictive capabilities, so it makes little
sense to look at the overlap of the prior mean predictions with the
future ground truth (our approach performs not much better than the
lower bound here). We report metrics that are representative of our
model’s desired capabilities, 1) a clinically relevant question, i.e. what
the tumor will look like for a given expected size, and 2) how well the
model is able to represent large changes in its latent space:

1. Query Volume Dice: We take samples from a grid around the
prior mean (−3σ to +3σ in steps of 1σ) and select the segmenta-
tion for which the whole tumor volume (i.e. all tumor classes
contribute) best matches that of the ground truth. If our ap-
proach is able to model future appearances, it should perform
better than the lower bound with increasing real change.

2. Surprise: This is the KL divergence the model assigns for a
given combination of past & present scans and future ground
truth. A lower KL divergence between prior and posterior means
the model deems the combination more realistic, i.e. it is less
surprised.

4.3 results

4.3.1 Qualitative Results

We first present several qualitative examples, selected to illustrate the
types of changes our approach is able to represent.

Figure 4.2 a) shows three cases with outlines for the prior mean
(solid purple) prediction as well as the sample from the prior (dotted
purple) that best matches the volume of the real future (red). The
similarity of the latter two in the first two columns indicates that our
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Figure 4.2: Qualitative Examples: (a) Prior mean prediction (solid purple)
and sample with best volume match (dashed purple) as well as
future ground truth (red) overlaid on FLAIR. The approach is
able to model growth or shrinkage, but is unable to represent
tumors with both growth and shrinkage in different locations
(for multiple foci, dotted and solid overlap). (b) Regular grid
samples from prior, with mean highlighted in red and ground
truth inlay in bottom left corner (unrelated to (a)). The learned
latent space separates class contributions, dimension 1 seems to
encode tumor core size (enhancing tumor and necrosis) while
dimension 2 encodes enhancing tumor size (note how necrosis
is virtually constant in the top row). The third latent dimension,
not shown here, captures small variations in edema size. Purple –
Edema, Orange – Enhancing Tumor, Yellow – Necrosis
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model is able to represent both strong growth and strong reduction in
size well. It can also be seen that the mean prediction closely matches
the current state of the tumor, which is unsurprising, because small
changes occur most frequently. The third column is illustrative of
a general limitation of our model: encoding into the latent space
removes all spatial resolution, so tumors that both shrink and grow in
different locations (e.g. with multiple foci) are not represented in the
current setup.

Figure 4.2 b) illustrates how the learned latent space represents
semantically meaningful continuous variations: Dimension 2 changes
the size of just the enhancing tumor while dimension 1 changes the
size of the tumor core (enhancing tumor and necrosis combined).
The third axis that is not shown encodes variation in the size of the
edema, meaning that the model automatically learned to separate the
contributions of the different tumor regions. Most importantly, all
variations seem plausible. Note that while a reduction in necrosis is
biologically implausible in a treatment-naive context, it might very
well occur under treatment like in our dataset.

4.3.2 Quantitative Results

In this section we compare our approach with an upper bound and
a lower bound. These are given by a regular probabilistic U-Net
Kohl et al. (2018) trained for segmentation with (upper bound) and
without (lower bound) knowledge of the future and both evaluated
with respect to future ground truth.

Figure 4.3 shows median results for two different metrics and both
moderate change and large change, evaluated on the published subset
of the data. Query Volume Dice represents the clinically motivated
question of estimating spatial extent for a given change in size (e.g.
for radiation therapy). Particularly for cases with large change our
approach outperforms the lower bound. At the same time, the Surprise,
a measure of how close estimated prior and posterior are for a given
set of inputs and future ground truth, is on par with the upper bound
for cases with moderate change and still much lower than the lower
bound’s for large change cases. For reference, in VAEs this usually
comes at the cost of poor reconstruction, but the reconstruction loss
(i.e. segmentation cross entropy, not shown) is also much lower for our
approach compared to the lower bound in both cases. We performed a
Wilcoxon signed-rank test to see if the difference between lower bound
and our proposed method is significant. For the Query Volume Dice
we find p = 0.597 in the case of moderate changes, but p = 0.019 for
large changes, which can be considered significant. For the surprise
we find p < 0.001 and p = 0.221, respectively.

In Figure 4.4, we show the same evaluation done on the full dataset
available for this thesis. We now find that the difference between our
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Figure 4.3: Quantitative results for Query Volume Dice and Surprise on the sub-
set published in Petersen et al. (2019), for groups with moderate
and large change and median indicated in red. For large changes,
our approach can represent the future much better than the lower
bound. The low surprise in our model indicates that our model’s
learned prior assigns higher likelihood than the lower bound to
the real future tumor appearance, leveraging temporal informa-
tion from previous scans. The difference between our proposed
approach and the lower bound can be considered significant in
the case of large changes, with p = 0.019 for the Query Volume
Dice. For the surprise, the difference is significant for moderate
changes with p < 0.001, but only p = 0.221 for large changes. We
used a Wilcoxon signed-rank test for the statistical analysis.

proposed method is much less pronounced. For moderate changes,
there is virtually no difference between the two, and the Wilcoxon
signed-rank test results in p = 0.873 for the Query Volume Dice
and p = 0.176 for the surprise. For large changes however, we still
find a difference for the Query Volume Dice that can be considered
significant, with p = 0.019, which is exactly the same value as above.
For the surprise, the corresponding test resulted in p = 0.073, an even
lower value than found above. We will discuss in the following section
what we expect to be the reason for the reduced difference in median
values between our proposed method and the lower bound.

4.4 discussion

In this work we investigated whether glioma growth dynamics can
be learned directly from data without an underlying explicit biolog-
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Figure 4.4: Quantitative results for Query Volume Dice and Surprise on the
full dataset. Compared to the results in Figure 4.3, the difference
between our proposed approach and the lower bound is much
less pronounced, especially for the Query Volume Dice.

ical model, instead relying on probabilistic segmentation to model
distributions of future tumor appearances.

Our results indicate that this is indeed possible. We showed quanti-
tatively that our approach can represent large variations in the inferred
distributions and that these learned distributions model growth tra-
jectories instead of just segmentation variants for a known input.
Qualitative examples show overall realistic growth as well as shrink-
age patterns. Compared to existing work, our approach relies on a
very different hypothesis, so we elected to present metrics that evalu-
ate our desired goals, but are unfortunately unsuitable for quantitative
comparison with classical methods. We also presented two different
sets of results, the first being a reproduction of the results published
in Petersen et al. (2019), the other an evaluation on a much larger
dataset available to us at a later time. While the overall findings were
the same, in terms of our method outperforming the lower bound,
the difference between the two was much smaller for the evaluation
on the larger dataset. This is most likely because the underlying
data distribution the models were trained on changed. Specifically,
in the subset evaluated for the publication, the large change category
accounted for 10.6% of all cases. In the complete dataset, only 5.1% of
cases fall into the same class. That means the model has seen fewer
cases with a very pronounced change, and consequently the learned
distribution models smaller changes on average.
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In the results presented in Section 4.3, we always trained on two
input time steps. We also evaluated the same with three or four input
time steps, but found no significant difference. Likewise, when the
models are trained with segmentations instead of the MRI scans as
input, the results also stay the same. This suggests that there is no
“hidden” information in the images, like a certain imaging signature
that might indicate infiltration. Instead, the growth patterns are
learned purely from the shape and position statistics in the dataset.
This will be important for Chapter 8, where we translate the findings in
this chapter to a continuous time axis and only work in segmentation
space.

We see a number of advantages that our approach offers. The ability
to sample consistent hypotheses from the latent space, as opposed to
just having pixel-wise probability estimates, lends itself to answering
clinically motivated questions, e.g. exploring only samples that cor-
respond to strong growth or those that produce predictions where a
certain region is or is not affected by the tumor. We further don’t rely
on imaging modalities like DTI that are not typically acquired in clini-
cal routine. It would in fact be interesting to explore if our approach
can benefit from including the latter. Overall, we think that our work
opens up a promising new avenue of approaching glioma growth and
tumor growth in general. Our work is entirely complementary with
respect to diffusion-based models, and combining them should be
exciting to explore, as we discuss further in Section 9.3.2.

At the same time, there are a number of disadvantages that need to
be addressed. Our method clearly requires more data than existing
ones that are based on explicit biological diffusion models. As we
pointed out, our model is also unable (and not designed) to predict
a single correct growth trajectory. It is further unable to resolve
spatially varying growth for a single tumor, likely because we employ
a simple global latent space. Perhaps the most important limitation
is that our approach requires an equidistant spacing of observation,
i.e. scans need to have been performed at fixed intervals. Neither can
the models handle a varying number of input scans at test time. As
the focus of this thesis lies on learning distributions of functions on
continuous domains, both of these shortcomings will be addressed in
the following chapters, specifically Chapter 8.



5
A M O T I VAT I N G E X A M P L E : T U M O R V O L U M E
P R E D I C T I O N

We will use this chapter to introduce the overarching theme of this
thesis. Our contributions pertain to the area of learning distributions of
functions, or function spaces, on continuous domains, where learning
means inferring some form of representation. We will present an
example that should illustrate why this is desirable: the prediction of
tumor burden in glioma patients, when we have already monitored
their disease for some time. In the previous chapter we presented a
proof of concept for modeling glioma growth using an approach that
infers growth dynamics entirely from data. There we worked under
the hypothesis that glioma growth cannot be predicted accurately and
that we should rather try to model distributions of possible growth
trajectories. We will see in this chapter that the assumption was
justified.

We will begin with some basic analysis of the data we have at our
disposal, to equip the reader with an understanding of its key features
and the difficulties associated with predicting or modeling glioma
growth using learning-based methods. This will be followed by the
application of a few simple approaches that one might select in an
attempt to tackle the problem. Finally, we will briefly introduce the
methods most of the following chapters are based on and see how
they fare in comparison. This chapter should not be understood as a
research contribution in the same way as the other chapters. Rather, it
establishes the research question we address using a concrete example,
and provides context for the contributions we make in the following
chapters. As a result, the presentation of results in this chapter also
follows a somewhat unconventional format.

5.1 a glioma growth dataset

We will use the modeling and prediction of glioma growth as an
example where learning function spaces directly from data is desirable
and could offer new insights. An introduction to these glial cell tumors
is given in Section 2.2, where we also summarize related work that
is concerned with modeling glioma growth mostly from biological
principles instead of by learning from data.

At our disposal is a dataset that consists of MRI scans glioma pa-
tients typically receive in regular intervals for disease monitoring. The
majority of the data stem from a study that compared treatment us-
ing a combination of chemotherapy (Lomustine) and an angiogenesis
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Figure 5.1: Distribution of time differences between consecutive scans in the
dataset. We see the largest peak at 6-7 weeks and another at
12-13 weeks, i.e. twice that duration. This is because patients are
usually asked to present to the hospital in regular intervals for
progression monitoring. It also means that this is in fact not an
ideal representation of a continuous domain.
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Figure 5.2: Changes in whole tumor size in the dataset that is being used
in this work. The outermost bins collect all points outside of
the given range. The distribution is almost symmetric around 0

and only slightly shifted to the positive region. This is due to
the fact that patients in the dataset receive treatment, otherwise
we would expect positive growth almost exclusively. The corre-
sponding histograms for the individual tumor tissues are given
in Figure A.2.
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inhibitor (Bevacizumab) with treatment using chemotherapy alone
(Wick et al., 2017). The study focused on patients with glioblastoma
(meaning high grade glioma) after first recurrence of the tumor and
found no significant difference in overall survival between the groups.
The data comprises scans of 488 different patients from various treat-
ment centers in Europe. An additional 40 patients with glioma of
various grades were added to the dataset, whose data was acquired
in clinical routine at Heidelberg University Hospital. Treatment infor-
mation is generally not available in a structured format, so we do not
incorporate it in our experiments for this thesis. Each patient was mon-
itored for a minimum of two and a maximum of 13 consecutive times,
and each time at least four different MRI contrasts were acquired:
native T1 weighted, T1 weighted after administration of a contrast
agent (Gadolinium), T2 weighted, fluid-attenuated inversion recovery
(FLAIR, also T2-weighted). These contrasts represent the standard of
care in glioma progression monitoring, and we describe them in more
detail in Section 2.1. Other imaging was occasionally employed as
well, like diffusion-weighted or susceptibility-weighted MRI, but too
sporadically to be of use for our work. We conduct all our experiments
on preprocessed versions of the data, where all contrasts and all scans
for a given patient were registered to a common space, skull-stripped
and resampled to an isotropic resolution of 1mm. We further normal-
ize each channel at each time step by its mean and standard deviation.
Along with the MRI scans, segmentations of different tumor tissues
are available, namely edema, contrast-enhancing tumor and necrosis
and non-enhancing tumor (as a joint label). Many of our experiments
and evaluations also consider the whole tumor region, which es the
union of those individual classes. The segmentations were created
with various combinations of automatic and semi-automatic methods,
but all of them have undergone a final inspection by an experienced
radiologist.

While patients should usually present for follow-up visits in regular
intervals, this is not always the case in practice. In Figure 5.1 we
show the histogram of time differences between consecutive hospital
visits in the dataset. There are pronounced peaks at 6 weeks and 12

weeks, but a considerable number of times patients deviated from this
pattern. So while this data could certainly be used in contexts that
require equidistant inputs—like our first attempt at learned glioma
growth modeling in Chapter 4—it already highlights that working on
a continuous time domain is generally preferable.

5.2 the difficulty of predicting tumor growth

We mentioned in Section 2.2 that changes in tumor size are the primary
factor deciding the classification into progression, stable desease or
treatment response, and consequently about potential changes in
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Figure 5.3: Predictive root-mean-square error (RMSE) for polynomial fits of
different degrees and varying numbers of input time steps, eval-
uated for whole tumor volumes. Errors represent one standard
deviation. We subtract the baseline of predicting no change at
all, and find that performance decreases as the polynomial or-
der increases. For a benefit compared to the baseline, at least 4

consecutive time steps are necessary to achieve an improvement.

treatment. There is no question that an accurate estimate of future
tumor size would be tremendously helpful for therapy planning. As
an exploratory exercise, we will try to predict tumor growth from
volume measurements alone.

Consider the scenario that we monitored a patient for some time,
collecting measurements of the tumor volume. In our dataset, we
obtain this by simply summing the number of voxels belonging to
the desired tumor class (whole tumor in this case) in the available
segmentation map. We’d now like to estimate the tumor size at some
point in the future, or rather the change compared to the last avail-
able observation. What should we expect a priori, when we have
only the current size of the tumor at our disposal? Figure 5.2 shows
the histograms of absolute and relative changes between consecutive
scans in our datasets. Rather surprisingly, it is almost centered around
zero, meaning the treatments patients receive appear to be working
on average. For an untreated tumor, we would expect almost exclu-
sively positive growth. Qualitatively, the distribution appears to be
a Gaussian with a wider tail, but we are not interested in a precise
description of the distribution, rather in its main takeaway: when
trying to predict tumor growth at an increment of the average time
difference in our data, we should not expect any change!
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But now we have collected multiple measurements. Can we perhaps
discover some sort of trend in them that we can extrapolate into the
future? The simplest approach for this would linear regression: simply
fitting a straight line to the available measurements. But of course
higher order moments might be interesting as well, so we explored
polynomials of varying degrees for this task. Figure 5.3 shows the
root-mean-squared error for polynomials of degrees one to four, with
the number of input time steps between two and seven. The values
are normalized by the error we would obtain by not predicting any
change. We find that a first order polynomial works best, and can
improve upon the trivial baseline at least to some extent. The error
we get for the baseline is 41.34 cm3, meaning the best error obtained
for linear regression with 6 input time steps is still 28.75 cm3, which
would be a sizable tumor in itself. There are of course many other
possibilities beyond polynomials one could explore, as we outline in
Section 2.2. One common choice is logistic growth, for which we show
results in Figure 5.7, but for now we continue with linear regression.

It is quite clear that with such large errors it is paramount to have
an estimate of uncertainty in the predictions. We can do this by
performing the regression in a Bayesian framework, and because of the
results in Figure 5.3 we will focus on linear regression. It can be shown
that Bayesian linear regression is, under some mild assumptions1,
equivalent to applying a Gaussian Process with a dot-product kernel
k(x, x ′) = xx ′+σ2. As a comprehensive source on Gaussian Processes
(GP) we recommend Rasmussen and Williams (2006), which includes
a derivation of the dot-product kernel from linear regression. We
also work a little more with Gaussian Processes in Chapter 7, where
we provide further details. As the name suggests, GPs model the
joint distribution of available observations and desired target locations
as a Gaussian distribution. Examples for some predictions from a
dot-product GP can be seen in Figure 5.4, including samples from
the predicted distributions. As desired, we now have an uncertainty
estimate, which increases moving away from the observations. We
also see that the mean predictions are often far from the true observed
tumor volume in the future. For example, rows one and four in the
Large Change column essentially show almost constant tumor volume
over the observed time range, but at the target location it has grown
by an enormous amount. This highlights one of the challenges that
make predicting tumor growth so difficult: the growth patterns are
often highly irregular.

Applying a Gaussian Process, we’re no longer just interested in
the average error of the mean, i.e. the RMSE. Instead, we’d like to
know how good the predicted distribution is, especially how good
the uncertainty estimate is. To evaluate this, we can measure the

1 The assumptions are a standard normal prior on the slope and a zero-centered
Gaussian prior with variance σ2 on the offset.
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Figure 5.4: Examples from the dataset with predictions from a Gaussian
Process with a dot-product kernel. (left) The 5 examples with
the largest absolute change in tumor volume between the last
input and the test point. (right) The 5 examples with the smallest
absolute change in tumor volume between the last input and
the test point. We find that the Gaussian Process can adjust
its predictive uncertainty depending on the input data. At the
same time, this estimate is often too low, as seen in the top rows.
These examples highlight one of the challenges in predicting
glioma growth, a sort of growth explosion. The inputs in the top
row and the fourth row of the large change column look hardly
distinguishable from the examples in the small change column,
but at the target points the subjects suffer from a much larger
tumor. Note that each panel has an individual y-axis and that
the predictions from linear regression are almost identical, so we
don’t show them here.
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Figure 5.5: Predictive Log-Likelihood (LL) for a Gaussian Process with a dot-
product kernel, evaluated for whole tumor volumes. The baseline
corresponds to predicting a Gaussian with parameters estimated
from the distribution of changes seen in Figure 5.2. With 5 or
more input values, the prediction comes close to the baseline, but
only matches it when 7 time steps are available. This is likely
because the predicted uncertainty is too low, as seen for example
in Figure 5.4. A value for only two inputs is not shown, because
in that case the predicted Gaussian can become arbitrarily narrow.

(log-)likelihood of the target volumes under the predicted Gaussian
distribution. The results are shown in Figure 5.5, again with a trivial
baseline that we obtain by simply predicting a Gaussian distribution
with mean and variance estimated from the histogram of changes
in Figure 5.2. Even though a Gaussian is not an ideal fit for this
histogram, the GP never performs better than the baseline, and only
matches it with seven input time steps.

This is quite remarkable. On average, the GP extracts no information
from the measurements we made and is no better than an informed
guess. While glioma growth is certainly not deterministic, as we
discuss in Section 2.2, the reader should hopefully be wondering: “Is a
dot-product GP really the best choice for growth extrapolation?” And
the simple answer is that we don’t know, which leads us to the main
motivation of our work.

In hopes to find a good set of functions to use for our task, we would
almost always try to look at examples and over time try to describe
or parametrize an expression that can later be applied to unseen
examples. In other words, we try to find a common representation of
functions that best describe what we have observed. This is precisely
the goal of this thesis: we want to find methods that allow us to
automatically learn such a representation from examples, so we don’t
have to do it manually.
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5.3 learned interpolation with neural processes

The goal of this thesis is to find methods that can automatically
learn a representation of some distribution of functions by observing
examples. This should happen in a way that we can later interpolate
between and extrapolate from a number of observations following the
learned pattern. In precisely this context, Neural Processes (Garnelo
et al., 2018a; Garnelo et al., 2018b) were proposed as a way to leverage
neural networks—arguably the most powerful function approximators
currently available—for the task. Our contributions in the following
chapters are all based on Neural Processes or follow-up work, and
in Chapter 6 specifically we investigate their inner workings in great
detail. For now it shall suffice to know that these NPs are deep
learning algorithms trained by repeatedly showing example functions,
represented as sets of arbitrarily sampled context observations and
target points. By learning to predict the targets from the context, they
implicitly form a representation of the underlying function space and
can later apply it to new context observations. Here we train the
models in a leave-one-out fashion on five random subsets of the data,
i.e. four subsets for training, one for testing.

In Figure 5.6 we show the same examples as in Figure 5.4, now
applying a so-called Conditional Neural Process (Garnelo et al., 2018a),
which is a deterministic Neural Process variant, as well as an Attentive
Neural Process (Kim et al., 2019), which is follow-up work to the former.
The CNP has essentially learned to perform linear regression, but as
we will see in a moment, its uncertainty estimate is more accurate
than that of dot-product GPs. The ANP also sees some curvature in
its predictions, depending on the context observations.

In Figure 5.7, we show both the predictive RMSE and the predictive
log-likelihood for the ANP as well as for a variational Neural Process
(NP) (Garnelo et al., 2018b)—the results for the CNP are virtually
identical to the ANP. For comparison, we also show the dot-product
GP and the naive baseline in each case. Note that the RMSE for the
dot-product GP is almost identical to the linear regression case. We
see that the Neural Processes outperform the GP by a large margin,
achieving a RMSE of as low as (12.26± 1.85) cm3 and a log-likelihood
of −2.20± 0.24. This answers our question of whether the dot-product
GP was an ideal choice to extrapolate tumor volume measurements
quite resoundingly. A learning-based approach, in the form of Neural
Processes, evidently yields a large performance margin. Also shown is
the RMSE for logistic regression, a common choice in growth modeling.
While better than the dot-product GP, it is still bested by the learned
estimates. Note that we can’t obtain an exact solution for the posterior
in Bayesian logistic regression, which is why we don’t show the log-
likelihood in this approach.
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Figure 5.6: Examples from the dataset with predictions from a deterministic
Neural Process (CNP) and an Attentive Neural Process (ANP).
(left) The 5 examples with the largest absolute change in tumor
volume between the last input and the test point. (right) The
5 examples with the smallest absolute change in tumor volume
between the last input and the test point. We find that the CNP
essentially learns to perform a form of linear regression, while
the ANP predictions exhibit some curvature. Compared to the
GP predictions in Figure 5.4, the uncertainty estimates seem
more accurate. The models also learned that uncertainty usually
increases over time.
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Figure 5.7: RMSE and Log-Likelihood for tumor volume regression with
Neural Processes. We show the probabilistic variant (NP) instead
of the deterministic variant (CNP), because the performance of
CNP and ANP is almost identical. In both metrics, the Neural
Processes perform significantly better than the Dot-Product GP.
Note that the RMSE for linear regression and the for the dot-
product GP are virtually identical. Clearly there is a benefit
to using a learned function distribution instead of a manually
specified one.
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5.4 summary

Our goal in this chapter was to highlight the need for methods that can
learn representations of function distributions purely from data, so as
to alleviate the need to manually specify them, which usually requires
some expertise in the domain. Using the example of glioma growth
prediction (from previously collected volume measurements), we first
showcased the overall difficulty of the task, as a reasonably chosen
approach performed worse than a trivial baseline when uncertainty
estimates were desired. We then introduced Neural Processes as a
learning-based alternative and saw that they vastly outperformed both
the trivial baseline and our manual best guess in all metrics. At the
same time, it should be noted that the predictive error for Neural
Processes is still way too high to be considered useful for practical
purposes. We assume that the stochasticity associated with glioma
growth prohibits more accurate predictions, at least when treatment
information is not available.

Note how this echoes the setting in the previous chapter, where
we worked under the hypothesis that accurate prediction of glioma
growth (in image space as opposed to just volumes) is not possible
to a useful degree. As a consequence, one should instead focus on
modeling multiple growth trajectories. Similar to this chapter, we
presented an approach that learns spatial growth dynamics purely
from data. However, this was limited to a fixed number of inputs,
sampled at fixed intervals. The Neural Processes introduced here
work on a continuous time domain.

Encouraged by the performance of NPs in Section 5.3 we base the
contributions in the next chapters on this approach. In the following
chapter, we will investigate how Neural Processes form representa-
tions of function spaces and what that entails for the properties of
functions they can represent. In Chapter 7 we improve upon a newer
Neural Process variant by combining it with a Gaussian Process. In
Chapter 8 we return to the problem of glioma growth modeling and
essentially combine our attempts in the previous chapter with the
Neural Process framework to achieve learned spatial growth modeling
with continuous time inputs.
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F R E Q U E N C Y D E C O M P O S I T I O N I N N E U R A L
P R O C E S S E S

We have established in the previous chapter that Neural Processes
(Garnelo et al., 2018a; Garnelo et al., 2018b) are a promising approach
for learning distributions over functions purely from observations.
They alleviate the need to manually specify or parametrize them, a
task that often requires a prohibitive amount of prior knowledge or an
oversimplification of the underlying problem. Our goal in this chapter
is to understand how Neural Processes represent the functions they
learn, and what implications these representations might have for
the types of functions that can be learned. We begin with a detailed
description of the Neural Process framework, so as to enable the
reader to better follow the analyses conducted afterwards. Therein,
we will derive a theoretical upper bound on the frequencies in signals
that can be represented, which we subsequently validate empirically.
We will find that the finite-dimensional representations learned by
Neural Processes will always decompose the input space in a way that
different dimensions are used to represent different parts of the input
space. In variational Neural Processes (NP) (Garnelo et al., 2018b),
this usually happens as a spatial partitioning, while deterministic
Neural Processes (CNP for Conditional Neural Processes) (Garnelo et
al., 2018a) perform a decomposition such that different dimensions
represent different frequencies, not unlike a Fourier transform. As a
consequence, Neural Processes can act like a low-pass filter when their
representation size is insufficient to represent higher signal frequencies,
in agreement with the derived bounds. On top of that, we find that
Neural Processes with a sufficiently large representation size can be
trained to only represent certain frequencies. They essentially become
programmable band-pass or band-stop filters. The work in this chapter is
currently under review:

Petersen, Jens, Paul Jäger, Gregor Köhler, David Zimmerer, Fabian
Isensee, and Klaus H. Maier-Hein (2020a). “Frequency Decompo-
sition in Neural Processes”. In: International Conference on Learning
Representations (under review).

6.1 introduction

Our goal is to learn a distribution over functions, or more generally
to represent a function space F = {fi}, fi : X→ Y. Assume that we are
given some observations C = {(xc,yc)}Nc=1 =: (xc,yc), often called the
context, and we would like to know the value yt at some new location
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xt. This is what we did in the previous chapter, where we tried to
interpolate and extrapolate tumor volume measurements over time
by fitting a polynomial or a Gaussian Process to the context. These
are two examples of commonly used distributions, but how can we be
sure that the data can be approximated sufficiently by them? Ideally,
we would first observe a number of context sets and corresponding
target sets T = {(xt,yt)}Mt=1 =: (xt,yt), try to infer what the functions
fi(x) = y generally “look like” and then use that information to make
a prediction at test time. This is precisely the idea of Neural Processes
(Garnelo et al., 2018a; Garnelo et al., 2018b).

6.2 methods

6.2.1 The Neural Process Framework

Neural Processes are maps P : C,X → Y, where C is a set of tuples
{(x, f(x))} with arbitrary but positive cardinality, and f ∈ F : X → Y.
Note that we introduced boldface above as a shorthand for these
collections, but it is important to remember that in our context this
refers to a set, not a vector. In this chapter we restrict ourselves to
X = Y = R, because it allows us to visualize learned representations.
We further only look at the original NPs, namely the deterministic
Conditional Neural Processes (CNP) (Garnelo et al., 2018a) and the
variational Neural Processes (NP) (Garnelo et al., 2018b), because
newer contributions in the field work in ways that preclude them
from being analyzed in the same way. We discuss this further in
Section 6.3. Note that we use the name Neural Process as well as
the abbreviation NP for both the general family of methods and the
variational implementation; the distinction will be made explicit where
necessary. In CNPs and NPs, the map P is separated into two parts,
a so called encoding E : C → Z and a decoding or generating part
G : Z,X → Y. Z is referred to as the representation or latent space. To
allow Neural Processes to approximate arbitrary function spaces F,
E and G are powerful learnable approximators, specifically neural
networks, as the name suggests.

As stated above, E and by extension the complete Neural Process
P act on set-valued inputs. This is contrary to the vast majority of
machine learning work where inputs are vectors of fixed dimension
and ordering. Recall that sets are permutation-invariant, so we must
ensure that the same is true for the output of E. Zaheer et al. (2017)
show that E is permutation-invariant if and only if it has a sum-
decomposition, i.e. it can be represented in the form

E(x,y) = ρ

(
N∑
i=1

φ(xi,yi)

)
(6.1)
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where ρ,φ are appropriately chosen functions. Wagstaff et al. (2019)
further show that to be able to represent all continuous permutation-
invariant functions on sets with a cardinality of at most N, the dimen-
sion of the image Z must at least be N.

What these works don’t consider are the implications for situations
where the elements of the sets are input-output tuples of some function
f, like in our case. Switching to signal-processing terminology, we
know that to represent—meaning to be able to fully reconstruct—a
continuous signal, we need N > 2|b − a|fmax samples, where fmax

is the maximum frequency component of the signal defined on the
interval [a,b]. This is most commonly known as the Nyquist-Shannon
sampling theorem (Whittaker, 1915; Kotelnikov, 1933; Shannon, 1949).
Conversely, when the representation has dimension Dr, the maximum
cardinality of sets we can represent is also Dr, meaning the maximum
frequency the signal can have is fmax <

Dr
2|b−a| . In practice, this

might be even smaller, because the Nyquist-Shannon theorem assumes
equidistant sampling, while we sample points randomly, as we discuss
later. We will investigate empirically how the reconstruction quality in
Neural Processes changes when the signals contain increasingly high
frequencies.

6.2.2 Optimization

Assume we are given a function space F = {f}, with each f represented
by random samples, which we partition into context set (xc,yc) and
target set (xt,yt). We further have encoder E and decoder G of a Neu-
ral Process implemented as neural networks, for which we summarize
the parameters in θ. In our implementation, both are multilayer per-
ceptrons (MLP), meaning simple fully connected networks. Our goal
is then to find the optimal set of parameters θ∗ that maximizes the
likelihood of yt, given xc, yc and xt, over all f:

θ∗ = argmax
θ

∑
f∈F

logpθ(yt|xt, xc,yc) (6.2)

where pθ is a placeholder for some parametrized likelihood function.
We introduce the logarithm because we assume the likelihood factor-
izes across individual f, turning the expression into a sum. So what
would this optimization look like in practice? For example, we could
minimize the mean squared error between yt and the predictions ŷt

from our network. This implicitly assumes a Gaussian likelihood with
a fixed variance1. However, we would like our model to predict a
variance, so that it can indicate how uncertain it is about a prediction.
We achieve this by implementing G as a network that predicts both

1 The log-likelihood of yt under a diagonal Gaussian with mean ŷt is simply ||yt −

ŷt||
2
2 times some constant.
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the mean and the variance of a diagonal Gaussian distribution, and
Equation (6.2) becomes:

θ∗ = argmax
θ

∑
f∈F

∑
t

logN(yt;G
µ
θ(Z, xt),Gσθ(Z, xt)) (6.3)

In deterministic Neural Processes (CNP), we can directly optimize
this with maximum likelihood training. In variational Neural Pro-
cesses (NP), Z is also parametrized by a Gaussian, meaning just like
G, E predicts mean and variance of a Gaussian with Dr dimensions.
In this case, we need to rewrite the summands of Equation (6.2):

logpθ(yt|xt, xc,yc) = log E
z∼p(Z|xc,yc)

pθ(yt|xt, z) (6.4)

Here, p(Z|xc,yc) is not the distribution predicted by our encoder,
but some true distribution we don’t have access to. The idea of varia-
tional inference (see for example Bishop (2006) for an introduction) is to
approximate this p by some other distribution qθ and then to optimize
pθ and qθ simultaneously. qθ is what our encoder E predicts, just like
pθ is what our decoder G predicts. Continuing from Equation (6.4):

LHS = log E
z∼qθ(Z|xt,yt)

pθ(yt|xt, z)
p(z|xc,yc)

qθ(z|xt,yt)
(6.5)

> E
z∼qθ(Z|xt,yt)

log
(
pθ(yt|xt, z)

p(z|xc,yc)

qθ(z|xt,yt)

)
(6.6)

≈ E
z∼qθ(Z|xt,yt)

log
(
pθ(yt|xt, z)

qθ(z|xc,yc)

qθ(z|xt,yt)

)
(6.7)

= E
z∼qθ(Z|xt,yt)

logpθ(yt|xt, z)

−DKL(qθ(z|xt,yt)||qθ(z|xc,yc)) (6.8)

where LHS refers to the left hand side of Equation (6.4). In the
first line, we have switched the underlying distribution from the
true prior—meaning conditioned on the context—to an approximate
posterior—meaning conditioned on both context and target, but for
notational simplicity we only write out the target set. The second
line follows from Jensen’s inequality while in the third line we have
replaced the true prior with the approximate prior. Finally, we have
rewritten the right hand side using the Kullback-Leibler (KL) diver-
gence, a measure of distance between two distributions. Because we
predict Gaussian distributions, the KL divergence has a closed-form
expression. Otherwise it would be impractical to use it in an opti-
mization context. The last line is often called the evidence lower bound
(ELBO) in variational inference. One might ask why we replace the
true prior with an approximate posterior, and not for example an ap-
proximate prior. It can in fact be shown that maximizing Equation (6.8)
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also minimizes the KL divergence between the approximate posterior
and the true posterior (see e.g. Blei et al. (2017)).

6.2.3 Implementation

Let us now put the above in more practical terms. When presented
with an example consisting of context and target, we first use the
encoder network E to encode each context tuple from the context
separately. The encoder is a MLP with two input channels (for X
and Y), 6 hidden layers with 128 channels, and a final layer mapping
to Dr channels, i.e. to the representation. Between the layers we
use tanh-nonlinearities as activation functions. While it could be
interesting to explore other architectures or maybe the influence of
having fewer or more layers, we adopt the implementation from the
original works. A number of configurations were also evaluated in
Le et al. (2018b), and our setup corresponds what the authors found
to be the best-performing configuration. For the variational case, the
final layer maps to 2Dr channels, half for the mean and half for the
variance of the predicted Gaussian (in practice, we predict the log-
variance to allow negative values). The individual representations
are then averaged, and in the variational case we call this the prior
(qθ(z|xc,yc) in Equation (6.8)). For the posterior, we also encode
the target pairs and then average over all individual representations,
including the context. During training forward passes, we sample
once from the posterior and use this sample as the representation for
the decoder. Ideally, we should sample many times to integrate the
expectation in Equation (6.8), but for stochastic mini-batch training it
was found empirically that a single sample suffices (Jimenez Rezende
et al., 2014; Kingma and Welling, 2014), which greatly accelerates
training. At test time, we sample 100 times from the prior. Note that
in general sampling is not a differentiable operation, but for suitable
distributions one can employ the so-called reparametrization trick: if
z ∼ N(µ;σ2) then z = µ+σε with ε ∼ N(0; 1). This way a gradient of z
with respect to µ and σ exists. The decoder predicts a Gaussian from
the representation and an input xt. It is implemented symmetrically to
the encoder, meaning it’s a MLP with Dr + 1 input channels, 6 hidden
layers with 128 channels, and two output channels for mean and
(log-)variance. We use tanh-activations as well. As a loss we directly
use the negative log-likelihood, meaning we evaluate the likelihood of
a reference point yt under a Gaussian parametrized by the predicted
mean and variance. Finally, we average over all predicted points,
which are the target points as well as the context points.
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6.3 related work

While standard deep learning is mostly concerned with learning single
deterministic functions, the learning of distributions of functions has
also been addressed in a variety of ways. Bayesian Neural Networks
(Neal, 1996; Graves, 2011; Hernández-Lobato and Adams, 2015) try
to do this by placing distributions on the weights of a network. Be-
cause of the usually enormous number of parameters in current deep
learning architectures, estimating posteriors for the weights becomes
tremendously difficult. Similarly, it is not straightforward to condition
the weights on observations given at test time, like in our case. As a re-
sult, these works focus more on improving estimates of the predictive
uncertainty. It has also been argued that Dropout effectively functions
like a Bayesian neural network with Bernoulli distributions over the
weights (Gal and Ghahramani, 2016a; Gal and Ghahramani, 2016b).
Likewise, Kingma et al. (2015) argue that Gaussian multiplicative noise
(called Gaussian dropout) can be used to approximate a posterior over
the weights, but this has since been debated (Hron et al., 2017). The
most well-known group of non-deep learning methods that address
the problem of conditioning predictions on observations given at test
time are Gaussian Processes (Rasmussen and Williams, 2006). We
work with them in Chapter 7, so we refer to Section 7.5 for related
work in that context. In Chapter 5 we saw that the choice of kernel for
a GP requires a lot of prior knowledge, which is precisely the problem
we seek to alleviate with Neural Processes.

Even though Neural Processes have only been proposed less than
three years ago, there have been several follow-up works. Perhaps the
most well known addition are Attentive Neural Processes (ANP) (Kim
et al., 2019), which we briefly introduced in Chapter 5 and will revisit
in Chapter 7. The basic idea is to no longer require the individual
representations to be averaged, which forces a given function to be
represented as a single point in aDr-dimensional space. The averaging
is replaced by a learned attention mechanism (Vaswani et al., 2017)
that summarizes the representations conditioned on the target point
yt. Unsurprisingly, the removal of the bottleneck improves both
reconstruction and prediction performance, but it also removes the
need to form a global (i.e. independent of target values) representation
of the function space. As a result, the analyses in this chapter can’t
be performed for ANPs. Another recent addition to the field are
Convolutional Conditional Neural Processes (ConvCNP) (Gordon et
al., 2020), which we also discuss and improve upon in Chapter 7. The
idea of the authors is to not map context points to a finite-dimensional
space but instead to a function space. A neural network then operates
in this space, and predictions are performed by mapping back to the
output space. In practice this means that a kernel interpolation is
performed with the context points. This is continuous in principle,
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but evaluated on a grid, so a CNN can be applied. The output of
the CNN is again convolved with a kernel to produce predictions at
the desired locations. A visualization of NP, ANP and ConvCNP is
shown in Figure 7.1. Similar to ANP, Louizos et al. (2019) propose to
not merge observations into a global latent space, but instead learn
conditional relationships between them. Singh et al. (2019) and Willi et
al. (2019) address the problem of overlapping and changing dynamics
in time series data. Generative Query Networks (GQN) (Eslami et
al., 2018; Kumar et al., 2018; Rosenbaum et al., 2018) are essentially
Neural Processes where observations are not scalar but entire images.
Employing vastly more powerful encoders and decoders, they can
(re-)construct unseen views in 3D scenes. GQNs are some of the earlier
works in the field of 3D scene understanding, an area that has received
a lot of attention more recently, e.g. from Sitzmann et al. (2019) and
Engelcke et al. (2020).

As we have outlined in Section 6.1, Neural Processes can also be
interpreted from the perspective of deep learning on sets, the ear-
liest work in the field being Zaheer et al. (2017). More theoretical
contributions were made by Wagstaff et al. (2019), whose work we
use to underpin our hypothesis that the representation size in Neu-
ral Processes limits the maximum frequency of signals that can be
represented. More applied work in the set-learning context has been
performed on point-cloud data (Qi et al., 2017b; Qi et al., 2017a; Wu
et al., 2019), which can be interpreted much in the same way as our
problem, with data represented as (location, value) pairs.

Our findings in this chapter show that Neural Processes sometimes
learn to automatically perform a decomposition of signals into dif-
ferent frequency components. It is well known that neural networks,
specifically a MLP with at least one hidden layer, can learn the Fourier
transform of an input signal (Gallant and White, 1988), which follows
directly from the universal approximation theorem (Hornik et al., 1989;
Cybenko, 1989). In fact, there have been a multitude of works that
exploit this ability in one way or the other, leading to the term Fourier
Neural Networks. We refer to the recent review by Zhumekenov et al.
(2019) for a comprehensive overview. The difference to Neural Pro-
cesses is that these networks typically learn a single mapping, while
NPs represent a function space. Furthermore, NPs are implemented
such that the learned mapping is only applied to individual (x,y) pairs,
and their representations are summed. Fourier networks typically
feed the full signal sequence into a network. Finally, we’d like to
point out that our goal is not to show that NPs, or any deep learning
approach for that matter, can in principle learn Fourier transforms or
similar frequency decompositions. The key takeway of our work is
that this happens automatically, without any supervisory signal forcing
the networks to do so.
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Figure 6.1: Examples from a Gaussian Process prior with an EQ kernel with
two different lengthscales, along with the corresponding average
magnitude of frequency components.

6.4 experiments & results

6.4.1 Does Representation Size Limit Frequency Content?

Conditional Neural Processes (CNP) (Garnelo et al., 2018a) and varia-
tional Neural Processes (NP) (Garnelo et al., 2018b) learn representa-
tions of function spaces by mapping pairs of input and output values
to a representation space and averaging the individual representations.
In doing so, they form global finite-dimensional representations of
continuous functions. Our goal is to understand how these represen-
tations work and what implications they might have on the types of
functions that can be learned or how well they can be learned. CNPs
and NPs are the only members of the Neural Process family that form
finite-dimensional global representations, and our experiments are
not suited for other well-known members introduced in Section 6.3,
like ANPs or ConvCNPs. In our experiments, we mostly work with
samples from a Gaussian Process prior with an EQ (exponentiated-
quadratic) kernel with varying lengthscales l. A few examples can be
seen in Figure 6.1, the kernel is given by:

k(x1, x2) = exp
(
||x1 − x2||

2
2

2l

)
(6.9)

Also shown in Figure 6.1 is the average magnitude of the frequency
components, which decays smoothly to zero. For later experiments, we
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require more control over the frequency components, so we conduct
those experiments with Fourier series:

f(x) = a0 +

K∑
k=1

ak cos(kx−φk) , K = 19 (6.10)

Note that in this formulation k is an angular frequency, and in
our figures we show Fourier components as angular frequencies as
well. The bound we derived in Section 6.1, on the other hand, refers to
ordinary frequencies. φk and ak, including a0, are sampled uniformly
from [−1, 1].

When we generate a random function, we construct random context
and target sets from it as follows: we first sample the number of
context points N from [3, 100) and the number of target points M from
[N, 100) to ensure it’s at least as big as the context. For each point
we then sample a random x uniformly from [−3, 3] and evaluate the
function at x. As outlined in Section 6.1, we let the networks predict
values at both the target and the context locations. This procedure is
equivalent to what was done in the original works.

We derived in Section 6.1 an upper bound on the maximum fre-
quency that a signal given on some interval [a,b] may contain so that
it can still be represented in a Neural Process. This derivation is based
on the Nyquist-Shannon theorem and the work presented by Wagstaff
et al. (2019):

fmax <
Dr

2|b− a|
(6.11)

This limit assumes equidistant sampling, while our input values are
sampled uniformly. We further have at most 99 context points, which
might pose a similar limit to fmax., because the signal must be fully
defined by those points. To be more precise, it is unclear whether just
the number of context points or the sum of context and target points
results in another bound. Our goal in this section is to validate the
above empirically.

Figure 6.2 shows the average reconstruction error for CNPs and
NPs with different representation sizes on data originating from Gaus-
sian Processes with EQ kernels of varying lengthscale. Evidently, a
decreasing representation size results in poorer reconstructions for a
given kernel lengthscale, and so does a decreasing kernel lengthscale
for a given representation size. Interestingly, around a representation
size of 96, there seems to be no more improvement for each l, but an
increasing l allows for better reconstructions. Overall, reconstructions
for the NP are a bit worse, which is unsurprising, as the variational for-
mulation always introduces some smoothing. This is in fact a problem
that still garners attention in the research community, see for example
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Figure 6.2: Reconstruction performance (RMSE) of CNPs (top) and NPs (bot-
tom) on data generated from a Gaussian Process with a Gaussian
(EQ) kernel. We vary the kernel lengthscale—a smaller length-
scale means higher frequency content—and the representation
size in the Neural Processes. Evidently, a larger representation al-
lows the models to better represent data with smaller lengthscale.
Overall, the RMSE in CNPs is a little lower than in NPs.
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Figure 6.3: Example reconstructions of GP data in CNPs with varying rep-
resentation sizes. A decrease in representation size leads to the
omission of higher frequency components. In other words, the
CNP acts like a low-pass filter. For comparison, we also show
a simple 3

rd order Butterworth filter (Butterworth, 1930) with a
cutoff frequency manually selected for visual similarity to the
Dr = 16 model. The corresponding figure for a NP model is
Figure A.5.
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Figure 6.4: Average frequency response on GP data for CNPs with varying
representation sizes. Decreasing the representation size leads
to the CNP acting like a low-pass filter of increasing strength.
For comparison, we also show a simple 3

rd order Butterworth
filter (Butterworth, 1930). The cutoff frequency was manually
selected so that filtered signals look similar to the Dr = 16 model
in the time domain. While a theoretical low-pass filter would have
a continuously decreasing gain, in practice there is almost no
high-frequency content to suppress, so the response goes back to
zero gain.

Razavi et al. (2019). From Equation (6.11) alone, one might perhaps
expect a sharp decline of reconstruction performance after some point,
but the fact that we sample points randomly along with the smoothly
decaying frequency magnitude (see Figure 6.1) renders our findings
rather unsurprising. The question remains, however, whether this in
fact due to certain frequency components being suppressed. Figure 6.3
shows example reconstructions, along with the corresponding Fourier
transform, for CNPs with varying representation size on a sample
from a GP with an l = 0.05 EQ kernel. We find that a smaller Dr
does indeed suppress higher frequency components, so much so that
it essentially looks like the signal went through a low-pass filter. For
comparison, we show the signal after application of a simple 3

rd order
Butterworth filter (Butterworth, 1930), for which we configured the
cutoff frequency manually for visual similarity to the Dr = 16 CNP.
While not identical, they do look very similar, not only in the signal
domain, but also in terms of dampening behaviour: Figure 6.4 shows
the average frequency response of these CNPs when interpreted as
low-pass filters. Note that we manually tuned the Butterworth filter
to give a simple example of a true low-pass filter, there might be
other filters or configurations that are even more similar to our CNPs.
The corresponding example reconstructions for NPs can be seen in
Figure A.5, with essentially the same result, except that the same
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Butterworth filter is more similar to the Dr = 32 NP. We can clearly
deduce that the representation size in CNPs and NPs can limit the
frequency content of representable signals, so that they effectively act
like low-pass filters.

Is that always the case? We find that it isn’t, because there is another
way the limit in Equation (6.11) can be obeyed, which might not be
immediately obvious. Figure A.6 is another example, where the CNPs
were trained on Fourier series data. Instead of smoothly decaying like
in the GP case, the average Fourier magnitude is now uniform. The
CNPs reconstruct the example signal rather faithfully, but only on part
of the interval if the representation size is too small. Even though we
were somewhat surprised by this behaviour, it makes perfect sense
from the perspective of Equation (6.11). Rather than limiting fmax,
the CNPs now limit the interval and thus |b− a|. The same example
for NPs in Figure A.6 shows that a combination of those behaviours
is also possible. From Figure 6.5 we can also very roughly estimate
how tight the bound in Equation (6.11) is. With K = 19 the data has
a maximum frequency of fmax = K/(2π) = 3.02. For Dr = 32 this
would limit the size of the interval to |b− a| < 5.29, for Dr = 16 to
|b− a| < 2.65, which is indeed approximately where the CNPs cut the
signal off.

6.4.2 How Neural Processes Represent Functions

We saw in the previous section that Neural Processes are indeed
subject to a limit of the frequency content in signals they can represent,
which suggests that the learned representations contain a notion of
frequency. Our goal in this section is to further investigate these
representations. Because we are limiting ourselves to scalar input and
output spaces, we can visualize how different regions of the signal
space influence the individual representations. To this end, we encode
(x,y) pairs from the region x ∈ [−3, 3],y ∈ [−3, 3] and construct a
heatmap for each individual representation channel, meaning ri(x,y).
The result for a CNP with Dr = 128 on data from an EQ Gaussian
Process with l = 0.2 can be seen in Figure 6.6. Because there is no
intrinsic ordering in the individual channels, we sort them by taking
the cross section at y = −3 and y = 3 and then forming a weighted
average of their Fourier components. It should be noted that this is
only one example and in general the learned representations will look
different each time, but some general observations can be made that
hold across examples and also different function spaces.

First, we find that representations are almost always anti-symmetric
across y = 0. This is not surprising, as the function spaces we let the
models learn are on average symmetric—in the sense that f and −f

will occur with the same probability—so the Neural Process learns
the same representation, just with a different sign. More importantly,
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Figure 6.5: Example reconstructions of Fourier data in CNPs with varying
representation sizes. A decrease in representation size leads to
the model ignoring the outer regions of the input space. Compare
this to the reconstructions of GP data in Figure 6.3, where higher
frequency components are ignored. The corresponding figure for
a NP model is Figure A.6.
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Figure 6.6: Influence of the context on the learned representations in a CNP
with Dr = 128 and data coming from a Gaussian Process with
l = 0.2. X refers to the input space (i.e. time), Y to the output
space. These are the first 48 representations ordered by their
average Fourier components at y = −3 and y = 3 (left-to-right,
top-to-bottom). Note that each panel is normalized separately, so
color values are not comparable. Different regions of the signal
space write to different representation channels, meaning the rep-
resentation implicitly learns to spatially resolve the input space.
In CNPs, this seems to happen in an oscillating pattern, with
different channels representing different frequencies. Compare
this to the partitioning learned by a NP in Figure 6.8. We also
show a cross-section of the representation channels in Figure 6.7.
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Figure 6.7: Influence of the context on the learned representations in a CNP
with Dr = 128 and data coming from a Gaussian Process with
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space. This shows a cross-section of Figure 6.6, more precisely
1/2 · (r(y = −3) − r(y = 3)). Shown in orange (dotted and shifted
for better visual contrast) is a reconstruction of just the 3 main
frequency components of each representation, highlighting again
that different channels represent different frequencies of the signal
space.
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Figure 6.8: Influence of the context on the learned representations in a NP
with Dr = 128 and data coming from a Gaussian Process with
l = 0.2. X refers to the input space (i.e. time), Y to the output
space. These are the first 48 representations ordered by their
average Fourier components at y = −3 and y = 3 (left-to-right,
top-to-bottom). Note that each panel is normalized separately,
so color values are not comparable. Different regions of the
input space write to different representation channels, meaning
the representation implicitly learns to spatially resolve the input
space. In NPs, this seems to happen in a way that partitions the
signal space, so that a given channels is only used by a narrow
section of the signal space. Compare this to the oscillating pattern
learned by a CNP in Figure 6.6.
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these visualizations reveal how the CNP is able to represent different
frequencies in the signals. A given representation channel is utilized
by different regions of the input space in way that an oscillating
pattern emerges. This pattern has different frequencies for different
representation channels. This becomes even clearer when we look at
cross sections of these heatmaps. In Figure 6.7, we show the same
representation channels as in Figure 6.6, but only their signed average
at y = −3 and y = 3, meaning 1/2 · (r(y = −3) − r(y = 3)). We can
clearly see that different representation channels represent different
frequency components on the signals. This is remarkable, as we don’t
incentivize the model to do this (e.g. with a loss). The behaviour
emerges “naturally”. Along with the representations, we show their
reconstructions from just the three main Fourier components, which is
mostly sufficient to reconstruct each representation. This is to further
illustrate the decomposition into frequency components. It is impor-
tant to note that there is no reason for the model to cleanly separate
individual frequencies, so each channel is in fact a combination of
multiple frequencies. We find the same for representations learned on
Fourier series data, just with higher frequencies. The corresponding
visualizations can be seen in Figure A.3.

Having learned in the previous section that the representation size
limits the frequency in the signals, one might be inclined to assume
that this separation into different frequencies is necessary to achieve
the former. This is not the case. We visualize the representations
learned by a NP, also on Gaussian Process samples with an l = 0.2 EQ
kernel, in Figure 6.8. Quite surprisingly, these representations look
vastly different from those learned by a CNP. Instead of the oscillating
behaviour along the x-axis, each representation channel is now written
to by a very narrow region of the input space. In other words, the
representations partition the x-axis, not unlike a simple memorization
of the inputs, where a certain x-value “activates” a certain represen-
tation channel. This partitioning behaviour is essentially also what
happens when the models limit the signal range like in Figure 6.5. It’s
by no means impossible for a variational Neural Process to learn a
frequency decomposition; in Figure A.4 we show NP representations
learned on Fourier series data and find that the NP actually combines
both behaviours, with some channels representing very narrow in-
put regions and others frequencies like the CNP. We suspect that the
smoothing introduced by the variational formulation of NPs compared
to a CNP makes it harder for them to learn frequency decompositions.
Remember that during training, we sample from the predicted rep-
resentation. This can also be interpreted as a random perturbation
before reconstruction. Variational autoencoders (Jimenez Rezende
et al., 2014; Kingma and Welling, 2014), which are very similar to
a variational NP, are also thought to partition their latent space in
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way that maximally spreads representations of individual data points
under the prior distribution (Rezende and Viola, 2018).

6.4.3 Neural Processes as Frequency Filters

In Section 6.4.2 we found that Neural Processes are able to perform
a decomposition of the function space into different frequencies. In
Section 6.4.1 we also saw that limiting the representation size can
make Neural Processes act like low-pass filters. At the same time, this
behaviour is not reliable, as sometimes the models just ignore part
of the signal space. Our goal in this section is to see if we can exert
more control over the frequency response. We do this by training
Neural Processes as band-pass and band-stop filters. In the bottom
row of Figure 6.9, we show the distribution of Fourier component
magnitudes for three different configurations of Fourier series. In the
first (Reference), all components are allowed; in the second (band-stop),
components in the middle of that range are suppressed; in the third
(band-pass) only components in the middle of the range are allowed.
Models trained on these data were then applied to the reference data,
the result of which can be seen in the bottom-right panel of Figure 6.9.
The models that are only shown certain frequencies during training
will suppress others, meaning they effectively become programmable
band-stop or band-pass filters. This is confirmed by the example in
Figure 6.9. The only thing one needs to take care of is to adjust the
y-range of the data before passing them through the trained filters.
When we train a model on data where some frequency components are
blocked, the distribution of y-values becomes narrower. That means
we have to multiply the y-values of the reference data by σband/σref—
i.e. the ratio of standard deviations of the relative y-distributions.
Ignoring this will result in gain in the non-blocked frequency regions.

Unfortunately, we were only partly able to elicit the same behaviour
in variational NPs. While the trained band-stop filter worked exactly
like the CNP band-stop, we were not able to train a band-pass filter.
The models collapsed during training, meaning the loss plateaued
and no meaningful representations were learned. There is no reason
why a band-pass shouldn’t work when a band-stop does, but we saw
in Section 6.4.2 that it is much harder for NPs to learn frequency
decompositions. We suspect that our hyperparameter configuration
is simply not stable enough and that with some tuning we would
be able to train a band-pass as well. However, we elected to work
with the fixed hyperparameter settings we adopted from the original
publications to ensure comparability.
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Figure 6.9: CNP trained to be a band-pass and a band-stop filter. We train
three CNP models on Fourier series, where we only show certain
frequencies during training for the models that should serve
as frequency filters. The bottom row shows the distribution of
Fourier components in the training data (left) and after applying
each model to the reference data (right). The models only learn
to represent frequencies seen during training, and as a result act
like band-pass and band-stop filters. An example of this is given
in the top rows.
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6.5 discussion

In this chapter we investigated how Neural Processes form learned,
finite-dimensional representations of function spaces. We first derived
a theoretical upper bound on the frequency of signals that can be
represented in Neural Processes with a given representation size. We
empirically confirmed that the representation size does indeed pose
such a limit and that this can result in Neural Processes acting like
low-pass filters. Alternatively, models ignore part of the signal to
keep higher frequencies. Both behaviours are in agreement with
the derived bound. We then visualized learned representations to
understand how the models incorporate the concept of frequency into
them. In all cases the models formed an implicit representation of the
input space, in the sense that different x-values are mapped to different
representation channels. For CNPs, an oscillating pattern emerges,
such that different representation channels correspond to different
frequencies. In contrast to this NPs tend to partition the space into
more or less disjunct regions. They are still able to learn a frequency
decomposition like CNPs, but we assume that the variational training
objective makes it much easier to simply partition the space. Finally,
to further test the models’ ability to distinguish frequencies and also
as an example of possible practical benefits of our findings, we trained
CNPs to be band-pass and band-stop filters. This worked extremely
well, the Fourier component magnitudes of the training data are
essentially “baked” into the models, and any frequency not found
therein is subsequently suppressed in reconstructions from the models.
An obvious use case would be programmable frequency filters, when
perhaps a more complex frequency response is desired, and the value
range of the test data is known.

Overall, our work offers exciting new insights into the inner work-
ings of Neural Processes and into the learning of representations of
function spaces. Many applications of deep learning are concerned
with representation learning in some way, and we hope that our find-
ings inspire further research and forge a better understanding of the
methods used in the field. We have also highlighted a possible real-
world use case for Neural Processes. While later additions to the
family have enjoyed application to a variety of problems, the original
Neural Processes (Garnelo et al., 2018a; Garnelo et al., 2018b) have not
been studied from a more practical perspective.
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G P - C O N V C N P : I M P R O V I N G G E N E R A L I Z AT I O N I N
C O N V O L U T I O N A L C O N D I T I O N A L N E U R A L
P R O C E S S E S

While the previous chapter focused on the original Neural Processes
(Garnelo et al., 2018a; Garnelo et al., 2018b), we use this chapter to
present an improvement to a more recent addition to the NP family,
called Convolutional Conditional Neural Process (ConvCNP) (Gordon et
al., 2020). Recall that our choice of Neural Processes was motivated by
their ability to learn representations of function spaces. But what does
it mean to successfully learn such a representation? We believe that
it should be characterized by the following: 1) accurate predictions,
meaning predictions should be as close as possible to the true under-
lying function, 2) good reconstruction of the given observations, 3)
generalization, because we assume that there will be some underlying
generative process from which the distribution originates and which
is valid beyond the finite data we observe, 4) the ability to generate
multiple consistent hypotheses, in other words being able to sample
from a model. The latter is especially important when only few context
observations are given that could be explained by several different
functions. ConvCNP improve upon prior art mainly with respect
to prediction accuracy and reconstruction ability. Unfortunately, this
comes at the cost of the other criteria.

In this chapter, we extend ConvCNP to address all of the above, with
a particular focus on the ability to generalize. By combining ConvCNP
with a Gaussian Process, we achieve a significant improvement in
generalization: the model, which we call GP-ConvCNP, can better
extrapolate far from the provided context observations and is more
robust to a distribution shift at test time. It further reintroduces
the ability to sample from the model, something that ConvCNP is
incapable of, showing a better sample distribution than both NP
and ANP. Finally, we find that our proposed model often yields a
significant improvement in predictive performance on in-distribution
data as well. Our evaluation is based on several synthetic datasets and
real time series datasets. The findings presented herein are currently
under review:

Petersen, Jens, Gregor Köhler, David Zimmerer, Fabian Isensee, Paul
Jäger, and Klaus H. Maier-Hein (2020b). “GP-ConvCNP: Im-
proving Generalization in Convolutional Conditional Neural Pro-
cesses”. In: AAAI Conference on Artificial Intelligence (under review).
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7.1 methods

We introduce the framework of Neural Processes (Garnelo et al., 2018a;
Garnelo et al., 2018b) in detail in Section 6.2.1, the following is only a
brief summary. We assume that we are given a set of N observations
C = {(xc,yc)}Nc=1 =: (xc,yc), often called the context, where xc ∈ X
are samples from the input space X and yc ∈ Y are samples from the
output space Y (commonly X = RdX and Y = RdY , in this work we
restrict ourselves to X = R, because time is scalar). It is assumed that
these observations were generated by some function f : X → Y, i.e.
yc = f(xc), and our goal is to infer f from C so that we may evaluate
it at arbitrary new input locations xt. In reality, this will most likely
mean we have collected a number of measurements over time and
are interested in an f that lets us interpolate and extrapolate those
measurements. Note that when we speak of predictive performance,
we refer to both of those cases and don’t necessarily mean it in a
temporal sense. This problem is ill-posed without placing further
assumptions on f, which is why we typically restrict it to some function
space F = {fi}: polynomials of some order, a combination of oscillating
functions with different frequencies, etc.. However, in many cases
it is undesired or even impossible to manually specify F, so Neural
Processes propose to use neural networks to learn an approximate
representation of F by observing many examples f ∈ F. The latter
are typically represented as a context set C (the measurements we
have) and a target set T = {(xt,yt)}Mt=1 =: (xt,yt) (the measurements
we’re interested in). By learning to reconstruct the examples f from
a limited number of context points a model should implicitly form a
representation of F.

7.1.1 Optimization

We have already introduced the optimization target for Neural Pro-
cesses in Section 6.2.2, so only repeat it here briefly. Our goal is to let a
model learn a representation of F. We do this by letting it reconstruct
observations yt from the context (xc,yc) and inputs xt, which leads
to the following learning objective:

max
θ

∑
f∈F

logpθ(yt|xt, xc,yc) (7.1)

=max
θ

∑
f∈F

∑
t

logN(yt;G
µ
θ(Z, xt),Gσθ(Z, xt)) (7.2)

This objective is common to all approaches we evaluate in our
work, and the right hand side formalizes the fact that we choose to
always model the output as a diagonal Gaussian, parametrized by
mean and variance functions Gµθ ,Gσθ that seek to maximize the log-
likelihood of the targets yt. The output variance can also be fixed,
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Figure 7.1: Schematic overview of the different methods used in this
work. Dotted lines indicate sampling and we use the following
acronyms: multilayer perceptron (MLP), kernel density estimate
(KDE), Gaussian Process (GP), linear layer (LIN), convolutional
neural network (CNN). (First row) Neural Processes (NP) encode
each context point (xc,yc) into a representation zc. These are
then averaged to form a global representation z. A sample from
the global representation is concatenated with the target input
xt to predict the target output yt. (Second row) Attentive Neural
Processes (ANP) contain a NP, but have a second deterministic
path. In this path, the context pairs are also encoded separately
into representations ac. These are then combined via an attten-
tion mechanism that uses xt as the query, xc as the keys and
ac as the values. The resulting representation a is concatenated
with the representation from the NP path and the target input
to predict the target output. (Third row) ConvCNP performs a
kernel density estimate on the context observations (xc,yc), thus
mapping to a continuous representation. This representation is
evaluated on a grid, i.e. discretized, and a projection and CNN
operate on the discretized representation. The result is evaluated
at a target input xt by performing a convolution with the dis-
cretized representation and finally projected to predict the target
output. (Fourth row) GP-ConvCNP works similar to ConvCNP,
but instead of a deterministic kernel density estimate a Gaussian
Process is applied to the context. We sample from the GP poste-
rior and discretize the result, continuing with the same operations
as in ConvCNP. Note that for visual purposes, the KDE and GP
outputs are one-dimensional, but in reality the output space can
have any number of dimensions.
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but Le et al. (2018b) show that a learned output variance is preferable.
Z is a representation of the context (xc,yc), i.e. there is a mapping
E : X, Y → Z. The implementation of E is where the members of
the Neural Process family differ most, as we show in the following
sections.

We can rewrite Equation (7.2) as

max
θ

∑
f∈F

logpθ(yt|xt,Z) (7.3)

where Z is given by the different E that encode the context defined
above. For ConvCNP this is deterministic, so we can maximize
Equation (7.2) directly. For the other methods we can again rewrite
Equation (7.3) as

logp(yt|xt, xc,yc) = E
z∼p(z|xc,yc)

logp(yt|xt, z) (7.4)

where we now distinguish z as an expression of Z. In GP-ConvCNP,
p(z|xc,yc) is given by the GP posterior, so for training we would need
to integrate over this posterior. In practice, we just draw a single
sample, which is common practice in stochastic mini-batch training.
Approximating the expectation with this sample, we can also directly
maximize the log-likelihood.

In contrast to the above, p(z|xc,yc) is an unknown or intractable
mapping in NP and ANP, so we employ variational inference, i.e. we
approximate p(z|xc,yc) with a member of some family Q that we can
find by optimization. As shown in Section 6.2.2, the log-likelihood
then becomes

logp(yt|xt, xc,yc) > E
z∼q(z|xt,yt)

logp(yt|xt, z)

−DKL (q(z|xt,yt)||q(z|xc,yc)) (7.5)

To maximize the left hand side it is sufficient to maximize the right
hand side, and Equation (7.5) is what is being optimized in NP and
ANP. q corresponds to what we designated as E above. Like for
GP-ConvCNP, we approximate the expectation with a single sample
during training.

In our implementation, we use Adam (Kingma and Ba, 2015) with an
initial learning rate of 0.001. We train each model for 600 000 batches
with a batch size of 256. We repeatedly multiply the learning rate by
γ = 0.995 after training for 1000 batches.

7.1.2 Neural Processes & Attentive Neural Processes

We already introduced Neural Process in detail in Chapter 6, so we
only summarize them here. We also show an illustration of all methods
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used in this work in Figure 7.1. The original Neural Processes (Garnelo
et al., 2018b) implement E as a neural network that encodes individual
context observations (xc,yc) into a finite-dimensional space. These
representations are then averaged to form the global representation
Z. Similar to Equation (7.2), Z parametrizes a Gaussian distribution,
which enables NP to sample from this latent space and to produce
diverse predictions. We do not consider the deterministic NP variant
(Garnelo et al., 2018a) in this chapter, because we are interested in
models that are able to generate multiple samples. In simpler terms,
Neural Processes can be thought of as variational autoencoders that
average the representations of multiple inputs, and reconstruct an
output from this averaged representation and a target point xt. Like a
VAE, a NP is trained by maximizing a lower bound on Equation (7.2),
as shown in Section 7.1.1. In our NP implementation E and (Gµθ ,Gσθ)
are symmetric 6-layer MLP, with a representation size of 128. Attentive
Neural Processes (Kim et al., 2019) are motivated by the observation
that NP poorly reconstruct the provided context, i.e. the predictions
seem to miss the context points, as seen for example in Figure 7.2. To
mitigate this effect, ANP augment NP with an additional deterministic
encoder-decoder path. Instead of averaging the individual representa-
tions, a learned attention mechanism (Vaswani et al., 2017) combines
them, conditioned on a target point xt. So while NP need to compress
representations to a single point in Z, ANP don’t have this bottleneck,
which likely contributes to their improved performance. In our ANP
implementation, the deterministic path mirrors the variational path,
with both the representation dimension and the embedding dimension
of the attention mechanism being 128. Le et al. (2018b) have evalu-
ated several hyperparameter configurations for NP and ANP and our
implementation matches their best performing one.

7.1.3 From ConvCNP to GP-ConvCNP

With the goal of enabling translation equivariance (i.e. independence
of the value range of xc and xt) in Neural Processes, the authors
of Convolutional Conditional Neural Processes (ConvCNP) (Gordon
et al., 2020) approach their work from the perspective of learning on
sets (Zaheer et al., 2017). While NP and ANP map the context set into
a finite-dimensional representation, ConvCNP map it into an infinite-
dimensional function space. This is also visualized in Figure 7.1,
where we present an illustration of all methods. The authors show
that in this scenario translation equivariance (as well as permutation
invariance) can only be achieved if the mapping E can be represented
in the form

E(xc,yc) = ρ(E
′(xc,yc)) , E′(xc,yc) =

∑
c

φ(yc)ψ(·− xc) (7.6)
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where φ : Y → R2 and ψ : X → R, so that E′ defines a function
and ρ operates in function space and must be translation equivariant.
The similar naming of E,E′ is deliberate, because herein lies a key
difference to NP (and also ANP): NP learn a powerful mapping
(i.e. neural network) from the context to a representation and then
another one from this representation to the output space, whereas
ConvCNP employs a very simple mapping to another representation
(to function space, because φ and ψ are defined with kernels, see
below). A powerful approximator is then learned that operates within
this representation space, as ρ is a CNN operating on a discretization
of E′. The mapping back to output space is again a simple one, usually
also ψ combined with a linear map. In this sense, both E and E′ can
be thought of as representations when we make the connection to NP.
See also Figure 7.1 for a visualization of these differences. In Gordon
et al. (2020), ψ is chosen to be a simple Gaussian kernel, and φ such
that the resulting E′ has two components:

E′0(xc,yc) =
∑
c

k(·, xc) , E′1(xc,yc) =
∑
c

yck(·, xc)
E′0

(7.7)

which is simply the combination of a kernel density estimator and
a Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964). This
estimate is discretized on a suitable grid and a CNN ρ is applied, the
result of which is again turned into a continuous function by convolv-
ing with ψ. We use the official implementation1 in our experiments.

In this work, we propose GP-ConvCNP, a model that replaces the
deterministic kernel density estimate E ′ in ConvCNP with a Gaussian
Process posterior (for an introduction see for example Rasmussen and
Williams (2006)). This posterior is a normal distribution with a mean
function m(xt) conditioned on the context and a covariance function
K(xt) specified by some kernel k:

m(xt) = k
T
tc

(
kcc + σ

2I
)−1

yc (7.8)

K(xt) = ktt + σ
2 − kTtc

(
kcc + σ

2I
)−1

ktc (7.9)

where ktc = k(xt, xc) etc. and σ2 is a noise parameter that essen-
tially determines how close the prediction will be to the context points.
We make this parameter learnable. The first obvious benefit of this
model is that we can sample from the GP posterior distribution and
thus also from our model, recovering one very compelling property
of NP that ConvCNP lacks. Another advantage we see is that by
working with a distribution instead of a deterministic estimate as
input to the CNN, the data distribution is implicitly smoothed. It
has been established that such smoothing reduces overfitting and im-
proves generalization, e.g. by adding noise to inputs (An, 1996; Bishop,

1 https://github.com/cambridge-mlg/convcnp

https://github.com/cambridge-mlg/convcnp
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1995, p.347) or more generally doing data augmentation (Volpi et al.,
2018; Jackson et al., 2019). Working with a distribution instead of a
deterministic estimate, we need to perform Monte-Carlo integration
to get a prediction from our model. During training, however, we only
use a single sample, as is commonly done e.g. in variational autoen-
coders when training with mini-batch stochastic gradient descent. To
facilitate comparison, the kernel we use in our GP is the same as in
ConvCNP, i.e. a Gaussian kernel with a learnable length scale.

7.2 evaluation

We design our experiments with the purpose of evaluating how well
members of the Neural Process family, including the one we propose,
are suited for the task of learning distributions over functions, specif-
ically for time series data. Like the works we compare ourselves to,
we evaluate both predictive performance (How good is our prediction
between context points?) and reconstruction performance (How good
is our prediction at the context points?). Predictive performance, which
does not have a temporal meaning here, is measured via the predictive
log-likelihood, and for models with a latent distribution (i.e. all except
for ConvCNP) we average over 100 samples. To measure reconstruc-
tion performance, we resort to the root-mean-square error (RSME),
because predictions directly at the context points are usually extremely
narrow Gaussians, leading to unstable likelihoods.

As outlined in the introduction, one defining aspect of successfully
learning a distribution over functions is a model’s ability to generalize.
This can mean several things, for example independence with respect
to the input value range, called translation equivariance. This is
a key feature of ConvCNP (as long as a stationary kernel is used
for interpolation), and we retain this property in GP-ConvCNP. We
evaluate two further attributes of generalization, both on real world
data: one is the ability to extrapolate the context information, i.e.
to produce good predictions well into the future by inferring an
underlying pattern; the other is the ability to deal with a distribution
shift at test time, in our case a shift from simulated to real world data.

On top of the above, we are also interested in how well the distri-
bution of samples from a model matches the ideal distribution. In
general, the latter is not accessible, but for some synthetic examples we
describe below, specifically those from a Gaussian Process, we do have
access, simply by using the generating GP as an oracle. We can then
compare this reference—a Gaussian distribution—with the distribu-
tion of samples from our model. Note that one sample is a prediction
at all target points at once, as seen for example in Figure 7.2. The
majority of approaches that estimate differences between distributions
fall into the categories of either f-divergences (Csiszár, 1963; Morimoto,
1963; Ali and Silvey, 1966) or Integral Probability Measures (Müller,
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1997)—for an overview see for example Sriperumbudur et al. (2009).
The former require evaluations of likelihoods for both distributions,
while we only have individual samples from our model. We could
place a density estimate on those samples, but that is often inaccurate
in high dimensions (Vershynin, 2018). IPM only compare samples
from the distributions and are thus suited for our scenario, so we opt
for a parameter-free representative of this category, the Wasserstein
distance W2:

Wp(P,Q) = min
π

 |P|∑
i=1

||xi − yπ(i)||
p

1/p (7.10)

Here P = {xi}i and Q = {yi}i are collections of samples from the
two distributions. In colloquial terms, the Wasserstein distance is
the minimum overall distance between sample pairs, taken over all
possible pairings between samples from the two distributions. For
this reason the Wasserstein-1 distance is also called the Earth Mover
Distance. p is the only hyperparameter we need to select, making this
measure a very convenient choice. We set p = 2 so that the underlying
distance metric becomes the Euclidean distance.

7.3 data

7.3.1 Synthetic Data

We initially test our method on diverse synthetic 1D functions. The
first two have also been used in Gordon et al. (2020), and they allow
us to evaluate the sample diversity, as outlined above:

1. Samples from a Gaussian Process with a Matern-5/2 kernel with
lengthscale parameter l = 0.5. The kernel is given by

k(x, x ′) =

(
1+

√
5|x− x ′|

l
+
5|x− x ′|2

3l2

)

· exp
(
−
5|x− x ′|

l

)
(7.11)

2. Samples from a Gaussian Process with a weakly periodic kernel
that is given by

k(x, x ′) = exp
(
−
|x− x ′|2

8

)
· exp

(
(cos(8πx) − cos(8πx ′))2

)
· exp

(
(sin(8πx) − sin(8πx ′))2

)
(7.12)
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3. Fourier series that are given by

f(x) = a0 +

K∑
k=1

ak cos(kx−φk) (7.13)

where K is a random integer from [10, 20) and ak (including a0)
as well as φk are random real numbers drawn from [−1, 1].

4. Step functions, where we draw S stepping points along the x-
axis, with S a random integer from [3, 10). The interval between
two stepping points is assigned a constant value that is drawn
from [−3, 3]. We ensure that each interval is at least 0.1 units
wide and that the step difference is also at least 0.1 units in
magnitude.

For all synthetic function draws we define the x-axis to cover the
interval [−3, 3]. We drawN context points uniformly from this interval,
with N a random integer from the range [3, 100). We then draw M

target points in the same manner, with M a random integer from
[N, 100). These choices follow the guidelines presented in Le et al.
(2018b). During training, we add the context points to the target set,
as done in Garnelo et al. (2018a) and Garnelo et al. (2018b), so that
the methods also learn to reconstruct the context. Examples of the
different functions can be seen in in Figure 7.2.

7.3.2 Temperature Time Series

The first real world dataset we look at are weather recordings for
several different US, Canadian and Israeli cities. In particular we
focus on temperature measurements in hourly intervals that have been
collected over the course of 5 years2. Temperatures in each city are
normalized by their respective means and standard deviations. We
randomly sample sequences of ∼1 month as instances and evaluate
two tasks, taking US and Canadian cities as the training set and Israeli
cities as the test set:

1. Interpolation, where we draw context points and target points
randomly from the entire sequence (i.e. the same as in the
synthetic examples).

2. Extrapolation, where context points are drawn from the first half
of the sequence and performance is evaluated on the second
half (as shown in Figure 7.3). We can reasonably be sure that
temperature changes between day and night occur in the future
with the same frequency, so extrapolating this pattern is a good
test of a model’s ability to generalize.

2 https://www.kaggle.com/selfishgene/historical-hourly-weather-data

https://www.kaggle.com/selfishgene/historical-hourly-weather-data
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Occasionally there are NaN values reported in the dataset, we either
crop those when at the begging/end of a sequence or fill them via
linear interpolation. For both training and testing we draw random
sequences of length 720 (i.e. 30 days) from the corresponding set, and
then draw N context points and M target points from the sequence,
with N from the interval [20, 100) and M from [N, 100). We define the
time range for a given sequence to be [0, 3], so that one time unit is
equivalent to 10 days. We evaluate each seed for a model with 100

random samples and report the mean and standard deviation over 5

seeds for each model.

7.3.3 Population Dynamics

The second real world dataset are measurements of a predator-prey
population of lynx and hare by the Hudson Bay Company (Hewitt,
1921). Such population dynamics are often approximated by Lotka-
Volterra equations (Leigh, 1968), so we train models on simulated
population dynamics and test on both the simulated and real world
data. Gordon et al. (2020) used this dataset as well, but only to
qualitatively show that ConvCNP can be applied to it. The analysis
will allow us to quantify how robust the models are to a shift in
distribution at test time, as the simulation parameters are almost
certainly not an ideal fit for the real world data.

The real data were recorded at the end of the 19th and the start
of the 20th century by the Hudson’s Bay Company. To the best of
our knowledge, the data represent recorded trades of pelts from the
two animals and not direct measurements of the populations. Earlier
works that work with the same data point to Hewitt (1921) as the
earliest source, but there is no unique source for the data in a tabular
format. We used https://github.com/stan-dev/example-models/blob/

master/knitr/lotka-volterra/hudson-bay-lynx-hare as our source. For
evaluation, we normalize the data so that the mean population matches
the mean of populations in the simulated data and the time interval
matches the mean duration of a simulated population.

The simulated data were constructed as follows: let X be the number
of predators at a given time and Y the number of prey. We draw
initial numbers X from [50, 100) and Y from [100, 150). We then draw
time increments from an exponential distribution and after each time
increment one of the following events occurs:

1. A single predator is born with probability proportional to the
rate θ0 ·X · Y

2. A single predator dies with probability proportional to the rate
θ1 ·X

3. A single prey is born with probability proportional to the rate
θ2 · Y

https://github.com/stan-dev/example-models/blob/master/knitr/lotka-volterra/hudson-bay-lynx-hare
https://github.com/stan-dev/example-models/blob/master/knitr/lotka-volterra/hudson-bay-lynx-hare
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4. A single prey dies with probability proportional to the rate
θ3 ·X · Y

The rate of the exponential distribution we draw time increments
from is the sum of the above rates. Each population is simulated for
10000 events, and we reject populations that have died out, populations
that exceed a total number of 500 individuals at any given point, as
well as those where the accumulated time is larger than 100 units. To
get value ranges that are better suitable for training, we rescale the
time axis by a factor 0.1 and the population axis by a factor 0.01. For
each population we draw θ0 from [0.005, 0.01], θ1 from [0.5, 0.8], θ2
from [0.5, 0.8] and θ3 from [0.005, 0.01]. These parameters result in
roughly 2/3 of the simulated populations matching our criteria. We
also tried the parameters reported in Gordon et al. (2020), but found
that we had to reject more than 90% of populations, which meant an
unreasonably long training time, as the simulation process for the
populations is difficult to parallelize and thus rather slow. The N
context points and M target points are again drawn randomly from a
population, with N from [20, 100) and M from [max(70,N), 150)

7.4 results

7.4.1 Synthetic Data

Table 7.1 shows results for the various synthetic function types. In
this experiment the models are trained and tested on random samples
generated in the same way, so these results measure in-distribution
performance. We find that GP-ConvCNP is the overall best performing
method, significantly so in terms of predictive performance for 3 out of
4 function types and performing on par with ConvCNP on the other.
For reference, we also show the performance for a Gaussian Process
with an EQ kernel (what our model uses as an initial estimate). When
the initial estimate is good, our model can leverage that information,
matching the performance of an oracle GP with a Matern-5/2 kernel.
At the same time, the EQ estimate doesn’t have to be good for our
model to perform well.

Reconstruction performance is on par with ConvCNP in 3 out of
4 instances and significantly better in one. For examples originating
from a Gaussian Process, we can evaluate the sample diversity with
respect to the oracle GP, finding that GP-ConvCNP significantly out-
performs the other methods in this regard. It is important to note,
however, that this measure does not fully isolate the sample diversity.
A low reconstruction error, for example, will also improve the W2,
which is likely the reason that ANP still performs better than NP, even
though the former hardly displays any variation in its samples, as
seen in Figure 7.2. The figure also shows how NP and ANP struggle
to fit high frequency signals, while ConvCNP and GP-ConvCNP are
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Table 7.1: Results for synthetically created data. Test data was generated
with the same parameters as the training data, so we’re looking
at in-distribution performance. ↑/↓ indicate that higher/lower is
better. Errors represent 1 standard deviation over 5 runs with
different seeds (except for the GP entries, where we show the
standard error of the mean), where each run was evaluated with
102 400 (30 720 for W2) samples. Bold indicates that the method(s)
are significantly better than all non-bold methods, significance
being assumed when the difference is larger than the root sum
of squares of the standard deviations. Overall, GP-ConvCNP
outperforms the competing approaches, especially in terms of
predictive log-likelihood and sample diversity (compared to an
oracle) where applicable. In terms of reconstruction error, our
method outperforms prior art on three datasets, but is on par
with ConvCNP on two of those. Interestingly, the EQ-GP, which
is what our model uses as an initial estimate, performs rather
poorly in all but the first example. In the first example, where the
EQ-GP is already a decent estimate, our approach leverages that
information and matches the oracle GP in predictive performance!
The reconstruction error and W2 of the oracle are zero, so we don’t
show them here.

Matern-5/2 GP Weakly Per. GP

Predictive LL↑

GP (EQ) 1.031± 0.075 −8.034± 2.260
GP (Oracle) 1.933± 0.095 1.876± 0.026

NP −0.496± 0.027 −1.161± 0.007

ANP 0.723± 0.046 −1.047± 0.008

ConvCNP 1.710± 0.038 −0.153± 0.033

GP-ConvCNP 1.930± 0.031 −0.090± 0.021

Recon. Error↓

GP (EQ) 0.001± 0.001 0.028± 0.001

NP 0.027± 0.001 0.500± 0.003

ANP 0.008± 0.002 0.491± 0.004

ConvCNP 0.025± 0.020 0.109± 0.077
GP-ConvCNP 0.013± 0.002 0.061± 0.007

W2 ↓

GP (EQ) 4.294± 0.007 4.521± 0.003

NP 1.836± 0.021 2.745± 0.004

ANP 1.369± 0.048 2.708± 0.002

ConvCNP
GP-ConvCNP 0.987± 0.086 1.800± 0.045

Fourier Series Step Functions

Predictive LL↑

GP (EQ) −0.241± 0.752 −2× 1017

NP −1.743± 0.020 −3.287± 0.491

ANP −0.976± 0.028 −65.141± 60.979

ConvCNP 0.372± 0.065 −0.522± 0.163
GP-ConvCNP 1.632± 0.079 −0.532± 0.044

Recon. Error↓

GP (EQ) 0.004± 0.001 0.097± 0.001

NP 0.845± 0.074 0.292± 0.010

ANP 0.181± 0.018 0.284± 0.013

ConvCNP 0.042± 0.027 0.121± 0.017
GP-ConvCNP 0.040± 0.023 0.116± 0.017
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Figure 7.2: Examples for the different synthetic functions and methods eval-
uated in this work (mean prediction in blue, samples in red).
Overall, the predictions from ConvCNP and GP-ConvCNP look
very similar and significantly better than those from NP and ANP
(with the exception of step functions, perhaps). NP and ANP are
unable to fit high frequency signals and especially NP fits the
context points (black dots) rather poorly. NP offers high sample
diversity, while there is very little for ANP. GP-ConvCNP com-
bines the high quality predictions of ConvCNP with the ability
to sample. The variability of those samples depends of course on
the data and the density of context points.

able to. The sample diversity in GP-ConvCNP is larger than in ANP,
but samples are only significantly different from the mean prediction
when further away from the context points in areas of high predictive
uncertainty (shaded areas correspond to 1σ). In contrast, samples
from the NP are more diverse throughout, at the expense of accurately
matching the context points.

7.4.2 Weather Time Series

Examples from the temperature time series dataset can be seen in Fig-
ure 7.3. The key characteristic of the signal is the temperature change
between day and night, making it a high frequency signal not unlike
the weakly periodic GP samples in the synthetic dataset. NP and ANP
were not able to fit these signals, so we don’t show them here. The left
side of Figure 7.3 shows an example of the regular interpolation task,
the right side an example of the extrapolation task, which we deem an
important aspect of generalization. The example was selected to show
how our model improves over competing approaches. While Con-
vCNP and GP-ConvCNP are both able to interpolate the data well,
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Figure 7.3: Examples from the temperature time series test set. For the
interpolation task (left panel for each method) we provide context
points from the full sequence, for the extrapolation task (right
panel for each method) we provide context points in the first half
of the sequence and evaluate the second. Both ConvCNP and
GP-ConvCNP capture the periodicity of day/night changes in
temperature well and are able to extrapolate it. However, GP-
ConvCNP better matches the amplitude of the true signal, which
likely explains its superior performance in Table 7.2. A periodic
GP (ExpSineSquared kernel) can interpolate the signal with the
correct frequency, but often has trouble extrapolating it. Note
that the example was selected to show how a GP and ConvCNP
fall short. In many cases, the predictions from ConvCNP and
GP-ConvCNP are very similar. NP and ANP were unable to fit
the data, similar to the weakly periodic GP data in Figure 7.2 and
the results are not shown.
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Table 7.2: Results on the temperature time series dataset. ↑/↓ indicate that
higher/lower is better and errors represent 1 standard deviation
over 5 runs with different seeds (except for the periodic GP, where
the seed has negligible influence, so we show the standard er-
ror of the mean instead). For the temperature interpolation task
(left), context points are randomly sampled from the test interval,
for the temperature extrapolation task (right) we provide context
points in the first half of the interval and measure performance
on the second half (as seen in Figure 7.3). While ConvCNP and
GP-ConvCNP perform roughly on par for the interpolation task,
with slightly better prediction for GP-ConvCNP and slightly bet-
ter reconstruction for ConvCNP, the difference between the two
increases for the extrapolation task, where GP-ConvCNP now sig-
nificantly outperforms all other methods. Somewhat surprisingly,
the periodic GP seems to fail completely at the extrapolation task.
We assume this is because of the small number of context points
that often leads to poor estimation of the correct frequency, as seen
in Figure 7.3.

interpolation extrapolation

Predictive LL↑

GP (per.) −2.075± 0.237−46.611± 2.557

NP −0.855± 0.003 −1.267± 0.011

ANP −0.733± 0.008 −1.938± 0.381

ConvCNP −0.522± 0.008 −1.261± 0.062

GP-ConvCNP −0.515± 0.019 −1.190± 0.016

Recon. Error↓

GP (per.) 0.274± 0.001

NP 0.238± 0.002

ANP 0.198± 0.007

ConvCNP 0.106± 0.002
GP-ConvCNP 0.123± 0.018
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Table 7.3: Results on the population dynamics data. ↑/↓ indicate that
higher/lower is better and errors represent 1 standard deviation
over 5 runs with different seeds. Models are trained on simulated
data, so the real world data (also shown in Figure 7.4) is likely
out-of-distribution, as evidenced by the stark drop in performance.
This drop is by far the smallest for GP-ConvCNP, performing sig-
nificantly better than all competing methods in terms of predictive
log-likelihood.

simulated real

Predictive LL↑

NP 0.527± 0.051−33.070± 7.636

ANP 1.027± 0.033−29.714± 9.210

ConvCNP 1.374± 0.017−23.540± 12.441

GP-ConvCNP 1.337± 0.029 −5.382± 2.625

Recon. Error↓

NP 0.018± 0.001 1.053± 0.015

ANP 0.008± 0.004 0.772± 0.020

ConvCNP 0.002± 0.001 0.374± 0.019
GP-ConvCNP 0.004± 0.001 0.411± 0.026

ConvCNP sometimes underestimates the amplitude of the signal in
the extrapolation task. In many cases, however, both it and our model
produce very similar extrapolations. This is reflected in Table 7.2,
where the difference between GP-ConvCNP and ConvCNP is not
spectacularly large, but still significant. We also show the performance
of a periodic Gaussian Process with an ExpSineSquared kernel, which
is able to estimate the correct frequency on the interpolation task,
but often fails on the extrapolation task, likely because of the lower
number of context points. In either case, it is unable to model the finer
variations in the signal.

7.4.3 Population Dynamics

To measure how robust the different members of the Neural Process
family are to a distribution shift at test time, we train models on
population dynamics simulated as Lotka-Volterra processes, and eval-
uate performance both on simulated (in-distribution) and real world
(out-of-distribution) data. The real world dataset, along with a simu-
lated example, can be seen in Figure 7.4. While both ConvCNP and
GP-ConvCNP fit the simulated data well, they struggle with the test
interval on the real data. This is reflected in Table 7.3 as well, where
we find that ConvCNP performs better than GP-ConvCNP (even
significantly so, albeit not with a huge difference) on the simulated
data.

Applied to the real world dataset, all methods experience a large
drop in performance, indicating that this is indeed a significant distri-
bution shift. GP-ConvCNP is by far the best performing method here,
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Figure 7.4: Example of ConvCNP and GP-ConvCNP (top half) as well as NP
and ANP (bottom half) applied to the simulated Lotka-Volterra
population dynamics (top panel for each method) and to the real
Hudson Bay Company lynx-hare dataset (bottom panel for each
method). Both ConvCNP and GP-ConvCNP perform well on
the simulated (i.e. in-distribution) data and seem to struggle
fitting the test interval on the real world data. Note however how
the predicted uncertainty is larger for GP-ConvCNP. We display
the best out of 5 models in each case, and for ConvCNP the
performance is much more volatile, as evidenced by the results in
Table 7.3. NP and ANP perform very poorly on the real world
data.
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Table 7.4: This table presents the same as the rightmost column of Table 7.3,
but using a different evaluation mode. In Table 7.3, the evaluation
was performed as seen in Figure 7.4, meaning one contiguous
interval on the data was selected as the target region and the rest
of the data is provided as context, following Gordon et al. (2020).
Here we instead sample the context and target points randomly
from the entire interval, like we do in the other experiments as
well. For each seed, we average over 100 random draws and
report the standard deviation over 5 seeds as errors. While Con-
vCNP maintains leading performance in terms of reconstruction
error, GP-ConvCNP significantly outperforms the other methods
in predictive performance, similar to what we found in Table 7.3.
However, all methods perform worse compared to the evaluation
method used in Table 7.3.

Predictive LL↑ Recon. Error↓
NP −36.735± 4.137 0.952± 0.024

ANP −38.717± 3.572 0.718± 0.018

ConvCNP −28.762± 1.958 0.272± 0.008
GP-ConvCNP −19.252± 1.846 0.343± 0.020

which is likely because of a better estimate of the preditive uncertainty.
Note how the uncertainty predicted by ConvCNP is smaller than that
of GP-ConvCNP in Figure 7.4 (the figure shows 1σ). The predictions
we show here are from the best performing seed in each case, other
ConvCNP models predicted an even narrower distribution. Why did
we select this particular interval for testing? It’s the same interval
Gordon et al. (2020) show in the ConvCNP paper. We also evaluated
with context points drawn randomly from the entire interval (i.e. the
same way we evaluate on the simulated data), and GP-ConvCNP
still performs significantly better than the competing approaches (see
Table 7.4).

7.5 related work

Neural Processes have inspired a number of works outside of the ones
we discuss. Louizos et al. (2019) propose to not merge observations
into a global latent space, but instead learn conditional relationships
between them. This is especially suitable for semantically meaningful
clustering and classification. Singh et al. (2019) and Willi et al. (2019)
address the problem of overlapping and changing dynamics in the
generating process of the data, a special case we do not include here.
With a simple Gaussian kernel, we wouldn’t expect our model to per-
form well in that scenario, but one could of course introduce inductive
bias in the form of e.g. non-stationary kernels, when translation equiv-
ariance is no longer desired. NPs have also been scaled to extremely
complex output spaces like in Generative Query Networks (Eslami et al.,
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2018; Kumar et al., 2018; Rosenbaum et al., 2018), where a single
observation is a full image. GQN directly relates to the problem of
(3D) scene understanding (Jimenez Rezende et al., 2016; Sitzmann
et al., 2019; Engelcke et al., 2020).

Gordon et al. (2020) build their work (ConvCNP) upon recent
contributions in the area of learning on sets, i.e. neural networks with
set-valued inputs (Zaheer et al., 2017; Wagstaff et al., 2019), which has
mostly been explored in the context of point clouds (Qi et al., 2017b;
Qi et al., 2017a; Wu et al., 2019). Especially the work of Wu et al.
(2019) is closely related to Gordon et al. (2020), also employing a CNN
on a kernel density estimate, but their application is not concerned
with time series. Bayesian Neural Networks (Neal, 1996; Graves, 2011;
Hernández-Lobato and Adams, 2015) also address the problem of
learning distributions over functions, but often implicitly, in the sense
that the distributions over the weights are used to estimate uncertainty
(Blundell et al., 2015; Pawlowski et al., 2017; Gal and Ghahramani,
2016b). We are interested in this too, but in our scenario we want to
be able to condition on observations at test time.

The main limitation of Gaussian Processes is their computational com-
plexity and many works are dedicated to improving this aspect, often
via approximations based on inducing points (Snelson and Ghahra-
mani, 2006; Titsias, 2009; Gardner et al., 2018; Wilson and Nickisch,
2015) but also other approaches (Deisenroth and Ng, 2015; Rahimi and
Recht, 2007; Le et al., 2013; Cheng and Boots, 2017; Hensman et al.,
2013; Hensman et al., 2015; Salimbeni et al., 2018), even for exact GPs
(Wang et al., 2019b). Rather than competing with these approaches,
our model will be able to leverage developments in this area. Some of
the above try to find more efficient kernel representations and are thus
closely related to the idea of kernel learning, i.e. the idea to combine
the expressiveness of (deep) learning approaches with the flexibility
of kernel methods, for example Yang et al. (2015), Wilson et al. (2016b),
Wilson et al. (2016a), Tossou et al. (2019), and Calandra et al. (2016).
The key difference to our work is that these approaches attempt to
learn kernels as an input to a kernel method, while we learn to make
the output of a kernel method more expressive.

7.6 discussion

We have presented a new model in the Neural Process family that
extends ConvCNP by incorporating a Gaussian Process into it. We
show on both synthetic and real time series that this improves perfor-
mance overall, but most markedly when generalization is required:
our model, GP-ConvCNP, can better extrapolate to regions far from
the provided context points and is more robust when moving to real
world data after training on simulated data. We further retain transla-
tion equivariance, a key feature of ConvCNP, as long as a stationary
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kernel is used for the GP. The introduction of the latter also allows us
to draw multiple samples from the model, where the distribution of
samples from our model better matches the samples from an oracle
than those from a regular Neural Process or an Attentive Neural Pro-
cess do. Our model uses the prediction from a GP with an EQ-kernel
as an initial estimate. Interestingly, this estimate needn’t be very good,
but when it is, our model can fully leverage it and even match the
performance of an oracle, as seen in Table 7.1.

Of course, with the benefits of GPs we also inherit their limitations.
GPs are typically slow, naively requiring O(N3) operations in the
number of context observations. However, making GPs faster is a very
active research area, as outlined in Section 7.5. We expect that our
model is well suited to also work with approximate methods, as we
modify the prediction from the GP with a powerful neural network.
As we focused on time series or generally one-dimensional input
spaces in this work, speed was not an issue. In general, scaling GP-
ConvCNP to much larger problems presents an exciting opportunity
for future work. While NPs have been scaled to impressive size, e.g.
Eslami et al. (2018), Kumar et al. (2018), and Rosenbaum et al. (2018),
where observations are entire images, it remains to be shown that the
same works for ConvCNP and our model. For our model specifically
it seems reasonable to leverage work on deep kernels (Wilson et al.,
2016b) or to learn mappings before the GP prediction like in Calandra
et al. (2016) in order to learn more meaningful GP posteriors that
capture information about the training distribution.

We also tried to apply ConvCNP and GP-ConvCNP to the tumor
volume prediction task, similar to NP and ANP in Section 5.3, but
found both performed rather poorly. We suspect this is because of
the extremely small number of context points. Gordon et al. (2020)
also comment in their work that ConvCNP is best suited for scenarios
where training data is abundant, for example sim2real tasks. While we
also test on real world data—the temperature time series—, one of our
selection criteria was that a large amount of training data be available.
We leave the exploration of how much data these two approaches
require, and how to make them more robust in a sparse setting, for
future work. Because we could not successfully apply ConvCNP and
our extension of it to our glioma growth dataset, we return to regular
Neural Processes and Attentive Neural Processes for our next chapter.
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AT T E N T I V E S E G M E N TAT I O N P R O C E S S E S

We saw in Chapter 4 that a probabilistic segmentation architecture
can in principle be used to model glioma growth, learning the growth
dynamics entirely from a data distribution. However, this approach is
limited to input sequences of fixed length and equidistant spacing in
time. In Chapter 5 and Chapter 6 we then saw that Neural Processes
are a powerful tool to learn distributions over functions from data,
such that predictions can be conditioned on observations available at
test time and at arbitrary continuous-valued times. In this chapter, we
will extend Neural Processes to segmentation tasks, both for general
purposes and for modeling glioma growth. We show that a U-Net-like
segmentation architecture (Ronneberger et al., 2015), i.e. an encoder-
decoder structure with skip connections, can be made to perform as a
Neural Process by introducing spatial attention. Compared to a regular
Neural Process, meaning an encoder-decoder structure without skip
connections, this allows the approach to model both global changes
and finer variations. The work in this chapter is yet to be published.

8.1 introduction & related work

Neural Processes, which we introduced in detail in Section 6.2, can
learn function spaces on a continuous domain. We now seek to do
the same for segmentation functions, so it is only natural to try to apply
Neural Processes in this context. As we will see, this is not quite as
straightforward as it might sound. Neural Processes need to encode
information from context observations into a representation space, from
which new observations can be generated. This typically requires
them to compress information significantly, leading to the loss of fine
detail like higher frequency content, as we could show in Chapter 6.
For segmentations this results in smooth predictions with little spatial
variation, as seen for example in Figure 8.2. Compared to the original
Neural Processes (Garnelo et al., 2018b; Garnelo et al., 2018a), Atten-
tive Neural Processes (ANP) (Kim et al., 2019) alleviate the need to
compress all context information into a single point in representation
space, instead allowing a dynamic combination of multiple points for
a given prediction via an attention mechanism. This greatly improves
performance, but is still insufficient in some cases, as we show in
our experiments below. Segmentation architectures typically use an
encoder-decoder pattern with skip connections (see Section 2.3 for an
introduction), which allows networks to retain very fine detail. We
show that skip connections can be interpreted as separate represen-
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tation spaces, but to make full use of the skip connections, attention
based on time values alone is insufficient. Instead, we introduce spatial
attention between individual spatio-temporal locations and term the
result Attentive Segmentation Processes. These models show remarkably
strong performance on a variety of tasks.

We have already discussed prior art related to Neural Processes in
Section 6.3. There, we also mentioned the fact that Neural Processes
have been succesfully applied to image-valued observation spaces in
the form of Generative Query Networks (GQN) (Eslami et al., 2018;
Kumar et al., 2018). These are Neural Processes (or Attentive Neural
Processes in the case of follow up work by Rosenbaum et al. (2018))
with encoders similar to the ones we use here, but extremely large
autoregressive decoders (Gregor et al., 2015). The authors show that
they can predict unseen views of 3D scenes from context observations
given at e.g. different angles, producing images with fine detail. This
will seem at odds with our findings that Neural Processes struggle
to produce segmentations with such high resolution detail. The dif-
ference is simply the size (in terms of number of parameters) of the
decoder. In our work, we only evaluate models of comparable size. We
have in fact published an open source implementation of GQNs1 and
found that to reproduce the simplest experiment from the reference
publication, a single model needed to be trained for two weeks on a
TITAN Xp GPU. For the toy experiments in this chapter, such compute
requirements are beyond the scope of feasibility. Furthermore, the
larger number of parameters in GQN requires a vastly larger amount
of training data, precluding them from being applied to the glioma
growth data in this chapter. So far, GQNs have never been demon-
strated on any real world data. These compute and data requirements
have also been recognized in later work in the context of 3D scene
understanding, where researchers have replaced the learnable decoder
with differentiable renderers (Sitzmann et al., 2019; Dupont et al., 2020;
Mildenhall et al., 2020).

Prior art in the context of learning distributions of segmentation
functions was already discussed in Section 4.1. As we saw there, no
existing work is able to perform prediction conditioned on context
observations on a continuous time axis, hence our desire to create
such an approach in this chapter. We achieve this using attention,
specifically scaled dot-product attention (Vaswani et al., 2017), which
is by far the most commonly used attention mechanism. Blocks of
repeated application of such a mechanism are often called transform-
ers, and have been applied to image data in some exploratory work.
Parmar et al. (2019) show that attention can be used to replace con-
volution layers in common image processing architectures to achieve
the same performance at a lower parameter count, based on their
earlier proof-of-concept work in Parmar et al. (2018). In Chen et al.

1 https://www.github.com/jenspetersen/gqn-pytorch

https://www.github.com/jenspetersen/gqn-pytorch
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(2020a), the authors interpret images as pixel sequences and apply a
powerful sequence transformer model, showing off impressive and
diverse image completions. Carion et al. (2020) show that transformers
can be used for object detection. To the best of our knowlege, there
is no existing work that uses attention/transformers to learn distri-
butions of segmentation functions. There is work that proposes an
Attention U-Net for segmentation (Oktay et al., 2018), but the authors
use a different definition of attention that is more commonly known
as gating, which is only broadly related to our work.

8.2 methods

Our goal is to enable Neural Processes (Garnelo et al., 2018a; Garnelo
et al., 2018b) to perform segmentation interpolation. A detailed intro-
duction of the Neural Process framework is given in Section 6.2, so we
only briefly repeat it here. Models of the family form a representation
of some function space F = {fi}, fi : X→ Y by observing examples pre-
sented as context observations C = {(xc,yc)}Nc=1 =: (xc,yc) and target
observations T = {(xt,yt)}Mt=1 =: (xt,yt). In Chapter 6 and Chap-
ter 7, we restricted ourselves to low-dimensional scenarios, meaning
Y = R or Y = RD with a small dimension D. We now wish to predict
segmentations, meaning Y = [0;L]H×W , where H×W are the spatial
dimensions, L the number of labels (excluding background) and [0;L]
an integer interval. We further consider two scenarios: in the first,
the input space is scalar like before, meaning X = R. This means
predicted segmentations have to be interpolated entirely from context
observations given at test time. In the second scenario, we assume
we also have input images available at the desired target locations,
such that X = R⊗Rν×H×W , ν being the number of channels in the
input images. To understand the approach we propose in this chapter,
it is best to begin with the implementation of Neural Processes for
image-valued observations.

8.2.1 Neural Process Implementation

In Chapter 6 we implemented the encoder E : C → Z as an MLP
that encodes each (x,y) pair into the representation space. Here we
need to choose an architecture that is more suitable for image inputs,
and a commonly used one consists of multiple (Conv, Activation,
Conv, Activation, Pool)-blocks, optionally with additional instance or
batch normalization layers, which we found to be unnecessary for our
experiments. We use leaky ReLU activations and average-pooling with
kernel size 2, meaning the spatial resolution is halved after each block.
The convolutional layers work with a kernel size of 3, and the number
of feature maps is doubled from the first to the second Conv-layer,
while the first has the same number of feature maps as the second one
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from the previous block, starting with 12 maps at the input. We stack
4 of these blocks, and the last one replaces the average-pooling of size
2 with global average pooling to remove all spatial resolution. A final
convolution layer maps to the desired representation size, which is
128 in our case. This architecture is illustrated in Figure 8.1 on the left
hand side.

The decoder G : Z,X→ Y mirrors the encoder, with average-pooling
replaced by linear interpolation to increase the spatial resolution, ini-
tially to 8× 8 and then by a factor of 2 to match resolution of the
encoder. The number of feature maps is halved instead of doubled
between consecutive Conv-layers. Again, this pattern is illustrated
in Figure 8.1. Note that this implementation does not use the skip
connections depicted in the figure. If we just have target locations
xt

2, the decoder does in fact work as G : Z,X→ Y, however, when we
also have input images at the target locations, we encode these into
another representation X ′ using an encoder that mirrors the context
encoder, only adjusting the input channels to match the number of
channels in the input image. The decoder then operates on the do-
main G : Z,X,X ′ → Y. In CNP, the representations rgc (g for global
scale as opposed to spatial as seen in Figure 8.1) of the individual
context points are summed to form a global representation rg (we take
global to mean both non-spatial as well as over all context points, the
meaning will be clear from context). In ANP, an attention mechanism
is learned that aggregates the information:

rg(xt) = att(xt, xc, rGc
) or (8.1)

rg(xt) = att
(
(xt, x ′t), (xc, x ′c), rgc

)
(8.2)

where the second line represents the case when input images are
available. In practice, xt and x ′t are just concatenated. The atten-
tion mechanism we use is multi-head scaled dot-product attention
(Vaswani et al., 2017) with 8 heads and an embedding size of 128. A
single head is defined by:

att(Q,K,V) = softmax

(
QKT√
d

)
V (8.3)

where Q,K,V (short for query, key, value) are now matrices with
each row representing one context/target item after applying learnable
linear projections to xt, xc, rgc . d is the dimension, i.e. the number of
columns, of Q and K. For multi-head attention, several of these heads
are applied, their outputs concatenated, and the result projected to a
space of the desired dimensionality.

2 Like before, bold indicates a set of values
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8.2.2 Neural Processes with Skip Connections

We mentioned above that segmentation architectures use skip con-
nections to allow themselves to work on multiple scales of spatial
resolution, so that their predictions incorporate both global informa-
tion and fine localized detail. How can we enable Neural Processes to
do the same? One way to do this would be to interpret the outputs
of the encoder along those skips as additional representation spaces
with a spatial resolution. This idea is depicted in Figure 8.1. The rep-
resentations then become tuples of sets (r−Kc

, . . . , r−1c
, rgc), where

we choose backwards indexing so that the lowest skip connection
above the global representation always has the same index regardless
of the network’s depth K. Just like in CNPs, we can just average
the individual representations at each scale before feeding them to
the decoder along with the target inputs tt. We call the resulting
models Segmentation Processes (SP). Note that by doing so, there is no
information exchange between the individual spatial locations in a
given representation. Each pixel vector learns its own representation
akin to rg, and it will turn out that summation works quite poorly in
this setting. Above we referred to elements of the input space as x ∈ X;
because representations now have a spatial resolution, we switch to
more descriptive symbols, using t ∈ X (=time) for the input space and
letting x,y describe spatial locations.

We can of course also define ANPs in the same way. Instead of
averaging the representations, we can learn an attention mechanism
for each skip connection to combine context representations. In our
implementation, we only use a single head of attention as described
in Equation (8.3) for each skip connection, and perform no additional
projection on the representation values, to save some computational
expenses. We will find that attention along the skip connections
works much better than summation, so whenever we mention skip
connections in our experiments, they will use attention, unless the
model is explicitly referred to as SP.

8.2.3 Attentive Segmentation Processes

Having established how we can employ a segmentation model with
skip connections in the Neural Process framework, could there be po-
tential factors that limit performance in this scenario? As we alluded to
above, there is no spatially varying information flow in CNPs or ANPs
with skip connections, regardless of whether averaging or attention is
used to merge the individual context representations. In other words,
the aggregate representation r−i at some spatial location (xt,yt) only
depends on the context representations at that same location. From
an intuitive perspective, we would expect that the representation at
(xt,yt) should also be influenced by different locations (xc,yt) in the
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Figure 8.1: Illustration of the Attentive Segmentation Process architecture.
An encoder-decoder setup with Conv-Activation pairs (grey
blocks, decoder uses linear interpolation for upsampling) is aug-
mented with skip connections, leading to a U-Net-like architec-
ture. Along the higher skip connections, as well as the global
representation, we aggregate the context for a given target point
using only time information. At the coarser skip connections, we
introduce spatial attention, meaning the representation for a tar-
get point (tt, xt,yt) is constructed from all locations (tc, xc,yc)
available in the context representations. Indicated next to the
representations are the dimensions of their tensors.

context, and in a way that depends on the individual values of (xt,yt)
and (xc,yt). More formally:

regular attention: r−i(tt, xt,yt) = f
(
r−ic(tc, xt,yt)

)
(8.4)

spatial attention: r−i(tt, xt,yt) = f
(
r−ic(tc, xc,yc)

)
(8.5)

where f is some mechanism that facilitates the aggregation of the
individual r−ic . Because of the success of attention in ANPs compared
to CNPs, we choose to implement f as an attention mechanism as well,
and we call the resulting models Attentive Segmentation Processes (ASP).
Note that spatial attention requires no additional model parameters
compared to regular attention that only uses the input locations tt, tc.
However, the dot-product in Equation (8.3) will result in much larger
matrices that require correspondingly more GPU memory to store.
To counteract this, we only implement spatial attention in the lowest
N skips connections, and optionally include regular attentive skip
connections at higher levels. The abbreviation ASPN will refer to an
Attentive Segmentation Process with spatial attention in the deepest
N skip connections. ASP0 thus becomes a regular ANP. Figure 8.1
depicts an illustration of ASP2 with skip connections.

In many scenarios where attention is used, there is no intrinsic
concept of queries (tt, xt,yt in our case) and keys (tt, xt,yt in our
case). For language modeling, transformers are extremely successful—
see e.g. the recently published GPT-3 (Brown et al., 2020) which
has a rather extensive overview of related work. These models use
a concept called self-attention, which simply means that the inputs
to the projections that produce Q, K and V in Equation (8.3) are
identical. We do something similar in our case: while the inputs for
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the V-projections are just the context representations, we not only use
tc, xc,yc as the key inputs, but instead concatenate them with the
context representations as well. As input for the query projections, we
either use just the targets tt, xt,yt or, in case we have input images
available at the target locations, a concatenation of them with the
representations from the target encoder, which are of the same shape
as the context representations.

8.2.4 Variational ASP and Optimization

So far, everything we described above relates to deterministic models,
which we can train by directly optimizing the likelihood of the ground
truth data under a predicted distribution:

max
θ

logpθ(yt|xt, xc,yc) (8.6)

In Chapter 4, where we also modeled segmentations, we imple-
mented pθ as a categorical distribution, which results in a cross en-
tropy loss as the minimzation target. Unfortunately, in the experiments
in this chapter, we found training with only cross entropy to be very
unstable. Instead, we use the sum of cross entropy and Dice loss
(Milletari et al., 2016), a common choice for segmentation problems.
The Dice loss, sometimes also called soft Dice, is a differentiable for-
mulation of the Dice overlap and does not implicitly assume that
the target distribution factorizes across individual pixels. It typically
results in more spatial consistency in predicted segmentations. The
full loss for deterministic models thus becomes:

Loss =
1

Npixels

L∑
l=0

∑
x,y

−Sl logpθ(l) + (8.7)

L∑
l=0

−
∑
x,y 2Slpθ(l)∑

x,y
(
2Slpθ(l) + Sl(1− pθ(l)) + (1− Sl)pθ(l)

) (8.8)

where l sums over all labels (including background) and x,y over
the individual output pixels. pθ(l) is the predicted softmax-probability
for label l and S is a one-hot encoding of the segmentation. Both have
a dependence on x,y that we drop for better readability. We use the
Adam optimizer (Kingma and Ba, 2015) with an initial learning rate of
1× 10−4 that is decayed with a factor of γ = 0.98 after 1000 iterations.
We train for a total of 200 000 of batches with batch size 32 (128 for the
glioma growth experiments).

We will find in our experiments that none of the models we compare
can actually predict glioma growth in any meaningful way. This
supports the hypothesis of our work in Chapter 4, where we argue that
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one should focus on modeling multiple growth trajectories instead of
trying to predict a single one. Our proposed ASP models can naturally
be extended akin to variational Neural Processes (Garnelo et al., 2018b)
or the variational formulation of ANPs (Kim et al., 2019), which allows
them to produce multiple, globally consistent growth trajectories. For
variational ASPs, we let the encoder predict mean and variance of a
Gaussian distribution at the global scale, which we average to form
a global distribution. The representations with a spatial resolution
along the skip connections remain deterministic. The optimization
target then becomes, as seen in Section 6.2.2:

max
θ

E
z∼qθ(Z|xt,yt)

logpθ(yt|xt, z)−λ ·DKL(qθ(z|xt,yt)||qθ(z|xc,yc))

(8.9)

where the first term is the (negative) loss of Equation (8.8) for which
we take the expectation using a single sample during training. The
second term is the KL divergence between the prior and the posterior.
We introduced a factor λ, because the original formulation of this
so-called evidence lower bound (ELBO) assumes a factorized target
distribution (like when we only use cross entropy). The Dice loss
breaks this assumption, so the KL divergence will implicitly have a
larger weight which we need to balance. We found that λ = 1× 10−4
results in latent losses in the same order of magnitude as what we
observed in Chapter 4, so we fix it to this value.

The prior is the distribution predicted by the encoder at the global
scale when presented with the context observations. The posterior is
the same distribution, conditioned on both context and target observa-
tions. Note that prior and posterior only refer to the representation
at the global scale, i.e. the bottom of the U-Net. During training,
we will first encode the context representations, which includes the
prior. We then encode the context and target points together to obtain
the posterior, discarding all representations with a spatial resolution.
We then sample from the posterior and combine the sample with
the context representations at the non-global scales as input to the
decoder.

8.3 experiments & evaluation

8.3.1 Toy Examples

There are two capabilities we consider essential in the context of learn-
ing distributions of functions that perform segmentation. One is the
ability to interpolate between context observations, inferring global
changes like the position or size of objects, but at the same time re-
taining fine detail. We refer to this as segmentation interpolation. As
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we will see in the following section, models that encode information
into a global representation and generate new observations from there
(meaning a typical encoder-decoder structure without skip connec-
tions) generally struggle to produce fine detail, and will result in
very smooth segmentations unless a very large and computationally
expensive decoder is used like in Eslami et al. (2018) and Kumar et al.
(2018). We test this by constructing a toy task where a shape moves on
a random linear trajectory through a fixed frame of size 642, changing
size and orientation along the way. The shape we use is a star shape,
which can also change its “pointiness”, i.e. the difference between the
radius of outer points vs. the radius if inner points. An example of this
can be seen in Figure 8.2. The end points of the trajectory are assigned
values tstart = 0 and tend = 1. We sample start and end values for
the size, orientation and pointiness randomly and interpolate them
linearly along the trajectory. We then draw C context points and T
target points along it, with C ∈ [3; 9] and T ∈ [10; 24]. We measure the
segmentation performance using the Dice overlap.

The second capability we seek in models is the combination of
information provided at test time via context segmentations and in-
formation available in input images available for target locations. For
lack of a better name, we refer to this as generalization below. To
test this, we construct a toy task as follows: we start with an empty,
i.e. zero-valued, image volume of size 643. We then place a random
ellipsoid, i.e. an ellipsoid with random position and random major
semi-axis values in the volume, filling it with a grey value sampled
from a standard normal. This process is repeated 10 times, while later
ellipsoids will usually overwrite parts of the already placed ones, to
obtain a decently random image volume with some structure. Finally,
we add Gaussian noise, the variance of which is sampled from [0; 1].
From the input volume we obtain a corresponding segmentation by
splitting the grey value range into 10 bins of equal size. To remove any
fixed correspondence between grey value ranges and classes, the class
assignment to the bins is also random. We then provide models with C
context slices and let them segment T target slices, with C and T equal
to the above values. An example for this task can be seen in Figure 8.3.
We measure performance in terms of Dice, but because we find that
some models tend to produce many small disconnected regions, we
also measure the absolute difference between the correct number of
connected components and the number of connected components in
the predicted segmentation, which we call the “#Objects Error”.

8.3.2 Interactive Segmentation

The second toy example can be interpreted as a form of interactive
segmentation, where a user annotates a number of slices to produce a
segmentation for the entire image volume. The toy task is relatively
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easy to solve, so in order to test the same concept on a more challeng-
ing task we apply our model to interactive brain tumor segmentation,
using the dataset we have already employed in Chapter 4 and Chap-
ter 5. The input data has 4 channels: T1, T1c, T2, FLAIR and the
available segmentations contain labels for edema, enhancing tumor
and the combination of necrosis and non-enhancing tumor. We split
the dataset into 5 random subsets (on a patient level to ensure there
is no data leakage) and generate predictions by training on 4 subsets
and predicting the last. This task can be solved quite well by directly
segmenting the input images, so we shuffle the classes for each ex-
ample like before, and we qualitatively observe if the our approach is
still able to extrapolate class information from context segmentations
to target slices. Because our model is relatively expensive in terms of
GPU memory requirements, we first downsample the input volumes
to a resolution of 1283 (from 1923) and then extract patches of size
643 centered around the tumor. Individual slices are sampled along
the axial/transversal orientation, and C and T are the same as in the
toy examples. For the context we ensure it always contains the slice
through the tumor center as well as its limiting slices.

8.3.3 Tumor Growth Modeling

We motivate this thesis using glioma growth as an example where we
would like to learn a distribution of functions by observing examples.
In Chapter 4 we applied a Probabilistic U-Net, which is a conditional
VAE combined with a U-Net segmentation architecture, to this task,
but the approach is limited to a fixed number of observations that are
required to have a fixed spacing in time. Our approach can perform
segmentation interpolation on a continuous time axis, so naturally we
wish to find out if it can also be applied to glioma growth modeling.
We use the same data as above, meaning we work with volumes of
size 643 centered around the tumor, but because working in 3D+t is
too computationally demanding, we treat each axial slice in a volume
as a separate entity, reducing the problem to 2D+t. We again split the
full datasets into 5 subsets on a patient level and create predictions
for each subset by training on the other four. We sample random
sequences with a length between 3 and 6 and provide all but the
last time point as context. Models are trained to predict the future
time point and also reconstruct the context. Because we found in
Chapter 4 that there was no difference between using image volumes
or segmentations as input, we choose to work directly in segmentation
space and discard the MRI scans entirely. We also add a random
shift between −100 days and 100 days to the time values to artificially
increase the amount of available data.

As a first experiment, we essentially reproduce the volume regres-
sion experiments from Chapter 5 and see how well different models
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can predict a true future segmentation from a varying number of
input observations. Following this, we qualitatively inspect different
models and their ability to model complex spatial growth patterns.
We will find that there is negligible predictive value in all models, so
we also test the variational implementation of our model, inspecting
sample diversity qualitatively and then measuring performance in
terms of overall likelihood (via the ELBO, see Equation (8.9)) as well
as its individual components, including the KL divergence (or surprise)
like in Chapter 4.

8.4 results

8.4.1 Toy Examples

To evaluate how well a model can interpolate segmentations on a
continuous axis, we construct a toy task by moving a star shape along
a random linear trajectory within a fixed frame. The star can rotate
along the axis, change its size and also change its pointiness. The
goal is then to interpolate frames from a small number of context
observations. An example of this can be seen in Figure 8.2. We find
that a regular CNP struggles with this task. While it generally predicts
the correct location, rotation and size, it only produces smoothed out
versions of the desired star shape. A Segmentation Process (SP), which
is the same as a CNP but with skip connections that also perform a
summation of the context, can reconstruct the given context well, but
predictions at other points generally only capture the position and
size correctly, losing the characteristic star shape. ANPs generally
handle the task well, but sometimes struggle to fully reproduce the
star shape (see second-to-last row, t = 0.83). Our model, ASP1, solves
this particular example almost perfectly and overall outperforms the
other approaches, as seen in Table 8.1, where it achieves the highest
average Dice score.

The second capability we seek in continuous interpolation of seg-
mentations is the dynamic adaptation to information presented at test
time. To this end we construct a toy example by generating random
image volumes for which we then generate a segmentation by thresh-
olding the image. However, we shuffle the classes for each example, so
that models can’t learn any correspondence of grey values to classes.
We provide a small number of annotated slices from the volume and
the models need to segment the full volume by inferring a mapping
from image intensities to labels for the given example only from the
context slices. An example for this task is shown in Figure 8.3. We
don’t show the ANP, because here the model collapsed to predicting
only a single class for the full volume. CNP is hardly able to solve
the task, with segmentations exhibiting strong discontinuities and
misclassifications. SP performs better, classifying grey values mostly
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Figure 8.2: Example for the segmentation interpolation toy task, context
shown in red. The models are trained on segmentations of a
star shape, which moves along a random linear trajectory trough
the image. Along the trajectory the a star rotates by a random
amount, changes size and changes pointiness. Only our ASP1
model is able to fully interpolate all of these characteristics.
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Figure 8.3: Example for the generalization toy task. We generate image
volumes by placing ellipsoids randomly and adding noise with
random magnitude at the end. Segmentations are generated
by thresholding the input, but classes are shuffled randomly to
remove any correlation between image intensities and classes.
The models need to infer this information at test time from the
provided context segmentations (marked in red). CNP performs
poorly on the task, while SP generally manages to assign the
correct labels, but regions often appear disconnected erroneously.
ASP2 is able to solve the task almost completely.
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Table 8.1: Results for the segmentation interpolation toy task, ↑ indicates
that higher is better. All results are averaged over 32 000 test
examples and the errors represent the standard error of the mean.
ASP1 outperforms the baselines, with ANP coming closest in
performance, similar to what what we see in Figure 8.2.

CNP ANP SP ASP1

Dice [1e-2] ↑ 75.0± 0.1 87.7± 0.1 84.5± 0.1 89.5± 0.1

Table 8.2: Results for the generalization toy task, ↑ / ↓ indicate that
higher/lower is better. The Dice score measures the overlap of the
true and the predicted segmentation, averaged over all classes in
a given example. To measure the connectedness of the predicted
segmentations, we also evaluate the absolute difference between
the numbers of connected components in the ground truth and
the prediction, which we call “#Objects Error”. All results are
averaged over 32 000 test examples and the errors represent the
standard error of the mean.

CNP ANP SP ASP2

Dice [1e-2] ↑ 95.4± 0.1 86.9± 0.1 98.4± 0.1 98.7± 0.1
#Objects Error ↓ 130.3± 0.5 7.4± 0.1 22.4± 0.2 4.4± 0.1

correctly, segmentations are still often discontinuous. Our model ASP2
(with downsampling to 82 resolution before the spatial attention to
save time) solves the task almost perfectly, with only minor misclas-
sifications (e.g. in the third row). This is confirmed by the results in
Table 8.2, where ASP2 shows both the best segmentation performance
and the lowest error in the number of connected components.

8.4.2 Interactive Segmentation

Our proposed model solves the toy tasks remarkably well, so as a next
step we seek to show that it is also able to work on real-world data.
To this end, we apply it to interactive segmentation of glioma. Like
in the second toy example, we provide models with a few annotated
slices of 3D MRI scans of brain tumor patients, from which they need
to construct a segmentation of the entire 3D volume. Because this task
can be solved quite well by just segmenting the input image directly,
without utilizing the context information, we again shuffle the classes
randomly for each example. This way the model can’t assign certain
imaging features to any particular class. Figure 8.4 shows that this
does indeed work. The fourth column shows the prediction of our
model with the correct context slices provided, and unsurprisingly it
segments the input images quite well, only misclassifying some blood
vessels as enhancing tumor. However, if we decide that the enhancing
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Figure 8.4: Example for the interactive segmentation task, with context
marked in red. Displayed classes are edema (purple), enhancing
tumor (orange) and necrosis/non-enhancing tumor (light yellow).
We provide segmentation slices from a volume and the model
(ASP2 with skip connections) must interpolate the provided in-
formation to other image slices. Because there is relatively little
ambiguity, the models will usually directly segment the input im-
ages and not utilize the context segmentations. For this reason, we
shuffle the classes in each example like we did in the second toy
example. When we reassign enhancing tumor to necrosis in the
context slices, our model interpolates this change to other slices
as well. For the input, we only show the T1c and FLAIR channels,
which best visualize the enhancing tumor and the edema. We
also see that our model does not perfectly reconstruct the context
segmentations, and that it mistakenly segments blood vessels as
enhancing tumor.
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Figure 8.5: Predictive Dice for ANP and ASP2, for two input time points (left)
and 5 input time points (right). We threshold the true overlap
between the last context point and the target point, and display
the median predictive dice vs. the median true overlap. The
shaded area (almost negligibly small) represents the standard
error of the mean in each case. The dashed line indicates the
predictive performance (measured as Dice overlap) if we just
predict the last context point for the target point. We find that
averaging over the all test cases (rightmost point), no model
outperforms predicting no change. Models with skip connections
will on average perform as well as predicting no change. Models
without skips connections will perform worse than predicting no
change when we include all test cases, with ASP2 performing
better than ANP, but they exhibit better predictive performance
on cases with larger change. These results are for the whole
tumor region, i.e. the union of all classes. The same graphs for
the individual classes are shown in Figure A.8.

tumor should rather be necrosis or non-enhancing tumor, as indicated
in the modified context, our model also incorporates this change in
the target slices. Admittedly, this particular change is hardly justified
given the underlying T1c scan shown in the first column, but it’s easy
to imagine how this can be used in more ambiguous cases when the
model misclassifies a certain region.

8.4.3 Tumor Growth Modeling

Following the guiding example of this thesis, we apply Attentive
Segmentation Processes to tumor growth modeling. While our first
attempt at this in Chapter 4 only worked with discrete time steps and
a fixed number of inputs, Attentive Segmentation Processes work on a
continuous time domain and can incorporate arbitrarily many context
observations. We also saw in Chapter 5 that ANPs have at least some
predictive capability in terms of estimating tumor growth, i.e. they
have a lower predictive error than predicting no change. We repeat this
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experiment, but now measure the Dice score of predictions and again
compare it with the Dice score obtained by not predicting any change.
The result can be seen in Figure 8.5, where we show the average
prediction overlap vs. the average baseline overlap, thresholded at
different values. We compare our ASP2 with ANP as a baseline,
both with and without skip connections. We find that no model
performs better than predicting no change when averaged over all
test cases (the rightmost point of the graphs), but when we only look
at a subset of the test cases that exhibits larger change, there is a
predictive value to both ANP and ASP2, with ASP2 performing better
when all cases are considered. Models with skip connections, however,
have absolutely no predictive value and perform exactly as well as no
change prediction at all thresholds.

The main goal in this growth modeling context is that the model
predictions are realistic growth trajectories. We find that this indeed
the case, with one example given in Figure 8.6. ANP and ASP2 both
produce very smoothed out segmentation, with ASP2 offering a little
more spatial resolution. Interestingly, while ANP predicts very little
change for the future time points, ASP2 actually anticipates some
growth. Both models without skip connections can’t accurately re-
construct the context observations and essentially produce temporally
smoothed out versions of the context. Compare this to Figure 5.6,
where ANP was applied to volume regression. There, too, the model
produces an interpolation that doesn’t go directly through the context
points, so it is unsurprising to see similar behaviour here. Introducing
skip connections, however, does allow the models to reproduce the
context segmentations accurately, and also to predict more spatially
complex predictions in the future. Like the ANP without skip con-
nections, the model with skip connections predicts very little change
over time in the future. The ASP2 with skip connections predicts
growth like the model without skips, but it anticipates a very interest-
ing scenario where enhancing tumor forms around the necrotic core.
This is realistic behaviour that can be observed in the training data as
well, and quite impressively our model is able to capture this complex
growth pattern. With the findings from above, it is unsurprising that
none of the models actually predict the observed growth trajectory
correctly.

Without predictive value, deterministic models are quite useless,
even if they predict realistic growth patterns like in Figure 8.6. We
thus cast our model in a variational framework, which allows us to
sample from it. This is done by replacing the lowest level of the U-Net
with a Gaussian distribution, just like in Neural Processes. Figure 8.7
shows exemplary samples from a variational ASP2. We find that the
model produces diverse growth trajectories while still being able to
reconstruct the context segmentations quite accurately, with some
averaging effect especially between the second and third context point.
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Figure 8.6: Example growth predictions for different models, with context
marked in red. Times are given in days. Displayed classes are
edema (purple), enhancing tumor (orange) and necrosis/non-
enhancing tumor (light yellow). ANP (and any other model that
compresses inputs into a representation without spatial resolu-
tion) is only able to produce very smooth predictions and can’t
reconstruct the provided context well. ASP2 improves on this,
but still produces relatively smoothed out segmentations. Intro-
ducing skip connections allows models to reconstruct the context
segmentations accurately, but in the case of ANP, predictions in
the future often look very similar. Our model, ASP2 reproduces
the context segmentations well and at the same time produces
a realistic future growth pattern, where enhancing tumor forms
around the necrotic core. However, none of the models actually
predict the correct growth trajectory.
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Figure 8.7: Sample diversity for growth predictions from ASP2 with skip
connections, with context marked in red and the mean prediction
marked in blue. Displayed classes are edema (purple), enhancing
tumor (orange) and necrosis/non-enhancing tumor (light yellow).
The rightmost columns show samples from the predicted distribu-
tion. While there is virtually no variation at the context points, as
is desirable, sample diversity increases moving further away from
the provided context. While no sample matches the true growth
trajectory, all samples look like realistic patterns. Importantly,
each column represents one globally consistent growth sample.
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Table 8.3: Results for tumor growth modeling with Attentive Segmenta-
tion Processes, ↑ / ↓ indicate that higher/lower is better. Log-
likelihood is the negative cross entropy and measures predic-
tion/reconstruction quality. The differentiable (soft) formulation
of measures the same, and the sum of the two represents what
our models are trained to maximize. The KL divergence is also
sometimes called the surprise, as it measures how far the predicted
prior is from the posterior, and we give the value per channel. For
reference, in Chapter 4 we obtained a surprise of 3.688± 0.059 per
channel, but because the models here were trained differently, the
values are not directly comparable. The aggregate ELBO is the
negative loss (Equation (8.8)), evaluated on the test set. Errors rep-
resent the standard error of the mean. These results were obtained
by providing the models with two context observations in each
case.

NP NP ASP2 ASP2

with skips with skips

Log-Likelihood ↑ −0.198± 0.002 −0.197± 0.002 −0.214± 0.003 −0.118± 0.009
Dice (Soft) ↑ 0.913± 0.001 0.914± 0.001 0.917± 0.001 0.955± 0.004
KL (Surprise) ↓ 2.766± 0.033 2.740± 0.031 0.557± 0.008 1.191± 0.072

Aggregate (ELBO) ↑ 0.680± 0.002 0.682± 0.002 0.696± 0.003 0.822± 0.009

At the first time point in the future, there is still very little variation in
the samples, but as we move further away from the context, samples
become more diverse. Note also that by construction, samples always
represent global realizations of a single trajectory, so that each column
in Figure 8.7 represents a consistent set of predictions over time.

To evaluate the quality of the learned distribution, we measure the
three components that also make up our loss in Table 8.3: both the
log-likelihood (i.e. the negative cross entropy) and the Dice score, or
more precisely its continuous implementation, measure the quality of
the predicted segmentation at a target point, while the KL divergence
measure the difference between prior and posterior. If the predicted
prior is far from the posterior, it means that the model assigns a
lower likelihood to the particular observation, which is why the KL
divergence is also sometimes called the surprise. We find that in terms
of segmentation quality, ASP2 with skip connections performs best,
while in terms of surprise, ASP2 without skips exhibits the lowest KL.
When aggregating the individual values following Equation (8.9), i.e.
essentially the total negative loss (deterministic and KL divergence)
evaluated on the test set, ASP2 with skip connections outperforms
the other models by a large margin. Note that these values are only
comparable for models trained in exactly the same framework, so
the values for the surprise can’t be compared with those obtained in
Chapter 4.
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8.5 discussion

In this chapter we present an approach that leverages the capabilities
of Neural Processes in a segmentation context. NPs are able to learn
function distributions in a way that allows them to condition their
predictions to observations given at test time. However, we find that
in their default implementation, which encodes observations into a
joint representation space and sums their representation, these models
are hardly suitable for segmentation purposes, where modeling of
fine details is required. To remedy this, we first cast a U-Net archi-
tecture, i.e. an encoder-decoder structure with skip connections, as
a Neural Process by interpreting the skip connections as separate
representations, but find that summation in these skip representations
results in artifacts in the predictions and overall poor performance.
Combining the representations with an attention mechanism instead,
like in Attentive Neural Processes, leads to an improvement, but the
resulting model still fails to model more complex spatial patterns.
We propose the introduction of spatial attention in the coarser scales
of the U-Net, meaning attention not only between input locations ti
and tj, but between tuples (ti, xi,yi) and (tj, xj,yj). We call such
models Attentive Segmentation Processes (ASP) and show that they out-
perform the aforementioned approaches by a large margin. ASPs
can be applied in scenarios where input images are available at the
target locations, e.g. for interactive segmentation, as well as in scenar-
ios where segmentations have to be interpolated fully from available
context segmentations.

We apply ASPs to the tumor growth modeling task already intro-
duced in Chapter 4, and find that they are able to produce realistic,
complex and spatially varying growth patterns. At the same time,
much in line with the findings in Chapter 5, it was impossible to
accurately predict changes in tumor appearance and size based on
earlier observations alone. As a result, we also present a variational
version of ASPs that can sample multiple growth trajectories. These
trajectories are globally consistent and can be very diverse, including
growth of different tissue types. Again, our variational model outper-
forms the baselines—variational Neural Processes with and without
skip connections—by a large margin.

While our approach is both versatile and powerful, it has one main
disadvantage in its compute requirements, specifically GPU mem-
ory consumption. The number of additional parameters our spatial
attention introduces is small, but it entails extremely large matrix mul-
tiplications. Assume we work with images of size ND and we’d like
to predict T target points from C context points. GPU memory usage
then scales with O(C · T ·N2D), which prevents us from conducting
our tumor growth experiments on 3D data and from introducing
spatial attention at the higher level skip connections in the U-Net.
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This is a well-known problem of attention mechanisms in general
and a very active area of research. Wang et al. (2020b) propose a
low-rank approximation that reduces the problem to linear instead
of quadratic complexity, but this requires a fixed sequence length.
Kitaev et al. (2020) introduce binning of similar queries/keys, which
reduces the complexity to O(L logL) (L being an abstract sequence
length containing both N and C/T ). One can also use sparse attention
(Child et al., 2019), which just ignores some context points and is
more appropriate for a large and dense context. Working with images,
the most natural way to reduce the computational cost would be to
limit spatial attention to only a neighborhood of a given point (xi,yi),
which works well in principle (Parmar et al., 2018). Unfortunately,
there is currently no way to implement this efficiently in commonly
used deep learning frameworks that would actually result in memory
savings.



9
D I S C U S S I O N

9.1 summary

We have presented a number of contributions that share a common
desire: unlike most deep learning research, we wish to learn rep-
resentations of function spaces—as opposed to single functions—so
that we can leverage these representations and perform predictions
conditioned on additional observations available at a later time. More-
over, we are not satisfied with representations that operate only on
discrete domains, seeking instead representations of continuous func-
tions. Finally, the desired approach should be able to handle both
deterministic and probabilistic scenarios.

As a guiding example where all these factors come into play we
looked at glioma growth. Having monitored the disease in a patient
for some time, an estimate of its future development—both spatially
and with respect to the total tumor burden—would be invaluable
for treatment planning. As we outline in Section 2.2, there is no
consensus on the mechanism that dictates glioma growth, so it seems
only natural to instead try to learn it from examples. At the same
time, it can be assumed that the process is at least in part stochastic,
so that purely deterministic growth estimates would be of little help.

It is no secret that deep learning requires comparatively large
amounts of annotated data for training. Generating those annota-
tions is especially challenging in the medical domain, where expert
knowledge is required. To enable ourselves to conduct deep learning
research, our initial contribution in Chapter 3 was to investigate how
interactive segmentation of glioblastoma tissue on MRI data can be
done most efficiently. Our main finding was that expert users should
be encouraged to iteratively correct the classifier instead of trying to
minimize its uncertainty, which somewhat contradicts much of the
literature in the field of so-called active learning, where researchers
seek to find new measures that better describe classifier uncertainty.
There could certainly be better instruments for this than what the
employed—the commonly used probability entropy—but we suspect
the finding will generalize to other uncertainty metrics. We anticipate
that more efficient interactive segmentation techniques are to be ex-
pected from the deep learning domain and give an overview of the
field in Section 3.6. As of now, these techniques still require annotated
data to be trained, while the Random Forest we use is trained from
scratch for each new image volume, but recently there has been a lot
of progress in unsupervised representation learning (Oord et al., 2018;
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Hénaff et al., 2019; He et al., 2020; Chen et al., 2020b). We imagine
that these advancements could be leveraged to enable deep interactive
segmentation without the need for training labels.

We made a first attempt at learned glioma growth in Chapter 4.
Instead of trying to predict growth, which we argue is hardly possible
anyway, we focused on learned modeling: can the network, a Proba-
bilistic U-Net (Kohl et al., 2018), represent a distribution of different
growth trajectories, given some context observations? We found that
it can, but the limitations of this approach are plentiful. In fact, none
of our requirements from above are fulfilled. While the Probabilistic
U-Net predicts a distribution of future tumor appearances, it doesn’t
actually represent a distribution of functions. It only works with a
fixed number of inputs and requires a fixed time difference between
them. The main goal was to show as a proof of concept that purely
learned growth modeling is possible, something that hasn’t been done
before, and the results encouraged us to explore the problem further.

Chapter 5 was used to further illustrate our research objective and to
give the reader a better understanding of the data we’re working with.
We applied polynomial regression to predict future tumor volume
measurements and found that linear regression is the best choice,
narrowly beating a trivial baseline that does not use any longitudinal
information. However, when an uncertainty estimate is desired—
which it certainly is for this purpose—and the linear regression is
performed in a Bayesian framework, we couldn’t beat a trivial baseline
in terms of average predictive likelihood. We then introduced Neural
Processes (Garnelo et al., 2018a; Garnelo et al., 2018b) as a tool that,
in principle, meets all desiderata outlined above. These models are
indeed able to learn representations of function spaces on a continuous
domain, and can also be formulated in a variational framework to
handle probabilistic scenarios. Applying Neural Processes to tumor
volume prediction, we found that they performed much better than
the other approaches we tried, but at the same time their average
errors were still too large to be able to say that they can predict tumor
growth. For us, this illustrated two things: a) that there is great value
in learning function spaces compared to manually specifying them,
which is one of the main factors motivating our work; and b) that
there is no point in trying to deterministically predict tumor growth,
at least from the data available to us, meaning we should instead focus
on the modeling aspect, like we did in Chapter 4. Still, the convincing
performance of Neural Processes persuaded us to make them the basis
of our later work.

Knowing that Neural Processes are able to learn representations of
function spaces, we were curious what these representations look like.
After all, these are finite-dimensional representations of an infinite-
dimensional space. Using synthetic one-dimensional examples, we
found that the individual dimensions of the learned representations
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correspond to different regions of the input space, i.e. the domain of
the function space. In variational Neural Processes this usually results
in a partitioning, sometimes very sharp, so that a context input at a cer-
tain location t would “activate” a representation dimension. A more
interesting pattern was visible in the representations of deterministic
Neural Processes, where the correspondence between representation
dimensions and input regions exhibited an oscillating behaviour. More
importantly, the frequency of these oscillations varied among repre-
sentation channels, which led us to conclude that Neural Processes
perform a frequency decomposition of the function space. We further
tested this by deriving a theoretical upper bound on the maximum
signal frequency that can be represented in a Neural Process with a
given representation size and empirically validating that the bound
does indeed hold. Finally, as another confirmation that Neural Pro-
cesses learn frequencies, we showed that they suppress frequencies in
a test signal they have not seen in the training data. This essentially
means that they are trainable band-pass and band-stop filters.

While these are some surprising insights into the inner workings
of Neural Processes, there is still a lot we were not able to explain
entirely. It is not impossible for variational Neural Processes to learn
frequency decomposition, and it would be interesting to know how we
can encourage this behaviour in them to a greater extent. It would also
be helpful to derive some theoretical conditions that allow a function
space to be represented, or rather decide how good the representation
will be. Because our work only focuses on continuous time functions,
we didn’t investigate higher-dimensional domains to see if frequency
decomposition still occurs. Another open question is how our findings
translate to scenarios that disallow a classical definition of frequency,
for example when the observations are images. Finally, we are curious
if the construction of Neural Processes perhaps forces them to learn a
basis of the function space. We will further elaborate on this below in
Section 9.3.

A more recent contribution to the Neural Process family, ConvCNP
(Gordon et al., 2020), reported impressive performance compared to
prior art, but these models are fully deterministic. In an attempt to
recover the ability to predict multiple samples, we used Chapter 7

to combine ConvCNP with Gaussian Processes. This does indeed
allow for sampling from the model, but we also found that it improves
generalization. The Gaussian Process allows our model to better
extrapolate far from the provided context points and also makes it
more robust to distribution shifts at test time. Unfortunately, both
ConvCNP and our model did not work on tumor volume regression,
we suspect that they need a minimum number of context points that
is larger than what the glioma growth problem offers. It is also
not immediately obvious how these models can be applied to very
high-dimensional (e.g. images) observation spaces. Compared to
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ConvCNP the introduction of the Gaussian Process comes at some
computational cost that could be restrictive for higher-dimensional
input spaces or extremely large numbers of context points. As we
point out in Section 7.6, approximate methods could alleviate this
problem.

In Chapter 8 we demonstrate segmentation in the Neural Process
framework. In principle, the skip connections in a segmentation
architecture can be interpreted as additional representation spaces
that retain a spatial resolution, but simple summation of context rep-
resentations like in conventional Neural Processes results in poor
performance. Using attention over time, i.e. combining an Attentive
Neural Process (Kim et al., 2019) with a segmentation architecture,
improves performance to an extent. We show that spatial attention,
which incorporates both time and spatial location in the representa-
tions, results in vastly improved performance. The resulting model,
which can be used both with and without input images available at
target points, is able to interpolate complex spatial shapes and can dy-
namically propagate information from the context segmentation, e.g.
by assigning certain structures in an input image to a class specified
in the context.

Translating our initial attempt at glioma growth modeling from
Chapter 4 to a continuous time domain, we applied the above At-
tentive Segmentation Processes to the problem. We began by testing
the predictive capabilities of our model, as well as regular Neural
Processes and Attentive Neural Processes, and found that none of
them offered any predictive value when evaluated on the full dataset.
Even though we found in Chapter 5 that Neural Processes can learn
to predict future tumor volumes to some extent, this evidently doesn’t
translate to the image space, where we use an overlap measure (Dice)
to evaluate predicted segmentations. Our earlier hypothesis that we
should focus more on modeling glioma growth instead of predicting
it was thus reinforced, and we consequently proposed a variational
version of our model that can predict a distribution of possible growth
trajectories for a given set of context observations. We showed qualita-
tively that our model can represent complex spatial variations of the
tumor and that the individual growth trajectories are consistent over
time. Finally, we showed that our model performs significantly better
than all competing approaches in terms of test loss.

Even though we have successfully demonstrated learned glioma
growth modeling on a continuous time domain, the approach can
clearly not be considered much more than a proof of concept. Judging
from the results in Chapter 5 we suspect that it should be possible to
at least have some predictive value in the models. Including treatment
information would certainly be of help, but we did not have access to
it in a structured format. Regardless of predictive capabilities, there
could be a benefit in using the model to identify regions of high and
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low probability of tumor infiltration e.g. in the context of radiation
therapy planning. A comparison of our model with biological growth
models, which we summarize in Section 2.2, would also be interesting,
but it is not clear how exactly such a comparison could be done. After
all, the growth mechanism in these approaches is always modeled
as deterministic, so we could only compare predictive capabilities.
Overall, the most difficult aspect of glioma growth modeling remains:
it is entirely unclear what the upper bound on performance is and
how good our models can ever hope to be.

9.2 clinical translation

The contributions we make in this work, in particular those related
to glioma growth, clearly have a long way to go before they could
be of practical use and be deployed to the “real world” in any way.
Nevertheless, the field of medical image analysis has seen impressive
progress in recent years, thanks to advances in deep learning-based
image processing. Numerous studies have been published attesting
AI models the ability to perform certain clinical tasks as well as or
better than humans, for example skin lesion classification (Esteva et al.,
2017), diagnosis of retinal disease (Gulshan et al., 2016; Fauw et al.,
2018), breast cancer screening (McKinney et al., 2020) or segmentation
of organs of risk for radiation therapy (Nikolov et al., 2018). Alter-
natively, deep learning could improve the standard of care, either
by incorporating more data into a diagnosis (Jäger et al., 2017) or by
performing tasks that would be too labor-intensive to do manually,
like tumor volumetry (Kickingereder et al., 2019).

In light of these promising findings, it might come as somewhat of
a surprise that the number of AI-based products that have made into
the healthcare market is still very limited. One of the limiting factors
is certainly time; to gain regulatory approval proposed diagnostic
systems need to undergo rigorous testing. And for good reason, as
there is often a certain translational gap that presents itself when we
move from a controlled research environment to the uncertainties and
individualities of clinical routine. As an example, one study we men-
tion above developed a model to detect diabetic retinopathy in retinal
fundus images (Gulshan et al., 2016). The model was subsequently
deployed in a prospective study (which might still be ongoing) across
multiple sites in Thailand. In an initial report (Beede et al., 2020) the
authors state that in clinical routine the model’s performance was
inferior compared to the initial results. They attribute this to changed
environmental factors such as lighting conditions, but also to differ-
ences in routine workflows. Overall, these changes can be described
as distribution shifts between training and test data distributions (Kelly
et al., 2019; Oakden-Rayner et al., 2020) that models are not robust to.
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To overcome this problem and to truly be able to deliver clinical
impact, it makes sense to test developed models in a clinical routine
setting as early as possible; at least that was our desire for the very
successful segmentation model we developed in Isensee et al. (2018).
While not directly related to the topic of this thesis, it is still an effort
worth mentioning: we developed a processing infrastructure that can
be used to deploy deep learning models (or any form of automated
processing) in clinical routine. The system is detailed in Petersen et al.
(2018) and Kickingereder et al. (2019), what follows is a very practical
description, a guideline of sorts for those who might be interested to
reproduce it.

The basic idea is that whenever imaging data is acquired for which
automated processing is desired, the data is not only sent to the PACS1

but also to a dedicated processing server that is integrated into the
clinical network infrastructure to ensure adherence to data protection
regulations. The process of sending acquisitions to multiple receivers
can be automated by adjusting scanner protocols. The processing
server uses an open source PACS alternative called XNAT (Marcus
et al., 2007). Using its “Container Service” plugin, XNAT can start
Docker2 containers, which are encapsulated processing environments
that ensure independence with respect to the system on which they
are executed. Researchers, in the vast majority of cases, work with
processing scripts that take in a number of files and output other files,
for our purposes those will be the inputs to and outputs from a deep
neural network. We developed a wrapper that handles communication
with the XNAT (and also with the PACS if desired) and can receive
and send files from and to them, from within a Docker container.
Using this wrapper, researchers can quickly convert their research
scripts into Docker containers that can be deployed to run on our
system, meaning directly parallel to clinical routine and on data that
has not been processed or even quality-controlled after acquisition at
the scanner. Patient consent is of course still required and ensured by
our clinical partners.

The simplicity of this setup has a number of advantages: it only uses
open source components, meaning there is no cost involved beyond
the potential need to buy dedicated hardware for the processing
server; the practical overhead for clinicians and researchers is small;
there is no interference with clinical routine workflows; and data
protection regulations are observed. As a first example, we applied
the segmentation model developed in (Isensee et al., 2018) for the
purpose of tumor volumetry. As we outline in Section 2.2, tumor
size is one of the key features tracked in glioblastoma progression
monitoring. Using the above system to process a large number of

1 Picture Archiving and Communication System, a system hospitals use to store
imaging data.

2 www.docker.com

www.docker.com
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cases automatically, we could show that automated volumetry based
on CNNs is superior to the standard of care that uses tumor diameters
as a proxy (Wen et al., 2010), because manual volumetry is too time-
consuming (Kickingereder et al., 2019). We also automatically generate
a graph that displays the longitudinal change of the tumor volume
and send it to the PACS as an additional source of information for
routine radiological diagnosis. The system is of course only being
employed in a research context, but it has now been in active use
at the Heidelberg University Hospital for many months and has so
far processed data from over 1000 patients, enabling further studies
(Brugnara et al., 2020). We hope that this brief description of our work
beyond this thesis can serve as an indication that the difficulties of
clinical translation can be addressed even with simple tools and a
small budget.

9.3 future directions

We will close with some speculation what future research in a similar
direction as this thesis could look like, focusing on two aspects in
particular where we see a lot of potential for impactful contributions.

9.3.1 Do Neural Processes Learn Bases?

Above we already mentioned that the construction of Neural Processes
might force them to learn a basis of the function space they are trained
on, a hypothesis we form from the observation that they decompose
the function space into different frequencies—akin to a representation
in a Fourier basis. Recall that a set of functions {fi}

N
i=1 is called a

basis if it holds that ∀g ∈ G : g =
∑
i αifi, where G is some function

space that is also a vector space3. Otherwise a basis doesn’t exist, but
it would of course be interesting to observe how Neural Processes
behave in that case. Assume now we have a perfectly trained Neural
Process with encoder E and decoder G. In that case we know that for
some represented function f:

f(x) = G(x, r) , ri ∝
∫
Ei(x

′, f(x ′))dx ′ (9.1)

where i indexes representation dimensions and we use an integral
instead of a sum to indicate that we pass all points through the Neural
Process. It’s easy to see that by choosing Ei(x ′, f(x ′)) = f(x ′)ejix

′
we

could recover a Fourier transform. However, as we saw in Chapter 6,
the Neural Process doesn’t actually learn such a Fourier transform,
probably because there is nothing that would encourage orthogonality

3 Some sources define function spaces as any set of functions with shared domain and
co-domain, others explicitly require them to be a vector space.



142 discussion

in the representations. To further investigate our conjecture, it would
make sense to look at function spaces that don’t have a Fourier basis.
Would the Neural Process be able to approximate other bases as well?
Either way, some metric would be required that essentially tells us
how well the learned representation covers the function space, because
whatever representation we learn, it will at best approximate a basis. It
might also make sense to learn representations for finite-dimensional
vector spaces. That would potentially make it easier to evaluate or-
thogonality and linear separability. How would the Neural Process
behave if the representation size is smaller than the dimensionality
of the vector space and the data cannot be approximated with fewer
dimensions (e.g. for points sampled randomly from the unit ball)?
Such investigations could yield further insight into learned represen-
tations of function spaces and perhaps into function approximation in
general, which would encompass many areas of machine learning.

9.3.2 Learned Differential Equations

The idea to combine differential equations with neural networks is not
new. Consider the first order ordinary differential equation ẏ = f(y).
If we have observations for y(t) but don’t actually know f(y), it might
make sense to approximate it with a neural network. The difficulty
then lies in simultaneously solving the ODE and the optimization
problem for f. In practice, the problem is usually rephrased as ẏ =

y+ f ′(y), and simpler implementations of f ′ (e.g. a single projection
with activation) date back several years (Beer and Gallagher, 1992;
Beer, 1997). These approaches, called continuous-time recurrent neural
networks, didn’t use gradient descent but instead relied on evolutionary
algorithms to find f ′.

While the field of learned differential equations has continuously
progressed—we won’t discuss older works here—it can be argued
that it recently experienced a surge in interest after the publication of
Neural ODEs (Chen et al., 2018), where the authors connect the above
formulation of ODEs to residual neural networks (He et al., 2016)
and propose to use the adjoint method to efficiently perform gradient
descent on f ′ while solving the ODE. Since then, their work has been
extended in various ways, e.g. to stochastic differential equations (Li
et al., 2020), for generative modeling (Yıldız et al., 2019; Grathwohl
et al., 2019), or by moving the dynamics to a latent space (Rubanova
et al., 2019). These models have mostly been demonstrated on low-
dimensional observations, but some initial explorations also perform
simple experiments on image time-series, e.g. by extrapolating rotating
MNIST digits in (Yıldız et al., 2019). How they fare on more spatially
complex data remains to be seen.

For glioma growth in particular it seems like a natural next step
to phrase the problem as a learned diffusion equation, which to the



9.3 future directions 143

best of our knowledge has not been done yet. The reaction term (see
Section 2.2 for an introduction) could be replaced by a small neural
network, for example, and we imagine that the diffusion tensor could
also be estimated from the available MRIs (if DTI was not performed
anyway) in an end-to-end fashion. As we outline in Section 2.2, some
works approximate the diffusion process with an eikonal equation,
meaning an equation that describes a travelling wavefront (Konukoglu
et al., 2007; Konukoglu et al., 2010a). Some recent works explore
learning with eikonal equations (Lichtenstein et al., 2019; Smith et al.,
2020; Waheed et al., 2020) and it would interesting to see if these
contributions can be leveraged for glioma growth modeling.
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A P P E N D I X

a.1 efficient expert annotations in interactive segmen-
tation

Figure A.1: Results of the parameter grid search. We repeated our experi-
ments with different combinations of the number of trees and
the maximum depth of the forest. The results here show the
median Dice score with boxes extending from lower to upper
quartile values for the best performing method MISCLASS-B over
the interval from 10 to 30 interactions, taking into consideration
data from necrotic, edema and enhancing regions. The depth
of the forest has little influence on the results, while they seem
to improve with the number of trees, especially from 10 to 30.
However the differences are not statistically significant.
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Table A.1: Pairwise comparison of all interactive annotation methods. Please
see Table 3.1 for more information.

Edema
Non-enhancing
Abnormalities

Methods
Statistic p Statistic p

∆Median ∆Median

UNCERTAIN v MISCLASS
13 <0.001 88 0.526

−0.038 −0.031

UNCERTAIN v MISCLASS-B
13 <0.001 10 <0.001

−0.024 −0.114

UNCERTAIN v UNCERTAIN-MB
58 0.079 4 <0.001

−0.002 −0.176

UNCERTAIN v CERTAIN-MB
33 0.007 45 0.025

0.100 −0.062

MISCLASS v MISCLASS-B
62 0.108 15 <0.001

0.015 −0.086

MISCLASS v UNCERTAIN-MB
36 0.010 11 <0.001

0.040 −0.145

MISCLASS v CERTAIN-MB
0 <0.001 96 0.737

0.138 −0.031

MISCLASS-B v UNCERTAIN-MB
32 0.006 84 0.433

0.025 −0.061

MISCLASS-B v CERTAIN-MB
0 <0.001 12 <0.001
0.123 0.052

UNCERTAIN-MB v CERTAIN-MB
1 <0.001 12 <0.001
0.098 0.114
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a.2 a motivating example : tumor volume prediction
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Figure A.2: Changes in tumor size in the dataset for tumor tumor tissue types.
The outermost bins collect all points outside of the given range.
For the enhancing tumor region, the distribution of absolute
changes is shifted to the negative growth region, an indication of
the efficacy of the administered treatment.
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a.3 frequency decomposition in neural processes
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Figure A.3: Influence of the context on the learned representations in a CNP
with Dr = 128 and data coming from Fourier series. X refers
to the input space (i.e. time), Y to the output space. These
are the first 48 representations ordered by their average Fourier
components at y = −3 and y = 3 (left-to-right, top-to-bottom).
Note that each panel is normalized separately, so color values
are not comparable. This is the same as Figure 6.6 with different
data. We find again that CNP performs a decomposition of the
signal space into different frequencies, but compared to the GP
data the frequencies are much higher.
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Figure A.4: Influence of the context on the learned representations in a NP
with Dr = 128 and data coming from Fourier series. X refers
to the input space (i.e. time), Y to the output space. These
are the first 48 representations ordered by their average Fourier
components at y = −3 and y = 3 (left-to-right, top-to-bottom).
Note that each panel is normalized separately, so color values are
not comparable. This is the same as Figure 6.8 with different data.
Even though a representation of Fourier series data in frequency
space would be beneficial, the NP learns a spatial partitioning
of the signal space which is much sharper compared to the GP
data.
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Figure A.5: Example reconstructions of GP data in NPs with varying repre-
sentation sizes. A decrease in representation size leads to the
omission of higher frequency components. In other words, the
NP acts like a low-pass filter. For comparison, we also show a
simple 3

rd order Butterworth filter (Butterworth, 1930) with a
cutoff frequency manually selected for visual similarity to the
Dr = 16 CNP model. Compared to the CNP in Figure 6.3, the
NP exhibits stronger dampening, with the Dr = 32 NP being
very similar to the Dr = 16 CNP.
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Figure A.6: Example reconstructions of Fourier data in NPs with varying
representation sizes. A decrease in representation size leads to
the model ignoring the outer regions of the input space as well as
suppressing some higher frequency content. The corresponding
figure for a CNP is Figure 6.5.
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a.4 gp-convcnp
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Figure A.7: These are additional examples for the synthetic data presented
in Chapter 7. The figure is otherwise identical to Figure 7.2.
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a.5 attentive segmentation processes
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Figure A.8: Predictive Dice for ANP and ASP2, for two input timepoints
(left) and 5 input timepoints (right). This is the same as Fig-
ure 8.5, but for the individual tumor classes, with the top row
showing edema, the middle row showing enhancing tumor, and
the bottom row showing necrosis.





B I B L I O G R A P H Y

Abragam, A. (1983). Principles of Nuclear Magnetism. International
Series of Monographs on Physics. Oxford University Press. 614 pp.

Agustsson, Eirikur, Jasper R. Uijlings, and Vittorio Ferrari (2019). “In-
teractive Full Image Segmentation by Considering All Regions
Jointly”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 11614–11623.

Akbari, Hamed, Luke Macyszyn, Xiao Da, Michel Bilello, Ronald
L. Wolf, Maria Martinez-Lage, George Biros, Michelle Alonso-
Basanta, Donald M. O’Rourke, and Christos Davatzikos (2016).
“Imaging Surrogates of Infiltration Obtained Via Multiparametric
Imaging Pattern Analysis Predict Subsequent Location of Recur-
rence of Glioblastoma”. In: Neurosurgery 78.4, pp. 572–580.

Ali, S. M. and S. D. Silvey (1966). “A General Class of Coefficients of
Divergence of One Distribution from Another”. In: Journal of the
Royal Statistical Society: Series B (Methodological) 28.1, pp. 131–142.

An, G. (1996). “The Effects of Adding Noise During Backpropagation
Training on a Generalization Performance”. In: Neural Computation
8.3, pp. 643–674.

Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla (2015). “Seg-
Net: A Deep Convolutional Encoder-Decoder Architecture for
Image Segmentation”. In: arXiv:1511.00561 [cs].

Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla (2017). “Seg-
Net: A Deep Convolutional Encoder-Decoder Architecture for
Image Segmentation”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Bakas, Spyridon et al. (2019). “Identifying the Best Machine Learning
Algorithms for Brain Tumor Segmentation, Progression Assess-
ment, and Overall Survival Prediction in the BRATS Challenge”.
In: arXiv:1811.02629 [cs, stat].

Bauer, Stefan, Roland Wiest, Lutz-P. Nolte, and Mauricio Reyes (2013).
“A survey of MRI-based medical image analysis for brain tumor
studies”. In: Physics in Medicine & Biology 58.13, R97–R129.

Baumgartner, Christian F., Kerem C. Tezcan, Krishna Chaitanya, An-
dreas M. Hötker, Urs J. Muehlematter, Khoschy Schawkat, Anton
S. Becker, Olivio Donati, and Ender Konukoglu (2019). “PHiSeg:
Capturing Uncertainty in Medical Image Segmentation”. In: Medi-
cal Image Computing and Computer Assisted Intervention (MICCAI).

Beede, Emma, Elizabeth Baylor, Fred Hersch, Anna Iurchenko, Lauren
Wilcox, Paisan Ruamviboonsuk, and Laura M. Vardoulakis (2020).
“A Human-Centered Evaluation of a Deep Learning System De-
ployed in Clinics for the Detection of Diabetic Retinopathy”. In:

155



156 bibliography

2020 CHI Conference on Human Factors in Computing Systems, pp. 1–
12.

Beer, Randall D. (1997). “The dynamics of adaptive behavior: A re-
search program”. In: Robotics and Autonomous Systems. Practice
and Future of Autonomous Agents 20.2, pp. 257–289.

Beer, Randall D. and John C. Gallagher (1992). “Evolving Dynamical
Neural Networks for Adaptive Behavior”. In: Adaptive Behavior 1.1,
pp. 91–122.

Bernstein, Matt A., Kevin F. King, and Xiaohong Joe Zhou (2004).
Handbook of MRI Pulse Sequences. Elsevier.

Bishop, Christopher M. (1995). Neural Networks for Pattern Recognition.
Oxford University Press, Inc.

Bishop, Christopher M. (2006). Pattern recognition and machine learning.
Information science and statistics. Springer. 738 pp.

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (2017). “Vari-
ational Inference: A Review for Statisticians”. In: Journal of the
American Statistical Association 112.518, pp. 859–877.

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra (2015). “Weight Uncertainty in Neural Networks”. In:
International Conference on Machine Learning, pp. 1613–1622.

Bondiau, Pierre-Yves, Olivier Clatz, Maxime Sermesant, Pierre-Yves
Marcy, Herve Delingette, Marc Frenay, and Nicholas Ayache
(2008). “Biocomputing: numerical simulation of glioblastoma growth
using diffusion tensor imaging”. In: Physics in Medicine & Biology
53.4, p. 879.

Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik (1992).
“A training algorithm for optimal margin classifiers”. In: Annual
Workshop on Computational Learning Theory, pp. 144–152.

Branco, J. R., J. A. Ferreira, and Paula de Oliveira (2014). “Mathematical
modeling of efficient protocols to control glioma growth”. In:
Mathematical Biosciences 255, pp. 83–90.

Breiman, Leo (2001). “Random forests”. In: Machine Learning 45.1,
pp. 5–32.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei (2020).
“Language Models are Few-Shot Learners”. In: arXiv:2005.14165
[cs].

Brugnara, Gianluca, Fabian Isensee, Ulf Neuberger, David Bonekamp,
Jens Petersen, Ricarda Diem, Brigitte Wildemann, Sabine Heiland,
Wolfgang Wick, Martin Bendszus, Klaus Maier-Hein, and Philipp



bibliography 157

Kickingereder (2020). “Automated volumetric assessment with
artificial neural networks might enable a more accurate assessment
of disease burden in patients with multiple sclerosis”. In: European
Radiology 30.4, pp. 2356–2364.

Burgess, P. K., P. M. Kulesa, J. D. Murray, and E. C. Alvord (1997).
“The interaction of growth rates and diffusion coefficients in a
three-dimensional mathematical model of gliomas”. In: Journal of
Neuropathology and Experimental Neurology 56.6, pp. 704–713.

Burnet, Neil G, Simon J Thomas, Kate E Burton, and Sarah J Jefferies
(2004). “Defining the tumour and target volumes for radiotherapy”.
In: Cancer Imaging 4.2, pp. 153–161.

Butterworth, Stephen (1930). “On the theory of filter amplifiers”. In:
Wireless Engineer 7.6, pp. 536–541.

Calandra, Roberto, Jan Peters, Carl Edward Rasmussen, and Marc
Peter Deisenroth (2016). “Manifold Gaussian Processes for Regres-
sion”. In: International Joint Conference on Neural Networks.

Carion, Nicolas, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko (2020). “End-to-End
Object Detection with Transformers”. In: arXiv:2005.12872 [cs].

Chen, Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin
Murphy, and Alan L. Yuille (2015). “Semantic Image Segmentation
with Deep Convolutional Nets and Fully Connected CRFs”. In:
International Conference on Learning Representations.

Chen, Mark, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Pra-
fulla Dhariwal, David Luan, and Ilya Sutskever (2020a). Generative
Pretraining from Pixels. Tech. rep.

Chen, Ricky T. Q., Yulia Rubanova, Jesse Bettencourt, and David K
Duvenaud (2018). “Neural Ordinary Differential Equations”. In:
Advances in Neural Information Processing Systems, pp. 6571–6583.

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey
Hinton (2020b). “A Simple Framework for Contrastive Learning
of Visual Representations”. In: arXiv:2002.05709 [cs, stat].

Cheng, Ching-An and Byron Boots (2017). “Variational Inference for
Gaussian Process Models with Linear Complexity”. In: Advances
in Neural Information Processing Systems, pp. 5184–5194.

Chicoine, Michael R. and Daniel L. Silbergeld (1995). “Assessment
of brain tumor cell motility in vivo and in vitro”. In: Journal of
Neurosurgery 82.4, pp. 615–622.

Child, Rewon, Scott Gray, Alec Radford, and Ilya Sutskever (2019).
“Generating Long Sequences with Sparse Transformers”. In: URL
https://openai.com/blog/sparse-transformers.

Chyzhyk, Darya, Rosalı́a Dacosta-Aguayo, Maria Mataró, and Manuel
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