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Abstract
Drawing inferences about dynamics of psychological constructs from intensive longitudinal data requires the measurement
model (MM)—indicating how items relate to constructs—to be invariant across subjects and time-points. When assessing
subjects in their daily life, however, there may be multiple MMs, for instance, because subjects differ in their item
interpretation or because the response style of (some) subjects changes over time. The recently proposed “latent Markov
factor analysis” (LMFA) evaluates (violations of) measurement invariance by classifying observations into latent “states”
according to the MM underlying these observations such that MMs differ between states but are invariant within one state.
However, LMFA is limited to normally distributed continuous data and estimates may be inaccurate when applying the
method to ordinal data (e.g., from Likert items) with skewed responses or few response categories. To enable researchers
and health professionals with ordinal data to evaluate measurement invariance, we present “latent Markov latent trait
analysis” (LMLTA), which builds upon LMFA but treats responses as ordinal. Our application shows differences in MMs of
adolescents’ affective well-being in different social contexts, highlighting the importance of studying measurement invar-
iance for drawing accurate inferences for psychological science and practice and for further understanding dynamics of
psychological constructs.
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Introduction

Intensive longitudinal data (ILD; e.g., Hamaker & Wichers,

2017) allow one to investigate the dynamics over time of latent

(i.e., unobservable) psychological constructs. By frequently gath-

ering data (say at more than 50 measurement occasions) of mul-

tiple subjects, new insights regarding subject-specific dynamics

can be obtained, which have clinical implications. For instance,

studies are being conducted on dynamics in emotions and beha-

viors related to mental health (e.g., Myin-Germeys et al., 2018;

Snippe et al., 2016), and ILD can also be used to tailor inter-

ventions to the subject’s real-time dynamics of negative affect

(van Roekel et al., 2017). Such data is efficiently gathered by

means of Experience Sampling Methodology (ESM; Scollon

et al., 2003), in which subjects repeatedly rate questionnaire

items over several weeks, say five times a day, at randomized

time-points. The recent steep increase in such datasets (e.g.,

Hamaker & Wichers, 2017; van Roekel et al., 2019) is related

to novel technologies to efficiently gather these data with the use

of smartphone apps. Hence, there is an urgent need to also develop

novel analytical methods.

In order to draw valid inferences about the measured

constructs, either for scientific or clinical purposes, it is crucial

that the measurement model (MM) is invariant (i.e., constant)

across time and subjects (i.e., having within- and between-

person invariance). The MM indicates to what extent the latent

constructs (or “factors”) are measured by which items, as

indicated by the “factor loadings.” For continuous data, the

MM is obtained by factor analysis (FA). If measurement invar-

iance (MI) holds, the constructs are conceptually equal and

thus comparable across subjects and over time. Often, MI is

not tenable because response styles, substantive changes in

item interpretation, or changes in the nature of the measured

construct may affect the MM. That is, people may differ from

each other in their MMs, for instance, depending on psycho-

pathology, but one subject may also differ over time in its own
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MM, for instance, depending on the social context in which

the questionnaire is filled in. When the non-invariance pat-

terns are undetected or ignored, they cause a potential threat

to valid inferences using standard methods for comparing fac-

tor means across time and subjects. For instance, changes in

subjects’ overall emotional well-being may be (partly) due to

changes in how subjects interpret the items. Changes in the

MM are also important phenomena in their own right. For

instance, detecting MM changes is crucial for valid decisions

about treatment allocation over time and such changes may

even signal the onset of a mental episode. Consider, for exam-

ple, a psychologist who measures positive affect (PA) and

negative affect (NA) in patients with a bipolar disorder.

Patients in manic episodes often encounter high arousal PA

such as feeling energetic or excited together with high arousal

NA such as being irritated or distracted (American Psychiatric

Association, 2013). This might result in a MM with one bipolar

“arousal” factor contrasting “low” versus “high” arousal.

When patients encounter depressive episodes, PA is generally

lower and NA at least somewhat higher (Hamaker et al., 2010),

which might correspond to a MM with two separate PA and NA

factors or one bipolar “valence of affect” factor. Assessing MI

thus allows for more accurate conclusions, but may also open

up novel possibilities of early detection of subtle changes in

daily functioning.

In order to assess for whom and when a MM applies, Vogels-

meier, Vermunt, van Roekel, and De Roover (2019) developed a

novel method called latent Markov factor analysis (LMFA) for

tracking and diagnosing MM changes for continuous responses in

ILD. LMFA combines a latent Markov model (LMM; Bartolucci

et al., 2014; Collins & Lanza, 2010) with mixture FA (McLachlan

& Peel, 2000; McNicholas, 2016): The LMM clusters subject-

and time-point-specific observations into a few dynamic latent

classes or “states” according to the MMs underlying these obser-

vations and mixture FA evaluates which MM applies for each

state. Thus, every state pertains to a different MM and the MM is

invariant within one state. Note that not all MMs may apply to

each subject. Some subjects may constantly stay in one state while

others may transition between different states. By investigating

the state memberships, one can see which subjects and measure-

ments are comparable regarding their underlying MM. Investigat-

ing the state-specific MMs offers insights into the underlying

dynamics and it also helps researchers make decisions about sub-

sequent analyses. For example, when at least “partial” invariance

holds across states (i.e., only a few MM parameters differ; Byrne

et al., 1989), researchers could study discrete changes in factor

means by repeating the LMLTA analysis, restricting invariant

MM parameters to be equal across states, and adding factor means

to the model.

The new method has raised awareness of possible MM

changes in ILD among fundamental and applied researchers who

are now eager to evaluate which MM applies to which subject at

which time-point (Horstmann & Ziegler, 2020). However, an

important limitation of LMFA is the assumption of having nor-

mally distributed continuous response items. This assumption is

often violated in ILD. Although continuous items are sometimes

used (e.g., participants are asked to give their answer by sliding

on the Visual Analog Scale from 0 (“not at all”) to 100 (“very

much”), many studies use multiple Likert items with five to

seven categories for their assessment. Even though it has been

shown that items with five or more categories might be treated

as continuous (Dolan, 1994), it becomes problematic if the item

response distributions are heavily skewed (e.g., when most

responses have a 0 score, which is quite common with less

frequent thoughts, emotions, or behaviors). FA is not robust

against strong deviations from normality and, therefore, may

yield inaccurately estimated parameters (Kappenburg-ten Holt,

2014; Rhemtulla et al., 2012; Vermunt & Magidson, 2005). Note

that the same problem generally applies to studies that use

ordinal items with less than five categories, although this is less

common in ILD data. If the normal approximation is clearly

incorrect, a better alternative is to treat the items as ordinal and

to specify the probability of responding in a certain category by

means of “item response theory” or “latent trait” (LT) models,

where “trait” refers to a latent construct in the psychometric

literature (Vermunt & Magidson, 2016).

The aim of this paper is to combine the strength of LT

models to adequately deal with ordinal data with the strengths

of LMFA to trace complex measurement non-invariance pat-

terns in the data. The novel and much-needed latent Markov

latent trait analysis (LMLTA) for ordinal data is obtained by

replacing the mixture FA by a mixture multidimensional ver-

sion of Muraki’s (1992) “generalized partial credit model”

(GPCM) that treats the responses as ordinal. The second sec-

tion describes LMLTA and how it compares to LMFA. The

third section illustrates the empirical value of LMLTA to detect

MM changes in ordinal data on adolescents’ well-being in

different social contexts. Finally, the fourth section concludes

with some points of discussion and future directions of

research.

Method

Data Structure

In LMLTA, we assume intensive longitudinal observations that

are nested within subjects and we assume multiple Likert and,

therefore, ordinal items with response categories ranging, for

instance, from 1 ¼ “strongly disagree” to 5 ¼ “strongly agree.”

The latter differs from LMFA, where the items are assumed to be

continuous variables. The observations are denoted by yijt with

i ¼ 1; . . . ; I referring to subjects, j ¼ 1; . . . ; J referring to

items, and t ¼ 1; . . . ; T referring to time-points. Furthermore,

g ¼ 1; . . . ;G refers to the item categories and the number of

categories G is assumed to be constant across items. Finally, the

number of time-points T typically differs across subjects but, for

simplicity, we mostly omit the index i in Ti. The observations are

collected in the 1� J vectors yit ¼ ðyi1t; . . . ; yiJtÞ that are col-

lected in the T � J subject-specific data matrices

Yi ¼ ðy0i1; . . . ; y0iT Þ
0
. The data matrices are concatenated in the

dataset Y ¼ ðY01; . . . ;Y0IÞ
0
with

PI
i¼1Ti rows.
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Latent Markov Latent Trait Analysis

In LMLTA, just as in LMFA, a LMM specifies transitions

between discrete latent states (e.g., manic and depressive state)

characterized by state-specific MMs (e.g., state 1 contains one

arousal factor and state 2 two affect factors). A LMM is basi-

cally a latent class model (Lazarsfeld & Henry, 1968) and thus

a method to find unobserved classes of observations with com-

parable response patterns. A LMM allows subjects to transition

between latent classes over time, which is why the classes are

called “states.” To get more insight into what possibly predicts

state memberships, one may explore the relation between the

state memberships and time-varying or time-constant explana-

tory variables or “covariates.” For instance, sleep quality and

disruptions in the daily routine may increase the probability to

transition to a manic state (Hamaker et al., 2010). The state-

specific MMs are latent variable models that indicate which

latent constructs are measured by which items and to what

extent. The choice for the type of latent variable model directly

follows from the assumed item response distribution: An LT

model for ordinal data is used in LMLTA and a FA model for

continuous data is used in LMFA.

The parameters in LMLTA can be estimated with the

same approaches as in LMFA, using Latent GOLD (LG;

Vermunt & Magidson, 2016) syntax. The first approach is a

one-step full information maximum likelihood (FIML) esti-

mation (Vogelsmeier, Vermunt, van Roekel, & De Roover,

2019) and the second approach is a three-step (3S) procedure that

splits the estimation of the LMM and the state-specific MMs

(Vogelsmeier, Vermunt, Bülow, & De Roover, 2019). The latter

approach has advantages, especially regarding model selection

with covariates. In the following, we first describe the LMM

and then introduce the particular LT model applied in this

paper and compare it to the FA model in LMFA. Thereafter,

we discuss the two possible estimation procedures and the

advantages of the 3S estimation.

Latent Markov model. The LMM is a probabilistic model with two

assumptions (e.g., Bartolucci et al., 2014; Collins & Lanza, 2010):

(1) The probability of being in state k (with k ¼ 1; . . . ;K) at

time-point t depends only on the state membership at the previous

time-point t � 1 and not on any other state memberships (first-

order Markov assumption) and (2) the responses yit at time-point t

depend only on the state membership at this time-point (local

independence assumption). The sequence of states is called a

latent Markov chain (LMC). Figure 1a illustrates a LMC for a

single subject: The K � 1 vectors sit ¼ ðsit1; . . . ; sitKÞ0 contain

the binary indicators sitk that are equal to 1 for state k and equal to

zero for all other states. They determine the state membership at

time-point t. The U � 1 vectors zit ¼ ðzit1; . . . ; zitUÞ
0
contain the

covariate values zitu, with u ¼ 1; . . . ;U referring to the subject-

and possibly time-point-specific covariates influencing the state

memberships. In Figure 1a, state 1 (e.g., the manic state) applies to

time-points 1–29 and 55–56, while state 2 (e.g., the depressive

state) applies to time-points 30–54.

A LMM is characterized by the “initial state,” “transition,”

and “response” probabilities. Together, the parameters form

the joint distribution of the observations and states. This is:

pðYi; SijZiÞ
¼ pðyi1; . . . ; yiT ; si1; . . . ; siT jzi1; . . . ; ziT Þ

¼ pðsi1jzi1Þ
z}|{

initial state

probabilities YT
t¼2

pdti
ðsitjsit�1; zitÞ
z}|{

transition

probabilities YT
t¼1

pðyitjsitÞ
z}|{

response

probabilities
ð1Þ

for subject i. The initial state and transition probabilities may

depend on subject- and time-point-specific covariates zit but,

in the following, we will omit an index z for simplicity. The

initial state probabilities in Equation (1) define the probabilities

to start in state k at time-point t ¼ 1 and are collected in a

K � 1 probability vector π with elements pk ¼ pðsi1k ¼ 1jzi1Þ
and

PK
k¼1pk ¼ 1. In LG, the initial state probabilities are mod-

eled via a logit model as this prevents parameter range restrictions

and the covariates also enter through this parameterization as:

log
pðsi1k ¼ 1jzi1Þ
pðsi11 ¼ 1jzi1Þ

¼ b0k þ β
0

kzit¼1 ð2Þ

for k ¼ 2; . . . ;K and with k ¼ 1 as the reference category.

Here, the initial state intercepts are denoted by b0k and the

initial state slopes that quantify the effect of the covariates

on the initial state memberships are captured by the vectors

βk ¼ ðbk;Zi11
; . . . ; bk;Zi1U

Þ0.
Transition probabilities are the probabilities to be in state k

at time-point t�1 conditional on state l ðl ¼ 1; . . . ;KÞ at

t � 1. In a discrete-time (DT-)LMM, intervals between mea-

surements, dti, are assumed to be equal. A continuous-time

(CT-)LMM (Böckenholt, 2005; Jackson & Sharples, 2002;

Vogelsmeier, Vermunt, Böing-Messing, & De Roover, 2019)

allows the intervals to differ across time-points and subjects,

which is often more realistic in ESM studies and therefore

applied throughout the rest of this paper. The transition prob-

abilities pdti;lk ¼ pdti
ðsitk ¼ 1jsit�1;l ¼ 1; zitÞ are collected in the

K � K matrix Pdti
, where the row sums of Pdti

,
PK

k¼1pdti;lk ; are

equal to 1. In a DT-LMM, a multinomial logistic model is used for

the transition probabilities:

log
pðsitk ¼ 1jsit�1;l ¼ 1; zitÞ
pðsitl ¼ 1jsit�1;l ¼ 1; zitÞ

¼ g0lk þ γ 0lkzit ð3Þ

with k 6¼ l, g0lk as transition intercepts, and

γ 0lk ¼ ðglk;Zi11
; . . . ; glk;Zi1U

Þ0 as slopes that quantify the covariate

effects on transitioning to another state compared to staying in

a state. In Figure 1b, we show how to read a transition prob-

ability matrix. The diagonal elements indicate that the prob-

ability of staying in state 1 is higher than of staying in state 2. If

state 1 is the manic and state 2 the depressive state, we would

conclude that the manic state is more persistent for this person.

In the CT-LMM, the transition probabilities themselves are a

function of the interval dti and the “transition intensity matrix” Q.

The K � K matrix Q contains the transition intensities (or rates)
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qlk that define the transitions from the origin state l to the destina-

tion state k per very small time unit. For all off-diagonal elements

in the matrix Q (i.e., k 6¼ l) the intensities are:

qlk ¼ lim
d!0

pðsitk ¼ 1jsit�d;l ¼ 1; zitÞ
d

: ð4Þ

The diagonal elements are equal to �
P

k 6¼l qlk (Cox & Miller,

1965). The transition probabilities Pdti
are obtained by taking

the matrix exponential of Q� dti. This implies that the prob-

ability to transition to another state at two consecutive mea-

surement occasions (i.e., k 6¼ l) becomes increasingly more

likely for larger intervals. As can be seen from Equation (4),

one may also regress the transition intensities on covariates zit

to better understand what may cause the transitions to or away

from a state. In the CT-LMM, LG uses a log-linear model for

the transition intensities and the covariates are included as

follows (again for k 6¼ l):

log qlk ¼ g0lk þ γ 0lkzit: ð5Þ

Hence, covariates to predict any of the parameters (i.e., initial

state and transition probabilities or intensities) are included by

means of regression, as is usually done in LMMs (e.g., Bartolucci

et al., 2014; Vermunt et al., 1999; Visser et al., 2009).

Instead of using only observed covariates in any of the

parameters, one may also use a time-constant or time-varying

latent categorical variable that classifies subjects according to

their transition pattern or initial state probabilities into latent

classes (Crayen et al., 2017; Vermunt et al., 2008). This

“mixture (CT-)LMM” captures the most relevant between-

subject differences in the transition process. The number of

latent classes can be based on theory and interpretability or

selected using information criteria such as the Bayesian infor-

mation criterion (BIC, Schwarz, 1978) or the convex hull

(CHull; Ceulemans & Kiers, 2006) method. An example is

shown in the application (Application section).

Finally, the response probabilities pðyitjsitk ¼ 1Þ indicate the

probability for a certain response pattern at time-point t, given

the state membership at that time-point, sitk ¼ 1. These

response probabilities depend on the state-specific MMs

described next.

Measurement model. The MMs determine how the responses yitj

are defined by the state memberships sitk ¼ 1. To this end, a

latent variable model with state-specific parameters is used in

both LMFA and LMLTA. For both methods, it holds that: (1)

the responses yitj are indicators of underlying latent factors f it,

= (0,1)= (1,0) = (1,0) = (0,1) = (1,0)= (1,0)

=
= 0.97 = 0.03

= 0.22 = 0.78

=

(1,0)′

=

(0,1)′

= 0.03

= 0.22

= 0.97 = 0.78

(a)

(b)

Figure 1. Part (a) is a graphical illustration of a latent Markov chain from the latent Markov latent trait analysis model. The binary vectors
st ¼ ðst1 ¼ 1; st2 ¼ 0Þ

0
¼ ð1; 0Þ0 indicate the state memberships at different time-points t, implying that the subject is in state k ¼ 1 at time-

points 1–29 and 55–56 and in state k ¼ 2 at time-points 30–54, implying transitions from state 1 to state 2 at time-point 30 and from state 2 to
state 1 at time-point 55. Note that the responses yit are determined by state-specific latent trait measurement models. Furthermore, the
covariates zit may influence the state memberships sit . Part (b) shows a possible transition probability matrix P for the two states and its
corresponding transition diagram that shows how to read the matrix. The diagonal elements correspond to the probabilities to stay in a state
and the off-diagonal elements correspond to the transitions away from a state.
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(2) the factors are considered to be normally distributed con-

tinuous variables, (3) the responses yijt are independent given

the latent factors, and (4) covariates are only indirectly related

to the observed responses via the latent states. As explained

before, LMFA and LMLTA differ in the type of latent variable

model that is used. In LMFA, the continuous responses yijt are

defined by state-specific linear FA models with parameters that

may differ across the latent states. For a single item j this is

given by (e.g., McLachlan & Peel, 2000):

Eðyijtjf it; sitk ¼ 1Þ ¼
XRk

r¼1

ljrk frit þ njk ; ð6Þ

where Rk is the state-specific number of factors, r ¼ 1; . . . ;Rk

indicates a state-specific factor, ljrk is a state-specific loading

of item j on factor r, f it ¼ ðf1it; . . . ; fRitÞ0 are subject- and time-

point-specific factor scores with f it*MVNð0;ΦkÞ (note that

possible restrictions of Φk will be discussed further below),

and njk indicates a state-specific intercept for item j.

In LMLTA, the ordinal responses yijt are defined by state-

specific LT models. It is important to note that there are several

LT models that could be used to model Likert-type data (Andrich,

1978; Muraki, 1992; Samejima, 1969). The GPCM (Muraki,

1992) is a relatively flexible and unrestrictive model (Tijmstra

et al., 2018) and is therefore considered in this study. More spe-

cifically, we use the multidimensional version of the GPCM (e.g.,

Johnson & Bolt, 2010) and, in order to allow for parameter dif-

ferences across states, we employ a mixture variant (for previous

work on mixture LT models see, e.g., Bolt et al., 2001; Cohen &

Bolt, 2005; Rost, 1990; Smit et al., 2000). In contrast to the state-

specific FA models in LMFA, the state-specific GPCMs used in

LMLTA do not consist of a set of linear models but of a set of

adjacent-category (i.e., ðg; g þ 1Þ) ordinal logit models : More

specifically, using as much as possible the same notation as

before, the logarithm of the odds of responding in category

g þ 1 instead of responding in category g for item j, given the

factor scores f it and the state membership sitk ¼ 1 for subject i at

time-point t, has the following linear form:

log
pðyijtgþ1 ¼ 1jf it; sitk ¼ 1Þ
pðyijyg ¼ 1jf it; sitk ¼ 1Þ

� �
¼
XRk

r¼1

ljrk frit þ n�jgk ; ð7Þ

for 1 � g � G � 1, with yijt ¼ g indicating that this response to

item j is in category g. Again, ljrk is the state-specific loading

of item j on factor r. The n�jgk are the G � 1 intercepts for each

of the adjacent-category log-odds. The logistic model for the

probability of response g equals:

pðyijt ¼ gjf it; sitk ¼ 1Þ ¼
exp

XRk

r¼1
g� ljrk fritþ njgk

� �
XG

g0¼1
exp

XRk

r¼1
g0 � ljrk frit þ njg0k

� � :
ð8Þ

As shown, the loadings are multiplied with the category num-

ber and the intercepts are now njgk , with
PG

g¼1njgk ¼ 0. The

relation between the two sets of intercepts is that

n�jgk ¼ njgþ1;k � njgk .

When comparing Equation (6) and Equation (7), the loading

parameters for the FA model and the GPCM are clearly con-

ceptually similar. In both cases, they indicate how strongly an

item j measures a latent factor frit in state k (Kankaraš et al.,

2011). In contrast, the intercepts are not directly comparable

across the two models. In the FA model, there is only one

intercept per item and state, njk , because the responses are

treated continuous. For the ordinal responses in the GPCM,

there are G � 1 free intercept parameters per state, n�jgk .

As in LMFA, the state-specific joint response probabilities

for LMLTA at time point t are obtained by marginalizing over

the latent factors. Moreover, the J item responses are assumed

to be conditionally independent given the latent factors and the

state membership. Therefore, the response probabilities are

(e.g., Johnson & Bolt, 2010):

pðyitjsitk ¼ 1Þ

¼
Z

. . .

Z
pðf it; 0;ΦkÞ

YJ

j¼1

pðyijt ¼ gjf it; sitk ¼ 1Þdf it

ð9Þ

with pðyitj ¼ gjf it; sitk ¼ 1Þ as in Equation (8) and pðf it; 0;ΦkÞ
denoting the probability density function of the multivariate

normal distribution with a mean vector of zero’s and covar-

iance matrices Φk .

To enable the exploration of all kinds of MM changes, includ-

ing the number and nature of the factors, an exploratory model is

used in both methods. In contrast to a confirmatory model—in

which certain factor loadings are assumed to be absent and

therefore, set to zero—an exploratory model estimates all load-

ings.1 However, both models are unidentified without further

constraints. To partially identify the models and set a scale to

the Rk factors, one may restrict the factor means to zero and the

factor (co)variances Φk to equal an identity matrix, which

implies normalized and uncorrelated factors. Alternatively, it

is possible to freely estimate the covariance matrix of the factors

and instead fix one loading for each of the Rk factors to 1 and one

extra loading per estimated correlation to 0 (e.g., for a state with

Rk ¼ 2, two loadings would be fixed to 1 and one loading would

be fixed to 0). Remaining rotational freedom in the FA model

can be dealt with by means of rotation criteria that optimize the

simple structure and/or between-state-agreement of the factor

loadings (Clarkson & Jennrich, 1988; De Roover & Vermunt,

2019; Kiers, 1997). The identification of the GPCM is more

intricate: Despite the model being identified by the constraints

imposed so far, one might obtain strongly related parameter

estimates and large standard errors. In order to prevent this

so-called “empirical underidentification,” Rk � 1 (additional)

loadings of different items have to be fixed to 0 in each state

(Skrondal & Rabe-Hesketh, 2011).2

As becomes apparent from Equation (6) and Equation (7), in

either model, the state-specific MMs can differ in terms of the

number of factors, the loadings, the intercepts, and the factor

covariance matrices. However, there is an important difference

between the two methods. In LMFA, states may also differ
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regarding unique variances, say ckj, which is variance that is

not accounted for by the latent factors. This is possible because

the error term in a FA model is assumed to be normally dis-

tributed, that is, eijt*Nð0;ckjÞ. In contrast, in the GPCM, the

variance of the error is not a free parameter but fixed to the

value of the variance of the standard logistic distribution, p2=3;
and hence, in LMLTA, also equal across states. Note that, in

the GPCM, fixing the error variance is necessary to identify the

model (Long, 1997).3 Although it might be possible to account

for error variance heterogeneity by tailoring “scale adjustment”

methods (Magidson & Vermunt, 2007) to LMLTA, this is

beyond the scope of this article.

Besides this difference, MI analyses with FA and LT models

are similar as their primary concern is to detect parameter

differences. However, different words may be used to describe

(non-) invariance. When using a LT model, researchers typi-

cally specify the lack of invariance, which is called

“differential item functioning” (DIF). More specifically,

“uniform DIF” is present when only intercepts differ, in our

case across latent states, and “non-uniform DIF” is present

when loadings differ across states, whether intercepts are equal

or not (Bauer, 2017). In contrast, when using a FA model,

researchers typically specify which level of invariance has been

reached, starting from an invariant number of factors and pat-

tern of zero loadings, followed by invariant loadings, inter-

cepts, and finally unique variances (Meredith, 1993). In the

next paragraph, we will describe how to obtain the estimates

that are used to investigate the level of invariance in LMLTA.

Maximum likelihood estimation. The parameters in LMLTA are

obtained with maximum likelihood (ML) estimation. One may

choose between (1) the one-step FIML estimation and (2) the 3S

estimation, just as is the case for LMFA. However, estimating

the LMLTA model with either approach is computationally

more complex than estimating the LMFA model. Therefore,

LMLTA is limited regarding the number of factors that can be

estimated (i.e., including more than three factors is usually

unfeasible; see Appendix B for detailed explanations). First, for

the FIML estimation (Vogelsmeier, Vermunt, van Roekel, & De

Roover, 2019), the following loglikelihood function, derived

from the joint distribution in Equation (1), has to be maximized:

log LFIML ¼
XI

i¼1

log
�X

si1

. . .
X
siT

pðYi; SijZiÞ
�
: ð10Þ

In LG, the ML estimates are obtained with the forward-

backward algorithm (Baum et al., 1970), which is an efficient

version of the Expectation Maximization algorithm (Dempster

et al., 1977), tailored to LMMs. Additionally, in the Maximiza-

tion step, a Fisher algorithm is used to update the log-intensities

and a combination of the Expectation Maximization and the

Newton-Raphson algorithm (De Roover et al., 2017) is used to

update the state-specific MM parameters.

Second, the 3S estimation (Vogelsmeier, Vermunt, Bülow, &

De Roover, 2019) builds upon Vermunt’s (2010) ML method and

decomposes the estimation into three steps. First, in step 1, the

state-specific MMs are obtained with a mixture GPCM while

treating repeated measures yit as independent. This entails that

the relations between the latent states sit at consecutive measure-

ment occasions (i.e., the transitions) and the relations between the

state memberships and covariates zit are disregarded. This is valid

because observations at one time-point are only indirectly related

to covariates and to observations at other time-points, that is, via

the latent states. This can also be seen from the graphical repre-

sentation in Figure 1a.4 The mixture GPCM is estimated with a

combination of the Expectation Maximization and Newton-

Raphson algorithms. Then, in step 2, observations are assigned

to the state-specific MMs based on the most likely state member-

ship and the corresponding classification error is calculated.

Finally, in step 3, the CT-LMM with covariates is estimated using

the state assignments from the previous step as indicators (thus

fixing the MMs) while correcting for classification error inherent

to the state assignments from step 2. At this point, one may also

include a latent class variable to capture differences in transition

patterns. The (mixture) CT-LMM model is estimated with a com-

bination of the forward-backward and Newton-Raphson algo-

rithms. Summarized, the steps are:

1. Estimating state-specific MMs (disregarding the depen-

dence of the observations).

2. Assigning observations to the states (depending on the

most likely state membership).

3. Estimating the (mixture) CT-LMM with fixed MMs

(correcting for step 2’s classification error).

The 3S estimation is almost as good as the FIML estimation

in terms of parameter estimation. Only the state recovery is

slightly worse and the standard errors can be slightly overesti-

mated (Vogelsmeier, Vermunt, Bülow, & De Roover, 2019).5

Apart from that, the 3S approach comes with several advan-

tages. First, step-wise procedures are more intuitive for

researchers who use complex methods such as LMLTA or

LMFA to analyze their data because it is in line with how they

prefer to conduct their analyses (Vermunt, 2010). That is, they

see the investigation of the different MMs underlying their data

as a first step and the investigation of subject’s transitions

between the MMs over time as well as the exploration of pos-

sible covariate effects as a next step.

Second, LMLTA (like LMFA) is an exploratory method,

which entails that the best number of states k and factors per

states Rk has to be determined. To this end, a large number of

(plausible) models has to be estimated and compared by means

of loglikelihood-based criteria that consider fit and parsimony.

The evaluation of model selection criteria in LMLTA is beyond

the scope of this article but, based on previous findings for

related methods (Bulteel et al., 2013; Vogelsmeier, Vermunt,

van Roekel, & De Roover, 2019), we suggest to use the BIC in

combination with the CHull and compare the three best models

in terms of interpretability. Note that CHull balances fit and

parsimony without making distributional assumptions and, thus,

may perform better for some empirical datasets. In the FIML

estimation, the number of models to be compared grows fast. For

66 Evaluation & the Health Professions 44(1)



example, there are nine models when comparing models with

one to three states and one to two factors per state. When adding

different (sets of) covariates to the CT-LMM, the nine models

have to be re-estimated for every set of covariates (e.g.,

9� 5 ¼ 45 models for five different sets).6 This problem is

circumvented in the 3S estimation because the MMs and the

CT-LMM are estimated separately. This implies that the model

selection can be conducted in the first step, without being con-

cerned about the covariates. Covariates (and latent classes) for

the transition probabilities are added when estimating the CT-

LMM.7 As a result, there would only be 9þ 5 ¼ 14 models for

five sets of covariates. Note that LG provides Wald tests

(Agresti, 1990) that can be used to evaluate whether the covari-

ates are significantly related to the transition or initial state para-

meters and to determine which MM parameters differ between

the states. For the latter, one may also use visual inspection.

Third, the FIML estimation takes several hours for each model

while the 3S estimation is usually done in less than 30 minutes.

This makes the FIML estimation less desirable, or even unfeasi-

ble, when researchers want to explore several covariate effects on

MM changes. For all these reasons, we employ the 3S estimation

in this study (for details, see Online Supplement S.1).

Application

Data

The data stem from a larger “Grumpy or Depressed?” study,

which aimed to assess whether daily mood profiles (i.e.,

variability in affect) would predict the risk for depression in

adolescents in the long run as recent work has indicated that the

short-term dynamics could be linked to long-term psycho-

pathology (e.g., Maciejewski et al., 2019; for a description of

the study, see, e.g., de Haan-Rietdijk et al., 2017; Janssen et al.,

2020; van Roekel et al., 2019). Briefly, during three 7-day

measurement bursts or “waves” (with approximately 3-month

intervals in between), 250 Dutch adolescents (12 to 16 years

old) completed up to eight questionnaires per day at random

moments (median interval: 2.25 hours).8 Out of the 250 ado-

lescents, 164 participated in all three waves, 38 in two of the

waves and 48 in one of the waves. In total, the adolescents

completed 14,432 questionnaires.

Measures

For each assessment, adolescents indicated the degree to which

12 affect items applied to them (see Table 1) using 7-point

Likert items (ranging from 1 ¼ “not feeling the emotion” to

7 ¼ “definitely feeling the emotion”). The items covered both

PA and NA. The NA items were especially heavily right-

skewed. Thus, LMLTA is particularly suited to investigate

MM changes. The adolescents also indicated their current

social interactions, resulting in the three “social context” cov-

ariates “being with friends” (“fri”), “being at school/with

classmates” (“cm”), and “being with family” (“fam”), with

0 ¼ “no” and 1 ¼ “yes.” At the beginning of every ESM wave

(i.e., three times), the adolescents completed the Dutch version

of the Children’s Depression Inventory (CDI-I; Kovacs, 1992;

Table 1. Differences in Factor Loadings, Factor (Co-)Variances, Factor Correlations, and Item Means Across the two States.

State 1 Loadings �jr1 State 2 Loadings �jr2 Between-State Loading Difference Statistics Item Means

r ¼ 1 r ¼ 2 r ¼ 1 r ¼ 2 r ¼ 1 r ¼ 2 State 1 State 2

Item j PA NA HA-PA LA-PA/NA Wald df p-value Wald df p-value

relaxed 0.63 0.03 0.17 �0.71 5.34 1 0.02 7.22 1 � 0.01 5.72 6.89
content 0.96 0.00 0.32 �1.09 6.65 1 � 0.01 7.31 1 � 0.01 5.76 6.92
confident 0.46 0.02 0.21 �0.48 1.53 1 0.22 6.93 1 � 0.01 5.66 6.85
happy 1.00 0.00 1.00 0.00 / / / / / / 5.62 6.81
energetic 0.51 0.00 1.18 0.30 6.67 1 � 0.01 3.21 1 0.07 5.21 6.41
excited 0.69 0.00 1.23 0.17 6.27 1 0.01 1.35 1 0.25 5.27 6.60
sad 0.04 0.74 0.05 0.88 0.18 1 0.67 1.44 1 0.23 1.09 1.03
unhappy 0.00 1.00 0.00 1.00 / / / / / / 1.06 1.02
disappointed 0.08 1.06 0.14 1.18 0.34 1 0.56 0.30 1 0.58 1.07 1.04
angry 0.14 0.99 0.14 1.08 0.00 1 1.00 0.11 1 0.74 1.04 1.02
nervous �0.01 0.41 0.10 0.52 1.70 1 0.19 0.33 1 0.57 1.24 1.09
irritated 0.00 0.48 0.05 0.48 0.53 1 0.47 0.00 1 1.00 1.24 1.16

Variances (chol) 3.69 3.53 2.18 0.96 14.02 1 � 0.01 23.94 1 � 0.01 / /

Cov. (chol) with q ¼ 1 / �2.32 / �1.50 / / / 2.38 1 0.12 / /

Cor. with q ¼ 1 / �0.55 / �0.84 / / / / / / / /

Note. PA¼ Positive Affect; NA¼Negative Affect; HA¼High Arousal; LA¼ Low Arousal; Cov.¼ covariances; chol¼Cholesky decomposed; Cor.¼ correlation;
j refers to items, and r to factors. For identification purposes, we set the underlined loadings of the items “happy” on the first factors (r ¼ 1) equal to 1 and on the
second factors (r ¼ 2) equal to 0 and the underlined loadings of the item “unhappy” on the first factors (r ¼ 1) equal to 0 and on the second factors (r ¼ 2) equal
to 1. For each item and state, the loading with the largest absolute value is printed in boldface.
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Timbremont et al., 2008) to screen for (sub)clinical depression

(“dep”). The 27 items refer to symptoms during the last two

weeks scored on three levels representing low severity (0),

medium severity (1), and high severity (2); for instance, “I get

sad from time to time,” “I get sad often,” and “I’m always sad.”

Applying CDI-I cut-off scores (Kovacs, 1992; Timbremont

et al., 2008), adolescents with a total score under 12 were

categorized as “no depression” (89%) and all others as “(sub-

)clinical depression” (11%).

The dataset contains several covariates but, in this study, we

focused on the social context and depression as we found these

variables particularly interesting to relate to possible MM

changes: Emotional experiences may vary depending on the

social context. For instance, adolescents may experience ele-

vated positive mood when being among friends, whereas they

may be somewhat more irritable and unhappy in the company

of their parents, and more demotivated at school (Kendall et al.,

2014; Soenens et al., 2017; van Roekel et al., 2013). For some

adolescents, mood may be context-independent. Firstly, some

adolescents could be in an overall positive mood regardless of

the social context (Dietvorst et al., under review). Secondly,

adolescents with a depression and those at risk for developing a

depression may be rather stable in their emotions in that they

often feel unhappy and irritable in any social context (Dietvorst

et al., under review; Kendall et al., 2014; Silk et al., 2011).

Therefore, for some adolescents, we expect a particular state

membership to be more likely in one social context than in

another, but also that adolescents differ in their state member-

ship stability, for example, based on their depression level.

Description of the Applied Mixture CT-LMLTA Model

We will examine the context-dependency of state memberships

by regressing the transition intensities (as defined in Equation

(5)) on the social context covariates when estimating the CT-

LMM (in step 3 of the estimation). To capture potential

between-adolescent differences in stability, we will include a

latent class variable that automatically classifies the adoles-

cents based on their transition patterns, making the model a

mixture CT-LMM as briefly introduced in the Latent Markov

Latent Trait Analysis section. To see how many different pat-

terns there are, we will compare models with one to three

classes in terms of their fit by means of the BIC and CHull.

Note that adolescents are allowed to transition to another class

at the beginning of each wave—because subjects may change

in their transition patterns over time (possibly related to their

wave-specific depression scores—such that the latent class

variable is, strictly speaking, another state variable modeled

via a DT-LMM (note that a DT model makes sense here as the

intervals between the waves are approximately the same for all

adolescents). To prevent confusion with the MM state, we will

just refer to this latent variable as “class,” with cidv ¼ 1 refer-

ring to being in a particular class v (with v ¼ 1; . . . ;V ) in a

particular wave d (with d ¼ 1; 2; 3). To investigate whether

experiencing depression affects the class membership, the ini-

tial class and transition probabilities of the classes will be

regressed on depression.9 Moreover, we will evaluate the rela-

tion between the social context and the state memberships and

investigate whether these relations depend on the class mem-

bership. For V�1 and with v ¼ 1 as reference category for the

class, the specification of the transition intensities of the states

(for k 6¼ l) is:

logqlk ¼ g0lk þ
XV

v¼2

glk;vcitv þ
XV

v¼1

glk;fam;vðfamit � citvÞ

þ
XV

v¼1

glk;cm;vðcmit � citvÞ þ
XV

v¼1

glk;fri;vðfriit � citvÞ:

ð11Þ

The specification of the initial class (for v ¼ 2; . . . ;V ) and the

transition probabilities for the classes (for v 6¼ b with

b ¼ 1; . . . ;V ) are given by:

log
pðci1v ¼ 1jdepi1Þ
pðci11 ¼ 1jdepi1Þ

¼ b0v þ bv;depdepid and

log
pðcidv ¼ 1jcid�1;b ¼ 1; depidÞ
pðcidb ¼ 1jcid�1;b ¼ 1; depidÞ

¼ g0bv þ gbv;depdepid ; ð12Þ

respectively. Note that this application is meant to illustrate

the empirical value of tracing MM changes with LMLTA.

No hypotheses were pre-registered and all analyses are

exploratory so that interesting findings should be validated in

future research before drawing any conclusions.

Obtaining and Investigating the Results of the Mixture
CT-LMLTA Model

Below, we follow the three consecutive steps of the 3S estima-

tion described in Latent Markov Latent Trait Analysis section.

Step 1 & 2: Estimating state-specific MMs & assigning observations
to the states

Model selection. To select the best fitting model, we con-

ducted the mixture GPCM analysis for models with one to

three states and one to two factors per state (i.e., nine mod-

els10). Considering one to two factors not only preserves com-

putational feasibility but also makes sense for affect

questionnaires as PA and NA are often found as primary

affect dimensions that may collapse into one bipolar factor

if the emotions are strongly negatively related (Dejonckheere

et al., 2018; Vogelsmeier, Vermunt, Bülow, & De Roover,

2019). We selected the model with two states and two factors

in each state because it was the best according to the BIC and

among the two best models according to the CHull (for model

selection details, see the Online Supplement S.2; for the syn-

tax of the selected model, see Online Supplement S.4). Forty-

two percentage of the observations belonged to MM 1 and

58% to MM 2.

Results and interpretation. To examine the between-state MM

differences, we first looked at the state-specific loadings in
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Table 1. Note that we modeled the covariance matrices in both

states. To set the factor scales, we set the loadings of the items

“happy” on factor 1 and “unhappy” on factor 2 equal to 1 in

both states. To eliminate rotational freedom, we set the remain-

ing loadings of the same items equal to zero. This has led to a

well-interpretable simple structure. State 1 is characterized by

separate PA and NA factors that correlated negatively

(r ¼ �:55) among observations in the same state. This means

that adolescents distinguish somewhat between PA and NA,

but that adolescents who score high on PA tend to score low

on NA and vice versa. In contrast, in state 2, the three low

arousal PA (LA-PA) emotions collapse with the NA emotions

into one bipolar factor whereas the three high arousal PA (HA-

PA) emotions make out the second factor. However, the factors

have an even larger negative correlation than in state 1

(r ¼ �:84). This implies that adolescents in state 2 distinguish

more between LA-PA and HA-PA than they do between

(LA-)PA and NA. Note that strong negative correlations

between PA and NA are common in assessments that take place

within small time-periods and in questionnaires that contain

Table 2. Parameter Estimates for the Mixture CT-LMM in Step 3 of LMLTA.

Parameter Estimate SE z-value p-value Wald df p-value

DT-LMM for Classes

Initial Class
b0v¼2 0.19 0.22 0.90 0.37 12.12 2 � 0.01
b0v¼3 0.60 0.19 3.22 � 0.01

Transition
Intercepts

g0b¼1;v¼2 �2.02 0.54 �3.75 � 0.01 103.6 6 � 0.01
g0b¼1;v¼3 �1.18 0.33 �3.62 � 0.01
g0b¼2;v¼1 �1.62 0.49 �3.34 � 0.01
g0b¼2;v¼3 �0.70 0.30 �2.35 0.02
g0b¼3;v¼1 �2.61 0.43 -6.04 � 0.01
g0b¼3;v¼2 �2.86 0.47 �6.06 � 0.01

CT-LMM for States

Initial State b0k¼2 0.02 0.13 0.17 0.86 0.03 1 0.86

Transition g0l¼1;k¼2 �0.55 0.20 �2.69 � 0.01 23.19 2 � 0.01
Intercepts g0l¼2;k¼1 �0.08 0.20 �0.40 0.69

Effect of Class

gl¼1;k¼2;v¼2 0.0 0.25 �0.01 0.99 588.60 4 � 0.01
gl¼1;k¼2;v¼3 �7.21 0.38 �19.16 � 0.01
gl¼2;k¼1;v¼2 �1.71 0.27 �6.32 � 0.01
gl¼2;k¼1;v¼3 �8.74 0.60 �14.55 � 0.01

Effect of
Family � Class

gl¼1;k¼2;fam;v¼1 �0.48 0.22 �2.17 0.03 40.49 6 � 0.01
gl¼1;k¼2;fam;v¼2 �0.10 0.20 �0.51 0.61
gl¼1;k¼2;fam;v¼3 �1.11 0.55 �2.02 0.04
gl¼2;k¼1;fam;v¼1 �0.63 0.22 �2.81 � 0.01
gl¼2;k¼1;fam;v¼2 �1.12 0.26 �4.22 � 0.01
gl¼2;k¼1;fam;v¼3 �2.27 1.47 �1.54 0.12

Effect of
Classmates � Class

gl¼1;k¼2;cm;v¼1 �2.62 0.39 �6.77 � 0.01 113.30 6 � 0.01
gl¼1;k¼2;cm;v¼2 �0.75 0.25 �3.04 � 0.01
gl¼1;k¼2;cm;v¼3 �2.70 1.87 �1.45 0.15
gl¼2;k¼1;cm;v¼1 �1.30 0.26 �4.94 � 0.01
gl¼2;k¼1;cm;v¼2 0.51 0.25 2.07 0.04
gl¼2;k¼1;cm;v¼3 �0.96 0.84 �1.14 0.25

Effect of
Friends

gl¼1;k¼2;fri �0.63 0.16 �3.92 � 0.01 16.96 2 � 0.01
gl¼1;k¼2;fri �0.39 0.17 �2.36 0.02

Note. DT ¼ discrete-time, CT ¼ continuous-time, LMM ¼ Latent Markov Model, Family (fam) refers to being with family, Classmates (cm) refers to being at
school/with classmates, Friends (fri) refers to being with friends, v refers to a class in wave d, b refers to a class in wave d� 1, k refers to a state at time-point t, and l
refers to a state at time-point t � 1. The overall Wald test for the differences in parameters between the classes for Family � Class was Wald (4) ¼ 18:29,
p � 0:01. For Classmates � Class the Wald test was Wald (4) ¼ 27:86, p � 0:01. The covariate effects on the state transitions can be understood as follows:
negative estimates imply that the log intensities and therefore also the transition probabilities decrease (e.g., the estimate ĝ l¼2;k¼1;fam;v¼2 ¼ �1:12 means that the
probability of transitioning from state l ¼ 2 to state k ¼ 1 for a subject in class v ¼ 2 is lower when the subject is with family compared to when the subject is not
with family). The estimates can also be used to calculate the transition probabilities for any class, covariate value and time-interval of interest. An example showing
how to calculate the parameters in R is provided in Online Supplement S.6.
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items with semantic antonyms such as “happy” and “unhappy”

or “sad” (Dejonckheere et al., 2018).11

Next, we investigated the between-state differences in the

mean item scores. These scores are directly related to the state-

and category-specific intercepts (which are given in Supple-

ment 3 Table 2), but the item means are easier to interpret.

They are calculated as
PG

g¼1g � pðyitj ¼ gjf it ¼ 0; sitk ¼ 1Þ
and thus a function of the logistic model for the probability

of giving a response g as defined in Equation (8) with the factor

scores f it set equal to 0 ¼ ð0; 0Þ0. As can be seen from Table 1,

the means of the PA items are higher than the means of the NA

items in both states. However, the PA means are lower in state

1 than in state 2. Thus, adolescents who distinguish more

between LA-PA and HA-PA report a slightly better mood.

Step 3: Estimating the mixture CT-LMM with fixed MMs. Since

each adolescent may have a different MM at different measure-

ment occasions, we examined adolescents’ transitions from one

state to another. Additionally, as motivated above, we investi-

gated (1) whether adolescents differed in their state- (and thus

MM-) memberships by classifying the adolescents based on

their transition patterns (i.e., transitions between states from

one measurement occasion to the next) into latent classes that

could differ across the three waves, (2) whether the wave-

specific covariate depression had an influence on this class

membership, and (3) whether the time-varying social context

covariates (family, classmates, and friends) affected the transi-

tions between the states and whether these effects differed

across classes. To this end, we estimated the mixture CT-

LMM with the state assignments from step 2 of our analysis

as indicators, while accounting for the inherent classification

errors. Note that the correction was hardly necessary as the

classification errors were very small due to a high state separa-

tion (with R2
entropy ¼ :86),12 which means that most observa-

tions were assigned to a state with a high certainty in step 2

of the analysis.

Model selection. We first estimated the “full” model as sum-

marized in Equation (11) and (12) for one to three classes (i.e.,

with all possible covariates as just described). In the two- and

three-class solutions, the effects of depression on the initial

class (bv;dep) and on the transition probabilities for the classes

(grv;dep) were non-significant. Hence, the class membership was

unaffected by the level of depression. Furthermore, the effects

of being with family (glk;fam;v) and classmates (glk;cm;v) on the

transitions between the states significantly differed across

classes, whereas the effect of being with friends (glk;fri;v) did

not significantly differ across classes. However, being with

friends in itself had a significant effect on the transitions

between the states (i.e., there was an effect but it did not differ

across classes). Therefore, we re-estimated the two- and three-

class models while omitting depression and the conditional

effect of being with friends but including a class-independent

effect of being with friends (i.e., glk;fri). Comparing all full and

“reduced” models, the reduced three-class model had the best

fit according to the BIC and was among the best three models

according to the CHull (for model selection details, see Online

Supplement S.5; for the syntax of the full and reduced three-

class models, see Online Supplement S.4).13

Results and interpretation. Table 2 shows the parameters of

the final model. First, we looked at the three classes that cap-

tured differences in adolescents’ between-state transitions. To

this end, we computed the probabilities for the median interval

(2.25 h) and mean covariate values: 14

Pv¼1
states ¼

0:86 0:14

0:44 0:56

� �
; Pv¼2

states ¼
0:58 0:42

0:15 0:85

� �
;

Pv¼3
states ¼

1 0

0 1

� �
:

ð12Þ

Class 1 and 2 each include 25% of the adolescents, whereas

50% were assigned to class 3. As can be seen from the rela-

tively large values in column 1 of Pv¼1
states, adolescents in class 1

had a higher probability to transition to and stay in state 1 (i.e.,

PA vs. NA), whereas adolescents in class 2 had a higher prob-

ability to transition to and stay in state 2 (HA-PA vs. LA-PA/

NA), which can be seen from the relatively large values in

column 2 of Pv¼2
states. Thus, 25% of the adolescents are mostly

in state 1 and 25% are mostly in state 2. In class 3, transitions to

another class were highly unlikely since the (rounded) off-

diagonal elements are equal to zero in Pv¼3
states, implying that

adolescents in this class largely showed within-person invar-

iance. Over the three waves with 3-month intervals, more ado-

lescents transitioned to the stable class 3, as can be seen from

the third column of the matrix containing the probabilities to

transition between classes from one wave to another:

Pclasses ¼
0:69 0:09 0:21

0:12 0:59 0:29

0:06 0:05 0:88

0
@

1
A : ð14Þ

Thus, over the three waves, adolescents developed a more sta-

ble assessment of their feelings. Perhaps their repeated answers

to the questionnaire helped them to develop emotional

awareness.

Considering the most prominent results (i.e., p�0:01) of the

social context covariates, we can see that the two class-

dependent covariates (being with family and with classmates)

had no effect in the stable class 3. In class 1 and 2, being with

family decreased the probability of moving to state 1

(ĝl¼2;k¼1;fam;v¼1 ¼ �0:63; ĝl¼2;k¼1;fam;v¼2 ¼ �1:12). This

implies that the probability to be in state 2 increased. Thus,

when being with family (compared to not being with family),

adolescents distinguish more between LA-PA and HA-PA and

less between (LA-)PA and NA. One can imagine that HA-PA

and LA-PA can emerge as separate factors. For example, while

watching Netflix with the family, adolescents might feel

“content” or “relaxed” but not “excited.”

For adolescents in class 1, being with classmates decreased

both the probability of moving to state 2 and moving to state 1

(ĝl¼1;k¼2;cm;v¼1 ¼ �2:62; ĝl¼2;k¼1;cm;v¼1 ¼ �1:30), such that

state memberships became more stable. It is plausible that
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schools provide a relatively structured and therefore stable

environment, which affects adolescents’ emotional well-

being less strongly than the more volatile experiences of being

with family and friends.

In all three classes, being with friends (compared to not

being with friends) decreased the probability of moving to state

2 (ĝl¼1;k¼2;fri ¼ �0:63).15 The same was found for adolescents

being with classmates in class 2 (ĝl¼1;k¼2;cm;v¼2 ¼ �0:75). This

implies that, for them, the probability to be in state 1 increased

and thus, that adolescents tended to distinguish more between

PA and NA. One possible explanation is that social support of

friends is very important for adolescents (Bokhorst et al.,

2010), so that adolescents who are “unhappy,” for instance,

because they failed a test, may still feel “content” when they

are among their friends (and possibly classmates). Although

one would expect to find an elevated mood when adolescents

are with their friends (Kendall et al., 2014; van Roekel et al.,

2013), the PA in this state is slightly lower than in state 2,

perhaps because adolescents visit their friends more often when

feeling bad and/or are more likely to discuss negative emotions

with friends than with, for instance, family.

Summary of the LMLTA findings. We conclude that two MMs

were underlying adolescents’ responses: in state 1 (42% of all

observations), adolescents distinguished mainly between PA and

NA and had a slightly worse mood than in state 2 (58% of all

observations), where adolescent distinguished more between

LA-PA (e.g., content) and HA-PA (e.g., excited) than they did

between (LA-)PA and NA; (2) three state-transition patterns

were found, implying that adolescents indeed differed in the

stability of their emotional experience: in class 1, adolescents

frequently transitioned between the states with a high probability

to be in state 1; in class 2 they frequently transitioned but were

more likely to be in state 2, and in class 3, they mainly stayed in

one of the two states; (3) depression did not influence the class

membership and thus the transition pattern; (4) for the unstable

classes 1 and 2, being with family increased the probability to be

in state 1; (5) for class 1, being with classmates increased the

probability of staying in either state; (6) for all classes, being

with friends—and for class 2, being with classmates—increased

the probability to be in state 1. Our results show that researchers

can obtain valuable insights from investigating MM changes and

that it is important to consider the possibility that changes in

positive or negative affect (e.g., evaluated by means of investi-

gating changes in sum scores) could come from variability in the

underlying MMs. Therefore, the novel method LMLTA (or

LMFA) can improve the emerging trend of studying emotional

dynamics as predictors of future well-being and psychopathol-

ogy. In the future, it would be interesting to study the MMs and

transition patterns in a larger group of adolescents with (different

levels of) depression and to include other covariates that may

explain differences in transition patterns and state-membership

probabilities. For example, stress can cause a simplified repre-

sentation of emotions (Dejonckheere et al., 2019), which can

lead to very high correlations between emotions.

Discussion

In recent years, the awareness of potential measurement model

(MM) changes in intensive longitudinal data—and the associ-

ated comparability problems—increased among substantive

researchers and they are keen to evaluate such changes with

new methods like latent Markov factor analysis (LMFA)

(Horstmann & Ziegler, 2020). Understanding subject- and

context-dependent MMs in more detail may benefit future stud-

ies on daily life dynamics and also have clinical implications,

for instance, when MMs can be related to the onset of psycho-

pathology. However, up to now, only researchers whose data

contained (approximately) normally distributed continuous

items could benefit from LMFA, whereas intensive longitudi-

nal data often contain ordinal item responses with few cate-

gories or skewed distributions. In this article, we combined the

strength of LMFA to evaluate MM changes over time with the

strength of latent trait (LT) models accommodate ordinal data

in the new latent Markov latent trait analysis (LMLTA).

We showed that LMFA and LMLTA are similar as they both

capture discrete changes or differences in subjects’ underlying

MM and thus in how latent constructs are measured by observed

item responses. The difference lies in the type of latent variable

model that is used to specify the relations between the latent

constructs and observed variables, which directly follows from

the assumed distribution of the observed item responses.

Whereas the factor analysis (FA) model in LMFA assumes nor-

mally distributed continuous item responses, the generalized

partial credit model (GPCM) in LMLTA assumes ordinal

responses. The GPCM differs from the FA model in that (1) it

has one intercept per item category and not one per item, (2)

error variances cannot be freely estimated as they need to be

fixed for identification, (3) rotation is only possible by means of

setting identifying constraints, and (4) the number of constructs

that can be included in the model is limited due to the compu-

tationally more complex estimation. This implies that, in

LMLTA, more parameters have to be estimated, error variances

are assumed to be identical across states, and the model speci-

fication is less flexible than in LMFA. For these reasons, we

believe that LMFA should be the preferred method if the items

are approximately normal and are measured with at least five

categories (Dolan, 1994). The robustness of LMFA against vio-

lations of normality has never been evaluated, however. In the

future, it would therefore be important to formulate more con-

crete guidelines on the basis of a simulation study that is tailored

to intensive longitudinal data and that provides information on

the robustness of LMFA, for instance, in terms of sample size

and number of measurement occasions, degree of skewness, and

number of item response categories. In the meantime, research-

ers should be cautious and, in case of doubt, opt for LMLTA and

compare its results to those of LMFA.

By investigating differences in discrete MM changes over

time in relation to covariates, LMLTA is a valuable step toward

validly studying psychological dynamics. Additionally, as

briefly described in the introduction, the results of LMLTA

may also help researchers decide on subsequent analyses.
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When invariance is clearly untenable, further evaluating

dynamics with an approach that builds upon the invariance

framework is simply not appropriate. However, observations

for which invariance holds can be used to study dynamics in

latent processes with standard analyses (e.g., growth models,

Muthén, 2002, or dynamic structural equation modeling,

Asparouhov et al., 2017), without results being influenced by

differences in the underlying MMs. Moreover, if partial invar-

iance holds across states, one may also continue with latent

process analyses either by removing items with non-invariant

parameters or by allowing for state- (or subject- and time-

point-) specific parameters. Finally, we would like to highlight

that there is no gold standard yet in how to analyze intensive

longitudinal data and the latent variable framework that

LMLTA is based on is only one possibility. There are various

other reasonable frameworks for analyzing the data (e.g., net-

work psychometrics; Epskamp, 2020; Marsman et al., 2018)

and decisions about the data analysis can considerably impact,

for example, clinical recommendations (Bastiaansen et al.,

2020). Therefore, in the future, it would be desirable to com-

pare perspectives about psychological phenomena from vari-

ous modeling approaches.

Appendix A

List of Abbreviations

Appendix B

The main complication in estimating LMLTA is the lack of a

closed form expression for the Rk-dimensional integral in the

marginal density in Equation (9), pðyitjsitk ¼ 1Þ. This is differ-

ent in LMFA: As the factors and observations are both

normally distributed continuous variables, the marginal density

in Equation (9) can be written as multivariate normal distribu-

tion with means νk and covariance matrices Σk ¼ ΛkΛ
0

k þΨk ,

where Λk is the state-specific J � Rk loading matrix and Ψk

contains the unique variances ckj on the diagonal and zeros on

the off-diagonal. In LMLTA, LG approximates the integral

using Gauss-Hermite quadrature with M quadrature nodes per

factor. For instance, with M ¼ 10 and Rk ¼ 2, there are 102

nodes in total. The integration in Equation (9) is then substi-

tuted by Rk summations (Vermunt & Magidson, 2016):

pðyitjsitk ¼ 1Þ

¼
XM
m¼1

. . .
XM
o¼1

�YJ

j¼1

pðyijt ¼ gjm; . . . ; o; sitk ¼ 1ÞAm � � �Ao

�
:

ðA1Þ

Here, m; o ¼ 1; . . . ;M indicate the nodes, which are the M

roots of the Mth-order Hermite polynomial, and Am indicates

their corresponding weights. The values of the nodes and

weights can be found in Abramowitz and Stegun (1970).16

Note that usually at least 10 nodes per factor are used (Lesaffre

& Spiessens, 2001). As the number of nodes and thus the

computational effort increases exponentially, specifying mod-

els with more than three factors is often unfeasible.
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Notes

1. If desired, however, a confirmatory model may also be used in

both LMFA and LMLTA.

2. Note that these constraints could also be used to solve rotational

freedom in the FA model (Vermunt & Magidson, 2016).

3. Note that this is generally a limitation, also in other LT models,

and it is often ignored. However, it is important to understand that

possible differences in error variances across states will be cap-

tured as loading and intercept differences (Long, 1997). For

instance, when in one state the error variance is two times larger

3S Three-step
BIC Bayesian information criterion
CDI-I Children’s Depression Inventory
CHull Convex hull
CT Continuous-time
DIF Differential item functioning
DT Discrete-time
ESM Experience sampling methodology
FA Factor analysis
FIML Full information maximum likelihood
GPCM Generalized partial credit model
HA High arousal
ILD Intensive longitudinal data
LA Low arousal
LG Latent GOLD
LMC Latent Markov chain
LMFA Latent Markov factor Analysis
LMLTA Latent Markov latent trait analysis
LMM Latent Markov model
LT Latent trait
MI Measurement invariance
ML Maximum likelihood
MM Measurement model
NA Negative affect
PA Positive affect
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than in the other state, the loadings and intercepts in that state will

be
ffiffiffi
2
p

times smaller than in the other state.

4. It is important to note, however, that the standard errors of the

parameters would be underestimated without applying a correc-

tion because observations are nested, and thus dependent, within

subjects. This is only necessary when relying on hypothesis tests

to determine which parameters differ significantly between the

states (the possibility to use such tests will be describe below). By

providing LG with a “primary sampling unit” (PSU) identifier, the

estimation takes into account that observations may come from

the same sampling unit, i.e., the subject (Vermunt & Magidson,

2016).

5. Note that another limitation concerns the possible violation of the

first-order Markov assumption (i.e., that the state-membership at

time-point t is not only influenced by the state-membership at

t � 1 but also, e.g., by the occupied state at t � 2; see Latent

Markov Latent Trait Analysis section). Only the FIML approach

could capture such a dependency. However, with regard to other

violated assumptions (e.g., covariates having direct effects on

indicators), the FIML approach would suffer more from bias than

the 3S approach but discussing the consequences is beyond the

scope of this article (for a description of the problems and solu-

tions, see Vermunt & Magidson, 2020).

6. Note that the number of models grows even faster when also

exploring different numbers of latent classes.

7. The MMs are kept fixed (thus, are not re-estimated) once the

covariates are included to the CT-LMM. Otherwise, the opti-

mal model complexity in terms of factors and states could

change (Di Mari et al., 2016).

8. Note that the researchers studied affect dynamics at multiple time

scales because affect can change within hours, days, and weeks;

Houben et al., 2015). This measurement burst design (Nessel-

roade, 1991) enabled the combination of different time scales (i.

e., daily fluctuations in affect and long-term change in depres-

sion), while minimizing the burden for the participants. Further-

more, random measurement occasions facilitated capturing the

continuously evolving daily dynamics in affect, minimizing

effects of anticipated beeps and structural day routines on the

assessment of affect (van Roekel et al., 2019).

9. Note that some adolescents (17 in wave 1, 26 in wave 2, and 18 in

wave 3) missed out on the CDI-I questionnaire, but did participate

in the ESM study, and therefore had no depression score in a

given wave. For adolescents who had at least one score in any

wave, we imputed their average total score and calculated the

scale scores according to the cut-off values. For the other cases

(i.e., nine in wave 1, one in wave 2, and none in wave 3), LG

automatically uses the average effect for predicting the initial

class and transition probabilities.

10. The nine models are [2 2 2], [2 2 1], [2 1 1], [1 1 1], [2 2], [2 1],

[1 1], [2], and [1]. The notation means, for instance, that model

[2 1 1] has three states with 2, 1, and 1 factors in each state,

respectively.

11. One might wonder if the loading pattern emerged only because of

our chosen identification constraints. Therefore, for the same model,

we also investigated a solution without correlations between the

latent factors, with variances set to 1, and with the loadings of the

item “irritated” set to 0 for the first factor in both states. The results

can be found in the Online Supplement S.3. Again, the solution

shows that the three HA-PA emotions in state 2 stand out from the

other emotions. Thus, we are confident about this finding.

12. The R2
entropy value defines how much the state membership pre-

diction improves when using the observations yit compared to

when the state membership is predicted without them. The values

range from zero, where the prediction is no better than chance, to

one, where the prediction is perfect.

13. Note that we also explored whether using the total depression

scores instead of the dichotomous cut-off scores would change

the results, which was not the case.

14. As previously described, Figure 1 shows how to read a transition

probability matrix. In Online Supplement S.6, we provide R code

for calculating the transition probability matrix from the para-

meter estimates in Table 2 for any class, covariate, and time-

interval of interest.

15. Note that there is only one effect because the relation between

being with friends and the state membership was not conditional

on the classes in the final model.

16. Note that the formula in Equation (A1) assumes that the factor

scores are uncorrelated. When covariances are non-zero,

Cholesky decomposition of the covariance matrices is used to

orthogonalize the factors and obtained parameters in LG are not

covariance matrices but Cholesky decomposed covariance

matrices (Vermunt & Magidson, 2016).
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