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Augmented Winter’s method for forecasting under asynchronous
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The method of Winters (1960) is one of the most well-known forecasting
methodologies in practice. The main reason behind its popularity is that it is
easy to implement and can give quite effective and efficient results for practice
purposes. However, this method is not capable of capturing a pattern being
emerged due to the simultaneous effects of two different asynchronous
calendars, such as Gregorian and Hijri. We adapt this method in a way that it
can deal with such patterns, and study its performance using a real dataset
collected from a brewery factory in Turkey. With the same data set, we also
provide a comparative performance analysis between our model and several
forecasting models such as Winter’s (Winters 1960), TBAT (De Livera et al.
2011), ETS (Hyndman et al. 2002), and ARIMA (Hyndman and Khandakar
2008). The results we obtained reveal that better forecasts can be achieved using
the new method when two asynchronous calendars exert their effects on the
time-series.

Keywords: sales forecasting; Ramadan effect; asynchronous calendar effects;
exponential smoothing

1. Introduction

Typically, business or economics activities may change depending on calendar effects,
namely weather conditions, holy days and festivities. Many countries in the world
prefer to use the Gregorian calendar to organize and perform their business activities
in synchronization with the other ones. Hence, the Gregorian calendar easily captures
the pattern of seasons in nature, as well as the pattern of global festivities such as the
New Year.

Although some countries use the Gregorian calendar for arranging their econ-
omic activities, they continue to follow different calendars for observing their own
religious rituals and/or festivals, e.g., Ramadan, Easter, and Passover. In these reli-
gious festivities and holy days, the societies’ consumption habits distinguishably
change based on their traditions. For instance, many consumers in Middle-East
countries completely stop consuming alcoholic beverages during the Ramadan and

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access
article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

*Corresponding author. Email: karabag@ese.eur.nl

Journal of Management Analytics, 2021
Vol. 8, No. 1, 19–35, https://doi.org/10.1080/23270012.2020.1839362

http://orcid.org/0000-0002-9068-1991
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:karabag@ese.eur.nl
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/23270012.2020.1839362&domain=pdf&date_stamp=2021-01-22


tend to increase their soft drink consumptions. It is observed that in some markets,
this increase reaches up to 50% (The Nielsen Company, 2015).

These religious festivities and holy days are scheduled on the Gregorian calendar
months based on their unique calendars. As a result of this fact, they may not be
observed in a fixed time period in the Gregorian calendar, even their dates may
shift every year. The detection of this shifting effect on the sales levels would not
be a simple task for the firms employing classical forecasting methods. Because
many classical forecasting methods handle the time-series data with one seasonal
character over the calendar in use. Correspondingly, with these naive methods, the
sales forecasts would not be done effectively and accurately.

The main purpose of this work is to develop a newmethod for the situationswhere
the effect of two asynchronous calendars -such as Gregorian and Hijri or Gregorian
and Lunar- manifest themselves in the time-series simultaneously. To this end, we
extend the work of Winters (1960) by incorporating a component that captures the
second calendar effect. We also propose a guideline to determine the initial values
of the parameters in our model. Lastly, we compare the performance of our new
method with Winter’s (Winters, 1960), TBAT (De Livera, Hyndman, & Snyder,
2011), ETS (Hyndman, Koehler, Snyder, & Grose, 2002), and ARIMA (Hyndman
& Khandakar, 2008) models, using a real dataset from a brewery in Turkey. To the
best of our knowledge, this is the first attempt to introduce an adapted version of
Winter’s method which recognize the effect of two asynchronous calendars
simultaneously.

The rest of this work is organized as follows. In Section 2, we provide a detailed
literature review on the forecasting methods that are close to our work. In Section 3,
we briefly review the work of Winters (1960) and provide a discussion regarding the
details of our new method. Besides that, in the same section, we propose a guideline
for the choice of the smoothing parameters and initialization procedure. In Section 4,
by using a case study at a major brewery in Turkey, we compare the forecasting per-
formance of our new method with several well-known forecasting methods. Lastly, in
Section 5, we summarize our results and main findings and give some suggestions for
future research directions.

2. Literature review

The literature on the exponential smoothing forecasting methods is abundant. For the
sake of clarity, we only restrict our attention to the ones relevant to our work. For
further details on this research stream, we refer the reader to the review papers by
Gardner (1985), Chatfield, Koehler, Ord, and Snyder (2001), Gardner (2006), and
Syntetos, Boylan, and Disney (2009).

As one of the early studies in this research stream, Holt (2004) extends simple
exponential smoothing to double exponential smoothing by introducing a linear
trend component. Basically, with this extended method, the author combines the
concept of exponential smoothing with the ability to track a linear trend in the
dataset. On the other hand, Holt’s method cannot track the series having any seaso-
nal fluctuations. To deal with this problematic issue, Winters (1960) develops an elab-
oration of Holt’s method. In that new model, a third equation is added to Holt’s
method to capture the seasonal dynamics of the data. Pegels (1969) provides an exten-
sion to these two methods, taking into account all combinations of trend and
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seasonal effects in additive and multiplicative forms. Brown (2004) introduces a new
forecasting technique by integrating the exponential smoothing model with regres-
sors whose coefficients are time varying. Newbold and Granger (1974) compare the
forecasting performance of Box–Jenkins, Winter’s, and step-wise regression
methods using seven different time series. While conducting this comparison, the par-
ameters being used in the forecasting methods are determined by the authors’ own
software. Chatfield (1978) reanalyzes the same seven series by using some subjective
parameter adjustments. The author indicates that the computerizedWinters forecasts
can often be improved by subjective parameter adjustments and it would be much
fairer if a comparison between Box–Jenkins and non-computerized Winter’s
methods is done. Chatfield and Yar (1988) discuss several problems being observed
while implementing Winter’s method, e.g. the choice of smoothing parameters and
starting values, the normalization of seasonal indices and so on.

Although there is a vast literature on the detection of single-sourced seasonal fluc-
tuations in a given calendar system, only a few papers attempt to address the joint
effects of more than one calendar. Riazuddin et al. (2002) extend the classical
ARIMA model to handle the effects of the Hijri calendar on the currency circulation
in Pakistan. In that new model, the authors represent the second calendar effects with
a set of dummy variables. With a similar technique, Yucel (2005) examines the effects
of Ramadan on food prices in Turkey. Akmal et al. (2010) deal with how the changes
in the consumer price index in Pakistan are affected by the existence of Ramadan.
The authors emphasize that the effect of Ramadan on the consumer price index
cannot be determined properly by using ARIMA models because of the data record-
ing norms and inconsistency between the Hijri and Gregorian calendars. They
attempt to cope with this problematic issue by conducting a scenario analysis
based on three different datasets. Besides these studies, Lin et al. (2002), Seyyed,
Abraham, and Al-Hajji (2005), and Rao et al. (2011) attempt to extend the classical
ARIMA model to capture a second calendar effect being observed in time series.

Furthermore, De Livera et al. (2011) introduce a state space model for forecasting
complex seasonal time series such as those with multiple seasonal periods, non-
integer seasonality, and dual calendar effects. However, this model is overly
complex with ARIMA error correction and Fourier representations of time
varying coefficients. Due to this complexity, it is not easy to use that methodology
for regular forecasting purposes. A similar solid statistical background is also used
in a number of existing studies (e.g. Gould et al., 2008; Taylor, 2003, 2010; Taylor
& Snyder, 2012; Tratar, Mojškerc, & Toman, 2016) which deal with exponential
smoothing models to capture multiple seasonality patterns occurring due to an
other calendar that is used out of the official calendar. Computational complexity,
over parameterization, and/or the inability to accommodate both non-integer
period and dual calendar effects can be attributed as the weakness of these models.

In supply chain management, in order to manage inventory levels that provide an
acceptable level of service to customers, the demand forecasting is required on a
regular basis for a very large number of products (Hyndman et al., 2002). The
methods should, therefore, satisfy the requirements of being fast, flexible, user-
friendly, and they are able to produce results, which are reliable, efficient, and easy
to interpret by the user with a lack of advanced statistical knowledge. However, the
conducted literature review shows that none of the existing studies satisfies both of
these dimensions when the dual calendar effect comes into play in time series.
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Most of them are generally too complex to use in practice or they are not sufficient to
capture the simultaneous effects of two asynchronous calendars.

To address this issue, we extend the work of Winters (1960) in a way that it can
recognize the seasonalities being emerged in time series due to asynchronous calen-
dars. The method that we develop in this study can be easily implemented in an
Excel spreadsheet or a Matlab m-file. The optimization routines for the choice of par-
ameters usually take a few seconds so the method facilitates the real-time analysis and
forecasting of two seasonal patterns even though one of them originates from the
second calendar. As well as ease of use, we believe that this contribution could
have an impact on many forecasting settings in which the demand is shaped by the
climate seasonality and cultural seasonality of the market.

3. Forecasting methods

In the following sections, we first review Winter’s methods, and then, give the details
of our new method.

3.1. Winter’s method (WM)

Winters’method is a type of triple exponential smoothing and it is efficient when the
dataset exhibits seasonal fluctuations and an increasing or decreasing linear trend
over time. The most important advantage of this method is that it easy to update sea-
sonal factors as new datasets become available (Nahmias & Cheng, 2009). The four
equations that define this forecasting method are:

Level estimate: St = a Dt/ct−N
( )+ (1− a)(St−1 − Gt−1), (1)

Trend estimate: Gt = b St − St−1( ) + (1− b)Gt−1, (2)

Seasonal estimate: ct = g(Dt/St)+ (1− g)ct−N , (3)

Forecast for t periods ahead: Ft,t+t = (St + Gtt)ct+t−N , (4)

where γ is a smoothing factor for the seasonality. α and β are smoothing factors for the
level and trend, respectively. Also, t is an index denoting the time. The smoothing par-
ameters denoting by α, β and γ are typically determined by minimizing an error
measure of the fit, e.g. mean square error (MSE), mean absolute deviation (MAD)
or mean absolute percentage error (MAPE). In practice, it has been using various
advanced methods for choosing the smoothing and initialization parameters, e.g.
Kalman filter, maximum likelihood estimation, and regression-based approaches.
For a further detailed discussion on this subject, we refer the reader to the work of
Hyndman, Koehler, Ord, and Snyder (2008).

3.2. Augmented Winter’s method (AWM)
Winter’s method allows the incorporation of seasonalities into forecasts. The assump-
tion for this method is that there is a number of periods N, for a given i = 1, 2, . . . , N
the elements of set {i + kN | k [ N}, show the same seasonal calendar character.
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Hence, the same seasonality factor comes into play everyN periods. Typically, demand
seasonalities are in synch with the Gregorian calendar. Temperature variations within
the year specify the times for change of collections in the fashion industry due to their
inherent effect in the demand pattern. The sales of ice cream or cold beverages are the
most well-known examples for this situation, since they are designed to be consumed
more when ambient temperature is higher. Similarly, there is additional demand for
many types of good in well-known periods of the year due to festivities and accompa-
nying gift-exchange traditions. All these phenomena with pronounced effect on
demand patterns happen at the same period, each year. Hence, they can be captured
within the framework of Winter’s.

Winter’smethodsuggestssolutiontohandletime-seriesdatawithoneseasonalchar-
acter over the calendar in use. For this reason, there is a problem when two different
calendars that are not synchronized come into play. The most prominent example of
this is the asynchronization between the Gregorian and the Hijri calendars. With the
influenceofglobalizationaswellasnature, thesetwocalendarsexerttheir influencessim-
ultaneously inmany countries. TheGregorian calendar captures the rhythmof seasons
innatureaswellas therhythmof–nowglobal– festivities suchas theNewYear. Insucha
situation, there isanumberofperiodsN1, foragiven i = 1, 2, . . . , N1 theelementsof set
{i + kN1 | k [ N},showsameseasonalprimarycalendarbehavior.However, inMuslim
countries (as in the example of Turkey), Islamic traditions also have profound effect in
demand patterns. For instance, during the month of Ramadan,Muslims fast and their
eatingpatternsaredifferenttothoseduringtherestoftheyear.Ofparticularsignificance
isthatalcoholconsumptionsignificantlydropsduringthismonthandsoftbeveragecon-
sumption shows an opposite characters. In this setting, the seasonalityover the second-
ary calendar also comes into play everyN2 periods.

To capture simultaneous effects of two asynchronous calendars, we propose a new
approach which we name as the Augmented Winter’s method. In this methodology,
we treat the data as a time series with multiple layers of seasonality in play. There is
underlying linear model in the spirit of Holt. Then, the layer of first calendar season-
ality is added just like in Winter. Finally, the new layer of second calendar seasonality
is placed again via a multiplicative factor. In order to dynamically estimate the factors
involved, we need to peel the data layer by layer.

In this method, we use two sets of seasonal factors to forecast the time series in a
given period. The forecasting periods are according to the first calendar (Gregorian).
The main difficulty is that the months of the two calendars do not usually coincide.
For example, the month of Ramadan of Islamic calendar usually occurs at two con-
secutive months of the Gregorian calendar. Moreover, the number of days of
Ramadan in each of these Gregorian months varies from year to year. Therefore,
the new methodology has to partition the effect of Islamic calendar months to the
specific Gregorian month. To address this issue, we postulate that the effect of sec-
ondary calendar months is distributed between the primary calendar months in pro-
portion with the number of secondary calendar month days within each month.

Now, we can proceed to the process of peeling the second calendar effects out of
the time series using the following equation:

Rt =
∑N2

i=1

Dthit
ki

, (5)
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where hit is the ratio of ith secondary calendar month days in tth primary calendar
month to the total number of ith primary calendar days, and ki is the coefficient for
the ith secondary calendar month. Actual observation in period t is denoted by Dt

whereasN2 stands for the seasonality length of second calendar.We should also note that

∑N1

t=1

hitd
p
t = dsi , (6)

∑N2

i=1

hit = 1, (7)

where d p
t is the number of primary calendar days in the tth primary calendar month and

dsi is the number of secondary calendar days in the tth primary calendar month. In
addition, seasonality length for primary calendar is denoted byN1. The above equations
imply that the days of ith secondary calendar month are distributed on the primary
calendar months with respect to the number of overlapped days within each month.

The smoothing factor for the secondary calendar seasonality is described by the
following equation:

k′i = r

∑
j[SR

hijDj∑
j[SR

hijRj

( )
+ 1− r

( )
ki where SR = j | hij . 0

{ }
. (8)

ki is the un-updated coefficient for the ith secondary calendar month and k′i is the
updated coefficient for the ith secondary calendar month. When the new data is avail-
able, k′i is updated based on the secondary calendar smoothing factor
r, where 0 ≤ r ≤ 1.

Also, all of secondary calendar month factors are normalized so that their
weighted averages are 1. The normalizing equation is explicitly expressed as follows:

∑N2
i=1 k

′
i

N2
= 1. (9)

Once the effect of the second calendar is taken out, the first calendar seasonalities are
updated with

ct = g
Rt

St

( )
+ 1− g

( )
ct−N1 , (10)

where γ is primary calendar seasonality smoothing factor.
Moreover, the sum of any N1 successive seasonal factors should always be N1. In

other words, after estimating each seasonal factor, it is normalized with the most
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recent seasonal factors by using

cj = cj∑t
i=t−N1+1 ci

[ ]
N1 where t−N1 + 1 ≤ j ≤ t. (11)

The fully deseasonalized series is now used to update level and trend estimates:

St = a
Rt

ct−N1

( )
+ 1− a( ) St−1 + Gt−1( ), (12)

where α is smoothing factor for the level.
The new estimate of the trend component is simply defined as a smoothed sum of

difference between two consecutive estimations of the deseasonalized level and the
preceding trend estimate. Formally, it is:

Gt = b St − St−1( ) + 1− b
( )

Gt−1, (13)

where 0 ≤ b ≤ 1 is the trend smoothing constant, which determines the relative
weight placed on the current estimation of the trend.

Lastly, the forecast made in period t for any future period t+ t is given by the fol-
lowing equation:

Ft,t+1 = St + Gt( )ct
∑N2

i=1

kihit

( )
. (14)

For this new method, we propose the following initialization procedure. First of all, a
minimum of two full seasons (2N1 periods) of historical data is required to initialize a
set of seasonal factors. Then, we follow the procedure given below:

(1) Calculate the sample means for the two separate seasons of data with,

V1 = 1
N

∑−N1

j=−2N1+1

Dj, (15)

V2 = 1
N

∑0
j=−N1+1

Dj, (16)

where the present period is t = 0, and the past observations are identified by
negative indices.
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(2) Estimate the initial slope G0 and the level of the series S0 with

G0 = (V2 − V1)
N1

, (17)

S0 = V2 + G0
N1 − 1

2

[ ]
. (18)

(3) The raw seasonal indices are estimated for each initialization period as
follows:

ĉt = Dt

Vi − N1 + 1( )
2

− j
[ ]

G0

, where − 2N1 + 1 ≤ t ≤ 0, i = 1, 2. (19)

Note that our raw estimates reflect the joint effects of the seasonalities of two
asynchronous calendars. Hence, we need a more sophisticated approach to decom-
pose the effect of each calendar’s seasonality. Our suggestion for this problem is to
solve the nonlinear least-square formulation given below:

min
∑−N1

t=−2N1+1

ĉt − ct+N1

∑N2

i=1

hitki

( )( )2

+
∑0

t=−N1+1

ĉt − ct
∑N2

i=1

hitki

( )( )2
⎡
⎣

⎤
⎦, (20)

where ct(
∑N2

i=1 hitki) is the joint seasonal factor for period t of the second part of initi-
alization set whereas ct+N1 (

∑N2
i=1 hitki) is the joint seasonal factor for the same period t

of the first part of initialization set. With the equation given above, a proper set of
seasonality factors and coefficients may not be obtained due to the fact that the sol-
ution of the nonlinear least square can yield negative values. In order to address this
issue, the following constraints must be considered while solving the nonlinear least-
square formulation:

∑N1

t=1

ct = N1, (21)

∑N2

i=1

ki = N2, (22)

ct . 0 where [ {1, 2, . . . , N1}, (23)

ki . 0 where i [ {1, 2, . . . , N2}. (24)

The above constraints imply the normality and positivity conditions on the factors.
To minimize the above non-linear problem, one can use an off-the-shelf optimization
software such as MATLAB, Python, or AIMMS.
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3.3. An extension for augmented Winter’s method
The flexible structure of the new method allows us to treat the effects of secondary
calendar months separately, as well as giving an opportunity to examine the second-
ary calendar effect in a special structure such as a particular month and the others. In
some cases, there might be only the effect of a single secondary calendar month on the
actual data which is collected according to primary calendar. The Ramadan can be
given as an example for this situation. In most of the Muslim countries, consumption
habits are distinguishably affected due the holy Ramadan whereas the other months
of Hijri calendar do not have a significant effect on the consumers. As a result of this
fact, in a given dataset which is collected from this market structure, wemight only see
the effect of Ramadan. In such a case, the months can be grouped as Ramadan and
Non-Ramadan ones. Hence, there will be only two seasonal factors for the second
calendar effect, and they are denoted by kr and ko. kr is the coefficient for
Ramadan months whereas ko is the coefficient for Non-Ramadan months.

In this context, Equation stated in (5) is rephrased as follows:

Rt = Dt

kr

( )
rt + Dt

ko

( )
ot, (25)

where rt ratio of Ramadan days in the current forecast period and ot ratio of
Non-Ramadan days in the current forecast period.

By considering this modification, updating Equation (8) is revised and denoted as

kr
′ = r

∑
i[SR

riDi∑
i[SR

riRi

( )
+ (1− r)kr where 0 ≤ r ≤ 1 and SR = {i | ri . 0}, (26)

where kr
′ is the updated coefficient for the Ramadan month and kr is un-updated

coefficient for the Ramadan month.
For the Non-Ramadan month, the equation will be

ko
′ = r

∑
i[SR

oiDi∑
i[SR

oiRi

( )
+ (1− r)ko where 0 ≤ r ≤ 1 and SR = {i | ri . 0}, (27)

where k0
′ is the updated coefficient for the Non-Ramadan month and ko is un-

updated coefficient for the Non-Ramadan month.
Also, these two coefficients are normalized by using the following equation:

11ko + kr = 12. (28)

In such a case, the estimates for level, trend and the first calendar seasonalities remain
same as defined in the previous section. The forecast equation in (14) is also adjusted
as

Ft,t+t = (St + tGt)ct(ot+tko + rt+tkr). (29)

The nonlinear least-square equation (20) for the initialization procedure is re-defined
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by considering these modifications.

min
∑−N1

t=−2N1+1

ĉt − ct+12 otko + rtkr( )( )2 + ∑0
t=−N1+1

ĉt − ct otko + rtkr( )( )2
[ ]

(30)

4. Numerical results

In this section, we first describe the characteristics of our dataset, with a set of
descriptive statistics. After that, using the dataset we have, we provide a comparative
performance analysis between our model and Winter’s, TBAT, ETS, and ARIMA
models.

4.1. Dataset

This paper is motivated by a project undertaken at an important beer producer in
Turkey. Their products are categorized in three dimensions: brand, package type,
and package size. At the time of the study, a total of twelve beer brands are available
in the Turkish market. These brands are on the market in three different packages
(returnable bottle, non-returnable bottle, and can) and two sizes (35cc, 50cc). But,
in this study we restrict our attention to only a specific returnable bottled beer
which is the producer’s bestselling product.

Our dataset consists of exactly 72 data points being collected between January
2008 and December 2013. The overall average and standard deviation of the
monthly sales amounts are 8,601,398 and 5,395,557, respectively. In Figure 1, we
present a line graph illustrating all data points in this dataset.

Three striking features of the sales data immediately come to light in Figure 1.
First, there is an upward linear trend in the sales amounts from January 2008 to
March 2012. Second, over the entire 12-month periods, the sales amounts show sea-
sonal fluctuations with consistent peaks in summer months and declines in Ramadan
(lighter colored markers). At the beginning of 2010, this product is relaunched with a

Figure 1. Monthly sales series.
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new brand identity and a new bottle on the Turkish market. Besides that, the
company has started a new price positioning for the product and supported it with
intensive advertisements and sponsorship activities. Lastly, as a result of these
efforts, a linear upward trend in the sales amounts after February 2010 has
emerged. Furthermore, from Figure 1, it is seen that the average sales amount of
the first 2 years, 2008 and 2009 are less than the average sales amount of the last 4
years, 2010, 2011, 2012 and 2013.

All of these observations are also confirmed with Figure (2) which separately
depicts the monthly sales series for each year. The figure shows that the effect of
Ramadan does not manifest itself in a single month of the Gregorian calendar
(lighter colored markers are again Ramadan months). The lines connecting the
months within the same year are parallel to each other. From this observation, we
can infer that the average sales amount for each year is higher than the previous
one. This means the existence of a linear upward trend in the dataset. Furthermore,
from the figure, it is observed that the beer sales volumes exhibit a seasonal pattern.
The patterns are obviously recurrent and consistent from year to year.

4.2. Comparative performance analysis

Using the dataset introduced in the previous section, we compare the forecasting per-
formance of our method with Winter’s, ARIMA, TBAT, and ETS models.

We implement Winter’s and ARIMA forecasting methods by using packages
“forecast.HoltWinters” and ‘auto.arima’ in R. These two packages were developed
by Hyndman et al. (2019). The model parameters are automatically determined by
the corresponding package.

TBATmodel is introduced by De Livera et al. (2011) for forecasting complex sea-
sonal time series such as those with multiple seasonal periods, high-frequency season-
ality, and dual-calendar effects. For more detailed information about the method, we
refer the reader to the work of De Livera et al. (2011). The method is implemented by
employing an R package called “forecast.tbats” (Hyndman et al., 2019). All corre-
sponding parameters are determined by the package itself with a criterion of
minimum AIC.

Figure 2. Yearly sales series.
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ETS model is proposed by Hyndman et al. (2002). This model is developed on a
state space framework that includes all the exponential smoothing models and allows
the computation of prediction intervals, likelihood, and model selection criteria.
Hyndman et al. (2019) provide a full implementation of the model in an R
Package called “forecast.ets”. We use this package to implement the model and let
the package determines all the model parameters automatically with a criterion of
minimum AIC.

We implement our new method in MATLAB and set the smoothing parameters
a, b, g, and ρ with a criterion of minimum mean square error. To obtain the initial
seasonal indices ci and the second calendar effects koand kr, we solve Equation
(30) by employing the nonlinear least-squares optimization routine in MATLAB.
In addition to the Ramadan factor, the effects of different Hijri months, like Muhar-
ram, Shawwal, and Dhul-Hajj, can also manifest itself in the Turkish beer market
since Islamic societies in Turkey have many differences in the observance of festivities
and mourning. This phenomenon has been controlled by having several extra models,
and it has been observed that the effects of these months in the market are not as sig-
nificant as Ramadan. Therefore, the models including the effects of different Hijri
months are not given in this study. Due to this setting, we are not going to treat
the months’ of the second (Islamic) calendar separately, but we are going to classify
them as Ramadan and the others.

We utilize the dataset by dividing it into two parts: (1) training set that covers the
data points between January 2008 and December 2009 and (2) test set that covers the
data points between January 2010 and December 2013. The training set is only used
to determine the models’ forecasting parameters. The model parameters we obtain
with the training set is given in Table 1.

The test set is only used to provide a comparative performance analysis of the
models fitted based on the training dataset. To this end, we define two accuracy
measures: (1) Mean Squared Error (MSE),

MSE = 1
n

∑n
t=1

(Dt − Ft)
2, (31)

and (2) Mean Absolute Deviation (MAD),

MAD = 1
n

∑n
t=1

Dt − Ft| |, (32)

where Dt is the actual observation and Ft is the forecast obtained from a given
method. Besides these two measures, for each model, the maximum error and
square root of MSE are calculated. Winter’s Method (WM) is used as a benchmark,
and the relative change is defined by the following equation:

%Change = Measure for forecasting method−Measure for WM
Measure for WM

100. (33)

A positive value in % Change implies that the benchmark method (WM) performs

30 O. Karabağ and M. M. Fadiloğlu



Table 1. The parameters of the models, obtained over the training set.

(a) WM and AWM models

Parameters WM AWM

α 0 0.25
β 0 0.10
γ 0.1 0.40
ρ – 0.50
ko – 1.06
kr – 0.32
c1 −31,875 0.87
c2 −485,325 0.80
c3 266,799 0.95
c4 999,682 1.05
c5 539,217 1.11
c6 721,338 1.19
c7 1,079,403 1.2
c8 −219,923 0.92
c9 −222,8118 1.23
c10 −152,734 0.89
c11 −365,136 0.89
c12 −15,002 0.90
S0 4,081,246 4,175,716
G0 13,578 14,341

(b) ARIMA model

ARIMA

AR coefficients 0
MA coefficients 0.45
Difference 0

(c) TBAT model

TBAT

α 0.15
β 0.09
m1 12.00
m2 11.64
Damping Parameter 1.00
g1 Values {−0.0004, − 0.0001}
g2 Values {0.0003, 0.0003}
AR coefficients −0.99
MA coefficients 0.69

(d) ETS model

ETS

α 0.0001
l 3,982,827.33
σ 873,578.90
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better than the compared method whereas a negative value signifies an improvement
compared to WM.

Considering one-step-ahead forecasts, the accuracy measures of three forecasting
methods are given in Table 2. These measures are calculated only over the test set.
Besides that, Figure 3(a–e) are depicted in order to give a visual impression about
the performance of the forecasting methods. Each of these figures illustrates the
actual data points in the test set, the fitted values obtained with the corresponding
forecast model whose parameters determined based on the training set, and the cor-
responding residuals.

The results show that in terms of all considered accuracy measures, ETS and
ARIMA models are inferior to other ones. This is due to the fact that both models
need a larger training dataset to capture the seasonal patterns, trend, and level in
the dataset. On the other hand, the results reveal that AWM improves all considered
accuracy measures when compared to WM. Our new method leads to a reduction in
MSE and MAD of 98.22% and 85.83%, respectively. With the use of AWM, a signifi-
cant improvement in the maximum error is also achieved, i.e. it is reduced by 86.66%.
Although TBAT has successful results compared to WM, it is inferior to AWM in
terms of all performance measures. TBAT leads to a 70.06% reduction in MSE
whereas it reduces the maximum error by 31.71%. As it is understood from the
results, our new method is capable of capturing the shifting second calendar effect,
as well as the first calendar effect. Hence, it generates superior results compared to
the others.

5. Conclusion

The method of Winters (1960) is one of the most well-known forecasting method-
ologies in practice. The main reason behind its popularity is that it is easy to
implement and can give quite effective and efficient results for practice purposes.
The method is capable of capturing a linear upward or downward trend in the
data, as well as a cyclic seasonal factor originating from the calendar in use.
However, it is not efficient at capturing a pattern being emerged due to the simul-
taneous effects of two different asynchronous calendars, such as Gregorian and
Islamic (Hijri). We adapt this method in a way that it can accommodate the effects

Table 2. Accuracy measures obtained over the test set.

WM AWM % Change TBAT % Change

MSE 68.63e12 1.22e12 −98.22% 20.55e12 −70.06%������
MSE

√
8,284,251 1,105,021 −86.66% 4,533,242 −45.28%

MAD 6,590,239 934,123 −85.83% 3,059,544 −53.57%
Max. Error 21,859,253 2,583,203 −86.66% 14,927,318 −31.71%

ETS % Change ARIMA % Change
MSE 75.31e12 9.74% 74.87e12 9.10%������
MSE

√
8,678,374 4.76% 8,653,062 4.45%

MAD 7,024,568 6.59% 6,994,639 6.14%
Max. Error 20,340,496 −6.95% 20,308,864 −7.09%
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of two different asynchronous calendars. This adapted method, which is called Aug-
mented Winters Method (AWM), involves an additional seasonal index, and an extra
smoothing equation for the new seasonal index.

In order to illustrate the performance of our new forecasting method, a real life
time series, which is provided by a leading beer factory in Turkey, is utilized. The per-
formance of the new method is also compared with Winter’s, ARIMA, ETS, and
TBAT models. Our results show that ETS, ARIMA, and TBAT models are inferior
to AWM. This can be attributed to the fact that they need a larger training dataset to
capture the seasonal, trend, and level parameters properly and/or are a type of over-
parameterized model. The results also reveal that in terms of all considered accuracy
measures, our new method performs better than WM. This is mainly due to the fact
that WM does not capture the second calendar effect very well.

This study can be extended in several ways. We determine the initial parameters
for our new method by using a very naive method. The initialization procedure we

Figure 3. Actual-Fitted-Residual graphs obtained by using the corresponding forecasting
method: (a) WM, (b) AWM, (c) ETS, (d) ARIMA and (e) TBAT.
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use in this study can be improved with machine learning and artificial intelligence
techniques. The forecasts to be obtained with such techniques, most probably,
would be more accurate and effective and the true power of the proposed model
would be better reflected. This is left for future work. The method we proposed in
this study is implemented to a single dataset since we could not find any other
dataset where two asynchronous calendars’ effects are observed. Observing the per-
formance of the new method over the different datasets would definitely be better for
the generalization of our results.
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